WorldWideScience

Sample records for spore coat proteins

  1. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore.

    Science.gov (United States)

    Tang, Jilin; Krajcikova, Daniela; Zhu, Rong; Ebner, Andreas; Cutting, Simon; Gruber, Hermann J; Barak, Imrich; Hinterdorfer, Peter

    2007-01-01

    Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores. Copyright (c) 2007 John Wiley & Sons, Ltd.

  2. Architecture and Assembly of the Bacillus subtilis Spore Coat

    Science.gov (United States)

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J.

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization

  3. Architecture and assembly of the Bacillus subtilis spore coat.

    Science.gov (United States)

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of "nanodot" particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization

  4. Gel-free proteomic identification of the Bacillus subtilis insoluble spore coat protein fraction

    NARCIS (Netherlands)

    Abhyankar, W.; ter Beek, A.; Dekker, H.; Kort, R.; Brul, S.; de Koster, C.G.

    2011-01-01

    Species from the genus Bacillus have the ability to form endospores, dormant cellular forms that are able to survive heat and acid preservation techniques commonly used in the food industry. Resistance characteristics of spores towards various environmental stresses are in part attributed to their

  5. Spore Coat Architecture of Clostridium novyi-NT spores

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; McCafferey, J; Cheong, I; Huang, X; Bettegowda, C; Kinzler, K; Zhou, S; Vogelstein, B; Malkin, A

    2007-05-07

    Spores of the anaerobic bacterium Clostridium novyi-NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Towards this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of dormant as well as germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers as well as the underlying spore coat and undercoat layers sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi-NT, these studies document the presence of proteinaceous growth spirals in a biological organism.

  6. Forces and Kinetics of the Bacillus subtilis Spore Coat Proteins CotY and CotX Binding to CotE Inspected by Single Molecule Force Spectroscopy.

    Science.gov (United States)

    Liu, Huiqing; Krajcikova, Daniela; Wang, Nan; Zhang, Zhe; Wang, Hongda; Barak, Imrich; Tang, Jilin

    2016-02-18

    Spores are uniquely stable cell types that are produced when bacteria encounter nutrient limitations. Spores are encased in a complex multilayered coat, which provides protection against environmental insults. The spore coat of Bacillus subtilis is composed of around 70 individual proteins that are organized into four distinct layers. Here we explored how morphogenetic protein CotE guides formation of the outermost layer of the coat, the crust, around the forespore by focusing on three proteins: CotE, CotY, and CotX. Single molecule force spectroscopy (SMFS) was used to investigate the interactions among CotE, CotY, and CotX at the single-molecule level. Direct interactions among these three proteins were observed. Additionally, the dissociation kinetics was also studied by measuring the unbinding forces of the complexes at different loading rates. A series of kinetic data of these complexes were acquired. It was found that the interaction of CotE and CotY was stronger than that of CotE and CotX.

  7. Electron Beam Irradiation Dose Dependently Damages the Bacillus Spore Coat and Spore Membrane

    Directory of Open Access Journals (Sweden)

    S. E. Fiester

    2012-01-01

    Full Text Available Effective control of spore-forming bacilli begs suitable physical or chemical methods. While many spore inactivation techniques have been proven effective, electron beam (EB irradiation has been frequently chosen to eradicate Bacillus spores. Despite its widespread use, there are limited data evaluating the effects of EB irradiation on Bacillus spores. To study this, B. atrophaeus spores were purified, suspended in sterile, distilled water, and irradiated with EB (up to 20 kGy. Irradiated spores were found (1 to contain structural damage as observed by electron microscopy, (2 to have spilled cytoplasmic contents as measured by spectroscopy, (3 to have reduced membrane integrity as determined by fluorescence cytometry, and (4 to have fragmented genomic DNA as measured by gel electrophoresis, all in a dose-dependent manner. Additionally, cytometry data reveal decreased spore size, increased surface alterations, and increased uptake of propidium iodide, with increasing EB dose, suggesting spore coat alterations with membrane damage, prior to loss of spore viability. The present study suggests that EB irradiation of spores in water results in substantial structural damage of the spore coat and inner membrane, and that, along with DNA fragmentation, results in dose-dependent spore inactivation.

  8. High-Resolution Spore Coat Architecture and Assembly of Bacillus Spores

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, A J; Elhadj, S; Plomp, M

    2011-03-14

    Elucidating the molecular architecture of bacterial and cellular surfaces and its structural dynamics is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance, and provide the means for identifying spore formulation and processing attributes. I will discuss the application of in vitro atomic force microscopy (AFM) for studies of high-resolution coat architecture and assembly of several Bacillus spore species. We have demonstrated that bacterial spore coat structures are phylogenetically and growth medium determined. We have proposed that strikingly different species-dependent coat structures of bacterial spore species are a consequence of sporulation media-dependent nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat. Spore coat layers were found to exhibit screw dislocations and two-dimensional nuclei typically observed on inorganic and macromolecular crystals. This presents the first case of non-mineral crystal growth patterns being revealed for a biological organism, which provides an unexpected example of nature exploiting fundamental materials science mechanisms for the morphogenetic control of biological ultrastructures. We have discovered and validated, distinctive formulation-specific high-resolution structural spore coat and dimensional signatures of B. anthracis spores (Sterne strain) grown in different formulation condition. We further demonstrated that measurement of the dimensional characteristics of B. anthracis spores provides formulation classification and sample matching with high sensitivity and specificity. I will present data on the development of an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures on the B. anthracis surfaces. These studies demonstrate that AFM can probe microbial surface architecture, environmental dynamics and the life cycle of bacterial and cellular systems at near

  9. Architecture and Assembly of the Bacillus subtilis Spore Coat

    Science.gov (United States)

    2014-09-26

    483 489. 15. Abhyankar W, Ter Beek A, Dekker H, Kort R, Brul S, et al. (2011) Gel-free proteomic identification of the Bacillus subtilis insoluble coat... identification of additional sporulation genes in Bacillus subtilis. J Mol Biol 327: 945 972. AFM of Spore Coat Architecture PLOS ONE | www.plosone.org 16 September 2014 | Volume 9 | Issue 9 | e108560 ...1ITLE AND SUBTITLE 5a CONTRACTNUMBER Architecture and assembly of the Bacillus subtilis spore coat W911NF-09-l-0286 5b. GRANT NUMBER 5c. PROGRAM

  10. Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores.

    Science.gov (United States)

    Bressuire-Isoard, Christelle; Bornard, Isabelle; Henriques, Adriano O; Carlin, Frédéric; Broussolle, Véronique

    2016-01-01

    The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. A novel method for standardized application of fungal spore coatings for mosquito exposure bioassays.

    Science.gov (United States)

    Farenhorst, Marit; Knols, Bart G J

    2010-01-20

    Interest in the use of fungal entomopathogens against malaria vectors is growing. Fungal spores infect insects via the cuticle and can be applied directly on the insect to evaluate infectivity. For flying insects such as mosquitoes, however, application of fungal suspensions on resting surfaces is more realistic and representative of field settings. For this type of exposure, it is essential to apply specific amounts of fungal spores homogeneously over a surface for testing the effects of fungal dose and exposure time. Contemporary methods such as spraying or brushing spore suspensions onto substrates do not produce the uniformity and consistency that standardized laboratory assays require. Two novel fungus application methods using equipment developed in the paint industry are presented and compared. Wired, stainless steel K-bars were tested and optimized for coating fungal spore suspensions onto paper substrates. Different solvents and substrates were evaluated. Two types of coating techniques were compared, i.e. manual and automated coating. A standardized bioassay set-up was designed for testing coated spores against malaria mosquitoes. K-bar coating provided consistent applications of spore layers onto paper substrates. Viscous Ondina oil formulations were not suitable and significantly reduced spore infectivity. Evaporative Shellsol T solvent dried quickly and resulted in high spore infectivity to mosquitoes. Smooth proofing papers were the most effective substrate and showed higher infectivity than cardboard substrates. Manually and mechanically applied spore coatings showed similar and reproducible effects on mosquito survival. The standardized mosquito exposure bioassay was effective and consistent in measuring effects of fungal dose and exposure time. K-bar coating is a simple and consistent method for applying fungal spore suspensions onto paper substrates and can produce coating layers with accurate effective spore concentrations. The mosquito bioassay

  12. A novel method for standardized application of fungal spore coatings for mosquito exposure bioassays

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2010-01-01

    Full Text Available Abstract Background Interest in the use of fungal entomopathogens against malaria vectors is growing. Fungal spores infect insects via the cuticle and can be applied directly on the insect to evaluate infectivity. For flying insects such as mosquitoes, however, application of fungal suspensions on resting surfaces is more realistic and representative of field settings. For this type of exposure, it is essential to apply specific amounts of fungal spores homogeneously over a surface for testing the effects of fungal dose and exposure time. Contemporary methods such as spraying or brushing spore suspensions onto substrates do not produce the uniformity and consistency that standardized laboratory assays require. Two novel fungus application methods using equipment developed in the paint industry are presented and compared. Methods Wired, stainless steel K-bars were tested and optimized for coating fungal spore suspensions onto paper substrates. Different solvents and substrates were evaluated. Two types of coating techniques were compared, i.e. manual and automated coating. A standardized bioassay set-up was designed for testing coated spores against malaria mosquitoes. Results K-bar coating provided consistent applications of spore layers onto paper substrates. Viscous Ondina oil formulations were not suitable and significantly reduced spore infectivity. Evaporative Shellsol T solvent dried quickly and resulted in high spore infectivity to mosquitoes. Smooth proofing papers were the most effective substrate and showed higher infectivity than cardboard substrates. Manually and mechanically applied spore coatings showed similar and reproducible effects on mosquito survival. The standardized mosquito exposure bioassay was effective and consistent in measuring effects of fungal dose and exposure time. Conclusions K-bar coating is a simple and consistent method for applying fungal spore suspensions onto paper substrates and can produce coating layers

  13. Small acid soluble proteins for rapid spore identification.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  14. Effect of Coat Layers in Bacillus Subtilis Spores Resistance to Photo-Catalytic Inactivation

    Directory of Open Access Journals (Sweden)

    Luz del Carmen Huesca-Espitia

    2017-10-01

    Full Text Available Different water treatment processes (physical and chemical exist to obtain safe water for human or food industry supply. The advanced oxidation technologies are rising as a new alternative to eliminate undesirable chemicals and waterborne diseases. In this work, we analyze the power of the photo-assisted Fenton process using Fe(II/H2O2 and UV radiation (365 nm to inactivate Bacillus subtilis spores, considered among the most resistant biological structures known. Different concentrations of Fe(II, H2O2 and UV radiation (365 nm were used to inactivate wt and some coat spore mutants of B. subtilis. Wt spores of B. subtilis were inactivated after 60 min using this process. In general, all defective coat mutants were more sensitive than the wt spores and, particularly, the double mutant was 10 folds more sensitive than others being inactivated during the first 10 minutes using soft reaction conditions. Presence of Fe(II ions was found essential for spore inactivating process and, for those spores inactivated using the Fe(II/H2O2 under UV radiation process, it is suggested that coat structures are important to their resistance to the treatment process. The photo-assisted Fenton process using Fe(II, H2O2 and UV radiation (365 nm can be used to inactivate any water microorganisms with the same or less resistance that B. subtilis spores to produce safe drinking water in relatively short treatment time.

  15. Characterization of a spore-specific protein of the Bacillus cereus group.

    Science.gov (United States)

    From, Cecilie; van der Voort, Menno; Abee, Tjakko; Granum, Per Einar

    2012-06-01

    Bc1245 is a monocistronic chromosomal gene of Bacillus cereus ATCC 14579 encoding a putative protein of 143 amino acids identified in this study to have a spore-related function in B. cereus. Bc1245 is highly conserved in the genome of members of the B. cereus group, indicating an important function of the gene in this group of bacteria. Quantitative PCR revealed that bc1245 is transcribed late in sporulation (upon formation of phase-bright spores) and at the same time as the mother cell-specific transcription factor σ(K) . The σ(K) regulon includes structural components of the spore (such as coat proteins), and it is therefore plausible that bc1245 might encode a structural outer spore protein. This was confirmed by detection of BC1245 in exosporium extracts from B. cereus by immunoblotting against BC1245 antiserum. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Biomarkers of Aspergillus spores: Strain typing and protein identification

    Czech Academy of Sciences Publication Activity Database

    Šulc, Miroslav; Pešlová, Kateřina; Žabka, Martin; Hajdúch, M.; Havlíček, Vladimír

    2009-01-01

    Roč. 280, 1-3 (2009), s. 162-168 ISSN 1387-3806 R&D Projects: GA MŠk LC07017; GA ČR GP203/05/P575 Institutional research plan: CEZ:AV0Z50200510 Keywords : aspergillus * spore * protein Subject RIV: EE - Microbiology, Virology Impact factor: 2.117, year: 2009

  17. 14C Analysis of protein extracts from Bacillus spores.

    Science.gov (United States)

    Cappuccio, Jenny A; Falso, Miranda J Sarachine; Kashgarian, Michaele; Buchholz, Bruce A

    2014-07-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F(14)C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F(14)C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F(14)C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F(14)C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their (14)C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate (14)C bomb-pulse dating. Since media is contemporary, (14)C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Enhancer regions responsible for temporal and cell-type-specific expression of a spore coat gene in Dictyostelium.

    Science.gov (United States)

    Fosnaugh, K L; Loomis, W F

    1993-05-01

    The extracellular spore coat of Dictyostelium discoideum is composed of three major proteins, SP96, SP70, and SP60, encoded by the cotA, cotB, and cotC genes, respectively. The spore coat proteins are coordinately synthesized in prespore cells shortly after aggregation, stored in prespore vesicles during the slug stage, and secreted during encapsulation of spores. We have ligated various portions of the upstream region of cotB to lacZ such that a protein consisting of the first nine amino acids of SP70 fused to beta-galactosidase is synthesized in prespore cells. Individual cells that accumulate the enzyme can be observed in situ during early aggregation due to the sensitivity of the assay. We have found that prespore cells first appear in a random distribution throughout the aggregates with no indication of spatial localization. They subsequently sort out from prestalk cells that form a tip on the aggregates. The cotB regulatory region was subdivided into a proximal and a distal region, each of which could independently direct proper temporal and cell-type control. Transcriptional activity directed by these two regions appears to be additive in the full-length regulatory region. The proximal region was shown to be complex in that removal of certain portions partially reduced transcriptional activity while removal of other portions abolished all activity. Nevertheless, cells transformed with constructs showing attenuated activity expressed the fusion gene at the proper time in development and the activity was localized to prespore cells. The cis-acting regions responsible for all aspects of cotB regulation appear to be closely opposed within the minimal essential sequence of the proximal region.

  19. Expression and characterization of a novel spore wall protein from ...

    African Journals Online (AJOL)

    Microsporidia are obligate intracellular, eukaryotic, spore-forming parasites. The environmentally resistant spores, which harbor a rigid cell wall, are critical for their survival outside their host cells and host-to-host transmission. The spore wall comprises two major layers: the exospore and the endospore. In Nosema ...

  20. Trichoderma sp. spores and Kluyveromyces marxianus cells magnetic separation: Immobilization on chitosan-coated magnetic nanoparticles.

    Science.gov (United States)

    Palacios-Ponce, Sócrates; Ramos-González, Rodolfo; Ruiz, Héctor A; Aguilar, Miguel A; Martínez-Hernández, José L; Segura-Ceniceros, Elda P; Aguilar, Cristóbal N; Michelena, Georgina; Ilyina, Anna

    2017-07-03

    In the present study, the interactions between chitosan-coated magnetic nanoparticles (C-MNP) and Trichoderma sp. spores as well as Kluyveromyces marxianus cells were studied. By Plackett-Burman design, it was demonstrated that factors which directly influenced on yeast cell immobilization and magnetic separation were inoculum and C-MNP quantity, stirring speed, interaction time, and volume of medium, while in the case of fungal spores, the temperature also was disclosed as an influencing factor. Langmuir and Freundlich models were applied for the mathematical analysis of adsorption isotherms at 30°C. For Trichoderma sp. spore adsorption isotherm, the highest correlation coefficient was observed for lineal function of Langmuir model with a maximum adsorption capacity at 5.00E + 09 spores (C-MNP g -1 ). Adsorption isotherm of K. marxianus cells was better adjusted to Freundlich model with a constant (K f ) estimated as 2.05E + 08 cells (C-MNP g -1 ). Both systems may have a novel application in fermentation processes assisted with magnetic separation of biomass.

  1. Investigation into spore coat properties for the rapid identification of endospores in marine sediments

    Science.gov (United States)

    Rattray, J. E.; Chakraborty, A.; Bernard, B. B.; Brooks, J.; Hubert, C. R.

    2017-12-01

    Understanding the sediment biogeography of dormant marine thermophilic bacterial endospores (thermospores) has the potential to assist locating and characterising working petroleum systems. The presence of thermospores in cold ocean environments suggests that distribution occurs via hydrocarbon seepage from thermally active reservoirs. Low abundance and endospore coat physiology mean nucleic acid based techniques have limited success for in situ detection of thermospores. Alternative rapid analytical methods are needed so we investigated using the Schaeffer-Fulton (malachite green and safranin) and DAPI (4',6-diamidino-2-phenylindole) staining techniques on thermospores from cultures and marine sediments. Sediment samples from 111 locations in the Eastern Gulf of Mexico (100 to 3300 m water depth; 6 to 600 km apart) were incubated at high temperature, followed by construction of 16S rRNA gene amplicon libraries (V3-V4 region; Illumina MiSeq) revealing enrichment of species-level thermospore OTUs. A sulfate reducing bacterium from site EGM080 was purified and classified based on its rRNA gene sequence as Desulfotomaculum geothermicum. Prior to thermospore staining the culture was kept in the death/ decline phase for 16 weeks to promote sporulation. Samples of D. geothermicum and the source marine sediment were fixed, stained then analysed using brightfield, phase contrast or fluorescence microscopy. Thermospores in pure culture were identified using phase contrast but were difficult to observe in the sediment sample due to particle aggregation. The Schaeffer-Fulton technique aided thermospore identification in a complex sediment sample matrix as thermospores were stained bright green, and also revealed that there were only spores and no (red stained) vegetative cells in the culture. Treatment with DAPI gave dull fluorescing cells but also provided insight into the behaviour of thermospores in sediment suspensions. Spores in the culture medium were free floating but

  2. DNA capturing machinery through spore-displayed proteins.

    Science.gov (United States)

    Park, T J; Lee, S J; Pan, J-G; Jung, H-C; Park, J Y; Park, J P; Lee, S Y

    2011-10-01

    The purpose of this study was to develop a general method for the facile development of a new DNA biosensor which utilizes streptavidin-displayed spores as a molecular machinery. Fluorescence spectroscopy was used as a monitoring tool for the streptavidin displayed on the surface of Bacillus thuringiensis spores and as a diagnosis method for DNA detection. As a proof-of-concept, four pathogenic bacteria including Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli and Klebsiella pneumonia were used for the detection of pathogenic species. In addition, a set of mutant variants of Wilson's disease were also used for the detection of single nucleotide polymorphism (SNP) in this system. This strategy, utilizing streptavidin-displayed spores, is capable of capturing DNA targets for the detection of pathogenic bacteria and for mutation analysis in Wilson's disease. This approach could be useful as a simple platform for developing sensitive spore-based biosensors for any desired DNA targets in diagnostic applications. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  3. A Clostridium difficile-Specific, Gel-Forming Protein Required for Optimal Spore Germination

    Directory of Open Access Journals (Sweden)

    M. Lauren Donnelly

    2017-01-01

    Full Text Available Clostridium difficile is a Gram-positive spore-forming obligate anaerobe that is a leading cause of antibiotic-associated diarrhea worldwide. In order for C. difficile to initiate infection, its aerotolerant spore form must germinate in the gut of mammalian hosts. While almost all spore-forming organisms use transmembrane germinant receptors to trigger germination, C. difficile uses the pseudoprotease CspC to sense bile salt germinants. CspC activates the related subtilisin-like protease CspB, which then proteolytically activates the cortex hydrolase SleC. Activated SleC degrades the protective spore cortex layer, a step that is essential for germination to proceed. Since CspC incorporation into spores also depends on CspA, a related pseudoprotease domain, Csp family proteins play a critical role in germination. However, how Csps are incorporated into spores remains unknown. In this study, we demonstrate that incorporation of the CspC, CspB, and CspA germination regulators into spores depends on CD0311 (renamed GerG, a previously uncharacterized hypothetical protein. The reduced levels of Csps in gerG spores correlate with reduced responsiveness to bile salt germinants and increased germination heterogeneity in single-spore germination assays. Interestingly, asparagine-rich repeat sequences in GerG’s central region facilitate spontaneous gel formation in vitro even though they are dispensable for GerG-mediated control of germination. Since GerG is found exclusively in C. difficile, our results suggest that exploiting GerG function could represent a promising avenue for developing C. difficile-specific anti-infective therapies.

  4. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from killing by dry heat.

    OpenAIRE

    Setlow, B; Setlow, P

    1995-01-01

    Dry Bacillus subtilis spores lacking their two major DNA-binding proteins (small, acid-soluble proteins [SASP] alpha and beta) were much more sensitive to dry heat than were wild-type spores. Survivors of dry heat treatment of both wild-type and mutant spores exhibited a high frequency of mutations, and the DNA from the heated spores had increased numbers of single-strand breaks. These data indicate that SASP alpha and beta provide significant protection to spore DNA against the damaging effe...

  5. Structure, diversity and evolution of protein toxins from spore-forming entomopathogenic bacteria

    NARCIS (Netherlands)

    Maagd, de R.A.; Bravo, A.; Berry, C.; Crickmore, N.; Schnepf, H.E.

    2003-01-01

    Gram-positive spore-forming entomopathogenic bacteria can utilize a large variety of protein toxins to help them invade, infect, and finally kill their hosts, through their action on the insect midgut. These toxins belong to a number of homology groups containing a diversity of protein structures

  6. Identification of the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R.

    Directory of Open Access Journals (Sweden)

    Xiankai Liu

    Full Text Available Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.

  7. The SpmA/B and DacF proteins of Clostridium perfringens play important roles in spore heat resistance.

    Science.gov (United States)

    Orsburn, Benjamin; Sucre, Katie; Popham, David L; Melville, Stephen B

    2009-02-01

    Strains of Clostridium perfringens that cause acute food poisoning have been shown to produce spores that are significantly more heat resistant than those of other strains. Previous studies demonstrated that the spore core density and the ratio of spore cortex peptidoglycan relative to the germ cell wall were factors that correlated with the heat resistance of a C. perfringens spore. To further evaluate these relationships, mutant strains of C. perfringens SM101 were constructed with null mutations in dacF, encoding a D,D-carboxypeptidase, and in the spmA-spmB operon, which is involved in spore core dehydration. The dacF mutant was shown to produce less spore cortex peptidoglycan and had a corresponding decrease in spore heat resistance. The spmA-spmB strain produced highly unstable spores with significantly lower core densities and increased heat sensitivity, which were easily destroyed during treatments affecting the spore coat layers. These results support the previous assertion that a threshold core density as well as a high ratio of cortex peptidoglycan relative to the germ cell wall contribute to the formation of a more heat-resistant spore in this species.

  8. [Analysis of bacterial colonization associated with Gigaspora margarita spores by green fluorescence protein (GFP) marked technology].

    Science.gov (United States)

    Long, Liangkun; Yao, Qing; Ai, Yuncan; Zhu, Honghui

    2009-05-01

    We analyzed bacterial colonization associated with spores of arbuscular mycorrhizal fungi (AMF) Gigaspora margarita, to indicate their ecological niche, and to provide information for further researches on their populations or functions. Six bacteria strains (Peanibacillus sp. M060106-1, Peanibacillus sp. M061122-2, Peanibacillus sp. M061122-6, Bacillus sp. M061122-4, Bacillus sp. M061122-10 and Brevibacillus sp. M061122-12) isolated from G. margarita spores were tagged with green fluorescence protein (GFP) using the carrier plasmid pNF8 (gfp-mut1). We analyzed the ecological niche and population dynamics of tagged strains on G. margarita under different conditions by using fluorescent microscope and/or plate counts. Four strains (M060106-1, M061122-6, M061122-10 and M061122-12) were tagged with GFP, showing high plasmid stability. These tagged strains possessed the basic characteristics identical to their original strains and, hence, were fit for short-term study of environmental colonization. All four GFP-tagged strains colonized the spore wall of G. margarita, and M061122-6 and M061122-12 further colonized the fungal hyphae. Under different pH conditions,the population dynamic of each GFP-tagged strain on the spores showed the same trend, i.e. first increased and then decreased, and the effects on the population size varied with different pH value. GFP-tagged strains colonized the spores of low viability more easily than those of high viability, and the population dynamic on the spores of high viability was different for each tagged strain. The isolated bacteria associated with G. margarita spores can re-colonize the fungal spores, whereas their colonizing ability depends on their characteristics and environmental factors. These data contributes to the further understanding of populations and functions of AMF-associated bacteria.

  9. Improved Proteomic Analysis Following Trichloroacetic Acid Extraction of Bacillus anthracis Spore Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Brooke LD; Wunschel, David S.; Sydor, Michael A.; Warner, Marvin G.; Wahl, Karen L.; Hutchison, Janine R.

    2015-08-07

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Proteomic analysis is dependent upon efficient extraction of proteins from bacterial samples without introducing bias toward extraction of particular protein classes. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrich for certain classes of proteins. The method presented here is technically simple and does not require specialized equipment such as a mechanical disrupter. Our data reveal that for particularly challenging samples, such as B. anthracis Sterne spores, trichloroacetic acid extraction improved the number of proteins identified within a sample compared to bead beating (714 vs 660, respectively). Further, TCA extraction enriched for 103 known spore specific proteins whereas bead beating resulted in 49 unique proteins. Analysis of C. botulinum samples grown to 5 days, composed of vegetative biomass and spores, showed a similar trend with improved protein yields and identification using our method compared to bead beating. Interestingly, easily lysed samples, such as B. anthracis vegetative cells, were equally as effectively processed via TCA and bead beating, but TCA extraction remains the easiest and most cost effective option. As with all assays, supplemental methods such as implementation of an alternative preparation method may provide additional insight to the protein biology of the bacteria being studied.

  10. High Pressure Germination of Bacillus subtilis Spores with Alterations in Levels and Types of Germination Proteins

    Science.gov (United States)

    2014-01-01

    Microbiol 102, 65 76. Butzin, X.Y., Troiano, A.J., Coleman , W.H., Griffiths , K.K., Doona, C.J., Feeherry, F.E., Wang, G., Li, Y. Q. et al. (2012...germination, possibly because it is essential for organization of GRs in a complex in spores’ inner membrane ( Griffiths et aL 2011). Journal of... Griffiths , K.K., Zhang, J., Cowan, A.E., Yu, J. and Setlow, P. (2011) Germination proteins in the inner membrane of dormant Bacillus subtilis spores

  11. Roles of DacB and spm proteins in clostridium perfringens spore resistance to moist heat, chemicals, and UV radiation.

    Science.gov (United States)

    Paredes-Sabja, Daniel; Sarker, Nahid; Setlow, Barbara; Setlow, Peter; Sarker, Mahfuzur R

    2008-06-01

    Clostridium perfringens food poisoning is caused mainly by enterotoxigenic type A isolates that typically possess high spore heat resistance. Previous studies have shown that alpha/beta-type small, acid-soluble proteins (SASP) play a major role in the resistance of Bacillus subtilis and C. perfringens spores to moist heat, UV radiation, and some chemicals. Additional major factors in B. subtilis spore resistance are the spore's core water content and cortex peptidoglycan (PG) structure, with the latter properties modulated by the spm and dacB gene products and the sporulation temperature. In the current work, we have shown that the spm and dacB genes are expressed only during C. perfringens sporulation and have examined the effects of spm and dacB mutations and sporulation temperature on spore core water content and spore resistance to moist heat, UV radiation, and a number of chemicals. The results of these analyses indicate that for C. perfringens SM101 (i) core water content and, probably, cortex PG structure have little if any role in spore resistance to UV and formaldehyde, presumably because these spores' DNA is saturated with alpha/beta-type SASP; (ii) spore resistance to moist heat and nitrous acid is determined to a large extent by core water content and, probably, cortex structure; (iii) core water content and cortex PG cross-linking play little or no role in spore resistance to hydrogen peroxide; (iv) spore core water content decreases with higher sporulation temperatures, resulting in spores that are more resistant to moist heat; and (v) factors in addition to SpmAB, DacB, and sporulation temperature play roles in determining spore core water content and thus, spore resistance to moist heat.

  12. Synthesis of a Bacillus subtilis small, acid-soluble spore protein in Escherichia coli causes cell DNA to assume some characteristics of spore DNA

    International Nuclear Information System (INIS)

    Setlow, B.; Hand, A.R.; Setlow, P.

    1991-01-01

    Small, acid-soluble proteins (SASP) of the alpha/beta-type are associated with DNA in spores of Bacillus subtilis. Induction of synthesis of alpha/beta-type SASP in Escherichia coli resulted in rapid cessation of DNA synthesis, followed by a halt in RNA and then protein accumulation, although significant mRNA and protein synthesis continued. There was a significant loss in viability associated with SASP synthesis in E. coli: recA+ cells became extremely long filaments, whereas recA mutant cells became less filamentous. The nucleoids of cells with alpha/beta-type SASP were extremely condensed, as viewed in both light and electron microscopes, and immunoelectron microscopy showed that the alpha/beta-type SASP were associated with the cell DNA. Induction of alpha/beta-type SASP synthesis in E. coli increased the negative superhelical density of plasmid DNA by approximately 20%; UV irradiation of E. coli with alpha/beta-type SASP gave reduced yields of thymine dimers but significant amounts of the spore photoproduct. These changes in E. coli DNA topology and photochemistry due to alpha/beta-type SASP are similar to the effects of alpha/beta-type SASP on the DNA in Bacillus spores, further suggesting that alpha/beta-type SASP are a major factor determining DNA properties in bacterial spores

  13. A novel method for standardized application of fungal spore coatings for mosquito exposure bioassays

    NARCIS (Netherlands)

    Farenhorst, M.; Knols, B.G.J.

    2010-01-01

    Background: Interest in the use of fungal entomopathogens against malaria vectors is growing. Fungal spores infect insects via the cuticle and can be applied directly on the insect to evaluate infectivity. For flying insects such as mosquitoes, however, application of fungal suspensions on resting

  14. A novel method for standardized application of fungal spore coatings for mosquito exposure bioassays

    NARCIS (Netherlands)

    Farenhorst, Marit; Knols, Bart G. J.

    2010-01-01

    Interest in the use of fungal entomopathogens against malaria vectors is growing. Fungal spores infect insects via the cuticle and can be applied directly on the insect to evaluate infectivity. For flying insects such as mosquitoes, however, application of fungal suspensions on resting surfaces is

  15. UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles seed coats and wood: evaluation of a proxy for solar UV-B radiation.

    NARCIS (Netherlands)

    Rozema, J.; Blokker, P.; Mayoral Fuertes, M.; Broekman, R.A.

    2009-01-01

    UV-B absorbing compounds (UACs) in present-day and fossil pollen, spores, cuticles, seed coats and wood have been evaluated as a proxy for past UV. This proxy may not only provide information on variation of stratospheric ozone and solar UV in the period preceding and during the Antarctic ozone hole

  16. Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein.

    Science.gov (United States)

    Hosseini-Abari, Afrouzossadat; Kim, Byung-Gee; Lee, Sang-Hyuk; Emtiazi, Giti; Kim, Wooil; Kim, June-Hyung

    2016-12-01

    Tyrosinases, copper-containing monooxygenases, are widely used enzymes for industrial, medical, and environmental applications. We report the first functional surface display of Bacillus megaterium tyrosinase on Bacillus subtilis spores using CotE as an anchor protein. Flow Cytometry was used to verify surface expression of tyrosinase on the purified spores. Moreover, tyrosinase activity of the displayed enzyme on B. subtilis spores was monitored in the presence of L-tyrosine (substrate) and CuSO 4 (inducer). The stability of the spore-displayed tyrosinase was then evaluated after 15 days maintenance of the spores at room temperature, and no significant decrease in the enzyme activity was observed. In addition, the tyrosinase-expressing spores could be repeatedly used with 62% retained enzymatic activity after six times washing with Tris-HCl buffer. This genetically immobilized tyrosinase on the spores would make a new advance in industrial, medical, and environmental applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Proteins YlaJ and YhcN contribute to the efficiency of spore germination in Bacillus subtilis.

    Science.gov (United States)

    Johnson, Christian L; Moir, Anne

    2017-04-01

    The YlaJ and YhcN spore lipoproteins of Bacillus subtilis contain a common domain, and are of unknown function. Homologues of YlaJ or YhcN are widespread in Bacilli and are also encoded in those Clostridia that use cortex lytic enzymes SleB and CwlJ for cortex hydrolysis during germination. In B. subtilis, we report that single and double mutants lacking YlaJ and/or YhcN show a reduced rate of spore germination in L-alanine, with a delay in loss of heat resistance, release of dipicolinic acid and OD fall. If B. subtilis spores lack the cortex lytic enzyme CwlJ, spore cortex degradation and subsequent outgrowth to form colonies is strictly dependent on the other cortex lytic enzyme SleB, allowing a test of SleB function; in a cwlJ mutant background, the combined loss of both ylaJ and yhcN genes resulted in a spore population in which only 20% of spores germinated and outgrew to form colonies, suggesting that SleB activity is compromised. YlaJ and YhcN have a role in germination that is not yet well defined, but these proteins are likely to contribute, directly or indirectly, to early events in germination, including effective SleB function. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. The recombinant fusion protein of cholera toxin B and neutrophil-activating protein expressed on Bacillus subtilis spore surface suppresses allergic inflammation in mice.

    Science.gov (United States)

    Dong, Hui; Huang, Yanmei; Yao, Shuwen; Liang, Bingshao; Long, Yan; Xie, Yongqiang; Mai, Jialiang; Gong, Sitang; Zhou, Zhenwen

    2017-07-01

    The neutrophil-activating protein of Helicobacter pylori (HP-NAP) has been identified as a modulator with anti-Th2 inflammation activity, and cholera toxin B (CTB) is a mucosal adjuvant that can also induce antigen tolerance. In this study, we constructed a CTB-NAP fusion protein on the surface of Bacillus subtilis spore and evaluate the efficiency of oral administration of the recombinant CTB-NAP spores in preventing asthma in mice. Oral administration of recombinant CTB or CTB-NAP spores significantly decreased serum ovalbumin (OVA)-specific IgE (p recombinant spores. Oral administration of recombinant CTB or CTB-NAP spores induced IL-10 and IFN-γ expression and reduced IL-4 levels in bronchoalveolar lavage fluid (BALF). Moreover, CTB and CTB-NAP spores reduced the eosinophils in BALF and inflammatory cell infiltration in the lungs. Furthermore, CD4 + CD25 + Foxp3 + Tregs in splenocytes were significantly increased in mice treated with recombinant CTB or CTB-NAP spores. The number of CD4 + CD25 + Foxp3 + Tregs caused by CTB-NAP was higher than that by CTB alone. Our study indicated that B. subtilis spores with surface expression of subunit CTB or CTB-NAP could inhibit OVA-induced allergic inflammation in mice. The attenuated inflammation was attributed to the induction of CD4 + CD25 + Foxp3 + Tregs and IgA. Moreover, the fusion protein CTB-NAP demonstrated a better efficiency than CTB alone in inhibiting the inflammation.

  19. Anthrax surrogate spores are destroyed by PDT mediated by phenothiazinium dyes

    Science.gov (United States)

    Demidova, Tatiana N.; Hamblin, Michael R.

    2005-04-01

    Some Gram-positive bacteria (including the causative agent of anthrax - Bacillus anthracis) survive conditions of stress and starvation by producing dormant stage spores. The spore"s multilayered capsule consists of inner and outer membranes, cortex, proteinaceous spore coat, and in some species an exosporium. These outer layers enclose dehydrated and condensed DNA, saturated with small, acid-soluble proteins. These protective structures make spores highly resistant to damage by heat, radiation, and commonly employed anti-bacterial agents. Previously Bacillus spores have been shown to be resistant to photodynamic inactivation (PDI) using dyes and light that easily destroy the corresponding vegetative bacteria, but recently we have discovered that they are susceptible to PDI. Photoinactivation, however, is only possible if phenothiazinium dyes are used. Dimethylmethylene blue, methylene blue, new methylene blue and toluidine blue O are all effective photosensitizers. Alternative photosensitizers such as Rose Bengal, polylysine chlorin(e6) conjugate, a tricationic porphyrin and benzoporphyrin derivative are ineffective against spores even though they can easily kill vegetative cells. Spores of B. cereus and B. thuringiensis are most susceptible, B. subtilis and B. atrophaeus are also killed, while B. megaterium is resistant. Photoinactivation is most effective when excess dye is washed from the spores showing that the dye binds to the spores and that excess dye in solution can quench light delivery. The relatively mild conditions needed for spore killing could have applications for treating wounds contaminated by anthrax spores and for which conventional sporicides would have unacceptable tissue toxicity.

  20. Formation of protein-coated iron minerals.

    Science.gov (United States)

    Lewin, Allison; Moore, Geoffrey R; Le Brun, Nick E

    2005-11-21

    The ability of iron to cycle between Fe(2+) and Fe(3+) forms has led to the evolution, in different forms, of several iron-containing protein cofactors that are essential for a wide variety of cellular processes, to the extent that virtually all cells require iron for survival and prosperity. The redox properties of iron, however, also mean that this metal is potentially highly toxic and this, coupled with the extreme insolubility of Fe(3+), presents the cell with the significant problem of how to maintain this essential metal in a safe and bioavailable form. This has been overcome through the evolution of proteins capable of reversibly storing iron in the form of a Fe(3+) mineral. For several decades the ferritins have been synonymous with the function of iron storage. Within this family are subfamilies of mammalian, plant and bacterial ferritins which are all composed of 24 subunits assembled to form an essentially spherical protein with a central cavity in which the mineral is laid down. In the past few years it has become clear that other proteins, belonging to the family of DNA-binding proteins from starved cells (the Dps family), which are oligomers of 12 subunits, and to the frataxin family, which may contain up to 48 subunits, are also able to lay down a Fe(3+) mineral core. Here we present an overview of the formation of protein-coated iron minerals, with particular emphasis on the structures of the protein coats and the mechanisms by which they promote core formation. We show on the one hand that significant mechanistic similarities exist between structurally dissimilar proteins, while on the other that relatively small structural differences between otherwise similar proteins result in quite dramatic mechanistic differences.

  1. Simple Coatings to Render Polystyrene Protein Resistant

    Directory of Open Access Journals (Sweden)

    Marcelle Hecker

    2018-02-01

    Full Text Available Non-specific protein adsorption is detrimental to the performance of many biomedical devices. Polystyrene is a commonly used material in devices and thin films. Simple reliable surface modification of polystyrene to render it protein resistant is desired in particular for device fabrication and orthogonal functionalisation schemes. This report details modifications carried out on a polystyrene surface to prevent protein adsorption. The trialed surfaces included Pluronic F127 and PLL-g-PEG, adsorbed on polystyrene, using a polydopamine-assisted approach. Quartz crystal microbalance with dissipation (QCM-D results showed only short-term anti-fouling success of the polystyrene surface modified with F127, and the subsequent failure of the polydopamine intermediary layer in improving its stability. In stark contrast, QCM-D analysis proved the success of the polydopamine assisted PLL-g-PEG coating in preventing bovine serum albumin adsorption. This modified surface is equally as protein-rejecting after 24 h in buffer, and thus a promising simple coating for long term protein rejection of polystyrene.

  2. Involvement of alanine racemase in germination of Bacillus cereus spores lacking an intact exosporium.

    Science.gov (United States)

    Venir, Elena; Del Torre, Manuela; Cunsolo, Vincenzo; Saletti, Rosaria; Musetti, Rita; Stecchini, Mara Lucia

    2014-02-01

    The L-alanine mediated germination of food isolated Bacillus cereus DSA 1 spores, which lacked an intact exosporium, increased in the presence of D-cycloserine (DCS), which is an alanine racemase (Alr) inhibitor, reflecting the activity of the Alr enzyme, capable of converting L-alanine to the germination inhibitor D-alanine. Proteomic analysis of the alkaline extracts of the spore proteins, which include exosporium and coat proteins, confirmed that Alr was present in the B. cereus DSA 1 spores and matched to that encoded by B. cereus ATCC 14579, whose spore germination was strongly affected by the block of conversion of L- to D-alanine. Unlike ATCC 14579 spores, L-alanine germination of B. cereus DSA 1 spores was not affected by the preincubation with DCS, suggesting a lack of restriction in the reactant accessibility.

  3. Gene activity during germination of spores of the fern, Onoclea sensibilis: RNA and protein synthesis and the role of stored mRNA

    Science.gov (United States)

    Raghavan, V.

    1991-01-01

    Pattern of 3H-uridine incorporation into RNA of spores of Onoclea sensibilis imbibed in complete darkness (non-germinating conditions) and induced to germinate in red light was followed by oligo-dT cellulose chromatography, gel electrophoresis coupled with fluorography and autoradiography. In dark-imbibed spores, RNA synthesis was initiated about 24 h after sowing, with most of the label accumulating in the high mol. wt. poly(A) -RNA fraction. There was no incorporation of the label into poly(A) +RNA until 48 h after sowing. In contrast, photo-induced spores began to synthesize all fractions of RNA within 12 h after sowing and by 24 h, incorporation of 3H-uridine into RNA of irradiated spores was nearly 70-fold higher than that into dark-imbibed spores. Protein synthesis, as monitored by 3H-arginine incorporation into the acid-insoluble fraction and by autoradiography, was initiated in spores within 1-2 h after sowing under both conditions. Autoradiographic experiments also showed that onset of protein synthesis in the cytoplasm of the germinating spore is independent of the transport of newly synthesized nuclear RNA. One-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis of 35S-methionine-labelled proteins revealed a good correspondence between proteins synthesized in a cell-free translation system directed by poly(A) +RNA of dormant spores and those synthesized in vivo by dark-imbibed and photo-induced spores. These results indicate that stored mRNAs of O. sensibilis spores are functionally competent and provide templates for the synthesis of proteins during dark-imbibition and germination.

  4. Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains.

    Science.gov (United States)

    Janganan, Thamarai K; Mullin, Nic; Tzokov, Svetomir B; Stringer, Sandra; Fagan, Robert P; Hobbs, Jamie K; Moir, Anne; Bullough, Per A

    2016-10-01

    Clostridium sporogenes is a non-pathogenic close relative and surrogate for Group I (proteolytic) neurotoxin-producing Clostridium botulinum strains. The exosporium, the sac-like outermost layer of spores of these species, is likely to contribute to adhesion, dissemination, and virulence. A paracrystalline array, hairy nap, and several appendages were detected in the exosporium of C. sporogenes strain NCIMB 701792 by EM and AFM. The protein composition of purified exosporium was explored by LC-MS/MS of tryptic peptides from major individual SDS-PAGE-separated protein bands, and from bulk exosporium. Two high molecular weight protein bands both contained the same protein with a collagen-like repeat domain, the probable constituent of the hairy nap, as well as cysteine-rich proteins CsxA and CsxB. A third cysteine-rich protein (CsxC) was also identified. These three proteins are also encoded in C. botulinum Prevot 594, and homologues (75-100% amino acid identity) are encoded in many other Group I strains. This work provides the first insight into the likely composition and organization of the exosporium of Group I C. botulinum spores. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Inactivation of Vegetative Cells, but Not Spores, of Bacillus anthracis, B. cereus, and B. subtilis on Stainless Steel Surfaces Coated with an Antimicrobial Silver- and Zinc-Containing Zeolite Formulation

    Science.gov (United States)

    Galeano, Belinda; Korff, Emily; Nicholson, Wayne L.

    2003-01-01

    Stainless steel surfaces coated with paints containing a silver- and zinc-containing zeolite (AgION antimicrobial) were assayed in comparison to uncoated stainless steel for antimicrobial activity against vegetative cells and spores of three Bacillus species, namely, B. anthracis Sterne, B. cereus T, and B. subtilis 168. Under the test conditions (25°C and 80% relative humidity), the zeolite coating produced approximately 3 log10 inactivation of vegetative cells within a 5- to 24-h period, but viability of spores of the three species was not significantly affected. PMID:12839825

  6. Expression and purification of coat protein of citrus tristeza virus ...

    African Journals Online (AJOL)

    Citrus tristeza virus (CTV) polyclonal antibodies produced either from the recombinant coat protein (CP) of CTV or extracted virus from midrib used for the detection of virus. Compared with intact virion procedure, the use of CP antigen resulted in highly specific polyclonal antibodies. CTV coat protein gene (CTV-cp) cloned ...

  7. Molecular characterization, cloning and sequencing of coat protein ...

    African Journals Online (AJOL)

    Belal

    2013-03-13

    Mar 13, 2013 ... of barley yellow dwarf luteovirus-PAV are contained in the coat protein readthrough and 17kDa, respectively. Virology 219:57-65. El-Attar AK, Riad BY, Saad A, Soliman AM, Mazyad HM (2010). Expression of the coat protein gene of potato leaf roll virus in. Escherichia coli and development of polyclonal ...

  8. Effects of steam autoclave treatment on Geobacillus stearothermophilus spores.

    Science.gov (United States)

    Huesca-Espitia, L C; Suvira, M; Rosenbeck, K; Korza, G; Setlow, B; Li, W; Wang, S; Li, Y-Q; Setlow, P

    2016-11-01

    To determine the mechanism of autoclave killing of Geobacillus stearothermophilus spores used in biological indicators (BIs) for steam autoclave sterilization, and rates of loss of spore viability and a spore enzyme used in BIs. Spore viability, dipicolinic acid (DPA) release, nucleic acid staining, α-glucosidase activity, protein structure and mutagenesis were measured during autoclaving of G. stearothermophilus spores. Loss of DPA and increases in spore core nucleic acid staining were slower than loss of spore viability. Spore core α-glucosidase was also lost more slowly than spore viability, although soluble α-glucosidase in spore preparations was lost more rapidly. However, spores exposed to an effective autoclave sterilization lost all viability and α-glucosidase activity. Apparently killed autoclaved spores were not recovered by artificial germination in supportive media, much spore protein was denatured during autoclaving, and partially killed autoclave-treated spore preparations did not acquire mutations. These results indicate that autoclave-killed spores cannot be revived, spore killing by autoclaving is likely by protein damage, and spore core α-glucosidase activity is lost more slowly than spore viability. This work provides insight into the mechanism of autoclave killing of spores of an organism used in BIs, and that a spore enzyme in a BI is more stable to autoclaving than spore viability. © 2016 The Society for Applied Microbiology.

  9. Adsorption of β-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Sirec Teja

    2012-08-01

    Full Text Available Abstract Background The Bacillus subtilis spore has long been used as a surface display system with potential applications in a variety of fields ranging from mucosal vaccine delivery, bioremediation and biocatalyst development. More recently, a non-recombinant approach of spore display has been proposed and heterologous proteins adsorbed on the spore surface. We used the well-characterized β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius as a model to study enzyme adsorption, to analyze whether and how spore-adsorption affects the properties of the enzyme and to improve the efficiency of the process. Results We report that purified β-galactosidase molecules were adsorbed to purified spores of a wild type strain of B. subtilis retaining ca. 50% of their enzymatic activity. Optimal pH and temperature of the enzyme were not altered by the presence of the spore, that protected the adsorbed β-galactosidase from exposure to acidic pH conditions. A collection of mutant strains of B. subtilis lacking a single or several spore coat proteins was compared to the isogenic parental strain for the adsorption efficiency. Mutants with an altered outermost spore layer (crust were able to adsorb 60-80% of the enzyme, while mutants with a severely altered or totally lacking outer coat adsorbed 100% of the β-galactosidase molecules present in the adsorption reaction. Conclusion Our results indicate that the spore surface structures, the crust and the outer coat layer, have an negative effect on the adhesion of the β-galactosidase. Electrostatic forces, previously suggested as main determinants of spore adsorption, do not seem to play an essential role in the spore-β-galactosidase interaction. The analysis of mutants with altered spore surface has shown that the process of spore adsorption can be improved and has suggested that such improvement has to be based on a better understanding of the spore surface structure

  10. Identification of a protein interacting with the spore wall protein SWP26 of Nosema bombycis in a cultured BmN cell line of silkworm.

    Science.gov (United States)

    Zhu, Feng; Shen, Zhongyuan; Hou, Jiange; Zhang, Jiao; Geng, Tao; Tang, Xudong; Xu, Li; Guo, Xijie

    2013-07-01

    Nosema bombycis is a silkworm parasite that causes severe economic damage to sericulture worldwide. It is the first microsporidia to be described in the literature, and to date, very little molecular information is available regarding microsporidian physiology and their relationships with their hosts. Therefore, the interaction between the microsporidia N. bombycis and its host silkworm, Bombyx mori, was analyzed in this study. The microsporidian spore wall proteins (SWPs) play a specific role in spore adherence to host cells and recognition by the host during invasion. In this study, SWP26 fused with enhanced green fluorescence protein (EGFP) was expressed in BmN cells by using a Bac-to-Bac expression system. Subsequently, the turtle-like protein of B. mori (BmTLP) was determined to interact with SWP26 via the use of anti-EGFP microbeads. This interaction was then confirmed by yeast two-hybrid analysis. The BmTLP cDNA encodes a polypeptide of 447 amino acids that includes a putative signal peptide of 27 amino acid residues. In addition, the BmTLP protein contains 2 immunoglobulin (IG) domains and 2 IGc2-type domains, which is the typical domain structure of IG proteins. The results of this study indicated that SWP26 interacts with the IG-like protein BmTLP, which contributes to the infectivity of N. bombycis to its host silkworm. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air

    Czech Academy of Sciences Publication Activity Database

    Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, Václav; Doležalová, Eva; Šimek, Milan; Biederman, H.

    2017-01-01

    Roč. 50, č. 13 (2017), č. článku 135201. ISSN 0022-3727 R&D Projects: GA MŠk(CZ) LD13010 Grant - others:European Cooperation in Science and Technology(XE) COST MP1101 Program:Materials, Physical and Nanosciences COST Action MP1101 Institutional support: RVO:61389021 Keywords : dielectric barrier discharges (DBD) * bio-decontamination * etching * polymers * biomolecules * spores * surface treatment Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6463/aa5c21/meta

  12. The immunological characteristics and probiotic function of recombinant Bacillus subtilis spore expressing Clonorchis sinensis cysteine protease.

    Science.gov (United States)

    Tang, Zeli; Shang, Mei; Chen, Tingjin; Ren, Pengli; Sun, Hengchang; Qu, Hongling; Lin, Zhipeng; Zhou, Lina; Yu, Jinyun; Jiang, Hongye; Zhou, Xinyi; Li, Xuerong; Huang, Yan; Xu, Jin; Yu, Xinbing

    2016-12-19

    Clonorchiasis, a food-borne zoonosis, is caused by Clonorchis sinensis. The intestinal tract and bile ducts are crucial places for C. sinensis metacercariae to develop into adult worms. The endospore of Bacillus subtilis is an ideal oral immunization vehicle for delivery of heterologous antigens to intestine. Cysteine protease of C. sinensis (CsCP) is an endogenous key component in the excystment of metacercariae and other physiological or pathological processes. We constructed a fusion gene of CotC (a coat protein)-CsCP and obtained B. subtilis spores with recombinant plasmid of pEB03-CotC-CsCP (B.s-CotC-CsCP). CotC-CsCP expressed on spores' surface was detected by Western blotting and immunofluorescence. Immunological characteristics of recombinant spore coat protein were evaluated in a mouse model. The levels of CsCP-specific antibodies were detected by ELISA. Effects of recombinant spores on mouse intestine were evaluated by histological staining. The activities of biochemical enzymes in serum were assayed by microplate. Liver sections of infected mice were evaluated by Ishak score after Masson's trichrome. The B.s-CotC-CsCP spores displayed CsCP on their coat. Specific IgG and isotypes were significantly induced by coat proteins of B.s-CotC-CsCP spores after subcutaneous immunization. IgA levels in intestinal mucus and bile of B.s-CotC-CsCP orally treated mice significantly increased. Additionally, more IgA-secreting cells were observed in enteraden and lamina propria regions of the mouse jejunum, and an increased amount of acidic mucins in intestines were also observed. There were no significant differences in enzyme levels of serum among groups. No inflammatory injury was observed in the intestinal tissues of each group. The degree of liver fibrosis was significantly reduced after oral immunization with B.s-CotC-CsCP spores. Bacillus subtilis spores maintained the original excellent immunogenicity of CsCP expressed on their surface. Both local and systemic

  13. UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: evaluation of a proxy for solar UV radiation.

    Science.gov (United States)

    Rozema, J; Blokker, P; Mayoral Fuertes, M A; Broekman, R

    2009-09-01

    UV-B absorbing compounds (UACs) in present-day and fossil pollen, spores, cuticles, seed coats and wood have been evaluated as a proxy for past UV. This proxy may not only provide information on variation of stratospheric ozone and solar UV in the period preceding and during the Antarctic ozone hole (1974-present day), but also on the development and variation of the stratospheric ozone layer and solar surface UV during the evolution of life on Earth. Sporopollenin and cutin are highly resistant biopolymers, preserving well in the geological record and contain the phenolic acids p-coumaric (pCA) and ferulic acid (FA). pCA and FA represent a good perspective for a plant-based proxy for past surface UV radiation since they are induced by solar UV-B via the phenylpropanoid pathway (PPP). UV-B absorption by these monomers in the wall of pollen and spores and in cuticles may prevent damage to the cellular metabolism. Increased pCA and FA in pollen of Vicia faba exposed to enhanced UV-B was found in greenhouse experiments. Further correlative evidence comes from UV-absorbing compounds in spores from 1960-2000 comparing exposure of land plants (Lycopodium species) to solar UV before and during ozone depletion and comparing plants from Antarctica (severe ozone depletion), Arctic, and other latitudes with less or negligible ozone depletion. Wood-derived compounds guaiacyl (G), syringyl (S), and p-hydroxyphenyl (P) are produced via the PPP. The proportions of P, G, and S in the lignin differ between various plant groups (e.g. dicotyledons/monocotyledons, gymnosperms/angiosperms). It is hypothesized that this lignin composition and derived physiological and physical properties of lignin (such as tree-ring wood density) has potential as a proxy for palaeo-UV climate. However validation by exposure of trees to enhanced UV is lacking. pCA and FA also form part of cutin polymers and are found in extant and fossil Ginkgo leaf cuticles as shown by thermally-assisted hydrolysis and

  14. INCREASING NUTRITIONAL CONTENT OF ARTIFICIAL FEED WITH WHOLE SPORE PROTEIN OF MYXOBOLUS KOI AS AN IMMUNOSTIMULTANT ON GOLDFISH (CYPRINUS CARPIO L.

    Directory of Open Access Journals (Sweden)

    Qusairi A.

    2018-02-01

    Full Text Available The production of goldfish in Indonesia in 2010-2013 has increased by 7.09%, the lowest average production increase compared with other main commodities such as shrimp, tilapia, catfish, and others. One of the primary causes of the low increase in production is the presence of disease and high price of feed in some central goldfish productions. The purpose of this study was to analyze the effect of whole spore protein of Myxobolus koi on goldfish (Cyprinus carpio L. through feed to immune response, growth rate, feed efficiency and survival rate. This research was conducted with complete randomized design with 5 replications. This study used two types of treatment, control (100% artificial feed and artificial feed + immunostimulant (whole spore protein of Myxobolus koi + Boster® Progol adhesive spores. The results showed that whole spore protein of Myxobolus koi given to the feed as immunostimulant can cause response of the immune through the increase of monocytes and lymphocytes in white blood cells on days 7, 14 and 28 observations, daily growth rate of 5.55% compared without immunostimulant with the rate of 1.13%; feed efficiency of 36.57% compared with no immunostimulant, which is only 23.84%, and the treatment gives a 99% survival rate.

  15. Protein-Coated Microcrystals, Combi-Protein-Coated Microcrystals, and Cross-Linked Protein-Coated Microcrystals of Enzymes for Use in Low-Water Media.

    Science.gov (United States)

    Mukherjee, Joyeeta; Gupta, Munishwar N

    2017-01-01

    Protein-coated microcrystals (PCMC) are a high-activity preparation of enzymes for use in low-water media. The protocols for the preparation of PCMCs of Subtilisin Carlsberg and Candida antarctica lipase B (CAL B) are described. The combi-PCMC concept is useful both for cascade and non-cascade reactions. It can also be beneficial to combine two different specificities of a lipase when the substrate requires it. Combi-PCMC of CALB and Palatase used for the conversion of coffee oil present in spent coffee grounds to biodiesel is described. Cross-linked protein-coated microcrystals (CL-PCMC) in some cases can give better results than PCMC. Protocols for the CLPCMC of Subtilisin Carlsberg and Candida antarctica lipase B (CAL B) are described. A discussion of their applications is also provided.

  16. Progress in Bacillus subtilis Spore Surface Display Technology towards Environment, Vaccine Development, and Biocatalysis.

    Science.gov (United States)

    Chen, Huayou; Ullah, Jawad; Jia, Jinru

    2017-01-01

    Spore surface display is the most desirable with enhanced effects, low cost, less time consuming and the most promising technology for environmental, medical, and industrial development. Spores have various applications in industry due to their ability to survive in harsh industrial processes including heat resistance, alkaline tolerance, chemical tolerance, easy recovery, and reusability. Yeast and bacteria, including gram-positive and -negative, are the most frequently used organisms for the display of various proteins (eukaryotic and prokaryotic), but unlike spores, they can rupture easily due to nutritive properties, susceptibility to heat, pH, and chemicals. Hence, spores are the best choice to avoid these problems, and they have various applications over nonspore formers due to amenability for laboratory purposes. Various strains of Clostridium and Bacillus are spore formers, but the most suitable choice for display is Bacillus subtilis because, according to the WHO, it is safe to humans and considered as "GRAS" (generally recognized as safe). This review focuses on the application of spore surface display towards industries, vaccine development, the environment, and peptide library construction, with cell surface display for enhanced protein expression and high enzymatic activity. Different vectors, coat proteins, and statistical analyses can be used for linker selection to obtain greater expression and high activity of the displayed protein. © 2017 S. Karger AG, Basel.

  17. Coat protein sequence shows that Cucumber mosaic virus isolate ...

    Indian Academy of Sciences (India)

    Madhu

    CMV subgroup I has recently been subdivided into IA and. IB on the basis of gene sequences available for CMV strains. Coat protein sequence shows that Cucumber mosaic virus isolate from geraniums (Pelargonium spp.) belongs to subgroup II†. NEERAJ VERMA*, B K MAHINGHARA, RAJA RAM and A A ZAIDI.

  18. Expression and Purification of Coat Protein of Citrus Tristeza Virus ...

    African Journals Online (AJOL)

    detection of virus. Compared with intact virion procedure, the use of CP antigen resulted in highly specific polyclonal antibodies. CTV coat protein gene (CTV-cp) cloned in pQE30 vector and transformed to DH5α containing 666bp long from. Thailand MK-50 isolate was amplified with a forward primer CTV-CP1 (5' CAC.

  19. Fungal melanin stimulates surfactant protein D-mediated opsonization of and host immune response to Aspergillus fumigatus spores.

    Science.gov (United States)

    Sze Wah Wong, Sarah; Rani, Manjusha; Dodagatta-Marri, Eswari; Ibrahim-Granet, Oumaima; Kishore, Uday; Bayry, Jagadeesh; Latgé, Jean-Paul; Sahu, Arvind; Madan, Taruna; Aimanianda, Vishukumar

    2018-02-05

    Surfactant protein D (SP-D), a C-type lectin and pattern-recognition soluble factor, plays an important role in immune surveillance to detect and eliminate human pulmonary pathogens. SPD has been shown to protect against infections with the most ubiquitous airborne fungal pathogen, Aspergillus fumigatus, but the fungal surface component(s) interacting with SP-D is unknown. Here, we show that SP-D binds to melanin pigment on the surface of A. fumigatus dormant spores (conidia). SP-D also exhibited an affinity to two cell-wall polysaccharides of A. fumigatus, galactomannan (GM) and galactosaminogalactan (GAG). The immunolabeling pattern of SP-D was punctate on the conidial surface and was uniform on germinating conidia, in accordance with the localization of melanin, GM, and GAG. We also found that the collagen-like domain of SP-D is involved in its interaction with melanin, whereas its carbohydrate-recognition domain recognized GM and GAG. Unlike unopsonized conidia, SPD-opsonized conidia were phagocytosed more efficiently and stimulated the secretion of proinflammatory cytokines by human monocytederived macrophages. Further, SP-D -/- mice challenged intranasally with wild-type conidia or melanin ghosts (i.e. hollow melanin spheres) displayed significantly reduced proinflammatory cytokines in the lung compared with wild-type mice. In summary, SP-D binds to melanin present on the dormant A. fumigatus conidial surface, facilitates conidial phagocytosis, and stimulates the host immune response. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.

  20. Reducing protein adsorption with polymer-grafted hyaluronic acid coatings.

    Science.gov (United States)

    Ramadan, Mohamed H; Prata, Joseph E; Karácsony, Orsolya; Dunér, Gunnar; Washburn, Newell R

    2014-07-01

    We report a thermoresponsive chemical modification strategy of hyaluronic acid (HA) for coating onto a broad range of biomaterials without relying on chemical functionalization of the surface. Poly(di(ethylene glycol) methyl ether methacrylate) (PMEO2MA), a polymer with a lower critical solution temperature of 26 °C in water, was grafted onto HA to allow facile formation of biopolymer coatings. While the mechanism for film formation appears to involve a complex combination of homogeneous nucleation followed by heterogeneous film growth, we demonstrate that it resulted in hydrophilic coatings that significantly reduce protein adsorption despite the high fraction of hydrophobic (PMEO2MA). Structural characterization was performed using atomic force microscopy (AFM), which showed the formation of a dense, continuous coating based on 200 nm domains that were stable in protein solutions for at least 15 days. The coatings had a water contact angle of 16°, suggesting the formation of hydrophilic but not fully wetting films. Quartz crystal microbalance with dissipation monitoring (QCM-D) as well as biolayer interferometry (BLI) techniques were used to measure adsorption of bovine serum albumin (BSA), fibrinogen (Fbg), and human immunoglobulin (IgG), with results indicating that HA-PMEO2MA-coated surfaces effectively inhibited adsorption of all three serum proteins. These results are consistent with previous studies demonstrating that this degree of hydrophilicity is sufficient to generate an effectively nonfouling surface and suggest that segregation during the solubility transition resulted in a surface that presented the hydrophilic HA component of the hybrid biopolymer. We conclude that PMEO2MA-grafted HA is a versatile platform for the passivation of hydrophobic biomaterial surfaces without need for substrate functionalization.

  1. The movement protein and coat protein of alfalfa mosaic virus accumulate in structurally modified plasmodesmata

    NARCIS (Netherlands)

    van der Wel, N. N.; Goldbach, R. W.; van Lent, J. W.

    1998-01-01

    In systemically infected tissues of Nicotiana benthamiana, alfalfa mosaic virus (AMV) coat protein (CP) and movement protein (MP) are detected in plasmodesmata in a layer of three to four cells at the progressing front of infection. Besides the presence of these viral proteins, the plasmodesmata are

  2. Small acid-soluble spore proteins of Clostridium acetobutylicum are able to protect DNA in vitro and are specifically cleaved by germination protease GPR and spore protease YyaC.

    Science.gov (United States)

    Wetzel, Daniela; Fischer, Ralf-Jörg

    2015-11-01

    Small acid-soluble proteins (SASPs) play an important role in protection of DNA in dormant bacterial endospores against damage by heat, UV radiation or enzymic degradation. In the genome of the strict anaerobe Clostridium acetobutylicum, five genes encoding SASPs have been annotated and here a further sixth candidate is suggested. The ssp genes are expressed in parallel dependent upon Spo0A, a master regulator of sporulation. Analysis of the transcription start points revealed a σG or a σF consensus promoter upstream of each ssp gene, confirming a forespore-specific gene expression. SASPs were termed SspA (Cac2365), SspB (Cac1522), SspD (Cac1620), SspF (Cac2372), SspH (Cac1663) and Tlp (Cac1487). Here it is shown that with the exception of Tlp, every purified recombinant SASP is able to bind DNA in vitro thereby protecting it against enzymic degradation by DNase I. Moreover, SspB and SspD were specifically cleaved by the two germination-specific proteases GPR (Cac1275) and YyaC (Cac2857), which were overexpressed in Escherichia coli and activated by an autocleavage reaction. Thus, for the first time to our knowledge, GPR-like activity and SASP specificity could be demonstrated for a YyaC-like protein. Collectively, the results assign SspA, SspB, SspD, SspF and SspH of C. acetobutylicum as members of α/β-type SASPs, whereas Tlp seems to be a non-DNA-binding spore protein of unknown function. In acetic acid-extracted proteins of dormant spores of C. acetobutylicum, SspA was identified almost exclusively, indicating its dominant biological role as a major α/β-type SASP in vivo.

  3. Roles of the Bacillus anthracis Spore Protein ExsK in Exosporium Maturation and Germination

    Science.gov (United States)

    2009-12-01

    ligation of a DNA fragment bearing the green fluorescent protein ( GFP ) open reading frame (produced by digestion of pAS5 [28] with BamHI and HindIII...microscopy of B. anthracis (Sterne) sporangia. Phase-contrast (Phase) and fluorescence ( GFP , Hoechst, and Merge) images of B. anthracis exsK- gfp (A, C, E...visualized for GFP fluorescence and DNA staining with Hoechst 33352. VOL. 191, 2009 B. ANTHRACIS EXOSPORIUM MATURATION AND GERMINATION 7589 at U S A M R

  4. Lyophilized spore dispenser

    Science.gov (United States)

    Jessup, A. D. (Inventor)

    1973-01-01

    A lyophilized spore dispenser is provided which produces a finely divided, monoparticulate cloud of bacterial spores. The spores are contained within a tightly sealed chamber, and a turbulator orifice connected to an air supply source provides a jet of air which stirs up the spores and causes the spores to be suspended in eddy currents within the chamber. This air jet also produces a positive pressure within the chamber which forces the spores out of an injection orifice.

  5. Isolation and Characterization of Cryptococcus neoformans Spores Reveal a Critical Role for Capsule Biosynthesis Genes in Spore Biogenesis▿

    Science.gov (United States)

    Botts, Michael R.; Giles, Steven S.; Gates, Marcellene A.; Kozel, Thomas R.; Hull, Christina M.

    2009-01-01

    Spores are essential particles for the survival of many organisms, both prokaryotic and eukaryotic. Among the eukaryotes, fungi have developed spores with superior resistance and dispersal properties. For the human fungal pathogens, however, relatively little is known about the role that spores play in dispersal and infection. Here we present the purification and characterization of spores from the environmental fungus Cryptococcus neoformans. For the first time, we purified spores to homogeneity and assessed their morphological, stress resistance, and surface properties. We found that spores are morphologically distinct from yeast cells and are covered with a thick spore coat. Spores are also more resistant to environmental stresses than yeast cells and display a spore-specific configuration of polysaccharides on their surfaces. Surprisingly, we found that the surface of the spore reacts with antibodies to the polysaccharide glucuronoxylomannan, the most abundant component of the polysaccharide capsule required for C. neoformans virulence. We explored the role of capsule polysaccharide in spore development by assessing spore formation in a series of acapsular strains and determined that capsule biosynthesis genes are required for proper sexual development and normal spore formation. Our findings suggest that C. neoformans spores may have an adapted cell surface that facilitates persistence in harsh environments and ultimately allows them to infect mammalian hosts. PMID:19181873

  6. A new chitinase-like xylanase inhibitor protein (XIP from coffee (Coffea arabica affects Soybean Asian rust (Phakopsora pachyrhizi spore germination

    Directory of Open Access Journals (Sweden)

    Mehta Angela

    2011-02-01

    Full Text Available Abstract Background Asian rust (Phakopsora pachyrhizi is a common disease in Brazilian soybean fields and it is difficult to control. To identify a biochemical candidate with potential to combat this disease, a new chitinase-like xylanase inhibitor protein (XIP from coffee (Coffea arabica (CaclXIP leaves was cloned into the pGAPZα-B vector for expression in Pichia pastoris. Results A cDNA encoding a chitinase-like xylanase inhibitor protein (XIP from coffee (Coffea arabica (CaclXIP, was isolated from leaves. The amino acid sequence predicts a (β/α8 topology common to Class III Chitinases (glycoside hydrolase family 18 proteins; GH18, and shares similarity with other GH18 members, although it lacks the glutamic acid residue essential for catalysis, which is replaced by glutamine. CaclXIP was expressed as a recombinant protein in Pichia pastoris. Enzymatic assay showed that purified recombinant CaclXIP had only residual chitinolytic activity. However, it inhibited xylanases from Acrophialophora nainiana by approx. 60% when present at 12:1 (w/w enzyme:inhibitor ratio. Additionally, CaclXIP at 1.5 μg/μL inhibited the germination of spores of Phakopsora pachyrhizi by 45%. Conclusions Our data suggests that CaclXIP belongs to a class of naturally inactive chitinases that have evolved to act in plant cell defence as xylanase inhibitors. Its role on inhibiting germination of fungal spores makes it an eligible candidate gene for the control of Asian rust.

  7. A new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) affects Soybean Asian rust (Phakopsora pachyrhizi) spore germination.

    Science.gov (United States)

    Vasconcelos, Erico A R; Santana, Celso G; Godoy, Claudia V; Seixas, Claudine D S; Silva, Marilia S; Moreira, Leonora R S; Oliveira-Neto, Osmundo B; Price, Daniel; Fitches, Elaine; Filho, Edivaldo X F; Mehta, Angela; Gatehouse, John A; Grossi-De-Sa, Maria F

    2011-02-07

    Asian rust (Phakopsora pachyrhizi) is a common disease in Brazilian soybean fields and it is difficult to control. To identify a biochemical candidate with potential to combat this disease, a new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) (CaclXIP) leaves was cloned into the pGAPZα-B vector for expression in Pichia pastoris. A cDNA encoding a chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) (CaclXIP), was isolated from leaves. The amino acid sequence predicts a (β/α)8 topology common to Class III Chitinases (glycoside hydrolase family 18 proteins; GH18), and shares similarity with other GH18 members, although it lacks the glutamic acid residue essential for catalysis, which is replaced by glutamine. CaclXIP was expressed as a recombinant protein in Pichia pastoris. Enzymatic assay showed that purified recombinant CaclXIP had only residual chitinolytic activity. However, it inhibited xylanases from Acrophialophora nainiana by approx. 60% when present at 12:1 (w/w) enzyme:inhibitor ratio. Additionally, CaclXIP at 1.5 μg/μL inhibited the germination of spores of Phakopsora pachyrhizi by 45%. Our data suggests that CaclXIP belongs to a class of naturally inactive chitinases that have evolved to act in plant cell defence as xylanase inhibitors. Its role on inhibiting germination of fungal spores makes it an eligible candidate gene for the control of Asian rust.

  8. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    Science.gov (United States)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  9. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  10. A Novel Spectroscopic Methodology for the Investigation of Individual Bacillus Spores

    National Research Council Canada - National Science Library

    Alexander, Troy A; Pellegrino, Paul; Gillespie, James B

    2005-01-01

    A methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants...

  11. The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere

    Directory of Open Access Journals (Sweden)

    R. Iannone

    2011-02-01

    Full Text Available Recent atmospheric measurements show that biological particles are a potentially important class of ice nuclei. Types of biological particles that may be good ice nuclei include bacteria, pollen and fungal spores. We studied the ice nucleation properties of water droplets containing fungal spores from the genus Cladosporium, one of the most abundant types of spores found in the atmosphere. For water droplets containing a Cladosporium spore surface area of ~217 μm2 (equivalent to ~5 spores with average diameters of 3.2 μm , 1% of the droplets froze by −28.5 °C and 10% froze by –30.1 °C. However, there was a strong dependence on freezing temperature with the spore surface area of Cladosporium within a given droplet. Mean freezing temperatures for droplets containing 1–5 spores are expected to be approximately −35.1 ± 2.3 °C (1σ S. D.. Atmospheric ice nucleation on spores of Cladosporium sp., or other spores with similar surface properties, thus do not appear to explain recent atmospheric measurements showing that biological particles participate as atmospheric ice nuclei. The poor ice nucleation ability of Cladosporium sp. may be attributed to the surface which is coated with hydrophobins (a class of hydrophobic proteins that appear to be widespread in filamentous fungi. Given the ubiquity of hydrophobins on spore surfaces, the current study may be applicable to many fungal species of atmospheric importance.

  12. Role of DNA repair in Bacillus subtilis spore resistance.

    OpenAIRE

    Setlow, B; Setlow, P

    1996-01-01

    Wet-heat or hydrogen peroxide treatment of wild-type Bacillus subtilis spores did not result in induction of lacZ fusions to three DNA repair-related genes (dinR, recA, and uvrC) during spore outgrowth. However, these genes were induced during outgrowth of wild-type spores treated with dry heat or UV. Wet-heat, desiccation, dry-heat, or UV treatment of spores lacking major DNA-binding proteins (termed alpha-beta- spores) also resulted in induction of the three DNA repair genes during spore ou...

  13. Prediction of protein-protein interactions in dengue virus coat proteins guided by low resolution cryoEM structures

    Directory of Open Access Journals (Sweden)

    Srinivasan Narayanaswamy

    2010-06-01

    Full Text Available Abstract Background Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive. Results In the present analysis, starting from Cα positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses. Conclusions Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.

  14. Clostridium thermocellum Nitrilase Expression and Surface Display on Bacillus subtilis Spores.

    Science.gov (United States)

    Chen, Huayou; Zhang, Tianxi; Sun, Tengyun; Ni, Zhong; Le, Yilin; Tian, Rui; Chen, Zhi; Zhang, Chunxia

    2015-01-01

    Nitrilases are an important class of industrial enzymes. They require mild reaction conditions and are highly efficient and environmentally friendly, so they are used to catalyze the synthesis of carboxylic acid from nitrile, a process considered superior to conventional chemical syntheses. Nitrilases should be immobilized to overcome difficulties in recovery after the reaction and to stabilize the free enzyme. The nitrilase from Clostridium thermocellum was expressed, identified and displayed on the surface of Bacillus subtilis spores by using the spore coat protein G of B. subtilis as an anchoring motif. In a free state, the recombinant nitrilase catalyzed the conversion of 3-cyanopyridine to niacin and displayed maximum catalytic activity (8.22 units/mg protein) at 40 °C and pH 7.4. SDS-PAGE and Western blot were used to confirm nitrilase display. Compared with the free enzyme, the spore-immobilized nitrilase showed a higher tolerance for adverse environmental conditions. After the reaction, recombinant spores were recovered via centrifugation and reused 3 times to catalyze the conversion of 3-cyanopyridine with 75.3% nitrilase activity. This study demonstrates an effective means of nitrilase immobilization via spore surface display, which can be applied in biological processes or conversion. © 2015 S. Karger AG, Basel.

  15. The role of small acid-soluble proteins (SASPs) in protection of spores of Clostridium botulinum against nitrous acid.

    Science.gov (United States)

    Meaney, Carolyn A; Cartman, Stephen T; McClure, Peter J; Minton, Nigel P

    2016-01-04

    Mutant strains of Clostridium botulinum ATCC 3502 were generated using the ClosTron in four genes (CBO1789, CBO1790, CBO3048, CBO3145) identified as encoding α/β-type SASP homologues. The spores of mutant strains in which CBO1789 or CBO1790 was inactivated demonstrated a significant increase in sensitivity to the damaging agent nitrous acid (P0.05), two other chemicals commonly used as components of disinfection regimes. These data indicate that the SASPs CBO1789 or CBO1790 play a significant role in resistance to nitrous acid, but not in resistance to formaldehyde or hydrogen peroxide. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The interaction of M13 coat protein with lipid bilayers : a spectroscopic study

    NARCIS (Netherlands)

    Sanders, J.C.

    1992-01-01

    In this thesis a small part of the reproductive cycle of the M13 bacteriophage is studied in more detail, namely the interaction of the major coat protein (MW 5240) with lipid bilayers. During the infection process is the major coat protein of M13 bacteriophage stored in the cytoplasm

  17. Inactivation of Bacillus Anthracis Spores Using Carbon Nanotubes

    Science.gov (United States)

    2014-10-30

    effect of SWNTs in combination with antimicrobial chemicals on inactivation of B. anthracis spores; 4) the effect of CNTs coated surfaces on the...2010 31-May-2014 Approved for Public Release; Distribution Unlimited Final Report: (Life Science Division/ Biochemistry ) Inactivation of Bacillus... Biochemistry ) Inactivation of Bacillus Anthracis Spores Using Carbon Nanotubes Report Title The Specific Aims of the project were to investigate: 1) the

  18. 40 CFR 174.515 - Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...

  19. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat Protein of Watermelon Mosaic... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  20. Blocking of bacterial biofilm formation by a fish protein coating

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2008-01-01

    , this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition...

  1. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    International Nuclear Information System (INIS)

    Nielsen, Anders Lade

    2009-01-01

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of γ-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as β-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  2. Asymmetric dipping of bacteriophage M13 coat protein with increasing lipid bilayer thickness

    NARCIS (Netherlands)

    Stopar, D.; Koehorst, R.B.M.; Spruijt, R.B.; Hemminga, M.A.

    2009-01-01

    Knowledge about the vertical movement of a protein with respect to the lipid bilayer plane is important to understand protein functionality in the biological membrane. In this work, the vertical displacement of bacteriophage M13 major coat protein in a lipid bilayer is used as a model system to

  3. Optically and biologically active mussel protein-coated double-walled carbon nanotubes.

    Science.gov (United States)

    Jung, Yong Chae; Muramatsu, Hiroyuki; Fujisawa, Kazunori; Kim, Jin Hee; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Terrones, Mauricio; Dresselhaus, Mildred S

    2011-12-02

    A method of dispersing strongly bundled double-walled carbon nanotubes (DWNTs) via a homogeneous coating of mussel protein in an aqueous solution is presented. Optical activity, mechanical strength, as well as electrical conductivity coming from the nanotubes and the versatile biological activity from the mussel protein make mussel-coated DWNTs promising as a multifunctional scaffold and for anti-fouling materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Influence of coating properties on the adhesion of proteins to atmospheric plasma modified surfaces

    OpenAIRE

    Stallard, Charlie P.; McDonnell, Kevin; Donegan, Mick; Dowling, Denis P.

    2010-01-01

    Protein adhesion is of key importance for the biocompatibility of medical devices. This study investigates the adsorption of protein, bovine serum albumin (BSA), onto both uncoated silicon wafers and nanometre thick fluorosiloxane coated wafers. A plasma polymerised coating was deposited from a mixture of tetramethylcyclotetrasiloxane (TC) and perfluorooctyltriethoxysilane (FS) (1:1 by vol. ratio). The liquid precursor mixture was nebulised into an atmospheric plasma jet formed...

  5. Rapid onsite assessment of spore viability.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven; Lane, Todd W.; VanderNoot, Victoria A.; Gaucher, Sara P.; Jokerst, Amanda S.

    2005-12-01

    This one year LDRD addresses problems of threat assessment and restoration of facilities following a bioterror incident like the incident that closed down mail facilities in late 2001. Facilities that are contaminated with pathogenic spores such as B. anthracis spores must be shut down while they are treated with a sporicidal agent and the effectiveness of the treatment is ascertained. This process involves measuring the viability of spore test strips, laid out in a grid throughout the facility; the CDC accepted methodologies require transporting the samples to a laboratory and carrying out a 48 hr outgrowth experiment. We proposed developing a technique that will ultimately lead to a fieldable microfluidic device that can rapidly assess (ideally less than 30 min) spore viability and effectiveness of sporicidal treatment, returning facilities to use in hours not days. The proposed method will determine viability of spores by detecting early protein synthesis after chemical germination. During this year, we established the feasibility of this approach and gathered preliminary results that should fuel a future more comprehensive effort. Such a proposal is currently under review with the NIH. Proteomic signatures of Bacillus spores and vegetative cells were assessed by both slab gel electrophoresis as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection. The conditions for germination using a number of chemical germinants were evaluated and optimized and the time course of protein synthesis was ascertained. Microseparations were carried out using both viable spores and spores inactivated by two different methods. A select number of the early synthesis proteins were digested into peptides for analysis by mass spectrometry.

  6. Albumen foam stability and s-ovalbumin contents in eggs coated with whey protein concentrate

    Directory of Open Access Journals (Sweden)

    ACC Alleoni

    2004-06-01

    Full Text Available Food products such as breads, cakes, crackers, meringues, ice creams and several bakery items depend on air incorporation to maintain their texture and structure during or after processing. Proteins are utilized in the food industry since they improve texture attributes through their ability to encapsulate and retain air. The objectives of this work were to quantify s-ovalbumin contents in albumen and to determine alterations in egg white foam stability in fresh eggs, and in eggs coated and non-coated with a whey protein-based concentrate film (WPC, stored at 25°C for 28 days. The volume of drained liquid was higher in non-coated eggs than in coated eggs stored at 25°C at all storage periods. The difference on the third day of storage was in the order of 59% between coated and non-coated eggs, while on the twenty-eighth day it was 202%. During the storage period, an increase in pH and drainage volume was observed for non-coated eggs. After three days, the non-coated eggs showed a s-ovalbumin content 33% higher than coated eggs; this increase jumped to 205% at 28 days of storage. There was a positive correlation between s-ovalbumin content and the volume of drained liquid for coated and non-coated eggs; in other words, when the s-ovalbumin content increased, there was an increase in the volume of drained liquid and a decrease in foam stability. WPC coating maintain egg quality, since it is an effective barrier against the loss of CO2, avoiding changes in the pH of egg white.

  7. Polydopamine-coated open tubular column for the separation of proteins by capillary electrochromatography.

    Science.gov (United States)

    Xiao, Xing; Wang, Wentao; Chen, Jia; Jia, Li

    2015-08-01

    The separation and determination of proteins in food is an important aspect in food industry. Inspired by the self-polymerization of dopamine under alkaline conditions and the natural adhesive properties of polydopamine, in this paper, a simple and economical method was developed for the preparation of polydopamine-coated open tubular column, in which ammonium persulfate was used as the source of oxygen to induce and facilitate the polymerization of dopamine to form polydopamine. In comparison with a naked fused-silica capillary, the direction and magnitude of the electro-osmotic flow of the as-prepared polydopamine-coated open tubular column could be manipulated by varying the pH values of background solutions due to the existence of amine and phenolic hydroxyl groups on polydopamine coating. The surface morphology of the polydopamine-coated open tubular column was studied by scanning electron microscopy, and the thickness of polydopamine coating was 106 nm. The performance of the polydopamine-coated open tubular column was validated by analysis of proteins. The relative standard deviations of migration times of proteins representing run-to-run, day-to-day, and column-to-column were less than 3.5%. In addition, the feasibility of the polydopamine-coated open tubular column for real samples was verified by the separation of proteins in chicken egg white and pure milk. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Role of the Coat Protein A-Domain in P22 Bacteriophage Maturation

    Directory of Open Access Journals (Sweden)

    David S. Morris

    2014-07-01

    Full Text Available Bacteriophage P22 has long been considered a hallmark model for virus assembly and maturation. Repurposing of P22 and other similar virus structures for nanotechnology and nanomedicine has reinvigorated the need to further understand the protein-protein interactions that allow for the assembly, as well as the conformational shifts required for maturation. In this work, gp5, the major coat structural protein of P22, has been manipulated in order to examine the mutational effects on procapsid stability and maturation. Insertions to the P22 coat protein A-domain, while widely permissive of procapsid assembly, destabilize the interactions necessary for virus maturation and potentially allow for the tunable adjustment of procapsid stability. Future manipulation of this region of the coat protein subunit can potentially be used to alter the stability of the capsid for controllable disassembly.

  9. Enhanced protein adsorption and patterning on nanostructured latex-coated paper.

    Science.gov (United States)

    Juvonen, Helka; Määttänen, Anni; Ihalainen, Petri; Viitala, Tapani; Sarfraz, Jawad; Peltonen, Jouko

    2014-06-01

    Specific interactions of extracellular matrix proteins with cells and their adhesion to the substrate are important for cell growth. A nanopatterned latex-coated paper substrate previously shown to be an excellent substrate for cell adhesion and 2D growth was studied for directed immobilization of proteins. The nanostructured latex surface was formed by short-wavelength IR irradiation of a two-component latex coating consisting of a hydrophilic film-forming styrene butadiene acrylonitrile copolymer and hydrophobic polystyrene particles. The hydrophobic regions of the IR-treated latex coating showed strong adhesion of bovine serum albumin (cell repelling protein), fibronectin (cell adhesive protein) and streptavidin. Opposite to the IR-treated surface, fibronectin and streptavidin had a poor affinity toward the untreated pristine latex coating. Detailed characterization of the physicochemical surface properties of the latex-coated substrates revealed that the observed differences in protein affinity were mainly due to the presence or absence of the protein repelling polar and charged surface groups. The protein adsorption was assisted by hydrophobic (dehydration) interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Oxidative stability and quality characteristics of whey protein coated rohu (Labeo rohita) fillets.

    Science.gov (United States)

    Khan, Muhammad Issa; Adrees, Muhammad Nawaz; Arshad, Muhammad Sajid; Anjum, Faqir Muhammad; Jo, Cheorun; Sameen, Aysha

    2015-06-23

    Edible coatings have beneficial effect on quality of fish and act as barrier against moisture transfer and uptake of oxygen. Edible coating made up of biodegradable materials is helpful to control the quality deterioration and enhance the shelf life. The present study was designed to elucidate the effects of whey based protein using two plasticizers i.e. sorbitol and glycerol on oxidative stability and quality characteristics of Rohu (Labeo rohita). Coating solutions were prepared by incorporating whey (8% protein; w/ w) in distilled water followed addition of sorbitol and glycerol. Dipping method was used to apply coating on fish fillets. The coated fillets were subjected to quality characteristics, pH, color, TBARS, peroxide value, volatile basic nitrogen (TVBN) and sensory evaluation during 40 days of storage. The results showed significant impact on different quality attributes of fish fillets. Highest (TVBN) and TBARS were observed in control samples (T0) (12.60 ± 0.25, mg/100 g, 0.820 ± 0.02 mg MDA/kg) while lowest in T3 coated samples (8.81 ± 0.18 mg/100 g., 0.352 ± 0.01 mg MDA/kg of meat). Moreover, sensorial findings did not showed adverse effects and T3 coated samples were ranked higher by consumers. In conclusion, coating fish with Whey: Glycerol: Sorbitol (1:1:1) in current investigation enhances the storage life and quality of fish fillets.

  11. A study of Ganoderma lucidum spores by FTIR microspectroscopy

    Science.gov (United States)

    Wang, Xin; Chen, Xianliang; Qi, Zeming; Liu, Xingcun; Li, Weizu; Wang, Shengyi

    2012-06-01

    In order to obtain unique information of Ganoderma lucidum spores, FTIR microspectroscopy was used to study G. lucidum spores from Anhui Province (A), Liaoning Province (B) and Shangdong Province (C) of China. IR micro-spectra were acquired with high-resolution and well-reproducibility. The IR spectra of G. lucidum spores from different areas were similar and mainly made up of the absorption bands of polysaccharide, sterols, proteins, fatty acids, etc. The results of curve fitting indicated the protein secondary structures were dissimilar among the above G. lucidum spores. To identify G. lucidum spores from different areas, the H1078/H1640 value might be a potentially useful factor, furthermore FTIR microspectroscopy could realize this identification efficiently with the help of hierarchical cluster analysis. The result indicates FTIR microspectroscopy is an efficient tool for identification of G. lucidum spores from different areas. The result also suggests FTIR microspectroscopy is a potentially useful tool for the study of TCM.

  12. Molecular characterization and coat protein serology of watermelon leaf mottle virus (Potyvirus).

    Science.gov (United States)

    De Sa, P B; Hiebert, E; Purcifull, D E

    2000-01-01

    A cDNA library was generated from purified RNA of watermelon leaf mottle virus (WLMV) (Genus Potyvirus). Two overlapping clones totaling 2,316 nucleotides at the 3' terminus of the virus were identified by immunoscreening with coat protein antiserum. The sequence analyses of the clones indicated an open reading frame (ORF) of 2,050 nucleotides which encoded part of the replicase and the coat protein, a 243-nucleotide non-coding region (3'UTR), and 23 adenine residues of the poly (A) tail. The taxonomic status of WLMV was determined by comparisons of the sequence of the cloned coat protein gene and 3'UTR with potyvirus sequences obtained from GenBank. The nucleotide sequence identities of WLMV compared with 17 other potyviruses ranged from 55.6 to 63.5% for the coat protein, and from 37.2 to 48.3% for the 3'UTR. Phylogenetic analyses of the coat protein region and the 3'UTR indicated that WLMV did not cluster with other potyviruses in a clade with high bootstrap support. The coat protein gene was expressed in Escherichia coli and a polyclonal antiserum was prepared to the expressed coat protein. In immunodiffusion tests, WLMV was found to be serologically distinct from papaya ringspot virus type W, watermelon mosaic virus 2, zucchini yellow mosaic virus, and Moroccan watermelon mosaic virus. In Western blots and ELISA, serological cross-reactivity with other cucurbit potyviruses was observed. Serological and sequence comparisons indicated that watermelon leaf mottle virus is a distinct member of the Potyvirus genus.

  13. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  14. Role of Charge Regulation and Size Polydispersity in Nanoparticle Encapsulation by Viral Coat Proteins

    NARCIS (Netherlands)

    Kusters, Remy; Lin, Hsiang-Ku; Zandi, Roya; Tsvetkova, Irina; Dragnea, Bogdan; van der Schoot, Paul

    2015-01-01

    Nanoparticles can be encapsulated by virus coat proteins if their surfaces are functionalized to acquire a sufficiently large negative charge. A minimal surface charge is required to overcome (i) repulsive interactions between the positively charged RNA-binding domains on the proteins and (ii) the

  15. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Gordaliza, Estefanía, E-mail: emorenog@ucm.es [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid (Spain); Stigter, Edwin C.A. [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Molecular Cancer Research, Universitair Medisch Centrum Utrecht, Wilhelmina Kinder Ziekenhuis, Lundlaan 6, 3584, EA Utrecht (Netherlands); Lindenburg, Petrus W.; Hankemeier, Thomas [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands)

    2016-06-07

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10{sup −9} m{sup 2} V{sup −1} s{sup −1}) when compared with unmodified fused silica (5.9 ± 0.1 10{sup −8} m{sup 2} V{sup −1} s{sup −1}). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1–1.8% coefficient-of-variation (CV) within a day) and 2–3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. - Highlights: • New coating using recrystallized surface-layer proteins on

  16. Membrane-bound conformation of M13 major coat protein : a structure validation through FRET-derived constraints

    NARCIS (Netherlands)

    Vos, W.L.; Koehorst, R.B.M.; Spruijt, R.B.; Hemminga, M.A.

    2005-01-01

    M13 major coat protein, a 50-amino-acid-long protein, was incorporated into DOPC/DOPG (80/20 molar ratio) unilamellar vesicles. Over 60% of all amino acid residues was replaced with cysteine residues, and the single cysteine mutants were labeled with the fluorescent label I-AEDANS. The coat protein

  17. Matrix Pre-coated Targets for High Throughput MALDI Imaging of Proteins

    OpenAIRE

    Yang, Junhai; Caprioli, Richard M.

    2014-01-01

    We have developed matrix pre-coated targets for imaging proteins in thin tissue sections by MALDI MS (matrix-assisted laser desorption/ionization mass spectrometry). Gold covered microscope slides were coated with sinapinic acid (SA) in batches in advance and were shown to be stable for over 6 months when kept in the dark. The sample preparation protocol using these SA pre-coated targets involves treatment with diisopropylethylamine (DIEA)-H2O vapor, transforming the matrix layer to a viscous...

  18. Mucosal delivery of antigens using adsorption to bacterial spores.

    Science.gov (United States)

    Huang, Jen-Min; Hong, Huynh A; Van Tong, Hoang; Hoang, Tran H; Brisson, Alain; Cutting, Simon M

    2010-01-22

    The development of new-generation vaccines has followed a number of strategic avenues including the use of live recombinant bacteria. Of these, the use of genetically engineered bacterial spores has been shown to offer promise as both a mucosal as well as a heat-stable vaccine delivery system. Spores of the genus Bacillus are currently in widespread use as probiotics enabling a case to be made for their safety. In this work we have discovered that the negatively charged and hydrophobic surface layer of spores provides a suitable platform for adsorption of protein antigens. Binding can be promoted under conditions of low pH and requires a potent combination of electrostatic and hydrophobic interactions between spore and immunogen. Using appropriately adsorbed spores we have shown that mice immunised mucosally can be protected against challenge with tetanus toxin, Clostridium perfringens alpha toxin and could survive challenge with anthrax toxin. In some cases protection is actually greater than using a recombinant vaccine. Remarkably, killed or inactivated spores appear equally effective as live spores. The spore appears to present a bound antigen in its native conformation promoting a cellular (T(h)1-biased) response coupled with a strong antibody response. Spores then, should be considered as mucosal adjuvants, most similar to particulate adjuvants, by enhancing responses against soluble antigens. The broad spectrum of immune responses elicited coupled with the attendant benefits of safety suggest that spore adsorption could be appropriate for improving the immunogenicity of some vaccines as well as the delivery of biotherapeutic molecules.

  19. Presenting Influenza A M2e Antigen on Recombinant Spores of Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Tomasz Łęga

    Full Text Available Effective vaccination against influenza virus infection is a serious problem mainly due to antigenic variability of the virus. Among many of investigated antigens, the extracellular domain of the M2 protein (M2e features high homology in all strains of influenza A viruses and antibodies against M2e and is protective in animal models; this makes it a potential candidate for generation of a universal influenza vaccine. However, due to the low immunogenicity of the M2e, formulation of a vaccine based on this antigen requires some modification to induce effective immune responses. In this work we evaluated the possible use of Bacillus subtilis spores as a carrier of the Influenza A M2e antigen in mucosal vaccination. A tandem repeat of 4 consensus sequences coding for human-avian-swine-human M2e (M2eH-A-S-H peptide was fused to spore coat proteins and stably exposed on the spore surface, as demonstrated by the immunostaining of intact, recombinant spores. Oral immunization of mice with recombinant endospores carrying M2eH-A-S-H elicited specific antibody production without the addition of adjuvants. Bacillus subtilis endospores can serve as influenza antigen carriers. Recombinant spores constructed in this work showed low immunogenicity although were able to induce antibody production. The System of influenza antigen administration presented in this work is attractive mainly due to the omitting time-consuming and cost-intensive immunogen production and purification. Therefore modification should be made to increase the immunogenicity of the presented system.

  20. Development of bioactive coatings based on γ-irradiated proteins to preserve strawberries

    International Nuclear Information System (INIS)

    Vu, K.D.; Hollingsworth, R.G.; Salmieri, S.; Takala, P.N.; Lacroix, M.

    2012-01-01

    Gamma irradiation was applied for creating cross-linked proteins to enhance the physicochemical properties of edible films made of calcium caseinate, whey protein isolate and glycerol. The characteristics of γ irradiated cross-linked proteins were analyzed by Fourier Transform Infrared spectroscopy. A second derivative spectra exhibited changes in band intensities that were correlated to an increase of β-sheet structure and a decrease of α-helix and unordered fractions of γ irradiated-cross-linked proteins as compared to the control without irradiation. Furthermore, on addition of methylcellulose to the irradiated protein matrix it was found that it has potential in enhancing the puncture strength and has no detrimental effect on water vapor permeability of protein based films. Finally, these film formulations were used as bioactive edible coatings containing natural antimicrobial agents (limonene and peppermint) to preserve the shelf life of fresh strawberries during storage. The bioactive coatings containing peppermint was found to be more efficient as preserving coatings than the formulations containing limonene. Irradiated proteins/methylcellulose/peppermint formulation had only 40% of decay at day 8 while it was 65% for the control. - Highlights: ► Crosslinked proteins and antimicrobials agents was able to preserve strawberries. ► Crosslinked protein structure was more ordered. ► Films based on crosslinked proteins and methylcellulose enhanced puncture strength.

  1. Protein-adsorption and Ca-phosphate formation on chitosan-bioactive glass composite coatings

    Science.gov (United States)

    Wagener, V.; Boccaccini, A. R.; Virtanen, S.

    2017-09-01

    In the last years, chitosan-bioactive glass (BG) composites have been developed and investigated as bioactive coatings for orthopedic applications. The increase of bioactivity occurs due to the stimulation of calcium-phosphate/hydroxyapatite formation on the surface while the coating is degrading. In the present work, protein adsorption and its influence on calcium-phosphate precipitation was studied for the first time on such composite coatings. The experiments involved coating of 316L stainless steel substrates with chitosan (Ch) and chitosan-bioactive glass (Ch-BG) and immersion of the coated samples in two different bovine serum albumin (BSA) containing solutions, namely DI H2O (with pH adjusted to about 7.2 with diluted NaOH) and simulated body fluid (SBF). In order to investigate the influence of protein adsorption on calcium-phosphate precipitation, samples were also immersed in DI H2O and in SBF without BSA. Samples were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Surface analysis revealed that adsorption of BSA takes place on all studied samples and that protein adsorption is influenced by the presence of Ca2+ and PO43- ions. Bioactivity in the form of hydroxyapatite pre-stage formation is significantly increased on Ch-BG composite coating as compared with bare stainless steel surface. However, calcium-phosphate precipitation in SBF is reduced by the presence of BSA.

  2. Phosphorescence In Bacillus Spores

    National Research Council Canada - National Science Library

    Reinisch, Lou; Swartz, Barry A; Bronk, Burt V

    2003-01-01

    .... Our present work attempts to build on this approach for environmental applications. We have measured a change in the fluorescence spectra of suspensions of Bacillus bacteria between the vegetative bacteria and their spores at room temperature...

  3. Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence

    Science.gov (United States)

    Bayram, Serene S.; Green, Philippe; Blum, Amy Szuchmacher

    2018-04-01

    We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd2+, Pb2+, Zn2+ and Ni2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions.

  4. Analysis of the Effects of a gerP Mutation on the Germination of Spores of Bacillus subtilis

    Science.gov (United States)

    2012-11-01

    Spores of Bacillus species are metabolically dormant and ex-tremely resistant to a wide variety of agents (38). As a conse- quence, these spores can...permeability barrier in dormant spores, the coat is a permeability barrier to large mole- cules (18, 20). Thus, it is possible that there are special...type and gerP spore germina- tion. Almost all bacteria have an alanine racemase activity essen- tial for the generation of the D-alanine needed for

  5. Binding constants of Southern rice black-streaked dwarf virus Coat Protein with ferulic acid derivatives

    Directory of Open Access Journals (Sweden)

    Longlu Ran

    2018-04-01

    Full Text Available The data present binding constants between ferulic acid derivatives and the Coat Protein (P10 by fluorescence titration in this article, which is hosted in the research article entitled “Interaction Research on an Antiviral Molecule that Targets the Coat Protein of Southern rice black-streaked dwarf virus’’ (Ran et al., 2017 [1]. The data include fluorescence quenching spectrum, Stern–Volmer quenching constants, and binding parameters. In this article, a more comprehensive data interpretation and analysis is explained.

  6. Coating nanoparticles with tunable surfactants facilitates control over the protein corona.

    Science.gov (United States)

    Müller, J; Bauer, K N; Prozeller, D; Simon, J; Mailänder, V; Wurm, F R; Winzen, S; Landfester, K

    2017-01-01

    Nanoparticles with long blood circulation time are a prerequisite for targeted drug delivery. To make the nanoparticles invisible for phagocytizing cells, functional moieties on the particle surface are believed to be necessary to attract specific so-called 'stealth' proteins forming a protein 'corona'. Currently, covalent attachment of those moieties represents the only way to achieve that attraction. However, that approach requires a high synthetic effort and is difficult to control. Therefore, we present the coating of model nanoparticles with biodegradable polymeric surfactants as an alternative method. The thermodynamic parameters of the coating process can be tuned by adjusting the surfactants' block lengths and hydrophilicity. Consequently, the unspecific protein adsorption and aggregation tendency of the particles can be controlled, and stealth proteins inhibiting cell uptake are enriched on their surface. This non-covalent approach could be applied to any particle type and thus facilitates tuning the protein corona and its biological impact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Expression analysis of the type I keratin protein keratin 33A in goat coat hair.

    Science.gov (United States)

    Seki, Yuta; Yokohama, Michinari; Wada, Kenta; Fujita, Masaru; Kotani, Mai; Nagura, Yoshio; Kanno, Masako; Nomura, Kou; Amano, Takashi; Kikkawa, Yoshiaki

    2011-12-01

    The coat of a goat, like that of many mammalian species, consists of an outer coat of coarse hairs and an under coat of fine, downy hairs. The coarse guard hairs are produced by primary follicles and the finer cashmere hairs by secondary follicles. We previously reported that hair keratins are components of cashmere hair, and proteomic analysis revealed that their expression is elevated in winter coat hair. To determine detailed characterization, we have cloned keratin 33A gene, a major highly expressed keratin in winter, and then analyzed the expression of goat hair coat. By Western analysis, we detected that keratin 33A protein is expressed only in hair coat among the various goat tissues. Moreover, the expression level in winter has increased in cashmere high-producing Korean native breed, whereas the expression levels between summer and winter had not changed in cashmere low-producing Saanen. In addition, by immunohistochemistry we determined that keratin 33A is localized in the major cortex portion of cashmere fiber. These results confirm that keratin 33A is a structural protein of goat cashmere hair fiber. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  8. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review.

    Science.gov (United States)

    Hassan, Bilal; Chatha, Shahzad Ali Shahid; Hussain, Abdullah Ijaz; Zia, Khalid Mahmood; Akhtar, Naseem

    2018-04-01

    Food is a vital product for the survival of human beings and with passage of time quality concerns of consumers are rising. Edible films and coatings are thin layers applied on food products to protect them and improve their quality. Films/coatings are prepared from naturally occurring renewable sources (polysaccharides, proteins, lipids and composites) which we can eat without disposing them. These films are environment friendly and contain antioxidants, anti-browning agents and colorants. Various methods (spraying, brushing, electro-spraying) are used to apply a coating on food material to protect them from microbial growth, prolonging their shelf life and improving other quality aspects like sensory attributes, appearance, originality and freshness of ingredients. In addition to edible films, some special additives like glycerol, sorbitol etc. is used to improve the efficiency of edible films and coatings. Chemistry and nature of these films and coatings vary in the vast range of hydrophilic and hydrophobic boundaries to cover the whole range of food products. In recent times, herbal coatings are widely used for the coating purposes e.g. Aloe Vera, citral and eugenol essential oils. However, some challenges presented are focusing the scientific attention for viable solution. Copyright © 2017. Published by Elsevier B.V.

  9. Impact of whey protein coating incorporated with Bifidobacterium and Lactobacillus on sliced ham properties.

    Science.gov (United States)

    Odila Pereira, Joana; Soares, José; J P Monteiro, Maria; Gomes, Ana; Pintado, Manuela

    2018-05-01

    Edible coatings/films with functional ingredients may be a solution to consumers' demands for high-quality food products and an extended shelf-life. The aim of this work was to evaluate the antimicrobial efficiency of edible coatings incorporated with probiotics on sliced ham preservation. Coatings was developed based on whey protein isolates with incorporation of Bifidobacterium animalis Bb-12® or Lactobacillus casei-01. The physicochemical analyses showed that coating decreased water and weight loss on the ham. Furthermore, color analysis showed that coated sliced ham, exhibited no color change, comparatively to uncoated slices. The edible coatings incorporating the probiotic strains inhibited detectable growth of Staphylococcus spp., Pseudomonas spp., Enterobacteriaceae and yeasts/molds, at least, for 45days of storage at 4°C. The sensory evaluation demonstrated that there was a preference for the sliced coated ham. Probiotic bacteria viable cell numbers were maintained at ca. 10 8 CFU/g throughout storage time, enabling the slice of ham to act as a suitable carrier for the beneficial bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants.

    Science.gov (United States)

    Raphel, Jordan; Karlsson, Johan; Galli, Silvia; Wennerberg, Ann; Lindsay, Christopher; Haugh, Matthew G; Pajarinen, Jukka; Goodman, Stuart B; Jimbo, Ryo; Andersson, Martin; Heilshorn, Sarah C

    2016-03-01

    Here we present the design of an engineered, elastin-like protein (ELP) that is chemically modified to enable stable coatings on the surfaces of titanium-based dental and orthopaedic implants by novel photocrosslinking and solution processing steps. The ELP includes an extended RGD sequence to confer bio-signaling and an elastin-like sequence for mechanical stability. ELP thin films were fabricated on cp-Ti and Ti6Al4V surfaces using scalable spin and dip coating processes with photoactive covalent crosslinking through a carbene insertion mechanism. The coatings withstood procedures mimicking dental screw and hip replacement stem implantations, a key metric for clinical translation. They promoted rapid adhesion of MG63 osteoblast-like cells, with over 80% adhesion after 24 h, compared to 38% adhesion on uncoated Ti6Al4V. MG63 cells produced significantly more mineralization on ELP coatings compared to uncoated Ti6Al4V. Human bone marrow mesenchymal stem cells (hMSCs) had an earlier increase in alkaline phosphatase activity, indicating more rapid osteogenic differentiation and mineral deposition on adhesive ELP coatings. Rat tibia and femur in vivo studies demonstrated that cell-adhesive ELP-coated implants increased bone-implant contact area and interfacial strength after one week. These results suggest that ELP coatings withstand surgical implantation and promote rapid osseointegration, enabling earlier implant loading and potentially preventing micromotion that leads to aseptic loosening and premature implant failure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Expression and Purification of Coat Protein of Citrus Tristeza Virus ...

    African Journals Online (AJOL)

    transformed to BL21™ star (DE3) of E. coli expression competent cell were also compared using discontinues SDS-PAGE. Large scale recombinant protein production and purification. Large scale recombinant protein production was conducted using four one liter flask containing 250 ml 2xYT broth media consists of 100 ...

  12. Development of bioactive coatings based on γ-irradiated proteins to preserve strawberries

    Science.gov (United States)

    Vu, K. D.; Hollingsworth, R. G.; Salmieri, S.; Takala, P. N.; Lacroix, M.

    2012-08-01

    Gamma irradiation was applied for creating cross-linked proteins to enhance the physicochemical properties of edible films made of calcium caseinate, whey protein isolate and glycerol. The characteristics of γ irradiated cross-linked proteins were analyzed by Fourier Transform Infrared spectroscopy. A second derivative spectra exhibited changes in band intensities that were correlated to an increase of β-sheet structure and a decrease of α-helix and unordered fractions of γ irradiated-cross-linked proteins as compared to the control without irradiation. Furthermore, on addition of methylcellulose to the irradiated protein matrix it was found that it has potential in enhancing the puncture strength and has no detrimental effect on water vapor permeability of protein based films. Finally, these film formulations were used as bioactive edible coatings containing natural antimicrobial agents (limonene and peppermint) to preserve the shelf life of fresh strawberries during storage. The bioactive coatings containing peppermint was found to be more efficient as preserving coatings than the formulations containing limonene. Irradiated proteins/methylcellulose/peppermint formulation had only 40% of decay at day 8 while it was 65% for the control.

  13. Fabrication of Calixarene Based Protein Scaffold by Electrospin Coating for Tissue Engineering.

    Science.gov (United States)

    Cagil, Esra Maltas; Ozcan, Fatih; Ertul, Seref

    2018-08-01

    In this study, calixarene was synthesized by using different functional groups as p-tert-butyl-Calix[4]arene ester and amides. Calixarene nanofibers were produced by electrospin coating. Protein immobilization onto the calixarene nanofibers was carried out with human serum albumin (HSA). The maximum amount of binding on produced three different calixarene nanofibers (DE, 2-AMP and 3-AMP) was compared by using a fluorescence technique for protein analysis. Result showed that maximum binding amount was found to be as 177.85 mg cm-2 for 3-AMP surface. The protein binding was also characterized by using SEM, TEM, AFM and FT-IR. From obtained results, calixarene-albumin nanofiber was also fabricated by spin coating using 3-AMP which has ability max binding of protein.

  14. Functional improvement of antibody fragments using a novel phage coat protein III fusion system

    DEFF Research Database (Denmark)

    Jensen, Kim Bak; Larsen, Martin; Pedersen, Jesper Søndergaard

    2002-01-01

    Functional expressions of proteins often depend on the presence of host specific factors. Frequently recombinant expression strategies of proteins in foreign hosts, such as bacteria, have been associated with poor yields or significant loss of functionality. Improvements in the performance...... of heterologous expression systems will benefit present-day quests in structural and functional genomics where high amounts of active protein are required. One example, which has been the subject of considerable interest, is recombinant antibodies or fragments thereof as expressions of these in bacteria......(s) of the filamentous phage coat protein III. Furthermore, it will be shown that the observed effect is neither due to improved stability nor increased avidity....

  15. Coat protein-mediated resistance against an Indian isolate of the ...

    Indian Academy of Sciences (India)

    Coat protein (CP)-mediated resistance against an Indian isolate of the Cucumber mosaic virus (CMV) subgroup IB was demonstrated in transgenic lines of Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transformation. Out of the fourteen independently transformed lines developed, two lines were ...

  16. 75 FR 29431 - Coat Protein of Plum Pox Virus; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2010-05-26

    ... in these food commodities by the plant-incorporated protectant, coat protein gene of plum pox virus... from biotechnology (Ref. 2). Therefore, these data demonstrated that no food allergenicity, toxicity... requests. When considering registrations for plant-incorporated protectants to be used in food commodities...

  17. The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria

    NARCIS (Netherlands)

    Bosma, M.; Minnaard, R.; Sparks, L.M.; Schaart, G.; Losen, M.; Baets, de M.H.; Duimel, H.; Kersten, A.H.; Bickel, P.E.; Schrauwen, P.; Hesselink, M.K.C.

    2012-01-01

    Perilipin 5 (PLIN5/OXPAT) is a lipid droplet (LD) coat protein mainly present in tissues with a high fat-oxidative capacity, suggesting a role for PLIN5 in facilitating fatty acid oxidation. Here, we investigated the role of PLIN5 in fat oxidation in skeletal muscle. In human skeletal muscle, we

  18. Polyclonal Antibodies to a Recombinant Coat Protein of Potato Virus A

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Moravec, Tomáš; Velemínský, Jiří

    2002-01-01

    Roč. 46, - (2002), s. 147-151 ISSN 0001-723X R&D Projects: GA ČR GA310/00/0381 Institutional research plan: CEZ:AV0Z5038910 Keywords : Potato virus A * recombinant coat protein * Escherichia coli Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.660, year: 2002

  19. High genetic diversity in the coat protein and 3'untranslated regions ...

    Indian Academy of Sciences (India)

    Six distinct subgroups were derived based on their symptomatology and host range from the sixty isolates collected. The serological variability between the virus isolates was analysed by ELISA and Western blotting. The 3′ terminal region consisting of the coat protein (CP) coding sequence and 3′ untranslated region ...

  20. Generation of PVY coat protein siRNAs in transgenic potatoes resistant to PVY.

    Science.gov (United States)

    Transgenic potatoes expressing the potato virus Y coat protein (PVY-CP) inverted hairpin RNA (ihRNA) construct driven by the Solanum bulbocastanum ubiquitin 409s promoter exhibited resistance to PVY in glass house studies using PVYNTN and PVYO as inocula and in field studies using naturally occurrin...

  1. Production of Polyclonal Antibodies to a Recombinant Coat Protein of Potato mop-top virus

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Moravec, Tomáš; Rosecká, Pavla; Dědič, P.; Filigarová, Marie

    2003-01-01

    Roč. 151, č. 4 (2003), s. 195-200 ISSN 0931-1785 R&D Projects: GA ČR GA522/01/1121 Institutional research plan: CEZ:AV0Z5038910 Keywords : potato mop-top virus * recombinant coat protein * Escherichia Coli Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.557, year: 2003

  2. Nucleotide sequences of coat protein coding regions of six potato mop-top virus isolates

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Moravec, Tomáš; Rosecká, Pavla; Filigarová, Marie; Pečenková, Tamara

    2003-01-01

    Roč. 47, č. 1 (2003), s. 37-40 ISSN 0001-723X R&D Projects: GA ČR GA522/01/1121 Institutional research plan: CEZ:AV0Z5038910 Keywords : Potato mop-top virus * virus isolates * coat protein Subject RIV: EE - Microbiology, Virology Impact factor: 0.683, year: 2003

  3. Photochemically immobilized polymer coatings: effects on protein adsorption, cell adhesion, and leukocyte activation.

    Science.gov (United States)

    Defife, K M; Hagen, K M; Clapper, D L; Anderson, J M

    1999-01-01

    Amphiphilic chains of 4-benzoylbenzoic acid moieties and polymer were photochemically immobilized onto silicone rubber to ask whether the covalently coupled polymers would passivate the silicone rubber by inhibiting protein adsorption and subsequent cell adhesion and activation. Three groups of polymers were utilized: the hydrophilic synthetic polymers of polyacrylamide, polyethylene glycol, and polyvinylpyrrolidone; the glycosaminoglycan, hyaluronic acid; and poly(glycine-valine-glycine-valine-proline), a polypeptide derived from the sequence of elastin. Each coating variant decreased the adsorption of fibrinogen and immunoglobulin G compared to uncoated silicone rubber. All except the methoxy-polyethylene glycol coating nearly abolished fibroblast growth, but none of the coating variants inhibited monocyte or polymorphonuclear leukocyte adhesion. Interleukin-1beta, interleukin-1 receptor antagonist, and tumor necrosis factor-alpha secretion by leukocytes were not statistically different between any of the coating variants and uncoated silicone rubber. However, the methoxy-polyethylene glycol and elastin-based polypeptide coatings, which supported the highest numbers of adherent monocytes, also elicited the lowest levels of proinflammatory cytokine secretion. When these in vitro data were collectively evaluated, the coating that most effectively passivated silicone rubber was the polypeptide derived from elastin.

  4. [Distribution and spatial ordering of biopolymer molecules in resting bacterial spores].

    Science.gov (United States)

    Duda, V I; Korolev, Iu N; El'-Registan, G I; Duzha, M V; Telegin, N L

    1978-01-01

    The presence, distribution and spatial arrangement of biopolymers in situ were studied in both a total intact spore and in a certain cellular layer using a spectroscopic technique of attenuated total refraction (ATR-IR) in the IR region. In contrast to vegetative cells, intact spores were characterized by isotropic distribution of protein components. This feature can be regarded as an index of the cryptobiotic state of spores. However, the distribution of protein components among individual layers of a spore was anisotropic. Bonds characterized by amide I and amide II bands were most often ordered in a layer which comprised cellular structures from the exosporium to the inner spore membrane.

  5. Fifth international fungus spore conference

    Energy Technology Data Exchange (ETDEWEB)

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  6. Micro patterning of cell and protein non-adhesive plasma polymerized coatings for biochip applications

    DEFF Research Database (Denmark)

    Bouaidat, Salim; Berendsen, C.; Thomsen, P.

    2004-01-01

    Micro scale patterning of bioactive surfaces is desirable for numerous biochip applications. Polyethyleneoxide-like (PEO-like) coating with non-fouling functionality has been deposited using low frequency AC plasma polymerization. The non-fouling properties of the coating were tested with human...... conventional cleanroom photolithography and lift-off. Single cell arrays showed sharp contrast in cell adhesion between the untreated glass surface and the ppCrown layer. Similarly, proteins adsorbed selectively to untreated glass but not to ppCrown. The simplicity of the liftoff technique and the sturdiness...

  7. Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study

    Science.gov (United States)

    Strauss, Joshua; Liu, Yatao; Camesano, Terri A.

    2009-09-01

    Bacterial adhesion to biomaterials, mineral surfaces, or other industrial surfaces is strongly controlled by the way bacteria interact with protein layers or organic matter and other biomolecules that coat the materials. Despite this knowledge, many studies of bacterial adhesion are performed under clean conditions, instead of in the presence of proteins or organic molecules. We chose fetal bovine serum (FBS) as a model protein, and prepared FBS films on quartz crystals. The thickness of the FBS layer was characterized using atomic force microscopy (AFM) imaging under liquid and quartz crystal microbalance with dissipation (QCM-D). Next, we characterized how the model biomaterial surface would interact with the nocosomial pathogen Staphylococcus epidermidis. An AFM probe was coated with S. epidermidis cells and used to probe a gold slide that had been coated with FBS or another protein, fibronectin (FN). These experiments show that AFM and QCM-D can be used in complementary ways to study the complex interactions between bacteria, proteins, and surfaces.

  8. Purification and Properties of Clostridium perfringens Spore Lytic Enzymes.

    Science.gov (United States)

    1983-01-01

    reaction mixture at 550C gave the opti- mum response although the activity of initiation protein remained high at 65"C and 75"C. Denaturation of the...CASSIER M. and Sebald M. 1969. Germination Iysozyme-ddpendente des spores de aCnerilim perfringeno ATCC 3624 sprks tralitment thermique . Ann. Inst. Pasteur...activity upon prolonged extraction -of spores in GME was not surprising, since this compound is an active protein denaturant . Urea acts in the same

  9. Characterization of the Surface Morphology of Bacillus Spores by Atomic Force Microscopy

    National Research Council Canada - National Science Library

    Zolock, Ruth

    2002-01-01

    .... kurstaki, Bacillus cereus strain 569, and Bacillus globigii var. niger. The spores were separated from a nutrient agar culture by filtering and centrifugation, suspended in deionized water, and immobilized on a graphite substrate by spin-coating...

  10. Evaluation of the Performance of Iodine-Treated Biocide Filters Challenged with Bacterial Spores and Viruses

    National Research Council Canada - National Science Library

    Lee, Jin-Hwa; Wu, Chang-Yu

    2006-01-01

    Filter media coated with a cationic resin in triiodide form were challenged by Bacillus subtilis spores and MS2 bacteriophage aerosols delivered from a Collison nebulizer through air at 35% RH and 23 C...

  11. Detection of Bacillus anthracis spores and a model protein using PEMC sensors in a flow cell at 1 mL/min.

    Science.gov (United States)

    Campbell, Gossett A; Mutharasan, Raj

    2006-07-15

    Piezoelectric-excited millimeter-sized cantilever (PEMC) sensors of 4mm(2) sensing area were immobilized with antibody specific to Bacillus anthracis (anti-BA) spores or bovine serum albumin (anti-BSA). Detection of pathogen (Bacillus anthracis (BA) at 300 spores/mL) and BSA (1 mg/mL) were investigated under both stagnant and flow conditions. Two flow cell designs were evaluated by characterizing flow-induced resonant frequency shifts. One of the flow cells labeled SFC-2 (hold-up volume of 0.3 mL), showed small fluctuations (+/-20 Hz) around a common resonant frequency response of 217 Hz in the flow rate range of 1-17 mL/min. The total resonant frequency change obtained for the binding of 300 spores/mL in 1h was 90+/-5 Hz (n=2), and 162+/-10 Hz (n=2) under stagnant and flow conditions, respectively. Binding of antibodies, anti-BA and anti-BSA, were more rapid under flow than under stagnant conditions. The sensor was repeatedly exposed to BSA with an intermediate release step. The first and second responses to BSA were nearly identical. The total resonant frequency response to BSA was 388+/-10 (n=2) Hz under flow conditions. Kinetic analysis is carried out to quantify the effect of flow rate on antibody immobilization and the two types of detection experiments.

  12. Circumvention of Immunity to the Adenovirus Major Coat Protein Hexon

    Science.gov (United States)

    Roy, Soumitra; Shirley, Pamela S.; McClelland, Alan; Kaleko, Michael

    1998-01-01

    Immunity to adenoviruses is an important hurdle to be overcome for successful gene therapy. The presence of antibodies to the capsid proteins prevents efficacious adenovirus vector administration in vivo. We tested whether immunity to a particular serotype of adenovirus (Ad5) may be overcome with a vector that encodes the hexon sequences from a different adenovirus serotype (Ad12). We successfully constructed an adenovirus vector with a chimeric Ad5-Ad12 hexon which was not neutralized by plasma from C57BL/6 mice immunized with Ad5. The vector was also capable of transducing the livers of C57BL/6 mice previously immunized with Ad5. PMID:9658137

  13. A baculovirus-mediated strategy for full-length plant virus coat protein expression and purification.

    Science.gov (United States)

    Ardisson-Araújo, Daniel Mendes Pereira; Rocha, Juliana Ribeiro; da Costa, Márcio Hedil Oliveira; Bocca, Anamélia Lorenzetti; Dusi, André Nepomuceno; de Oliveira Resende, Renato; Ribeiro, Bergmann Morais

    2013-08-15

    Garlic production is severely affected by virus infection, causing a decrease in productivity and quality. There are no virus-free cultivars and garlic-infecting viruses are difficult to purify, which make specific antibody production very laborious. Since high quality antisera against plant viruses are important tools for serological detection, we have developed a method to express and purify full-length plant virus coat proteins using baculovirus expression system and insects as bioreactors. In this work, we have fused the full-length coat protein (cp) gene from the Garlic Mite-borne Filamentous Virus (GarMbFV) to the 3'-end of the Polyhedrin (polh) gene of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The recombinant baculovirus was amplified in insect cell culture and the virus was used to infect Spodoptera frugiperda larvae. Thus, the recombinant fused protein was easily purified from insect cadavers using sucrose gradient centrifugation and analyzed by Western Blotting. Interestingly, amorphous crystals were produced in the cytoplasm of cells infected with the recombinant virus containing the chimeric-protein gene but not in cells infected with the wild type and recombinant virus containing the hexa histidine tagged Polh. Moreover, the chimeric protein was used to immunize rats and generate antibodies against the target protein. The antiserum produced was able to detect plants infected with GarMbFV, which had been initially confirmed by RT-PCR. The expression of a plant virus full-length coat protein fused to the baculovirus Polyhedrin in recombinant baculovirus-infected insects was shown to produce high amounts of the recombinant protein which was easily purified and efficiently used to generate specific antibodies. Therefore, this strategy can potentially be used for the development of plant virus diagnostic kits for those viruses that are difficult to purify, are present in low titers or are present in mix infection in

  14. Spore membrane(s) as the site of damage within heated Clostridium perfringens spores.

    Science.gov (United States)

    Flowers, R S; Adams, D M

    1976-02-01

    Clostridium perfringens spores were injured by ultrahigh-temperature treatment at 105 C for 5 min. Injury was manifested as an increased sensitivity to polymyxin and neomycin. Since many of the survivors could not germinate normally the ultrahigh-temperature-treated spores were sensitized to and germinated by lysozyme. Polymyxin reportedly acts upon the cell membrane. Neomycin may inhibit protein synthesis and has surface-active properties. Injured spores were increasingly sensitive to known surface-active agents, sodium lauryl sulfate, sodium deoxycholate, and Roccal, a quaternary ammonium compound. Injured spores sensitive to polymyxin and neomycin also were osmotically fragile and died during outgrowth in a liquid medium unless the medium was supplemented with 20% sucrose, 10% dextran, or 10% polyvinylpyrrolidone. The results suggested that a spore structure destined to become cell membrane or cell wall was the site of injury. Repair of injury during outgrowth in the presence of protein, deoxyribonucleic acid, ribonucleic acid and cell wall synthesis inhibitors was consistent with this hypothesis.

  15. Viral protein-coating of magnetic nanoparticles using simian virus 40 VP1.

    Science.gov (United States)

    Enomoto, Teruya; Kawano, Masaaki; Fukuda, Hajime; Sawada, Wataru; Inoue, Takamasa; Haw, Kok Chee; Kita, Yoshinori; Sakamoto, Satoshi; Yamaguchi, Yuki; Imai, Takeshi; Hatakeyama, Mamoru; Saito, Shigeyoshi; Sandhu, Adarsh; Matsui, Masanori; Aoki, Ichio; Handa, Hiroshi

    2013-08-10

    Artificial beads including magnetite and fluorescence particles are useful to visualize pathologic tissue, such as cancers, from harmless types by magnetic resonance imaging (MRI) or fluorescence imaging. Desirable properties of diagnostic materials include high dispersion in body fluids, and the ability to target specific tissues. Here we report on the development of novel magnetic nanoparticles (MNPs) intended for use as diagnosis and therapy that are coated with viral capsid protein VP1-pentamers of simian virus 40, which are monodispersive in body fluid by conjugating epidermal growth factor (EGF) to VP1. Critically, the coating of MNPs with VP1 facilitated stable dispersion of the MNPs in body fluids. In addition, EGF was conjugated to VP1 coating on MNPs (VP1-MNPs). EGF-conjugated VP1-MNPs were successfully used to target EGF receptor-expressing tumor cells in vitro. Thus, using viral capsid protein VP1 as a coating material would be useful for medical diagnosis and therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Structural basis of cargo membrane protein discrimination by the human COPII coat machinery

    Energy Technology Data Exchange (ETDEWEB)

    Mancias, Joseph D.; Goldberg, Jonathan (MSKCC)

    2008-11-18

    Genomic analysis shows that the increased complexity of trafficking pathways in mammalian cells involves an expansion of the number of SNARE, Rab and COP proteins. Thus, the human genome encodes four forms of Sec24, the cargo selection subunit of the COPII vesicular coat, and this is proposed to increase the range of cargo accommodated by human COPII-coated vesicles. In this study, we combined X-ray crystallographic and biochemical analysis with functional assays of cargo packaging into COPII vesicles to establish molecular mechanisms for cargo discrimination by human Sec24 subunits. A conserved IxM packaging signal binds in a surface groove of Sec24c and Sec24d, but the groove is occluded in the Sec24a and Sec24b subunits. Conversely, LxxLE class transport signals and the DxE signal of VSV glycoprotein are selectively bound by Sec24a and Sec24b subunits. A comparative analysis of crystal structures of the four human Sec24 isoforms establishes the structural determinants for discrimination among these transport signals, and provides a framework to understand how an expansion of coat subunits extends the range of cargo proteins packaged into COPII-coated vesicles.

  17. Matrix pre-coated targets for high throughput MALDI imaging of proteins.

    Science.gov (United States)

    Yang, Junhai; Caprioli, Richard M

    2014-05-01

    We have developed matrix pre-coated targets for imaging proteins in thin tissue sections by matrix-assisted laser desorption/ionization mass spectrometry. Gold covered microscope slides were coated with sinapinic acid (SA) in batches in advance and were shown to be stable for over 6 months when kept in the dark. The sample preparation protocol using these SA pre-coated targets involves treatment with diisopropylethylamine (DIEA)-H2 O vapor, transforming the matrix layer to a viscous ionic liquid. This SA-DIEA ionic liquid layer extracts proteins and other analytes from tissue sections that are thaw mounted to this target. DIEA is removed by the immersion of the target into diluted acetic acid, allowing SA to co-crystallize with extracted analytes directly on the target. Ion images (3-70 kDa) of sections of mouse brain and rat kidney at spatial resolution down to 10 µm were obtained. Use of pre-coated slides greatly reduces sample preparation time for matrix-assisted laser desorption/ionization imaging while providing high throughput, low cost and high spatial resolution images. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Spore: Spawning Evolutionary Misconceptions?

    Science.gov (United States)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  19. On-Chip Manipulation of Protein-Coated Magnetic Beads via Domain-Wall Conduits

    DEFF Research Database (Denmark)

    Donolato, Marco; Vavassori, Paolo; Gobbi, Marco

    2010-01-01

    Geometrically constrained magnetic domain walls (DWs) in magnetic nanowires can be manipulated at the nanometer scale. The inhomogeneous magnetic stray field generated by a DW can capture a magnetic nanoparticle in solution. On-chip nanomanipulation of individual magnetic beads coated with proteins...... is demonstrated through the motion of geometrically constrained DWs in specially designed magnetic nanoconduits fully integrated in a lab-on-a-chip platform....

  20. Sequences of the coat protein gene from brazilian isolates of Papaya ringspot virus

    OpenAIRE

    LIMA, ROBERTO C. A.; SOUZA JR., MANOEL T.; PIO-RIBEIRO, GILVAN; LIMA, J. ALBERSIO A.

    2002-01-01

    Papaya ringspot virus (PRSV) is the causal agent of the main papaya (Carica papaya) disease in the world. Brazil is currently the world's main papaya grower, responsible for about 40% of the worldwide production. Resistance to PRSV on transgenic plants expressing the PRSV coat protein (cp) gene was shown to be dependent on the sequence homology between the cp transgene expressed in the plant genome and the cp gene from the incoming virus, in an isolate-specific fashion. Therefore, knowledge o...

  1. Comparative analysis of Bacillus subtilis spores and monophosphoryl lipid A as adjuvants of protein-based mycobacterium tuberculosis-based vaccines: partial requirement for interleukin-17a for induction of protective immunity.

    Science.gov (United States)

    Esparza-Gonzalez, Sandra C; Troy, Amber R; Izzo, Angelo A

    2014-04-01

    The development of adjuvants for vaccines has become an important area of research as the number of protein-based vaccines against infectious pathogens increases. Currently, there are a number of adjuvant-based Mycobacterium tuberculosis vaccines in clinical trials that have shown efficacy in animal models. Despite these novel adjuvants, there is still a need to design new and more versatile adjuvants that have minimal adverse side effects but produce robust long-lasting adaptive immune responses. To this end, we hypothesized that Bacillus subtilis spores may provide the appropriate innate signals that are required to generate such vaccine-mediated responses, which would be sufficient to reduce the mycobacterial burden after infection with M. tuberculosis. In addition, we compared the response generated by B. subtilis spores to that generated by monophosphoryl lipid A (MPL), which has been used extensively to test tuberculosis vaccines. The well-characterized, 6-kDa early secretory antigenic target of M. tuberculosis (ESAT-6; Rv3875) was used as a test antigen to determine the T cell activation potential of each adjuvant. Inoculated into mice, B. subtilis spores induced a strong proinflammatory response and Th1 immunity, similar to MPL; however, unlike MPL formulated with dimethyldioctadecylammonium (DDA) bromide, it failed to induce significant levels of interleukin-17A (IL-17A) and was unable to significantly reduce the mycobacterial burden after pulmonary infection with M. tuberculosis. Further analysis of the activity of MPL-DDA suggested that IL-17A was required for protective immunity. Taken together, the data emphasize the requirement for a network of cytokines that are essential for protective immunity.

  2. Interactions between protein coated particles and polymer surfaces studied with the rotating particles probe.

    Science.gov (United States)

    Kemper, M; Spridon, D; van IJzendoorn, L J; Prins, M W J

    2012-05-29

    Nonspecific interactions between proteins and polymer surfaces have to be minimized in order to control the performance of biosensors based on immunoassays with particle labels. In this paper we investigate these nonspecific interactions by analyzing the response of protein coated magnetic particles to a rotating magnetic field while the particles are in nanometer vicinity to a polymer surface. We use the fraction of nonrotating (bound) particles as a probe for the interaction between the particles and the surface. As a model system, we study the interaction of myoglobin coated particles with oxidized polystyrene surfaces. We measure the interaction as a function of the ionic strength of the solution, varying the oxidation time of the polystyrene and the pH of the solution. To describe the data we propose a model in which particles bind to the polymer by crossing an energy barrier. The height of this barrier depends on the ionic strength of the solution and two interaction parameters. The fraction of nonrotating particles as a function of ionic strength shows a characteristic shape that can be explained with a normal distribution of energy barrier heights. This method to determine interaction parameters paves the way for further studies to quantify the roles of protein coated particles and polymers in their mutual nonspecific interactions in different matrixes.

  3. Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence.

    Science.gov (United States)

    Bayram, Serene S; Green, Philippe; Blum, Amy Szuchmacher

    2018-04-15

    We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd 2+ , Pb 2+ , Zn 2+ and Ni 2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Immunity to potato mop-top virus in Nicotiana benthamiana plants expressing the coat protein gene is effective against fungal inoculation of the virus.

    Science.gov (United States)

    Reavy, B; Arif, M; Kashiwazaki, S; Webster, K D; Barker, H

    1995-01-01

    Nicotiana benthamiana stem tissue was transformed with Agrobacterium tumefaciens harboring a binary vector containing the potato mop-top virus (PMTV) coat protein (CP) gene. PMTV CP was expressed in large amounts in some of the primary transformants. The five transgenic lines which produced the most CP were selected for resistance testing. Flowers on transformed plants were allowed to self-fertilize. Transgenic seedlings selected from the T1 seed were mechanically inoculated with two strains of PMTV. Virus multiplication, assayed by infectivity, was detected in only one transgenic plant of 98 inoculated. T1 plants were also highly resistant to graft inoculation; PMTV multiplied in only one plant of 45 inoculated. Transgenic T1 seedlings were challenged in a bait test in which they were grown in soil containing viruliferous spores of the vector fungus Spongospora subterranea. In these tests only two plants out of 99 became infected. Of the five transgenic lines tested, plants of three lines were immune to infection following manual, graft, or fungal inoculation.

  5. Novel negatively charged tentacle-type polymer coating for on-line preconcentration of proteins in CE.

    Science.gov (United States)

    Xu, Liang; Dong, Xiao-Yan; Sun, Yan

    2009-02-01

    A novel negatively charged tentacle-type polymer-coated capillary column was fabricated and applied for on-line extraction and preconcentration of proteins. The polymer coating was prepared by glycidyl-methacrylate graft polymerization in a silanized capillary column and the following sulfonic acid group functionalization. It had high surface area and offered high phase ratio for protein adsorption. In addition, the polymer-coated capillary column provided more stable EOF than a bare uncoated capillary. These features of the polymer coating facilitated the extraction of proteins through electrostatic interactions. This was used to extract proteins. The extracted analytes were then desorbed and focused by EOF in the direction opposite to the sample injection flow for subsequent CE. With this procedure, over 1500-fold sensitivity enhancement was realized for myoglobin (MB) as compared with a normal capillary zone electrophoresis. By comparison of the peak areas of the enriched protein, it was found that the polymer-coated column could capture proteins about 30 times more than the uncoated column. In addition, the separation of a protein mixture containing 0.4 microg/mL of MB and 0.4 microg/mL of insulin was demonstrated by the on-line preconcentration and electrophoretic separation with the polymer-coated column.

  6. Impact of surface coating and food-mimicking media on nanosilver-protein interaction

    Energy Technology Data Exchange (ETDEWEB)

    Burcza, Anna, E-mail: anna.burcza@mri.bund.de; Gräf, Volker; Walz, Elke; Greiner, Ralf [Max Rubner-Institute, Department of Food Technology and Bioprocess Engineering (Germany)

    2015-11-15

    The application of silver nanoparticles (AgNPs) in food contact materials has recently become a subject of dispute due to the possible migration of silver in nanoform into foods and beverages. Therefore, the analysis of the interaction of AgNPs with food components, especially proteins, is of high importance in order to increase our knowledge of the behavior of nanoparticles in food matrices. AgPURE™ W10 (20 nm), an industrially applied nanomaterial, was compared with AgNPs of similar size frequently investigated for scientific purposes differing in the surface capping agent (spherical AgNP coated with either PVP or citrate). The interactions of the AgNPs with whey proteins (BSA, α-lactalbumin and β-lactoglobulin) at different pH values (4.2, 7 or 7.4) were investigated using surface plasmon resonance, SDS-PAGE, and asymmetric flow field-flow fractionation. The data obtained by the three different methods correlated well. Besides the nature of the protein and the nanoparticle coating, the environment was shown to affect the interaction significantly. The strongest interaction was obtained with BSA and AgNPs in an acidic environment. Neutral and slightly alkaline conditions however, seemed to prevent the AgNP-protein interaction almost completely. Furthermore, the interaction of whey proteins with AgPURE™ W10 was found to be weaker compared to the interaction with the other two AgNPs under all conditions investigated.

  7. Impact of surface coating and food-mimicking media on nanosilver-protein interaction

    International Nuclear Information System (INIS)

    Burcza, Anna; Gräf, Volker; Walz, Elke; Greiner, Ralf

    2015-01-01

    The application of silver nanoparticles (AgNPs) in food contact materials has recently become a subject of dispute due to the possible migration of silver in nanoform into foods and beverages. Therefore, the analysis of the interaction of AgNPs with food components, especially proteins, is of high importance in order to increase our knowledge of the behavior of nanoparticles in food matrices. AgPURE™ W10 (20 nm), an industrially applied nanomaterial, was compared with AgNPs of similar size frequently investigated for scientific purposes differing in the surface capping agent (spherical AgNP coated with either PVP or citrate). The interactions of the AgNPs with whey proteins (BSA, α-lactalbumin and β-lactoglobulin) at different pH values (4.2, 7 or 7.4) were investigated using surface plasmon resonance, SDS-PAGE, and asymmetric flow field-flow fractionation. The data obtained by the three different methods correlated well. Besides the nature of the protein and the nanoparticle coating, the environment was shown to affect the interaction significantly. The strongest interaction was obtained with BSA and AgNPs in an acidic environment. Neutral and slightly alkaline conditions however, seemed to prevent the AgNP-protein interaction almost completely. Furthermore, the interaction of whey proteins with AgPURE™ W10 was found to be weaker compared to the interaction with the other two AgNPs under all conditions investigated

  8. Germination, outgrowth and vegetative growth kinetics of dry heat-treated individual spores ofBacillusspecies.

    Science.gov (United States)

    He, Lin; Chen, Zhan; Wang, Shiwei; Wu, Muying; Setlow, Peter; Li, Yong-Qing

    2018-01-12

    DNA damage kills dry-heated spores of Bacillus subtilis , but dry heat-treatment effects on spore germination and outgrowth have not been studied. This is important, since if dry heat-killed spores germinate and undergo outgrowth, toxic proteins could be synthesized. Here, Raman spectroscopy and differential interference contrast microscopy were used to study germination and outgrowth of individual dry heat-treated B. subtilis and Bacillus megaterium spores. Major findings in this work were as follows. 1) Spores dry heat-treated at 140°C for 20 min nearly all lost viability but retained their Ca 2+ -dipicolinic acid (CaDPA) depot. 2) In most cases, dry heat treatment increased the average times of and variability in all major events in B. subtilis spore germination with nutrient germinants or CaDPA, and one nutrient germination event with B. megaterium spores. 3) B. subtilis spore germination with dodecylamine, which activates spores' CaDPA release channel, was unaffected by dry heat treatment. 4) These results indicate that dry heat treatment likely damages spore proteins important in nutrient germinant recognition and cortex peptidoglycan hydrolysis, but not CaDPA release itself. 5) Analysis of single spores incubated on nutrient-rich agar showed that while dry heat-treated spores that are dead can complete germination, they cannot proceed into outgrowth thus not to vegetative growth. The results of this study provide new information on effects of dry heat on bacterial spores, and indicate that dry heat sterilization regimens should give spores that cannot outgrow and thus cannot synthesize potentially dangerous proteins. IMPORTANCE Much research has shown that high temperature dry heat is a promising means for the inactivation of spores on medical devices and spacecraft decontamination. Dry heat is known to kill Bacillus subtilis spores by DNA damage. However, knowledge about effects of dry heat treatment on spore germination and outgrowth is limited

  9. Apoptosis inhibitor of macrophage (AIM) diminishes lipid droplet-coating proteins leading to lipolysis in adipocytes

    International Nuclear Information System (INIS)

    Iwamura, Yoshihiro; Mori, Mayumi; Nakashima, Katsuhiko; Mikami, Toshiyuki; Murayama, Katsuhisa; Arai, Satoko; Miyazaki, Toru

    2012-01-01

    Highlights: ► AIM induces lipolysis in a distinct manner from that of hormone-dependent lipolysis. ► AIM ablates activity of peroxisome proliferator-activated receptor in adipocytes. ► AIM reduces mRNA levels of lipid-droplet coating proteins leading to lipolysis. -- Abstract: Under fasting conditions, triacylglycerol in adipose tissue undergoes lipolysis to supply fatty acids as energy substrates. Such lipolysis is regulated by hormones, which activate lipases via stimulation of specific signalling cascades. We previously showed that macrophage-derived soluble protein, AIM induces obesity-associated lipolysis, triggering chronic inflammation in fat tissue which causes insulin resistance. However, the mechanism of how AIM mediates lipolysis remains unknown. Here we show that AIM induces lipolysis in a manner distinct from that of hormone-dependent lipolysis, without activation or augmentation of lipases. In vivo and in vitro, AIM did not enhance phosphorylation of hormone-sensitive lipase (HSL) in adipocytes, a hallmark of hormone-dependent lipolysis activation. Similarly, adipose tissue from obese AIM-deficient and wild-type mice showed comparable HSL phosphorylation. Consistent with the suppressive effect of AIM on fatty acid synthase activity, the amount of saturated and unsaturated fatty acids was reduced in adipocytes treated with AIM. This response ablated transcriptional activity of peroxisome proliferator-activated receptor (PPARγ), leading to diminished gene expression of lipid-droplet coating proteins including fat-specific protein 27 (FSP27) and Perilipin, which are indispensable for triacylglycerol storage in adipocytes. Accordingly, the lipolytic effect of AIM was overcome by a PPARγ-agonist or forced expression of FSP27, while it was synergized by a PPARγ-antagonist. Overall, distinct modes of lipolysis appear to take place in different physiological situations; one is a supportive response against nutritional deprivation achieved by

  10. Cytological and proteomic analyses of horsetail (Equisetum arvense L. spore germination

    Directory of Open Access Journals (Sweden)

    Qi eZhao

    2015-06-01

    Full Text Available Spermatophyte pollen tubes and root hairs have been used as single-cell-type model systems to understand the molecular processes underlying polar growth of plant cells. Horsetail (Equisetum arvense L. is a perennial herb species in Equisetopsida, which creates separately growing spring and summer stems in its life cycle. The mature chlorophyllous spores produced from spring stems can germinate without dormancy. Here we report the cellular features and protein expression patterns in five stages of horsetail spore germination (mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells. Using 2-DE combined with mass spectrometry, 80 proteins were found to be abundance changed upon spore germination. Among them, proteins involved in photosynthesis, protein turnover, and energy supply were over-represented. Thirteen proteins appeared as proteoforms on the gels, indicating the potential importance of post-translational modification. In addition, the dynamic changes of ascorbate peroxidase, peroxiredoxin, and dehydroascorbate reductase implied that reactive oxygen species homeostasis is critical in regulating cell division and tip-growth. The diverse expression patterns of proteins in photosynthesis, energy supply, lipid and amino acid metabolism indicated that heterotrophic and autotrophic metabolism were necessary in light-dependent germination of the spores. Twenty-six proteins were involved in protein synthesis and fate, indicating that protein turnover is vital to spore germination. Furthermore, the altered abundance of small G protein Ran, 14-3-3 protein, actin, and Caffeoyl-CoA O-methyltransferase revealed that signaling transduction, vesicle trafficking, cytoskeleton dynamics, and cell wall modulation were critical to cell division and polar growth. These findings lay a foundation toward understanding the molecular mechanisms underlying fern spore asymmetric division and rhizoid polar growth.

  11. Protein-lipid interactions of bacteriophage M13 major coat protein

    OpenAIRE

    Stopar, D.; Spruijt, R.B.; Wolfs, C.J.A.M.; Hemminga, M.A.

    2003-01-01

    During the past years, remarkable progress has been made in our understanding of the replication cycle of bacteriophage M13 and the molecular details that enable phage proteins to navigate in the complex environment of the host cell. With new developments in molecular membrane biology in combination with spectroscopic techniques, we are now in a position to ask how phages carry out this delicate process on a molecular level, and what sort of protein-lipid and protein-protein interactions are ...

  12. Inactivation of Spores of Bacillus Species by Wet Heat: Studies on Single Spores Using Laser Tweezers Taman Spectroscopy

    Science.gov (United States)

    2013-02-01

    13/2011 22.00 Keren K. Griffiths, Jingqiao Zhang, Ann E. Cowan, Ji Yu, Peter Setlow. Germination proteins in the inner membrane of dormant Bacillus...that this technique can be used to rapidly identify single airborne particles or bacteria collected on a slide and to monitor germination dynamics of...the environment of dipicolinic acid in the core of superdormant spores is different from that in dormant spores [J. Bacteriol., 191, 5584 (2009

  13. How Does the VSG Coat of Bloodstream Form African Trypanosomes Interact with External Proteins?

    Directory of Open Access Journals (Sweden)

    Angela Schwede

    2015-12-01

    Full Text Available Variations on the statement "the variant surface glycoprotein (VSG coat that covers the external face of the mammalian bloodstream form of Trypanosoma brucei acts a physical barrier" appear regularly in research articles and reviews. The concept of the impenetrable VSG coat is an attractive one, as it provides a clear model for understanding how a trypanosome population persists; each successive VSG protects the plasma membrane and is immunologically distinct from previous VSGs. What is the evidence that the VSG coat is an impenetrable barrier, and how do antibodies and other extracellular proteins interact with it? In this review, the nature of the extracellular surface of the bloodstream form trypanosome is described, and past experiments that investigated binding of antibodies and lectins to trypanosomes are analysed using knowledge of VSG sequence and structure that was unavailable when the experiments were performed. Epitopes for some VSG monoclonal antibodies are mapped as far as possible from previous experimental data, onto models of VSG structures. The binding of lectins to some, but not to other, VSGs is revisited with more recent knowledge of the location and nature of N-linked oligosaccharides. The conclusions are: (i Much of the variation observed in earlier experiments can be explained by the identity of the individual VSGs. (ii Much of an individual VSG is accessible to antibodies, and the barrier that prevents access to the cell surface is probably at the base of the VSG N-terminal domain, approximately 5 nm from the plasma membrane. This second conclusion highlights a gap in our understanding of how the VSG coat works, as several plasma membrane proteins with large extracellular domains are very unlikely to be hidden from host antibodies by VSG.

  14. Dissolution, agglomerate morphology, and stability limits of protein-coated silver nanoparticles.

    Science.gov (United States)

    Martin, Matthew N; Allen, Andrew J; MacCuspie, Robert I; Hackley, Vincent A

    2014-09-30

    Little is understood regarding the impact that molecular coatings have on nanoparticle dissolution kinetics and agglomerate formation in a dilute nanoparticle dispersion. Dissolution and agglomeration processes compete in removing isolated nanoparticles from the dispersion, making quantitative time-dependent measurements of the mechanisms of nanoparticle loss particularly challenging. In this article, we present in situ ultra-small-angle X-ray scattering (USAXS) results, simultaneously quantifying dissolution, agglomeration, and stability limits of silver nanoparticles (AgNPs) coated with bovine serum albumin (BSA) protein. When the BSA corona is disrupted, we find that the loss of silver from the nanoparticle core is well matched by a second-order kinetic rate reaction, arising from the oxidative dissolution of silver. Dissolution and agglomeration are quantified, and morphological transitions throughout the process are qualified. By probing the BSA-AgNP suspension around its stability limits, we provide insight into the destabilization mechanism by which individual particles rapidly dissolve as a whole rather than undergo slow dissolution from the aqueous interface inward, once the BSA layer is breached. Because USAXS rapidly measures over the entire nanometer to micrometer size range during the dissolution process, many insights are also gained into the stabilization of NPs by protein and its ability to protect the labile metal core from the solution environment by prohibiting the diffusion of reactive species. This approach can be extended to a wide variety of coating molecules and reactive metal nanoparticle systems to carefully survey their stability limits, revealing the likely mechanisms of coating breakdown and ensuing reactions.

  15. Protein-resistant properties of a chemical vapor deposited alkyl-functional carboxysilane coating characterized using quartz crystal microbalance

    Science.gov (United States)

    Vaidya, Shyam V.; Yuan, Min; Narváez, Alfredo R.; Daghfal, David; Mattzela, James; Smith, David

    2016-02-01

    The protein-resistant properties of a chemical vapor deposited alkyl-functional carboxysilane coating (Dursan®) were compared to that of an amorphous fluoropolymer (AF1600) coating and bare 316L grade stainless steel by studying non-specific adsorption of various proteins onto these surfaces using quartz crystal microbalance with dissipation monitoring (QCM-D). A wash solution with nonionic surfactant, polyoxyethyleneglycol dodecyl ether (or Brij 35), facilitated 100% removal of the adsorbed bovine serum albumin (BSA), mouse immunoglobulin G (IgG), and normal human plasma proteins from the Dursan surface and of the adsorbed normal human plasma proteins from the AF1600 surface, whereas these proteins remained adsorbed on the bare stainless steel surface. Mechanical stress in the form of sonication demonstrated durability of the Dursan coating to mechanical wear and showed no negative impact on the coating's ability to prevent adsorption of plasma proteins. Surface delamination was observed in case of the sonicated AF1600 coating, which further led to adsorption of normal human plasma proteins.

  16. DMSA-Coated Iron Oxide Nanoparticles Greatly Affect the Expression of Genes Coding Cysteine-Rich Proteins by Their DMSA Coating.

    Science.gov (United States)

    Zhang, Ling; Wang, Xin; Zou, Jinglu; Liu, Yingxun; Wang, Jinke

    2015-10-19

    The dimercaptosuccinic acid (DMSA) was widely used to coat iron oxide nanoparticles (FeNPs); however, its intracellular cytotoxicity remains to be adequately elucidated. This study analyzed the differentially expressed genes (DEGs) in four mammalian cells treated by a DMSA-coated magnetite FeNP at various doses at different times. The results revealed that about one-fourth of DEGs coded cysteine-rich proteins (CRPs) in all cells under each treatment, indicating that the nanoparticles greatly affected the expressions of CRP-coding genes. Additionally, about 26% of CRP-coding DEGs were enzyme genes in all cells, indicating that the nanoparticles greatly affected the expression of enzyme genes. Further experiments with the nanoparticles and a polyethylenimine (PEI)-coated magnetite FeNP revealed that the effect mainly resulted from DMSA carried into cells by the nanoparticles. This study thus first reported the cytotoxicity of DMSA at the gene transcription level as coating molecules of FeNPs. This study provides new insight into the molecular mechanism by which the DMSA-coated nanoparticles resulted in the transcriptional changes of many CRP-coding genes in cells. This study draws attention toward the intracellular cytotoxicity of DMSA as a coating molecule of nanoparticles, which has very low toxicity as an orally administered antidote due to its extracellular distribution.

  17. Levels of glycine betaine in growing cells and spores of Bacillus species and lack of effect of glycine betaine on dormant spore resistance.

    Science.gov (United States)

    Loshon, Charles A; Wahome, Paul G; Maciejewski, Mark W; Setlow, Peter

    2006-04-01

    Bacteria of various Bacillus species are able to grow in media with very high osmotic strength in part due to the accumulation of low-molecular-weight osmolytes such as glycine betaine (GB). Cells of Bacillus species grown in rich and minimal media contained low levels of GB, but GB levels were 4- to 60-fold higher in cells grown in media with high salt. GB levels in Bacillus subtilis cells grown in minimal medium were increased approximately 7-fold by GB in the medium and 60-fold by GB plus high salt. GB was present in spores of Bacillus species prepared in media with or without high salt but at lower levels than in comparable growing cells. With spores prepared in media with high salt, GB levels were highest in B. subtilis spores and > or =20-fold lower in B. cereus and B. megaterium spores. Although GB levels in B. subtilis spores were elevated 15- to 30-fold by GB plus high salt in sporulation media, GB levels did not affect spore resistance. GB levels were similar in wild-type B. subtilis spores and spores that lacked major small, acid-soluble spore proteins but were much lower in spores that lacked dipicolinic acid.

  18. Nanocomposited coatings produced by laser-assisted process to prevent silicone hydogels from protein fouling and bacterial contamination

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Guobang; Chen, Yi; Zhang, Jin, E-mail: jzhang@eng.uwo.ca

    2016-01-01

    Graphical abstract: Nanocomposited-coating was deposited on silicone hydrogel by using the matrix-assisted pulsed laser evaporation (MAPLE) process. The ZnO–PEG nanocomposited coating reduces over 50% protein absorption on silicone hydrogel, and can inhibit the bacterial growth efficiently. - Highlights: • We developed a nanocomposited coating to prevent silicone hydrogel from biofouling. • Matrix-assisted pulsed laser evaporation can deposit inorganic–organic nanomaterials. • The designed nanocomposited coating reduces protein absorption by over 50%. • The designed nanocomposited coating shows significant antimicrobial efficiency. - Abstract: Zinc oxide (ZnO) nanoparticles incorporating with polyethylene glycol (PEG) were deposited together on the surface of silicone hydrogel through matrix-assisted pulsed laser evaporation (MAPLE). In this process, frozen nanocomposites (ZnO–PEG) in isopropanol were irradiated under a pulsed Nd:YAG laser at 532 nm for 1 h. Our results indicate that the MAPLE process is able to maintain the chemical backbone of polymer and prevent the nanocomposite coating from contamination. The ZnO–PEG nanocomposited coating reduces over 50% protein absorption on silicone hydrogel. The cytotoxicity study shows that the ZnO–PEG nanocomposites deposited on silicone hydrogels do not impose the toxic effect on mouse NIH/3T3 cells. In addition, MAPLE-deposited ZnO–PEG nanocomposites can inhibit the bacterial growth significantly.

  19. Evaluation of surface sampling method performance for Bacillus Spores on clean and dirty outdoor surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Einfeld, Wayne; Boucher, Raymond M.; Brown, Gary Stephen; Tezak, Matthew Stephen

    2011-06-01

    Recovery of Bacillus atrophaeous spores from grime-treated and clean surfaces was measured in a controlled chamber study to assess sampling method performance. Outdoor surfaces investigated by wipe and vacuum sampling methods included stainless steel, glass, marble and concrete. Bacillus atrophaeous spores were used as a surrogate for Bacillus anthracis spores in this study designed to assess whether grime-coated surfaces significantly affected surface sampling method performance when compared to clean surfaces. A series of chamber tests were carried out in which known amounts of spores were allowed to gravitationally settle onto both clean and dirty surfaces. Reference coupons were co-located with test coupons in all chamber experiments to provide a quantitative measure of initial surface concentrations of spores on all surfaces, thereby allowing sampling recovery calculations. Results from these tests, carried out under both low and high humidity conditions, show that spore recovery from grime-coated surfaces is the same as or better than spore recovery from clean surfaces. Statistically significant differences between method performance for grime-coated and clean surfaces were observed in only about half of the chamber tests conducted.

  20. Silica nanoparticle coated liposomes: a new type of hybrid nanocapsule for proteins.

    Science.gov (United States)

    Mohanraj, Vellore J; Barnes, Timothy J; Prestidge, Clive A

    2010-06-15

    A hybrid silica-liposome nanocapsule system containing insulin has been developed and the encapsulation, protection and release properties are evaluated. The formulation strategy is based on using insulin-loaded 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and cholesterol liposomes as a template for the deposition of inert silica nanoparticles. The influence of formulation and process variables on particle size, zeta potential and liposome entrapment of insulin is reported. The ability to protect against lipolytic degradation and sustain insulin release in vitro in simulated GI conditions is also reported. Depending on the concentration and charge ratio of liposomes and silica nanoparticles, nanoparticle coated liposomes with varied size and zeta potential were obtained with an insulin entrapment efficiency of 70%. The silica nanoparticle coating protected liposomes against degradation by digestive enzymes in vitro; the release rate of insulin from silica coated liposomes was reduced in comparison to uncoated liposomes. Thus the liposomal release kinetics and stability can be controlled by including a specifically engineered nanoparticle layer. Silica nanoparticle-liposomes hybrid nanocapsules show promise as a delivery vehicle for proteins and peptides. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  1. Protein Adsorption Properties on Titanium with and without Calcium Titanate-coating

    Energy Technology Data Exchange (ETDEWEB)

    Ueta, J; Kanno, T; Tada, K; Horiuchi, J [Department Biotechnology and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido Pref. (Japan); Ohtsu, N, E-mail: kannotr@mail.kitami-it.ac.jp [Instrumental Analysis Center, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido Pref. (Japan)

    2011-10-29

    Adsorption properties of bovine serum albumin (BSA) and egg white lysozyme (LSZ) were examined at pH 5.15 on titanium coated with and without calcium titanate (CT). One CT-coated (CT-Ti), and two none-coated titaniums with different surface roughness (mirror-like-polished; Mi-Ti and mechanically-polished; Me-Ti) were prepared. The adsorbed amounts of both BSA and LSZ were in the order of Me-Ti > Mi-Ti > CT-Ti. Surface roughnes was in the order of Me-Ti > CT-Ti >> Mi-Ti, showing that Me-Ti had the most preferable for protein adsorption. Contact angle of water was Mi-Ti > Me-Ti > CT-Ti, suggesting that Mi-Ti was the most hydrophobic and being more available for adsorption. Therefore, the order of the adsorbed amounts was ascribed to complexation of these two factors; surface roughness and hydrophobicity. The molar adsorbed amounts of LSZ were larger than those of BSA by 3{approx}5 times for the three Ti plates, which was partly due to stronger electrostatic attraction between LSZ and the surface.

  2. Bacteria, mould and yeast spore inactivation studies by scanning electron microscope observations.

    Science.gov (United States)

    Rozali, Siti N M; Milani, Elham A; Deed, Rebecca C; Silva, Filipa V M

    2017-12-18

    Spores are the most resistant form of microbial cells, thus difficult to inactivate. The pathogenic or food spoilage effects of certain spore-forming microorganisms have been the primary basis of sterilization and pasteurization processes. Thermal sterilization is the most common method to inactivate spores present on medical equipment and foods. High pressure processing (HPP) is an emerging and commercial non-thermal food pasteurization technique. Although previous studies demonstrated the effectiveness of thermal and non-thermal spore inactivation, the in-depth mechanisms of spore inactivation are as yet unclear. Live and dead forms of two food spoilage bacteria, a mould and a yeast were examined using scanning electron microscopy before and after the inactivation treatment. Alicyclobacillus acidoterrestris and Geobacillus stearothermophilus bacteria are indicators of acidic foods pasteurization and sterilization processes, respectively. Neosartorya fischeri is a phyto-pathogenic mould attacking fruits. Saccharomyces cerevisiae is a yeast with various applications for winemaking, brewing, baking and the production of biofuel from crops (e.g. sugar cane). Spores of the four microbial species were thermally inactivated. Spores of S. cerevisiae were observed in the ascus and free form after thermal and HPP treatments. Different forms of damage and cell destruction were observed for each microbial spore. Thermal treatment inactivated bacterial spores of A. acidoterrestris and G. stearothermophilus by attacking the inner core of the spore. The heat first altered the membrane permeability allowing the release of intracellular components. Subsequently, hydration of spores, physicochemical modifications of proteins, flattening and formation of indentations occurred, with subsequent spore death. Regarding N. fischeri, thermal inactivation caused cell destruction and leakage of intracellular components. Both thermal and HPP treatments of S. cerevisiae free spores attacked

  3. Alterations in nanoparticle protein corona by biological surfactants: impact of bile salts on β-lactoglobulin-coated gold nanoparticles.

    Science.gov (United States)

    Winuprasith, Thunnalin; Chantarak, Sirinya; Suphantharika, Manop; He, Lili; McClements, David Julian

    2014-07-15

    The impact of biological surfactants (bile salts) on the protein (β-lactoglobulin) corona surrounding gold nanoparticles (200 nm) was studied using a variety of analytical techniques at pH 7: dynamic light scattering (DLS); particle electrophoresis (ζ-potential); UV-visible (UV) spectroscopy; transmission electron microscopy (TEM); and surface-enhanced Raman scattering (SERS). The bile salts adsorbed to the protein-coated nanoparticle surfaces and altered their interfacial composition, charge, and structure. SERS spectra of protein-coated nanoparticles after bile salt addition contained bands from both protein and bile salts, indicating that the protein was not fully displaced by the bile salts. UV, DLS and TEM techniques also indicated that the protein coating was not fully displaced from the nanoparticle surfaces. The impact of bile salts could be described by an orogenic mechanism: mixed interfaces were formed that consisted of islands of aggregated proteins surrounded by a sea of bile salts. This knowledge is useful for understanding the interactions of bile salts with protein-coated colloidal particles, which may be important for controlling the fate of colloidal delivery systems in the human gastrointestinal tract, or the gastrointestinal fate of ingested inorganic nanoparticles. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The influence of the N- and C- terminal modifications of Potato virus X coat protein on virus properties

    Czech Academy of Sciences Publication Activity Database

    Hoffmeisterová, Hana; Moravec, Tomáš; Plchová, Helena; Folwarczna, Jitka; Čeřovská, Noemi

    2012-01-01

    Roč. 56, č. 4 (2012), s. 775-779 ISSN 0006-3134 R&D Projects: GA ČR GA521/09/1525 Institutional research plan: CEZ:AV0Z50380511 Keywords : chimeric coat protein * expression of recombinant protein * Nicotiana benthamiana Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.692, year: 2012

  5. Production of Polyclonal Antibodies to the Recombinant Potato virus M (PVM) Non-structural Triple Gene Block Protein 1 and Coat Protein

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Moravec, Tomáš; Plchová, Helena; Hoffmeisterová, Hana; Dědič, P.

    2012-01-01

    Roč. 160, č. 5 (2012), s. 251-254 ISSN 0931-1785 R&D Projects: GA MŠk 1M06030 Institutional research plan: CEZ:AV0Z50380511 Keywords : Potato virus M * recombinant protein * coat protein Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.000, year: 2012

  6. Shelf-life of fresh blueberries coated with quinoa protein/chitosan/sunflower oil edible film.

    Science.gov (United States)

    Abugoch, Lilian; Tapia, Cristián; Plasencia, Dora; Pastor, Ana; Castro-Mandujano, Olivio; López, Luis; Escalona, Victor H

    2016-01-30

    The aim of this study was to evaluate quinoa protein (Q), chitosan (CH) and sunflower oil (SO) as edible film material as well as the influence of this coating in extending the shelf-life of fresh blueberries stored at 4 °C and 75% relative humidity. These conditions were used to simulate the storage conditions in supermarkets and represent adverse conditions for testing the effects of the coating. The mechanical, barrier, and structural properties of the film were measured. The effectiveness of the coating in fresh blueberries (CB) was evaluated by changes in weight loss, firmness, color, molds and yeast count, pH, titratable acidity, and soluble solids content. The tensile strength and elongation at break of the edible film were 0.45 ± 0.29 MPa and 117.2% ± 7%, respectively. The water vapor permeability was 3.3 × 10(-12) ± 4.0 × 10(-13) g s(-1) m(-1) Pa(-1). In all of the color parameters CB presented significant differences. CB had slight delayed fruit ripening as evidenced by higher titratable acidity (0.3-0.5 g citric acid 100 g(-1)) and lower pH (3.4-3.6) than control during storage; however, it showed reduced firmness (up to 38%). The use of Q/CH/SO as a coating in fresh blueberries was able to control the growth of molds and yeasts during 32 days of storage, whereas the control showed an increasing of molds and yeast, between 1.8 and 3.1 log cycles (between 20 and 35 days). © 2015 Society of Chemical Industry.

  7. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: physical characterization, redispersibility, and dissolution.

    Science.gov (United States)

    He, Wei; Lu, Yi; Qi, Jianping; Chen, Lingyun; Yin, Lifang; Wu, Wei

    2013-01-01

    Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much faster than that of the raw crystals. Fluid-bed coating technology has potential for use in the solidification of drug nanosuspensions.

  8. Gene activity during germination of spores of the fern, Onoclea sensibilis. Cell-free translation analysis of mRNA of spores and the effect of alpha-amanitin on spore germination

    Science.gov (United States)

    Raghavan, V.

    1992-01-01

    Poly(A)-RNA fractions of dormant, dark-imbibed (non-germinating) and photoinduced (germinating) spores of Onoclea sensibilis were poor templates in the rabbit reticulocyte lysate protein synthesizing system, but the translational efficiency of poly(A)+RNA was considerably higher than that of unfractionated RNA. Poly(A)+RNA isolated from photoinduced spores had a consistently higher translational efficiency than poly(A)+RNA from dark-imbibed spores. Analysis of the translation products by one-dimensional polyacrylamide gel electrophoresis showed no qualitative differences in the mRNA populations of dormant, dark-imbibed, and photoinduced spores. However, poly(A)+RNA from dark-imbibed spores appeared to encode in vitro fewer detectable polypeptides at a reduced intensity than photoinduced spores. A DNA clone encoding the large subunit of maize ribulose bisphosphate carboxylase hybridized at strong to moderate intensity to RNA isolated from dark-imbibed spores, indicating the absence of mRNA degradation. Although alpha-amanitin did not inhibit the germination of spores, the drug prevented the elongation of the rhizoid and protonemal initial with a concomitant effect on the synthesis of poly(A)+RNA. These results are consistent with the view that some form of translational control involving stored mRNA operates during dark-imbibition and photoinduced germination of spores.

  9. The search and identification of the new immunodiagnostic targets of bacillus anthracis spore

    International Nuclear Information System (INIS)

    Biketov, S.; Dunaytsev, I.; Baranova, E.; Marinin, L.; Dyatlov, I.

    2009-01-01

    Spores of Bacillus anthracis have been used as bio warfare agent to bio terrorize purposes. As efficiency of anti-epidemic measures included urgent prevention and treatment is determined by terms within which the bio agent is identified. Direct and rapid spore detection by antibodies based detection system is very attractive alternative to current PCR-based assays or routine phenotyping which are the most accurate but are also complex, time-consumption and expensive. The main difficulty with respect to such kind of anthrax spores detection is a cross-reaction with spores of closely related bacteria. For development of species-specific antibodies to anthrax spores recombinant scFvs or hybridoma technique were used. In both case surface spore antigens contained species-specific epitopes are need. Among exosporium proteins only ExsF(BxpB), ExsK and SoaA are specific to B.cereus group. On the surface of B. anthracis spores, a unique tetrasaccharides containing an novel monosaccharide - anthrose, was discovered. It was shown that anthrose can be serving as species-specific target for B. anthracis spores detection. We have revealed that EA1 isolated from spore of Russians strain STI-1 contain carbohydrate which formed species-specific epitopes and determine immunogenicity of this antigen. Antibodies to this antigen specifically recognized the surface target of B. anthracis spores and do not reacted with others Bacillus spore. Based on these antibodies we developed the test-systems in different formats for rapid direct detection and identification of B. anthracis spores. The results of trial these test-systems with using more than 50 different Bacillus strains were indicated that carbohydrate of EA1 isolated from spore is effective immunodiagnostic target for anthrax spores bio detection.(author)

  10. Apoptosis inhibitor of macrophage (AIM) diminishes lipid droplet-coating proteins leading to lipolysis in adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Iwamura, Yoshihiro; Mori, Mayumi; Nakashima, Katsuhiko [Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Mikami, Toshiyuki; Murayama, Katsuhisa [Genomic Science Laboratories, Dainippon Sumitomo Pharma Co. Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-0022 (Japan); Arai, Satoko [Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Miyazaki, Toru, E-mail: tm@m.u-tokyo.ac.jp [Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer AIM induces lipolysis in a distinct manner from that of hormone-dependent lipolysis. Black-Right-Pointing-Pointer AIM ablates activity of peroxisome proliferator-activated receptor in adipocytes. Black-Right-Pointing-Pointer AIM reduces mRNA levels of lipid-droplet coating proteins leading to lipolysis. -- Abstract: Under fasting conditions, triacylglycerol in adipose tissue undergoes lipolysis to supply fatty acids as energy substrates. Such lipolysis is regulated by hormones, which activate lipases via stimulation of specific signalling cascades. We previously showed that macrophage-derived soluble protein, AIM induces obesity-associated lipolysis, triggering chronic inflammation in fat tissue which causes insulin resistance. However, the mechanism of how AIM mediates lipolysis remains unknown. Here we show that AIM induces lipolysis in a manner distinct from that of hormone-dependent lipolysis, without activation or augmentation of lipases. In vivo and in vitro, AIM did not enhance phosphorylation of hormone-sensitive lipase (HSL) in adipocytes, a hallmark of hormone-dependent lipolysis activation. Similarly, adipose tissue from obese AIM-deficient and wild-type mice showed comparable HSL phosphorylation. Consistent with the suppressive effect of AIM on fatty acid synthase activity, the amount of saturated and unsaturated fatty acids was reduced in adipocytes treated with AIM. This response ablated transcriptional activity of peroxisome proliferator-activated receptor (PPAR{gamma}), leading to diminished gene expression of lipid-droplet coating proteins including fat-specific protein 27 (FSP27) and Perilipin, which are indispensable for triacylglycerol storage in adipocytes. Accordingly, the lipolytic effect of AIM was overcome by a PPAR{gamma}-agonist or forced expression of FSP27, while it was synergized by a PPAR{gamma}-antagonist. Overall, distinct modes of lipolysis appear to take place in different physiological

  11. Development of Scaffolds for Light Harvesting and Photocatalysis from the Coat Protein of Tobacco Mosaic Virus

    Science.gov (United States)

    Dedeo, Michel Toussaint

    The utility of a previously developed TMV-based light harvesting system has been dramatically expanded through the introduction of reactive handles for the site-specific modification of the interior and exterior surfaces. Further experiments to reengineer the coat protein have produced structures with unique, unexpected, and useful assembly properties that complement the newly available surface modifications. Energy transfer from chromophores in the RNA channel of self-assembled TMV structures to the exterior was made possible by conjugation of acceptor dyes and porphyrins to the N-terminus. By repositioning the N-terminus to the pore through circular permutation, this process was repeated to create structures that mimic the light harvesting 1 complex of photosynthetic bacteria. To study and improve upon natural photosynthesis, closely packed chromophore arrays and gold nanoparticles were tethered to the pore of stabilized TMV disks through introduction of a uniquely reactive lysine. Finally, a dimeric TMV coat protein was produced to control the distribution and arrangement of synthetic groups with synergistic activity.

  12. Modification of Functional Properties of Whey Protein Isolate Nanocomposite Films and Coatings with Nanoclays

    Directory of Open Access Journals (Sweden)

    Kerstin Müller

    2017-01-01

    Full Text Available Whey protein based films have received considerable attention to be used for environment friendly packaging applications. However, such biopolymers are prevented for use in commercial packaging due to their limited mechanical and barrier performance. The addition of nanofillers is a common method to overcome those drawbacks of biopolymers. Whey protein isolate (WPI based nanocomposite cast films and coatings were produced using montmorillonite and vermiculite clay as nanofiller in different concentrations. Uniform distribution of filler within the polymeric matrix was confirmed by scanning electron microscopy. Mechanical properties such as tensile strength as well as Young’s modulus were increased after increasing the filler content, while elongation at break values decreased. All samples showed weak barrier potential against water vapor. Nanoclay incorporation, however, reduced water vapor transmission rates by approximately 50%. The oxygen barrier performance was improved for all nanocomposites. Results also indicated proportionality with the filler ratio according to applied models. The highest barrier improvement factors (BIF were greater than five for the cast films and even greater than sixteen for the coatings. Developed WPI-based composites depicted nanoenhanced material properties representing a promising alternative to fossil-based packaging films.

  13. Robust Trypsin Coating on Electrospun Polymer Nanofibers in Rigorous Conditions and Its Uses for Protein Digestion

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hye-Kyung; Kim, Byoung Chan; Jun, Seung-Hyun; Chang, Mun Seock; Lopez-Ferrer, Daniel; Smith, Richard D.; Gu, Man Bock; Lee, Sang-Won; Kim, Beom S.; Kim, Jungbae

    2010-12-15

    An efficient protein digestion in proteomic analysis requires the stabilization of proteases such as trypsin. In the present work, trypsin was stabilized in the form of enzyme coating on electrospun polymer nanofibers (EC-TR), which crosslinks additional trypsin molecules onto covalently-attached trypsin (CA-TR). EC-TR showed better stability than CA-TR in rigorous conditions, such as at high temperatures of 40 °C and 50 °C, in the presence of organic co-solvents, and at various pH's. For example, the half-lives of CA-TR and EC-TR were 0.24 and 163.20 hours at 40 ºC, respectively. The improved stability of EC-TR can be explained by covalent-linkages on the surface of trypsin molecules, which effectively inhibits the denaturation, autolysis, and leaching of trypsin. The protein digestion was performed at 40 °C by using both CA-TR and EC-TR in digesting a model protein, enolase. EC-TR showed better performance and stability than CA-TR by maintaining good performance of enolase digestion under recycled uses for a period of one week. In the same condition, CA-TR showed poor performance from the beginning, and could not be used for digestion at all after a few usages. The enzyme coating approach is anticipated to be successfully employed not only for protein digestion in proteomic analysis, but also for various other fields where the poor enzyme stability presently hampers the practical applications of enzymes.

  14. Protein-lipid interactions of bacteriophage M13 major coat protein

    NARCIS (Netherlands)

    Stopar, D.; Spruijt, R.B.; Wolfs, C.J.A.M.; Hemminga, M.A.

    2003-01-01

    During the past years, remarkable progress has been made in our understanding of the replication cycle of bacteriophage M13 and the molecular details that enable phage proteins to navigate in the complex environment of the host cell. With new developments in molecular membrane biology in combination

  15. Antimicrobial Effects of Gold/Copper Sulphide (Au/Cus) Core/Shell Nanoparticles on Bacillus Anthracis Spores and Cells

    Science.gov (United States)

    2013-01-01

    and DNA extrusion experiments revealed that nanoparticles damaged the cell membrane causing DNA and cytosolic content efflux and eventually cell...significant spore (x 105) killing after 24 h of pre-treatment. SEM imaging, EDS analysis, and DNA extrusion experiments revealed that nanoparticles...CO2. The spores have a highly ordered structure with a multilayered proteinaceous shell called the coat. The coat is responsible for resistance and

  16. Poly(norepinephrine)-coated open tubular column for the separation of proteins and recombination human erythropoietin by capillary electrochromatography.

    Science.gov (United States)

    Xiao, Xue; Zhang, Yamin; Wu, Jia; Jia, Li

    2017-12-01

    Recombinant human erythropoietin is an important therapeutic protein with high economic interest due to the benefits provided by its clinical use for the treatment of anemias associated with chronic renal failure and chemotherapy. In this work, a poly(norepinephrine)-coated open tubular column was successfully prepared based on the self-polymerization of norepinephrine under mild alkaline condition, the favorable film forming and easy adhesive properties of poly(norepinephrine). The poly(norepinephrine) coating was characterized by scanning electron microscopy and measurement of the electro-osmotic flow. The thickness of the coating was about 431 nm. The electrochromatographic performance of the poly(norepinephrine)-coated open tubular column was evaluated by separation of proteins. Some basic and acidic proteins including two variants of bovine serum albumin and two variants of β-lactoglobulin achieved separation in the poly(norepinephrine)-coated open tubular column. More importantly, the column demonstrated separation ability for the glycoforms of recombinant human erythropoietin. In addition, the column demonstrated good repeatability with the run-to-run, day-to-day, and column-to-column relative standard deviations of migration times of proteins less than 3.40%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Toxin delivery by the coat protein of an aphid-vectored plant virus provides plant resistance to aphids.

    Science.gov (United States)

    Bonning, Bryony C; Pal, Narinder; Liu, Sijun; Wang, Zhaohui; Sivakumar, S; Dixon, Philip M; King, Glenn F; Miller, W Allen

    2014-01-01

    The sap-sucking insects (order Hemiptera), including aphids, planthoppers, whiteflies and stink bugs, present one of the greatest challenges for pest management in global agriculture. Insect neurotoxins offer an alternative to chemical insecticides for controlling these pests, but require delivery into the insect hemocoel. Here we use the coat protein of a luteovirus, an aphid-vectored plant virus, to deliver a spider-derived, insect-specific toxin that acts within the hemocoel. The luteovirid coat protein is sufficient for delivery of fused proteins into the hemocoel of pea aphids, Acyrthosiphon pisum, without virion assembly. We show that when four aphid pest species-A. pisum, Rhopalosiphum padi, Aphis glycines and Myzus persicae-feed on a recombinant coat protein-toxin fusion, either in an experimental membrane sachet or in transgenic Arabidopsis plants, they experience significant mortality. Aphids fed on these fusion proteins showed signs of neurotoxin-induced paralysis. Luteovirid coat protein-insect neurotoxin fusions represent a promising strategy for transgenic control of aphids and potentially other hemipteran pests.

  18. Structure and dynamics of the membrane-bound form of the filamentous bacteriophage coat proteins by NMR spectroscopy

    International Nuclear Information System (INIS)

    Bogusky, M.J.

    1987-01-01

    The structure and dynamics of the Pf1 and fd bacteriophage coat proteins in detergent micelles are characterized in solution by nuclear magnetic resonance spectroscopy. The coat proteins are found to exist within the bacterial inner cell membrane during viral infection and assembly. The coat proteins serve as a model system to investigate integral membrane proteins as well as the viral infection and assembly processes. The coat protein is insoluble in aqueous or organic solvents and can only be effectively solubilized in the presence of detergents that form micelles or phospholipids that form vesicles. The effective molecular weight of the detergent-micelle complex is ca. 30K daltons. Sequential assignment strategies were ineffective due to short T/sub 2s/ and severe resonance degeneracy. The backbone resonance assignments were completed by the combination of several homo- and heteronuclear correlation techniques with biosynthetic 15 N labelling. 2D NOE experiments were used to locate and characterize the secondary structure of the membrane bound form of the proteins showing them to be largely helical with the hydrophobic core existing in a very stable helix

  19. Short-Chain Alkanethiol Coating for Small-Size Gold Nanoparticles Supporting Protein Stability

    Directory of Open Access Journals (Sweden)

    Cristina Cantarutti

    2017-11-01

    Full Text Available The application of gold nanoparticles (AuNPs is emerging in many fields, raising the need for a systematic investigation on their safety. In particular, for biomedical purposes, a relevant issue are certainly AuNP interactions with biomolecules, among which proteins are the most abundant ones. Elucidating the effects of those interactions on protein structure and on nanoparticle stability is a major task towards understanding their mechanisms at a molecular level. We investigated the interaction of the 3-mercaptopropionic acid coating of AuNPs (MPA-AuNPs with β2-microglobulin (β2m, which is a paradigmatic amyloidogenic protein. To this aim, we prepared and characterized MPA-AuNPs with an average diameter of 3.6 nm and we employed NMR spectroscopy and fluorescence spectroscopy to probe protein structure perturbations. We found that β2m interacts with MPA-AuNPs through a highly localized patch maintaining its overall native structure with minor conformational changes. The interaction causes the reversible precipitation of clusters that can be easily re-dispersed through brief sonication.

  20. Expression of rice gall dwarf virus outer coat protein gene (S8) in insect cells.

    Science.gov (United States)

    Fan, Guo-cheng; Gao, Fang-luan; Wei, Tai-yun; Huang, Mei-ying; Xie, Li-yan; Wu, Zu-jian; Lin, Qi-ying; Xie, Lian-hui

    2010-12-01

    To obtain the P8 protein of Rice gall dwarf virus (RGDV) with biological activity, its outer coat protein gene S8 was expressed in Spodoptera frugiperda (Sf9) insect cells using the baculovirus expression system. The S8 gene was subcloned into the pFastBac™1 vector, to produce the recombinant baculovirus transfer vector pFB-S8. After transformation, pFB-S8 was introduced into the competent cells (E. coli DH10Bac) containing a shuttle vector, Bacmid, generating the recombinant bacmid rbpFB-S8. After being infected by recombinant baculovirus rvpFB-S8 at different multiplicities of infection, Sf9 cells were collected at different times and analyzed by SDS-PAGE, Western blotting and immunofluorescence microscopy. The expression level of the P8 protein was highest between 48-72 h after transfection of Sf9 cells. Immunofluorescence microscopy showed that P8 protein of RGDV formed punctate structures in the cytoplasm of Sf9 cells.

  1. The outer membrane, not a coat of host proteins, limits antigenicity of virulent Treponema pallidum.

    Science.gov (United States)

    Cox, D L; Chang, P; McDowall, A W; Radolf, J D

    1992-01-01

    Virulent Treponema pallidum reacts poorly with the specific antibodies present in human and rabbit syphilitic sera, a phenomenon often attributed to an outer coat of host serum proteins. Here we present additional evidence that the limited antigenicity of virulent organisms actually is due to a paucity of proteins in the outer membrane. Initially, we used electron microscopy to demonstrate that the outer membrane is highly susceptible to damage from physical manipulation (i.e., centrifugation and resuspension) and nonionic detergents. Organisms with disrupted outer membranes were markedly more antigenic than intact treponemes as determined by immunoelectron microscopy (IEM) with rabbit syphilitic and antiendoflagellar antisera. Data obtained with a new radioimmunoassay, designated the T. pallidum surface-specific radioimmunoassay, corroborated these IEM findings by demonstrating that the major T. pallidum immunogens are not surface exposed; the assay also was unable to detect serum proteins, including fibronectin, on the surfaces of intact organisms. Furthermore, IEM of T. pallidum on ultrathin cryosections with monospecific anti-47-kDa-immunogen antiserum confirmed the intracellular location of the 47-kDa immunogen. On the basis of these and previous findings, we proposed a new model for T. pallidum ultrastructure in which the outer membrane contains a small number of transmembrane proteins and the major membrane immunogens are anchored by lipids to the periplasmic leaflet of the cytoplasmic membrane. This unique ultrastructure explains the remarkable ability of virulent organisms to evade the humoral immune response of the T. pallidum-infected host. Images PMID:1541522

  2. Sulfonate-terminated carbosilane dendron-coated nanotubes: a greener point of view in protein sample preparation.

    Science.gov (United States)

    González-García, Estefanía; Gutiérrez Ulloa, Carlos E; de la Mata, Francisco Javier; Marina, María Luisa; García, María Concepción

    2017-09-01

    Reduction or removal of solvents and reagents in protein sample preparation is a requirement. Dendrimers can strongly interact with proteins and have great potential as a greener alternative to conventional methods used in protein sample preparation. This work proposes the use of single-walled carbon nanotubes (SWCNTs) functionalized with carbosilane dendrons with sulfonate groups for protein sample preparation and shows the successful application of the proposed methodology to extract proteins from a complex matrix. SEM images of nanotubes and mixtures of nanotubes and proteins were taken. Moreover, intrinsic fluorescence intensity of proteins was monitored to observe the most significant interactions at increasing dendron generations under neutral and basic pHs. Different conditions for the disruption of interactions between proteins and nanotubes after protein extraction and different concentrations of the disrupting reagent and the nanotube were also tried. Compatibility of extraction and disrupting conditions with the enzymatic digestion of proteins for obtaining bioactive peptides was also studied. Finally, sulfonate-terminated carbosilane dendron-coated SWCNTs enabled the extraction of proteins from a complex sample without using non-environmentally friendly solvents that were required so far. Graphical Abstract Green protein extraction from a complex sample employing carbosilane dendron coated nanotubes.

  3. Influences of Various Peptide Linkers on the Thermotoga maritima MSB8 Nitrilase Displayed on the Spore Surface of Bacillus subtilis.

    Science.gov (United States)

    Chen, Huayou; Chen, Zhi; Wu, Bangguo; Ullah, Jawad; Zhang, Tianxi; Jia, Jinru; Wang, Hongcheng; Tan, Tianwei

    2017-01-01

    In the present study, fusion genes composed of Thermotoga maritima MSB8 nitrilase and Bacillus subtilis 168 outer coat protein CotG were constructed with various peptide linkers and displayed on B. subtilis DB 403 spores. The successful display of CotG-nit fusion proteins on the spore surface of B. subtilis was verified by Western blot analysis and activity measurement. It was demonstrated that the fusion with linker GGGGSEAAAKGGGGS presented the highest thermal and pH stability, which is 2.67- and 1.9-fold of the fusion without linker. In addition, fusion with flexible linker (GGGGS)3 demonstrated better thermal and pH stability than fusions with linkers GGGGS and (GGGGS)2. Fusion with rigid linker (EAAAK) demonstrated better thermal stability than fusions with linkers (EAAAK)2 and (EAAAK)3. Fusions with linker (EAAAK)2 demonstrated better pH stability than fusions with linkers (EAAAK) and (EAAAK)3. In the presence of 1 mM dithiothreitol, 1% (v/v) sodium dodecyl sulfate, and 20% (v/v) ethanol, the optimal linkers of the fusions were MGSSSN, GGGGSEAAAKGGGGS, and (GGGGS)3, respectively. In summary, our results showed that optimizing the peptide linkers with different type, length, and amino acid composition of the fusion proteins would be an efficient way to maintain the stability of fusion proteins and thus improve the nitrilase display efficiency, which could provide an effective method for rational design peptide linkers of displayed nitrilase on B. subtilis. © 2017 S. Karger AG, Basel.

  4. Highly Stable Trypsin-Aggregate Coatings on Polymer Nanofibers for Repeated Protein Digestion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chan; Lopez-Ferrer, Daniel; Lee, Sang-mok; Ahn, Hye-kyung; Nair, Sujith; Kim, Seong H.; Kim, Beom S.; Petritis, Konstantinos; Camp, David G.; Grate, Jay W.; Smith, Richard D.; Koo, Yoon-mo; Gu, Man Bock; Kim, Jungbae

    2009-04-01

    A stable and robust trypsin-based biocatalytic system was developed and demonstrated for proteomic applications. The system utilizes polymer nanofibers coated with trypsin aggregates for immobilized protease digestions. After covalently attaching an initial layer of trypsin to the polymer nanofibers, highly concentrated trypsin molecules are crosslinked to the layered trypsin by way of a glutaraldehyde treatment. This new process produced a 300-fold increase in trypsin activity compared with a conventional method for covalent trypsin immobilization and proved to be robust in that it still maintained a high level of activity after a year of repeated recycling. This highly stable form of immobilized trypsin was also resistant to autolysis, enabling repeated digestions of bovine serum albumin over 40 days and successful peptide identification by LC-MS/MS. Finally, the immobilized trypsin was resistant to proteolysis when exposed to other enzymes (i.e. chymotrypsin), which makes it suitable for use in “real-world” proteomic applications. Overall, the biocatalytic nanofibers with enzyme aggregate coatings proved to be an effective approach for repeated and automated protein digestion in proteomic analyses.

  5. Strategies for specifically directing metal functionalization of protein nanotubes: constructing protein coated silver nanowires.

    Science.gov (United States)

    Carreño-Fuentes, Liliana; Ascencio, Jorge A; Medina, Ariosto; Aguila, Sergio; Palomares, Laura A; Ramírez, Octavio T

    2013-06-14

    Biological molecules that self-assemble in the nanoscale range are useful multifunctional materials. Rotavirus VP6 protein self-assembles into tubular structures in the absence of other rotavirus proteins. Here, we present strategies for selectively directing metal functionalization to the lumen of VP6 nanotubes. The specific in situ metal reduction in the inner surface of nanotube walls was achieved by the simple modification of a method previously reported to functionalize the nanotube outer surface. Silver nanorods and nanowires as long as 1.5 μm were formed inside the nanotubes by coalescence of nanoparticles. Such one-dimensional structures were longer than others previously obtained using bioscaffolds. The interactions between silver ions and the nanotube were simulated to understand the conditions that allowed nanowire formation. Molecular docking showed that a naturally occurring arrangement of aspartate residues enabled the stabilization of silver ions on the internal surface of the VP6 nanotubes. This is the first time that such a spatial arrangement has been proposed for the nucleation of silver nanoparticles, opening the possibility of using such an array to direct functionalization of other biomolecules. These results demonstrate the natural capabilities of VP6 nanotubes to function as a versatile biotemplate for nanomaterials.

  6. A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate.

    Science.gov (United States)

    Shrestha, Ritu; Lockless, Steve W; Sorg, Joseph A

    2017-06-23

    Clostridium difficile has become one of the most common bacterial pathogens in hospital-acquired infections in the United States. Although C. difficile is strictly anaerobic, it survives in aerobic environments and transmits between hosts via spores. C. difficile spore germination is triggered in response to certain bile acids and glycine. Although glycine is the most effective co-germinant, other amino acids can substitute with varying efficiencies. Of these, l-alanine is an effective co-germinant and is also a germinant for most bacterial spores. Many endospore-forming bacteria embed alanine racemases into their spore coats, and these enzymes are thought to convert the l-alanine germinant into d-alanine, a spore germination inhibitor. Although the C. difficile Alr2 racemase is the sixth most highly expressed gene during C. difficile spore formation, a previous study reported that Alr2 has little to no role in germination of C. difficile spores in rich medium. Here, we hypothesized that Alr2 could affect C. difficile l-alanine-induced spore germination in a defined medium. We found that alr2 mutant spores more readily germinate in response to l-alanine as a co-germinant. Surprisingly, d-alanine also functioned as a co-germinant. Moreover, we found that Alr2 could interconvert l- and d-serine and that Alr2 bound to l- and d-serine with ∼2-fold weaker affinity to that of l- and d-alanine. Finally, we demonstrate that l- and d-serine are also co-germinants for C. difficile spores. These results suggest that C. difficile spores can respond to a diverse set of amino acid co-germinants and reveal that Alr2 can accommodate serine as a substrate. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Delay of Disease Development in Transgenic Plants that Express the Tobacco Mosaic Virus Coat Protein Gene

    Science.gov (United States)

    Powell Abel, Patricia; Nelson, Richard S.; de, Barun; Hoffmann, Nancy; Rogers, Stephen G.; Fraley, Robert T.; Beachy, Roger N.

    1986-05-01

    A chimeric gene containing a cloned cDNA of the coat protein (CP) gene of tobacco mosaic virus (TMV) was introduced into tobacco cells on a Ti plasmid of Agrobacterium tumefaciens from which tumor inducing genes had been removed. Plants regenerated from transformed cells expressed TMV mRNA and CP as a nuclear trait. Seedlings from self-fertilized transgenic plants were inoculated with TMV and observed for development of disease symptoms. The seedlings that expressed the CP gene were delayed in symptom development and 10 to 60 percent of the transgenic plants failed to develop symptoms for the duration of the experiments. Increasing the concentration of TMV in the inoculum shortened the delay in appearance of symptoms. The results of these experiments indicate that plants can be genetically transformed for resistance to virus disease development.

  8. [Expression of rice dwarf virus outer coat protein gene(S8) in insect cells].

    Science.gov (United States)

    Li, S; Liu, H; Chen, Z; Li, Y

    2001-04-01

    Outer coat protein gene(S8) of RDV was cloned into the transfer vector pVL 1393 to construct a recombinant vector pVL1393-S8. The recombinant vector pVL1393-S8 and the linear baculovirus RP23. LacZ were cotransfected into sf9 cells to produce the recombinant virus RP23-S8. RP23-S8 infected sf9 cells were collected and analysed by SDS-PAGE and Western-blot. The results showed that the S8 gene of RDV was expressed in sf9 cells and the expression level of sf9 cells was higher between 72-96 h after infected.

  9. The Coat Protein and NIa Protease of Two Potyviridae Family Members Independently Confer Superinfection Exclusion.

    Science.gov (United States)

    Tatineni, Satyanarayana; French, Roy

    2016-12-01

    Superinfection exclusion (SIE) is an antagonistic virus-virus interaction whereby initial infection by one virus prevents subsequent infection by closely related viruses. Although SIE has been described in diverse viruses infecting plants, humans, and animals, its mechanisms, including involvement of specific viral determinants, are just beginning to be elucidated. In this study, SIE determinants encoded by two economically important wheat viruses, Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) and Triticum mosaic virus (TriMV; genus Poacevirus, family Potyviridae), were identified in gain-of-function experiments that used heterologous viruses to express individual virus-encoded proteins in wheat. Wheat plants infected with TriMV expressing WSMV P1, HC-Pro, P3, 6K1, CI, 6K2, NIa-VPg, or NIb cistrons permitted efficient superinfection by WSMV expressing green fluorescent protein (WSMV-GFP). In contrast, wheat infected with TriMV expressing WSMV NIa-Pro or coat protein (CP) substantially excluded superinfection by WSMV-GFP, suggesting that both of these cistrons are SIE effectors encoded by WSMV. Importantly, SIE is due to functional WSMV NIa-Pro or CP rather than their encoding RNAs, as altering the coded protein products by minimally changing RNA sequences led to abolishment of SIE. Deletion mutagenesis further revealed that elicitation of SIE by NIa-Pro requires the entire protein while CP requires only a 200-amino-acid (aa) middle fragment (aa 101 to 300) of the 349 aa. Strikingly, reciprocal experiments with WSMV-mediated expression of TriMV proteins showed that TriMV CP, and TriMV NIa-Pro to a lesser extent, likewise excluded superinfection by TriMV-GFP. Collectively, these data demonstrate that WSMV- and TriMV-encoded CP and NIa-Pro proteins are effectors of SIE and that these two proteins trigger SIE independently of each other. Superinfection exclusion (SIE) is an antagonistic virus-virus interaction that prevents secondary

  10. Hibiscus chlorotic ringspot virus coat protein upregulates sulfur metabolism genes for enhanced pathogen defense.

    Science.gov (United States)

    Gao, Ruimin; Ng, Florence Kai Lin; Liu, Peng; Wong, Sek-Man

    2012-12-01

    In both Hibiscus chlorotic ringspot virus (HCRSV)-infected and HCRSV coat protein (CP) agroinfiltrated plant leaves, we showed that sulfur metabolism pathway related genes-namely, sulfite oxidase (SO), sulfite reductase, and adenosine 5'-phosphosulfate kinase-were upregulated. It led us to examine a plausible relationship between sulfur-enhanced resistance (SED) and HCRSV infection. We broadened an established method to include different concentrations of sulfur (0S, 1S, 2S, and 3S) to correlate them to symptom development of HCRSV-infected plants. We treated plants with glutathione and its inhibitor to verify the SED effect. Disease resistance was induced through elevated glutathione contents during HCRSV infection. The upregulation of SO was related to suppression of symptom development induced by sulfur treatment. In this study, we established that HCRSV-CP interacts with SO which, in turn, triggers SED and leads to enhanced plant resistance. Thus, we have discovered a new function of SO in the SED pathway. This is the first report to demonstrate that the interaction of a viral protein and host protein trigger SED in plants. It will be interesting if such interaction applies generally to other host-pathogen interactions that will lead to enhanced pathogen defense.

  11. Allergenicity assessment of the papaya ringspot virus coat protein expressed in transgenic rainbow papaya.

    Science.gov (United States)

    Fermín, Gustavo; Keith, Ronald C; Suzuki, Jon Y; Ferreira, Stephen A; Gaskill, Douglas A; Pitz, Karen Y; Manshardt, Richard M; Gonsalves, Dennis; Tripathi, Savarni

    2011-09-28

    The virus-resistant, transgenic commercial papaya Rainbow and SunUp (Carica papaya L.) have been consumed locally in Hawaii and elsewhere in the mainland United States and Canada since their release to planters in Hawaii in 1998. These papaya are derived from transgenic papaya line 55-1 and carry the coat protein (CP) gene of papaya ringspot virus (PRSV). The PRSV CP was evaluated for potential allergenicity, an important component in assessing the safety of food derived from transgenic plants. The transgene PRSV CP sequence of Rainbow papaya did not exhibit greater than 35% amino acid sequence homology to known allergens, nor did it have a stretch of eight amino acids found in known allergens which are known common bioinformatic methods used for assessing similarity to allergen proteins. PRSV CP was also tested for stability in simulated gastric fluid and simulated intestinal fluid and under various heat treatments. The results showed that PRSV CP was degraded under conditions for which allergenic proteins relative to nonallergens are purported to be stable. The potential human intake of transgene-derived PRSV CP was assessed by measuring CP levels in Rainbow and SunUp along with estimating the fruit consumption rates and was compared to potential intake estimates of PRSV CP from naturally infected nontransgenic papaya. Following accepted allergenicity assessment criteria, our results show that the transgene-derived PRSV CP does not pose a risk of food allergy.

  12. Satellite panicum mosaic virus coat protein enhances the performance of plant virus gene vectors.

    Science.gov (United States)

    Everett, Anthany L; Scholthof, Herman B; Scholthof, Karen-Beth G

    2010-01-05

    The coat protein of satellite panicum mosaic virus (SPCP) is known to effectively protect its cognate RNA from deleterious events, and here, we tested its stabilizing potential for heterologous virus-based gene vectors in planta. In support of this, a Potato virus X (PVX) vector carrying the SPMV capsid protein (PVX-SPCP) gene was stable for at least three serial systemic passages through Nicotiana benthamiana. To test the effect of SPCP in trans, PVX-SPCP was co-inoculated onto N. benthamiana together with a Tomato bushy stunt virus (TBSV) vector carrying a green fluorescent protein (GFP) gene that normally does not support systemic GFP expression. In contrast, co-inoculation of TBSV-GFP plus PVX-SPCP resulted in GFP accumulation and concomitant green fluorescent spots in upper, non-inoculated leaves in a temperature-responsive manner. These results suggest that the multifaceted SPMV CP has intriguing effects on virus-host interactions that surface in heterologous systems.

  13. Rapid and Efficient Protein Digestion using Trypsin Coated Magnetic Nanoparticles under Pressure Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoungsoo; Lopez-Ferrer, Daniel; Kim, Byoung Chan; Na, Hyon Bin; Park, Yong Il; Weitz, Karl K.; Warner, Marvin G.; Hyeon, Taeghwan; Lee, Sang-Won; Smith, Richard D.; Kim, Jungbae

    2011-01-01

    Trypsin-coated magnetic nanoparticles (EC-TR/NPs), prepared via a simple crosslinking of the enzyme to magnetic nanoparticles, were highly stable and could be easily captured using a magnet after the digestion was complete. EC-TR/NPs showed a negligible loss of trypsin activity after multiple uses and continuous shaking, while a control sample of covalently-attached trypsin on NPs resulted in a rapid inactivation under the same conditions due to the denaturation and autolysis of trypsin. Digestions were carried out on a single model protein, a five protein mixture, and a whole mouse brain proteome, and also compared for digestion at atmospheric pressure and 37 ºC for 12 h, and in combination with pressure cycling technology (PCT) at room temperature for 1 min. In all cases, the EC-TR/NPs performed equally as well or better than free trypsin in terms of the number of peptide/protein identifications and reproducibility across technical replicates. However, the concomitant use of EC-TR/NPs and PCT resulted in very fast (~1 min) and more reproducible digestions.

  14. Bone Morphogenetic Protein Coating on Titanium Implant Surface: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Haim Haimov

    2017-06-01

    Full Text Available Objectives: The purpose of the study is to systematically review the osseointegration process improvement by bone morphogenetic protein coating on titanium implant surface. Material and Methods: An electronic literature search was conducted through the MEDLINE (PubMed and EMBASE databases. The search was restricted for articles published during the last 10 years from October 2006 to September 2016 and articles were limited to English language. Results: A total of 41 articles were reviewed, and 8 of the most relevant articles that are suitable to the criteria were selected. Articles were analysed regarding concentration of bone morphogenetic protein (BMP, delivery systems, adverse reactions and the influence of the BMP on the bone and peri-implant surface in vivo. Finally, the present data included 340 implants and 236 models. Conclusions: It’s clearly shown from most of the examined studies that bone morphogenetic protein increases bone regeneration. Further studies should be done in order to induce and sustain bone formation activity. Osteogenic agent should be gradually liberated and not rapidly released with priority to three-dimension reservoir (incorporated titanium implant surface in order to avoid following severe side effects: inflammation, bleeding, haematoma, oedema, erythema, and graft failure.

  15. Surface properties of nanocrystalline TiO2 coatings in relation to the in vitro plasma protein adsorption

    International Nuclear Information System (INIS)

    Lorenzetti, M; Kobe, S; Novak, S; Bernardini, G; Santucci, A; Luxbacher, T

    2015-01-01

    This study reports on the selective adsorption of whole plasma proteins on hydrothermally (HT) grown TiO 2 -anatase coatings and its dependence on the three main surface properties: surface charge, wettability and roughness. The influence of the photo-activation of TiO 2 by UV irradiation was also evaluated. Even though the protein adhesion onto Ti-based substrates was only moderate, better adsorption of any protein (at pH = 7.4) occurred for the most negatively charged and hydrophobic substrate (Ti non-treated) and for the most nanorough and hydrophilic surface (HT Ti3), indicating that the mutual action of the surface characteristics is responsible for the attraction and adhesion of the proteins. The HT coatings showed a higher adsorption of certain proteins (albumin ‘passivation’ layer, apolipoproteins, vitamin D-binding protein, ceruloplasmin, α-2-HS-glycoprotein) and higher ratios of albumin to fibrinogen and albumin to immunoglobulin γ-chains. The UV pre-irradiation affected the surface properties and strongly reduced the adsorption of the proteins. These results provide in-depth knowledge about the characterization of nanocrystalline TiO 2 coatings for body implants and provide a basis for future studies on the hemocompatibility and biocompatibility of such surfaces. (paper)

  16. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    Science.gov (United States)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi

    2013-01-01

    Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection. PMID:23999307

  17. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  18. Coat protein deletion mutants elicit more severe symptoms than wild-type virus in multiple cereal hosts

    Science.gov (United States)

    The coat protein (CP) of Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) tolerates deletion of amino acids 36 to 84 for efficient systemic infection of wheat. This study demonstrates that deletion of CP amino acids 58 to 84, but not 36 to 57, from WSMV genome induced severe ...

  19. Rapid capillary coating by epoxy-poly-(dimethylacrylamide): Performance in capillary zone electrophoresis of protein and polystyrene carboxylate

    Czech Academy of Sciences Publication Activity Database

    Chiari, M.; Cretich, M.; Šťastná, Miroslava; Radko, S. P.; Chrambach, A.

    2001-01-01

    Roč. 22, č. 4 (2001), s. 656-659 ISSN 0173-0835 Institutional research plan: CEZ:AV0Z4031919 Keywords : capillary coating * capillary zone electrophoresis * proteins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.282, year: 2001

  20. 40 CFR 174.516 - Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. 174.516 Section 174.516 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance...

  1. Role of alfalfa mosaic virus coat protein in regulation of the balance between viral plus and minus strand RNA synthesis

    NARCIS (Netherlands)

    van der Kuyl, A. C.; Neeleman, L.; Bol, J. F.

    1991-01-01

    Replication of wild type RNA 3 of alfalfa mosaic virus (AIMV) and mutants with frameshifts in the P3 or coat protein (CP) genes was studied in protoplasts from tobacco plants transformed with DNA copies of AIMV RNAs 1 and 2. Accumulation of viral plus and minus strand RNAs was monitored with

  2. Wheat streak mosaic virus coat protein is a determinant for vector transmission by the wheat curl mite

    Science.gov (United States)

    Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae), is transmitted by the wheat curl mite (Aceria tosichella Keifer). The requirement of coat protein (CP) for WSMV transmission by the wheat curl mite was examined using a series of viable deletion and point mutations. Mite trans...

  3. Influence of coat protein transgene copy number on resistance in transgenic line 63-1 against Papaya ringspot virus isolates

    NARCIS (Netherlands)

    Souza, M.T.; Níckel, O.; Gonsalves, D.

    2005-01-01

    Line 63-1 is a 'Sunset'-derived transgenic papaya expressing the coat protein (CP) gene from a mild mutant of a Hawaiian isolate of Papaya ringspot virus (PRSV). Previous work showed that line 63-1 R, plants exhibited a range of resistance to severe PRSV isolates from Hawaii (HA), Jamaica (JA),

  4. Coating of nanoparticles on cryogel surface and subsequent double-modification for enhanced ion-exchange capacity of protein.

    Science.gov (United States)

    Tao, Shi-Peng; Wang, Chuan; Sun, Yan

    2014-09-12

    A novel composite cryogel monolith was developed by coating poly(glycidyl methacrylate) nanoparticles (NPs) onto the pore wall surface of poly(acrylamide) cryogel. The NPs-coated column was double-modified with poly(ethylenimine) (PEI) and diethylaminoethyl in sequence. Scanning electron microscopy revealed the dense coating of the NPs on the cryogel surface, but the NPs-coating did not result in distinct changes of the column porosity and permeability. The rough pore wall surface and extended polymer chains offered more binding sites, so the dynamic binding capacity of the composite cryogel bed for bovine serum albumin reached 11.7mg/mL bed volume at a flow rate of 6cm/min, which was 4.2 times higher than that of the cryogel bed modified with PEI without coating NPs (2.8mg/mL). The binding capacity as well as column efficiency decreased only slightly with increasing flow rate from 0.6 to 12cm/min. The results indicated that the strategy of NPs-coating incorporating with double ion-exchanger modifications is promising for enhancing cryogel capacities, and the novel material would be useful for high-speed protein chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effects of photochemically immobilized polymer coatings on protein adsorption, cell adhesion, and the foreign body reaction to silicone rubber.

    Science.gov (United States)

    DeFife, K M; Shive, M S; Hagen, K M; Clapper, D L; Anderson, J M

    1999-03-05

    Photochemical immobilization technology was utilized to covalently couple polymers to silicone rubber either at multiple points along a polymer backbone or at the endpoint of an amphiphilic chain. The coating variants then were tested in vitro and in vivo for improvement of desired responses compared to uncoated silicone rubber. All coating variants suppressed the adsorption of fibrinogen and immunoglobulin G, and most also inhibited fibroblast growth by 90-99%. None of the coating variants inhibited monocyte or neutrophil adhesion in vitro. However, the surfaces that supported the highest levels of monocyte adhesion also elicited the lowest secretion of pro-inflammatory cytokines. None of the materials elicited a strong inflammatory response or significantly (p< 0.05) reduced the thickness of the fibrous capsule when implanted subcutaneously in rats. Overall, the most passivating coating variant was an endpoint immobilized polypeptide that reduced protein adsorption, inhibited fibroblast growth by 90%, elicited low cytokine secretion from monocytes, and reduced fibrous encapsulation by 33%. In general, although some coating variants modified the adsorption of proteins and the behavior of leukocytes or fibroblasts in vitro, none abolished the development of a fibrous capsule in vivo. Copyright 1999 John Wiley & Sons, Inc.

  6. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms.

    Science.gov (United States)

    Banerjee, Indrani; Pangule, Ravindra C; Kane, Ravi S

    2011-02-08

    The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed. Biofouling is of great concern in numerous applications ranging from biosensors to biomedical implants and devices, and from food packaging to industrial and marine equipment. The two major approaches to combat surface fouling are based on either preventing biofoulants from attaching or degrading them. One of the key strategies for imparting adhesion resistance involves the functionalization of surfaces with poly(ethylene glycol) (PEG) or oligo(ethylene glycol). Several alternatives to PEG-based coatings have also been designed over the past decade. While protein-resistant coatings may also resist bacterial attachment and subsequent biofilm formation, in order to overcome the fouling-mediated risk of bacterial infection it is highly desirable to design coatings that are bactericidal. Traditional techniques involve the design of coatings that release biocidal agents, including antibiotics, quaternary ammonium salts (QAS), and silver, into the surrounding aqueous environment. However, the emergence of antibiotic- and silver-resistant pathogenic strains has necessitated the development of alternative strategies. Therefore, other techniques based on the use of polycations, enzymes, nanomaterials, and photoactive agents are being investigated. With regard to marine antifouling coatings, restrictions on the use of biocide-releasing coatings have made the generation of nontoxic antifouling surfaces more important. While considerable progress has been made in the design of antifouling coatings, ongoing research in this area should result in the development of even better antifouling materials in the future. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Varieties of charge distributions in coat proteins of ssRNA+  viruses

    Science.gov (United States)

    Lošdorfer Božič, Anže; Podgornik, Rudolf

    2018-01-01

    A major part of the interactions involved in the assembly and stability of icosahedral, positive-sense single-stranded RNA (ssRNA+) viruses is electrostatic in nature, as can be inferred from the strong pH- and salt-dependence of their assembly phase diagrams. Electrostatic interactions do not act only between the capsid coat proteins (CPs), but just as often provide a significant contribution to the interactions of the CPs with the genomic RNA, mediated to a large extent by positively charged, flexible N-terminal tails of the CPs. In this work, we provide two clear and complementary definitions of an N-terminal tail of a protein, and use them to extract the tail sequences of a large number of CPs of ssRNA+  viruses. We examine the pH-dependent interplay of charge on both tails and CPs alike, and show that—in contrast to the charge on the CPs—the net positive charge on the N-tails persists even to very basic pH values. In addition, we note a limit to the length of the wild-type genomes of those viruses which utilize positively charged tails, when compared to viruses without charged tails and similar capsid size. At the same time, we observe no clear connection between the charge on the N-tails and the genome lengths of the viruses included in our study.

  8. Stem rust spores elicit rapid RPG1 phosphorylation

    Science.gov (United States)

    Stem rust threatens cereal production worldwide. Understanding the mechanism by which durable resistance genes, such as Rpg1, function is critical. We show that the RPG1 protein is phosphorylated within 5 min by exposure to spores from avirulent but not virulent races of stem rust. Transgenic mutant...

  9. Spore Proteomics: The Past, Present and the Future

    NARCIS (Netherlands)

    Abhyankar, W.; de Koning, L.J.; Brul, S.; de Koster, C.G.

    2014-01-01

    Endospores are metabolically dormant, multi-layered cellular structures formed by Gram positive bacteria belonging to the genera Bacillus, Clostridium and related organisms. Their external layers are composed of proteins which in part play a role in resistance behaviour of spores to varied chemical

  10. A mobile genetic element profoundly increases heat resistance of bacterial spores.

    Science.gov (United States)

    Berendsen, Erwin M; Boekhorst, Jos; Kuipers, Oscar P; Wells-Bennik, Marjon H J

    2016-11-01

    Bacterial endospores are among the most resilient forms of life on earth and are intrinsically resistant to extreme environments and antimicrobial treatments. Their resilience is explained by unique cellular structures formed by a complex developmental process often initiated in response to nutrient deprivation. Although the macromolecular structures of spores from different bacterial species are similar, their resistance to environmental insults differs widely. It is not known which of the factors attributed to spore resistance confer very high-level heat resistance. Here, we provide conclusive evidence that in Bacillus subtilis, this is due to the presence of a mobile genetic element (Tn1546-like) carrying five predicted operons, one of which contains genes that encode homologs of SpoVAC, SpoVAD and SpoVAEb and four other genes encoding proteins with unknown functions. This operon, named spoVA 2mob , confers high-level heat resistance to spores. Deletion of spoVA 2mob in a B. subtilis strain carrying Tn1546 renders heat-sensitive spores while transfer of spoVA 2mob into B. subtilis 168 yields highly heat-resistant spores. On the basis of the genetic conservation of different spoVA operons among spore-forming species of Bacillaceae, we propose an evolutionary scenario for the emergence of extremely heat-resistant spores in B. subtilis, B. licheniformis and B. amyloliquefaciens. This discovery opens up avenues for improved detection and control of spore-forming bacteria able to produce highly heat-resistant spores.

  11. Adhesion of Spores of Bacillus thuringiensis on a Planar Surface

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Joy, David Charles [ORNL; Palumbo, Anthony Vito [ORNL; Tsouris, Costas [ORNL

    2010-01-01

    Adhesion of spores of Bacillus thuringiensis (Bt) and spherical silica particles on surfaces was experimentally and theoretically investigated in this study. Topography analysis via atomic force microscopy (AFM) and electron microscopy indicates that Bt spores are rod shaped, {approx}1.3 {mu}m in length and {approx}0.8 {mu}m in diameter. The adhesion force of Bt spores and silica particles on gold-coated glass was measured at various relative humidity (RH) levels by AFM. It was expected that the adhesion force would vary with RH because the individual force components contributing to the adhesion force depend on RH. The adhesion force between a particle and a planar surface in atmospheric environments was modeled as the contribution of three major force components: capillary, van der Waals, and electrostatic interaction forces. Adhesion force measurements for Bt spore (silica particle) and the gold surface system were comparable with calculations. Modeling results show that there is a critical RH value, which depends on the hydrophobicity of the materials involved, below which the water meniscus does not form and the contribution of the capillary force is zero. As RH increases, the van der Waals force decreases while the capillary force increases to a maximum value.

  12. Viable chimaeric viruses confirm the biological importance of sequence specific maize streak virus movement protein and coat protein interactions

    Directory of Open Access Journals (Sweden)

    Palmer Kenneth E

    2008-05-01

    Full Text Available Abstract Background A variety of interactions between up to three different movement proteins (MPs, the coat protein (CP and genomic DNA mediate the inter- and intra-cellular movement of geminiviruses in the genus Begomovirus. Although movement of viruses in the genus Mastrevirus is less well characterized, direct interactions between a single MP and the CP of these viruses is also clearly involved in both intra- and intercellular trafficking of virus genomic DNA. However, it is currently unknown how specific these MP-CP interactions are, nor how disruption of these interactions might impact on virus viability. Results Using chimaeric genomes of two strains of Maize streak virus (MSV we adopted a genetic approach to investigate the gross biological effects of interfering with interactions between virus MP and CP homologues derived from genetically distinct MSV isolates. MP and CP genes were reciprocally exchanged, individually and in pairs, between maize (MSV-Kom- and Setaria sp. (MSV-Set-adapted isolates sharing 78% genome-wide sequence identity. All chimaeras were infectious in Zea mays c.v. Jubilee and were characterized in terms of symptomatology and infection efficiency. Compared with their parental viruses, all the chimaeras were attenuated in symptom severity, infection efficiency, and the rate at which symptoms appeared. The exchange of individual MP and CP genes resulted in lower infection efficiency and reduced symptom severity in comparison with exchanges of matched MP-CP pairs. Conclusion Specific interactions between the mastrevirus MP and CP genes themselves and/or their expression products are important determinants of infection efficiency, rate of symptom development and symptom severity.

  13. Viable chimaeric viruses confirm the biological importance of sequence specific maize streak virus movement protein and coat protein interactions.

    Science.gov (United States)

    van der Walt, Eric; Palmer, Kenneth E; Martin, Darren P; Rybicki, Edward P

    2008-05-20

    A variety of interactions between up to three different movement proteins (MPs), the coat protein (CP) and genomic DNA mediate the inter- and intra-cellular movement of geminiviruses in the genus Begomovirus. Although movement of viruses in the genus Mastrevirus is less well characterized, direct interactions between a single MP and the CP of these viruses is also clearly involved in both intra- and intercellular trafficking of virus genomic DNA. However, it is currently unknown how specific these MP-CP interactions are, nor how disruption of these interactions might impact on virus viability. Using chimaeric genomes of two strains of Maize streak virus (MSV) we adopted a genetic approach to investigate the gross biological effects of interfering with interactions between virus MP and CP homologues derived from genetically distinct MSV isolates. MP and CP genes were reciprocally exchanged, individually and in pairs, between maize (MSV-Kom)- and Setaria sp. (MSV-Set)-adapted isolates sharing 78% genome-wide sequence identity. All chimaeras were infectious in Zea mays c.v. Jubilee and were characterized in terms of symptomatology and infection efficiency. Compared with their parental viruses, all the chimaeras were attenuated in symptom severity, infection efficiency, and the rate at which symptoms appeared. The exchange of individual MP and CP genes resulted in lower infection efficiency and reduced symptom severity in comparison with exchanges of matched MP-CP pairs. Specific interactions between the mastrevirus MP and CP genes themselves and/or their expression products are important determinants of infection efficiency, rate of symptom development and symptom severity.

  14. Coating Nanoparticles with Plant-Produced Transferrin-Hydrophobin Fusion Protein Enhances Their Uptake in Cancer Cells.

    Science.gov (United States)

    Reuter, Lauri J; Shahbazi, Mohammad-Ali; Mäkilä, Ermei M; Salonen, Jarno J; Saberianfar, Reza; Menassa, Rima; Santos, Hélder A; Joensuu, Jussi J; Ritala, Anneli

    2017-06-21

    The encapsulation of drugs to nanoparticles may offer a solution for targeted delivery. Here, we set out to engineer a self-assembling targeting ligand by combining the functional properties of human transferrin and fungal hydrophobins in a single fusion protein. We showed that human transferrin can be expressed in Nicotiana benthamiana plants as a fusion with Trichoderma reesei hydrophobins HFBI, HFBII, or HFBIV. Transferrin-HFBIV was further expressed in tobacco BY-2 suspension cells. Both partners of the fusion protein retained their functionality; the hydrophobin moiety enabled migration to a surfactant phase in an aqueous two-phase system, and the transferrin moiety was able to reversibly bind iron. Coating porous silicon nanoparticles with the fusion protein resulted in uptake of the nanoparticles in human cancer cells. This study provides a proof-of-concept for the functionalization of hydrophobin coatings with transferrin as a targeting ligand.

  15. Kinetic Effects on Self-Assembly and Function of Protein-Polymer Bioconjugates in Thin Films Prepared by Flow Coating

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Dongsook [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA; Huang, Aaron [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA; Olsen, Bradley D. [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA

    2016-11-04

    The self-assembly of nanostructured globular protein arrays in thin films is demonstrated using protein–polymer block copolymers based on a model protein mCherry and the polymer poly(oligoethylene glycol acrylate) (POEGA). Conjugates are flow coated into thin films on a poly(ethylene oxide) grafted Si surface, forming self-assembled cylindrical nanostructures with POEGA domains selectively segregating to the air–film interface. Long-range order and preferential arrangement of parallel cylinders templated by selective surfaces are demonstrated by controlling relative humidity. Long-range order increases with coating speed when the film thicknesses are kept constant, due to reduced nucleation per unit area of drying film. Fluorescence emission spectra of mCherry in films prepared at <25% relative humidity shows a small shift suggesting that proteins are more perturbed at low humidity than high humidity or the solution state.

  16. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    International Nuclear Information System (INIS)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi

    2013-01-01

    A new crystal-mounting method has been developed that involves a combination of controlled humid air and polymer glue for crystal coating. This method is particularly useful when applied to fragile protein crystals that are known to be sensitive to subtle changes in their physicochemical environment. Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection

  17. Effect of irradiation of bacteria on the formation of spores

    International Nuclear Information System (INIS)

    Szulc, M.; Tropilo, J.; Olszewski, G.

    1980-01-01

    Studies were carried out on bacteria: Bac. subtilis, Bac. cereus, Cl. perfringens, Cl. botulinum which were irradiated in two media (PBS and broth containing 1% of protein) with 100, 1000, 5000 and 10 000 X-radiation doses. The results obtained show that: all bacteria species studied (vegetative forms) are characterized by a high sensitivity to X-radiation, though distinctly lower than the species of Enterobacteriaceae family; the bacteria species studied are characterized by various sporing rate. The highest sporing rate was shown by Bac. cereus, the following: Bac. subtilis, Cl. perfringens and Cl. botulinum; increased X-radiation doses weaken sporing of Bac. subtilis and Bac. cereus. This effect could not be observed in Cl. perfringens and Cl. botulinum. (author)

  18. Biomimetic coating of organic polymers with a protein-functionalized layer of calcium phosphate: the surface properties of the carrier influence neither the coating characteristics nor the incorporation mechanism or release kinetics of the protein.

    Science.gov (United States)

    Wu, Gang; Liu, Yuelian; Iizuka, Tateyuki; Hunziker, Ernst B

    2010-12-01

    Polymers that are used in clinical practice as bone-defect-filling materials possess many essential qualities, such as moldability, mechanical strength and biodegradability, but they are neither osteoconductive nor osteoinductive. Osteoconductivity can be conferred by coating the material with a layer of calcium phosphate, which can be rendered osteoinductive by functionalizing it with an osteogenic agent. We wished to ascertain whether the morphological and physicochemical characteristics of unfunctionalized and bovine-serum-albumin (BSA)-functionalized calcium-phosphate coatings were influenced by the surface properties of polymeric carriers. The release kinetics of the protein were also investigated. Two sponge-like materials (Helistat® and Polyactive®) and two fibrous ones (Ethisorb™ and poly[lactic-co-glycolic acid]) were tested. The coating characteristics were evaluated using state-of-the-art methodologies. The release kinetics of BSA were monitored spectrophotometrically. The characteristics of the amorphous and the crystalline phases of the coatings were not influenced by either the surface chemistry or the surface geometry of the underlying polymer. The mechanism whereby BSA was incorporated into the crystalline layer and the rate of release of the truly incorporated depot were likewise unaffected by the nature of the polymeric carrier. Our biomimetic coating technique could be applied to either spongy or fibrous bone-defect-filling organic polymers, with a view to rendering them osteoconductive and osteoinductive.

  19. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Science.gov (United States)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  20. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha [Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jun Young; Jang, Siun; Kim, Seong Hwan, E-mail: piceae@naver.com [Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  1. NanoSIMS analysis of Bacillus spores for forensics

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P K; Davisson, M L; Velsko, S P

    2010-02-23

    The threat associated with the potential use of radiological, nuclear, chemical and biological materials in terrorist acts has resulted in new fields of forensic science requiring the application of state-of-the-science analytical techniques. Since the anthrax letter attacks in the United States in the fall of 2001, there has been increased interest in physical and chemical characterization of bacterial spores. While molecular methods are powerful tools for identifying genetic differences, other methods may be able to differentiate genetically identical samples based on physical and chemical properties, as well as provide complimentary information, such as methods of production and approximate date of production. Microanalysis has the potential to contribute significantly to microbial forensics. Bacillus spores are highly structured, consisting of a core, cortex, coat, and in some species, an exosporium. This structure provides a template for constraining elemental abundance differences at the nanometer scale. The primary controls on the distribution of major elements in spores are likely structural and physiological. For example, P and Ca are known to be abundant in the spore core because that is where P-rich nucleic acids and Cadipicolinic acid are located, respectively. Trace elements are known to bind to the spore coat but the controls on these elements are less well understood. Elemental distributions and abundances may be directly related to spore production, purification and stabilization methodologies, which are of particular interest for forensic investigation. To this end, we are developing a high-resolution secondary ion mass spectrometry method using a Cameca NanoSIMS 50 to study the distribution and abundance of trace elements in bacterial spores. In this presentation we will review and compare methods for preparing and analyzing samples, as well as review results on the distribution and abundance of elements in bacterial spores. We use NanoSIMS to

  2. Absorption edge imaging of sporocide-treated and non-treated bacterial spores

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.; Tortora, G.T.; Warren, J.B.

    1987-01-01

    When deprived of nutrients, spore forming bacilli produce endospores which are remarkably resistant to chemical sterilization. Little is known about the morphology and response fo these spores following exposure to sporocidal agents. Light microscopy does not provide sufficient resolution for studying the rupture of the spore coat and fate of intracellular material. Transmission and scanning electron microscopy offer superior resolution but require specimen preparation methods that induce physiologic as well as morphologic changes in the spores, thereby making accurate interpretation of micrographs difficult. To eliminate the possible artifacts induced by chemical fixation, dehydration, embeddment, staining and sectioning, treated and non-sporocide-treated endospores of B. thuringiensis and B. subtilis were imaged by x-ray contact microscopy using monochromatic x-rays. 6 refs., 2 figs

  3. Influence of calcium-induced droplet heteroaggregation on the physicochemical properties of oppositely charged lactoferrin coated lutein droplets and whey protein isolate-coated DHA droplets.

    Science.gov (United States)

    Li, Xin; Wang, Xu; Xu, Duoxia; Cao, Yanping; Wang, Shaojia; Wang, Bei; Wang, Chengtao; Sun, Baoguo

    2017-08-01

    The influence of calcium-induced droplet heteroaggregation on the formation and physicochemical stability of mixed lutein and DHA emulsions was studied. Heteroaggregation was induced by mixing oppositely charged lactoferrin (LF)-coated lutein and whey protein isolate (WPI)-coated DHA emulsions with different CaCl 2 concentrations at pH 6.0. The droplet size, zeta-potential, transmission-physical stability and microstructure behavior (CLSM and Cryo-SEM) of single-protein emulsions and mixed emulsions were measured as a function of different CaCl 2 concentrations. Lutein degradation and DHA oxidation by measurement of lipid hydroperoxides and thiobarbituric acid reactive substances were determined during storage. The physical stability of the mixed emulsions could be modulated by controlling CaCl 2 concentrations. Microstructure behavior indicated that a mixed emulsion with 30 mM CaCl 2 promoted more droplets to form a special three-dimensional network and microcluster structures. The chemical stability of the mixed lutein and DHA emulsions was obviously enhanced by the addition of 30 mM CaCl 2 . The decreased surface areas of the DHA and lutein droplets and the physical barrier of the network of heteroaggregates against transition metals and free radicals could mainly explain the improvement in chemical stability. Calcium-induced droplet aggregation may be useful for creating specific food structures that lead to desirable physicochemical properties of multiple functional components.

  4. Soybean dwarf virus-resistant transgenic soybeans with the sense coat protein gene.

    Science.gov (United States)

    Tougou, Makoto; Yamagishi, Noriko; Furutani, Noriyuki; Shizukawa, Yoshiaki; Takahata, Yoshihito; Hidaka, Soh

    2007-11-01

    We transformed a construct containing the sense coat protein (CP) gene of Soybean dwarf virus (SbDV) into soybean somatic embryos via microprojectile bombardment to acquire SbDV-resistant soybean plants. Six independent T(0) plants were obtained. One of these transgenic lines was subjected to further extensive analysis. Three different insertion patterns of Southern blot hybridization analysis in T(1) plants suggested that these insertions introduced in T(0) plants were segregated from each other or co-inherited in T(1) progenies. These insertions were classified into two types, which overexpressed SbDV-CP mRNA and accumulated SbDV-CP-specific short interfering RNA (siRNA), or repressed accumulation of SbDV-CP mRNA and siRNA by RNA analysis prior to SbDV inoculation. After inoculation of SbDV by the aphids, most T(2) plants of this transgenic line remained symptomless, contained little SbDV-specific RNA by RNA dot-blot hybridization analysis and exhibited SbDV-CP-specific siRNA. We discuss here the possible mechanisms of the achieved resistance, including the RNA silencing.

  5. Transgenic sugarcane resistant to Sorghum mosaic virus based on coat protein gene silencing by RNA interference.

    Science.gov (United States)

    Guo, Jinlong; Gao, Shiwu; Lin, Qinliang; Wang, Hengbo; Que, Youxiong; Xu, Liping

    2015-01-01

    As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused by Potyvirus sugarcane mosaic virus (SCMV) and/or Sorghum mosaic virus (SrMV), with additional differences in viral strains. RNA interference (RNAi) is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP) genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence and cp4-epsps herbicide-tolerant gene was transferred to sugarcane cultivar ROC22 via Agrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms.

  6. Transgenic Sugarcane Resistant to Sorghum mosaic virus Based on Coat Protein Gene Silencing by RNA Interference

    Directory of Open Access Journals (Sweden)

    Jinlong Guo

    2015-01-01

    Full Text Available As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused by Potyvirus sugarcane mosaic virus (SCMV and/or Sorghum mosaic virus (SrMV, with additional differences in viral strains. RNA interference (RNAi is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence and cp4-epsps herbicide-tolerant gene was transferred to sugarcane cultivar ROC22 via Agrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms.

  7. Molecular identification based on coat protein sequences of the Barley yellow dwarf virus from Brazil

    Directory of Open Access Journals (Sweden)

    Talita Bernardon Mar

    2013-12-01

    Full Text Available Yellow dwarf disease, one of the most important diseases of cereal crops worldwide, is caused by virus species belonging to the Luteoviridae family. Forty-two virus isolates obtained from oat (Avena sativa L., wheat (Triticum aestivum L., barley (Hordeum vulgare L., corn (Zea mays L., and ryegrass (Lolium multiflorum Lam. collected between 2007 and 2008 from winter cereal crop regions in southern Brazil were screened by polymerase chain reaction (PCR with primers designed on ORF 3 (coat protein - CP for the presence of Barley yellow dwarf virus and Cereal yellow dwarf virus (B/CYDV. PCR products of expected size (~357 bp for subgroup II and (~831 bp for subgroup I were obtained for three and 39 samples, respectively. These products were cloned and sequenced. The subgroup II 3' partial CP amino acid deduced sequences were identified as BYDV-RMV (92 - 93 % of identity with "Illinois" Z14123 isolate. The complete CP amino acid deduced sequences of subgroup I isolates were confirmed as BYDV-PAV (94 - 99 % of identity and established a very homogeneous group (identity higher than 99 %. These results support the prevalence of BYDV-PAV in southern Brazil as previously diagnosed by Enzyme-Linked Immunosorbent Assay (ELISA and suggest that this population is very homogeneous. To our knowledge, this is the first report of BYDV-RMV in Brazil and the first genetic diversity study on B/CYDV in South America.

  8. Watermelon transformation with Zucchini yellow mosaic virus coat protein gene and comparison with parental cultivar

    Directory of Open Access Journals (Sweden)

    Sebahattin Çürük

    2012-01-01

    Full Text Available The objective of this work was to transfer Zucchini yellow mosaic virus coat protein (ZYMV-CP and neomycin phosphotransferase II (NPT II genes to the watermelon 'Crimson Sweet'(CS genome, and to compare the transgenic progenies T1 and T2 with the nontransformed parental cultivar for morphological, pomological, growth and yield characteristics. The ZYMV-CP gene was transferred by Agrobacterium tumefaciens. The presence of the gene in transgenic T0, T1 and T2 plants was determined by polymerase chain reaction, and the results were confirmed by Southern blot. Two experiments were performed, one in the winter-spring and the other in the summer-autumn. In both experiments, the hypocotyl length of transgenic seedlings was significantly higher than that of nontransgenic parental ones. In the second experiment, the differences between transgenic and nontransgenic individuals were significant concerning fruit rind thickness, flesh firmness, fruit peduncle length, size of pistil scar, and a* values for fruit stripe or flesh color. Transferring ZYMV-CP gene to CS genome affected only a few characteristics from the 80 evaluated ones. The changes in rind thickness, flesh firmness and flesh color a* values are favorable, while the increase in the size of pistil scar is undesirable. The transgenic watermelon line having ZYMV-CP gene and the parental cultivar CS are very similar.

  9. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin.

    Science.gov (United States)

    Nayak, Sunita; Dey, Tuli; Naskar, Deboki; Kundu, Subhas C

    2013-04-01

    A promising strategy to influence the osseointegration process around orthopaedic titanium implants is the immobilization of bioactive molecules. This recruits appropriate interaction between the surface and the tissue by directing cells adhesion, proliferation, differentiation and active matrix remodelling. In this study, we aimed to investigate the functionalization of metallic implant titanium with silk protein sericin. Titanium surface was immobilized with non-mulberry Antheraea mylitta sericin using glutaraldehyde as crosslinker. To analyse combinatorial effects the sericin immobilized titanium was further conjugated with integrin binding peptide sequence Arg-Gly-Asp (RGD) using ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling agents. The surface of sericin immobilized titanium was characterized biophysically. Osteoblast-like cells were cultured on sericin and sericin/RGD functionalized titanium and found to be more viable than those on pristine titanium. The enhanced adhesion, proliferation, and differentiation of osteoblast cells were observed. RT-PCR analysis showed that mRNA expressions of bone sialoprotein, osteocalcin and alkaline phosphatase were upregulated in osteoblast cells cultured on sericin and sericin/RGD immobilized titanium substrates. Additionally, no significant amount of pro-inflammatory cytokines TNF-α, IL-1β and nitric oxide production were recorded when macrophages cells and osteoblast-macrophages co culture cells were grown on sericin immobilized titanium. The findings demonstrate that the sericin immobilized titanium surfaces are potentially useful bioactive coated materials for titanium-based medical implants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Modification of Turnip yellow mosaic virus coat protein and its effect on virion assembly

    Directory of Open Access Journals (Sweden)

    Hyun-Il Shin

    2013-10-01

    Full Text Available Turnip yellow mosaic virus (TYMV is a positive strand RNAvirus. We have modified TYMV coat protein (CP by inserting ac-Myc epitope peptide at the N- or C-terminus of the CP, andhave examined its effect on assembly. We introduced therecombinant CP constructs into Nicotiana benthamiana leavesby agroinfiltration. Examination of the leaf extracts by agarosegel electrophoresis and Western blot analysis showed that theCP modified at the N-terminus produced a band co-migratingwith wild-type virions. With C-terminal modification, however,the detected bands moved faster than the wild-type virions. Tofurther examine the effect, TYMV constructs producing themodified CPs were prepared. With N-terminal modification,viral RNAs were protected from RNase A. In contrast, the viralRNAs were not protected with C-terminal modification.Overall, the results suggest that virion assembly and RNApackaging occur properly when the N-terminus of CP ismodified, but not when the C-terminus is modified. [BMBReports 2013; 46(10: 495-500

  11. Prevalence of Tobacco mosaic virus in Iran and Evolutionary Analyses of the Coat Protein Gene

    Directory of Open Access Journals (Sweden)

    Athar Alishiri

    2013-09-01

    Full Text Available The incidence and distribution of Tobacco mosaic virus (TMV and related tobamoviruses was determined using an enzyme-linked immunosorbent assay on 1,926 symptomatic horticultural crops and 107 asymptomatic weed samples collected from 78 highly infected fields in the major horticultural crop-producing areas in 17 provinces throughout Iran. The results were confirmed by host range studies and reverse transcription-polymerase chain reaction. The overall incidence of infection by these viruses in symptomatic plants was 11.3%. The coat protein (CP gene sequences of a number of isolates were determined and disclosed to be a high identity (up to 100% among the Iranian isolates. Phylogenetic analysis of all known TMV CP genes showed three clades on the basis of nucleotide sequences with all Iranian isolates distinctly clustered in clade II. Analysis using the complete CP amino acid sequence showed one clade with two subgroups, IA and IB, with Iranian isolates in both subgroups. The nucleotide diversity within each sub-group was very low, but higher between the two clades. No correlation was found between genetic distance and geographical origin or host species of isolation. Statistical analyses suggested a negative selection and demonstrated the occurrence of gene flow from the isolates in other clades to the Iranian population.

  12. Analysis of the epitope structure of Plum pox virus coat protein.

    Science.gov (United States)

    Candresse, Thierry; Saenz, Pilar; García, Juan Antonio; Boscia, Donato; Navratil, Milan; Gorris, Maria Teresa; Cambra, Mariano

    2011-05-01

    Typing of the particular Plum pox virus (PPV) strain responsible in an outbreak has important practical implications and is frequently performed using strain-specific monoclonal antibodies (MAbs). Analysis in Western blots of the reactivity of 24 MAbs to a 112-amino-acid N-terminal fragment of the PPV coat protein (CP) expressed in Escherichia coli showed that 21 of the 24 MAbs recognized linear or denaturation-insensitive epitopes. A series of eight C-truncated CP fragments allowed the mapping of the epitopes recognized by the MAbs. In all, 14 of them reacted to the N-terminal hypervariable region, defining a minimum of six epitopes, while 7 reacted to the beginning of the core region, defining a minimum of three epitopes. Sequence comparisons allowed the more precise positioning of regions recognized by several MAbs, including those recognized by the 5B-IVIA universal MAb (amino acids 94 to 100) and by the 4DG5 and 4DG11 D serogroup-specific MAbs (amino acids 43 to 64). A similar approach coupled with infectious cDNA clone mutagenesis showed that a V74T mutation in the N-terminus of the CP abolished the binding of the M serogroup-specific AL MAb. Taken together, these results provide a detailed positioning of the epitopes recognized by the most widely used PPV detection and typing MAbs.

  13. Mussel adhesive protein coating: A potential therapeutic method for self-healing of cracked teeth

    Directory of Open Access Journals (Sweden)

    Li Bo-Lin

    2015-01-01

    Full Text Available Introduction: Nowadays, cracked tooth syndrome is the third main cause of tooth extraction, following caries and periodontal diseases, done in almost all the dental clinics. Nevertheless, the diagnosis and treatment of this condition remain controversial. All candidate therapeutics, such as occlusal adjustment, preventive filling, root canal therapy (RCT, and crown restoration, provide unpredictable outcomes. As such, methods to prevent further crack development and to induce crack self-healing must be developed. The Hypothesis: Mussels secreting adhesive foot protein (Mafp can attach to various surfaces under aqueous conditions. In nature, mussels adhere to stones and deposit layer by layer through mineralization, thereby forming mussel-stone composites with excellent mechanical property. Given the natural process of mussel-stone complex formation, we hypothesize that application of Mafp coating at the crack interface may mineralize the cracks by capturing calcium and phosphate ions from the saliva. This process consequently leads to crack self-healing and complete restoration of the tooth structure. Evaluation of the Hypothesis: To test our hypothesis, we need to develop a model in vivo. Cracked teeth disks are adhered together using Mafp solution. Then, the tooth disks are sutured on the interior side of the cheeks. After regular intervals, the disks are removed and characterized. Scanning electron microscopy is performed to evaluate the morphology of the crack interface. Microhardness and shear bond strength are used to evaluate the mechanical property of the healing cracked zone. Transmission electron microscopy is also conducted to evaluate the crystallinity of the crack interface.

  14. Cocksfoot mottle virus coat protein is dispensable for the systemic infection.

    Science.gov (United States)

    Olspert, Allan; Kamsol, Kristjan; Sarmiento, Cecilia; Gerassimenko, Jelena; Truve, Erkki

    2014-02-04

    The Sobemovirus genome consists of polycistronic single-stranded positive-sense RNA. The first ORF encodes P1, a suppressor of RNA silencing required for virus movement. The coat protein (CP) is expressed from the 3' proximal ORF3 via subgenomic RNA. In addition to its structural role, the CP of some sobemoviruses has been reported to be required for systemic movement and to interact with P1. The aim of this study was to analyse the role of Cocksfoot mottle virus (CfMV) CP in the suppression of RNA silencing and virus movement. Agrobacterium-mediated transient expression method was used for testing CfMV CP capacity to suppress RNA silencing. CP substitution and deletion mutants were generated to examine the role of this protein in CfMV infection, using three host plants (oat, barley and wheat). The viral movement was characterised with CfMV expressing EGFP fused to the C-terminus of CP. In the current study we show that CfMV CP is an additional RNA silencing suppressor. Interestingly, we observed that all CP mutant viruses were able to infect the three tested host plants systemically, although usually with reduced accumulation. CfMV expressing EGFP was detected in epidermal and mesophyll cells of inoculated leaves. Although EGFP fluorescence was not detected in upper leaves, some plants displayed CfMV symptoms. Analysis of the upper leaves revealed that the viruses had lost the EGFP sequence and sometimes also most of the CP gene. The present study demonstrates that CfMV CP suppresses RNA silencing but, surprisingly, is dispensable for systemic movement. Thus, CfMV does not move as virion in the tested host plants. The composition of the movement RNP complex remains to be elucidated.

  15. Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future.

    Science.gov (United States)

    Wang, He; Wang, Yunxiang; Yang, Ruijin

    2017-02-01

    With the increased knowledge on spore structure and advances in biotechnology engineering, the newly developed spore-surface display system confers several inherent advantages over other microbial cell-surface display systems including enhanced stability and high safety. Bacillus subtilis is the most commonly used Bacillus species for spore-surface display. The expression of heterologous antigen or protein on the surface of B. subtilis spores has now been practiced for over a decade with noteworthy success. As an update and supplement to other previous reviews, we comprehensively summarize recent studies in the B. subtilis spore-surface display technique. We focus on its benefits as well as the critical factors affecting its display efficiency and offer suggestions for the future success of this field.

  16. Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA.

    Science.gov (United States)

    Arad, Gali; Hendel, Ayal; Urbanke, Claus; Curth, Ute; Livneh, Zvi

    2008-03-28

    Translesion DNA synthesis (TLS) by DNA polymerase V (polV) in Escherichia coli involves accessory proteins, including RecA and single-stranded DNA-binding protein (SSB). To elucidate the role of SSB in TLS we used an in vitro exonuclease protection assay and found that SSB increases the accessibility of 3' primer termini located at abasic sites in RecA-coated gapped DNA. The mutant SSB-113 protein, which is defective in protein-protein interactions, but not in DNA binding, was as effective as wild-type SSB in increasing primer termini accessibility, but deficient in supporting polV-catalyzed TLS. Consistently, the heterologous SSB proteins gp32, encoded by phage T4, and ICP8, encoded by herpes simplex virus 1, could replace E. coli SSB in the TLS reaction, albeit with lower efficiency. Immunoprecipitation experiments indicated that polV directly interacts with SSB and that this interaction is disrupted by the SSB-113 mutation. Taken together our results suggest that SSB functions to recruit polV to primer termini on RecA-coated DNA, operating by two mechanisms: 1) increasing the accessibility of 3' primer termini caused by binding of SSB to DNA and 2) a direct SSB-polV interaction mediated by the C terminus of SSB.

  17. Development of virus resistant transgenic papayas expressing the coat protein gene from a Brazilian isolate of Papaya ringspot virus

    OpenAIRE

    Souza Júnior, Manoel T.; Nickel, Osmar; Gonsalves, Dennis

    2005-01-01

    Translatable and nontranslatable versions of the coat protein (cp) gene of a Papaya ringspot virus (PRSV) isolate collected in the state of Bahia, Brazil, were engineered for expression in Sunrise and Sunset Solo varieties of papaya (Carica papaya). The biolistic system was used to transform secondary somatic embryo cultures derived from immature zygotic embryos. Fifty-four transgenic lines, 26 translatable and 28 nontranslatable gene versions, were regenerated, with a transformation efficien...

  18. Updates on Clostridium difficile spore biology.

    Science.gov (United States)

    Gil, Fernando; Lagos-Moraga, Sebastián; Calderón-Romero, Paulina; Pizarro-Guajardo, Marjorie; Paredes-Sabja, Daniel

    2017-06-01

    Clostridium difficile is a Gram-positive, anaerobic spore former, and an important nosocomial pathogenic bacterium. C. difficile spores are the morphotype of transmission and recurrence of the disease. The formation of C. difficile spores and their subsequent germination are essential processes during the infection. Recent in vitro and in vivo work has shed light on how spores are formed and the timing of in vivo sporulation in a mouse model. Advances have also been made in our understanding of the machineries involved in spore germination, and how antibiotic-induced dysbiosis affects the metabolism of bile salts and thus impacts C. difficile germination in vivo. Studies have also attempted to identify how C. difficile spores interact with the host's intestinal mucosa. Spore resistance has also been revisited by several groups highlighting the extreme resistance of this morphotype to traditional food processing regimes and disinfectants used in clinical settings. Therefore, the aim of this review is to summarize recent advances on spore formation/germination in vitro and in vivo, spore-host interactions, and spore resistance that contribute to our knowledge of the role of C. difficile spores in the infectious process. Copyright © 2017. Published by Elsevier Ltd.

  19. Photometric immersion refractometry of bacterial spores.

    Science.gov (United States)

    Gerhardt, P; Beaman, T C; Corner, T R; Greenamyre, J T; Tisa, L S

    1982-01-01

    Photometric immersion refractometry was used to determine the average apparent refractive index (n) of five types of dormant Bacillus spores representing a 600-fold range in moist-heat resistance determined as a D100 value. The n of a spore type increased as the molecular size of various immersion solutes decreased. For comparison of the spore types, the n of the entire spore and of the isolated integument was determined by use of bovine serum albumin, which is excluded from permeating into them. The n of the sporoplast (the structures bounded by the outer pericortex membrane) was determined by use of glucose, which was shown to permeate into the spore only as deeply as the pericortex membrane. Among the various spore types, an exponential increase in the heat resistance correlated with the n of the entire spore and of the sporoplast, but not of the isolated perisporoplast integument. Correlation of the n with the solids content of the entire spore provided a method of experimentally obtaining the refractive index increment (dn/dc), which was constant for the various spore types and enables the calculation of solids and water content from an n. Altogether, the results showed that the total water content is distributed unequally within the dormant spore, with less water in the sporoplast than in the perisporoplast integument, and that the sporoplast becomes more refractile and therefore more dehydrated as the heat resistance becomes greater among the various spore types. PMID:6802796

  20. A single amino acid substitution in the coat protein of cucumber mosaic virus induces chlorosis in tobacco.

    Science.gov (United States)

    Shintaku, M H; Zhang, L; Palukaitis, P

    1992-01-01

    Some strains of cucumber mosaic virus (CMV) induce a bright yellow/white chlorosis in tobacco instead of the light green/dark green mosaic induced by most CMV strains. This property is controlled by RNA 3 of this tripartite virus. Recombination between cDNA clones of RNA 3 from a green mosaic strain, Fny-CMV, and a chlorotic strain, M-CMV, and inoculation of infectious transcripts of the chimeric RNAs 3, together with RNAs 1 and 2 of Fny-CMV, localized the chlorosis induction domain to a region of the coat protein gene containing two nucleotide differences. Site-directed mutagenesis of one nucleotide to change the codon for Leu129 in the M-CMV coat protein to Pro129 of Fny-CMV changed the phenotype from chlorotic to green mosaic, whereas the opposite change in phenotype was observed when the Pro129 in the Fny-CMV coat protein was altered to Ser129. Thus, the local secondary structure surrounding amino acid 129 rather than a particular amino acid per se is involved in chlorosis induction. PMID:1392593

  1. Ultrastructural insights into tomato infections caused by three different pathotypes of Pepino mosaic virus and immunolocalization of viral coat proteins.

    Science.gov (United States)

    Minicka, Julia; Otulak, Katarzyna; Garbaczewska, Grażyna; Pospieszny, Henryk; Hasiów-Jaroszewska, Beata

    2015-12-01

    This paper presents studies on an ultrastructural analysis of plant tissue infected with different pathotypes of Pepino mosaic virus (PepMV) and the immunolocalization of viral coat proteins. Because the PepMV virus replicates with a high mutation rate and exhibits significant genetic diversity, therefore, isolates of PepMV display a wide range of symptoms on infected plants. In this work, tomato plants of the Beta Lux cultivar were inoculated mechanically with three pathotypes representing the Chilean 2 (CH2) genotype: mild (PepMV-P22), necrotic (PepMV-P19) and yellowing (PepMV-P5-IY). The presence of viral particles in all infected plants in the different compartments of various cell types (i.e. spongy and palisade mesophyll, sieve elements and xylem vessels) was revealed via ultrastructural analyses. For the first time, it was possible to demonstrate the presence of crystalline inclusions, composed of virus-like particles. In the later stage of PepMV infection (14 dpi) various pathotype-dependent changes in the structure of the individual organelles (i.e. mitochondria, chloroplasts) were found. The strongest immunogold labeling of the viral coat proteins was also observed in plants infected by necrotic isolates. A large number of viral coat proteins were marked in the plant conductive elements, both xylem and phloem. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Dual function of novel pollen coat (surface proteins: IgE-binding capacity and proteolytic activity disrupting the airway epithelial barrier.

    Directory of Open Access Journals (Sweden)

    Mohamed Elfatih H Bashir

    Full Text Available BACKGROUND: The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., "de-fatted", and, as a result, their involvement in allergy has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass pollen (BGP by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP and endoxylanase (EXY. The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity. CONCLUSIONS/SIGNIFICANCE: Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic

  3. PRODUCTION OF POLYCLONAL ANTIBODY TO THE COAT PROTEIN OF CITRUS TRISTEZA VIRUS IN CHICKEN EGGS

    Directory of Open Access Journals (Sweden)

    Nurhadi Nurhadi

    2016-10-01

    Full Text Available Citrus tristeza virus (CTV is one of the most destructive diseases in many citrus growing areas of Indonesia. Effective strategies for controlling CTV depend on diagnostic procedure namely enzyme-linked immunosorbent assay (ELISA. Study aimed to purify the CTV antigen and produced its polyclonal antibody. Virion of the severe CTV isolate designated UPM/ T-002 was concentrated by polyethylene glycol (PEG precipitation combined with low speed centrifugation. Semipurified antigen was further purified by sodium dodecyl sulphatepolyacrylamide gel electrophoresis (SDS-PAGE. The specific coat protein (CP band of CTV with molecular weight of 25 kD was excised and eluted using elution buffer containing 0.25 M Tris-HCl pH 6.8 + 0.1% SDS, then used as antigen for injection into 6-month-old female of White Leghorn chicken. Results, showed than the specific polyclonal antibody raised against the 25-kDa CP had a titer of approximately 104, gave low background reaction with healthy plant sap and reacted specifically with CTV isolates. The reaction was equally strong for a severe, a moderate, a mild, and a symptomless isolate, suggesting a broad reaction range of this antibody toward different CTV isolates. Optimal virus titer can be obtained since virus loss during purification could be minimized and the highly purified antigen as an immunogen could be obtained by cutting out the CP band from SDS-PAGE gels. Large amount of highly titer of CTV antibody can be produced in chicken egg. The simplicity of the procedure makes it economically acceptable and technically adoptable because the antibody can be produced in basic laboratory.

  4. Occurrence and Evolutionary Analysis of Coat Protein Gene Sequences of Iranian Isolates of Sugarcane mosaic virus

    Directory of Open Access Journals (Sweden)

    Zohreh Moradi

    2017-06-01

    Full Text Available Sugarcane mosaic virus (SCMV is one of the most damaging viruses infecting sugarcane, maize and some other graminaceous species around the world. To investigate the genetic diversity of SCMV in Iran, the coat protein (CP gene sequences of 23 SCMV isolates from different hosts were determined. The nucleotide sequence identity among Iranian isolates was more than 96%. They shared nucleotide identities of 75.5–99.9% with those of other SCMV isolates available in GenBank, the highest with the Egyptian isolate EGY7-1 (97.5–99.9%. The results of phylogenetic analysis suggested five divergent evolutionary lineages that did not completely reflect the geographical origin or host plant of the isolates. Population genetic analysis revealed greater between-group than within-group evolutionary divergence values, further supporting the results of the phylogenetic analysis. Our results indicated that natural selection might have contributed to the evolution of isolates belonging to the five identified SCMV groups, with infrequent genetic exchanges occurring between them. Phylogenetic analyses and the estimation of genetic distance indicated that Iranian isolates have low genetic diversity. No recombination was found in the CP cistron of Iranian isolates and the CP gene was under negative selection. These findings provide a comprehensive analysis of the population structure and driving forces for the evolution of SCMV with implications for global exchange of sugarcane germplasm. Gene flow, selection and somehow homologous recombination were found to be the important evolutionary factors shaping the genetic structure of SCMV populations.

  5. Improvement of interfacial interactions using natural polyphenol-inspired tannic acid-coated nanoclay enhancement of soy protein isolate biofilms

    Science.gov (United States)

    Wang, Zhong; Kang, Haijiao; Zhang, Wei; Zhang, Shifeng; Li, Jianzhang

    2017-04-01

    In this study, a novel and economic surface modification technique for montmorillonite (MMT) nanosheets, a biocompatible coupling cross-linking agent, was developed on an attempt at improving the interfacial adhesion with soy protein isolate (SPI) matrix. Inspired by natural polyphenol, the "green dip-coating" method using tannic acid (TA) to surface-modify MMT (TA@MMT). SPI nanocomposite films modified with MMT or TA@MMT, as well as the control ones, were prepared via the casting method. The TA layer was successfully coated on the MMT surface through the (FeIII) ions coordination chemistry and the synthetic samples were characterized by the Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The compatibility and interfacial interactions between modified MMT and SPI matrix were greatly enhanced by the TA-FeIII coating on the MMT surface. The mechanical properties, water resistance, and thermal stability of the resultant biofilm were increased accordingly. Compared with that of the unmodified SPI film, the tensile strength of the nanocomposite films modified by the green dip-coating was increased by 113.3%. These SPI-based nanocomposite films showed the favorable potential in terms of food packing applications due to their efficient barriers to water vapor and UV and/or visible light.

  6. Ultraviolet-Resistant Bacterial Spores

    Science.gov (United States)

    Venkateswaran, Kasthuri; Newcombe, David; LaDuc, Myron T.; Osman, Shariff R.

    2007-01-01

    A document summarizes a study in which it was found that spores of the SAFR-032 strain of Bacillus pumilus can survive doses of ultraviolet (UV) radiation, radiation, and hydrogen peroxide in proportions much greater than those of other bacteria. The study was part of a continuing effort to understand the survivability of bacteria under harsh conditions and develop means of sterilizing spacecraft to prevent biocontamination of Mars that could interfere with the search for life there.

  7. Spore liberation in mosses revisited.

    Science.gov (United States)

    Gallenmüller, Friederike; Langer, Max; Poppinga, Simon; Kassemeyer, Hanns-Heinz; Speck, Thomas

    2018-02-01

    The ability to perform hygroscopic movements has evolved in many plant lineages and relates to a multitude of different functions such as seed burial, flower protection or regulation of diaspore release. In most mosses, spore release is controlled by hygroscopic movements of the peristome teeth and also of the spore capsule. Our study presents, for the first time, temporally and spatially well-resolved kinematic analyses of these complex shape changes in response to humidity conditions and provides insights into the sophisticated functional morphology and anatomy of the peristome teeth. In Brachythecium populeum the outer teeth of the peristome perform particularly complex hygroscopic movements during hydration and desiccation. Hydration induces fast inward dipping followed by partial re-straightening of the teeth. In their final shape, wet teeth close the capsule. During desiccation, the teeth perform an outward flicking followed by a re-straightening which opens the capsule. We present a kinematic analysis of these shape changes and of the underlying functional anatomy of the teeth. These teeth are shown to be composed of two layers which show longitudinal gradients in their material composition, structure and geometry. We hypothesize that these gradients result in (i) differences in swelling/shrinking capacity and velocity between the two layers composing the teeth, and in (ii) a gradient of velocity of swelling and shrinking from the tip to the base of the teeth. We propose these processes explain the observed movements regulating capsule opening or closing. This hypothesis is corroborated by experiments with isolated layers of peristome teeth. During hydration and desiccation, changes to the shape and mass of the whole spore capsule accompany the opening and closing. Results are discussed in relation to their significance for humidity-based regulation of spore release.

  8. Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2012-01-01

    Full Text Available In case of food packaging applications, high oxygen and water vapour barriers are the prerequisite conditions for preserving the quality of the products throughout their whole lifecycle. Currently available polymers and/or biopolymer films are mostly used in combination with barrier materials derived from oil based plastics or aluminium to enhance their low barrier properties. In order to replace these non-renewable materials, current research efforts are focused on the development of sustainable coatings, while maintaining the functional properties of the resulting packaging materials. This article provides an introduction to food packaging requirements, highlights prior art on the use of whey-based coatings for their barriers properties, and describes the key properties of an innovative packaging multilayer material that includes a whey-based layer. The developed whey protein formulations had excellent barrier properties almost comparable to the ethylene vinyl alcohol copolymers (EVOH barrier layer conventionally used in food packaging composites, with an oxygen barrier (OTR of <2 [cm³(STP/(m²d bar] when normalized to a thickness of 100 μm. Further requirements of the barrier layer are good adhesion to the substrate and sufficient flexibility to withstand mechanical load while preventing delamination and/or brittle fracture. Whey-protein-based coatings have successfully met these functional and mechanical requirements.

  9. The 42-kDa coat protein of Andean potato mottle virus acts as a transcriptional activator in yeast

    Directory of Open Access Journals (Sweden)

    Vidal M.S.

    2002-01-01

    Full Text Available Interactions of viral proteins play an important role in the virus life cycle, especially in capsid assembly. Andean potato mottle comovirus (APMoV is a plant RNA virus with a virion formed by two coat proteins (CP42 and CP22. Both APMoV coat protein open reading frames were cloned into pGBT9 and pGAD10, two-hybrid system vectors. HF7c yeast cells transformed with the p9CP42 construct grew on yeast dropout selection media lacking tryptophan and histidine. Clones also exhibited ß-galactosidase activity in both qualitative and quantitative assays. These results suggest that CP42 protein contains an amino acid motif able to activate transcription of His3 and lacZ reporter genes in Saccharomyces cerevisiae. Several deletions of the CP42 gene were cloned into the pGBT9 vector to locate the region involved in this activation. CP42 constructions lacking 12 residues from the C-terminal region and another one with 267 residues deleted from the N-terminus are still able to activate transcription of reporter genes. However, transcription activation was not observed with construction p9CP42deltaC57, which does not contain the last 57 amino acid residues. These results demonstrate that a transcription activation domain is present at the C-terminus of CP42 between residues 267 and 374.

  10. All-atom normal-mode analysis reveals an RNA-induced allostery in a bacteriophage coat protein.

    Science.gov (United States)

    Dykeman, Eric C; Twarock, Reidun

    2010-03-01

    Assembly of the T=3 bacteriophage MS2 is initiated by the binding of a 19 nucleotide RNA stem loop from within the phage genome to a symmetric coat protein dimer. This binding event effects a folding of the FG loop in one of the protein subunits of the dimer and results in the formation of an asymmetric dimer. Since both the symmetric and asymmetric forms of the dimer are needed for the assembly of the protein container, this allosteric switch plays an important role in the life cycle of the phage. We provide here details of an all-atom normal-mode analysis of this allosteric effect. The results suggest that asymmetric contacts between the A -duplex RNA phosphodiester backbone of the stem loop with the EF loop in one coat protein subunit results in an increased dynamic behavior of its FG loop. The four lowest-frequency modes, which encompass motions predominantly on the FG loops, account for over 90% of the increased dynamic behavior due to a localization of the vibrational pattern on a single FG loop. Finally, we show that an analysis of the allosteric effect using an elastic network model fails to predict this localization effect, highlighting the importance of using an all-atom full force field method for this problem.

  11. Arbuscular mycorrhizal fungi spore propagation using single spore as starter inoculum and a plant host.

    Science.gov (United States)

    Gopal, Selvakumar; Shagol, Charlotte C; Kang, Yeongyeong; Chung, Bong Nam; Han, Seung Gab; Tong-Min, Sa

    2018-02-02

    The propagation of pure cultures of AMF is an essential requirement for their large scale agricultural application and commercialization as biofertilizers. The present study aimed to propagate AMF using the single spore inoculation technique and compare their propagation ability with the known reference spores. Arbuscular mycorrhizal fungal spores were collected from the salt-affected Saemangeum reclaimed soil in South Korea. The technique involved inoculation of Sorghum-Sudan grass (Sorghum bicolor L.) seedlings with single, healthy spores on filter paper followed by the transfer of successfully colonized seedlings to 1 kg capacity pots containing sterilized soil. After the first plant cycle, the contents were transferred to 2.5 kg capacity pots containing sterilized soil. Among the 150 inoculants, only 27 seedlings were colonized by AMF spores. After 240 days, five inoculants among the 27 seedlings resulted in the production of over 500 spores. The 18S rDNA sequencing of spores revealed that the spores produced through single spore inoculation method belonged to Gigaspora margarita, Claroideoglomus lamellosum, and Funneliformis mosseae. Furthermore, indigenous spore Funneliformis mosseae M-1 reported a higher spore count than the reference spores. The AMF spores produced using single spore inoculation technique may serve as potential bio-inoculants with an advantage of being more readily adopted by farmers due to the lack of requirement of a skilled technique in spore propagation. The results of the current study describes the feasible and cost effective method to mass produce AMF spores for large scale application. The AMF spores obtained from this method can effectively colonize plant roots and may be easily introduced to the new environment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Transfer of Fas (CD95 protein from the cell surface to the surface of polystyrene beads coated with anti-Fas antibody clone CH-11

    Directory of Open Access Journals (Sweden)

    H. Sawai

    2010-02-01

    Full Text Available Mouse monoclonal anti-Fas (CD95 antibody clone CH-11 has been widely used in research on apoptosis. CH-11 has the ability to bind to Fas protein on cell surface and induce apoptosis. Here, we used polystyrene beads coated with CH-11 to investigate the role of lipid rafts in Fas-mediated apoptosis in SKW6.4 cells. Unexpectedly, by treatment of the cells with CH-11-coated beads Fas protein was detached from cell surface and transferred to the surface of CH-11-coated beads. Western blot analysis showed that Fas protein containing both extracellular and intracellular domains was attached to the beads. Fas protein was not transferred from the cells to the surface of the beads coated with other anti-Fas antibodies or Fas ligand. Similar phenomenon was observed in Jurkat T cells. Furthermore, CH-11-induced apoptosis was suppressed by pretreatment with CH-11-coated beads in Jurkat cells. These results suggest that CH-11 might possess distinct properties on Fas protein compared with other anti-Fas antibodies or Fas ligand, and also suggest that caution should be needed to use polystyrene beads coated with antibodies such as CH-11.

  13. Microchamber Western blotting using poly-L-lysine conjugated polyacrylamide gel for blotting of sodium dodecyl sulfate coated proteins.

    Science.gov (United States)

    Chung, Minsub; Kim, Dohyun; Herr, Amy E

    2013-08-20

    We report a novel strategy to immobilize sodium dodecyl sulfate (SDS)-coated proteins for fully integrated microfluidic Western blotting. Polyacrylamide gel copolymerized with a cationic polymer, poly-L-lysine, effectively immobilizes all sized proteins after sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and enables SDS-PAGE and subsequent immuno-probing in an automated microfluidic chip. Design of a poly-l-lysine conjugated polyacrylamide gel allows optimization of SDS-protein immobilization strength in the blotting gel region of the microchamber. The dependence of protein capture behavior on both the concentration of copolymerized charges and poly-lysine length is studied and gives important insight into an electrostatic immobilization mechanism. Based on analysis of protein conformation, the immobilized proteins bind with partner antibody after SDS dilution. We demonstrate each step of the microchamber Western blot, including injection, separation, transfer, immobilization, blocking, and immunoblot. The approach advances microfluidic protein immunoblotting, which is directly relevant to the widely-used SDS-PAGE based slab-gel Western blot, while saving sample volume, labor, and assay time.

  14. Functionalized milk-protein-coated magnetic nanoparticles for MRI-monitored targeted therapy of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Huang J

    2016-07-01

    Full Text Available Jing Huang,1,2 Weiping Qian,3 Liya Wang,1,2 Hui Wu,1 Hongyu Zhou,3 Andrew Yongqiang Wang,4 Hongbo Chen,5 Lily Yang,3 Hui Mao1,2 1Department of Radiology and Imaging Sciences, 2Center for Systems Imaging, 3Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA; 4Ocean Nanotech LLC, Springdale, AR, USA; 5School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People’s Republic of China Abstract: Engineered nanocarriers have emerged as a promising platform for cancer therapy. However, the therapeutic efficacy is limited by low drug loading efficiency, poor passive targeting to tumors, and severe systemic side effects. Herein, we report a new class of nanoconstructs based on milk protein (casein-coated magnetic iron oxide (CNIO nanoparticles for targeted and image-guided pancreatic cancer treatment. The tumor-targeting amino-terminal fragment (ATF of urokinase plasminogen activator and the antitumor drug cisplatin (CDDP were engineered on this nanoplatform. High drug loading (~25 wt% and sustained release at physiological conditions were achieved through the exchange and encapsulation strategy. These ATF-CNIO-CDDP nanoparticles demonstrated actively targeted delivery of CDDP to orthotopic pancreatic tumors in mice. The effective accumulation and distribution of ATF-CNIO-CDDP was evidenced by magnetic resonance imaging, based on the T2-weighted contrast resulting from the specific accumulation of ATF-CNIO-CDDP in the tumor. Actively targeted delivery of ATF-CNIO-CDDP led to improved therapeutic efficacy in comparison with free CDDP and nontargeted CNIO-CDDP treatment. Meanwhile, less systemic side effects were observed in the nanocarrier-treated groups than that in the group treated with free CDDP. Hematoxylin and Eosin and Sirius Red staining of tumor sections revealed the possible disruption of stroma during the treatment with ATF-CNIO-CDDP. Overall, our results suggest that

  15. Zucchini yellow mosaic virus: biological properties, detection procedures and comparison of coat protein gene sequences.

    Science.gov (United States)

    Coutts, B A; Kehoe, M A; Webster, C G; Wylie, S J; Jones, R A C

    2011-12-01

    Between 2006 and 2010, 5324 samples from at least 34 weed, two cultivated legume and 11 native species were collected from three cucurbit-growing areas in tropical or subtropical Western Australia. Two new alternative hosts of zucchini yellow mosaic virus (ZYMV) were identified, the Australian native cucurbit Cucumis maderaspatanus, and the naturalised legume species Rhyncosia minima. Low-level (0.7%) seed transmission of ZYMV was found in seedlings grown from seed collected from zucchini (Cucurbita pepo) fruit infected with isolate Cvn-1. Seed transmission was absent in >9500 pumpkin (C. maxima and C. moschata) seedlings from fruit infected with isolate Knx-1. Leaf samples from symptomatic cucurbit plants collected from fields in five cucurbit-growing areas in four Australian states were tested for the presence of ZYMV. When 42 complete coat protein (CP) nucleotide (nt) sequences from the new ZYMV isolates obtained were compared to those of 101 complete CP nt sequences from five other continents, phylogenetic analysis of the 143 ZYMV sequences revealed three distinct groups (A, B and C), with four subgroups in A (I-IV) and two in B (I-II). The new Australian sequences grouped according to collection location, fitting within A-I, A-II and B-II. The 16 new sequences from one isolated location in tropical northern Western Australia all grouped into subgroup B-II, which contained no other isolates. In contrast, the three sequences from the Northern Territory fitted into A-II with 94.6-99.0% nt identities with isolates from the United States, Iran, China and Japan. The 23 new sequences from the central west coast and two east coast locations all fitted into A-I, with 95.9-98.9% nt identities to sequences from Europe and Japan. These findings suggest that (i) there have been at least three separate ZYMV introductions into Australia and (ii) there are few changes to local isolate CP sequences following their establishment in remote growing areas. Isolates from A-I and B

  16. Enhancing physicochemical properties of emulsions by heteroaggregation of oppositely charged lactoferrin coated lutein droplets and whey protein isolate coated DHA droplets.

    Science.gov (United States)

    Li, Xin; Wang, Xu; Xu, Duoxia; Cao, Yanping; Wang, Shaojia; Wang, Bei; Sun, Baoguo; Yuan, Fang; Gao, Yanxiang

    2018-01-15

    The formation and physicochemical stability of mixed functional components (lutein & DHA) emulsions through heteroaggregation were studied. It was formed by controlled heteroaggregation of oppositely charged lutein and DHA droplets coated by cationic lactoferrin (LF) and anionic whey protein isolate (WPI), respectively. Heteroaggregation was induced by mixing the oppositely charged LF-lutein and WPI-DHA emulsions together at pH 6.0. Droplet size, zeta-potential, transmission-physical stability, microrheological behavior and microstructure of the heteroaggregates formed were measured as a function of LF-lutein to WPI-DHA droplet ratio. Lutein degradation and DHA oxidation by measurement of lipid hydroperoxides and thiobarbituric acid reactive substances were determined. Upon mixing the two types of bioactive compounds droplets together, it was found that the largest aggregates and highest physical stability occurred at a droplet ratio of 40% LF-lutein droplets to 60% WPI-DHA droplets. Heteroaggregates formation altered the microrheological properties of the mixed emulsions mainly by the special network structure of the droplets. When LF-coated lutein droplets ratios were more than 30% and less than 60%, the mixed emulsions exhibited distinct decreases in the Mean Square Displacement, which indicated that their limited scope of Brownian motion and stable structure. Mixed emulsions with LF-lutein/WPI-DHA droplets ratio of 4:6 exhibited Macroscopic Viscosity Index with 13 times and Elasticity Index with 3 times of magnitudes higher than the individual emulsions from which they were prepared. Compared with the WPI-DHA emulsion or LF-lutein emulsion, the oxidative stability of the heteroaggregate of LF-lutein/WPI-DHA emulsions was improved. Heteroaggregates formed by oppositely charged bioactive compounds droplets may be useful for creating specific food structures that lead to desirable physicochemical properties, such as microrheological property, physical and chemical

  17. Soybean seed coat chitinase as a defense protein against the stored product pest Callosobruchus maculatus.

    Science.gov (United States)

    Silva, Nadia Cm; Conceição, Jamile G; Ventury, Kayan Eudorico; De Sá, Leonardo Fr; Oliveira, Eduardo Ag; Santos, Izabela S; Gomes, Valdirene M; Costa, Monique N; Ferreira, Andre Ts; Perales, Jonas; Xavier-Filho, Jose; Fernandes, Kátia Vs; Oliveira, Antonia Ea

    2017-12-18

    Chitinases (EC 3.2.1.14) are enzymes involved in the breaking of the β-1,4-glycosidic linkages of chitin. In insects, chitin is present mainly in the cuticle and in peritrophic membranes and peritrophic gel. Enzymes with the potential to damage peritrophic membranes and gel, such as chitinase, have been associated with plant defense systems. Identification and characterization of seed coat chitinase as a plant defense molecule may indicate a more effective target for manipulation strategies, which may lead to the prevention of consumption of embryonic tissues by larvae and consequently minimization of seed damage. We studied the efficiency of soybean seed coat chitinase as a defense molecule against the insect Callosobruchus maculatus. The seed coat chitinase was isolated and identified by mass spectrometry, immunoreacted with an anti-chitinase antibody and shown to have activity against chitin azure and 4-methylumbelliferyl β-D-N,N',N''-triacetylchitotrioside. A chitinase fraction incorporated in artificial cotyledons at 0.1% reduced larval survival by approximately 77%, and at 0.5%, the reduction in larval mass was 60%. Fluorescein isothiocyanate (FITC)-labeled chitinase was detected in the guts and feces of larvae. At 25% in thick artificial seed coats, chitinase showed a high toxicity to larvae, with mortality of 90% and a reduction of larval mass of 87%. Seed coat chitinase is an important seed defense molecule not only in the cotyledons but also in seed coats, acting as part of the array of defense mechanisms against Callosobruchus maculatus. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. An individually coated near-infrared fluorescent protein as a safe and robust nanoprobe for in vivo imaging

    Science.gov (United States)

    Yang, Yu; Xiang, Kun; Yang, Yi-Xin; Wang, Yan-Wen; Zhang, Xin; Cui, Yangdong; Wang, Haifang; Zhu, Qing-Qing; Fan, Liqiang; Liu, Yuanfang; Cao, Aoneng

    2013-10-01

    A prerequisite for in vivo fluorescence imaging is the safety of fluorescent probes. Among all fluorescent probes, fluorescent proteins (FPs) might be the safest ones, which have been widely used in biological sciences at the gene level. But FPs have not been used in vivo in the purified form yet due to the instability of proteins. Here, we individually coat near-infrared (NIR) FPs (NIRFPs) with a silica nanoshell, resulting in NIRFP@silica, one of the safest and brightest NIR fluorescent nanoprobes with a quantum yield of 0.33 for in vivo imaging. The silica shell not only protects NIRFPs from denaturation and metabolic digestion, but also enhances the quantum yield and photostability of the coated NIRFPs. When injected via the tail vein, NIRFP@silica NPs can distribute all over the mouse body, and then can be efficiently eliminated through urine in 24 h, demonstrating its potential applications as a safe and robust NIR fluorescence probe for whole body imaging.A prerequisite for in vivo fluorescence imaging is the safety of fluorescent probes. Among all fluorescent probes, fluorescent proteins (FPs) might be the safest ones, which have been widely used in biological sciences at the gene level. But FPs have not been used in vivo in the purified form yet due to the instability of proteins. Here, we individually coat near-infrared (NIR) FPs (NIRFPs) with a silica nanoshell, resulting in NIRFP@silica, one of the safest and brightest NIR fluorescent nanoprobes with a quantum yield of 0.33 for in vivo imaging. The silica shell not only protects NIRFPs from denaturation and metabolic digestion, but also enhances the quantum yield and photostability of the coated NIRFPs. When injected via the tail vein, NIRFP@silica NPs can distribute all over the mouse body, and then can be efficiently eliminated through urine in 24 h, demonstrating its potential applications as a safe and robust NIR fluorescence probe for whole body imaging. Electronic supplementary information (ESI

  19. β-1,6-glucan synthesis-associated genes are required for proper spore wall formation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Pan, Hua-Ping; Wang, Ning; Tachikawa, Hiroyuki; Nakanishi, Hideki; Gao, Xiao-Dong

    2017-11-01

    The yeast spore wall is an excellent model to study the assembly of an extracellular macromolecule structure. In the present study, mutants defective in β-1,6-glucan synthesis, including kre1∆, kre6∆, kre9∆ and big1∆, were sporulated to analyse the effect of β-1,6-glucan defects on the spore wall. Except for kre6∆, these mutant spores were sensitive to treatment with ether, suggesting that the mutations perturb the integrity of the spore wall. Morphologically, the mutant spores were indistinguishable from wild-type spores. They lacked significant sporulation defects partly because the chitosan layer, which covers the glucan layer, compensated for the damage. The proof for this model was obtained from the effect of the additional deletion of CHS3 that resulted in the absence of the chitosan layer. Among the double mutants, the most severe spore wall deficiency was observed in big1∆ spores. The majority of the big1∆chs3∆ mutants failed to form visible spores at a higher temperature. Given that the big1∆ mutation caused a failure to attach a GPI-anchored reporter, Cwp2-GFP, to the spore wall, β-1,6-glucan is involved in tethering of GPI-anchored proteins in the spore wall as well as in the vegetative cell wall. Thus, β-1,6-glucan is required for proper organization of the spore wall. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Copy number variation and missense mutations of the agouti signaling protein (ASIP) gene in goat breeds with different coat colors.

    Science.gov (United States)

    Fontanesi, L; Beretti, F; Riggio, V; Gómez González, E; Dall'Olio, S; Davoli, R; Russo, V; Portolano, B

    2009-01-01

    In goats, classical genetic studies reported a large number of alleles at the Agouti locus with effects on coat color and pattern distribution. From these early studies, the dominant A(Wt) (white/tan) allele was suggested to cause the white color of the Saanen breed. Here, we sequenced the coding region of the goat ASIP gene in 6 goat breeds (Girgentana, Maltese, Derivata di Siria, Murciano-Granadina, Camosciata delle Alpi, and Saanen), with different coat colors and patterns. Five single nucleotide polymorphisms (SNPs) were identified, 3 of which caused missense mutations in conserved positions of the cysteine-rich carboxy-terminal domain of the protein (p.Ala96Gly, p.Cys126Gly, and p.Val128Gly). Allele and genotype frequencies suggested that these mutations are not associated or not completely associated with coat color in the investigated goat breeds. Moreover, genotyping and sequencing results, deviation from Hardy-Weinberg equilibrium, as well as allele copy number evaluation from semiquantitative fluorescent multiplex PCR, indicated the presence of copy number variation (CNV) in all investigated breeds. To confirm the presence of CNV and evaluate its extension, we applied a bovine-goat cross-species array comparative genome hybridization (aCGH) experiment using a custom tiling array based on bovine chromosome 13. aCGH results obtained for 8 goat DNA samples confirmed the presence of CNV affecting a region of less that 100 kb including the ASIP and AHCY genes. In Girgentana and Saanen breeds, this CNV might cause the A(Wt) allele, as already suggested for a similar structural mutation in sheep affecting the ASIP and AHCY genes, providing evidence for a recurrent interspecies CNV. However, other mechanisms may also be involved in determining coat color in these 2 breeds. Copyright 2009 S. Karger AG, Basel.

  1. Validated modified Lycopodium spore method development for ...

    African Journals Online (AJOL)

    Validated modified lycopodium spore method has been developed for simple and rapid quantification of herbal powdered drugs. Lycopodium spore method was performed on ingredients of Shatavaryadi churna, an ayurvedic formulation used as immunomodulator, galactagogue, aphrodisiac and rejuvenator. Estimation of ...

  2. Bacillus subtilis Spore Inner Membrane Proteome

    NARCIS (Netherlands)

    Zheng, L.; Abhyankar, W.; Ouwerling, N.; Dekker, H.L.; van Veen, H.; van der Wel, N.N.; Roseboom, W.; de Koning, L.J.; Brul, S.; de Koster, C.G.

    2016-01-01

    The endospore is the dormant form of Bacillus subtilis and many other Firmicutes. By sporulation, these spore formers can survive very harsh physical and chemical conditions. Yet, they need to go through germination to return to their growing form. The spore inner membrane (IM) has been shown to

  3. What can spores do for us?

    NARCIS (Netherlands)

    Wolken, W.A.M.; Tramper, J.; Werf, van der M.J.

    2003-01-01

    Many organisms have the ability to form spores, a remarkable phase in their life cycles. Compared with vegetative cells, spores have several advantages (e.g. resistance to toxic compounds, temperature, desiccation and radiation) making them well suited to various applications. The applications of

  4. Enhancement of DNA vaccine potency through linkage of antigen to filamentous bacteriophage coat protein III domain I

    DEFF Research Database (Denmark)

    Cuesta, Àngel M; Suárez, Eduardo; Larsen, Martin

    2006-01-01

    Although DNA-based cancer vaccines have been successfully tested in mouse models, a major drawback of cancer vaccination still remains, namely that tumour antigens are weak and fail to generate a vigorous immune response in tumour-bearing patients. Genetic technology offers strategies for promoting...... immune pathways by adding immune-activating genes to the tumour antigen sequence. In this work, we converted a model non-immunogenic antigen into a vaccine by fusing it to domain I of the filamentous bacteriophage coat protein III gene. Vaccination with a DNA construct encoding the domain I fusion...... generated antigen-specific T helper 1-type cellular immune responses. These results demonstrate that the incorporation of protein III into a DNA vaccine formulation can modulate the gene-mediated immune response and may thus provide a strategy for improving its therapeutic effect....

  5. Synthesis of protein-coated biocompatible methotrexate-loaded PLA-PEG-PLA nanoparticles for breast cancer treatment

    Science.gov (United States)

    Massadeh, Salam; Alaamery, Manal; Al-Qatanani, Shatha; Alarifi, Saqer; Bawazeer, Shahad; Alyafee, Yusra

    2016-01-01

    Background PLA-PEG-PLA triblock polymer nanoparticles are promising tools for targeted dug delivery. The main aim in designing polymeric nanoparticles for drug delivery is achieving a controlled and targeted release of a specific drug at the therapeutically optimal rate and choosing a suitable preparation method to encapsulate the drug efficiently, which depends mainly on the nature of the drug (hydrophilic or hydrophobic). In this study, methotrexate (MTX)-loaded nanoparticles were prepared by the double emulsion method. Method Biodegradable polymer polyethylene glycol-polylactide acid tri-block was used with poly(vinyl alcohol) as emulsifier. The resulting methotrexate polymer nanoparticles were coated with bovine serum albumin in order to improve their biocompatibility. This study focused on particle size distribution, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release at various concentrations of PVA (0.5%, 1%, 2%, and 3%). Results Reduced particle size of methotrexate-loaded nanoparticles was obtained using lower PVA concentrations. Enhanced encapsulation efficiency and loading capacity was obtained using 1% PVA. FT-IR characterization was conducted for the void polymer nanoparticles and for drug-loaded nanoparticles with methotrexate, and the protein-coated nanoparticles in solid state showed the structure of the plain PEG-PLA and the drug-loaded nanoparticles with methotrexate. The methotrexate-loaded PLA-PEG-PLA nanoparticles have been studied in vitro; the drug release, drug loading, and yield are reported. Conclusion The drug release profile was monitored over a period of 168 hours, and was free of burst effect before the protein coating. The results obtained from this work are promising; this work can be taken further to develop MTX based therapies.

  6. Sphagnum moss disperses spores with vortex rings.

    Science.gov (United States)

    Whitaker, Dwight L; Edwards, Joan

    2010-07-23

    Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.

  7. Ptaquiloside in bracken spores from Britain.

    Science.gov (United States)

    Rasmussen, Lars Holm; Schmidt, Bjørn; Sheffield, Elizabeth

    2013-03-01

    Secondary metabolites from bracken fern (Pteridium aquilinum (L.) Kuhn) are suspected of causing cancer in humans. The main carcinogen is the highly water-soluble norsesquiterpene glucoside ptaquiloside, which may be ingested by humans through food, e.g. via contaminated water, meat or milk. It has been postulated that carcinogens could also be ingested through breathing air containing bracken spores. Ptaquiloside has not previously been identified in bracken spores. The aim of the study was to determine whether ptaquiloside is present in bracken spores, and if so, to estimate its content in a collection of spores from Britain. Ptaquiloside was present in all samples, with a maximum of 29 μg g(-1), which is very low compared to other parts of the fern. Considering the low abundance of spores in breathing air under normal conditions, this exposure route is likely to be secondary to milk or drinking water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Clathrin coat disassembly by the yeast Hsc70/Ssa1p and auxilin/Swa2p proteins observed by single-particle burst analysis spectroscopy.

    Science.gov (United States)

    Krantz, Kelly C; Puchalla, Jason; Thapa, Rajan; Kobayashi, Callie; Bisher, Margaret; Viehweg, Julie; Carr, Chavela M; Rye, Hays S

    2013-09-13

    The role of clathrin-coated vesicles in receptor-mediated endocytosis is conserved among eukaryotes, and many of the proteins required for clathrin coat assembly and disassembly have orthologs in yeast and mammals. In yeast, dozens of proteins have been identified as regulators of the multistep reaction required for endocytosis, including those that regulate disassembly of the clathrin coat. In mammalian systems, clathrin coat disassembly has been reconstituted using neuronal clathrin baskets mixed with the purified chaperone ATPase 70-kDa heat shock cognate (Hsc70), plus a clathrin-specific co-chaperone, such as the synaptic protein auxilin. Yet, despite previous characterization of the yeast Hsc70 ortholog, Ssa1p, and the auxilin-like ortholog, Swa2p, testing mechanistic models for disassembly of nonneuronal clathrin coats has been limited by the absence of a functional reconstitution assay. Here we use single-particle burst analysis spectroscopy, in combination with fluorescence correlation spectroscopy, to follow the population dynamics of fluorescently tagged yeast clathrin baskets in the presence of purified Ssa1p and Swa2p. An advantage of this combined approach for mechanistic studies is the ability to measure, as a function of time, changes in the number and size of objects from a starting population to the reaction products. Our results indicate that Ssa1p and Swa2p cooperatively disassemble yeast clathrin baskets into fragments larger than the individual triskelia, suggesting that disassembly of clathrin-coated vesicles may proceed through a partially uncoated intermediate.

  9. Molecular identification based on coat protein sequences of the Barley yellow dwarf virus from Brazil

    OpenAIRE

    Mar, Talita Bernardon; Lau, Douglas; Schons, Jurema; Yamazaki-Lau, Elene; Nhani Jr., Antônio

    2013-01-01

    Yellow dwarf disease, one of the most important diseases of cereal crops worldwide, is caused by virus species belonging to the Luteoviridae family. Forty-two virus isolates obtained from oat (Avena sativa L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), corn (Zea mays L.), and ryegrass (Lolium multiflorum Lam.) collected between 2007 and 2008 from winter cereal crop regions in southern Brazil were screened by polymerase chain reaction (PCR) with primers designed on ORF 3 (coat...

  10. Mechanism and site of inhibition of Bacillus cereus spore outgrowth by nitrosothiols

    International Nuclear Information System (INIS)

    Morris, S.L.

    1982-01-01

    Structure vs. activity studies demonstrate that nitrosothiols inhibit outgrowth of B. cereus spores by reversible covalent bond formation with sensitive spore components. Kinetic studies of the binding of nitrosothiols and iodoacetate, a known sulfhydryl reagent, show that they complete for the same spore sites. Since two other nitrite derivatives, the Perigo factor and the transferrin inhibitor, interfere with iodoacetate label uptake in a kinetically similar fashion, all of these compounds may inhibit spore outgrowth by interacting with the same spore thiol groups. Disruption of spores which have been inhibited by radioactive iodoacetate demonstrates that much of the label is incorporated into a membrane-rich fraction that sediments as a single peak on a sucrose density gradient. SDS gel electrophoresis and autofluorography allows the identification of four intensely labelled proteins with molecular weights of 13,000, 28,000, 29,000, and 30,000. If the iodoacetate labelling is carried out in the presence of nitrosothiol, incorporation is greatly reduced into all components. When germinating spores are labelled with succinate or the lactose analog, o-nitrophenylgalactopyranoside, a significant reduction in the amount of label bound is also observed suggesting that two iodoacetate-reactive sites may be the succinate and lactose permease systems. Severe decreases in the transport of succinate and lactose into iodoacetate and nitrosothiol inhibited spores further implicates a nitrosothiol (iodoacetate) permease interaction. Iodoacetate and nitrosothiols therefore may exert their inhibitory effects by interfering with critical membrane protein sulfhydryl groups, possibly by a a covalent modification mechanism. Some of these sensitive thiols may be involved in active transport processes

  11. Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents

    Directory of Open Access Journals (Sweden)

    Patrizia Cinelli

    2016-06-01

    Full Text Available Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET/polyethylene (PE multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at

  12. Ethylene glycol assisted preparation of Ti(4+)-modified polydopamine coated magnetic particles with rough surface for capture of phosphorylated proteins.

    Science.gov (United States)

    Ma, Xiangdong; Ding, Chun; Yao, Xin; Jia, Li

    2016-07-27

    The reversible protein phosphorylation is very important in regulating almost all aspects of cell life, while the enrichment of phosphorylated proteins still remains a technical challenge. In this work, polydopamine (PDA) modified magnetic particles with rough surface (rPDA@Fe3O4) were synthesized by introduction of ethylene glycol in aqueous solution. The PDA coating possessing a wealth of catechol hydroxyl groups could serve as an active medium to immobilize titanium ions through the metal-catechol chelation, which makes the fabrication of titanium ions modified rPDA@Fe3O4 particles (Ti(4+)-rPDA@Fe3O4) simple and very convenient. The spherical Ti(4+)-rPDA@Fe3O4 particles have a surface area of 37.7 m(2) g(-1) and superparamagnetism with a saturation magnetization value of 38.4 emu g(-1). The amount of Ti element in the particle was measured to be 3.93%. And the particles demonstrated good water dispersibility. The particles were used as adsorbents for capture of phosphorylated proteins and they demonstrated affinity and specificity for phosphorylated proteins due to the specific binding sites (Ti(4+)). Factors affecting the adsorption of phosphorylated proteins on Ti(4+)-rPDA@Fe3O4 particles were investigated. The adsorption capacity of Ti(4+)-rPDA@Fe3O4 particles for κ-casein was 1105.6 mg g(-1). Furthermore, the particles were successfully applied to isolate phosphorylated proteins in milk samples, which demonstrated that Ti(4+)-rPDA@Fe3O4 particles had potential application in selective separation of phosphorylated proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. State of the Art in the Development and Properties of Protein-Based Films and Coatings and Their Applicability to Cellulose Based Products: An Extensive Review

    Directory of Open Access Journals (Sweden)

    Maria-Beatrice Coltelli

    2015-12-01

    Full Text Available There is increasing research towards the substitution of petrochemicals by sustainable components. Biopolymers such as proteins, polysaccharides, and lipids derive from a variety of crop sources and most promisingly from waste streams generated during their processing by the agro food industry. Among those, proteins of different types such as whey, casein, gelatin, wheat gluten, soy protein or zein present a potential beyond the food and feed industry for the application in packaging. The general protein hydrophilicity promotes a good compatibility to polar surfaces, such as paper, and a good barrier to apolar gases, such as oxygen and carbon dioxide. The present review deals with the development of protein-based coatings and films. It includes relevant discussion for application in paper or board products, as well as an outlook on its future industrial potential. Proteins with suitable functionalities as food packaging materials are described as well as the different technologies for processing the coatings and the current state of the art about the coating formulations for selectively modulating barrier, mechanical, surface and end of life properties. Some insights onto regulations about packaging use, end of life and perspectives of such natural coating for decreasing the environmental impact of packages are given.

  14. In vitro haematic proteins adsorption and cytocompatibility study on acrylic copolymer to realise coatings for drug-eluting stents

    International Nuclear Information System (INIS)

    Gagliardi, Mariacristina

    2012-01-01

    In the present paper, a preliminary in vitro analysis of biocompatibility of newly-synthesised acrylic copolymers is reported. In particular, with the aim to obtain coatings for drug-eluting stents, blood protein absorption and cytocompatibility were studied. For protein absorption tests, bovine serum albumin and bovine plasma fibrinogen were considered. Cytocompatibility was tested using C2C12 cell line as model, analysing the behaviour of polymeric matrices and of drug-eluting systems, obtained loading polymeric matrices with paclitaxel, an anti-mitotic drug, in order to evaluate the efficacy of a pharmacological treatment locally administered from these materials. Results showed that the amount of albumin absorbed was greater than the amount of fibrinogen (comprised in the range of 70%–85% and 10%–22% respectively) and it is a good behaviour in terms of haemocompatibility. Cell culture tests showed good adhesion properties and a relative poor proliferation. In addition, a strong effect related to drug elution and a correlation with the macromolecular composition were detected. In this preliminary analysis, tested materials showed good characteristics and can be considered possible candidates to obtain coatings for drug-eluting stents. Highlights: ► Preliminary evaluation of haemo- and cytocompatibility of newly-synthesised acrylic copolymers ► Materials adsorb higher amounts of albumin and with a faster rate than fibrinogen. ► Protein adsorption depended on the macromolecular composition and surface properties. ► Cell viability on pure samples and efficacy of paclitaxel release were verified in C2C12 cultures.

  15. One-step green synthesis and characterization of plant protein-coated mercuric oxide (HgO) nanoparticles: antimicrobial studies

    Science.gov (United States)

    Das, Amlan Kumar; Marwal, Avinash; Sain, Divya; Pareek, Vikram

    2015-03-01

    The present study demonstrates the bioreductive green synthesis of nanosized HgO using flower extracts of an ornamental plant Callistemon viminalis. The flower extracts of Callistemon viminalis seem to be environmentally friendly, so this protocol could be used for rapid production of HgO. Till date, there is no report of synthesis of nanoparticles using flower extract of Callistemon viminalis. Mercuric acetate was taken as the metal precursor in the present experiment. The flower extract was found to act as a reducing as well as a stabilizing agent. The phytochemicals present in the flower extract act as reducing agent which include proteins, saponins, phenolic compounds, phytosterols, and flavonoids. FT-IR spectroscopy confirmed that the extract had the ability to act as a reducing agent and stabilizer for HgO nanoparticles. The formation of the plant protein-coated HgO nanoparticles was first monitored using UV-Vis absorption spectroscopy. The UV-Vis spectroscopy revealed the formation of HgO nanoparticles by exhibiting the typical surface plasmon absorption maxima at 243 nm. The average particle size formed ranges from 2 to 4 nm. The dried form of synthesized nanoparticles was further characterized using TGA, XRD, TEM, and FTIR spectroscopy. FT-IR spectra of synthesized HgO nanoparticles were performed to identify the possible bio-molecules responsible for capping and stabilization of nanoparticles, which confirm the formation of plant protein-coated HgO nanoparticles that is further corroborated by TGA study. The optical band gap of HgO nanoparticle was measured to be 2.48 eV using cutoff wavelength which indicates that HgO nanoparticles can be used in metal oxide semiconductor-based photovoltaic cells. A possible core-shell structure of the HgO nanobiocomposite has been proposed.

  16. Improvement of interfacial interactions using natural polyphenol-inspired tannic acid-coated nanoclay enhancement of soy protein isolate biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong; Kang, Haijiao; Zhang, Wei [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083 (China); Zhang, Shifeng, E-mail: shifeng.zhang@bjfu.edu.cn [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083 (China); Li, Jianzhang, E-mail: lijzh@bjfu.edu.cn [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083 (China)

    2017-04-15

    Highlights: • A novel interface of MMT was fabricated by natural polyphenol (TA)-inspired chemistry. • The resultant biomimetic surface exhibited good interface and surface compatibility. • TA can act as a bridge between MMT and SPI to enhance the interfacial interaction. • Surface-modified MMT gets the potential to be used in the modification of SPI biofilms for improving the mechanical properties and water resistance apparently. - Abstract: In this study, a novel and economic surface modification technique for montmorillonite (MMT) nanosheets, a biocompatible coupling cross-linking agent, was developed on an attempt at improving the interfacial adhesion with soy protein isolate (SPI) matrix. Inspired by natural polyphenol, the “green dip-coating” method using tannic acid (TA) to surface-modify MMT (TA@MMT). SPI nanocomposite films modified with MMT or TA@MMT, as well as the control ones, were prepared via the casting method. The TA layer was successfully coated on the MMT surface through the (Fe{sup III}) ions coordination chemistry and the synthetic samples were characterized by the Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The compatibility and interfacial interactions between modified MMT and SPI matrix were greatly enhanced by the TA-Fe{sup III} coating on the MMT surface. The mechanical properties, water resistance, and thermal stability of the resultant biofilm were increased accordingly. Compared with that of the unmodified SPI film, the tensile strength of the nanocomposite films modified by the green dip-coating was increased by 113.3%. These SPI-based nanocomposite films showed the favorable potential in terms of food packing applications due to their efficient barriers to water vapor and UV and/or visible light.

  17. A WD40-repeat protein controls proanthocyanidin and phytomelanin pigmentation in the seed coats of the Japanese morning glory.

    Science.gov (United States)

    Park, Kyeung-Il; Hoshino, Atsushi

    2012-03-15

    The protein complex composed of the transcriptional regulators containing R2R3-MYB domains, bHLH domains, and WDR in plants controls various epidermal traits, including anthocyanin and proanthocyanidin pigmentation, trichome and root hair formation, and vacuolar pH. In the Japanese morning glory (Ipomoea nil), InMYB1 having R2R3-MYB domains and InWDR1 containing WDR were shown to regulate anthocyanin pigmentation in flowers, and InWDR1 was reported to control dark-brown pigmentation and trichome formation on seed coats. Here, we report that the seed pigments of I. nil mainly comprise proanthocyanidins and phytomelanins and that these pigments are drastically reduced in the ivory seed coats of an InWDR1 mutant. In addition, a transgenic plant of the InWDR1 mutant carrying the active InWDR1 gene produced dark-brown seeds, further confirming that InWDR1 regulates seed pigmentation. Early steps in anthocyanin and proanthocyanidin biosynthetic pathways are thought to be common. In the InWDR1 mutant, none of the structural genes for anthocyanin biosynthesis that showed reduced expression in the white flowers were down-regulated in the ivory seeds, which suggests that InWDR1 may activate different sets of the structural genes for anthocyanin biosynthesis in flowers and proanthocyanidin production in seeds. As in the flowers, however, we noticed that the expression of InbHLH2 encoding a bHLH regulator was down-regulated in the seeds of the InWDR1 mutant. We discuss the implications of these results with respect to the proanthocyanidin biosynthesis in the seed coats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Plate assay for determining the time of production of protease, cellulase, and pectinases by germinating fungal spores.

    Science.gov (United States)

    Hagerman, A E; Blau, D M; McClure, A L

    1985-12-01

    A new method for detecting enzymes produced by fungal spores during germination is described here. With this method, the production of enzymes such as protease, cellulase, or pectinase can be correlated with the extent of spore germination. Germination is studied in vitro on agar-based media containing protein, cellulose, or pectin. The spores are immobilized on a permeable membrane mounted on the substrate-containing medium. At various times after inoculation the membrane-bound spores are removed and the medium is stained. The extent of germination is assessed by microscopic examination of the spores and the presence of active hydrolytic enzymes is revealed by the staining. The staining methods are sensitive; detection limits are 1 X 10(-3) unit of cellulase; 2 X 10(-4) unit of protease; 3 X 10(-3) unit of pectin lyase; 3.5 units of polygalacturonase; 2 X 10(-3) unit of pectin methyl esterase. The method has been demonstrated by studying the production of enzymes by germinating conidia of Botrytis cinerea. Cellulase and protease were present before any spores germinated. Pectin lyase was first observed when at least 80% of the spores had germinated. Pectin methyl esterase and polygalacturonase were not produced by the spores.

  19. Genetic fusion protein 3×STa-ovalbumin is an effective coating antigen in ELISA to titrate anti-STa antibodies.

    Science.gov (United States)

    Duan, Qiangde; Zhang, Weiping

    2017-07-01

    Heat-stable toxin type I (STa)-ovalbumin chemical conjugates are currently used as the only coating antigen in ELISA to titrate anti-STa antibodies for ETEC vaccine candidates. STa-ovalbumin chemical conjugation requires STa toxin purification, a process that can be carried out by only a couple of laboratories and often with a low yield. Alternative ELISA coating antigens are needed for anti-STa antibody titration for ETEC vaccine development. In the present study, we genetically fused STa toxin gene (three copies) to a modified chicken ovalbumin gene for genetic fusion 3×STa-ovalbumin, and examined application of this fusion protein as an alternative coating antigen of anti-STa antibody titration ELISA. Data showed fusion protein 3×STa-ovalbumin was effectively expressed and extracted, and anti-STa antibody titration ELISA using this recombinant protein (25 ng per well) or STa-ovalbumin chemical conjugates (10 ng/well) showed the same levels of sensitivity and specificity. Furthermore, mice immunized with this fusion protein developed anti-STa antibodies; induced antibodies showed in vitro neutralization activity against STa toxin. These results indicate that recombinant fusion protein 3×STa-ovalbumin is an effective ELISA coating antigen for anti-STa antibody titration, enabling a reliable reagent supply to make standardization of STa antibody titration assay feasible and to accelerate ETEC vaccine development. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  20. Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating.

    Science.gov (United States)

    Sorkio, Anni; Hongisto, Heidi; Kaarniranta, Kai; Uusitalo, Hannu; Juuti-Uusitalo, Kati; Skottman, Heli

    2014-02-01

    Extracellular matrix (ECM) interactions play a vital role in cell morphology, migration, proliferation, and differentiation of cells. We investigated the role of ECM proteins on the structure and function of human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells during their differentiation and maturation from hESCs into RPE cells in adherent differentiation cultures on several human ECM proteins found in native human Bruch's membrane, namely, collagen I, collagen IV, laminin, fibronectin, and vitronectin, as well as on commercial substrates of xeno-free CELLstart™ and Matrigel™. Cell pigmentation, expression of RPE-specific proteins, fine structure, as well as the production of basal lamina by hESC-RPE on different protein coatings were evaluated after 140 days of differentiation. The integrity of hESC-RPE epithelium and barrier properties on different coatings were investigated by measuring transepithelial resistance. All coatings supported the differentiation of hESC-RPE cells as demonstrated by early onset of cell pigmentation and further maturation to RPE monolayers after enrichment. Mature RPE phenotype was verified by RPE-specific gene and protein expression, correct epithelial polarization, and phagocytic activity. Significant differences were found in the degree of RPE cell pigmentation and tightness of epithelial barrier between different coatings. Further, the thickness of self-assembled basal lamina and secretion of the key ECM proteins found in the basement membrane of the native RPE varied between hESC-RPE cultured on compared protein coatings. In conclusion, this study shows that the cell culture substrate has a major effect on the structure and basal lamina production during the differentiation and maturation of hESC-RPE potentially influencing the success of cell integrations and survival after cell transplantation.

  1. Coated protein nanoclusters from influenza H7N9 HA are highly immunogenic and induce robust protective immunity.

    Science.gov (United States)

    Wang, Li; Chang, Timothy Z; He, Yuan; Kim, Jong R; Wang, Shelly; Mohan, Teena; Berman, Zachary; Tompkins, S Mark; Tripp, Ralph A; Compans, Richard W; Champion, Julie A; Wang, Bao-Zhong

    2017-01-01

    Recurring influenza viruses pose an annual threat to public health. A time-saving, cost-effective and egg-independent influenza vaccine approach is important particularly when responding to an emerging pandemic. We fabricated coated, two-layer protein nanoclusters from recombinant trimeric hemagglutinin from an avian-origin H7N9 influenza A virus as an approach for vaccine development in response to an emerging pandemic. Assessment of the virus-specific immune responses and protective efficacy in mice immunized with the nanoclusters demonstrated that the vaccine candidates were highly immunogenic, able to induce protective immunity and long-lasting humoral antibody responses to this virus without the use of adjuvants. Because the advantages of the highly immunogenic coated nanoclusters also include rapid productions in an egg-independent system, this approach has great potential for influenza vaccine production not only in response to an emerging pandemic, but also as a replacement for conventional seasonal influenza vaccines. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Temperature-Triggered Protein Adsorption on Polymer-Coated Nanoparticles in Serum

    NARCIS (Netherlands)

    Koshkina, O.; Lang, T.; Thiermann, R.; Docter, D.; Stauber, R.H.; Secker, C.; Schlaad, H.; Weidner, S.; Mohr, B.; Maskos, M.; Bertin, A.

    2015-01-01

    The protein corona, which forms on the nanoparticle's surface in most biological media, determines the nanoparticle's physicochemical characteristics. The formation of the protein corona has a significant impact on the biodistribution and clearance of nanoparticles in vivo. Therefore, the ability to

  3. The Role of Aquaporins in pH-Dependent Germination of Rhizopus delemar Spores.

    Directory of Open Access Journals (Sweden)

    Tidhar Turgeman

    Full Text Available Rhizopus delemar and associated species attack a wide range of fruit and vegetables after harvest. Host nutrients and acidic pH are required for optimal germination of R. delemar, and we studied how this process is triggered. Glucose induced spore swelling in an acidic environment, expressed by an up to 3-fold increase in spore diameter, whereas spore diameter was smaller in a neutral environment. When suspended in an acidic environment, the spores started to float, indicating a change in their density. Treatment of the spores with HgCl2, an aquaporin blocker, prevented floating and inhibited spore swelling and germ-tube emergence, indicating the importance of water uptake at the early stages of germination. Two putative candidate aquaporin-encoding genes-RdAQP1 and RdAQP2-were identified in the R. delemar genome. Both presented the conserved NPA motif and six-transmembrane domain topology. Expressing RdAQP1 and RdAQP2 in Arabidopsis protoplasts increased the cells' osmotic water permeability coefficient (Pf compared to controls, indicating their role as water channels. A decrease in R. delemar aquaporin activity with increasing external pH suggested pH regulation of these proteins. Substitution of two histidine (His residues, positioned on two loops facing the outer side of the cell, with alanine eliminated the pH sensing resulting in similar Pf values under acidic and basic conditions. Since hydration is critical for spore switching from the resting to activate state, we suggest that pH regulation of the aquaporins can regulate the initial phase of R. delemar spore germination, followed by germ-tube elongation and host-tissue infection.

  4. The nature of water within bacterial spores: protecting life in extreme environments

    Science.gov (United States)

    Rice, Charles V.; Friedline, Anthony; Johnson, Karen; Zachariah, Malcolm M.; Thomas, Kieth J., III

    2011-10-01

    The bacterial spore is a formidable container of life, protecting the vital contents from chemical attack, antimicrobial agents, heat damage, UV light degradation, and water dehydration. The exact role of the spore components remains in dispute. Nevertheless, water molecules are important in each of these processes. The physical state of water within the bacterial spore has been investigated since the early 1930's. The water is found two states, free or bound, in two different areas, core and non-core. It is established that free water is accessible to diffuse and exchange with deuterated water and that the diffusible water can access all areas of the spore. The presence of bound water has come under recent scrutiny and has been suggested the water within the core is mobile, rather than bound, based on the analysis of deuterium relaxation rates. Using an alternate method, deuterium quadrupole-echo spectroscopy, we are able to distinguish between mobile and immobile water molecules. In the absence of rapid motion, the deuterium spectrum of D2O is dominated by a broad line, whose line shape is used as a characteristic descriptor of molecular motion. The deuterium spectrum of bacterial spores reveals three distinct features: the broad peak of immobilized water, a narrow line of water in rapid motion, and a signal of intermediate width. This third signal is assigned this peak from partially deuterated proteins with the spore in which N-H groups have undergone exchange with water deuterons to form N-D species. As a result of these observations, the nature of water within the spore requires additional explanation to understand how the spore and its water preserve life.

  5. The Role of Aquaporins in pH-Dependent Germination of Rhizopus delemar Spores.

    Science.gov (United States)

    Turgeman, Tidhar; Shatil-Cohen, Arava; Moshelion, Menachem; Teper-Bamnolker, Paula; Skory, Christopher D; Lichter, Amnon; Eshel, Dani

    2016-01-01

    Rhizopus delemar and associated species attack a wide range of fruit and vegetables after harvest. Host nutrients and acidic pH are required for optimal germination of R. delemar, and we studied how this process is triggered. Glucose induced spore swelling in an acidic environment, expressed by an up to 3-fold increase in spore diameter, whereas spore diameter was smaller in a neutral environment. When suspended in an acidic environment, the spores started to float, indicating a change in their density. Treatment of the spores with HgCl2, an aquaporin blocker, prevented floating and inhibited spore swelling and germ-tube emergence, indicating the importance of water uptake at the early stages of germination. Two putative candidate aquaporin-encoding genes-RdAQP1 and RdAQP2-were identified in the R. delemar genome. Both presented the conserved NPA motif and six-transmembrane domain topology. Expressing RdAQP1 and RdAQP2 in Arabidopsis protoplasts increased the cells' osmotic water permeability coefficient (Pf) compared to controls, indicating their role as water channels. A decrease in R. delemar aquaporin activity with increasing external pH suggested pH regulation of these proteins. Substitution of two histidine (His) residues, positioned on two loops facing the outer side of the cell, with alanine eliminated the pH sensing resulting in similar Pf values under acidic and basic conditions. Since hydration is critical for spore switching from the resting to activate state, we suggest that pH regulation of the aquaporins can regulate the initial phase of R. delemar spore germination, followed by germ-tube elongation and host-tissue infection.

  6. The Role of Aquaporins in pH-Dependent Germination of Rhizopus delemar Spores

    Science.gov (United States)

    Turgeman, Tidhar; Shatil-Cohen, Arava; Moshelion, Menachem; Teper-Bamnolker, Paula; Skory, Christopher D.; Lichter, Amnon; Eshel, Dani

    2016-01-01

    Rhizopus delemar and associated species attack a wide range of fruit and vegetables after harvest. Host nutrients and acidic pH are required for optimal germination of R. delemar, and we studied how this process is triggered. Glucose induced spore swelling in an acidic environment, expressed by an up to 3-fold increase in spore diameter, whereas spore diameter was smaller in a neutral environment. When suspended in an acidic environment, the spores started to float, indicating a change in their density. Treatment of the spores with HgCl2, an aquaporin blocker, prevented floating and inhibited spore swelling and germ-tube emergence, indicating the importance of water uptake at the early stages of germination. Two putative candidate aquaporin-encoding genes—RdAQP1 and RdAQP2—were identified in the R. delemar genome. Both presented the conserved NPA motif and six-transmembrane domain topology. Expressing RdAQP1 and RdAQP2 in Arabidopsis protoplasts increased the cells' osmotic water permeability coefficient (Pf) compared to controls, indicating their role as water channels. A decrease in R. delemar aquaporin activity with increasing external pH suggested pH regulation of these proteins. Substitution of two histidine (His) residues, positioned on two loops facing the outer side of the cell, with alanine eliminated the pH sensing resulting in similar Pf values under acidic and basic conditions. Since hydration is critical for spore switching from the resting to activate state, we suggest that pH regulation of the aquaporins can regulate the initial phase of R. delemar spore germination, followed by germ-tube elongation and host-tissue infection. PMID:26959825

  7. Rational Design of Thermodynamic and Kinetic Binding Profiles by Optimizing Surface Water Networks Coating Protein-Bound Ligands.

    Science.gov (United States)

    Krimmer, Stefan G; Cramer, Jonathan; Betz, Michael; Fridh, Veronica; Karlsson, Robert; Heine, Andreas; Klebe, Gerhard

    2016-12-08

    A previously studied congeneric series of thermolysin inhibitors addressing the solvent-accessible S 2 ' pocket with different hydrophobic substituents showed modulations of the surface water layers coating the protein-bound inhibitors. Increasing stabilization of water molecules resulted in an enthalpically more favorable binding signature, overall enhancing affinity. Based on this observation, we optimized the series by designing tailored P 2 ' substituents to improve and further stabilize the surface water network. MD simulations were applied to predict the putative water pattern around the bound ligands. Subsequently, the inhibitors were synthesized and characterized by high-resolution crystallography, microcalorimetry, and surface plasmon resonance. One of the designed inhibitors established the most pronounced water network of all inhibitors tested so far, composed of several fused water polygons, and showed 50-fold affinity enhancement with respect to the original methylated parent ligand. Notably, the inhibitor forming the most perfect water network also showed significantly prolonged residence time compared to the other tested inhibitors.

  8. A pathogenicity determinant maps to the N-terminal coat protein region of the Pepino mosaic virus genome.

    Science.gov (United States)

    Duff-Farrier, Celia R A; Bailey, Andy M; Boonham, Neil; Foster, Gary D

    2015-04-01

    Pepino mosaic virus (PepMV) poses a worldwide threat to the tomato industry. Considerable differences at the genetic level allow for the distinction of four main genotypic clusters; however, the basis of the phenotypic outcome is difficult to elucidate. This work reports the generation of wild-type PepMV infectious clones of both EU (mild) and CH2 (aggressive) genotypes, from which chimeric infectious clones were created. Phenotypic analysis in three solanaceous hosts, Nicotiana benthamiana, Datura stramonium and Solanum lycopersicum, indicated that a PepMV pathogenicity determinant mapped to the 3'-terminal region of the genome. Increased aggression was only observed in N. benthamiana, showing that this factor is host specific. The determinant was localized to amino acids 11-26 of the N-terminal coat protein (CP) region; this is the first report of this region functioning as a virulence factor in PepMV. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  9. All green, but equal? Morphological traits and ecological implications on spores of three species of mosses in the Brazilian Atlantic forest

    Directory of Open Access Journals (Sweden)

    ADAÍSES S. MACIEL-SILVA

    2014-09-01

    Full Text Available Spores of the tropical mosses Pyrrhobryum spiniforme, Neckeropsis undulata and N. disticha were characterized regarding size, number per capsule and viability. Chemical substances were analyzed for P. spiniforme and N. undulata spores. Length of sporophyte seta (spore dispersal ability was analyzed for P. spiniforme. Four to six colonies per species in each site (lowland and highland areas of an Atlantic Forest; Serra do Mar State Park, Brazil were visited for the collection of capsules (2008 – 2009. Neckeropsis undulata in the highland area produced the largest spores (ca. 19 µm with the highest viability. The smallest spores were found in N. disticha in the lowland (ca. 13 µm. Pyrrhobryum spiniforme produced more spores per capsule in the highland (ca. 150,000 than in lowland (ca. 40,000; longer sporophytic setae in the lowland (ca. 64 mm than in the highland (ca. 43 mm; and similar sized spores in both areas (ca. 16 µm. Spores of N. undulata and P. spiniforme contained lipids and proteins in the cytoplasm, and acid/neutral lipids and pectins in the wall. Lipid bodies were larger in N. undulata than in P. spiniforme. No starch was recorded for spores. Pyrrhobryum spiniforme in the highland area, different from lowland, was characterized by low reproductive effort, but presented many spores per capsule.

  10. Interaction research on an antiviral molecule that targets the coat protein of southern rice black-streaked dwarf virus.

    Science.gov (United States)

    Ran, Longlu; Ding, Yan; Luo, Liangzhi; Gan, Xiuhai; Li, Xiangyang; Chen, Yongzhong; Hu, Deyu; Song, Baoan

    2017-10-01

    Southern rice black-streaked dwarf virus (SRBSDV) coat protein (P10) is the key protein required for viral transmission and host plant infection and is thus a promising target for anti-SRBSDV agent screening. In this study, P10 was obtained from Escherichia coli through cloning, expression, and purification. The antiviral agent Ningnanmycin was selected as control, and a series of antiviral compounds based on the structural scaffold of ferulic acid were analyzed. Size-exclusion chromatography analysis results showed that compound F27 can alter the aggregation of P10 proteins. Furthermore, fluorescence titration and microscale thermophoresis assay results indicated that F27 binds to P10 with K A of 5.75×10 5 M -1 and K D of 7.81μM. The ligand- and receptor-based three-dimensional quantitative structure-activity analyses were performed to determine the requirements for the interaction between the carboxyl structures and P10s. On the basis of the obtained models and information, we provided insights regarding the design and optimization of novel molecules as anti-SRBSDV agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Quantitative Proteomic Analysis of Germination of Nosema bombycis Spores under Extremely Alkaline Conditions.

    Science.gov (United States)

    Liu, Han; Chen, Bosheng; Hu, Sirui; Liang, Xili; Lu, Xingmeng; Shao, Yongqi

    2016-01-01

    The microsporidian Nosema bombycis is an obligate intracellular pathogen of the silkworm Bombyx mori , causing the epidemic disease Pebrine and extensive economic losses in sericulture. Although N. bombycis forms spores with rigid spore walls that protect against various environmental pressures, ingested spores germinate immediately under the extremely alkaline host gut condition (Lepidoptera gut pH > 10.5), which is a key developmental turning point from dormant state to infected state. However, to date this process remains poorly understood due to the complexity of the animal digestive tract and the lack of genetic tools for microsporidia. Here we show, using an in vitro spore germination model, how the proteome of N. bombycis changes during germination, analyse specific metabolic pathways employed in detail, and validate key functional proteins in vivo in silkworms. By a label-free quantitative proteomics approach that is directly based on high-resolution mass spectrometry (MS) data, a total of 1136 proteins were identified with high confidence, with 127 proteins being significantly changed in comparison to non-germinated spores. Among them, structural proteins including polar tube protein 1 and 3 and spore wall protein (SWP) 4 and 30 were found to be significantly down-regulated, but SWP9 significantly up-regulated. Some nucleases like polynucleotide kinase/phosphatase and flap endonucleases 1, together with a panel of hydrolases involved in protein degradation and RNA cleavage were overrepresented too upon germination, which implied that they might play important roles during spore germination. The differentially regulated trends of these genes were validated, respectively, by quantitative RT-PCR and 3 proteins of interest were confirmed by Western blotting analyses in vitro and in vivo . Furthermore, the pathway analysis showed that abundant up- and down-regulations appear involved in the glycolysis, pentose phosphate pathway, purine, and pyrimidine

  12. Quantitative proteomic analysis of germination of Nosema bombycis spores under extremely alkaline conditions

    Directory of Open Access Journals (Sweden)

    Yongqi Shao

    2016-09-01

    Full Text Available The microsporidian Nosema bombycis is an obligate intracellular pathogen of the silkworm Bombyx mori, causing the epidemic disease Pebrine and extensive economic losses in sericulture. Although N. bombycis forms spores with rigid spore walls that protect against various environmental pressures, ingested spores germinate immediately under the extremely alkaline host gut condition (Lepidoptera gut pH >10.5, which is a key developmental turning point from dormant state to infected state. However, to date this process remains poorly understood due to the complexity of the animal digestive tract and the lack of genetic tools for Microsporidia. Here we show, using an in vitro spore germination model, how the proteome of N. bombycis changes during germination, analyse specific metabolic pathways employed in detail, and validate key functional proteins in vivo in silkworms. By a label-free quantitative proteomics approach that is directly based on high-resolution mass spectrometry (MS data, a total of 1136 proteins were identified with high confidence, with 127 proteins being significantly changed in comparison to non-germinated spores. Among them, structural proteins including polar tube protein 1 and 3 and spore wall protein (SWP 4 and 30 were found to be significantly down-regulated, but SWP9 significantly up-regulated. Some nucleases like polynucleotide kinase/phosphatase and flap endonucleases 1, together with a panel of hydrolases involved in protein degradation and RNA cleavage were overrepresented too upon germination, which implied that they might play important roles during spore germination. The differentially regulated trends of these genes were validated respectively by quantitative RT-PCR and 3 proteins of interest were confirmed by Western blotting analyses in vitro and in vivo. Furthermore the pathway analysis showed that abundant up- and down-regulations appear involved in the glycolysis, pentose phosphate pathway, purine and

  13. Sensitivity of thermally treated Bacillus subtilis spores to subsequent irradiation

    International Nuclear Information System (INIS)

    Mostafa, S.A.; El-Zawahry, Y.A.; Awny, N.M.

    1986-01-01

    B. subtilis spores exposed to thermal treatment at 70 or 80 0 C for 1 hr were more sensitive to subsequent radiation exposure than non-heated spores. Deactivation of previously heated spores by increasing dose of 0-radiation followed an exponential function while, for non-heated spores a shoulder followed by exponential deactivation was noticed. Combined heat-radiation treatment exhibited a synergistic effect on spore deactivation at low irradiation doses, while at high irradiation doses, the effect was more or less additive. Added values of spore injury was higher for B. subtilis spores that received heat and radiation separately than the observed injury for spores that received combined treatment (heat followed by radiation). Results of spore deactivation and injury due to heat followed by radiation treatment are discussed in comparison to those of spores that received radiation-heat sequence

  14. Reflects the coat protein variability of apple mosaic virus host preference?

    Czech Academy of Sciences Publication Activity Database

    Grimová, L.; Winkowska, L.; Ryšánek, P.; Svoboda, P.; Petrzik, Karel

    2013-01-01

    Roč. 47, č. 1 (2013), s. 119-125 ISSN 0920-8569 Institutional support: RVO:60077344 Keywords : Positive selection tests * capsid protein * algae host Subject RIV: EE - Microbiology, Virology Impact factor: 1.837, year: 2013

  15. Decreased Bacterial Attachment and Protein Adsorption to Coatings Produced by Low Enegy Plasma Polymerization

    DEFF Research Database (Denmark)

    Andersen, T.E.; Kingshott, Peter; Benter, M.

    and instrumental setup was similar to that previously described [3]. Static bacteria attachment assay: Punched out pieces were placed in 24 well microtitre plates and quantification of bacterial adhesion was carried out using a method based on the assay by Christensen et al. [4], but substantially modified...... adsorption and bacteria attachment/colonization. This is emphasized by the fact that long dwelling urinary catheters, which is a typical silicone medical device, causes 5% per day incidence of urinary tract infection [1,2]. A demand therefore exists for surface modifications providing the silicone material...... with a surface less prone to the adsorption of biological matter. In the current study two different hydrophilic nanoscale coatings were produced by low energy plasma polymerization [3] and investigated· f()rl()w ... pr()tein adsorption and bacterial attachment properties. Methods were setup to enable...

  16. A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G

    Science.gov (United States)

    A surface enhanced Raman scattering (SERS) immunoassay for antibody detection in serum is described in the present work. The developed assay is conducted in solution and utilizes Au nanoparticles coated with the envelope (E) protein of West Nile Virus (WNV) as the SERS-active substrate and malachite...

  17. Epitope identification and in silico prediction of the specificity of antibodies binding to the coat proteins of Potato Virus Y strains

    NARCIS (Netherlands)

    Keller, H.J.H.G.; Pomp, H.; Bakker, J.; Schots, A.

    2005-01-01

    A phage library containing 2.7 × 10(9) randomly expressed peptides was used to determine the epitopes of three monoclonal antibodies that bind to the coat protein of Potato Virus Y. Construction of the consensus sequences for the peptides obtained after three selection rounds indicated that each

  18. The combined use of enamel matrix proteins and a tetracycline-coated expanded polytetrafluoroethylene barrier membrane in the treatment of intra-osseous defects

    NARCIS (Netherlands)

    Sipos, PM; Loos, BG; Abbas, F; Timmerman, MF; van der Velden, U

    Objectives: The purpose of this split-mouth study was to evaluate the clinical response of enamel matrix proteins (EMPs, Emdogain Gel((R))) in intra-osseous defects with or without a combined application of a tetracycline-coated expanded polytetrafluoroethylene barrier membrane (e-PTFE,

  19. The detection of recombinant, tuber necrosing isolates of Potato virus Y (PVYNTN) using a three-primer PCR based in the coat protein gene

    Czech Academy of Sciences Publication Activity Database

    Moravec, Tomáš; Čeřovská, Noemi; Boonham, N.

    2003-01-01

    Roč. 109, č. 1 (2003), s. 63-68 ISSN 0166-0934 R&D Projects: GA ČR GA522/98/1512; GA MZe QC1167 Institutional research plan: CEZ:AV0Z5038910 Keywords : Potato virus Y * Three primer PCR * Coat protein gene Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.826, year: 2003

  20. Alternative Excision Repair of Ultraviolet B- and C-Induced DNA Damage in Dormant and Developing Spores of Bacillus subtilis

    Science.gov (United States)

    Ramírez-Guadiana, Fernando H.; Barraza-Salas, Marcelo; Ramírez-Ramírez, Norma; Ortiz-Cortés, Mayte; Setlow, Peter

    2012-01-01

    The nucleotide excision repair (NER) and spore photoproduct lyase DNA repair pathways are major determinants of Bacillus subtilis spore resistance to UV radiation. We report here that a putative ultraviolet (UV) damage endonuclease encoded by ywjD confers protection to developing and dormant spores of B. subtilis against UV DNA damage. In agreement with its predicted function, a His6-YwjD recombinant protein catalyzed the specific incision of UV-irradiated DNA in vitro. The maximum expression of a reporter gene fusion to the ywjD opening reading frame occurred late in sporulation, and this maximal expression was dependent on the forespore-specific RNA polymerase sigma factor, σG. Although the absence of YwjD and/or UvrA, an essential protein of the NER pathway, sensitized developing spores to UV-C, this effect was lower when these cells were treated with UV-B. In contrast, UV-B but not UV-C radiation dramatically decreased the survival of dormant spores deficient in both YwjD and UvrA. The distinct range of lesions generated by UV-C and UV-B and the different DNA photochemistry in developing and dormant spores may cause these differences. We postulate that in addition to the UvrABC repair system, developing and dormant spores of B. subtilis also rely on an alternative excision repair pathway involving YwjD to deal with the deleterious effects of various UV photoproducts. PMID:22961846

  1. Changing folding and binding stability in a viral coat protein: a comparison between substitutions accessible through mutation and those fixed by natural selection.

    Science.gov (United States)

    Miller, Craig R; Lee, Kuo Hao; Wichman, Holly A; Ytreberg, F Marty

    2014-01-01

    Previous studies have shown that most random amino acid substitutions destabilize protein folding (i.e. increase the folding free energy). No analogous studies have been carried out for protein-protein binding. Here we use a structure-based model of the major coat protein in a simple virus, bacteriophage φX174, to estimate the free energy of folding of a single coat protein and binding of five coat proteins within a pentameric unit. We confirm and extend previous work in finding that most accessible substitutions destabilize both protein folding and protein-protein binding. We compare the pool of accessible substitutions with those observed among the φX174-like wild phage and in experimental evolution with φX174. We find that observed substitutions have smaller effects on stability than expected by chance. An analysis of adaptations at high temperatures suggests that selection favors either substitutions with no effect on stability or those that simultaneously stabilize protein folding and slightly destabilize protein binding. We speculate that these mutations might involve adjusting the rate of capsid assembly. At normal laboratory temperature there is little evidence of directional selection. Finally, we show that cumulative changes in stability are highly variable; sometimes they are well beyond the bounds of single substitution changes and sometimes they are not. The variation leads us to conclude that phenotype selection acts on more than just stability. Instances of larger cumulative stability change (never via a single substitution despite their availability) lead us to conclude that selection views stability at a local, not a global, level.

  2. Evaluating Composite Sampling Methods of Bacillus spores at Low Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.; Hutchison, Janine R.

    2016-10-13

    Restoring facility operations after the 2001 Amerithrax attacks took over three months to complete, highlighting the need to reduce remediation time. The most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite: a single cellulose sponge samples multiple coupons; 2) single medium multi-pass composite: a single cellulose sponge is used to sample multiple coupons; and 3) multi-medium post-sample composite: a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155CFU/cm2, respectively). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p-value < 0.0001) and coupon material (p-value = 0.0008). Recovery efficiency (RE) was higher overall using the post-sample composite (PSC) method compared to single medium composite from both clean and grime coated materials. RE with the PSC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, painted wall board, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but significantly lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when

  3. Improvement of Food Packaging-Related Properties of Whey Protein Isolate-Based Nanocomposite Films and Coatings by Addition of Montmorillonite Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2017-11-01

    Full Text Available In this study, the effects of the addition of montmorillonite (MMT nanoplatelets on whey protein isolate (WPI-based nanocomposite films and coatings were investigated. The main objective was the development of WPI-based MMT nanocomposites with enhanced barrier and mechanical properties. WPI-based nanocomposite cast films and coatings were prepared by dispersing 0% (reference sample, 3, 6, 9% (w/w protein MMT, or, depending on the protein concentration, also 12 and 15% (w/w protein MMT into native WPI-based dispersions, followed by subsequent denaturation during the drying and curing process. The natural MMT nanofillers could be randomly dispersed into film-forming WPI-based nanodispersions, displaying good compatibility with the hydrophilic biopolymer matrix. As a result, by addition of 15% (w/w protein MMT into 10% (w/w dispersion WPI-based cast films or coatings, the oxygen permeability (OP was reduced by 91% for glycerol-plasticized and 84% for sorbitol-plasticized coatings, water vapor transmission rate was reduced by 58% for sorbitol-plasticized cast films. Due to the addition of MMT nanofillers, the Young’s modulus and tensile strength improved by 315 and 129%, respectively, whereas elongation at break declined by 77% for glycerol-plasticized cast films. In addition, comparison of plasticizer type revealed that sorbitol-plasticized cast films were generally stiffer and stronger, but less flexible compared glycerol-plasticized cast films. Viscosity measurements demonstrated good processability and suitability for up-scaled industrial processes of native WPI-based nanocomposite dispersions, even at high-nanofiller loadings. These results suggest that the addition of natural MMT nanofillers into native WPI-based matrices to form nanocomposite films and coatings holds great potential to replace well-established, fossil-based packaging materials for at least certain applications such as oxygen barriers as part of multilayer flexible packaging

  4. A method for the determination of bacterial spore DNA content based on isotopic labelling, spore germination and diphenylamine assay; ploidy of spores of several Bacillus species

    International Nuclear Information System (INIS)

    Hauser, P.M.; Karamata, D.

    1992-01-01

    A reliable method for measuring the spore DNA content, based on radioactive DNA labelling, spore germination in absence of DNA replication and diphenylamine assay, was developed. The accuracy of the method, within 10 - 15%, is adequate for determining the number of chromosomes per spore, provided that the genome size is known. B subtilis spores were shown to be invariably monogenomic, while those of larger bacilli Bacillus megaterium, Bacillus cereus and Bacillus thuringiensis, often, if not invariably, contain two genomes. Attempts to modify the spore DNA content of B subtilis by altering the richness of the sporulation medium, the sporulation conditions (liquid or solid medium), or by mutation, were apparently unsuccessful. An increase of spore size with medium richness, not accompanied by an increase in DNA content, was observed. The implication of the apparently species-specific spore ploidy and the influence of the sporulation conditions on spore size and shape are discussed

  5. Proteomic characterization and evolutionary analyses of zona pellucida domain-containing proteins in the egg coat of the cephalochordate, Branchiostoma belcheri

    Directory of Open Access Journals (Sweden)

    Xu Qianghua

    2012-12-01

    Full Text Available Abstract Background Zona pellucida domain-containing proteins (ZP proteins have been identified as the principle constituents of the egg coat (EC of diverse metazoan taxa, including jawed vertebrates, urochordates and molluscs that span hundreds of millions of years of evolutionary divergence. Although ZP proteins generally contain the zona pellucida (ZP structural modules to fulfill sperm recognition and EC polymerization functions during fertilization, the primary sequences of the ZP proteins from the above-mentioned animal classes are drastically different, which makes it difficult to assess the evolutionary relationships of ZP proteins. To understand the origin of vertebrate ZP proteins, we characterized the egg coat components of Branchiostoma belcheri, an invertebrate species that belongs to the chordate subphylum Cephalochordata. Results Five ZP proteins (BbZP1-5 were identified by mass spectrometry analyses using the egg coat extracts from both unfertilized and fertilized eggs. In addition to the C-terminal ZP module in each of the BbZPs, the majority contain a low-density lipoprotein receptor domain and a von Willebrand factor type A (vWFA domain, but none possess an EGF-like domain that is frequently observed in the ZP proteins of urochordates. Fluorescence in situ hybridization and immuno-histochemical analyses of B. belcheri ovaries showed that the five BbZPs are synthesized predominantly in developing eggs and deposited around the extracellular space of the egg, which indicates that they are bona fide egg coat ZP proteins. BbZP1, BbZP3 and BbZP4 are significantly more abundant than BbZP2 and BbZP5 in terms of gene expression levels and the amount of mature proteins present on the egg coats. The major ZP proteins showed high polymorphism because multiple variants are present with different molecular weights. Sequence comparison and phylogenetic analysis between the ZP proteins from cephalochordates, urochordates and vertebrates

  6. Identification and Validation of Specific Markers of Bacillus anthracis Spores by Proteomics and Genomics Approaches*

    Science.gov (United States)

    Chenau, Jérôme; Fenaille, François; Caro, Valérie; Haustant, Michel; Diancourt, Laure; Klee, Silke R.; Junot, Christophe; Ezan, Eric; Goossens, Pierre L.; Becher, François

    2014-01-01

    Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof

  7. Whitefly-mediated transmission of cotton leaf curl Multan betasatellite: evidence for betasatellite encapsidation in coat protein of helper begomoviruses.

    Science.gov (United States)

    Tabein, S; Behjatnia, S A Akbar; Anabestani, A; Izadpanah, K

    2013-01-01

    Cotton leaf curl Multan betasatellite (CLCuMB) is responsible for symptom expression of a devastating disease of cotton in the Indian subcontinent. CLCuMB depends on helper virus replication-associated protein for its replication and on viral coat protein (CP) for its encapsidation. However, no direct evidence of encapsidation of CLCuMB in viral CP has been available. In the present study, non-viruliferous whiteflies were placed on tomato plants that had been agroinoculated with infectious clones of an Iranian isolate of tomato yellow leaf curl virus (TYLCV-[Ab]) and CLCuMB for an acquisition access period of 72 h and then transferred to healthy tomato seedlings at the 3- to 4-leaf stage. Typical symptoms of TYLCV-[Ab] appeared on inoculated seedlings 30-45 days post-inoculation. The presence of TYLCV-[Ab] and CLCuMB DNAs in symptomatic test plants and viruliferous whiteflies was confirmed by PCR analysis using specific primers and DIG Southern blotting. Furthermore, the possibility of CLCuMB DNA encapsidation in TYLCV-[Ab] CP within infected plants was examined by immunocapture PCR. The results showed that CLCuMB DNA was encapsidated in TYLCV-[Ab] CP. Whitefly-mediated transmission of CLCuMB in the presence of helper virus is additional evidence for encapsidation of CLCuMB by TYLCV-[Ab] CP.

  8. Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior

    NARCIS (Netherlands)

    Eijlander, R.T.; Abee, T.; Kuipers, O.P.

    2011-01-01

    Bacillus spores are a known cause of food spoilage and their increased resistance poses a major challenge in efficient elimination. Recent studies on bacterial cultures at the single cell level have revealed how minor differences in essential spore properties, such as core water content or germinant

  9. Bacterial spores in food : how phenotypic variability complicates prediction of spore properties and bacterial behavior

    NARCIS (Netherlands)

    Eijlander, Robyn T.; Abee, Tjakko; Kuipers, Oscar P.

    Bacillus spores are a known cause of food spoilage and their increased resistance poses a major challenge in efficient elimination. Recent studies on bacterial cultures at the single cell level have revealed how minor differences in essential spore properties, such as core water content or germinant

  10. Bacillus cereus spore damage recovery and diversity in spore germination and carbohydrate utilisation

    NARCIS (Netherlands)

    Warda, Alicja K.

    2016-01-01

    Bacterial spores are extremely robust survival vehicles that are highly resistant towards environmental stress conditions including heat, UV radiation and other stresses commonly applied during food production and preservation. Spores, including those of the toxin-producing food-borne human pathogen

  11. Bacillus cereus spore damage recovery and diversity in spore germination and carbohydrate utilisation

    NARCIS (Netherlands)

    Warda, Alicja K.

    2016-01-01

    Bacterial spores are extremely robust survival vehicles that are highly resistant towards environmental stress conditions including heat, UV radiation and other stresses commonly applied during food production and preservation. Spores, including those of the toxin-producing food-borne human

  12. Sputter deposited bioceramic coatings: surface characterisation and initial protein adsorption studies using surface-MALDI-MS

    DEFF Research Database (Denmark)

    Boyd, A. R.; Burke, G. A.; Duffy, H.

    2011-01-01

    Protein adsorption onto calcium phosphate (Ca–P) bioceramics utilised in hard tissue implant applications has been highlighted as one of the key events that influences the subsequent biological response, in vivo. This work reports on the use of surface-matrix assisted laser desorption ionisation ...

  13. Identification of Capsid/Coat Related Protein Folds and Their Utility for Virus Classification

    OpenAIRE

    Nasir, Arshan; Caetano-Anoll?s, Gustavo

    2017-01-01

    The viral supergroup includes the entire collection of known and unknown viruses that roam our planet and infect life forms. The supergroup is remarkably diverse both in its genetics and morphology and has historically remained difficult to study and classify. The accumulation of protein structure data in the past few years now provides an excellent opportunity to re-examine the classification and evolution of viruses. Here we scan completely sequenced viral proteomes from all genome types an...

  14. An isoform of eukaryotic initiation factor 4E from Chrysanthemum morifolium interacts with Chrysanthemum virus B coat protein.

    Science.gov (United States)

    Song, Aiping; Lou, Wanghuai; Jiang, Jiafu; Chen, Sumei; Sun, Zuxia; Guan, Zhiyong; Fang, Weimin; Teng, Nianjun; Chen, Fadi

    2013-01-01

    Eukaryotic translation initiation factor 4E (eIF4E) plays an important role in plant virus infection as well as the regulation of gene translation. Here, we describe the isolation of a cDNA encoding CmeIF(iso)4E (GenBank accession no. JQ904592), an isoform of eIF4E from chrysanthemum, using RACE PCR. We used the CmeIF(iso)4E cDNA for expression profiling and to analyze the interaction between CmeIF(iso)4E and the Chrysanthemum virus B coat protein (CVBCP). Multiple sequence alignment and phylogenetic tree analysis showed that the sequence similarity of CmeIF(iso)4E with other reported plant eIF(iso)4E sequences varied between 69.12% and 89.18%, indicating that CmeIF(iso)4E belongs to the eIF(iso)4E subfamily of the eIF4E family. CmeIF(iso)4E was present in all chrysanthemum organs, but was particularly abundant in the roots and flowers. Confocal microscopy showed that a transiently transfected CmeIF(iso)4E-GFP fusion protein distributed throughout the whole cell in onion epidermis cells. A yeast two hybrid assay showed CVBCP interacted with CmeIF(iso)4E but not with CmeIF4E. BiFC assay further demonstrated the interaction between CmeIF(iso)4E and CVBCP. Luminescence assay showed that CVBCP increased the RLU of Luc-CVB, suggesting CVBCP might participate in the translation of viral proteins. These results inferred that CmeIF(iso)4E as the cap-binding subunit eIF(iso)4F may be involved in Chrysanthemum Virus B infection in chrysanthemum through its interaction with CVBCP in spatial.

  15. An isoform of eukaryotic initiation factor 4E from Chrysanthemum morifolium interacts with Chrysanthemum virus B coat protein.

    Directory of Open Access Journals (Sweden)

    Aiping Song

    Full Text Available BACKGROUND: Eukaryotic translation initiation factor 4E (eIF4E plays an important role in plant virus infection as well as the regulation of gene translation. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe the isolation of a cDNA encoding CmeIF(iso4E (GenBank accession no. JQ904592, an isoform of eIF4E from chrysanthemum, using RACE PCR. We used the CmeIF(iso4E cDNA for expression profiling and to analyze the interaction between CmeIF(iso4E and the Chrysanthemum virus B coat protein (CVBCP. Multiple sequence alignment and phylogenetic tree analysis showed that the sequence similarity of CmeIF(iso4E with other reported plant eIF(iso4E sequences varied between 69.12% and 89.18%, indicating that CmeIF(iso4E belongs to the eIF(iso4E subfamily of the eIF4E family. CmeIF(iso4E was present in all chrysanthemum organs, but was particularly abundant in the roots and flowers. Confocal microscopy showed that a transiently transfected CmeIF(iso4E-GFP fusion protein distributed throughout the whole cell in onion epidermis cells. A yeast two hybrid assay showed CVBCP interacted with CmeIF(iso4E but not with CmeIF4E. BiFC assay further demonstrated the interaction between CmeIF(iso4E and CVBCP. Luminescence assay showed that CVBCP increased the RLU of Luc-CVB, suggesting CVBCP might participate in the translation of viral proteins. CONCLUSIONS/SIGNIFICANCE: These results inferred that CmeIF(iso4E as the cap-binding subunit eIF(iso4F may be involved in Chrysanthemum Virus B infection in chrysanthemum through its interaction with CVBCP in spatial.

  16. Dothistroma septosporum: spore production and weather conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, M.; Drapela, K.; Kankovsky, L.

    2012-11-01

    Dartmouth's septosporum, the causal agent of Dothistroma needle blight is a widespread fungus which infects more than 80 species of coniferous trees through the entire world. Spreading of the infection is strongly affected by climatic factors of each locality where it is recorded. We attempt to describe the concrete limiting climatic factors necessary for the releasing of conidia of D. septosporum and to find out the timing of its spore production within the year. For this purpose we used an automatic volumetric spore trap and an automatic meteorological station. We found that a minimum daily average temperature of 10 degree centigrade was necessary for any spore production, as well as a long period of high air humidity. The values obtained in the present study were a little bit higher than those previously published, which may arise questions about a possible changing trend of the behaviour in the development of the Dothistroma needle blight causal agent. We used autoregressive integrated moving average (ARIMA) models to predict the spore counts on the base of previous values of spore counts and dew point. For a locality from Hackerovka, the best ARIMA model was 1,0,0; and for a locality from Lanzhot, the best was 3,1,0. (Author) 19 refs.

  17. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyoun-Sub, E-mail: hyounlim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Jiryun, E-mail: jilyoon@naver.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Seo, Eun-Young, E-mail: sey22@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Moon, E-mail: moonlit51@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Vaira, Anna Maria, E-mail: a.vaira@ivv.cnr.it [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, Torino 10135 (Italy); Bae, Hanhong, E-mail: hanhongbae@ynu.ac.kr [School of Biotechnology, Yeungnam University, Geongsan 712-749 (Korea, Republic of); Jang, Chan-Yong, E-mail: sunbispirit@gmail.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Cheol Ho, E-mail: chlee1219@hanmail.net [Department of Chemical and Biological Engineering, Seokyoung University, Seoul 136-704 (Korea, Republic of); Kim, Hong Gi, E-mail: hgkim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Roh, Mark, E-mail: marksroh@gmail.com [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Laboratory of Floriculture and Plant Physiology, School of Bio-Resource Science, Dankook University, Cheonan, Chungnam 330-714 (Korea, Republic of); Hammond, John, E-mail: john.hammond@ars.usda.gov [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States)

    2014-03-15

    Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CP{sub SP}) with that from AltMV-Po (CP{sub Po}) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP{sub Po} [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CP{sub SP} but not CP{sub Po} interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CP{sub SP} than CP{sub Po} in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN. - Highlights: • Alternanthera mosaic virus CP is an elicitor of systemic necrosis in N. benthamiana. • Virus-induced systemic necrosis is enhanced at 15 °C compared to 25 °C. • Induction of systemic necrosis is dependent on as few as two CP amino acid residues. • These residues are at subunit interfaces within the same turn of the virion helix. • Inducer/non-inducer CPs interact differentially with a boron transporter protein.

  18. VeA of Aspergillus niger increases spore dispersing capacity by impacting conidiophore architecture

    NARCIS (Netherlands)

    Wang, Fengfeng; Dijksterhuis, Jan; Wyatt, Timon; Wösten, Han A B; Bleichrodt, Robert-Jan

    Aspergillus species are highly abundant fungi worldwide. Their conidia are among the most dominant fungal spores in the air. Conidia are formed in chains on the vesicle of the asexual reproductive structure called the conidiophore. Here, it is shown that the velvet protein VeA of Aspergillus niger

  19. Nodavirus Coat Protein Imposes Dodecahedral RNA Structure Independent of Nucleotide Sequence and Length†

    Science.gov (United States)

    Tihova, Mariana; Dryden, Kelly A.; Le, Thuc-vy L.; Harvey, Stephen C.; Johnson, John E.; Yeager, Mark; Schneemann, Anette

    2004-01-01

    The nodavirus Flock house virus (FHV) has a bipartite, positive-sense RNA genome that is packaged into an icosahedral particle displaying T=3 symmetry. The high-resolution X-ray structure of FHV has shown that 10 bp of well-ordered, double-stranded RNA are located at each of the 30 twofold axes of the virion, but it is not known which portions of the genome form these duplex regions. The regular distribution of double-stranded RNA in the interior of the virus particle indicates that large regions of the encapsidated genome are engaged in secondary structure interactions. Moreover, the RNA is restricted to a topology that is unlikely to exist during translation or replication. We used electron cryomicroscopy and image reconstruction to determine the structure of four types of FHV particles that differed in RNA and protein content. RNA-capsid interactions were primarily mediated via the N and C termini, which are essential for RNA recognition and particle assembly. A substantial fraction of the packaged nucleic acid, either viral or heterologous, was organized as a dodecahedral cage of duplex RNA. The similarity in tertiary structure suggests that RNA folding is independent of sequence and length. Computational modeling indicated that RNA duplex formation involves both short-range and long-range interactions. We propose that the capsid protein is able to exploit the plasticity of the RNA secondary structures, capturing those that are compatible with the geometry of the dodecahedral cage. PMID:14990708

  20. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Kristin N., E-mail: kparent@msu.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378 (United States); Tang, Jinghua; Cardone, Giovanni [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378 (United States); Gilcrease, Eddie B. [University of Utah School of Medicine, Division of Microbiology and Immunology, Department of Pathology, Salt Lake City, UT 84112 (United States); Janssen, Mandy E.; Olson, Norman H. [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378 (United States); Casjens, Sherwood R., E-mail: sherwood.casjens@path.utah.edu [University of Utah School of Medicine, Division of Microbiology and Immunology, Department of Pathology, Salt Lake City, UT 84112 (United States); Baker, Timothy S., E-mail: tsb@ucsd.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378 (United States); University of California, San Diego, Division of Biological Sciences, La Jolla, CA, 92093 (United States)

    2014-09-15

    CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 Escherichia coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the “HK97-fold” shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain (“I-domain”), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphology of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently. - Highlights: • Asymmetric and symmetric three-dimensional reconstructions of phage CUS-3 are presented. • CUS-3 major capsid protein has a conserved I-domain, which is found in all three categories of “P22-like phage”. • CUS-3 has very different tailspike receptor binding domain from those of P22 and Sf6. • The CUS-3 tailspike likely was acquired by horizontal gene transfer.

  1. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain

    International Nuclear Information System (INIS)

    Parent, Kristin N.; Tang, Jinghua; Cardone, Giovanni; Gilcrease, Eddie B.; Janssen, Mandy E.; Olson, Norman H.; Casjens, Sherwood R.; Baker, Timothy S.

    2014-01-01

    CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 Escherichia coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the “HK97-fold” shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain (“I-domain”), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphology of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently. - Highlights: • Asymmetric and symmetric three-dimensional reconstructions of phage CUS-3 are presented. • CUS-3 major capsid protein has a conserved I-domain, which is found in all three categories of “P22-like phage”. • CUS-3 has very different tailspike receptor binding domain from those of P22 and Sf6. • The CUS-3 tailspike likely was acquired by horizontal gene transfer

  2. Handling technique of spore-forming bacteria in radiation sterilization. 2. Determination of numbers and radiation resistance of spores

    International Nuclear Information System (INIS)

    Koshikawa, Tomihiko

    1994-01-01

    Stepwise ten-fold dilution of bacterial solution is required in the determination of bacterial spores. For this, the selection of diluted solution is important according to the purpose of experiment. First, the preparation of suspension of bacterial spores and selection of diluted solution are presented. Then, a method for determining the number of bacterial spores in materials is outlined in terms of dilution methods of bacterial solution (shaking and homogenization) and application method of diluted solution to the plating medium. Finally, a method for determining radiation resistance of spore-forming bacteria is explained according to the measurement conditions (suspension of bacterial spores and filters applied with bacterial spores). (N.K.)

  3. Handling technique of spore-forming bacteria in radiation sterilization. 2. Determination of numbers and radiation resistance of spores

    Energy Technology Data Exchange (ETDEWEB)

    Koshikawa, Tomihiko [Japan Radioisotope Association, Shiga (Japan). Koka Laboratory

    1994-12-01

    Stepwise ten-fold dilution of bacterial solution is required in the determination of bacterial spores. For this, the selection of diluted solution is important according to the purpose of experiment. First, the preparation of suspension of bacterial spores and selection of diluted solution are presented. Then, a method for determining the number of bacterial spores in materials is outlined in terms of dilution methods of bacterial solution (shaking and homogenization) and application method of diluted solution to the plating medium. Finally, a method for determining radiation resistance of spore-forming bacteria is explained according to the measurement conditions (suspension of bacterial spores and filters applied with bacterial spores). (N.K.).

  4. Mimicking Retention and Transport of Rotavirus and Adenovirus in Sand Media Using DNA-labeled, Protein-coated Silica Nanoparticles

    Science.gov (United States)

    Pang, Liping; Farkas, Kata; Bennett, Grant; Varsani, Arvind; Easingwood, Richard; Tilley, Richard; Nowostawska, Urszula; Lin, Susan

    2014-05-01

    Rotavirus (RoV) and adenovirus (AdV) are important viral pathogens for the risk analysis of drinking water. Despite this, little is known about their retention and transport behaviors in porous media (e.g. sand filtered used for water treatment and groundwater aquifers due to a lack of representative surrogates. In this study, we developed RoV and AdV surrogates by covalently coating 70-nm sized silica nanoparticles with specific proteins and a DNA marker for sensitive detection. Filtration experiments using beach sand columns demonstrated the similarity of the surrogates' concentrations, attachment, and filtration efficiencies to the target viruses. The surrogates showed the same magnitude of concentration reduction as the viruses. Conversely, MS2 phage (a traditional virus model) over predicted concentrations of AdV and RoV by 1- and 2-orders of magnitude, respectively. The surrogates remained stable in size, surface charge and DNA concentration for at least one year. They can be easily and rapidly detected at concentrations down to one particle per PCR reaction and are readily detectable in natural waters and even in effluent. With up-scaling validation in pilot trials, the surrogates can be a useful cost-effective new tool for studying virus retention and transport in porous media, e.g. for assessing filter efficiency in water and wastewater treatment, tracking virus migration in groundwater after effluent land disposal, and establishing safe setback distances for groundwater protection.

  5. Occurrence and Evolutionary Analysis of Coat Protein Gene Sequences of Iranian Isolates ofSugarcane mosaic virus.

    Science.gov (United States)

    Moradi, Zohreh; Nazifi, Ehsan; Mehrvar, Mohsen

    2017-06-01

    Sugarcane mosaic virus (SCMV) is one of the most damaging viruses infecting sugarcane, maize and some other graminaceous species around the world. To investigate the genetic diversity of SCMV in Iran, the coat protein (CP) gene sequences of 23 SCMV isolates from different hosts were determined. The nucleotide sequence identity among Iranian isolates was more than 96%. They shared nucleotide identities of 75.5-99.9% with those of other SCMV isolates available in GenBank, the highest with the Egyptian isolate EGY7-1 (97.5-99.9%). The results of phylogenetic analysis suggested five divergent evolutionary lineages that did not completely reflect the geographical origin or host plant of the isolates. Population genetic analysis revealed greater between-group than within-group evolutionary divergence values, further supporting the results of the phylogenetic analysis. Our results indicated that natural selection might have contributed to the evolution of isolates belonging to the five identified SCMV groups, with infrequent genetic exchanges occurring between them. Phylogenetic analyses and the estimation of genetic distance indicated that Iranian isolates have low genetic diversity. No recombination was found in the CP cistron of Iranian isolates and the CP gene was under negative selection. These findings provide a comprehensive analysis of the population structure and driving forces for the evolution of SCMV with implications for global exchange of sugarcane germplasm. Gene flow, selection and somehow homologous recombination were found to be the important evolutionary factors shaping the genetic structure of SCMV populations.

  6. Time-resolved solution X-ray scattering of tobacco mosaic virus coat protein: kinetics and structure of intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Potschka, M.; Kock, M.H.J.; Adams, M.L.; Schuster, T.M.

    1988-11-01

    The kinetics of assembly and disassembly of tobacco mosaic virus coat protein (TMVP) following temperature jumps have been studied by small-angle X-ray scattering and turbidimetry. The structures of the principal aggregates of TMVP oligomers (A protein), intermediate size (helix I) and large size helical rods (helix II), have been characterized by their average radii of gyration of thickness, cross section, and shape obtained from the corresponding regimes of the small-angle scattering pattern. This structural information was obtained within seconds after the temperature-induced initiation of either polymerization or depolymerization and allowed the authors to detect transient intermediates. This methodology made it possible to observe and characterize the structure of a principal intermediate. Taken together with other kinetic information, these data suggest that polymerization of TMVP under virus self-assembly conditions may proceed via a single-layered helical nucleus that contains about 20 subunits. Previous studies have shown that overshoot polymerization of TMVP can occur and result in metastable long helical viruslike rods which subsequently depolymerize and then form short helical rods, depending on the conditions of the final equilibrium state. The longer rods (helix II) are overshoot polymers which form within seconds and contain 17 1/3 subunits per turn (helix IIB), in contrast to the subunit packing arrangement of 16 1/3 subunits per turn found in the shorter helical rods (helix IA). The latter packing arrangement is the one found in TMV. An overall polymerization scheme is proposed for the formation of these two helical forms of TMVP.

  7. Recovery of heat treated Bacillus cereus spores is affected by matrix composition and factors with putative functions in damage repair

    Directory of Open Access Journals (Sweden)

    Alicja Katarzyna Warda

    2016-07-01

    Full Text Available The ability of spores to recover and grow out after food processing is affected by cellular factors and by the outgrowth conditions. In the current communication we studied the recovery and outgrowth of individually sorted spores in BHI and rice broth media and on agar plates using flow cytometry (FCM. We show that recovery of wet heat treated Bacillus cereus ATCC 14579 spores is affected by matrix composition with highest recovery in BHI broth or on rice agar plates, compared to BHI agar plates and rice broth. Data show that not only media composition but also its liquid or solid state affect the recovery of heat treated spores. To determine the impact of factors with putative roles in recovery of heat treated spores, specific genes previously shown to be highly expressed in outgrowing heat-treated spores were selected for mutant construction. Spores of nine B. cereus ATCC 14579 deletion mutants were obtained and their recovery from wet heat treatment was evaluated using BHI and rice broth and agar plates. Deletion mutant spores showed different capacity to recover from heat treatment compared to wild type with the most pronounced effect for a mutant lacking BC5242, a gene encoding a membrane protein with C2C2 zinc finger which resulted in over 95% reduction in recovery compared to the wild type in BHI broth. Notably, similar relative performance of wild type and mutants was observed using the other recovery conditions.We obtained insights on the impact of matrix composition and state on recovery of individually sorted heat treated spores and identified cellular factors with putative roles in this process. These results may provide leads for future developments in design of more efficient combined preservation treatments.

  8. Recovery of Heat Treated Bacillus cereus Spores Is Affected by Matrix Composition and Factors with Putative Functions in Damage Repair.

    Science.gov (United States)

    Warda, Alicja K; Tempelaars, Marcel H; Abee, Tjakko; Nierop Groot, Masja N

    2016-01-01

    The ability of spores to recover and grow out after food processing is affected by cellular factors and by the outgrowth conditions. In the current communication we studied the recovery and outgrowth of individually sorted spores in BHI and rice broth media and on agar plates using flow cytometry. We show that recovery of wet heat treated Bacillus cereus ATCC 14579 spores is affected by matrix composition with highest recovery in BHI broth or on rice agar plates, compared to BHI agar plates and rice broth. Data show that not only media composition but also its liquid or solid state affect the recovery of heat treated spores. To determine the impact of factors with putative roles in recovery of heat treated spores, specific genes previously shown to be highly expressed in outgrowing heat-treated spores were selected for mutant construction. Spores of nine B. cereus ATCC 14579 deletion mutants were obtained and their recovery from wet heat treatment was evaluated using BHI and rice broth and agar plates. Deletion mutant spores showed different capacity to recover from heat treatment compared to wild type with the most pronounced effect for a mutant lacking BC5242, a gene encoding a membrane protein with C2C2 zinc finger which resulted in over 95% reduction in recovery compared to the wild type in BHI broth. Notably, similar relative performance of wild type and mutants was observed using the other recovery conditions. We obtained insights on the impact of matrix composition and state on recovery of individually sorted heat treated spores and identified cellular factors with putative roles in this process. These results may provide leads for future developments in design of more efficient combined preservation treatments.

  9. Protein-Carbohydrate Interaction between Sperm and the Egg-Coating Envelope and Its Regulation by Dicalcin, a Xenopus laevis Zona Pellucida Protein-Associated Protein

    Directory of Open Access Journals (Sweden)

    Naofumi Miwa

    2015-05-01

    Full Text Available Protein-carbohydrate interaction regulates multiple important processes during fertilization, an essential biological event where individual gametes undergo intercellular recognition to fuse and generate a zygote. In the mammalian female reproductive tract, sperm temporarily adhere to the oviductal epithelium via the complementary interaction between carbohydrate-binding proteins on the sperm membrane and carbohydrates on the oviductal cells. After detachment from the oviductal epithelium at the appropriate time point following ovulation, sperm migrate and occasionally bind to the extracellular matrix, called the zona pellucida (ZP, which surrounds the egg, thereafter undergoing the exocytotic acrosomal reaction to penetrate the envelope and to reach the egg plasma membrane. This sperm-ZP interaction also involves the direct interaction between sperm carbohydrate-binding proteins and carbohydrates within the ZP, most of which have been conserved across divergent species from mammals to amphibians and echinoderms. This review focuses on the carbohydrate-mediated interaction of sperm with the female reproductive tract, mainly the interaction between sperm and the ZP, and introduces the fertilization-suppressive action of dicalcin, a Xenopus laevis ZP protein-associated protein. The action of dicalcin correlates significantly with a dicalcin-dependent change in the lectin-staining pattern within the ZP, suggesting a unique role of dicalcin as an inherent protein that is capable of regulating the affinity between the lectin and oligosaccharides attached on its target glycoprotein.

  10. Dendritic Cells Endocytose Bacillus Anthracis Spores: Implications for Anthrax Pathogenesis

    National Research Council Canada - National Science Library

    Brittingham, Katherine C; Ruthel, Gordon; Panchal, Rekha G; Fuller, Claudette L; Ribot, Wilson J

    2005-01-01

    Phagocytosis of inhaled Bacillus anthracis spores and subsequent trafficking to lymph nodes are decisive events in the progression of inhaled anthrax because they initiate germination and dissemination of spores...

  11. Cucumber mosaic virus coat protein modulates the accumulation of 2b protein and antiviral silencing that causes symptom recovery in planta.

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Zhang

    2017-07-01

    Full Text Available Shoot apical meristems (SAM are resistant to most plant viruses due to RNA silencing, which is restrained by viral suppressors of RNA silencing (VSRs to facilitate transient viral invasion of the SAM. In many cases chronic symptoms and long-term virus recovery occur, but the underlying mechanisms are poorly understood. Here, we found that wild-type Cucumber mosaic virus (CMVWT invaded the SAM transiently, but was subsequently eliminated from the meristems. Unexpectedly, a CMV mutant, designated CMVRA that harbors an alanine substitution in the N-terminal arginine-rich region of the coat protein (CP persistently invaded the SAM and resulted in visible reductions in apical dominance. Notably, the CMVWT virus elicited more potent antiviral silencing than CMVRA in newly emerging leaves of infected plants. However, both viruses caused severe symptoms with minimal antiviral silencing effects in the Arabidopsis mutants lacking host RNA-DEPENDENT RNA POLYMERASE 6 (RDR6 or SUPPRESSOR OF GENE SILENCING 3 (SGS3, indicating that CMVWT induced host RDR6/SGS3-dependent antiviral silencing. We also showed that reduced accumulation of the 2b protein is elicited in the CMVWT infection and consequently rescues potent antiviral RNA silencing. Indeed, co-infiltration assays showed that the suppression of posttranscriptional gene silencing mediated by 2b is more severely compromised by co-expression of CPWT than by CPRA. We further demonstrated that CPWT had high RNA binding activity leading to translation inhibition in wheat germ systems, and CPWT was associated with SGS3 into punctate granules in vivo. Thus, we propose that the RNAs bound and protected by CPWT possibly serve as templates of RDR6/SGS3 complexes for siRNA amplification. Together, these findings suggest that the CMV CP acts as a central hub that modulates antiviral silencing and VSRs activity, and mediates viral self-attenuation and long-term symptom recovery.

  12. Eps15R is a tyrosine kinase substrate with characteristics of a docking protein possibly involved in coated pits-mediated internalization

    DEFF Research Database (Denmark)

    Coda, L; Salcini, A E; Confalonieri, S

    1998-01-01

    eps15R was identified because of its relatedness to eps15, a gene encoding a tyrosine kinase substrate bearing a novel protein-protein interaction domain, called EH. In this paper, we report a biochemical characterization of the eps15R gene product(s). In NIH-3T3 cells, three proteins of 125, 108......, and 76 kDa were specifically recognized by anti-eps15R sera. The 125-kDa species is a bona fide product of the eps15R gene, whereas p108 and p76 are most likely products of alternative splicing events. Eps15R protein(s) are tyrosine-phosphorylated following epidermal growth factor receptor activation...... in NIH-3T3 cells overexpressing the receptor, even at low levels of receptor occupancy, thus behaving as physiological substrates. A role for eps15R in clathrin-mediated endocytosis is suggested by its localization in plasma membrane-coated pits and in vivo association to the coated pits' adapter protein...

  13. Fifth international fungus spore conference. [Abstracts]: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  14. Measurement of Metabolic Activity in Dormant Spores of Bacillus Species

    Science.gov (United States)

    2015-01-14

    SECURITY CLASSIFICATION OF: Spores of Bacillus megaterium and Bacillus subtilis were harvested shortly after release from sporangia, incubated under...Dec-2014 Approved for Public Release; Distribution Unlimited Final Report: Measurement of Metabolic Activity in Dormant Spores of Bacillus Species...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 spores, Bacillus , spore dormancy, 3-phosphoglycerate REPORT DOCUMENTATION PAGE 11

  15. Dominant Red Coat Color in Holstein Cattle Is Associated with a Missense Mutation in the Coatomer Protein Complex, Subunit Alpha (COPA) Gene.

    Science.gov (United States)

    Dorshorst, Ben; Henegar, Corneliu; Liao, Xiaoping; Sällman Almén, Markus; Rubin, Carl-Johan; Ito, Shosuke; Wakamatsu, Kazumasa; Stothard, Paul; Van Doormaal, Brian; Plastow, Graham; Barsh, Gregory S; Andersson, Leif

    2015-01-01

    Coat color in Holstein dairy cattle is primarily controlled by the melanocortin 1 receptor (MC1R) gene, a central determinant of black (eumelanin) vs. red/brown pheomelanin synthesis across animal species. The major MC1R alleles in Holsteins are Dominant Black (MC1RD) and Recessive Red (MC1Re). A novel form of dominant red coat color was first observed in an animal born in 1980. The mutation underlying this phenotype was named Dominant Red and is epistatic to the constitutively activated MC1RD. Here we show that a missense mutation in the coatomer protein complex, subunit alpha (COPA), a gene with previously no known role in pigmentation synthesis, is completely associated with Dominant Red in Holstein dairy cattle. The mutation results in an arginine to cysteine substitution at an amino acid residue completely conserved across eukaryotes. Despite this high level of conservation we show that both heterozygotes and homozygotes are healthy and viable. Analysis of hair pigment composition shows that the Dominant Red phenotype is similar to the MC1R Recessive Red phenotype, although less effective at reducing eumelanin synthesis. RNA-seq data similarly show that Dominant Red animals achieve predominantly pheomelanin synthesis by downregulating genes normally required for eumelanin synthesis. COPA is a component of the coat protein I seven subunit complex that is involved with retrograde and cis-Golgi intracellular coated vesicle transport of both protein and RNA cargo. This suggests that Dominant Red may be caused by aberrant MC1R protein or mRNA trafficking within the highly compartmentalized melanocyte, mimicking the effect of the Recessive Red loss of function MC1R allele.

  16. Enhanced ELISA using a handheld pH meter and enzyme-coated microparticles for the portable, sensitive detection of proteins.

    Science.gov (United States)

    Zhang, Yun; Yang, Jiani; Nie, Jinfang; Yang, Juanhua; Gao, Dong; Zhang, Lang; Li, Jianping

    2016-02-28

    This work describes a general methodology for enhanced enzyme-linked immunosorbent assay (ELISA) that integrates enzyme-coated microparticle probes for robust yet highly efficient signal amplification and a handheld pH meter for a simple, portable, quantitative readout. Its utility is well demonstrated with the detection of the target protein with a 14-fold enhancement of sensitivity in comparison with the conventional optical ELISA.

  17. Dominant Red Coat Color in Holstein Cattle Is Associated with a Missense Mutation in the Coatomer Protein Complex, Subunit Alpha (COPA Gene.

    Directory of Open Access Journals (Sweden)

    Ben Dorshorst

    Full Text Available Coat color in Holstein dairy cattle is primarily controlled by the melanocortin 1 receptor (MC1R gene, a central determinant of black (eumelanin vs. red/brown pheomelanin synthesis across animal species. The major MC1R alleles in Holsteins are Dominant Black (MC1RD and Recessive Red (MC1Re. A novel form of dominant red coat color was first observed in an animal born in 1980. The mutation underlying this phenotype was named Dominant Red and is epistatic to the constitutively activated MC1RD. Here we show that a missense mutation in the coatomer protein complex, subunit alpha (COPA, a gene with previously no known role in pigmentation synthesis, is completely associated with Dominant Red in Holstein dairy cattle. The mutation results in an arginine to cysteine substitution at an amino acid residue completely conserved across eukaryotes. Despite this high level of conservation we show that both heterozygotes and homozygotes are healthy and viable. Analysis of hair pigment composition shows that the Dominant Red phenotype is similar to the MC1R Recessive Red phenotype, although less effective at reducing eumelanin synthesis. RNA-seq data similarly show that Dominant Red animals achieve predominantly pheomelanin synthesis by downregulating genes normally required for eumelanin synthesis. COPA is a component of the coat protein I seven subunit complex that is involved with retrograde and cis-Golgi intracellular coated vesicle transport of both protein and RNA cargo. This suggests that Dominant Red may be caused by aberrant MC1R protein or mRNA trafficking within the highly compartmentalized melanocyte, mimicking the effect of the Recessive Red loss of function MC1R allele.

  18. Dominant Red Coat Color in Holstein Cattle Is Associated with a Missense Mutation in the Coatomer Protein Complex, Subunit Alpha (COPA) Gene

    Science.gov (United States)

    Dorshorst, Ben; Henegar, Corneliu; Liao, Xiaoping; Sällman Almén, Markus; Rubin, Carl-Johan; Ito, Shosuke; Wakamatsu, Kazumasa; Stothard, Paul; Van Doormaal, Brian; Plastow, Graham; Barsh, Gregory S.; Andersson, Leif

    2015-01-01

    Coat color in Holstein dairy cattle is primarily controlled by the melanocortin 1 receptor (MC1R) gene, a central determinant of black (eumelanin) vs. red/brown pheomelanin synthesis across animal species. The major MC1R alleles in Holsteins are Dominant Black (MC1RD) and Recessive Red (MC1Re). A novel form of dominant red coat color was first observed in an animal born in 1980. The mutation underlying this phenotype was named Dominant Red and is epistatic to the constitutively activated MC1RD. Here we show that a missense mutation in the coatomer protein complex, subunit alpha (COPA), a gene with previously no known role in pigmentation synthesis, is completely associated with Dominant Red in Holstein dairy cattle. The mutation results in an arginine to cysteine substitution at an amino acid residue completely conserved across eukaryotes. Despite this high level of conservation we show that both heterozygotes and homozygotes are healthy and viable. Analysis of hair pigment composition shows that the Dominant Red phenotype is similar to the MC1R Recessive Red phenotype, although less effective at reducing eumelanin synthesis. RNA-seq data similarly show that Dominant Red animals achieve predominantly pheomelanin synthesis by downregulating genes normally required for eumelanin synthesis. COPA is a component of the coat protein I seven subunit complex that is involved with retrograde and cis-Golgi intracellular coated vesicle transport of both protein and RNA cargo. This suggests that Dominant Red may be caused by aberrant MC1R protein or mRNA trafficking within the highly compartmentalized melanocyte, mimicking the effect of the Recessive Red loss of function MC1R allele. PMID:26042826

  19. Geraniol biotransformation-pathway in spores of Penicillium digitatum

    NARCIS (Netherlands)

    Wolken, W.A.M.; Werf, M.J. van der

    2001-01-01

    Spores of Penicillium digitatum ATCC 201167 transform geraniol, nerol, citral, and geranic acid into methylheptenone. Spore extracts of P. digitatum convert geraniol and nerol NAD+-dependently into citral. Spore extract also converts citral NAD+-dependently into geranic acid. Furthermore, a novel

  20. Imaging bacterial spores by soft-x-ray microscopy

    International Nuclear Information System (INIS)

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-01-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark

  1. Imaging bacterial spores by soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Ford, T.W. [Univ. of London, Surrey (United Kingdom); Judge, J. [Unilever plc, Sharnbrook (United Kingdom)] [and others

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  2. Spore Preparation Protocol for Enrichment of Clostridia from Murine Intestine.

    Science.gov (United States)

    Velazquez, Eric M; Rivera-Chávez, Fabian; Bäumler, Andreas J

    2017-05-20

    In recent years, many spore-forming commensal Clostridia found in the gut have been discovered to promote host physiology, immune development, and protection against infections. We provide a detailed protocol for rapid enrichment of spore-forming bacteria from murine intestine. Briefly, contents from the intestinal cecum are collected aerobically, diluted and finally treated with chloroform to enrich for Clostridia spores.

  3. Phospholipase Cδ regulates germination of Dictyostelium spores

    NARCIS (Netherlands)

    Dijken, Peter van; Haastert, Peter J.M. van

    2001-01-01

    Background: Many eukaryotes, including plants and fungi make spores that resist severe environmental stress. The micro-organism Dictyostelium contains a single phospholipase C gene (PLC); deletion of the gene has no effect on growth, cell movement and differentiation. In this report we show that PLC

  4. Pollen and spore monitoring in the world.

    Science.gov (United States)

    Buters, J T M; Antunes, C; Galveias, A; Bergmann, K C; Thibaudon, M; Galán, C; Schmidt-Weber, C; Oteros, J

    2018-01-01

    Ambient air quality monitoring is a governmental duty that is widely carried out in order to detect non-biological ("chemical") components in ambient air, such as particles of world and to create an interactive visualization of their distribution. The method employed to collect information was based on: (a) a review of the recent and historical bibliography related to pollen and fungal spore monitoring, and (b) personal surveys of the managers of national and regional monitoring networks. The interactive application was developed using the R programming language. We have created an inventory of the active pollen and spore monitoring stations in the world. There are at least 879 active pollen monitoring stations in the world, most of which are in Europe (> 500). The prevalent monitoring method is based on the Hirst principle (> 600 stations). The inventory is visualised as an interactive and on-line map. It can be searched, its appearance can be adjusted to the users' needs and it is updated regularly, as new stations or changes to those that already exist can be submitted online. The map shows the current situation of pollen and spore monitoring and facilitates collaboration among those individuals who are interested in pollen and spore counts. It might also help to improve the monitoring of biological particles up to the current level employed for non-biological components.

  5. Detecting bacterial spores in soup manufacturing

    NARCIS (Netherlands)

    van Zuijlen, A.C.M.; Oomes, S.J.C.M.; Vos, P.; Brul, S.

    2009-01-01

    Spores from mesophilic aerobic sporeforming bacteria (Bacillus) are sometimes able to survive the thermal process of commercial sterile products and sporadically cause spoilage or food poisoning. Because of an increasing demand for more fresh products, ideally the processing temperatures should be

  6. Modeling to control spores in raw milk

    NARCIS (Netherlands)

    Vissers, M.

    2007-01-01

    A modeling approach was used to identify measures at the farm that reduce transmission of microorganisms to raw milk. Butyric acid bacteria (BAB) and Bacillus cereus were used as case-studies. Minimizing the concentration of BAB spores in raw milk is important to prevent late-blowing of Gouda-type

  7. On some white-spored Geoglossaceae

    NARCIS (Netherlands)

    Maas Geesteranus, R.A.

    1964-01-01

    Some genera of Geoglossaceae, characterized by colourless spores and positive iodine reaction of the ascus pore, are compared with respect to the structure of the stipe. Ochroglossum is reduced to the synonymy of Microglossum. Mitrula is regarded as a monotypic genus. The generic name Heyderia is

  8. Paleozoic in situ spores and pollen. Lycopsida

    Czech Academy of Sciences Publication Activity Database

    Bek, Jiří

    2017-01-01

    Roč. 296, 1/6 (2017), s. 1-111 ISSN 0375-0299 R&D Projects: GA ČR GAP210/12/2053 Institutional support: RVO:67985831 Keywords : in situ spores * reproductive organs * Lycopsida * Paleozoic Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Paleontology Impact factor: 1.333, year: 2016

  9. Adhesion of Porphyromonas gingivalis and Tannerella forsythia to dentin and titanium with sandblasted and acid etched surface coated with serum and serum proteins - An in vitro study.

    Science.gov (United States)

    Eick, Sigrun; Kindblom, Christian; Mizgalska, Danuta; Magdoń, Anna; Jurczyk, Karolina; Sculean, Anton; Stavropoulos, Andreas

    2017-03-01

    To evaluate the adhesion of selected bacterial strains incl. expression of important virulence factors at dentin and titanium SLA surfaces coated with layers of serum proteins. Dentin- and moderately rough SLA titanium-discs were coated overnight with human serum, or IgG, or human serum albumin (HSA). Thereafter, Porphyromonas gingivalis, Tannerella forsythia, or a six-species mixture were added for 4h and 24h. The number of adhered bacteria (colony forming units; CFU) was determined. Arg-gingipain activity of P. gingivalis and mRNA expressions of P. gingivalis and T. forsythia proteases and T. forsythia protease inhibitor were measured. Coating specimens never resulted in differences exceeding 1.1 log10 CFU, comparing to controls, irrespective the substrate. Counts of T. forsythia were statistically significantly higher at titanium than dentin, the difference was up to 3.7 log10 CFU after 24h (p=0.002). No statistically significant variation regarding adhesion of the mixed culture was detected between surfaces or among coatings. Arg-gingipain activity of P. gingivalis was associated with log10 CFU but not with the surface or the coating. Titanium negatively influenced mRNA expression of T. forsythia protease inhibitor at 24h (p=0.026 uncoated, p=0.009 with serum). The present findings indicate that: a) single bacterial species (T. forsythia) can adhere more readily to titanium SLA than to dentin, b) low expression of T. forsythia protease inhibitor may influence the virulence of the species on titanium SLA surfaces in comparison with teeth, and c) surface properties (e.g. material and/or protein layers) do not appear to significantly influence multi-species adhesion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Inhibiting Inosine Hydrolase and Alanine Racemase to Enhance the Germination of Bacillus anthracis Sterne Spores: Potential Spore Decontamination Strategies

    Science.gov (United States)

    2015-06-19

    2015): << Inhibiting inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores: potential spore...display a currently valid OMB control number. 1. REPORT DATE 02 OCT 2015 2. REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE Inhibiting...inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores potential spore decontamination strategies 5a

  11. Minor Coat and Heat Shock Proteins Are Involved in the Binding of Citrus Tristeza Virus to the Foregut of Its Aphid Vector, Toxoptera citricida.

    Science.gov (United States)

    Killiny, N; Harper, S J; Alfaress, S; El Mohtar, C; Dawson, W O

    2016-11-01

    Vector transmission is a critical stage in the viral life cycle, yet for most plant viruses how they interact with their vector is unknown or is explained by analogy with previously described relatives. Here we examined the mechanism underlying the transmission of citrus tristeza virus (CTV) by its aphid vector, Toxoptera citricida, with the objective of identifying what virus-encoded proteins it uses to interact with the vector. Using fluorescently labeled virions, we demonstrated that CTV binds specifically to the lining of the cibarium of the aphid. Through in vitro competitive binding assays between fluorescent virions and free viral proteins, we determined that the minor coat protein is involved in vector interaction. We also found that the presence of two heat shock-like proteins, p61 and p65, reduces virion binding in vitro Additionally, treating the dissected mouthparts with proteases did not affect the binding of CTV virions. In contrast, chitinase treatment reduced CTV binding to the foregut. Finally, competition with glucose, N-acetyl-β-d-glucosamine, chitobiose, and chitotriose reduced the binding. These findings together suggest that CTV binds to the sugar moieties of the cuticular surface of the aphid cibarium, and the binding involves the concerted activity of three virus-encoded proteins. Limited information is known about the specific interactions between citrus tristeza virus and its aphid vectors. These interactions are important for the process of successful transmission. In this study, we localized the CTV retention site as the cibarium of the aphid foregut. Moreover, we demonstrated that the nature of these interactions is protein-carbohydrate binding. The viral proteins, including the minor coat protein and two heat shock proteins, bind to sugar moieties on the surface of the foregut. These findings will help in understanding the transmission mechanism of CTV by the aphid vector and may help in developing control strategies which interfere

  12. A Streptomyces-specific member of the metallophosphatase superfamily contributes to spore dormancy and interaction with Aspergillus proliferans.

    Science.gov (United States)

    Lamp, Jessica; Weber, Maren; Cingöz, Gökhan; Ortiz de Orué Lucana, Darío; Schrempf, Hildgund

    2013-05-01

    We have identified, cloned and characterized a formerly unknown protein from Streptomyces lividans spores. The deduced protein belongs to a novel member of the metallophosphatase superfamily and contains a phosphatase domain and predicted binding sites for divalent ions. Very close relatives are encoded in the genomic DNA of many different Streptomyces species. As the deduced related homologues diverge from other known phosphatase types, we named the protein MptS (metallophosphatase type from Streptomyces). Comparative physiological and biochemical investigations and analyses by fluorescence microscopy of the progenitor strain, designed mutants carrying either a disruption of the mptS gene or the reintroduced gene as fusion with histidine codons or the egfp gene led to the following results: (i) the mptS gene is transcribed in the course of aerial mycelia formation. (ii) The MptS protein is produced during the late stages of growth, (iii) accumulates within spores, (iv) functions as an active enzyme that releases inorganic phosphate from an artificial model substrate, (v) is required for spore dormancy and (vi) MptS supports the interaction amongst Streptomyces lividans spores with conidia of the fungus Aspergillus proliferans. We discuss the possible role(s) of MptS-dependent enzymatic activity and the implications for spore biology. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Biocatalytic methanolysis activities of cross-linked protein-coated microcrystalline lipase toward esterification/transesterification of relevant palm products.

    Science.gov (United States)

    Raita, Marisa; Laosiripojana, Navadol; Champreda, Verawat

    2015-03-01

    Biocatalysis by immobilized lipase is an efficient alternative process for conversion of crude vegetable oil with high free fatty acid content to biodiesel, which is the limit of the conventional alkaline-catalyzed reaction. In this study, influences of solid-state organic and inorganic buffer core matrices with different pKa on catalytic performance of cross-linked protein coated microcrystalline biocatalysts prepared from Thermomyces lanuginosus lipase (CL-PCMC-LIP) toward esterification of palmitic acid (PA), transesterification of refined palm oil (RPO), and co-ester/transesterification of crude palm oil (CPO) to fatty acid methyl ester (FAME) was studied. Glycine, CAPSO (3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid), and TAPS ([(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]-1-propanesulfonic acid) were shown to be potent core matrices for these reactions. The optimal reaction contained 4:1 [methanol]/[fatty acid] molar equivalence ratio with 20% (w/w) CL-PCMC-LIP on glycine in the presence of tert-butanol as a co-solvent. Deactivation effect of glycerol on the biocatalyst reactive surface was shown by FTIR, which could be alleviated by increasing co-solvent content. The maximal FAME yields from PA, RPO, and CPO reached 97.6, 94.9, and 95.5%, respectively on a molar basis under the optimum conditions after incubation at 50°C for 6h. The biocatalyst retained >80% activity after recycling in five consecutive batches. The work demonstrates the potential of CL-PCMC-LIP on one-step conversion of inexpensive crude fatty acid-rich feedstock to biodiesel. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Preparation of nitrilotriacetic acid/Co2+-linked, silica/boron-coated magnetite nanoparticles for purification of 6 x histidine-tagged proteins.

    Science.gov (United States)

    Liao, Yiqun; Cheng, Yangjian; Li, Qingge

    2007-03-02

    In this report, we describe the preparation of novel nitrilotriacetic acid/Co2+-linked, silica/boron-coated magnetite nanoparticles for purification of 6 x His-tagged proteins. The nanoparticles were approximately 200 nm in size and were stable against hydrochloric acid and had negligible non-specific binding for protein. Elimination of non-specific binding by nucleic acids was readily achieved by digestion of samples with DNase and RNase. The modified nanoparticles were used to purify two model proteins: one had a C-terminal 6 x His tag, and the other had an internal 6 x His tag. Both proteins were purified within one hour into single band purity on sodium dodecyl sulfate-polyacrylamide electrophoresis gel.

  15. Processing and Validation of Whey-Protein-Coated Films and Laminates at Semi-Industrial Scale as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    E. Bugnicourt

    2013-01-01

    Full Text Available A biopolymer coating for plastic films was formulated based on whey protein, and its potential to replace current synthetic oxygen barrier layers used in food packaging such as ethylene vinyl alcohol copolymers (EVOH was tested. The whey-coating application was performed at semi-industrial scale. High barrier to oxygen with transmission rate down to ranges of 1 cm3 (STP m−2 d−1 bar−1 at and 50% relative humidity (r.h. but interesting humidity barrier down to ranges of 3 g m−2 d−1 (both normalized to 100 μm thickness were reached, outperforming most existing biopolymers. Coated films were validated for storing various food products showing that the shelf life and sensory attributes were maintained similar to reference packaging films while complying with food safety regulations. The developed whey coating could be enzymatically removed within 2 hours and is therefore compatible with plastic recycling operations to allow multilayer films to become recyclable by separating the other combined layers. A life cycle assessment was performed showing a significant reduction in the environmental impact of the packaging thanks in particular to the possibility of recycling materials as opposed to incinerating those containing EVOH or polyamide (PA, but due to the use of biosourced raw materials.

  16. Effect of individual or combined treatment by γ-irradiation or temperature (high or low) on bacillus subtilis spores and its application for sterilization of ground beef

    International Nuclear Information System (INIS)

    El-Zawahry, Y.A.; Mostafa, S.A.; Awny, N.M.

    1986-01-01

    The combination of two lethal agents such as irradiation and temperature (high or sub zero) resulted in synergistic death or B. subtilis spores (as indicated by decrease in the thermal D-value). The extent of this synergism in killing a spore population depended mainly on the sequence on application of the two physical agents. Irradiation-temperature (high or sub zero) sequence killed more but injured less B. subtilis spores than temperature irradiation sequence or irradiation and temperature applied separately. Storage at -20 0 C killed more spores than storage at -2 0 C if carried after irradiation, while the reverse was true of storage was prior irradiation. An irradiation dose of 8 KGY followed by thermal exposure to 70 0 C for 1 hr is suggested for the sterilization of ground beef. Irradiation induced certain quantitative changes on the amino-N, protein-N, RNA and DNA of the first subcultures of irradiated spores with stimulatory effect at low irradiation doses and inhibitory effect at the high irradiation doses. This might explain the increased sensitivity of irradiated spores to subsequent exposure to unfavourable temperature (high or sub zero). Exposure of B. subtilis spore to 70 0 C induced a stimulation in the amino- and protein-N of the resulting cells while exposure to 80 0 C resulted in a significant decrease in the amino-N. The protein-N remained more or less the same

  17. [Bacterial spore--a new vaccine vehicle--a review].

    Science.gov (United States)

    Wang, Yanchun; Zhang, Zhaoshan

    2008-03-01

    Bacterial spores are robust and dormant life forms with formidable resistance properties. Spores of the genus Bacillus have been used for a long time as probiotics for oral bacteriotherapy both in humans and animals. Recently, genetically modified B. subtilis spores and B. anthracis spores have been used as indestructible delivery vehicles for vaccine antigens. They were used as vaccine vehicles or spore vaccine for oral immunization against tetanus and anthrax, and the results were very exciting. Unlike many second generation vaccine systems currently under development, bacterial spores offer heat stability and the flexibility for genetic manipulation. At the same time, they can elicit mucosal immune response by oral and nasal administration. This review focuses on the use of recombinant spores as vaccine delivery vehicles.

  18. BSA Nanoparticles for siRNA Delivery: Coating Effects on Nanoparticle Properties, Plasma Protein Adsorption, and In Vitro siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Haran Yogasundaram

    2012-01-01

    Full Text Available Developing vehicles for the delivery of therapeutic molecules, like siRNA, is an area of active research. Nanoparticles composed of bovine serum albumin, stabilized via the adsorption of poly-L-lysine (PLL, have been shown to be potentially inert drug-delivery vehicles. With the primary goal of reducing nonspecific protein adsorption, the effect of using comb-type structures of poly(ethylene glycol (1 kDa, PEG units conjugated to PLL (4.2 and 24 kDa on BSA-NP properties, apparent siRNA release rate, cell viability, and cell uptake were evaluated. PEGylated PLL coatings resulted in NPs with ζ-potentials close to neutral. Incubation with platelet-poor plasma showed the composition of the adsorbed proteome was similar for all systems. siRNA was effectively encapsulated and released in a sustained manner from all NPs. With 4.2 kDa PLL, cellular uptake was not affected by the presence of PEG, but PEG coating inhibited uptake with 24 kDa PLL NPs. Moreover, 24 kDa PLL systems were cytotoxic and this cytotoxicity was diminished upon PEG incorporation. The overall results identified a BSA-NP coating structure that provided effective siRNA encapsulation while reducing ζ-potential, protein adsorption, and cytotoxicity, necessary attributes for in vivo application of drug-delivery vehicles.

  19. Adaptation of the spore discharge mechanism in the basidiomycota.

    Directory of Open Access Journals (Sweden)

    Jessica L Stolze-Rybczynski

    Full Text Available Spore discharge in the majority of the 30,000 described species of Basidiomycota is powered by the rapid motion of a fluid droplet, called Buller's drop, over the spore surface. In basidiomycete yeasts, and phytopathogenic rusts and smuts, spores are discharged directly into the airflow around the fungal colony. Maximum discharge distances of 1-2 mm have been reported for these fungi. In mushroom-forming species, however, spores are propelled over much shorter ranges. In gilled mushrooms, for example, discharge distances of <0.1 mm ensure that spores do not collide with opposing gill surfaces. The way in which the range of the mechanism is controlled has not been studied previously.In this study, we report high-speed video analysis of spore discharge in selected basidiomycetes ranging from yeasts to wood-decay fungi with poroid fruiting bodies. Analysis of these video data and mathematical modeling show that discharge distance is determined by both spore size and the size of the Buller's drop. Furthermore, because the size of Buller's drop is controlled by spore shape, these experiments suggest that seemingly minor changes in spore morphology exert major effects upon discharge distance.This biomechanical analysis of spore discharge mechanisms in mushroom-forming fungi and their relatives is the first of its kind and provides a novel view of the incredible variety of spore morphology that has been catalogued by traditional taxonomists for more than 200 years. Rather than representing non-selected variations in micromorphology, the new experiments show that changes in spore architecture have adaptive significance because they control the distance that the spores are shot through air. For this reason, evolutionary modifications to fruiting body architecture, including changes in gill separation and tube diameter in mushrooms, must be tightly linked to alterations in spore morphology.

  20. Probing the ability of the coat and vertex protein of the membrane-containing bacteriophage PRD1 to display a meningococcal epitope

    International Nuclear Information System (INIS)

    Huiskonen, Juha T.; Laakkonen, Liisa; Toropainen, Maija; Sarvas, Matti; Bamford, Dennis H.; Bamford, Jaana K.H.

    2003-01-01

    Bacteriophage PRD1 is an icosahedral dsDNA virus with a diameter of 740 A and an outer protein shell composed of 720 copies of major coat protein P3. Spike complexes at the vertices are composed of a pentameric base (protein P31) and a spike structure (proteins P5 and P2) where the N-terminal region of the trimeric P5 is associated with the base and the C-terminal region of P5 is associated with receptor-binding protein P2. The functionality of proteins P3 and P5 was investigated using insertions and deletions. It was observed that P3 did not tolerate changes whereas P5 tolerated changes much more freely. These properties support the hypothesis that viruses have core structures and functions, which remain stable over time, as well as other elements, responsible for host interactions, which are evolutionally more fluid. The insertional probe used was the apex of exposed loop 4 of group B meningococcal outer membrane protein PorA, a medically important subunit vaccine candidate. It was demonstrated that the epitope could be displayed on the virus surface as part of spike protein P5

  1. Bacillus cereus spore formation, structure and germination

    NARCIS (Netherlands)

    Vries, de Y.P.

    2006-01-01

    Bacterial spores arespecializeddifferentiated celltypes for

  2. Bryophyte spore germinability is inhibited by peatland substrates

    Science.gov (United States)

    Bu, Zhao-Jun; Li, Zhi; Liu, Li-Jie; Sundberg, Sebastian; Feng, Ya-Min; Yang, Yun-He; Liu, Shuang; Song, Xue; Zhang, Xing-Lin

    2017-01-01

    Bryophyte substrates and species may affect spore germination through allelopathy. Polytrichum strictum is currently expanding in peatlands in north-eastern China - is this an effect of its superior spore germinability or do its gametophytes have a stronger allelopathic effect than do Sphagnum? We conducted a spore burial experiment to test the effect of species identity, substrate and water table depth (WTD) on spore germinability and bryophyte allelopathic effect with P. strictum and two Sphagnum species (S. palustre and S. magellanicum). After 5 months of burial during a growing season, the spores were tested for germinability. Allelopathic effect of bryophyte substrates was assessed by the difference between spore germinability after being stored inside or outside the substrates. After burial, more than 90% of the spores lost their germinability across all three species due to ageing and allelopathy. Spore germinability differed among species, where the spores in S. palustre had a higher germination frequency than those in P. strictum. The three bryophytes maintained a higher germinability in Sphagnum than in Polytrichum hummocks, probably due to a stronger allelopathic effect of P. strictum. Water table drawdown by 10 cm increased germinability by more than 60% across the three species. The study indicates that P. strictum does not possess an advantage regarding spore germination but rather its gametophytes have a stronger allelopathic effect. Due to the weaker inhibitive effect of Sphagnum gametophytes, P. strictum may have a potential establishment superiority over Sphagnum in peatlands, in addition to a better drought tolerance, which may explain its current expansion.

  3. Application of protein-phenolic based coating on tomatoes (Lycopersicum esculentum Aplicação de coberturas proteicas e fenólicas em tomates (Lycopersicum esculentum

    Directory of Open Access Journals (Sweden)

    Eliane Pereira Cipolatti

    2012-09-01

    Full Text Available The aim of this study was to investigate the use of protein-phenolic based coating made from fermented rice bran on cherry tomatoes (Lycopersicum esculentum. Tests were performed with glycerol 3% (v/v, glycerol with protein-phenolic rice bran extract (5%, glycerol with protein-phenolic extract after 96 hours of fermentation (5%, and a control (without coating. The coated cherry tomatoes were kept at room temperature for 28 days. Mass loss, pH and acidity, total soluble solids, and carotenoids were determined every 96 hours. The coating made from the biomass extract reduced the carotenoid and acidity levels in the fruits studied by 17 and 21.1%, respectively, compared to the control. The coating proved an efficient barrier to water vapor with mass loss of 57% less than the control suggesting that it can be used as an alternative for vegetable tissue conservation.Este trabalho teve como objetivo estudar a utilização de películas, à base de compostos proteicos e fenólicos provenientes de farelo de arroz fermentado, em tomates (Lycopersicum esculentum. Foram realizados testes com: glicerol 3% (v/v; glicerol com extrato fenólico e proteico do farelo de arroz (5%; glicerol com extrato fenólico e proteico da biomassa gerada em 96 hours (5%, e um controle (sem a película. Os tomates revestidos foram mantidos à temperatura ambiente durante 28 dias, sendo determinados, a cada 96 horas, os seguintes aspectos: a perda de massa, o pH e a acidez, os sólidos solúveis totais e os carotenoides. A película elaborada com os extratos da biomassa reduziu os níveis de carotenoides e acidez dos frutos estudados em 17 e 21,1%, respectivamente, em relação ao controle. A película também foi eficiente como barreira ao vapor de água; assim, com perda de massa 57% inferior à do controle, sugere-se que esta poderá ser utilizada como alternativa para conservação desse tecido vegetal.

  4. Expression of Human Immunodeficiency Virus type 1 (HIV-1) coat protein genes in plants using cotton leaf curl Multan betasatellite-based vector

    Science.gov (United States)

    Ataie Kachoie, Elham; Kharazmi, Sara

    2018-01-01

    It has already been demonstrated that a betasatellite associated with cotton leaf curl Multan virus (CLCuMB) can be used as a plant and animal gene delivery vector to plants. To examine the ability of CLCuMB as a tool to transfer coat protein genes of HIV-1 to plants, two recombinant CLCuMB constructs in which the CLCuMB βC1 ORF was replaced with two HIV-1 genes fractions including a 696 bp DNA fragment related to the HIV-1 p24 gene and a 1501 bp DNA fragment related to the HIV-1 gag gene were constructed. Gag is the HIV-1 coat protein gene and p24 is a component of the particle capsid. Gag and p24 are used for vaccine production. Recombinant constructs were inoculated to Nicotiana glutinosa and N. benthamiana plants in the presence of an Iranian isolate of Tomato yellow leaf curl virus (TYLCV-[Ab]) as a helper virus. PCR analysis of inoculated plants indicated that p24 gene was successfully replicated in inoculated plants, but the gag gene was not. Real-time PCR and ELISA analysis of N. glutinosa and N. benthamiana plants containing the replicative forms of recombinant construct of CLCuMB/p24 indicated that p24 was expressed in these plants. This CLCuMB-based expression system offers the possibility of mass production of recombinant HIV-1 p24 protein in plants. PMID:29304063

  5. The role of seed coat phenolics on water uptake and early protein synthesis during germination of dimorphic seeds of halopyrum mucronatum (L.) staph

    International Nuclear Information System (INIS)

    Siddiqui, Z. S.; Khan, M.A.

    2010-01-01

    Role of seed coat phenolics on water uptake and early protein synthesis of Halopyrum mucronatum dimorphic seeds during germination were tested. Scanning electron micrographs (SEM) showed seed texture with differential deposition of secondary metabolites in both morphs. Ability of both seed morphs to retain secondary deposition was dependent on exposure to either saline or non-saline conditions. More phenols leached from the brown seed during the initial hours of soaking when compared to black seeds. Water uptake pattern was slightly different in both seed type particularly during initial hours when imbibition in black seeds showed little water uptake while in brown seeds absorption was quick in the first hour under both saline and non saline condition. Change in total protein was somewhat similar in both seeds morphs showing early increase (4 and 8 h), reaching to the maximum (12 h) and decreasing (24 and 48 h) afterward. The results are discussed in relation to seed coat phenolics, water uptake and early protein synthesis during germination. (author)

  6. Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium.

    Science.gov (United States)

    Todd, Sarah J; Moir, Arthur J G; Johnson, Matt J; Moir, Anne

    2003-06-01

    The exosporium is the outermost layer of spores of Bacillus cereus and its close relatives Bacillus anthracis and Bacillus thuringiensis. For these pathogens, it represents the surface layer that makes initial contact with the host. To date, only the BclA glycoprotein has been described as a component of the exosporium; this paper defines 10 more tightly associated proteins from the exosporium of B. cereus ATCC 10876, identified by N-terminal sequencing of proteins from purified, washed exosporium. Likely coding sequences were identified from the incomplete genome sequence of B. anthracis or B. cereus ATCC 14579, and the precise corresponding sequence from B. cereus ATCC 10876 was defined by PCR and sequencing. Eight genes encode likely structural components (exsB, exsC, exsD, exsE, exsF, exsG, exsJ, and cotE). Several proteins of the exosporium are related to morphogenetic and outer spore coat proteins of B. subtilis, but most do not have homologues in B. subtilis. ExsE is processed from a larger precursor, and the CotE homologue appears to have been C-terminally truncated. ExsJ contains a domain of GXX collagen-like repeats, like the BclA exosporium protein of B. anthracis. Although most of the exosporium genes are scattered on the genome, bclA and exsF are clustered in a region flanking the rhamnose biosynthesis operon; rhamnose is part of the sugar moiety of spore glycoproteins. Two enzymes, alanine racemase and nucleoside hydrolase, are tightly adsorbed to the exosporium layer; they could metabolize small molecule germinants and may reduce the sensitivity of spores to these, limiting premature germination.

  7. No evidence for a Ganoderma spore dispersal mutualism in an obligate spore-feeding beetle Zearagytodes maculifer.

    Science.gov (United States)

    Kadowaki, Kohmei; Leschen, Richard A B; Beggs, Jacqueline R

    2011-08-01

    The role of spore dispersal mutualism remains equivocal in many fungus-insect assemblages. We tested experimentally whether an obligate spore-feeding beetle Zearagytodes maculifer has a mutualistic relationship with its host bracket fungus Ganoderma cf. applanatum via spore dispersal. We asked three specific questions: (1) whether or not Ganoderma spore germination rate is increased via beetle digestive activity and (2) is dependent on temperature and sporocarp identity. Spore germination rates were examined in 2×3×2 factorial experiments (spores consumed by beetles or not×temperature 20, 25, and 30°C×two independent pairs of sporocarp-beetle populations) replicated five times in an array of 60 experimental cultures. Analysis showed that consumption by beetles significantly reduced germination rate of Ganoderma spores. The effect of temperature was modulated by the effect of individual sporocarp, and was overridden by beetle feeding. Microscopic analysis revealed that spores from beetle faecal pellets exhibited extensive damage to their thin outer walls (pellicles) and thick inner walls, as well as significant loss of cytoplasm, while control spores were intact. The overall evidence argued against our spore dispersal mutualism hypothesis, suggesting that Z. maculifer can potentially exert a negative, if vanishingly small, fitness effect on its host fungus G. cf. applanatum. Copyright © 2011 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. A neutral polyacrylate copolymer coating for surface modification of thiol-ene microchannels for improved performance of protein separation by microchip electrophoresis

    DEFF Research Database (Denmark)

    Mesbah, Kiarach; Mai, T.D.; Jensen, Thomas Glasdam

    2016-01-01

    We have investigated the behavior of thiol-ene substrates that is a class of promising materials for lab-on-a-chip electrophoresis applications. Two polymeric materials were prepared by copolymerization of N, N-dimethylacrylamide (DMA), (3-(methacryloyl-oxy)propyl)trimethoxysilane (PMA) and 3......-(DMA-PMAMAPS) copolymer were evaluated in terms of surface hydrophilicity, suppression and stability of electro-osmotic flow and prevention of protein adsorption. Surface modification of thiol-ene containing a 20 % excess of thiols with the terpolymer p-(DMA-PMA-MAPS) was found to offer the most stable coating and most...

  9. Oral delivery of Bacillus subtilis spores expressing cysteine protease of Clonorchis sinensis to grass carp (Ctenopharyngodon idellus): Induces immune responses and has no damage on liver and intestine function.

    Science.gov (United States)

    Tang, Zeli; Sun, Hengchang; Chen, TingJin; Lin, Zhipeng; Jiang, Hongye; Zhou, Xinyi; Shi, Cunbin; Pan, Houjun; Chang, Ouqin; Ren, Pengli; Yu, Jinyun; Li, Xuerong; Xu, Jin; Huang, Yan; Yu, Xinbing

    2017-05-01

    Clonorchis sinensis (C. sinensis) is a fish-borne trematode. Human can be infected by ingestion of C. sinensis metacercariae parasitized in grass carp (Ctenopharyngodon idella). For induction of effective oral immune responses, spores of Bacillus subtilis (B. subtilis) WB600 were utilized as vehicle to delivery CsCP (cysteine protease of C. sinensis) cooperated with CotC (B.s-CotC-CP), one of coat proteins, to the gastrointestinal tract. After routine culture of 8-12 h in LB medium, B. subtilis containing CotC-CsCP was transferred into the sporulation culture medium. SDS-PAGE, western blotting and the growth curve indicated that the best sporulation time of recombinant WB600 was 24-30 h at 37 °C with continuous shaking (250 rpm). Grass carp were fed with three levels of B.s-CotC-CP (1 × 10 6 , 1 × 10 7 , and 1 × 10 8  CFU g -1 ) incorporated in the basal pellets diet. The commercial pellets or supplemented with spores just expressing CotC (1 × 10 7  CFU g -1 ) were served as control diet. Our results showed that grass carp orally immunized with the feed-based B.s-CotC-CP developed a strong specific immune response with significantly (P sinensis in fish body. Therefore, this study demonstrated that the feed-based recombinant spores could trigger high levels of mucosal and humoral immunity, and would be a promising candidate vaccine against C. sinensis metacercariae formation in freshwater fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.

    Science.gov (United States)

    Habibi, Neda

    2014-05-05

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Modeling Radiation Effectiveness for Inactivation of Bacillus Spores

    Science.gov (United States)

    2015-09-17

    MODELING RADIATION EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES DISSERTATION Emily A. Knight, Major, USAF AFIT-ENC-DS-15-S-001 DEPARTMENT OF THE...not subject to copyright protection in the United States. AFIT-ENC-DS-15-S-001 MODELING RADIATION EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES...EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES Emily A. Knight, B.A., M.S. Major, USAF Committee Membership: Dr. William P. Baker Chair Dr. Larry W

  12. Chitinolytic activity in viable spores of encephalitozoon species

    OpenAIRE

    Schottelius,J; Hünger,F; Schüler,Th; Gonçalves da Costa,SC

    2000-01-01

    By employing 4-methylumbelliferyl-beta-D-NN',N"-triacetylchitotriose substrate in a semi quantitative assay, chitinolytic activity in viable spores of Encephalitozoon cuniculi and E. intestinalis was detected and dependence on reaction time, spore concentration, concentration of substrate and temperature were demonstrated. It was possible to block the chitinolytic activity by chitin hydrolysate. By incubation at 80°C for 10 min or at 55°C for 20 min the spores were loosing the chitinolytic ac...

  13. Antifouling Action of Polyisoprene-Based Coatings by Inhibition of Photosynthesis in Microalgae

    NARCIS (Netherlands)

    Jellali, R.; Kromkamp, J.C.; Campistron, I.; Laguerre, A.; Lefebvre, S.; Perkins, R.G.; Pilard, J.F.; Mouget, J.L.

    2013-01-01

    Previous studies have demonstrated that ionic and non-ionic natural rubber-based coatings inhibit adhesion and growth of marine bacteria, fungi, microalgae, and spores of macroalgae. Nevertheless, the mechanism of action of these coatings on the different micro-organisms is not known. In the current

  14. Precise Coating of a Wide Range of DNA Templates by a Protein Polymer with a DNA Binding Domain

    NARCIS (Netherlands)

    Hernandez-Garcia, Armando; Estrich, Nicole A.; Werten, Marc W.T.; Maarel, van der Johan R.C.; Labean, Thomas H.; Wolf, de Frits A.; Cohen Stuart, Martien A.; Vries, de Renko

    2017-01-01

    Emerging DNA-based nanotechnologies would benefit from the ability to modulate the properties (e.g., solubility, melting temperature, chemical stability) of diverse DNA templates (single molecules or origami nanostructures) through controlled, self-assembling coatings. We here introduce a DNA

  15. Protein separation by open tubular capillary electrochromatography employing a capillary coated with phenylalanine functionalized tentacle-type polymer under both cathodic and anodic electroosmotic flows.

    Science.gov (United States)

    Xu, Liang; Sun, Yan

    2008-03-07

    The use of a phenylalanine (Phe) functionalized tentacle-type polymer coated capillary column for protein separation by open tubular capillary electrochromatography (OTCEC) was demonstrated in this work. The tentacle-type stationary phase was prepared from silanized fused-silica capillaries of 50 microm I.D. by glycidyl methacrylate graft polymerization and subsequent Phe functionalization. Due to the amphoteric functional groups of the Phe bonded on the tentacle-type polymer stationary phase, protein separation in the prepared column can be performed under both cathodic and anodic electroosmotic flow (EOF) by varying the pH values of the mobile phase. Model proteins including ribonuclease A (RNase A), myoglobin, transferrin, insulin were baseline separated under cathodic EOF with a mobile phase of pH 8.8. Comparison between the separation result of the four proteins under conditions of OTCEC and capillary zone electrophoresis indicates that the migration behavior of the four proteins in the prepared column was the result of the interplay of chromatographic retention and electrophoretic migration. Besides, three basic proteins including RNase A, cytochrome c (Cyt-c) and lysozyme (Lys) were fully resolved under anodic EOF with an acidic running buffer (pH 2.5). The elution order was the same as the isoelectric point values of the proteins (RNase Aproteins used in this work were stable in repeated uses of the column, and the column efficiency of proteins was in the range from 13,000 to 182,000 plates/m.

  16. Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds coated with PhaP-RGD fusion protein promotes the proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells in vitro.

    Science.gov (United States)

    Li, Xiaoli; Chang, Huimin; Luo, Huanan; Wang, Zhenghui; Zheng, Guoxi; Lu, Xiaoyun; He, Xijing; Chen, Fang; Wang, Ting; Liang, Jianmin; Xu, Min

    2015-03-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs) have been widely used in tissue engineering. The aim of this study is to evaluate the ability of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) scaffolds coated with polyhydroxyalkanoate binding protein fused with arginyl-glycyl-aspartic acid (PhaP-RGD) to promote the proliferation and chondrogenic differentiation of hUC-MSCs seeded on them. The PhaP-RGD fusion protein was expressed by Escherichia coli. PHBHHx films were coated with PhaP-RGD fusion protein and the physiochemical properties were examined. hUC-MSCs were seeded on PHBHHx films with or without PhaP-RGD precoating and tested for changes in morphology, viability, and chondrogenic differentiation. We found that PhaP-RGD-coated PHBHHx films had similar surface morphology to uncoated PHBHHx. The water contact angle of the coated PHBHHx surface was lower than that of the uncoated surface (10.63° vs. 98.69°). At 7 and 14 days after seeding, the PhaP-RGD-coated PHBHHx group showed greater numbers of viable cells compared to the uncoated PHBHHx group. The expression levels of aggrecan and collagen II were enhanced in the PhaP-RGD-coated PHBHHx group relative to the uncoated PHBHHx group. Histological analysis using toluidine blue staining showed elevated formation of proteoglycan producing chondrocytes in the PhaP-RGD-coated PHBHHx group. Additionally, the synthesis of proteoglycan and collagen was significantly enhanced within the PhaP-RGD constructs. Taken together, PhaP-RGD coating promotes the proliferation and chondrogenic differentiation of hUC-MSCs seeded on PHBHHx films. PhaP-RGD-coated PHBHHx may be a useful scaffold for cartilage tissue engineering. © 2014 Wiley Periodicals, Inc.

  17. Chitinolytic activity in viable spores of encephalitozoon species

    Directory of Open Access Journals (Sweden)

    J Schottelius

    2000-10-01

    Full Text Available By employing 4-methylumbelliferyl-beta-D-NN',N"-triacetylchitotriose substrate in a semi quantitative assay, chitinolytic activity in viable spores of Encephalitozoon cuniculi and E. intestinalis was detected and dependence on reaction time, spore concentration, concentration of substrate and temperature were demonstrated. It was possible to block the chitinolytic activity by chitin hydrolysate. By incubation at 80°C for 10 min or at 55°C for 20 min the spores were loosing the chitinolytic activity. Incubation of the spores in trypsin reduced the chitinolytic activity. Cellulase activity could not be detected.

  18. Chitinolytic activity in viable spores of Encephalitozoon species.

    Science.gov (United States)

    Schottelius, J; Hünger, F; Schüler, T; Gonçalves da Costa, S C

    2000-01-01

    By employing 4-methylumbelliferyl-beta-D-NN',N"-triacetylchitotriose substrate in a semi quantitative assay, chitinolytic activity in viable spores of Encephalitozoon cuniculi and E. intestinalis was detected and dependence on reaction time, spore concentration, concentration of substrate and temperature were demonstrated. It was possible to block the chitinolytic activity by chitin hydrolysate. By incubation at 80 degrees C for 10 min or at 55 degrees C for 20 min the spores were loosing the chitinolytic activity. Incubation of the spores in trypsin reduced the chitinolytic activity. Cellulase activity could not be detected.

  19. Effects of Chlorine Dioxide on Spore Structural and Functional Properties

    National Research Council Canada - National Science Library

    Leighton, Terrance

    2003-01-01

    .... The experimental results described in this report were designed to test this hypothesis. Dormant bacterial endospores are highly birefringent due to the anhydrous nature of the spore cytoplasm...

  20. Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis.

    Science.gov (United States)

    Webb, C D; Decatur, A; Teleman, A; Losick, R

    1995-10-01

    We report the use of the green fluorescent protein (GFP) of Aequorea victoria to visualize cell-specific gene expression and protein subcellular localization during sporulation in Bacillus subtilis. Sporangia bearing the gene (gfp) for the green fluorescent protein fused to genes under the control of the sporulation transcription factor sigma F exhibited a forespore-specific pattern of fluorescence. Forespore-specific fluorescence could be detected with fusions to promoters that are utilized with low (csfB) and high (sspE-2G) efficiency by sigma F-containing RNA polymerase. Conversely, a mother cell-specific pattern of fluorescence was observed in sporangia bearing a transcriptional fusion of gfp to a spore coat protein gene (cotE) under the control of sigma E and an in-frame fusion to a regulatory gene (gerE) under the control of sigma K. An in-frame fusion of gfp to cotE demonstrated that GFP can also be used to visualize protein subcellular localization. In sporangia producing the CotE-GFP fusion protein, fluorescence was found to localize around the developing spore, and this localization was dependent upon SpoIVA, a morphogenetic protein known to determine proper localization of CotE.

  1. Spore-Forming Bacteria that Resist Sterilization

    Science.gov (United States)

    LaDuc, Myron; Venkateswaran, Kasthuri

    2003-01-01

    A report presents a phenotypic and genotypic characterization of a bacterial species that has been found to be of the genus Bacillus and has been tentatively named B. odysseensis because it was isolated from surfaces of the Mars Odyssey spacecraft as part of continuing research on techniques for sterilizing spacecraft to prevent contamination of remote planets by terrestrial species. B. odysseensis is a Gram-positive, facultatively anaerobic, rod-shaped bacterium that forms round spores. The exosporium has been conjectured to play a role in the elevated resistance to sterilization. Research on the exosporium is proposed as a path toward improved means of sterilization, medical treatment, and prevention of biofouling.

  2. A four-gene operon inBacillus cereusproduces two rare spore-decorating sugars.

    Science.gov (United States)

    Li, Zi; Mukherjee, Thiya; Bowler, Kyle; Namdari, Sholeh; Snow, Zachary; Prestridge, Sarah; Carlton, Alexandra; Bar-Peled, Maor

    2017-05-05

    Bacterial glycan structures on cell surfaces are critical for cell-cell recognition and adhesion and in host-pathogen interactions. Accordingly, unraveling the sugar composition of bacterial cell surfaces can shed light on bacterial growth and pathogenesis. Here, we found that two rare sugars with a 3- C -methyl-6-deoxyhexose structure were linked to spore glycans in Bacillus cereus ATCC 14579 and ATCC 10876. Moreover, we identified a four-gene operon in B. cereus ATCC 14579 that encodes proteins with the following sequential enzyme activities as determined by mass spectrometry and one- and two-dimensional NMR methods: CTP:glucose-1-phosphate cytidylyltransferase, CDP-Glc 4,6-dehydratase, NADH-dependent SAM: C -methyltransferase, and NADPH-dependent CDP-3- C -methyl-6-deoxyhexose 4-reductase. The last enzyme predominantly yielded CDP-3- C -methyl-6-deoxygulose (CDP-cereose) and likely generated a 4-epimer CDP-3- C -methyl-6-deoxyallose (CDP-cillose). Some members of the B. cereus sensu lato group produce CDP-3- C -methyl-6-deoxy sugars for the formation of cereose-containing glycans on spores, whereas others such as Bacillus anthracis do not. Gene knockouts of the Bacillus C -methyltransferase and the 4-reductase confirmed their involvement in the formation of cereose-containing glycan on B. cereus spores. We also found that cereose represented 0.2-1% spore dry weight. Moreover, mutants lacking cereose germinated faster than the wild type, yet the mutants exhibited no changes in sporulation or spore resistance to heat. The findings reported here may provide new insights into the roles of the uncommon 3- C -methyl-6-deoxy sugars in cell-surface recognition and host-pathogen interactions of the genus Bacillus . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Airborne fungal spores of Alternaria, meteorological parameters and predicting variables

    Science.gov (United States)

    Filali Ben Sidel, Farah; Bouziane, Hassan; del Mar Trigo, Maria; El Haskouri, Fatima; Bardei, Fadoua; Redouane, Abdelbari; Kadiri, Mohamed; Riadi, Hassane; Kazzaz, Mohamed

    2015-03-01

    Alternaria is frequently found as airborne fungal spores and is recognized as an important cause of respiratory allergies. The aerobiological monitoring of fungal spores was performed using a Burkard volumetric spore traps. To establish predicting variables for daily and weakly spore counts, a stepwise multiple regression between spore concentrations and independent variables (meteorological parameters and lagged values from the series of spore concentrations: previous day or week concentration (Alt t - 1) and mean concentration of the same day or week in other years ( C mean)) was made with data obtained during 2009-2011. Alternaria conidia are present throughout the year in the atmosphere of Tetouan, although they show important seasonal fluctuations. The highest levels of Alternaria spores were recorded during the spring and summer or autumn. Alternaria showed maximum daily values in April, May or October depending on year. When the spore variables of Alternaria, namely C mean and Alt t - 1, and meteorological parameters were included in the equation, the resulting R 2 satisfactorily predict future concentrations for 55.5 to 81.6 % during the main spore season and the pre-peak 2. In the predictive model using weekly values, the adjusted R 2 varied from 0.655 to 0.676. The Wilcoxon test was used to compare the results from the expected values and the pre-peak spore data or weekly values for 2012, indicating that there were no significant differences between series compared. This test showed the C mean, Alt t - 1, frequency of the wind third quadrant, maximum wind speed and minimum relative humidity as the most efficient independent variables to forecast the overall trend of this spore in the air.

  4. Airborne fungal spores of Alternaria, meteorological parameters and predicting variables.

    Science.gov (United States)

    Filali Ben Sidel, Farah; Bouziane, Hassan; Del Mar Trigo, Maria; El Haskouri, Fatima; Bardei, Fadoua; Redouane, Abdelbari; Kadiri, Mohamed; Riadi, Hassane; Kazzaz, Mohamed

    2015-03-01

    Alternaria is frequently found as airborne fungal spores and is recognized as an important cause of respiratory allergies. The aerobiological monitoring of fungal spores was performed using a Burkard volumetric spore traps. To establish predicting variables for daily and weakly spore counts, a stepwise multiple regression between spore concentrations and independent variables (meteorological parameters and lagged values from the series of spore concentrations: previous day or week concentration (Alt t - 1) and mean concentration of the same day or week in other years (C mean)) was made with data obtained during 2009-2011. Alternaria conidia are present throughout the year in the atmosphere of Tetouan, although they show important seasonal fluctuations. The highest levels of Alternaria spores were recorded during the spring and summer or autumn. Alternaria showed maximum daily values in April, May or October depending on year. When the spore variables of Alternaria, namely C mean and Alt t - 1, and meteorological parameters were included in the equation, the resulting R (2) satisfactorily predict future concentrations for 55.5 to 81.6 % during the main spore season and the pre-peak 2. In the predictive model using weekly values, the adjusted R (2) varied from 0.655 to 0.676. The Wilcoxon test was used to compare the results from the expected values and the pre-peak spore data or weekly values for 2012, indicating that there were no significant differences between series compared. This test showed the C mean, Alt t - 1, frequency of the wind third quadrant, maximum wind speed and minimum relative humidity as the most efficient independent variables to forecast the overall trend of this spore in the air.

  5. Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi (Glomus spp.) studied by multilocus genotyping of single spores

    DEFF Research Database (Denmark)

    Holtgrewe-Stukenbrock, Eva; Rosendahl, Søren

    2005-01-01

    A nested multiplex PCR (polymerase chain reaction) approach was used for multilocus genotyping of arbuscular mycorrhizal fungal populations. This method allowed us to amplify multiple loci from Glomus single spores in a single PCR amplification. Variable introns in the two protein coding genes Gm......FOX2 and GmTOR2 were applied as codominant genetic markers together with the LSU rDNA.   Genetic structure of Glomus spp. populations from an organically and a conventionally cultured field were compared by hierarchical sampling of spores from four plots in each field. Multilocus genotypes were...

  6. Internal quality of eggs coated with whey protein concentrate Qualidade interna de ovos de galinha cobertos com concentrado protéico de soro de leite bovino

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Carraro Alleoni

    2004-06-01

    Full Text Available The functional properties of foods can be preserved when they are coated with edible films, since both the loss of moisture and the transport of O2 and CO2 are reduced. The objectives of this work were: to compare weight loss, Haugh units, and albumen pH between fresh eggs and eggs coated with whey protein concentrate (WPC, under six storage periods (3, 7, 10, 14, 21 and 28 days, at 25°C. During the entire storage period, regardless of whether the eggs were coated or not, the Haugh unit values and the weight loss decreased, and differences between values from the first to the last period were lower for coated eggs. Albumen pH increased. The Haugh unit values for coated eggs were similar to those found in literature references when the same storage period was considered.As vantagens de utilizar filmes e coberturas comestíveis podem ser justificadas pela manutenção das propriedades funcionais dos alimentos, através da diminuição da perda de umidade e da diminuição da troca de gases (O2 e CO2. Aplicação de cobertura em ovos com casca reduz a perda de peso e mantém a qualidade interna do produto. Os objetivos deste trabalho foram comparar a perda de peso, os valores de unidades Haugh e o pH do albume de ovos com e sem cobertura à base de concentrado protéico de soro de leite, armazenados a 25°C, por 3, 7, 10, 14, 21 e 28 dias. Durante todo o período de armazenamento houve decréscimo dos valores de unidades Haugh e perda de peso, tanto para os ovos com cobertura como para os ovos sem cobertura. O pH do albume aumentou para os ovos com e sem cobertura, a variação dos valores nos ovos com cobertura foi menor do que para os ovos sem cobertura. A cobertura de concentrado protéico de soro de leite reduz o transporte de vapor de água e gás (CO2 através dos poros da casca do ovo. Essa cobertura mantém o pH da clara de ovo na faixa de 8, durante quatro semanas de armazenamento e, desse modo, consegue manter as características necess

  7. Determination of fungal spore release from wet building materials

    DEFF Research Database (Denmark)

    Kildesø, J.; Wurtz, H.; Nielsen, Kristian Fog

    2003-01-01

    The release and transport of fungal spores from water-damaged building materials is a key factor for understanding the exposure to particles of fungal origin as a possible cause of adverse health effects associated to growth of fungi indoors. In this study, the release of spores from nine species...

  8. Bacterial Spores in Food : Survival, Emergence, and Outgrowth

    NARCIS (Netherlands)

    Wells-Bennik, Marjon H J; Eijlander, Robyn T; den Besten, Heidy M W; Berendsen, Erwin M; Warda, Alicja K; Krawczyk, Antonina O; Nierop Groot, Masja N; Xiao, Yinghua; Zwietering, Marcel H; Kuipers, Oscar P; Abee, Tjakko

    2016-01-01

    Spore-forming bacteria are ubiquitous in nature. The resistance properties of bacterial spores lie at the heart of their widespread occurrence in food ingredients and foods. The efficacy of inactivation by food-processing conditions is largely determined by the characteristics of the different types

  9. The Role of the Electrostatic Force in Spore Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Tsouris, Costas [ORNL

    2010-01-01

    Electrostatic force is investigated as one of the components of the adhesion force between Bacillus thuringiensis (Bt) spores and planar surfaces. The surface potentials of a Bt spore and a mica surface are experimentally obtained using a combined atomic force microscopy (AFM)-scanning surface potential microscopy technique. On the basis of experimental information, the surface charge density of the spores is estimated at 0.03 {micro}C/cm{sup 2} at 20% relative humidity and decreases with increasing humidity. The Coulombic force is introduced for the spore-mica system (both charged, nonconductive surfaces), and an electrostatic image force is introduced to the spore-gold system because gold is electrically conductive. The Coulombic force for spore-mica is repulsive because the components are similarly charged, while the image force for the spore-gold system is attractive. The magnitude of both forces decreases with increasing humidity. The electrostatic forces are added to other force components, e.g., van der Waals and capillary forces, to obtain the adhesion force for each system. The adhesion forces measured by AFM are compared to the estimated values. It is shown that the electrostatic (Coulombic and image) forces play a significant role in the adhesion force between spores and planar surfaces.

  10. Survival of Clostridium difficile spores at low water activity.

    Science.gov (United States)

    Deng, Kai; Talukdar, Prabhat K; Sarker, Mahfuzur R; Paredes-Sabja, Daniel; Torres, J Antonio

    2017-08-01

    Clostridium difficile is frequently found in meat and meat products. Germination efficiency, defined as colony formation, was previously investigated at temperatures found in meat handling and processing for spores of strain M120 (animal isolate), R20291 (human isolate), and DK1 (beef isolate). In this study, germination efficiency of these spore strains was assessed in phosphate buffered saline (PBS, a w ∼1.00), commercial beef jerky (a w ∼0.82/0.72), and a w -adjusted PBS (a w ∼0.82/0.72). Surface hydrophobicity was followed for spores stored in PBS. After three months and for all PBS a w levels tested, M120 and DK1 spores showed a ∼1 decimal reduction in colony formation but this was not the case when kept in beef jerky suggesting a protective food matrix effect. During storage, and with no significant a w effect, an increase in colony formation was observed for R20291 spores kept in PBS (∼2 decimal log increase) and beef jerky (∼1 decimal log increase) suggesting a loss of spore superdormancy. For all strains, no significant changes in spore surface hydrophobicity were observed after storage. Collectively, these results indicate that depending on the germination properties of C. difficile spores and the media properties, their germination efficiency may increase or decrease during long term food storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Germination of Bacillus cereus spores adhered to stainless steel

    NARCIS (Netherlands)

    Hornstra, L.M.; Leeuw, de P.P.L.A.; Moezelaar, R.; Wolbert, E.J.H.; Vries, de Y.P.; Vos, de W.M.; Abee, T.

    2007-01-01

    Adhered spores of Bacillus cereus represent a significant part of the surface-derived contamination in processing equipment used in the dairy industry. As germinated spores lose their resistance capacities instantaneously, efficient germination prior to a cleaning in place treatment could aid to the

  12. Inhibition of spore germination of Alternaria tenuis by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Couey, H.M.

    1962-08-01

    As a part of a continuing study of SO/sub 2/ fumigation of table grapes, the effect of SO/sub 2/ on spores of an isolate of A. tenuis Auct. causing decay of table grapes was determined. The amount of SO/sub 2/ required to inhibit completely spore germination depended on availability of moisture and the temperature. At 20/sup 0/C, wet spores required 20-min exposure to 100 ppm SO/sub 2/ to prevent germination, but spores equilibrated at 90% relative humidity (RH) required 10-min exposure to 1000 ppm SO/sub 2/. Dry spores at 60% RH were unaffected by a 20-min exposure to 4000 ppm SO/sub 2/. Increasing the temperature in the range 5-20/sup 0/C increased effectiveness of the SO/sub 2/ treatment. A comparison of Alternaria with Botrytis cinerea Fr. (studied earlier) showed that wet spores of these organisms were about equally sensitive to SO/sub 2/, but that dry Alternaria spores were more resistant to SO/sub 2/ than dry Botrytis spores under comparable conditions.

  13. Macroalgal spore dysfunction: ocean acidification delays and weakens adhesion.

    Science.gov (United States)

    Guenther, Rebecca; Miklasz, Kevin; Carrington, Emily; Martone, Patrick T

    2018-04-01

    Early life stages of marine organisms are predicted to be vulnerable to ocean acidification. For macroalgae, reproduction and population persistence rely on spores to settle, adhere and continue the algal life cycle, yet the effect of ocean acidification on this critical life stage has been largely overlooked. We explicitly tested the biomechanical impact of reduced pH on early spore adhesion. We developed a shear flume to examine the effect of reduced pH on spore attachment time and strength in two intertidal rhodophyte macroalgae, one calcified (Corallina vancouveriensis) and one noncalcified (Polyostea robusta). Reduced pH delayed spore attachment of both species by 40%-52% and weakened attachment strength in C. vancouveriensis, causing spores to dislodge at lower flow-induced shear forces, but had no effect on the attachment strength of P. robusta. Results are consistent with our prediction that reduced pH disrupts proper curing and gel formation of spore adhesives (anionic polysaccharides and glycoproteins) via protonation and cation displacement, although experimental verification is needed. Our results demonstrate that ocean acidification negatively, and differentially, impacts spore adhesion in two macroalgae. If results hold in field conditions, reduced ocean pH has the potential to impact macroalgal communities via spore dysfunction, regardless of the physiological tolerance of mature thalli. © 2017 Phycological Society of America.

  14. Live-imaging of Bacillus subtilis spore germination and outgrowth

    NARCIS (Netherlands)

    Pandey, R.

    2014-01-01

    Spores of Gram-positive bacteria such as Bacillus and Clostridium cause huge economic losses to the food industry. In food products, spores survive under food preservation conditions and subsequent germination and outgrowth eventually causes food spoilage. Therefore efforts are being made to

  15. Breaking the spores of Ganoderma lucidum by fermentation with ...

    African Journals Online (AJOL)

    In this paper, fermentation of G. lucidum with Lactobacillus plantarum was applied to break down the sporoderm. Scanning electron microscope (SEM) was used to characterize the spores. The broken spores were found on the 3rd day and complete breaking on the 5th day of fermentation. Lactic acid, acetic acid and ...

  16. Inhibition of Lipopolysaccharide-Induced Interleukin 8 in Human Adenocarcinoma Cell Line HT-29 by Spore Probiotics: B. coagulans and B. subtilis (natto).

    Science.gov (United States)

    Azimirad, Masoumeh; Alebouyeh, Masoud; Naji, Tahereh

    2017-03-01

    Probiotics are used as a treatment for different intestinal disorders. They confer health benefits by different ways. This study was aimed to investigate immunomodulatory effect of Bacillus probiotic spores on the production of lipopolysaccharide (LPS)-induced interleukin 8 (IL-8) in HT-29 intestinal epithelial cells. Differentiated intestinal epithelial cell line was used as a model for the study of colonization of purified spores (Bacillus subtilis (natto) and B. coagulans) and their anti-inflammatory effects. MTT assay and trypan blue staining were used for the detection of optimal concentration of the purified spores and LPS. Pre-treatment assay was done by treatment of the cells with the purified spores for 2 h, followed by challenges with LPS for 3 and 18 h. Post-treatment assay was done by initial treatment of the cells with LPS for 18 h, followed by the spores for 3 and 6 h. Levels of IL-8 secretion and its mRNA expression were measured by ELISA and relative Q real-time PCR. Our results showed similar rates of adherence to intestinal epithelial cells by the spore probiotics, while displaying no cytotoxic effect. In the pre-treatment assay, a significant decrease in IL-8, at both protein and mRNA levels, was measured for B. coagulans spores after the addition of LPS, which was higher than those observed for Bacillus subtilis (natto) spores. In the post-treatment assay, while Bacillus subtilis (but not B. coagulans) diminished the LPS-stimulated IL-8 levels after 3 h of incubation, the inhibitory effect was not constant. In conclusion, ability of Bacillus spore probiotics for adherence to intestinal epithelial cell and their anti-inflammatory effects, through interference with LPS/IL-8 signaling, was shown in this study. Further studies are needed to characterize responsible bacterial compounds associated with these effects.

  17. Incidence of Lettuce mosaic virus in lettuce and its detection by polyclonal antibodies produced against recombinant coat protein expressed in Escherichia coli.

    Science.gov (United States)

    Sharma, Prachi; Sharma, Susheel; Singh, Jasvir; Saha, Swati; Baranwal, V K

    2016-04-01

    Lettuce mosaic virus (LMV), a member of the genus Potyvirus of family Potyviridae, causes mosaic disease in lettuce has recently been identified in India. The virus is seed borne and secondary infection occurs through aphids. To ensure virus freedom in seeds it is important to develop diagnostic tools, for serological methods the production of polyclonal antibodies is a prerequisite. The coat protein (CP) gene of LMV was amplified, cloned and expressed using pET-28a vector in Escherichia coli BL21DE3 competent cells. The LMV CP was expressed as a fusion protein containing a fragment of the E. coli His tag. The LMV CP/His protein reacted positively with a commercial antiserum against LMV in an immunoblot assay. Polyclonal antibodies purified from serum of rabbits immunized with the fusion protein gave positive results when LMV infected lettuce (Lactuca sativa) was tested at 1:1000 dilution in PTA-ELISA. These were used for specific detection of LMV in screening lettuce accessions. The efficacy of the raised polyclonal antiserum was high and it can be utilized in quarantine and clean seed production. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Presence survival spores of Bacillus thuringiensis varieties in grain warehouse

    Directory of Open Access Journals (Sweden)

    Sánchez-Yáñez Juan Manuel

    2016-08-01

    Full Text Available Genus Bacillus thuringiensis (Bt synthesized spores and crystals toxic to pest-insects in agriculture. Bt is comospolitan then possible to isolate some subspecies or varieties from warehouse. The aims of study were: i to isolate Bt varieties from grain at werehouse ii to evaluate Bt toxicity on Spodoptera frugiperda and Shit-ophilus zeamaisese iii to analyze Bt spores persistence in Zea mays grains at werehouse compared to same Bt on grains exposed to sun radiation. Results showed that at werehouse were recovered more than one variety of Bt spores. According to each isolate Bt1 o Bt2 were toxic to S. frugiperda or S. zeamaisese. One those Bt belong to var morrisoni. At werehouse these spores on Z. mays grains surviving more time, while the same spores exposed to boicide sun radiation they died.

  19. Rugged single domain antibody detection elements for Bacillus anthracis spores and vegetative cells.

    Directory of Open Access Journals (Sweden)

    Scott A Walper

    Full Text Available Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs were isolated from a phage display library prepared from immunized llamas. Characterization of target specificity, affinity, and thermal stability was conducted for six sdAb families isolated from rounds of selection against the bacterial spore. The protein target for all six sdAb families was determined to be the S-layer protein EA1, which is present in both vegetative cells and bacterial spores. All of the sdAbs examined exhibited a high degree of specificity for the target bacterium and its spore, with affinities in the nanomolar range, and the ability to refold into functional antigen-binding molecules following several rounds of thermal denaturation and refolding. This research demonstrates the capabilities of these sdAbs and their potential for integration into current and developing assays and biosensors.

  20. Practical aspects of temperature intervention in germination and post-germination development of bacterial spores

    International Nuclear Information System (INIS)

    Stastna, J.; Vinter, V.; Babicka, J.

    1974-01-01

    Temperature dependence of germination and post-germination growth was studied in the spores of B a c i l l u s c e r e u s NCIB 8122. It was found that a temperature of 5 0 C slowed down germination, with the cells showing the capacity of synthetizing only a limited amount of proteins. The synthesis of the cellular wall, however, went on for another few hours. Thick-walled, less permeable and less metabolically active cells formed having an altered ultrastructure. A prolonged cultivation at 30 0 C resulted in the reduction of living cells while the low cultivation temperature (5 0 C) was found to have a protective effect. Pre-irradiation with 30g krad of gamma radiation increased the sensitivity of surviving cells to the cultivation conditions. Spores in the post-germination period were found to be much more resistent and alternating use of low and higher temperatures had little effect on growth

  1. Heat-induced oxidative injury contributes to inhibition of Botrytis cinerea spore germination and growth.

    Science.gov (United States)

    Zhao, Wei; Wisniewski, Michael; Wang, Wenjie; Liu, Jia; Liu, Yongsheng

    2014-03-01

    The inhibitory effect of heat treatment (HT) on Botrytis cinerea, a major postharvest fungal pathogen, and the possible mode of action were investigated. Spore germination and germ tube elongation of B. cinerea were both increasingly and significantly inhibited by HT (43 °C) for 10, 20 or 30 min. HT-induced gene expression of NADPH oxidase A, resulted in the intracellular accumulation of reactive oxygen species. HT-treated B. cinerea spores exhibited higher levels of oxidative damage to proteins and lipids, compared to the non-HT control. These findings indicate that HT resulted in oxidative damage which then played an important role in the inhibitory effect on B. cinerea. In the current study, HT was effective in controlling gray mold, caused by B. cinerea, in pear fruits. Understanding the mode of action by which HT inhibits fungal pathogens will help in the application of HT for management of postharvest fungal diseases of fruits and vegetables.

  2. Seasonal Trends in Airborne Fungal Spores in Coastal California Ecosystems

    Science.gov (United States)

    Morfin, J.; Crandall, S. G.; Gilbert, G. S.

    2014-12-01

    Airborne fungal spores cause disease in plants and animals and may trigger respiratory illnesses in humans. In terrestrial systems, fungal sporulation, germination, and persistence are strongly regulated by local meteorological conditions. However, few studies investigate how microclimate affects the spatio-temporal dynamics of airborne spores. We measured fungal aerospora abundance and microclimate at varying spatial and time scales in coastal California in three habitat-types: coast redwood forest, mixed-evergreen forest, and maritime chaparral. We asked: 1) is there a difference in total airborne spore concentration between habitats, 2) when do we see peak spore counts, and 3) do spore densities correlate with microclimate conditions? Fungal spores were caught from the air with a volumetric vacuum air spore trap during the wet season (January - March) in 2013 and 2014, as well as monthly in 2014. Initial results suggest that mixed-evergreen forests exhibit the highest amounts of spore abundance in both years compared to the other habitats. This may be due to either a higher diversity of host plants in mixed-evergreen forests or a rich leaf litter layer that may harbor a greater abundance of saprotrophic fungi. Based on pilot data, we predict that temperature and to a lesser degree, relative humidity, will be important microclimate predictors for high spore densities. These data are important for understanding when and under what weather conditions we can expect to see high levels of fungal spores in the air; this can be useful information for managers who are interested in treating diseased plants with fungicides.

  3. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E; Burklund, A

    2010-02-16

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  4. Human heat-shock protein 60 receptor-coated paramagnetic beads show improved capture of Listeria monocytogenes in the presence of other Listeria in food.

    Science.gov (United States)

    Koo, O K; Aroonnual, A; Bhunia, A K

    2011-07-01

    To investigate the suitability of human Hsp60, a receptor for Listeria adhesion protein (LAP), on paramagnetic beads (PMB) to capture Listeria monocytogenes from food in the presence of other Listeria to facilitate rapid and specific detection of this pathogen. Commercially available streptavidin-coated PMBs were linked with biotinylated Hsp60 (PMB-Hsp60), and the bacterial capture efficiency from pure culture and meat samples was determined. Capture rate was also compared with the monoclonal antibody (MAb)-C11E9-coated beads (PMB-C11E9) and the commercial Dynabeads anti-Listeria. Captured cells were detected and quantified by plating on selective medium, quantitative real-time PCR (qPCR) and a light-scattering sensor. Overall, all ligand-coated beads had similar capture efficiency (varied from 1·8 to 9·2%) for L. monocytogenes under the conditions employed, and the minimum cell number required to achieve such capture was 10³ CFU ml⁻¹. PMB-Hsp60 had significantly greater capture efficiency for pathogenic Listeria (P Listeria. In contrast, PMB-C11E9 and Dynabeads anti-Listeria had similar capture efficiency for both. The efficacy of all PMBs to capture L. monocytogenes in the presence of Listeria innocua from food matrices was compared. Although Dynabeads anti-Listeria had the overall best capture efficiency, PMB-Hsp60 was able to selectively capture L. monocytogenes even in the presence of 10-100-fold more L. innocua cells from enriched meat samples. Data show that the human cell receptor, Hsp60, is suitable for the capture of pathogenic Listeria on PMB in the presence of other Listeria in food. As pathogen interaction with host cells is highly specific, host cell receptors could be used as alternate capture molecules on PMB to aid in specific detection of pathogens. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  5. Introduction: Edible Coatings and Films to Improve Food Quality

    Science.gov (United States)

    This book gives a history of the development and uses of edible coatings, detailed chapters on coating caracteristics, determination of coating properties, methods for making coatings, and discription of coating film formers (polysaccharieds, lipids, resins, proteins). The book also disucsses coatin...

  6. Rapid and sensitive detection of redspotted grouper nervous necrosis virus (RGNNV) infection by aptamer-coat protein-aptamer sandwich enzyme-linked apta-sorbent assay (ELASA).

    Science.gov (United States)

    Zhou, L; Li, P; Ni, S; Yu, Y; Yang, M; Wei, S; Qin, Q

    2017-12-01

    Redspotted grouper nervous necrosis virus (RGNNV) is one of the most devastating pathogens in the aquaculture of the grouper, Epinephlus sp., worldwide. The early and rapid diagnosis of RGNNV is important for the prevention of RGNNV infection. In this study, an aptamer (A10)-based sandwich enzyme-linked apta-sorbent assay (ELASA) was developed for RGNNV diagnosis. This sandwich ELASA showed high specificity for the RGNNV coat protein (CP) and virions in virus-infected cells and tissues. At the optimized working concentration of 200 nM of aptamer, the ELASA could detect RGNNV in the lysates of as few as 4 × 10 3 RGNNV-infected GB cells. Incubation for 10 min was sufficient to produce accurate results. The sandwich ELASA was most stable at incubation temperatures of 4-25°C, but could still distinguish RGNNV-infected samples from the controls at 37°C. It could detect RGNNV infection in brain lysates diluted 1/10, with results consistent with those of reverse transcription PCR, although with 10% less sensitivity. The main equipment required includes dissection tools, a water bath, Pierce™ Streptavidin Coated Plates and a microplate reader. The sandwich ELASA has great potential utility for the rapid and sensitive diagnosis of RGNNV in its early stages by fish farmers. © 2017 John Wiley & Sons Ltd.

  7. Synthesis and characterization of SIRT6 protein coated magnetic beads: identification of a novel inhibitor of SIRT6 deacetylase from medicinal plant extracts.

    Science.gov (United States)

    Yasuda, M; Wilson, D R; Fugmann, S D; Moaddel, R

    2011-10-01

    SIRT6 is a histone deacetylase that has been proposed as a potential therapeutic target for metabolic disorders and the prevention of age-associated diseases. Thus, the identification of compounds that modulate SIRT6 activity could be of great therapeutic importance. The aim of this study was to develop a screening method for the identification of novel modulators of SIRT6 from a natural plant extract. We immobilized SIRT6 onto the surface of magnetic beads, and assessed SIRT6 enzymatic activity on synthetic acetylated histone tails (H3K9Ac) by measuring products of the deacetylation process. The SIRT6 coated magnetic beads were then suspended in fenugreek seed extract (Trigonella foenum-graecum) as a bait to identify active ligands that suppress SIRT6 activity. While the entire extract also inhibited SIRT6 activity in a cell-based assay, the inhibitory effect of two flavonoids from this extract, quercetin and vitexin, was only detected in vitro. This is the first report on the use of protein-coated magnetic beads for the identification of an active ligand from a botanical matrix, and it sets the basis for the de novo identification of SIRT6 modulators from complex biological mixtures.

  8. Desorption of Lipases Immobilized on Octyl-Agarose Beads and Coated with Ionic Polymers after Thermal Inactivation. Stronger Adsorption of Polymers/Unfolded Protein Composites

    Directory of Open Access Journals (Sweden)

    Jose J. Virgen-Ortíz

    2017-01-01

    Full Text Available Lipases from Candida antarctica (isoform B and Rhizomucor miehei (CALB and RML have been immobilized on octyl-agarose (OC and further coated with polyethylenimine (PEI and dextran sulfate (DS. The enzymes just immobilized on OC supports could be easily released from the support using 2% SDS at pH 7, both intact or after thermal inactivation (in fact, after inactivation most enzyme molecules were already desorbed. The coating with PEI and DS greatly reduced the enzyme release during thermal inactivation and improved enzyme stability. However, using OC-CALB/RML-PEI-DS, the full release of the immobilized enzyme to reuse the support required more drastic conditions: a pH value of 3, a buffer concentration over 2 M, and temperatures above 45 °C. However, even these conditions were not able to fully release the thermally inactivated enzyme molecules from the support, being necessary to increase the buffer concentration to 4 M sodium phosphate and decrease the pH to 2.5. The formation of unfolded protein/polymers composites seems to be responsible for this strong interaction between the octyl and some anionic groups of OC supports. The support could be reused five cycles using these conditions with similar loading capacity of the support and stability of the immobilized enzyme.

  9. Germination Requirements of Bacillus macerans Spores

    Science.gov (United States)

    Sacks, L. E.; Thompson, P. A.

    1971-01-01

    2-Phenylacetamide is an effective germinant for spores of five strains of Bacillus macerans, particularly in the presence of fructose. Benzyl penicillin, the phenyl acetamide derivative of penicillin, and phenylacetic acid are also good germinants. l-Asparagine is an excellent germinant for four strains. α-Amino-butyric acid is moderately effective. Pyridoxine, pyridoxal, adenine, and 2,6-diaminopurine are potent germinants for NCA strain 7X1 only. d-Glucose is a powerful germinant for strain B-70 only. d-Fructose and d-ribose strongly potentiate germination induced by other germinants (except l-asparagine) but have only weak activity by themselves. Niacinamide and nicotinamide-adenine dinucleotide, inactive by themselves, are active in the presence of fructose or ribose. Effects of pH, ion concentration, and temperature are described. PMID:4251279

  10. Using Spores for Fusarium spp. Classification by MALDI-Based Intact Cell/Spore Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Wolfgang Winkler

    2012-01-01

    Full Text Available Fusarium is a widespread genus of filamentous fungi and a member of the soil microbial community. Certain subspecies are health threatening because of their mycotoxin production that affects the human and animal food chain. Thus, for early and effective pest control, species identification is of particular interest; however, differentiation on the subspecies level is challenging and time-consuming for this fungus. In the present study, we show the possibilities of intact cell mass spectrometry for spore analysis of 22 different Fusarium strains belonging to six Fusarium subspecies. We found that species differentiation is possible if mass spectrometric analyses are performed under well-defined conditions with fixed parameters. A critical point for analysis is a proper sample preparation of spores, which increases the quality of mass spectra with respect to signal intensity and m/z value variations. It was concluded that data acquistion has to be performed automatically; otherwise, user-specific variations are introduced generating data which cannot fit the existing datasets. Data that show clearly that matrix-assisted laser desorption ionization-based intact cell/intact spore mass spectrometry (IC/ISMS can be applied to differentiate closely related Fusarium spp. are presented. Results show a potential to build a database on Fusarium species for accurate species identification, for fast response in the case of infections in the cornfield. We furthermore demonstrate the high precision of our approach in classification of intact Fusarium species according to the location of their collection.

  11. Quantifying the effect of sorbic acid, heat and combination of both on germination and outgrowth of Bacillus subtilis spores at single cell resolution.

    Science.gov (United States)

    Pandey, Rachna; Pieper, Gerard H; Ter Beek, Alexander; Vischer, Norbert O E; Smelt, Jan P P M; Manders, Erik M M; Brul, Stanley

    2015-12-01

    Bacillus subtilis spores are a problem for the food industry as they are able to survive preservation processes. The spores often reside in food products, where their inherent protection against various stress treatments causes food spoilage. Sorbic acid is widely used as a weak acid preservative in the food industry. Its effect on spore germination and outgrowth in a combined, 'hurdle', preservation setting has gained limited attention. Therefore, the effects of mild sorbic acid (3 mM), heat-treatment (85 °C for 10 min) and a combination of both mild stresses on germination and outgrowth of B. subtilis 1A700 spores were analysed at single spore level. The heat-treatment of the spore population resulted in a germination efficiency of 46.8% and an outgrowth efficiency of 32.9%. In the presence of sorbic acid (3 mM), the germination and outgrowth efficiency was 93.3% and 80.4% respectively whereas the combined heat and sorbic acid stress led to germination and outgrowth efficiencies of 52.7% and 27.0% respectively. The heat treatment clearly primarily affected the germination process, while sorbic acid affected the outgrowth and generation time. In addition a new 'burst' time-point was defined as the time-point at which the spore coat visibly breaks and/or is shed. The combined stresses had a synergistic effect on the time of the end of germination to the burst time-point, increasing both the mean and its variation more than either of the single stresses did. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Amino acid sequences mediating vascular cell adhesion molecule 1 binding to integrin alpha 4: homologous DSP sequence found for JC polyoma VP1 coat protein

    Directory of Open Access Journals (Sweden)

    Michael Andrew Meyer

    2013-07-01

    Full Text Available The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4 to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3. For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer.

  13. Molecular diversity of the coat protein-encoding region of Barley yellow dwarf virus-PAV and Barley yellow dwarf virus-MAV from Latvia and Sweden.

    Science.gov (United States)

    Bisnieks, M; Kvarnheden, A; Sigvald, R; Valkonen, J P T

    2004-04-01

    The sequence variability of Barley yellow dwarf virus-PAV (PAV) and Barley yellow dwarf virus-MAV (MAV) was studied by comparing 502 nucleotides from the coat protein-encoding region of six isolates from Latvia and four from Sweden. The diversity within MAV was low (>97% sequence identity), also when compared to isolates from USA and China. In contrast, the variability among PAV isolates was greater and phylogenetic analysis including isolates of a wide geographic origin detected two major clusters, of which both contained isolates from Latvia and Sweden. A new distinct variant of BYDV-PAV was discovered in Latvia, and because of the sequence difference it is proposed to belong to a new species (BYDV-OYV).

  14. Test methods and response surface models for hot, humid air decontamination of materials contaminated with dirty spores of Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam.

    Science.gov (United States)

    Buhr, T L; Young, A A; Barnette, H K; Minter, Z A; Kennihan, N L; Johnson, C A; Bohmke, M D; DePaola, M; Cora-Laó, M; Page, M A

    2015-11-01

    To develop test methods and evaluate survival of Bacillus anthracis ∆Sterne or Bacillus thuringiensis Al Hakam on materials contaminated with dirty spore preparations after exposure to hot, humid air using response surface modelling. Spores (>7 log10 ) were mixed with humic acid + spent sporulation medium (organic debris) or kaolin (dirt debris). Spore samples were then dried on five different test materials (wiring insulation, aircraft performance coating, anti-skid, polypropylene, and nylon). Inoculated materials were tested with 19 test combinations of temperature (55, 65, 75°C), relative humidity (70, 80, 90%) and time (1, 2, 3 days). The slowest spore inactivation kinetics was on nylon webbing and/or after addition of organic debris. Hot, humid air effectively decontaminates materials contaminated with dirty Bacillus spore preparations; debris and material interactions create complex decontamination kinetic patterns; and B. thuringiensis Al Hakam is a realistic surrogate for B. anthracis. Response surface models of hot, humid air decontamination were developed which may be used to select decontamination parameters for contamination scenarios including aircraft. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  15. Identification of the subgenomic promoter of the coat protein gene of cucumber fruit mottle mosaic virus and development of a heterologous expression vector.

    Science.gov (United States)

    Rhee, Sun-Ju; Jang, Yoon Jeong; Lee, Gung Pyo

    2016-06-01

    Heterologous gene expression using plant virus vectors enables research on host-virus interactions and the production of useful proteins, but the host range of plant viruses limits the practical applications of such vectors. Here, we aimed to develop a viral vector based on cucumber fruit mottle mosaic virus (CFMMV), a member of the genus Tobamovirus, whose members infect cucurbits. The subgenomic promoter (SGP) in the coat protein (CP) gene, which was used to drive heterologous expression, was mapped by analyzing deletion mutants from a CaMV 35S promoter-driven infectious CFMMV clone. The region from nucleotides (nt) -55 to +160 relative to the start codon of the open reading frame (ORF) of CP was found to be a fully active promoter, and the region from nt -55 to +100 was identified as the active core promoter. Based on these SGPs, we constructed a cloning site in the CFMMV vector and successfully expressed enhanced green fluorescent protein (EGFP) in Nicotiana benthamiana and watermelon (Citrullus lanatus). Co-inoculation with the P19 suppressor increased EGFP expression and viral replication by blocking degradation of the viral genome. Our CFMMV vector will be useful as an expression vector in cucurbits.

  16. Functional characterization of coat protein and V2 involved in cell to cell movement of Cotton leaf curl Kokhran virus-Dabawali.

    Directory of Open Access Journals (Sweden)

    C G Poornima Priyadarshini

    Full Text Available The functional attributes of coat protein (CP and V2 of the monopartite begomovirus, Cotton leaf curl Kokhran virus- Dabawali were analyzed in vitro and in vivo by their overexpression in E. coli, insect cells and transient expression in the plant system. Purified recombinant V2 and CP proteins were shown to interact with each other using ELISA and surface plasmon resonance. Confocal microscopy of Sf21 cells expressing V2 and CP proteins revealed that V2 localized to the cell periphery and CP to the nucleus. Deletion of the N terminal nuclear localization signal of CP restricted its distribution to the cytoplasm. GFP-V2 and YFP-CP transiently expressed in N. benthamiana plants by agroinfiltration substantiated the localization of V2 to the cell periphery and CP predominantly to the nucleus. Interestingly, upon coinfiltration, CP was found both in the nucleus and in the cytoplasm along with V2. These results suggest that the interaction of V2 and CP may have important implications in the cell to cell movement.

  17. Molecular characterization of coat protein gene of Garlic common latent virus isolates from India: an evidence for distinct phylogeny and recombination.

    Science.gov (United States)

    Pramesh, D; Baranwal, Virendra K

    2013-08-01

    The coat protein (CP) gene of five Indian Garlic common latent virus (GarCLV) isolates was sequenced and it was 960 bp long in all the five isolates, encoding a protein of 319 amino acids. Comparative nucleotide sequence analysis revealed diversity of 4.3% among the Indian isolates and of 11.9% among all isolates worldwide. Amino acid sequence comparison showed a significant variability in the N-terminal of CP of GarCLV. Various protein analysis tools identified thirteen conserved domains and motifs including Carlavirus and Potexvirus-specific Flexi CP and Flexi N CP. Phylogenetic analysis clustered GarCLV isolates in the subgroup II with isolates from Australia, Brazil, Japan, and South Korea. Intraspecies recombination study revealed that only one of the Indian isolates was a recombinant. Interspecies recombination study suggested the absence of genetic exchange from Carlavirus species to GarCLV; conversely, GarCLV was identified as a putative donor for at least two other Carlavirus species. This is the first report of molecular variability and recombination in GarCLV isolates.

  18. Dynamic phase microscopy, a new method to detect viable and killed spores and to estimate the heterogeneity of spore populations

    Science.gov (United States)

    Tychinsky, Vladimir P.; Mulyukin, Andrey L.; Lisovskii, Vitalii V.; Nikolaev, Yury A.; Kretushev, Aleksander V.; Vyshenskaya, Tatyana V.; Suzina, Nataliya E.; Duda, Vitalii I.; El-Registan, Galina I.

    One of the challenging tasks in monitoring studies is to estimate heterogeneity of microbial populations by the physiological state and potential viability of individual cells, especially with regard of their ability to withstand various environmental assaults. Previously, we described some approaches based on electron microscopy methods to discriminate vegetative, dormant, and dead cells in both aged microbial cultures and environmental samples, including permafrost. We propose to extend the arsenal of microscopy methods for monitoring studies by a new non-invasive and informative method - dynamic phase microscopy (DPM). The substantial advantage of DPM is that it gives quantitative (digitized) data of undestroyed (living) microscopic objects, exemplified in our work by Bacillus licheniformis spores. Using DPM made it possible to record interference images of objects (spores) and to produce picture of their "phase thickness" (PT) that is the optical path difference in nm. Thus, it was demonstrated the remarkable difference in the PT of spores at different physiological states: dormant, germinating, and heat-killed spores had PT values of 80, 40-50, and 20 nm, respectively. The other found criterion to distinguish between spores was the PT fluctuations. In contrast to dormant and killed spores, the PT of germinating spores oscillated with amplitude of up to 7 nm, with typical frequencies of 1.3 and 3.4 Hz. A combination of the recorded PT values and PT fluctuations gave a key to detect viable and dead cells. Under the conditions that did not support germination (the lack of nutrients), we were able to follow the response of a single dormant spore and a spore population to heating from 25 °C to 70 °C. Thus, a very small temperature change (from 40 °C to 42 °C) under conditions non-favorable for germination, caused a drastic decrease in the spores' PT; the second drop in the PT values was observed during heating from 60 °C to 70 °C. These changes were

  19. Water Behavior in Bacterial Spores by Deuterium NMR Spectroscopy

    Science.gov (United States)

    2015-01-01

    Dormant bacterial spores are able to survive long periods of time without nutrients, withstand harsh environmental conditions, and germinate into metabolically active bacteria when conditions are favorable. Numerous factors influence this hardiness, including the spore structure and the presence of compounds to protect DNA from damage. It is known that the water content of the spore core plays a role in resistance to degradation, but the exact state of water inside the core is a subject of discussion. Two main theories present themselves: either the water in the spore core is mostly immobile and the core and its components are in a glassy state, or the core is a gel with mobile water around components which themselves have limited mobility. Using deuterium solid-state NMR experiments, we examine the nature of the water in the spore core. Our data show the presence of unbound water, bound water, and deuterated biomolecules that also contain labile deuterons. Deuterium–hydrogen exchange experiments show that most of these deuterons are inaccessible by external water. We believe that these unreachable deuterons are in a chemical bonding state that prevents exchange. Variable-temperature NMR results suggest that the spore core is more rigid than would be expected for a gel-like state. However, our rigid core interpretation may only apply to dried spores whereas a gel core may exist in aqueous suspension. Nonetheless, the gel core, if present, is inaccessible to external water. PMID:24950158

  20. Water behavior in bacterial spores by deuterium NMR spectroscopy.

    Science.gov (United States)

    Friedline, Anthony W; Zachariah, Malcolm M; Johnson, Karen; Thomas, Kieth J; Middaugh, Amy N; Garimella, Ravindranath; Powell, Douglas R; Vaishampayan, Parag A; Rice, Charles V

    2014-07-31

    Dormant bacterial spores are able to survive long periods of time without nutrients, withstand harsh environmental conditions, and germinate into metabolically active bacteria when conditions are favorable. Numerous factors influence this hardiness, including the spore structure and the presence of compounds to protect DNA from damage. It is known that the water content of the spore core plays a role in resistance to degradation, but the exact state of water inside the core is a subject of discussion. Two main theories present themselves: either the water in the spore core is mostly immobile and the core and its components are in a glassy state, or the core is a gel with mobile water around components which themselves have limited mobility. Using deuterium solid-state NMR experiments, we examine the nature of the water in the spore core. Our data show the presence of unbound water, bound water, and deuterated biomolecules that also contain labile deuterons. Deuterium-hydrogen exchange experiments show that most of these deuterons are inaccessible by external water. We believe that these unreachable deuterons are in a chemical bonding state that prevents exchange. Variable-temperature NMR results suggest that the spore core is more rigid than would be expected for a gel-like state. However, our rigid core interpretation may only apply to dried spores whereas a gel core may exist in aqueous suspension. Nonetheless, the gel core, if present, is inaccessible to external water.

  1. Infrared signatures to discriminate viability of autoclaved Bacillus spores

    Science.gov (United States)

    Schneider, Matthew D. W.; Valentine, Nancy B.; Johnson, Timothy J.

    2011-11-01

    Optical methods can offer good sensitivity for detecting small amounts of chemicals and biologicals, and as these methods mature, are some of the few techniques that can offer true standoff detection. For detection of biological species, determining the viability is clearly important: Certain species of gram-positive bacteria are capable of forming endospores, specialized structures that arise when living conditions become unfavorable or little growth medium is available. Spores are also resistant to many chemicals as well as changes in heat or pH; such spores can remain dormant from months to years until more favorable conditions arise, resulting in germination back to the vegetative state. This persistence characteristic of bacterial spores allows for contamination of a surface (e.g. food or medical equipment) even after the surface has been nominally cleaned. Bacterial spores have also been used as biological weapons, as in the case of B. anthracis. Thus, having rapid analytical methods to determine a spore's viability after attempts to clean a given environment is crucial. The increasing availability of portable spectrometers may provide a key to such rapid onsite analysis. The present study was designed to determine whether infrared spectroscopy may be used to differentiate between viable vs. dead B. subtilis and B. atrophaeus spores. Preliminary results show that the reproducible differences in the IR signatures can be used to identify the viable vs. the autoclaved (dead) spores.

  2. Combined effects of lactoperoxidase system-whey protein coating and modified atmosphere packaging on the microbiological, chemical and sensory attributes of Pike-Perch fillets.

    Science.gov (United States)

    Rostami, Hosein; Abbaszadeh, Sepideh; Shokri, Sajad

    2017-09-01

    The present study aimed to evaluate the efficacy of lactoperoxidase system-whey protein coating and modified atmosphere packaging (60% CO 2 , 30% N 2 , 10% O 2 ) combination (LPOS + WPS + MAP) on the microbiological, chemical and sensory specifications of Pike-Perch ( Sander Lucioperca , Linnaeus 1758) fillets. The highest bacterial count was observed in the fish fillets packaged with whey protein coating solutions (WPS) in compare with the other groups. Combination of WPS + LPOS and MAP packaging could significantly inhibit bacterial growth. Total volatile basic nitrogen (TVB-N), as a quality index of flesh, had strong correlation (r = 0.98-0.99) with microbial load, so that the highest and the lowest TVB-N values were observed in WPS and WPS + LPOS + MAP batches, respectively. Assessments of thiobarbituric acid reactive substances index showed that incorporation of LPOS with WPS or MAP did not have remarkable effect on lipid oxidation, but combined effect of MAP and WPS + LPOS on reducing fat oxidation was significant. The pH values in WPS + LPOS, WPS + MAP and WPS + LPOS + MAP were significantly lower than WPS. Sensory evaluations indicated that LPOS + WPS + MAP kept Pike-Perch fillets at high sensory acceptability for at least 16 days in refrigerated temperature. In conclusion, combination of MAP and WPS + LPOS showed synergistic effects on shelf-life extension of Pike-Perch fillets under refrigerated storage.

  3. Antitumor effects and mechanisms of Ganoderma extracts and spores oil

    Science.gov (United States)

    Chen, Chun; Li, Peng; Li, Ye; Yao, Guan; Xu, Jian-Hua

    2016-01-01

    Ganoderma lucidum is a popular herbal medicine used in China to promote health. Modern studies have disclosed that the active ingredients of Ganoderma can exhibit several effects, including antitumor effects and immunomodulation. The present study evaluated the antitumor effects of self-prepared Ganoderma extracts and spores oil, and investigated the possible underlying mechanisms by observing the effects of the extracts and oil on topoisomerases and the cell cycle. The results showed that Ganoderma extracts and spores oil presented dose-dependent inhibitory effects on tumor cells. The half maximal inhibitory concentration (IC50) values of Ganoderma extracts on HL60, K562 and SGC-7901 cells for 24 h were 0.44, 0.39 and 0.90 mg/ml, respectively; for Ganoderma spores oil, the IC50 values were 1.13, 2.27 and 6.29 mg/ml, respectively. In the in vivo study, the inhibitory rates of Ganoderma extracts (4 g/kg/d, intragastrically) on S180 and H22 cells were 39.1 and 44.6%, respectively, and for Ganoderma spores oil (1.2 g/kg/d, intragastrically) the inhibitory rates were 30.9 and 44.9%, respectively. Ganoderma extracts and spores oil inhibited the activities of topoisomerase I and II. Ganoderma spores oil was shown block the cell cycle at the transition between the G1 and S phases and induce a marked decrease in cyclin D1 levels in K562 cells, with no significant change in cyclin E level. These results suggest that the Ganoderma extracts and spores oil possessed antitumor effects in the in vitro and in vivo studies. The antitumor mechanisms of the extracts and spores oil were associated with inhibitory effects on topoisomerase I and II activities, and for Ganoderma spores oil, the antitumor effects may also be associated with decreased cyclin D1 levels, thus inducing G1 arrest in the cell cycle. PMID:27900038

  4. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    Directory of Open Access Journals (Sweden)

    Kevin eEgan

    2016-04-01

    Full Text Available Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB. Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural, approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable

  5. Sterilization Resistance of Bacterial Spores Explained with Water Chemistry.

    Science.gov (United States)

    Friedline, Anthony W; Zachariah, Malcolm M; Middaugh, Amy N; Garimella, Ravindranath; Vaishampayan, Parag A; Rice, Charles V

    2015-11-05

    Bacterial spores can survive for long periods without nutrients and in harsh environmental conditions. This survival is influenced by the structure of the spore, the presence of protective compounds, and water retention. These compounds, and the physical state of water in particular, allow some species of bacterial spores to survive sterilization schemes with hydrogen peroxide and UV light. The chemical nature of the spore core and its water has been a subject of some contention and the chemical environment of the water impacts resistance paradigms. Either the spore has a glassy core, where water is immobilized along with other core components, or the core is gel-like with mobile water diffusion. These properties affect the movement of peroxide and radical species, and hence resistance. Deuterium solid-state NMR experiments are useful for examining the nature of the water inside the spore. Previous work in our lab with spores of Bacillus subtilis indicate that, for spores, the core water is in a more immobilized state than expected for the gel-like core theory, suggesting a glassy core environment. Here, we report deuterium solid-state NMR observations of the water within UV- and peroxide-resistant spores from Bacillus pumilus SAFR-032. Variable-temperature NMR experiments indicate no change in the line shape after heating to 50 °C, but an overall decrease in signal after heating to 100 °C. These results show glass-like core dynamics within B. pumilus SAFR-032 that may be the potential source of its known UV-resistance properties. The observed NMR traits can be attributed to the presence of an exosporium containing additional labile deuterons that can aid in the deactivation of sterilizing agents.

  6. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    Science.gov (United States)

    Egan, Kevin; Field, Des; Rea, Mary C; Ross, R Paul; Hill, Colin; Cotter, Paul D

    2016-01-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more

  7. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    Science.gov (United States)

    Egan, Kevin; Field, Des; Rea, Mary C.; Ross, R. Paul; Hill, Colin; Cotter, Paul D.

    2016-01-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more

  8. Antitumor effects and mechanisms of Ganoderma extracts and spores oil.

    Science.gov (United States)

    Chen, Chun; Li, Peng; Li, Ye; Yao, Guan; Xu, Jian-Hua

    2016-11-01

    Ganoderma lucidum is a popular herbal medicine used in China to promote health. Modern studies have disclosed that the active ingredients of Ganoderma can exhibit several effects, including antitumor effects and immunomodulation. The present study evaluated the antitumor effects of self-prepared Ganoderma extracts and spores oil, and investigated the possible underlying mechanisms by observing the effects of the extracts and oil on topoisomerases and the cell cycle. The results showed that Ganoderma extracts and spores oil presented dose-dependent inhibitory effects on tumor cells. The half maximal inhibitory concentration (IC 50 ) values of Ganoderma extracts on HL60, K562 and SGC-7901 cells for 24 h were 0.44, 0.39 and 0.90 mg/ml, respectively; for Ganoderma spores oil, the IC 50 values were 1.13, 2.27 and 6.29 mg/ml, respectively. In the in vivo study, the inhibitory rates of Ganoderma extracts (4 g/kg/d, intragastrically) on S180 and H22 cells were 39.1 and 44.6%, respectively, and for Ganoderma spores oil (1.2 g/kg/d, intragastrically) the inhibitory rates were 30.9 and 44.9%, respectively. Ganoderma extracts and spores oil inhibited the activities of topoisomerase I and II. Ganoderma spores oil was shown block the cell cycle at the transition between the G1 and S phases and induce a marked decrease in cyclin D1 levels in K562 cells, with no significant change in cyclin E level. These results suggest that the Ganoderma extracts and spores oil possessed antitumor effects in the in vitro and in vivo studies. The antitumor mechanisms of the extracts and spores oil were associated with inhibitory effects on topoisomerase I and II activities, and for Ganoderma spores oil, the antitumor effects may also be associated with decreased cyclin D1 levels, thus inducing G1 arrest in the cell cycle.

  9. New pressure and temperature effects on bacterial spores

    International Nuclear Information System (INIS)

    Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122 deg. C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80 deg. C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa

  10. New pressure and temperature effects on bacterial spores

    Science.gov (United States)

    Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122°C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80°C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa with 37

  11. New pressure and temperature effects on bacterial spores

    Energy Technology Data Exchange (ETDEWEB)

    Mathys, A; Knorr, D [Berlin University of Technology, Department of Food Biotechnology and Food Process Engineering, Koenigin-Luise-Str. 22, D-14195 Berlin (Germany); Heinz, V [German Institute of Food Technology, p. o. box 1165, D-49601, Quackenbrueck (Germany)], E-mail: alexander.mathys@tu-berlin.de

    2008-07-15

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122 deg. C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80 deg. C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa

  12. EKSPRESI PROTEIN COAT DAN mRNA VIRAL NERVOUS NECROSIS YANG DIKENDALIKAN OLEH PROMOTER β-AKTIN IKAN MEDAKA DAN KERATIN IKAN FLOUNDER JEPANG

    Directory of Open Access Journals (Sweden)

    Wiwien Mukti Andriyani

    2014-03-01

    Full Text Available Kemampuan promoter dalam mengatur ekspresi gen penyandi protein imunogenik sangat menentukan efikasi suatu vaksin DNA. Penelitian ini bertujuan untuk mengukur tingkat ekspresi protein dan mRNA RNA2 penyandi coat protein (CP virus viral nervous necrosis (VNN yang dikendalikan oleh dua promoter berbeda, yaitu promoter β-aktin ikan medaka (mBA, dan keratin ikan flounder Jepang (JfKer. Uji ekspresi CP dilakukan menggunakan embrio ikan lele dumbo (Clarias sp. sebagai model, sedangkan analisis mRNA dilakukan menggunakan ikan kerapu tikus. Konstruksi vektor ekspresi pmBA-CP dan pJKer-CP dengan konsentrasi 50 ng/μL KCl 1 M disuntikkan ke embrio ikan lele dumbo fase 1-2 sel. Sebanyak 30 embrio ikan lele dumbo diambil pada jam ke-6, 8, 10, 12, 14, dan 16 pascainjeksi untuk analisis protein. Hasil SDS-PAGE menunjukkan adanya protein berukuran sekitar 42 kDa, dan analisis western blot menggunakan antibodi (Ab poliklonal anti-VNN membuktikan bahwa protein tersebut adalah CP. Keberhasilan deteksi protein spesifik menggunakan Ab anti-VNN tersebut menunjukkan bahwa embrio ikan lele dapat digunakan untuk menguji potensi produksi protein imunogenik yang dikendalikan oleh promoter berbeda. Pengujian ini juga menunjukkan bahwa, aktivitas promoter mBA lebih tinggi daripada promoter JfKer, sehingga uji ekspresi mRNA dilakukan menggunakan konstruksi pmBA-CP. Benih ikan kerapu tikus (panjang badan sekitar 5 cm diinjeksi dengan pmBA-CP secara intramuskular dengan dosis 12,5 μg/ekor. Total RNA diekstraksi dari daging pada waktu 6, 12, dan 24 jam pascainjeksi. Hasil RT-PCR menunjukkan adanya ekspresi mRNA CP pada 24 jam pascainjeksi. Hal tersebut menunjukkan bahwa promotor mBA aktif mengendalikan ekspresi CP pada ikan kerapu tikus, dan pmBA-CP berpotensi digunakan sebagai vaksin DNA untuk menginduksi kekebalan ikan kerapu terhadap infeksi VNN.

  13. The putative Agrobacterium transcriptional activator-like virulence protein VirD5 may target T-complex to prevent the degradation of coat proteins in the plant cell nucleus.

    Science.gov (United States)

    Wang, Yafei; Peng, Wei; Zhou, Xu; Huang, Fei; Shao, Lingyun; Luo, Meizhong

    2014-09-01

    Agrobacterium exports at least five virulence proteins (VirE2, VirE3, VirF, VirD2, VirD5) into host cells and hijacks some host plant factors to facilitate its transformation process. Random DNA binding selection assays (RDSAs), electrophoretic mobility shift assays (EMSAs) and yeast one-hybrid systems were used to identify protein-bound DNA elements. Bimolecular fluorescence complementation, glutathione S-transferase pull-down and yeast two-hybrid assays were used to detect protein interactions. Protoplast transformation, coprecipitation, competitive binding and cell-free degradation assays were used to analyze the relationships among proteins. We found that Agrobacterium VirD5 exhibits transcriptional activation activity in yeast, is located in the plant cell nucleus, and forms homodimers. A specific VirD5-bound DNA element designated D5RE (VirD5 response element) was identified. VirD5 interacted directly with Arabidopsis VirE2 Interacting Protein 1 (AtVIP1). However, the ternary complex of VirD5-AtVIP1-VirE2 could be detected, whereas that of VirD5-AtVIP1-VBF (AtVIP1 Binding F-box protein) could not. We demonstrated that VirD5 competes with VBF for binding to AtVIP1 and stabilizes AtVIP1 and VirE2 in the cell-free degradation system. Our results indicated that VirD5 may act as both a transcriptional activator-like effector to regulate host gene expression and a protector preventing the coat proteins of the T-complex from being quickly degraded by the host's ubiquitin proteasome system (UPS). © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  14. Domains of BclA, the major surface glycoprotein of the B. cereus exosporium: glycosylation patterns and role in spore surface properties.

    Science.gov (United States)

    Lequette, Yannick; Garénaux, Estelle; Combrouse, Typhaine; Dias, Thays Del Lima; Ronse, Annette; Slomianny, Christian; Trivelli, Xavier; Guerardel, Yann; Faille, Christine

    2011-08-01

    The role of the BclA domains of B. cereus ATCC 14579 was investigated in order to understand the phenomena involved in the interfacial processes occurring between spores and inert surfaces. This was done by (i) creating deletions in the collagen-like region (CLR) and the C-terminal domain (CTD) of BclA, (ii) building BclA proteins with various lengths in the CLR and (iii) modifying the hydrophobic upper surface in the CTD. First, it was demonstrated that the CLR was substituted by three residues already reported in the CLR of B. anthracis, viz. rhamnose, 3-O-methyl-rhamnose, and GalNH(2) residues, while the CTD was also substituted by two additional glycosyl residues, viz. 2-O-methyl-rhamnose and 2,4-O-methyl-rhamnose. Regarding the properties of the spores, both CLR and CTD contributed to the adhesion of the spores, which was estimated by measuring the resistance to detachment of spores adhered to stainless steel plates). CLR and CTD also impacted the hydrophobic character and isoelectric point of the spores. It was then shown that the resistance to detachment of the spores was not affected by the physicochemical properties, but by the CLR length and the presence of hydrophobic amino acids on the CTD.

  15. Whey protein coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505 to low pH.

    Science.gov (United States)

    Gerez, C L; Font de Valdez, G; Gigante, M L; Grosso, C R F

    2012-06-01

    To evaluate the efficacy of a novel microencapsulation procedure using whey protein and pectin to improve the survival rate of Lactobacillus rhamnosus CRL 1505 to low pH and bile. Lactobacillus rhamnosus CRL 1505 was encapsulated by ionotropic gelation using pectin (PE) and pectin-whey protein (PE-WP). Both types of beads (MC(PE/WP) and MC(PE-WP/WP)) were covered with a layer of whey protein by complex coacervation. The noncapsulated lactobacilli were not sensitive to bile salts but to acid. Both microparticles protected Lact. rhamnosus CRL 1505 at pH 2.0, but only MC(PE/WP) was effective at pH 1.2. The combination of ionotropic gelation and complex coacervation techniques is efficient to obtain microcapsules of pectin covered with whey proteins. The MC(PE/WP) beads were more stable than the MC(PE-WP/WP) beads in simulated gastric conditions, thus offering better protection to Lact. rhamnosus CRL 1505 at low pH. Pectin beads with a whey protein layer (MC(PE/WP)) could be used as probiotic carrier in functional foods of low pH (e.g. apple juice), thus protecting Lact. rhamnosus CRL 1505 against the stressful conditions of the gastric tract. © No claim to Argentinean Government works. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  16. Comparative analysis of immune effects in mice model: Clonorchis sinensis cysteine protease generated from recombinant Escherichia coli and Bacillus subtilis spores.

    Science.gov (United States)

    Wu, Zhanshuai; Tang, Zeli; Shang, Mei; Zhao, Lu; Zhou, Lina; Kong, Xiangzhan; Lin, Zhipeng; Sun, Hengchang; Chen, Tingjin; Xu, Jin; Li, Xuerong; Huang, Yan; Yu, Xinbing

    2017-07-01

    Clonorchiasis remains a nonnegligible public health problem in endemic areas. Cysteine protease of Clonorchis sinensis (CsCP) plays indispensable roles in the parasitic physiology and pathology, and has been exploited as a promising drug and vaccine candidate. In recent years, development of spore-based vaccines against multiple pathogens has attracted many investigators' interest. In previous studies, the recombinant Escherichia coli (BL21) and Bacillus subtilis spores expressing CsCP have been successfully constructed, respectively. In this study, the immune effects of CsCP protein purified from recombinant BL21 (rCsCP) and B. subtilis spores presenting CsCP (B.s-CsCP) in Balb/c mice model were conducted with comparative analysis. Levels of specific IgG, IgG1 and IgG2a were significantly increased in sera from both rCsCP and B.s-CsCP intraperitoneally immunized mice. Additionally, recombinant spores expressing abundant fusion CsCP (0.03125 pg/spore) could strongly enhance the immunogenicity of CsCP with significantly higher levels of IgG and isotypes. Compared with rCsCP alone, intraperitoneal administration of mice with spores expressing CsCP achieved a better effect of fighting against C. sinensis infection by slowing down the process of fibrosis. Our results demonstrated that a combination of Th1/Th2 immune responses could be elicited by rCsCP, while spores displaying CsCP prominently induced Th1-biased specific immune responses, and the complex cytokine network maybe mediates protective immune responses against C. sinensis. This work further confirmed that the usage of B. subtilis spores displaying CsCP is an effective way to against C. sinensis.

  17. Inactivation Strategies for Clostridium perfringens Spores and Vegetative Cells.

    Science.gov (United States)

    Talukdar, Prabhat K; Udompijitkul, Pathima; Hossain, Ashfaque; Sarker, Mahfuzur R

    2017-01-01

    Clostridium perfringens is an important pathogen to human and animals and causes a wide array of diseases, including histotoxic and gastrointestinal illnesses. C. perfringens spores are crucial in terms of the pathogenicity of this bacterium because they can survive in a dormant state in the environment and return to being live bacteria when they come in contact with nutrients in food or the human body. Although the strategies to inactivate C. perfringens vegetative cells are effective, the inactivation of C. perfringens spores is still a great challenge. A number of studies have been conducted in the past decade or so toward developing efficient inactivation strategies for C. perfringens spores and vegetative cells, which include physical approaches and the use of chemical preservatives and naturally derived antimicrobial agents. In this review, different inactivation strategies applied to control C. perfringens cells and spores are summarized, and the potential limitations and challenges of these strategies are discussed. Copyright © 2016 American Society for Microbiology.

  18. LEVELS AND TYPES OF AEROBIC SPORE FORMING BACTERIA ...

    African Journals Online (AJOL)

    Limnothrissa miodon) had the product sourced from them analysed morphologically by a microscope and biochemically for levels of aerobic spore forming bacteria that could adversely affect safety of the product. The four companies whose packaged ...

  19. Analysis of Bacillus Globigii Spores Using the BioDetector

    National Research Council Canada - National Science Library

    Lee, William

    1999-01-01

    .... An automated immunoassay instrument capable of providing rapid identification of biological agents was used to analyses laboratory and field trial samples containing the field trial simulants Bacillus globigii (BG) spores...

  20. Late Silurian trilete spores from northern Jiangsu, China.

    Science.gov (United States)

    Wang; Li

    2000-08-01

    The Late Silurian is generally considered to a particular significant key period in the study of early land vascular plants. A trilete spore assemblage of the Upper Silurian is described from northern Jiangsu, China. This assemblage comprises 11 genera and 20 species of trilete spores (including laevigate, apiculate, perinotrilite, patinate, rarely distally murornate and equatorially crassitate, and three indeterminate trilete miospores forms). It has similarities to those described from coeval assemblages from around the world (e.g., England and South Wales; Tripolitania, Libya; Cornwallis Island, Canadian Arctic; Northwest Spain). The rare cryptospore, only one specimen (Tetrahedraletes sp.) had been found to be associated with the Chinese trilete spore assemblage. The discovery of the trilete spores from Late Silurian rocks indicates the existence of early land plants, some possibly vascular, at that time in northern Jiangsu, China.

  1. Small Probes for Orbital Return of Experiments (SPORE), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Analogous to the CubeSat standardization of micro-satellites, the SPORE flight system architecture will utilize a modular design approach to provide low-cost...

  2. Waterline ATS B. globigii spore water disinfection data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Disinfection of B. globigii spores (a non-pathogenic surrogate for B. anthracis) in clean and dirty water using the ATS-Waterline system, which uses ultraviolet...

  3. The Importance of the KR-Rich Region of the Coat Protein of Ourmia melon virus for Host Specificity, Tissue Tropism, and Interference With Antiviral Defense.

    Science.gov (United States)

    Rossi, Marika; Vallino, Marta; Abbà, Simona; Ciuffo, Marina; Balestrini, Raffaella; Genre, Andrea; Turina, Massimo

    2015-01-01

    The N-terminal region of the Ourmia melon virus (OuMV) coat protein (CP) contains a short lysine/arginine-rich (KR) region. By alanine scanning mutagenesis, we showed that the KR region influences pathogenicity and virulence of OuMV without altering viral particle assembly. A mutant, called OuMV6710, with three basic residue substitutions in the KR region, was impaired in the ability to maintain the initial systemic infection in Nicotiana benthamiana and to infect both cucumber and melon plants systemically. The integrity of this protein region was also crucial for encapsidation of viral genomic RNA; in fact, certain mutations within the KR region partially compromised the RNA encapsidation efficiency of the CP. In Arabidopsis thaliana Col-0, OuMV6710 was impaired in particle accumulation; however, this phenotype was abolished in dcl2/dcl4 and dcl2/dcl3/dcl4 Arabidopsis mutants defective for antiviral silencing. Moreover, in contrast to CPwt, in situ immunolocalization experiments indicated that CP6710 accumulates efficiently in the spongy mesophyll tissue of infected N. benthamiana and A. thaliana leaves but only occasionally infects palisade tissues. These results provided strong evidence of a crucial role for OuMV CP during viral infection and highlighted the relevance of the KR region in determining tissue tropism, host range, pathogenicity, and RNA affinity, which may be all correlated with a possible CP silencing-suppression activity.

  4. Initial infection of roots and leaves reveals different resistance phenotypes associated with coat protein gene-mediated resistance to Potato mop-top virus.

    Science.gov (United States)

    Germundsson, Anna; Sandgren, Maria; Barker, Hugh; Savenkov, Eugene I; Valkonen, Jari P T

    2002-05-01

    Resistance to the pomovirus Potato mop-top virus (PMTV) was studied in potato (Solanum tuberosum cv. Saturna) and Nicotiana benthamiana transformed with the coat protein (CP) gene of PMTV. The incidence of PMTV infections was reduced in tubers of the CP-transgenic potatoes grown in the field in soil infested with the viruliferous vector, Spongospora subterranea. However, in those tubers that were infected, all three virus RNAs were detected and virus titres were high. The CP-transgenic N. benthamiana plants were inoculated with PMTV using two methods. Following mechanical inoculation of leaves, no RNA 3 (the CP-encoding RNA homologous to the transgene) was detected in leaves, but in some plants low amounts of RNA 3 were detected in roots; RNA 2 was readily detected in leaves and roots of several plants. Inoculation of roots using viruliferous S. subterranea resulted in infection of roots in all plants and the three PMTV RNAs were detected. However, no systemic movement of PMTV from roots to the above-ground parts was observed, indicating a novel expression of resistance. These data indicate that the CP gene-mediated resistance to PMTV specifically restricts accumulation of PMTV RNA 3, and is more effective in leaves than roots. Furthermore, expression of resistance is different depending on whether leaves or roots are inoculated. Data do not exclude the possibility that both a protein-mediated and an RNA-mediated resistance mechanism are involved.

  5. Thermal inactivation kinetics of Bacillus coagulans spores in tomato juice.

    Science.gov (United States)

    Peng, Jing; Mah, Jae-Hyung; Somavat, Romel; Mohamed, Hussein; Sastry, Sudhir; Tang, Juming

    2012-07-01

    The thermal characteristics of the spores and vegetative cells of three strains of Bacillus coagulans (ATCC 8038, ATCC 7050, and 185A) in tomato juice were evaluated. B. coagulans ATCC 8038 was chosen as the target microorganism for thermal processing of tomato products due to its spores having the highest thermal resistance among the three strains. The thermal inactivation kinetics of B. coagulans ATCC 8038 spores in tomato juice between 95 and 115°C were determined independently in two different laboratories using two different heating setups. The results obtained from both laboratories were in general agreement, with z-values (z-value is defined as the change in temperature required for a 10-fold reduction of the D-value, which is defined as the time required at a certain temperature for a 1-log reduction of the target microorganisms) of 8.3 and 8.7°C, respectively. The z-value of B. coagulans 185A spores in tomato juice (pH 4.3) was found to be 10.2°C. The influence of environmental factors, including cold storage time, pH, and preconditioning, upon the thermal resistance of these bacterial spores is discussed. The results obtained showed that a storage temperature of 4°C was appropriate for maintaining the viability and thermal resistance of B. coagulans ATCC 8038 spores. Acidifying the pH of tomato juice decreased the thermal resistance of these spores. A 1-h exposure at room temperature was considered optimal for preconditioning B. coagulans ATCC 8038 spores in tomato juice.

  6. Fate of ingested Clostridium difficile spores in mice.

    Directory of Open Access Journals (Sweden)

    Amber Howerton

    Full Text Available Clostridium difficile infection (CDI is a leading cause of antibiotic-associated diarrhea, a major nosocomial complication. The infective form of C. difficile is the spore, a dormant and resistant structure that forms under stress. Although spore germination is the first committed step in CDI onset, the temporal and spatial distribution of ingested C. difficile spores is not clearly understood. We recently reported that CamSA, a synthetic bile salt analog, inhibits C. difficile spore germination in vitro and in vivo. In this study, we took advantage of the anti-germination activity of bile salts to determine the fate of ingested C. difficile spores. We tested four different bile salts for efficacy in preventing CDI. Since CamSA was the only anti-germinant tested able to prevent signs of CDI, we characterized CamSa's in vitro stability, distribution, and cytotoxicity. We report that CamSA is stable to simulated gastrointestinal (GI environments, but will be degraded by members of the natural microbiota found in a healthy gut. Our data suggest that CamSA will not be systemically available, but instead will be localized to the GI tract. Since in vitro pharmacological parameters were acceptable, CamSA was used to probe the mouse model of CDI. By varying the timing of CamSA dosage, we estimated that C. difficile spores germinated and established infection less than 10 hours after ingestion. We also showed that ingested C. difficile spores rapidly transited through the GI tract and accumulated in the colon and cecum of CamSA-treated mice. From there, C. difficile spores were slowly shed over a 96-hour period. To our knowledge, this is the first report of using molecular probes to obtain disease progression information for C. difficile infection.

  7. Coating Nanoparticles with Plant-Produced Transferrin-Hydrophobin Fusion Protein Enhances Their Uptake in Cancer Cells

    DEFF Research Database (Denmark)

    Reuter, Lauri J.; Shahbazi, Mohammad-Ali; Makila, Ermei M.

    2017-01-01

    The encapsulation of drugs to nanoparticles may offer a solution for targeted delivery. Here, we set out to engineer a self assembling targeting ligand by combining the functional properties of human transferrin and fungal hydrophobins in a single fusion protein. We showed that human transferrin...

  8. Tip-enhanced Raman scattering of bacillus subtilis spores

    Science.gov (United States)

    Rusciano, G.; Zito, G.; Pesce, G.; Sasso, A.; Isticato, R.; Ricca, E.

    2015-07-01

    Understanding of the complex interactions of molecules at biological interfaces is a fundamental issue in biochemistry, biotechnology as well as biomedicine. A plethora of biological processes are ruled by the molecular texture of cellular membrane: cellular communications, drug transportations and cellular recognition are just a few examples of such chemically-mediated processes. Tip-Enhanced Raman Scattering (TERS) is a novel, Raman-based technique which is ideally suited for this purpose. TERS relies on the combination of scanning probe microscopy and Raman spectroscopy. The basic idea is the use of a metalled tip as a sort of optical nano-antenna, which gives place to SERS effect close to the tip end. Herein, we present the application of TERS to analyze the surface of Bacillus subtilis spores. The choice of this biological systems is related to the fact that a number of reasons support the use of spores as a mucosal delivery system. The remarkable and well-documented resistance of spores to various environmental and toxic effects make them clear potentials as a novel, surface-display system. Our experimental outcomes demonstrate that TERS is able to provide a nano-scale chemical imaging of spore surface. Moreover, we demonstrate that TERS allows differentiation between wilde-type spore and genetically modified strains. These results hold promise for the characterization and optimization of spore surface for drug-delivery applications.

  9. Infrared Signatures to Discriminate Viability of Autoclaved Bacillus Spores

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Matthew D.; Valentine, Nancy B.; Johnson, Timothy J.

    2011-10-06

    Optical methods can offer good sensitivity for detecting small amounts of chemicals and biologicals, and as these methods mature, are some of the few techniques that can offer true standoff detection. For detection of biological species, determining the viability is clearly important: Certain species of gram-positive bacteria are capable of forming endospores, specialized structures that arise when living conditions become unfavorable or little growth medium is available, being resistant to many chemicals as well as changes in heat or pH. Such spores can remain dormant from months to years until more favorable conditions arise, resulting in germination back to the vegetative state. This persistence characteristic of bacterial spores allows for contamination of a surface (e.g. food or medical equipment) even after the surface has been nominally cleaned. Bacterial spores have also been used as biological weapons, as in the case with B. anthracis. Thus, rapid analysis to determine a spore's viability in a given environment or after attempts to sterilize a given environment is crucial. The increasing availability of portable spectrometers may provide a key to such rapid onsite analysis. The present study was designed to determine whether infrared spectroscopy may be used to differentiate between viable vs. dead B. subtilis and B. atrophaeus spores. Preliminary results show that the reproducible differences in the IR signatures can be used to identify viable vs. autoclaved (dead) B. subtilis and B. atrophaeus bacterial spores.

  10. Maternal parentage influences spore production but not spore pigmentation in the anisogamous and hermaphroditic fungus Neurospora crassa

    DEFF Research Database (Denmark)

    Zimmerman, Kolea; Levitis, Daniel; Pringle, Anne

    2014-01-01

    , and various ascospore characteristics. Mixed effects models of these data show that the female parent accounts for the majority of variation in perithecial production, number of spores produced, and spore germination. Surprisingly, both sexes equally influence the percentage of spores that are pigmented......In this study, we tested the hypothesis that maternal effects on offspring production and quality are greater than paternal effects in both offspring number (fertility) and offspring viability (mortality). We used the model filamentous fungus Neurospora crassa. This fungus is anisogamous......, Hall, & Kowbel 2011). Precise genetic distances between mating pairs were calculated to control for the effects of crossing distance on offspring production. We performed reciprocal crosses of all 121 strain pairings and collected data on perithecial production, ascospore (sexual spore) production...

  11. Optimal spore germination in Clostridium botulinum ATCC 3502 requires the presence of functional copies of SleB and YpeB, but not CwlJ.

    Science.gov (United States)

    Meaney, Carolyn A; Cartman, Stephen T; McClure, Peter J; Minton, Nigel P

    2015-08-01

    Germination, the process by which dormant endospores return to vegetative growth, is a critical process in the life cycle of the notorious pathogen Clostridium botulinum. Crucial is the degradation by hydrolytic enzymes of an inner peptidoglycan spore layer termed the cortex. Two mechanistically different systems of cortex lysis exist in spores of Clostridium species. C. botulinum ATCC 3502 harbours the Bacillus-like system of SleB, CwlJ and YpeB cortex lytic enzymes (CLEs). Through the construction of insertional gene knockout mutants in the sleB, cwlJ and ypeB genes of C. botulinum ATCC 3502 and the production of spores of each mutant strain, the effect on germination was assessed. This study demonstrates a reduced germination efficiency in spores carrying mutations in either sleB or ypeB with an approximate 2-fold reduction in heat resistant colony forming units (CFU/OD600) when plated on rich media. This reduction could be restored to wild-type levels by removing the spore coat and plating on media supplemented with lysozyme. It was observed that cwlJ spores displayed a similar germination efficiency as wild-type spores (P > 0.05). An optimal germinant commixture was identified to include a combination of l-alanine with sodium bicarbonate as it resulted in a 32% drop in OD600, while the additional incorporation of l-lactate resulted in a 57% decrease. Studies of the germination efficiency of spores prepared from all three CLE mutants was performed by monitoring the associated decrease in optical density but a germination defect was not observed in any of the CLE mutant strains. This was likely due to the lack of specificity of this particular assay. Taken together, these data indicate that functional copies of SleB and YpeB, but not CwlJ are required for the optimal germination of the spores of C. botulinum ATCC 3502. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Electrostatic interactions between the CTX phage minor coat protein and the bacterial host receptor TolA drive the pathogenic conversion ofVibrio cholerae.

    Science.gov (United States)

    Houot, Laetitia; Navarro, Romain; Nouailler, Matthieu; Duché, Denis; Guerlesquin, Françoise; Lloubes, Roland

    2017-08-18

    Vibrio cholerae is a natural inhabitant of aquatic environments and converts to a pathogen upon infection by a filamentous phage, CTXΦ, that transmits the cholera toxin-encoding genes. This toxigenic conversion of V. cholerae has evident implication in both genome plasticity and epidemic risk, but the early stages of the infection have not been thoroughly studied. CTXΦ transit across the bacterial periplasm requires binding between the minor coat protein named pIII and a bacterial inner-membrane receptor, TolA, which is part of the conserved Tol-Pal molecular motor. To gain insight into the TolA-pIII complex, we developed a bacterial two-hybrid approach, named Oxi-BTH, suited for studying the interactions between disulfide bond-folded proteins in the bacterial cytoplasm of an Escherichia coli reporter strain. We found that two of the four disulfide bonds of pIII are required for its interaction with TolA. By combining Oxi-BTH assays, NMR, and genetic studies, we also demonstrate that two intermolecular salt bridges between TolA and pIII provide the driving forces of the complex interaction. Moreover, we show that TolA residue Arg-325 involved in one of the two salt bridges is critical for proper functioning of the Tol-Pal system. Our results imply that to prevent host evasion, CTXΦ uses an infection strategy that targets a highly conserved protein of Gram-negative bacteria essential for the fitness of V. cholerae in its natural environment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Directed self-assembly of CdS quantum dots on bacteriophage P22 coat protein templates

    International Nuclear Information System (INIS)

    Kale, Anup; Gupta, Arunava; Bao Yuping; Zhou Ziyou; Prevelige, Peter E

    2013-01-01

    The hierarchical organization of inorganic nanostructures has potential applications in diverse areas such as photocatalytic systems, composites, drug delivery and biomedicine. An attractive approach for this purpose is the use of biological organisms as templates since they often possess highly ordered arrays of protein molecules that can be genetically engineered for specific binding. Indeed, recent studies have shown that viruses can be used as versatile templates for the assembly of a variety of nanostructured materials because of their unique structural and chemical diversity. These highly ordered protein templates can be employed or adapted for specific binding interactions. Herein we report the directed self-assembly of independently synthesized 5 nm CdS nanocrystal quantum dots on ∼60 nm procapsid shells derived from wild-type P22 bacteriophage. The bacteriophage P22 shell is comprised of hexameric and pentameric clusters of subunits known as capsomeres. The pre-synthesized CdS QDs show the corresponding hexameric and pentameric patterns of assembly on these P22 shells, possibly by interacting with particular protein pockets. (paper)

  14. Improvement of Biological Indicators by Uniformly Distributing Bacillus subtilis Spores in Monolayers To Evaluate Enhanced Spore Decontamination Technologies.

    Science.gov (United States)

    Raguse, Marina; Fiebrandt, Marcel; Stapelmann, Katharina; Madela, Kazimierz; Laue, Michael; Lackmann, Jan-Wilm; Thwaite, Joanne E; Setlow, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-01-22

    Novel decontamination technologies, including cold low-pressure plasma and blue light (400 nm), are promising alternatives to conventional surface decontamination methods. However, the standardization of the assessment of such sterilization processes remains to be accomplished. Bacterial endospores of the genera Bacillus and Geobacillus are frequently used as biological indicators (BIs) of sterility. Ensuring standardized and reproducible BIs for reliable testing procedures is a significant problem in industrial settings. In this study, an electrically driven spray deposition device was developed, allowing fast, reproducible, and homogeneous preparation of Bacillus subtilis 168 spore monolayers on glass surfaces. A detailed description of the structural design as well as the operating principle of the spraying device is given. The reproducible formation of spore monolayers of up to 5 × 10(7) spores per sample was verified by scanning electron microscopy. Surface inactivation studies revealed that monolayered spores were inactivated by UV-C (254 nm), low-pressure argon plasma (500 W, 10 Pa, 100 standard cubic cm per min), and blue light (400 nm) significantly faster than multilayered spores were. We have thus succeeded in the uniform preparation of reproducible, highly concentrated spore monolayers with the potential to generate BIs for a variety of nonpenetrating surface decontamination techniques. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Concerted action of two avirulent spore effectors activates Reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance.

    Science.gov (United States)

    Nirmala, Jayaveeramuthu; Drader, Tom; Lawrence, Paulraj K; Yin, Chuntao; Hulbert, Scot; Steber, Camille M; Steffenson, Brian J; Szabo, Les J; von Wettstein, Diter; Kleinhofs, Andris

    2011-08-30

    The barley stem rust resistance gene Reaction to Puccinia graminis 1 (Rpg1), encoding a receptor-like kinase, confers durable resistance to the stem rust pathogen Puccinia graminis f. sp. tritici. The fungal urediniospores form adhesion structures with the leaf epidermal cells within 1 h of inoculation, followed by hyphae and haustorium formation. The RPG1 protein is constitutively expressed and not phosphorylated. On inoculation with avirulent urediniospores, it is phosphorylated in vivo within 5 min and subsequently degraded. Application of arginine-glycine-aspartic acid peptide loops prevented the formation of adhesion structures for spore attachment, the phosphorylation of RPG1, and germination of the viable spores. Arginine-glycine-aspartic acid affinity chromatography of proteins from the ungerminated avirulent rust spores led to the purification and identification of a protein with fibronectin type III and breast cancer type 1 susceptibility protein domains and a vacuolar protein sorting-associated protein 9 with a coupling of ubiquitin to endoplasmic reticulum degradation domain. Both proteins are required to induce in vivo phosphorylation and degradation of RPG1. Combined application of both proteins caused hypersensitive reaction on the stem rust-resistant cultivar Morex but not on the susceptible cultivar Steptoe. Expression studies indicated that mRNA of both genes are present in ungerminated urediniospores and are constitutively transcribed in sporelings, infected leaves, and haustoria in the investigated avirulent races. Evidence is presented that RPG1, in yeast, interacts with the two protein effectors from the urediniospores that activate cooperatively the stem rust resistance protein RPG1 long before haustoria formation.

  16. Immunolocalization of an alternative respiratory chain in Antonospora (Paranosema) locustae spores: mitosomes retain their role in microsporidial energy metabolism.

    Science.gov (United States)

    Dolgikh, Viacheslav V; Senderskiy, Igor V; Pavlova, Olga A; Naumov, Anton M; Beznoussenko, Galina V

    2011-04-01

    Microsporidia are a group of fungus-related intracellular parasites with severely reduced metabolic machinery. They lack canonical mitochondria, a Krebs cycle, and a respiratory chain but possess genes encoding glycolysis enzymes, a glycerol phosphate shuttle, and ATP/ADP carriers to import host ATP. The recent finding of alternative oxidase genes in two clades suggests that microsporidial mitosomes may retain an alternative respiratory pathway. We expressed the fragments of mitochondrial chaperone Hsp70 (mitHsp70), mitochondrial glycerol-3-phosphate dehydrogenase (mitG3PDH), and alternative oxidase (AOX) from the microsporidium Antonospora (Paranosema) locustae in Escherichia coli. Immunoblotting with antibodies against recombinant polypeptides demonstrated specific accumulation of both metabolic enzymes in A. locustae spores. At the same time comparable amounts of mitochondrial Hsp70 were found in spores and in stages of intracellular development as well. Immunoelectron microscopy of ultrathin cryosections of spores confirmed mitosomal localization of the studied proteins. Small amounts of enzymes of an alternative respiratory chain in merogonial and early sporogonial stages, alongside their accumulation in mature spores, suggest conspicuous changes in components and functions of mitosomes during the life cycle of microsporidia and the important role of these organelles in parasite energy metabolism, at least at the final stages of sporogenesis.

  17. Challenges and advances in systems biology analysis of Bacillus spore physiology; molecular differences between an extreme heat resistant spore forming Bacillus subtilis food isolate and a laboratory strain

    NARCIS (Netherlands)

    Brul, Stanley; van Beilen, Johan; Caspers, Martien P M; O'Brien, Andrea; de Koster, Chris; Oomes, Suus; Smelt, Jan; Kort, Remco; Ter Beek, Alex

    Bacterial spore formers are prime organisms of concern in the food industry. Spores from the genus Bacillus are extremely stress resistant, most notably exemplified by high thermotolerance. This sometimes allows surviving spores to germinate and grow out to vegetative cells causing food spoilage and

  18. Challenges and advances in systems biology analysis of Bacillus spore physiology; molecular differences between an extreme heat resistant spore forming Bacillus subtilis food isolate and a laboratory strain

    NARCIS (Netherlands)

    Brul, S.; van Beilen, J.; Caspers, M.; O'Brien, A.; de Koster, C.; Oomes, S.; Smelt, J.; Kort, R.; ter Beek, A.

    2011-01-01

    Bacterial spore formers are prime organisms of concern in the food industry. Spores from the genus Bacillus are extremely stress resistant, most notably exemplified by high thermotolerance. This sometimes allows surviving spores to germinate and grow out to vegetative cells causing food spoilage and

  19. Live cell imaging of germination and outgrowth of individual Bacillus subtilis spores; the effect of heat stress quantitatively analyzed with SporeTracker

    NARCIS (Netherlands)

    Pandey, R.; ter Beek, A.; Vischer, N.O.E.; Smelt, J.P.P.M.; Brul, S.; Manders, E.M.M.

    2013-01-01

    Spore-forming bacteria are a special problem for the food industry as some of them are able to survive preservation processes. Bacillus spp. spores can remain in a dormant, stress resistant state for a long period of time. Vegetative cells are formed by germination of spores followed by a more

  20. Recruitment of the host plant heat shock protein 70 by Tomato yellow leaf curl virus coat protein is required for virus infection.

    Science.gov (United States)

    Gorovits, Rena; Moshe, Adi; Ghanim, Murad; Czosnek, Henryk

    2013-01-01

    A functional capsid protein (CP) is essential for host plant infection and insect transmission of Tomato yellow leaf curl virus (TYLCV) and other monopartite begomoviruses. We have previously shown that TYLCV CP specifically interacts with the heat shock protein 70 (HSP70) of the virus insect vector, Bemisia tabaci. Here we demonstrate that during the development of tomato plant infection with TYLCV, a significant amount of HSP70 shifts from a soluble form into insoluble aggregates. CP and HSP70 co-localize in these aggregates, first in the cytoplasm, then in the nucleus of cells associated with the vascular system. CP-HSP70 interaction was demonstrated by co-immunopreciptation in cytoplasmic - but not in nuclear extracts from leaf and stem. Inhibition of HSP70 expression by quercetin caused a decrease in the amount of nuclear CP aggregates and a re-localization of a GFP-CP fusion protein from the nucleus to the cytoplasm. HSP70 inactivation resulted in a decrease of TYLCV DNA levels, demonstrating the role of HSP70 in TYLCV multiplication in planta. The current study reveals for the first time the involvement of plant HSP70 in TYLCV CP intracellular movement. As described earlier, nuclear aggregates contained TYLCV DNA-CP complexes and infectious virions. Showing that HSP70 localizes in these large nuclear aggregates infers that these structures operate as nuclear virus factories.

  1. Role of the gerA operon in L-alanine germination of Bacillus licheniformis spores

    Directory of Open Access Journals (Sweden)

    Løvdal Irene S

    2012-03-01

    Full Text Available Abstract Background The genome of Bacillus licheniformis DSM 13 harbours three neighbouring open reading frames showing protein sequence similarities to the proteins encoded from the Bacillus subtilis subsp. subtilis 168 gerA operon, GerAA, GerAB and GerAC. In B. subtilis, these proteins are assumed to form a germinant receptor involved in spore germination induced by the amino acid L-alanine. Results In this study we show that disruption of the gerAA gene in B. licheniformis MW3 hamper L-alanine and casein hydrolysate-triggered spore germination, measured by absorbance at 600 nm and confirmed by phase contrast microscopy. This ability was restored by complementation with a plasmid-borne copy of the gerA locus. Addition of D-alanine in the casein hydrolysate germination assay abolished germination of both B. licheniformis MW3 and the complementation mutant. Germination of both B. licheniformis MW3 and the gerA disruption mutant was induced by the non-nutrient germinant Ca2+-Dipicolinic acid. Conclusions These results demonstrate that the B. licheniformis MW3 gerA locus is involved in germination induced by L-alanine and potentially other components present in casein hydrolysate.

  2. Role of the gerA operon in L-alanine germination of Bacillus licheniformis spores

    Science.gov (United States)

    2012-01-01

    Background The genome of Bacillus licheniformis DSM 13 harbours three neighbouring open reading frames showing protein sequence similarities to the proteins encoded from the Bacillus subtilis subsp. subtilis 168 gerA operon, GerAA, GerAB and GerAC. In B. subtilis, these proteins are assumed to form a germinant receptor involved in spore germination induced by the amino acid L-alanine. Results In this study we show that disruption of the gerAA gene in B. licheniformis MW3 hamper L-alanine and casein hydrolysate-triggered spore germination, measured by absorbance at 600 nm and confirmed by phase contrast microscopy. This ability was restored by complementation with a plasmid-borne copy of the gerA locus. Addition of D-alanine in the casein hydrolysate germination assay abolished germination of both B. licheniformis MW3 and the complementation mutant. Germination of both B. licheniformis MW3 and the gerA disruption mutant was induced by the non-nutrient germinant Ca2+-Dipicolinic acid. Conclusions These results demonstrate that the B. licheniformis MW3 gerA locus is involved in germination induced by L-alanine and potentially other components present in casein hydrolysate. PMID:22420404

  3. Airway inflammation among compost workers exposed to actinomycetes spores.

    Science.gov (United States)

    Heldal, Kari Kulvik; Madsø, Lene; Eduard, Wijnand

    2015-01-01

    To study the associations between exposure to bioaerosols and work-related symptoms, lung function and biomarkers of airway inflammation in compost workers. Personal full-shift exposure measurements were performed on 47 workers employed at five windrow plants (n=20) and five reactor plants (n=27). Samples were analyzed for endotoxins, bacteria, fungal and actinomycetes spores. Health examinations were performed on workers and 37 controls before and after work on the day exposure was measured. The examinations included symptoms recorded by questionnaire, lung function by spirometry and nasal dimensions by acoustic rhinometry (AR). The pneumoproteins CC16, SP-D and SP-A were measured in a blood sample drawn at the end of the day. The levels of endotoxins (median 3 EU/m(3), range 0-730 EU/m(3)) and actinomycetes spores (median 0.2 × 10(6) spores/m(3), range 0-590 × 10(6) spores/m(3)) were significantly higher in reactor plants compared to windrow plants. However, windrow composting workers reported more symptoms than reactor composting workers, probably due to use of respiratory protection. Exposure-response relationships between actinomycetes spores exposure and respiratory effects, found as cough and nose irritation during a shift, was significantly increased (OR 4.3, 95% CI 1.1-16, OR 6.1, 95% CI 1.5-25, respectively, pactinomycetes spores/m3, and FEV1/FVC% decreased cross shift (b=-3.2, SE=1.5%, pactinomycetes spores which was associated with work related cough symptoms and work-shift lung function decrease.

  4. Study on nanocomposite construction based on the multi-functional biotemplate self-assembled by the recombinant TMGMV coat protein for potential biomedical applications.

    Science.gov (United States)

    Song, Lei; Wang, Shiwen; Wang, Haina; Zhang, Hua; Cong, Haolong; Jiang, Xingyu; Tien, Po

    2015-02-01

    Nowadays there is a growing interest in bio-scaffolded nanoarchitectures. Rapid progress in nanobiotechnology and molecular biology has allowed the engineering of inorganic-binding peptides termed as genetically engineered polypeptides for inorganics (GEPIs) into self-assembling biological structures to facilitate the design of novel biomedical or bioimaging devices. Here we introduce a novel nanocomposite comprising a self-assembled protein scaffold based on a recombinant tobacco mild green mosaic tobamovirus (TMGMV) coat protein (CP) and the photocatalytic TiO2 nanoparticles attached to it, which may provide a generic method for materials engineering. A template containing a modified TMGMV CP (mCP) gene, with the first six C-terminal amino acid residues deleted to accommodate more foreign peptides and expressing a site-directed mutation of A123C for bioconjugation utility, and two genetically engineered mutants, Escherichia coli-based P-mCP-Ti7 containing a C-terminal TiO2 GEPI sequence of seven peptides (Ti7) and Hi5 insect cells-derived E-CP-Ti7-His6 C-terminally fused with Ti7+His6 tag were created. Expression vectors and protocols for enriching of the two CP variants were established and the resultant proteins were identified by western blot analysis. Their RNA-free self-assembling structures were analyzed by transmission electron microscopy (TEM) and immuno-gold labeling TEM analysis. Adherence of nanoparticles to the P-mCP-Ti7 induced protein scaffold was visualized by TEM analysis. Also discussed is the Cysteine thiol reactivity in bioconjugation reactions with the maleimide-functionalized porphyrin photosensitizers which can function as clinical photodynamic therapy agents. This study introduced a novel approach to producing an assembly-competent recombinant TMGMV CP, examined its ability to serve as a novel platform for the multivalent display of surface ligands and demonstrated an alternative method for nanodevice synthesis for nanobiotechnological

  5. The C-terminus of Wheat streak mosaic virus coat protein is involved in differential infection of wheat and maize through host-specific long-distance transport.

    Science.gov (United States)

    Tatineni, Satyanarayana; French, Roy

    2014-02-01

    Viral determinants and mechanisms involved in extension of host range of monocot-infecting viruses are poorly understood. Viral coat proteins (CP) serve many functions in almost every aspect of the virus life cycle. The role of the C-terminal region of Wheat streak mosaic virus (WSMV) CP in virus biology was examined by mutating six negatively charged aspartic acid residues at positions 216, 289, 290, 326, 333, and 334. All of these amino acid residues are dispensable for virion assembly, and aspartic acid residues at positions 216, 333, and 334 are expendable for normal infection of wheat and maize. However, mutants D289N, D289A, D290A, DD289/290NA, and D326A exhibited slow cell-to-cell movement in wheat, which resulted in delayed onset of systemic infection, followed by a rapid recovery of genomic RNA accumulation and symptom development. Mutants D289N, D289A, and D326A inefficiently infected maize, eliciting milder symptoms, while D290A and DD289/290NA failed to infect systemically, suggesting that the C-terminus of CP is involved in differential infection of wheat and maize. Mutation of aspartic acid residues at amino acid positions 289, 290, and 326 severely debilitated virus ingress into the vascular system of maize but not wheat, suggesting that these amino acids facilitate expansion of WSMV host range through host-specific long-distance transport.

  6. The intrinsically disordered N-terminal arm of the brome mosaic virus coat protein specifically recognizes the RNA motif that directs the initiation of viral RNA replication.

    Science.gov (United States)

    Jacobs, Alexander; Hoover, Haley; Smith, Edward; Clemmer, David E; Kim, Chul-Hyun; Kao, C Cheng

    2018-01-09

    In the brome mosaic virus (BMV) virion, the coat protein (CP) selectively contacts the RNA motifs that regulate translation and RNA replication (Hoover et al., 2016. J. Virol. 90, 7748). We hypothesize that the unstructured N-terminal arm (NTA) of the BMV CP can specifically recognize RNA motifs. Using ion mobility spectrometry-mass spectrometry, we demonstrate that peptides containing the NTA of the CP were found to preferentially bind to an RNA hairpin motif that directs the initiation of BMV RNA synthesis. RNA binding causes the peptide to change from heterogeneous structures to a single family of structures. Fluorescence anisotropy, fluorescence quenching and size exclusion chromatography experiments all confirm that the NTA can specific recognize the RNA motif. The peptide introduced into plants along with BMV virion increased accumulation of the BMV CP and accelerated the rate of minus-strand RNA synthesis. The intrinsically disordered BMV NTA could thus specifically recognize BMV RNAs to affect viral infection. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Label-free fluorescent detection of thrombin activity based on a recombinant enhanced green fluorescence protein and nickel ions immobilized nitrilotriacetic acid-coated magnetic nanoparticles.

    Science.gov (United States)

    Wang, Ming; Lei, Chunyang; Nie, Zhou; Guo, Manli; Huang, Yan; Yao, Shouzhuo

    2013-11-15

    Herein, a novel label-free fluorescent assay has been developed to detect the activity of thrombin and its inhibitor, based on a recombinant enhanced green fluorescence protein (EGFP) and Ni(2+) ions immobilized nitrilotriacetic acid-coated magnetic nanoparticles (Ni(2+)-NTA MNPs). The EGFP, containing a thrombin cleavage site and a hexahistidine sequence (His-tag) at its N-terminal, was adsorbed onto Ni(2+)-NTA MNPs through Ni(2+)-hexahistidine interaction, and dragged out of the solution by magnetic separation. Thrombin can selectively digest EGFP accompanied by His-tag peptide sequence leaving, and the resulting EGFP cannot be captured by Ni(2+)-NTA MNPs and kept in supernatant. Hence the fluorescence change of supernatant can clearly represent the activity of thrombin. Under optimized conditions, such assay showed a relatively low detection limit (3.0×10(-4) U mL(-1)), and was also used to detect the thrombin inhibitor, Hirudin, and further applied to detect thrombin activity in serum. Combined with the satisfactory reusability of Ni(2+)-NTA MNPs, our method presents a promising candidate for simple, sensitive, and cost-saving protease activity detecting and inhibitor screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Nucleotide sequence analyses of coat protein gene of peanut stunt virus isolates from alfalfa and different hosts show a new tentative subgroup from Iran.

    Science.gov (United States)

    Amid-Motlagh, Mohammad Hadi; Massumi, Hossein; Heydarnejad, Jahangir; Mehrvar, Mohsen; Hajimorad, Mohammad Reza

    2017-09-01

    Alfalfa cultivars grown in 14 provinces in Iran were surveyed for the relative incidence of peanut stunt virus (PSV) during 2013-2016. PSV were detected in 41.89% of symptomatic alfalfa samples and a few alternate hosts by plate-trapped antigen ELISA. Among other hosts tested only Chenopodium album , Robinia pseudoacacia and Arachis hypogaea were found naturally infected with PSV. Twenty five isolates of PSV were chosen for biological and molecular characterizations based on their geographical distributions. There was not any differences in experimental host range of these isolates; however, variation in systemic symptoms observed on Nicotiana glutinosa . Total RNA from 25 of viral isolates were subjected to reverse transcription polymerase chain reaction analysis using primers directed against coat protein (CP) gene. The CP genes of 25 Iranian PSV isolates were either 651 or 666 nucleotides long. The nucleotide and amino acid identities for CP gene among Iranian PSV isolates were 79.3-99.7 and 72-100%, respectively. They also shared between 67.4 and 82.4% pairwise nucleotide identity with other PSV isolates reported elsewhere in the world. Phylogenetic analyses of CP gene sequences showed formation of a new subgroup comprising only the Iranian isolates. Natural infection of a few alternate hosts with PSV is reported for the first time from Iran.

  9. Fighting Ebola with novel spore decontamination technologies for the military

    Science.gov (United States)

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  10. Genetic diversity of the coat protein of Olive mild mosaic virus (OMMV) and Tobacco necrosis virus D (TNV-D) isolates and its structural implications.

    Science.gov (United States)

    Varanda, Carla M R; Machado, Marco; Martel, Paulo; Nolasco, Gustavo; Clara, Maria I E; Félix, Maria R

    2014-01-01

    The genetic variability among 13 isolates of Olive mild mosaic virus (OMMV) and of 11 isolates of Tobacco necrosis virus D (TNV-D) recovered from Olea europaea L. samples from various sites in Portugal, was assessed through the analysis of the coat protein (CP) gene sequences. This gene was amplified through reverse transcriptase polymerase chain reaction (RT-PCR), cloned, and 5 clone sequences of each virus isolate, were analysed and compared, including sequences from OMMV and TNV-D isolates originally recovered from different hosts and countries and available in the GenBank, totalling 131 sequences. The encoded CP sequences consisted of 269 amino acids (aa) in OMMV and 268 in TNV-D. Comparison of the CP genomic and amino acid sequences of the isolates showed a very low variability among OMMV isolates, 0.005 and 0.007, respectively, as well as among TNV-D isolates, 0.006 and 0.008. The maximum nucleotide distances of OMMV and TNV-D sequences within isolates were also low, 0.013 and 0.031, respectively, and close to that found between isolates, 0.018 and 0.034, respectively. In some cases, less variability was found in clone sequences between isolates than in clone sequences within isolates, as also shown through phylogenetic analysis. CP aa sequence identities among OMMV and TNV-D isolates ranged from 84.3% to 85.8%. Comparison between the CP genomic sequences of the two viruses, showed a relatively low variability, 0.199, and a maximum nucleotide distance between isolates of 0.411. Analysis of comparative models of OMMV and TNV-D CPs, showed that naturally occurring substitutions in their respective sequences do not seem to cause significant alterations in the virion structure. This is consistent with a high selective pressure to preserve the structure of viral capsid proteins.

  11. Studies on soft centered coated snacks.

    Science.gov (United States)

    Pavithra, A S; Chetana, Ramakrishna; Babylatha, R; Archana, S N; Bhat, K K

    2013-04-01

    Roasted groundnut seeds, amaranth and dates pulp formed the center filling which was coated with sugar, breadings, desiccated coconut and roasted Bengalgram flour (BGF) to get 4 coated snacks. Physicochemical characteristics, microbiological profile, sorption behaviour and sensory quality of 4 coated snacks were determined. Centre filling to coating ratio of the products were in the range of 3:2-7:1, the product having BGF coating had the thinnest coating. Center filling had soft texture and the moisture content was 10.2-16.2% coating had lower moisture content (4.4-8.6%) except for Bengal gram coating, which had 11.1% moisture. Sugar coated snack has lowest fat (11.6%) and protein (7.2%) contents. Desiccated coconut coated snack has highest fat (25.4%) and Bengal gram flour coated snack had highest protein content (15.4%). Sorption studies showed that the coated snack had critical moisture content of 11.2-13.5%. The products were moisture sensitive and hence require packaging in films having higher moisture barrier property. In freshly prepared snacks coliforms, yeast and mold were absent. Mesophillic aerobes count did not show significant change during 90 days of storage at 27 °C and 37 °C. Sensory analysis showed that products had a unique texture due to combined effect of fairly hard coating and soft center. Flavour and overall quality of all the products were rated as very good.

  12. Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ida [University of Tennessee, Knoxville (UTK); Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2012-01-01

    The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relative humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.

  13. Scanning surface potential microscopy of spore adhesion on surfaces.

    Science.gov (United States)

    Lee, I; Chung, E; Kweon, H; Yiacoumi, S; Tsouris, C

    2012-04-01

    The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relative humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Detection of Bacillus spores using PCR and FTA filters.

    Science.gov (United States)

    Lampel, Keith A; Dyer, Deanne; Kornegay, Leroy; Orlandi, Palmer A

    2004-05-01

    Emphasis has been placed on developing and implementing rapid detection systems for microbial pathogens. We have explored the utility of expanding FTA filter technology for the preparation of template DNA for PCR from bacterial spores. Isolated spores from several Bacillus spp., B. subtilis, B. cereus, and B. megaterium, were applied to FTA filters, and specific DNA products were amplified by PCR. Spore preparations were examined microscopically to ensure that the presence of vegetative cells, if any, did not yield misleading results. PCR primers SRM86 and SRM87 targeted a conserved region of bacterial rRNA genes, whereas primers Bsub5F and Bsub3R amplified a product from a conserved sequence of the B. subtilis rRNA gene. With the use of the latter set of primers for nested PCR, the sensitivity of the PCR-based assay was increased. Overall, 53 spores could be detected after the first round of PCR, and the sensitivity was increased to five spores by nested PCR. FTA filters are an excellent platform to remove PCR inhibitors and have universal applications for environmental, clinical, and food samples.

  15. Germination of Bacillus cereus spores adhered to stainless steel.

    Science.gov (United States)

    Hornstra, L M; de Leeuw, P L A; Moezelaar, R; Wolbert, E J; de Vries, Y P; de Vos, W M; Abee, T

    2007-05-30

    Adhered spores of Bacillus cereus represent a significant part of the surface-derived contamination in processing equipment used in the dairy industry. As germinated spores lose their resistance capacities instantaneously, efficient germination prior to a cleaning in place treatment could aid to the disinfecting effect of such a treatment. Therefore, spores of B. cereus ATCC 14579 and that of the environmental isolate B. cereus CMCC 3328 were assessed for their germination behaviour when adhered to a stainless steel surface. A mixture of l-alanine and inosine initiated germination of adhered spores efficiently, resulting in 3.2 decimal logarithms of germination. Notably, implementation of a germination-inducing step prior to a representative cleaning in place procedure reduced the number of survivors with over 3 decimal log units, while an alkali treatment alone, as part of the cleaning in place procedure, did not show any effect on B. cereus spore viability. These results show that implementation of a germination step enhances the disinfection effect of currently used cleaning in place procedures.

  16. Super magnetic nanoparticles NiFe2O4, coated with aluminum-nickel oxide sol-gel lattices to safe, sensitive and selective purification of his-tagged proteins.

    Science.gov (United States)

    Mirahmadi-Zare, Seyede Zohreh; Allafchian, Alireza; Aboutalebi, Fatemeh; Shojaei, Pendar; Khazaie, Yahya; Dormiani, Kianoush; Lachinani, Liana; Nasr-Esfahani, Mohammad-Hossein

    2016-05-01

    Super magnetic nanoparticle NiFe2O4 with high magnetization, physical and chemical stability was introduced as a core particle which exhibits high thermal stability (>97%) during the harsh coating process. Instead of multi-stage process for coating, the magnetic nanoparticles was mineralized via one step coating by a cheap, safe, stable and recyclable alumina sol-gel lattice (from bohemite source) saturated by nickel ions. The TEM, SEM, VSM and XRD imaging and BET analysis confirmed the structural potential of NiFe2O4@NiAl2O4 core-shell magnetic nanoparticles for selective and sensitive purification of His-tagged protein, in one step. The functionality and validity of the nickel magnetic nanoparticles were attested by purification of three different bioactive His-tagged recombinant fusion proteins including hIGF-1, GM-CSF and bFGF. The bonding capacity of the nickel magnetics nanoparticles was studied by Bradford assay and was equal to 250 ± 84 μg Protein/mg MNP base on protein size. Since the metal ion leakage is the most toxicity source for purification by nickel magnetic nanoparticles, therefor the nickel leakage in purified final protein was determined by atomic absorption spectroscopy and biological activity of final purified protein was confirmed in comparison with reference. Also, in vitro cytotoxicity of nickel magnetic nanoparticles and trace metal ions were investigated by MTS assay analysis. The results confirmed that the synthesized nickel magnetic nanoparticles did not show metal ion toxicity and not affected on protein folding. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Daily variations of Alternaria spores in the city of Murcia (semi-arid southeastern Spain)

    Science.gov (United States)

    Munuera Giner, M.; Carrión García, J. S.

    1995-12-01

    Annual variations in the abundance of Alternaria spores were related to the length of the spore period for data from Murcia (southeastern Spain). To understand the relationship between the number of spores and climatic factors, Alternaria spore counts for March 1993 to February 1994 were examined by means of correlation and regression analyses with fourteen different weather parameters. The results indicated that there was a tendency for Alternaria spore concentrations to increase with increases in temperature, wind speed and hours of sunshine. Negative correlations were observed with air pressure, wind direction and humidity. Theoretical curves for Alternaria spore counts are given in relation to temperatures during the period studied.

  18. Spore analysis and tetrad dissection of Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Ekwall, Karl; Thon, Genevieve

    2017-01-01

    Here we describe the processing of Schizosaccharomyces pombe spores in batches (random spore analysis) or through tetrad dissections. Spores are usually prepared from matings between haploid strains (producing zygotic asci) or from sporulating diploids (producing azygotic asci). In random spore...... analysis, a snail enzyme preparation is used to digest the walls of asci to release free spores that are diluted and plated to form colonies. In tetrad dissection, a needle attached to a micromanipulator is used to pick asci and separate spores. Tetrad dissection has traditionally been the method of choice...

  19. Developmentally-regulated excision of the SPβ prophage reconstitutes a gene required for spore envelope maturation in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Kimihiro Abe

    2014-10-01

    Full Text Available Temperate phages infect bacteria by injecting their DNA into bacterial cells, where it becomes incorporated into the host genome as a prophage. In the genome of Bacillus subtilis 168, an active prophage, SPβ, is inserted into a polysaccharide synthesis gene, spsM. Here, we show that a rearrangement occurs during sporulation to reconstitute a functional composite spsM gene by precise excision of SPβ from the chromosome. SPβ excision requires a putative site-specific recombinase, SprA, and an accessory protein, SprB. A minimized SPβ, where all the SPβ genes were deleted, except sprA and sprB, retained the SPβ excision activity during sporulation, demonstrating that sprA and sprB are necessary and sufficient for the excision. While expression of sprA was observed during vegetative growth, sprB was induced during sporulation and upon mitomycin C treatment, which triggers the phage lytic cycle. We also demonstrated that overexpression of sprB (but not of sprA resulted in SPβ prophage excision without triggering the lytic cycle. These results suggest that sprB is the factor that controls the timing of phage excision. Furthermore, we provide evidence that spsM is essential for the addition of polysaccharides to the spore envelope. The presence of polysaccharides on the spore surface renders the spore hydrophilic in water. This property may be beneficial in allowing spores to disperse in natural environments via water flow. A similar rearrangement occurs in Bacillus amyloliquefaciens FZB42, where a SPβ-like element is excised during sporulation to reconstitute a polysaccharide synthesis gene, suggesting that this type of gene rearrangement is common in spore-forming bacteria because it can be spread by phage infection.

  20. Developmentally-Regulated Excision of the SPβ Prophage Reconstitutes a Gene Required for Spore Envelope Maturation in Bacillus subtilis

    Science.gov (United States)

    Abe, Kimihiro; Kawano, Yuta; Iwamoto, Keito; Arai, Kenji; Maruyama, Yuki; Eichenberger, Patrick; Sato, Tsutomu

    2014-01-01

    Temperate phages infect bacteria by injecting their DNA into bacterial cells, where it becomes incorporated into the host genome as a prophage. In the genome of Bacillus subtilis 168, an active prophage, SPβ, is inserted into a polysaccharide synthesis gene, spsM. Here, we show that a rearrangement occurs during sporulation to reconstitute a functional composite spsM gene by precise excision of SPβ from the chromosome. SPβ excision requires a putative site-specific recombinase, SprA, and an accessory protein, SprB. A minimized SPβ, where all the SPβ genes were deleted, except sprA and sprB, retained the SPβ excision activity during sporulation, demonstrating that sprA and sprB are necessary and sufficient for the excision. While expression of sprA was observed during vegetative growth, sprB was induced during sporulation and upon mitomycin C treatment, which triggers the phage lytic cycle. We also demonstrated that overexpression of sprB (but not of sprA) resulted in SPβ prophage excision without triggering the lytic cycle. These results suggest that sprB is the factor that controls the timing of phage excision. Furthermore, we provide evidence that spsM is essential for the addition of polysaccharides to the spore envelope. The presence of polysaccharides on the spore surface renders the spore hydrophilic in water. This property may be beneficial in allowing spores to disperse in natural environments via water flow. A similar rearrangement occurs in Bacillus amyloliquefaciens FZB42, where a SPβ-like element is excised during sporulation to reconstitute a polysaccharide synthesis gene, suggesting that this type of gene rearrangement is common in spore-forming bacteria because it can be spread by phage infection. PMID:25299644

  1. Most of the propeptide is dispensable for stability and autoprocessing of the zymogen of the germination protease of spores of Bacillus species

    DEFF Research Database (Denmark)

    Pedersen, Lotte Bang; Nessi, C; Setlow, P

    1997-01-01

    Loss of 3, 7, or 10 of the amino-terminal 15 residues removed upon autoactivation of the zymogen of the germination protease (GPR), which initiates protein degradation during germination of spores of Bacillus species, did not result in significant changes in (i) the lack of enzymatic activity of ...

  2. Sensitizing Clostridium difficile Spores With Germinants on Skin and Environmental Surfaces Represents a New Strategy for Reducing Spores via Ambient Mechanisms

    Directory of Open Access Journals (Sweden)

    Michelle Marie Nerandzic

    2017-10-01

    Full Text Available Background: Clostridium difficile is a leading cause of healthcare-associated infections worldwide. Prevention of C. difficile transmission is challenging because spores are not killed by alcohol-based hand sanitizers or many commonly used disinfectants. One strategy to control spores is to induce germination, thereby rendering the spores more susceptible to benign disinfection measures and ambient stressors. Methods/Results: C. difficile spores germinated on skin after a single application of cholic acid-class bile salts and co-germinants; for 4 C. difficile strains, recovery of viable spores from skin was reduced by ~0.3 log10CFU to 2 log10CFU after 2 hours and ~1 log10CFU to >2.5 log 10CFU after 24 hours. The addition of taurocholic acid to 70% and 30% ethanol significantly enhanced reduction of viable spores on skin and on surfaces. Desiccation, and to a lesser extent the presence of oxygen, were identified as the stressors responsible for reductions of germinated spores on skin and surfaces. Additionally, germinated spores became susceptible to killing by pH 1.5 hydrochloric acid, suggesting that germinated spores that remain viable on skin and surfaces might be killed by gastric acid after ingestion. Antibiotic-treated mice did not become colonized after exposure to germinated spores, whereas 100% of mice became colonized after exposure to the same quantity of dormant spores. Conclusions: Germination could provide a new approach to reduce C. difficile spores on skin and in the environment and to render surviving spores less capable of causing infection. Our findings suggest that it may be feasible to develop alcohol-based hand sanitizers containing germinants that reduce spores on hands.

  3. Pollen and spores as a passive monitor of ultraviolet radiation

    Directory of Open Access Journals (Sweden)

    Wesley Toby Fraser

    2014-04-01

    Full Text Available Sporopollenin is the primary component of the outer walls of pollen and spores. The chemical composition of sporopollenin is responsive to levels of ultraviolet (UV radiation exposure, via a concomitant change in the concentration of phenolic compounds. This relationship offers the possibility of using fossil pollen and spore chemistry as a novel proxy for past UV flux. Phenolic compounds in sporopollenin can be quantified using Fourier Transform infrared spectroscopy. The high potential for preservation of pollen and spores in the geologic record, and the conservative nature of sporopollenin chemistry across the land plant phylogeny, means that this new proxy has the potential to reconstruct UV flux over much longer timescales than has previously been possible. This new tool has important implications for understanding the relationship between UV flux, solar insolation and climate in the past, as well as providing a possible means of assessing paleoaltitude, and ozone thickness.

  4. Lipoxygenase Activity Accelerates Programmed Spore Germination in Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Gregory J. Fischer

    2017-05-01

    Full Text Available The opportunistic human pathogen Aspergillus fumigatus initiates invasive growth through a programmed germination process that progresses from dormant spore to swollen spore (SS to germling (GL and ultimately invasive hyphal growth. We find a lipoxygenase with considerable homology to human Alox5 and Alox15, LoxB, that impacts the transitions of programmed spore germination. Overexpression of loxB (OE::loxB increases germination with rapid advance to the GL stage. However, deletion of loxB (ΔloxB or its signal peptide only delays progression to the SS stage in the presence of arachidonic acid (AA; no delay is observed in minimal media. This delay is remediated by the addition of the oxygenated AA oxylipin 5-hydroxyeicosatetraenoic acid (5-HETE that is a product of human Alox5. We propose that A. fumigatus acquisition of LoxB (found in few fungi enhances germination rates in polyunsaturated fatty acid-rich environments.

  5. Mutagenic effect of tritated water on spores of Bacillus subtilis