Spontaneously broken global symmetries and cosmology
International Nuclear Information System (INIS)
Shafi, Q.; Vilenkin, A.
1984-01-01
Phase transitions associated with spontaneously broken global symmetries, in case these occur in nature, can have important cosmological implications. This is illustrated through two examples. The first one shows how the spontaneous breaking of a global U(1) symmetry, present, for instance, in the minimal SU(5) model, can lead to an inflationary phase. The second example illustrates how topologically stable strings associated with the breaking of U(1) symmetry make an appearance at (or near) the end of the inflationary era
Neutrino masses and spontaneously broken flavor symmetries
International Nuclear Information System (INIS)
Staudt, Christian
2014-01-01
We study the phenomenology of supersymmetric flavor models. We show how the predictions of models based on spontaneously broken non-Abelian discrete flavor symmetries are altered when we include so-called Kaehler corrections. Furthermore, we discuss anomaly-free discrete R symmetries which are compatible with SU(5) unification. We find a set of symmetries compatible with suppressed Dirac neutrino masses and a unique symmetry consistent with the Weinberg operator. We also study a pseudo-anomalous U(1) R symmetry which explains the fermion mass hierarchies and, when amended with additional singlet fields, ameliorates the fine-tuning problem.
N=1 superstrings with spontaneously broken symmetries
International Nuclear Information System (INIS)
Ferrara, S.
1988-01-01
We construct N=1 chiral superstrings with spontaneously broken gauge symmetry in four space-time dimensions. These new string solutions are obtained by a generalized coordinate-dependent Z 2 orbifold compactification of some non-chiral five-dimensional N=1 and N=2 superstrings. The scale of symmetry breaking is arbitrary (at least classically) and it can be chosen hierarchically smaller than the string scale (α') -1/2 . (orig.)
Symmetry restoration in spontaneously broken induced gravity
International Nuclear Information System (INIS)
Amati, D.; Russo, J.
1990-01-01
We investigate the recuperation of expected invariant behaviours in a non-metric gravity theory in which the full general relativistic invariance is broken spontaneously. We show how dangerous increasing energy behaviours of physical amplitudes cancel in a highly non-trivial way. This evidences the expected loss of the vacuum generated scale in the UV regime and gives support for the consistency of spontaneously broken gravity theories. (orig.)
Superconducting cosmic strings in models with spontaneously broken family symmetry
International Nuclear Information System (INIS)
Bibilashvili, T.M.; Dvali, G.R.
1990-01-01
It is shown that superconducting cosmic strings with some specific properties naturally exist in models of spontaneously broken family symmetry. Superconductivity may be of both types - bosonic and fermionic. There exists a possible mechanism of string conservation. (orig.)
Weak interaction models with spontaneously broken left-right symmetry
International Nuclear Information System (INIS)
Mohapatra, R.H.
1978-01-01
The present status of weak interaction models with spontaneously broken left-right symmetry is reviewed. The theoretical basis for asymptotic parity conservation, manifest left-right symmetry in charged current weak interactions, natural parity conservation in neutral currents and CP-violation in the context of SU(2)/sub L/ circled x SU (2)/sub R/ circled x U(1) models are outlined in detail. Various directions for further research in the theoretical and experimental side are indicated
Spontaneous Broken Local Conformal Symmetry and Dark Energy Candidate
International Nuclear Information System (INIS)
Liu, Lu-Xin
2013-01-01
The local conformal symmetry is spontaneously broken down to the Local Lorentz invariance symmetry through the approach of nonlinear realization. The resulting effective Lagrangian, in the unitary gauge, describes a cosmological vector field non-minimally coupling to the gravitational field. As a result of the Higgs mechanism, the vector field absorbs the dilaton and becomes massive, but with an independent energy scale. The Proca type vector field can be modelled as dark energy candidate. The possibility that it further triggers Lorentz symmetry violation is also pointed out
Massive Kaluza-Klein theories and their spontaneously broken symmetries
International Nuclear Information System (INIS)
Hohm, O.
2006-07-01
In this thesis we investigate the effective actions for massive Kaluza-Klein states, focusing on the massive modes of spin-3/2 and spin-2 fields. To this end we determine the spontaneously broken gauge symmetries associated to these 'higher-spin' states and construct the unbroken phase of the Kaluza-Klein theory. We show that for the particular background AdS 3 x S 3 x S 3 a consistent coupling of the first massive spin-3/2 multiplet requires an enhancement of local supersymmetry, which in turn will be partially broken in the Kaluza-Klein vacuum. The corresponding action is constructed as a gauged maximal supergravity in D=3. Subsequently, the symmetries underlying an infinite tower of massive spin-2 states are analyzed in case of a Kaluza-Klein compactification of four-dimensional gravity to D=3. It is shown that the resulting gravity-spin-2 theory is given by a Chern-Simons action of an affine algebra and also allows a geometrical interpretation in terms of 'algebra-valued' differential geometry. The global symmetry group is determined, which contains an affine extension of the Ehlers group. We show that the broken phase can in turn be constructed via gauging a certain subgroup of the global symmetry group. Finally, deformations of the Kaluza-Klein theory on AdS 3 x S 3 x S 3 and the corresponding symmetry breakings are analyzed as possible applications for the AdS/CFT correspondence. (Orig.)
Massive Kaluza-Klein theories and their spontaneously broken symmetries
Energy Technology Data Exchange (ETDEWEB)
Hohm, O.
2006-07-15
In this thesis we investigate the effective actions for massive Kaluza-Klein states, focusing on the massive modes of spin-3/2 and spin-2 fields. To this end we determine the spontaneously broken gauge symmetries associated to these 'higher-spin' states and construct the unbroken phase of the Kaluza-Klein theory. We show that for the particular background AdS{sub 3} x S{sup 3} x S{sup 3} a consistent coupling of the first massive spin-3/2 multiplet requires an enhancement of local supersymmetry, which in turn will be partially broken in the Kaluza-Klein vacuum. The corresponding action is constructed as a gauged maximal supergravity in D=3. Subsequently, the symmetries underlying an infinite tower of massive spin-2 states are analyzed in case of a Kaluza-Klein compactification of four-dimensional gravity to D=3. It is shown that the resulting gravity-spin-2 theory is given by a Chern-Simons action of an affine algebra and also allows a geometrical interpretation in terms of 'algebra-valued' differential geometry. The global symmetry group is determined, which contains an affine extension of the Ehlers group. We show that the broken phase can in turn be constructed via gauging a certain subgroup of the global symmetry group. Finally, deformations of the Kaluza-Klein theory on AdS{sub 3} x S{sup 3} x S{sup 3} and the corresponding symmetry breakings are analyzed as possible applications for the AdS/CFT correspondence. (Orig.)
Spontaneously broken spacetime symmetries and the role of inessential Goldstones
Klein, Remko; Roest, Diederik; Stefanyszyn, David
2017-10-01
In contrast to internal symmetries, there is no general proof that the coset construction for spontaneously broken spacetime symmetries leads to universal dynamics. One key difference lies in the role of Goldstone bosons, which for spacetime symmetries includes a subset which are inessential for the non-linear realisation and hence can be eliminated. In this paper we address two important issues that arise when eliminating inessential Goldstones. The first concerns the elimination itself, which is often performed by imposing so-called inverse Higgs constraints. Contrary to claims in the literature, there are a series of conditions on the structure constants which must be satisfied to employ the inverse Higgs phenomenon, and we discuss which parametrisation of the coset element is the most effective in this regard. We also consider generalisations of the standard inverse Higgs constraints, which can include integrating out inessential Goldstones at low energies, and prove that under certain assumptions these give rise to identical effective field theories for the essential Goldstones. Secondly, we consider mappings between non-linear realisations that differ both in the coset element and the algebra basis. While these can always be related to each other by a point transformation, remarkably, the inverse Higgs constraints are not necessarily mapped onto each other under this transformation. We discuss the physical implications of this non-mapping, with a particular emphasis on the coset space corresponding to the spontaneous breaking of the Anti-De Sitter isometries by a Minkowski probe brane.
Finite-temperature effective potential of a system with spontaneously broken symmetry
Energy Technology Data Exchange (ETDEWEB)
Zemskov, E.P. [Yaroslavl State Technical Univ. (Russian Federation)
1995-12-01
A quantum-mechanical system with spontaneously broken symmetry is considered the effective potential is determined, and it is shown that with reduction of temperature the system undergoes a phase transition of the first kind.
Phenomenology of the standard model under conditions of spontaneously broken mirror symmetry
Energy Technology Data Exchange (ETDEWEB)
Dyatlov, I. T., E-mail: dyatlov@thd.pnpi.spb.ru [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation)
2017-03-15
Spontaneously broken mirror symmetry is able to reproduce observed qualitative properties of weak mixing for quark and leptons. Under conditions of broken mirror symmetry, the phenomenology of leptons—that is, small neutrino masses and a mixing character other than that in the case of quarks—requires the Dirac character of the neutrinos and the existence of processes violating the total lepton number. Such processes involve heavy mirror neutrinos; that is, they proceed at very high energies. Here, CP violation implies that a P-even mirror-symmetric Lagrangian must simultaneously be T-odd and, according to the CPT theorem, C-odd. All these properties create preconditions for the occurrence of leptogenesis, which is a mechanism of the emergence of the baryon–lepton asymmetry of the universe in models featuring broken mirror symmetry.
On hierarchy in asymptotic reconstruction of spontaneously broken isotopic symmetry
International Nuclear Information System (INIS)
Ermolaev, B.I.
1978-01-01
The isotopic features of the effective current-current lagrangian of the Lsub(eff) electromagnetic-weak interaction between elementary particles are treated at large momentum transfers using the Weinberg-Salam model. Transition to other models may be made by analogy. It is shown that when the collision energies of elementary particles exceed 90 GeV one may expect the hierarchy in the asymptotic reconstruction of the isotopic symmetry. Such hierarchy could be observed, in particular, in experiments on elastic leptonic collisions at high energies
International Nuclear Information System (INIS)
Craigie, N.S.; Salam, Abdus
1979-05-01
The effect of scalar partons arising in QCD if the colour symmetry is spontaneously broken is discussed. The authors use a previous result, which states that such scalars can be incorporated into the theory without disturbing asymptotic freedom. (author)
Spontaneously broken continuous symmetries in hyperbolic (or open) de Sitter spacetime
International Nuclear Information System (INIS)
Ratra, B.
1994-01-01
The functional Schroedinger approach is used to study scalar field theory in hyperbolic (or open) de Sitter spacetime. While on intermediate length scales (small compared to the spatial curvature length scale) the massless minimally coupled scalar field two-point correlation function does have a term that varies logarithmically with scale, as in flat and closed de Sitter spacetime, the spatial curvature tames the infrared behavior of this correlation function at larger scales in the open model. As a result, and contrary to what happens in flat and closed de Sitter spacetime, spontaneously broken continuous symmetries are not restored in open de Sitter spacetime (with more than one spatial dimension)
Study of spontaneously broken conformal symmetry in curved space-times
International Nuclear Information System (INIS)
Janson, M.M.
1977-05-01
Spontaneous breakdown of Weyl invariance (local scale invariance) in a conformally-invariant extension of a gauge model for weak and electromagnetic interactions is considered. The existence of an asymmetric vacuum for the Higgs field, phi, is seen to depend on the space-time structure via the Gursey-Penrose term, approximately phi + phi R, in the action. (R denotes the scalar curvature.) The effects of a prescribed space-time structure on spontaneously broken Weyl invariance is investigated. In a cosmological space-time, it is found that initially, in the primordial fireball, the symmetry must hold exactly. Spontaneous symmetry breaking (SSB) develops as the universe expands and cools. Consequences of this model include a dependence of G/sub F/, the effective weak interaction coupling strength, on ''cosmic time.'' It is seen to decrease monotonically; in the present epoch (G/sub F//G/sub F/)/sub TODAY/ approximately less than 10 -10 (year) -1 . The effects of the Schwarzschild geometry on SSB are explored. In the interior of a neutron star the Higgs vacuum expectation value, and consequently G/sub F/, is found to have a radial dependence. The magnitude of this variation does not warrant revision of present models of neutron star structures. Another perspective on the problem considered a theory of gravitation (conformal relativity) to be incorporated in the conformally invariant gauge model of weak and electromagnetic interactions. If SSB develops, the vacuum gravitational field equations are the Einstein field equations with a cosmological constant. The stability of the asymmetric vacuum solution is investigated to ascertain whether SSB can occur
International Nuclear Information System (INIS)
Endlich, Solomon; Nicolis, Alberto; Penco, Riccardo
2015-01-01
The Galilei group involves mass as a central charge. We show that the associated superselection rule is incompatible with the observed phenomenology of superfluid helium 4: this is recovered only under the assumption that mass is spontaneously broken. This remark is somewhat immaterial for the real world, where the correct space-time symmetries are encoded by the Poincaré group, which has no central charge. Yet it provides an explicit example of how superselection rules can be experimentally tested. We elaborate on what conditions must be met for our ideas to be generalizable to the relativistic case of the integer/half-integer angular momentum superselection rule.
A solution to the rho-π puzzle: Spontaneously broken symmetries of the quark model
International Nuclear Information System (INIS)
Caldi, D.G.; Pagels, H.
1976-01-01
This article proposes a solution to the long-standing rho-π puzzle: How can the rho and π be members of a quark model U(6) 36 and the π be a Nambu-Goldstone boson satisfying partial conservation of the axial-vector current (PCAC) Our solution to the puzzle requires a revision of conventional concepts regarding the vector mesons rho, ω, K*, and phi. Just as the π is a Goldstone state, a collective excitation of the Nambu--Jona-Lasinio type, transforming as a member of the (3, 3) + (3, 3) representation of the chiral SU(3) x SU(3) group, so also the rho transforms like (3, 3) + (3, 3) and is also a collective state, a ''dormant'' Goldstone boson that is a true Goldstone boson in the static chiral U(6) x U(6) limit. The static chiral U(6) x U(6) is to be spontaneously broken to static U(6) in the vacuum. Relativisitc effects provide for U(6) breaking and a massive rho. This viewpoint has many consequences. Vector-meson dominance is a consequence of spontaneously broken chiral symmetry: the mechanism that couples the axial-vector current to the π couples the vector current to the rho. The transition rate is calculated as γ/sub rho/ -1 = f/sub pi//m/sub rho/ in rough agreement with experiment. This picture requires soft rho's to decouple. The chiral partner of the rho is not the A 1 but the B (1235). The experimental absence of the A 1 is no longer a theoretical embarrassment in this scheme. As the analog of PCAC for the pion we establish a tensor-field identity for the rho meson in which the rho is interpreted as a dormant Goldstone state. The decays delta → eta + π, B → ω + π, epsilon → 2π are estimated and are found to be in agreement with the observed rates. A static U(6) x U(6) generalization of the Σ model is presented with the π, rho, sigma, B in the (6, 6) + (6, 6) representation. The rho emerges as a dormant Goldstone boson in this model
Lattice QCD with light quark masses: Does chiral symmetry get broken spontaneously
International Nuclear Information System (INIS)
Barbour, I.M.; Schierholz, G.; Teper, M.; Gilchrist, J.P.; Schneider, H.
1983-03-01
We present a first direct calculation of the properties of QCD for the small quark masses of phenomenological interest without extrapolations. We describe methods specially adapted to invert the fermion matrix at small quark masses. We use these methods to calculate directly on presently used lattice sizes with different boundary conditions. As is to be expected for a finite system, we do not observe spontaneous chiral symmetry breaking. By comparing the results obtained on lattices of different size we see, however, indications that are consistent with eventual spontaneous chiral symmetry breaking in the infinite volume limit. Our calculations underline the importance of using antiperiodic boundary conditions for fermions. (orig.)
International Nuclear Information System (INIS)
Maris, Th.A.J.
1976-01-01
The renormalization group theory has a natural place in a general framework of symmetries in quantum field theories. Seen in this way, a 'renormalization group' is a one-parametric subset of the direct product of dilatation and renormalization groups. This subset of spontaneously broken symmetry transformations connects the inequivalent solutions generated by a parameter-dependent regularization procedure, as occurs in renormalized perturbation theory. By considering the global, rather than the infinitesimal, transformations, an expression for general vertices is directly obtained, which is the formal solution of exact renormalization group equations [pt
A broken symmetry ontology: Quantum mechanics as a broken symmetry
International Nuclear Information System (INIS)
Buschmann, J.E.
1988-01-01
The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance
Spontaneously broken abelian gauge invariant supersymmetric model
International Nuclear Information System (INIS)
Mainland, G.B.; Tanaka, K.
A model is presented that is invariant under an Abelian gauge transformation and a modified supersymmetry transformation. This model is broken spontaneously, and the interplay between symmetry breaking, Goldstone particles, and mass breaking is studied. In the present model, spontaneously breaking the Abelian symmetry of the vacuum restores the invariance of the vacuum under a modified supersymmetry transformation. (U.S.)
Nobel Prize for work on broken symmetries
2008-01-01
The 2008 Nobel Prize for Physics goes to three physicists who have worked on broken symmetries in particle physics. The announcement of the 2008 Nobel Prize for physics was transmitted to the Globe of Science and Innovation via webcast on the occasion of the preview of the Nobel Accelerator exhibition.On 7 October it was announced that the Royal Swedish Academy of Sciences had awarded the 2008 Nobel Prize for physics to three particle physicists for their fundamental work on the mechanisms of broken symmetries. Half the prize was awarded to Yoichiro Nambu of Fermilab for "the discovery of the mechanism of spontaneous broken symmetry in subatomic physics". The other half is shared by Makato Kobayashi of Japan’s KEK Institute and Toshihide Maskawa of the Yukawa Institute at the University of Kyoto "for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in Nature". At th...
International Nuclear Information System (INIS)
Veryaskin, A.V.; Lapchinskij, V.G.; Nekrasov, V.I.; Rubakov, V.A.
1981-01-01
Behaviour of vacuum symmetry in the model of self-acting scalar field in the open and closed isotropic cosmological spaces is investigated. Considered are the cases with the mass squared of the scalar field m 2 >0, m 2 =0 and m 2 2 2 =0 at exponentially large scale factors the study of the problem on the behaviour of the symmetry requires exceeding the limits of the perturbation theory. The final behaviour of the vacuum symmetry in the open model at small radii depends on combined effect of all the external factors [ru
Directory of Open Access Journals (Sweden)
Christoph P. Hofmann
2016-03-01
Full Text Available The low-temperature properties of systems characterized by a spontaneously broken internal rotation symmetry, O(N→O(N−1, are governed by Goldstone bosons and can be derived systematically within effective Lagrangian field theory. In the present study we consider systems living in two spatial dimensions, and evaluate their partition function at low temperatures and weak external fields up to three-loop order. Although our results are valid for any such system, here we use magnetic terminology, i.e., we refer to quantum spin systems. We discuss the sign of the (pseudo-Goldstone boson interaction in the pressure, staggered magnetization, and susceptibility as a function of an external staggered field for general N. As it turns out, the d=2+1 quantum XY model (N=2 and the d=2+1 Heisenberg antiferromagnet (N=3, are rather special, as they represent the only cases where the spin-wave interaction in the pressure is repulsive in the whole parameter regime where the effective expansion applies. Remarkably, the d=2+1 XY model is the only system where the interaction contribution in the staggered magnetization (susceptibility tends to positive (negative values at low temperatures and weak external field.
Broken color symmetry and weak currents
International Nuclear Information System (INIS)
Stech, B.
1976-01-01
Broken colour symmetry predicts a very rich spectrum of new particles. If broken colour is relevant at all, charged psi-particles should be found in particular at the 4 GeV region. For the weak hadronic currents no completely satisfactory suggestion exists. Broken colour symmetry describes qualitatively several of the new effects observed recently. (BJ) [de
International Nuclear Information System (INIS)
Solin, J.
1988-01-01
The one-loop renormalization of the λφ 4 theory with a spontaneous breaking of its discrete (reflection) symmetry is analyzed. It is explicitly shown that it is not necessary to forcefully eliminate the linear counterterm in the shifted field (accomplished usually by shifting the vacuum expectation value of the field) in order to have the renormalized Lagrangian still formally invariant under the original discrete symmetry. It is further shown, using the normal-ordering procedure, that the renormalization carried out in the customary form completely wipes out the tadpole diagram contributions from the original Lagrangian. As a consequence, the same renormalized Lagrangian can be also obtained from the original bare Lagrangian which, however, has been normal-ordered and as such cannot cause the linear counterterm in the shifted field since now the tadpole diagrams are absent altogether. These analyses should support the view that the vacuum expectation value of the field is of a group-theoretical origin rather than a field-theoretical origin, and as such should not change independently of the shifted field in the course of renormalization
Spontaneously broken realization of supersymmetry in supergravity
International Nuclear Information System (INIS)
Ferrara, S.; Trieste Univ.
1979-01-01
It is shown that if supersymmetry is relevant for the physical world it must be broken either spontaneously or explicitly. Renormalizability and simplicity are in favor of a spontaneous realization of the symmetry breaking. When supersymmetry is spontaneously broken the spinorial analogue of the Goldstone phenomenon occurs, namely massless particles arise in the spectrum of the theory which carry the same quantum numbers of the broken generators Qsup(i) they are N spin 1/2 Goldstone fermions (goldstinos). These particles may be eaten by spin 3/2 gauge particles (gravitinos) when supersymmetry is gauged. It is shown that both the Higgs effect and super Higgs effect have taken place. 8 of the spin 1/2 particles have been eaten by the spin 3/2 particles and 24 of 70 scalars have been eaten by the spin 3/2 particles and 24 of 70 scalars have been eaten by 24 of the 28 vector particles to provide them with mass. The conclusion is that the number of mass relations is, in general, equal to r-1, where r is the rank of the algebra which generates the spectrum
International Nuclear Information System (INIS)
Adler, S.L.
1999-01-01
We construct extensions of the standard model based on the hypothesis that Higgs bosons also exhibit a family structure and that the flavor weak eigenstates in the three families are distinguished by a discrete Z 6 chiral symmetry that is spontaneously broken by the Higgs sector. We study in detail at the tree level models with three Higgs doublets and with six Higgs doublets comprising two weakly coupled sets of three. In a leading approximation of S 3 cyclic permutation symmetry the three-Higgs-doublet model gives a open-quotes democraticclose quotes mass matrix of rank 1, while the six-Higgs-doublet model gives either a rank-1 mass matrix or, in the case when it spontaneously violates CP, a rank-2 mass matrix corresponding to nonzero second family masses. In both models, the CKM matrix is exactly unity in the leading approximation. Allowing small explicit violations of cyclic permutation symmetry generates small first family masses in the six-Higgs-doublet model, and first and second family masses in the three-Higgs-doublet model, and gives a nontrivial CKM matrix in which the mixings of the first and second family quarks are naturally larger than mixings involving the third family. Complete numerical fits are given for both models, flavor-changing neutral current constraints are discussed in detail, and the issues of unification of couplings and neutrino masses are addressed. On a technical level, our analysis uses the theory of circulant and retrocirculant matrices, the relevant parts of which are reviewed. copyright 1998 The American Physical Society
Broken SU(4) symmetry and new resonance
International Nuclear Information System (INIS)
Ueda, Y.
1975-11-01
Weinberg's spectral function sum rules are modified to accommodate broken symmetry effects of SU(4). With a simple choice of the symmetry-breaking term, the spectral function sum rules yield the observed vector meson mass spectrum as well as sum rules for the e - e + decay rates of vector mesons. In particular, a new mass formula, which can be interpreted as the broken symmetry version of the Schwinger formula, is derived, the agreement with experiments is excellent. (Ueda, Y.)
Bag model with broken chiral symmetry
International Nuclear Information System (INIS)
Efrosinin, V.P.; Zaikin, D.A.
1986-01-01
A variant of the bag model in which chiral symmetry is broken and which provides a description of all the experimental data on the light hadrons, including the pion, is discussed. The pion and kaon decay constants are calculated in this model. The problem of taking into account the center-of-mass motion in bag models and the boundary conditions in the bag model with broken chiral symmetry are also discussed
International Nuclear Information System (INIS)
Kastner, Ruth E.
2011-01-01
This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.
Kastner, Ruth E.
2011-11-01
This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.
Renormalizable models with broken symmetries
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-10-01
The results of the renormalized perturbation theory, in the absence of massless quanta, are summarized. The global symmetry breaking is studied and the associated currents are discussed in terms of the coupling with a classical Yang Mills field. Gauge theories are discussed; it is most likely that the natural set up should be the theory of fiber bundles and that making a choice of field coordinates makes the situation obscure. An attempt is made in view of clarifying the meaning of the Slavnov symmetry which characterizes gauge field theories [fr
Soft Terms from Broken Symmetries
Buican, Matthew
2010-01-01
In theories of phyiscs beyond the Standard Model (SM), visible sector fields often carry quantum numbers under additional gauge symmetries. One could then imagine a scenario in which these extra gauge symmetries play a role in transmitting supersymmetry breaking from a hidden sector to the Supersymmetric Standard Model (SSM). In this paper we present a general formalism for studying the resulting hidden sectors and calculating the corresponding gauge mediated soft parameters. We find that a large class of generic models features a leading universal contribution to the soft scalar masses that only depends on the scale of Higgsing, even if the model is strongly coupled. As a by-product of our analysis, we elucidate some IR aspects of the correlation functions in General Gauge Mediation. We also discuss possible phenomenological applications.
Broken colour symmetry and liberated quarks
International Nuclear Information System (INIS)
Ma, E.
1976-01-01
A quark model of hadrons is presented and discussed, in which local SU(3) gauge symmetry is completely broken and yet asymptotic freedom is preserved. There is no infrared slavery in this model, and isolated quarks are free to exist. Colour becomes a global symmetry which is only approximate under SU(3) but nearly exact under SU(2) x U(1), as far as the usual hadron spectroscopy is concerned. (Auth.)
Quantum Space-Time Deformed Symmetries Versus Broken Symmetries
Amelino-Camelia, G
2002-01-01
Several recent studies have concerned the faith of classical symmetries in quantum space-time. In particular, it appears likely that quantum (discretized, noncommutative,...) versions of Minkowski space-time would not enjoy the classical Lorentz symmetries. I compare two interesting cases: the case in which the classical symmetries are "broken", i.e. at the quantum level some classical symmetries are lost, and the case in which the classical symmetries are "deformed", i.e. the quantum space-time has as many symmetries as its classical counterpart but the nature of these symmetries is affected by the space-time quantization procedure. While some general features, such as the emergence of deformed dispersion relations, characterize both the symmetry-breaking case and the symmetry-deformation case, the two scenarios are also characterized by sharp differences, even concerning the nature of the new effects predicted. I illustrate this point within an illustrative calculation concerning the role of space-time symm...
Holography with broken Poincaré symmetry
Korovins, J.
2014-01-01
This thesis deals with the extensions of the holographic dualities to the situations where part of the Poincaré group has been broken. Such theories are particularly relevant for applications of gauge/gravity dualities to condensed matter systems, which usually exhibit non-relativistic symmetry.
Ratchet device with broken friction symmetry
DEFF Research Database (Denmark)
Norden, Bengt; Zolotaryuk, Yaroslav; Christiansen, Peter Leth
2002-01-01
An experimental setup (gadget) has been made for demonstration of a ratchet mechanism induced by broken symmetry of a dependence of dry friction on external forcing. This gadget converts longitudinal oscillating or fluctuating motion into a unidirectional rotation, the direction of which is in ac......An experimental setup (gadget) has been made for demonstration of a ratchet mechanism induced by broken symmetry of a dependence of dry friction on external forcing. This gadget converts longitudinal oscillating or fluctuating motion into a unidirectional rotation, the direction of which...... is in accordance with given theoretical arguments. Despite the setup being three dimensional, the ratchet rotary motion is proved to be described by one simple dynamic equation. This kind of motion is a result of the interplay of friction and inertia....
Random-phase approximation and broken symmetry
International Nuclear Information System (INIS)
Davis, E.D.; Heiss, W.D.
1986-01-01
The validity of the random-phase approximation (RPA) in broken-symmetry bases is tested in an appropriate many-body system for which exact solutions are available. Initially the regions of stability of the self-consistent quasiparticle bases in this system are established and depicted in a 'phase' diagram. It is found that only stable bases can be used in an RPA calculation. This is particularly true for those RPA modes which are not associated with the onset of instability of the basis; it is seen that these modes do not describe any excited state when the basis is unstable, although from a formal point of view they remain acceptable. The RPA does well in a stable broken-symmetry basis provided one is not too close to a point where a phase transition occurs. This is true for both energies and matrix elements. (author)
Quantum restoration of broken symmetry in onedimensional loop ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 82; Issue 6. Quantum restoration of broken symmetry in ... Keywords. Non-local transformation; broken symmetry; sine-Gordon; sech interaction. ... A specific type of classically broken symmetry is restored in quantum theory. One-dimensional sine-Gordon system and ...
Deep inelastic scattering in spontaneously broken gauge models
International Nuclear Information System (INIS)
Goloskokov, S.V.; Mikhov, S.G.; Morozov, P.T.; Stamenov, D.B.
1975-01-01
Deep inelastic lepton hadron scattering in the simplest spontaneously broken symmetry (the Kibble model) is analyzed. A hypothesis that the invariant coupling constant of the quartic selfinteraction for large spacelike momenta tends to a finite asymptotic value without spoiling the asymptotic freedom for the invariant coupling constant of the Yang-Mills field is used. It is shown that Biorken scaling for the moments of the structure functions of the deep inelastic lepton hadron scattering is violated by powers of logarithms
Spontaneously broken version of N=4 supersymmetry
International Nuclear Information System (INIS)
Terent'ev, M.V.
1989-01-01
The special scenario of reduction from the space of D=10 dimensions is used to construct the theory with describes interaction of supergravity with only one multiplet of matter in the framework of spontaneously broken N=4 supersymmetry. 6 refs.; 1 fig
Effective theories with broken flavour symmetry
International Nuclear Information System (INIS)
Miller, R.D.C.; McKellar, B.H.J.
1981-07-01
The work of Ovrut and Schnitzer on effective theories derived from a non Abelian Gauge Theory is generalised to include the physically interesting case of broken flavour symmetry. The calculations are performed at the 1-loop level. It is shown that at an intermediate stage in the calculations two distinct renormalised gauge coupling constants appear, one describing gauge field coupling to heavy particles and the other describing coupling to light particles. Appropriately modified Slavnov-Taylor identities are shown to hold. A simple alternative to the Ovrut-Schnitzer rules for calculating with effective theories is also considered
Broken symmetries and the Cabibbo angle
International Nuclear Information System (INIS)
Lanik, J.
1975-04-01
Under the assumption that the SU(3) symmetry is broken down by the strong and electromagnetic interactions, a phenomenological theory of the Cabibbo angle theta is proposed. In this theory the angle theta is fixed, linking together the Cabibbo rotation in the SU(3) space and complete SU(3) breaking consisting of both the SU(3) Hamiltonian and vacuum non-invariances. Assuming that the value of theta is zero in the soft-pion limit and that, in this limit, the only forces responsible for the isotopic symmetry breaking are the usual photonic forces it is shown that the usual electromagnetic interactions can contribute for the value of theta only through the non-vanishing vacuum expectation value of a certain scalar field. Within the framework of the (3,average3)+(3,average3) chiral symmetry-breaking model and through the use of the experimental value of the ratio GAMMA (K→μν)/GAMMA(π→μν), the presented Cabibbo angle theory predicts the value sintheta=0.25 which is in good agreement with experiment. (Lanik, J.)
Ratchet due to broken friction symmetry
DEFF Research Database (Denmark)
Norden, Bengt; Zolotaryuk, Yaroslav; Christiansen, Peter Leth
2002-01-01
A ratchet mechanism that occurs due to asymmetric dependence of the friction of a moving system on its velocity or a driving force is reported. For this kind of ratchet, instead of a particle moving in a periodic potential, the dynamics of which have broken space-time symmetry, the system must...... be provided with sonic internal structure realizing such a velocity- or force-friction dependence. For demonstration of a ratchet mechanism of this type, an experimental setup (gadget) that converts longitudinal oscillating or fluctuating motion into a unidirectional rotation has been built and experiments...... with it have been carried out. In this device, an asymmetry of friction dependence on an applied force appears, resulting in rectification of rotary motion, In experiments, our setup is observed to rotate only in one direction, which is in accordance with given theoretical arguments, Despite the setup being...
Need for spontaneous breakdown of chiral symmetry
International Nuclear Information System (INIS)
Salomone, A.; Schechter, J.; Tudron, T.
1981-01-01
The question of whether the chiral symmetry of the theory of strong interactions (with massless quarks) is required to be spontaneously broken is examined in the framework of a previously discussed effective Lagrangian for quantum chromodynamics. The assumption that physical masses of the theory be finite leads in a very direct way to the necessity of spontaneous breakdown. This result holds for all N/sub F/> or =2, where N/sub F/ is the number of different flavors of light quarks. The atypical cases N/sub F/ = 1,2 are discussed separately
Investigation of spontaneously broken gauge theories
International Nuclear Information System (INIS)
Nagy, T.
1978-01-01
Spontaneously broken gauge theories (SBGT) with effects treated perturbatively are investigated. The general structure of SBGT is exhibited and gauge invariant renormalization program for practical calculations is set up. The proof of renormalizability of Lee and Zinn-Justin are extended to the problems of SBGT. A general semisimple compact gauge group is used. Arbitrary fermion and scalar multiplets are considered. The structure of the Lagrangian is discussed. The problem of quantization is described and the definition of the generating functionals of the Green functions and the Green functions themselves is given
Hierarchy stability for spontaneously broken theories
Energy Technology Data Exchange (ETDEWEB)
Galvan, J B; Perez-Mercader, J; Sanchez, F J
1987-04-16
By using Weisberger's method for the integration of heavy degrees of freedom in multiscale theories, we show that tree level hierarchies are not destabilized byquantum corrections in a two-scale, two scalar field theory model where the heavy sector undergoes spontaneous symmetry breaking. We see explicitly the role played by the one-loop heavy log corrections to the effective parameters in maintaining the original tree level hierarchy and in keeping the theory free of hierarchy problems.
Hierarchy stability for spontaneously broken theories
International Nuclear Information System (INIS)
Galvan, J.B.; Perez-Mercader, J.; Sanchez, F.J.
1987-01-01
By using Weisberger's method for the integration of heavy degrees of freedom in multiscale theories, we show that tree level hierarchies are not destabilized byquantum corrections in a two-scale, two scalar field theory model where the heavy sector undergoes spontaneous symmetry breaking. We see explicitly the role played by the one-loop heavy log corrections to the effective parameters in maintaining the original tree level hierarchy and in keeping the theory free of hierarchy problems. (orig.)
Neutrino mixing: from the broken μ-τ symmetry to the broken Friedberg–Lee symmetry
International Nuclear Information System (INIS)
Xing, Zhizhong
2007-01-01
I argue that the observed flavor structures of leptons and quarks might imply the existence of certain flavor symmetries. The latter should be a good starting point to build realistic models towards deeper understanding of the fermion mass spectra and flavor mixing patterns. The μ-τ permutation symmetry serves for such an example to interpret the almost maximal atmospheric neutrino mixing angle (θ 23 ~ 45°) and the strongly suppressed CHOOZ neutrino mixing angle (θ 13 < 10°). In this talk I like to highlight a new kind of flavor symmetry, the Friedberg–Lee symmetry, for the effective Majorana neutrino mass operator. Luo and I have shown that this symmetry can be broken in an oblique way, such that the lightest neutrino remains massless but an experimentally-favored neutrino mixing pattern is achievable. We get a novel prediction for θ 13 in the CP-conserving case: sinθ 13 = tanθ 12 |(1 - tanθ 23 )/(1 + tanθ 23 )|. Our scenario can simply be generalized to accommodate CP violation and be combined with the seesaw mechanism. Finally I stress the importance of probing possible effects of μ-τ symmetry breaking either in terrestrial neutrino oscillation experiments or with ultrahigh-energy cosmic neutrino telescopes. (author)
Broken symmetries at high temperatures and the problem of baryon excess of the universe
Mohapatra, Rabindra N
1979-01-01
We discuss a class of gauge theories, where spontan- eously broken symmetries, instead of being restored, persist as the temperature is increased. Applying these ideas to the specific case of the soft CP- viola tion in grand unified theories, we discuss a mechanism to generate the baryon to entropy ratio of the universe.
The energy-momentum spectrum in local field theories with broken Lorentz-symmetry
International Nuclear Information System (INIS)
Borchers, H.J.; Buchholz, D.
1984-05-01
Assuming locality of the observables and positivity of the energy it is shown that the joint spectrum of the energy-momentum operators has a Lorentz-invariant lower boundary in all superselection sectors. This result is of interest if the Lorentz-symmetry is (spontaneously) broken, such as in the charged sectors of quantum electrodynamics. (orig.)
Phenomenology of muon number violation in spontaneously broken gauge theories
International Nuclear Information System (INIS)
Shanker, O.U.
1980-01-01
The phenomenology of muon number violation in gauge theories of weak and electromagnetic interactions is studied. In the first chapter a brief introduction to the concept of muon number and to spontaneously broken gauge theories is given. A review of the phenomenology and experimental situation regarding different muon number violating processes is made in the second chapter. A detailed phenomenological study of the μe conversion process μ - + (A,Z) → e - + (A,Z) is given in the third chapter. In the fourth chapter some specific gauge theories incorporating spontaneously broken horizontal gauge symmetries between different fermion generations are discussed with special reference to muon number violation in the theories. The μe conversion process seems to be a good process to search for muon number violation if it occurs. The K/sub L/-K/sub S/ mass difference is likely to constrain muon number violating rates to lie far below present experimental limits unless strangeness changing neutral currents changing strangeness by two units are suppressed
Multiquark baryons with broken flavour symmetry 1
International Nuclear Information System (INIS)
Wroldsen, J.
The calculation of the spectrum of 4qq multiquark baryons is carried out, taking into account that SU(3) flavour is broken. To handle this problem, which includes manipulation of giant expressions for the wavefunctions, methods suitable for programming in SCHOONSCHIP are developed and employed. (Auth)
Spontaneous symmetry breaking in 4-dimensional heterotic string
International Nuclear Information System (INIS)
Maharana, J.
1989-07-01
The evolution of a 4-dimensional heterotic string is considered in the background of its massless excitations such as graviton, antisymmetric tensor, gauge fields and scalar bosons. The compactified bosonic coordinates are fermionized. The world-sheet supersymmetry requirement enforces Thirring-like four fermion coupling to the background scalar fields. The non-abelian gauge symmetry is exhibited through the Ward identities of the S-matrix elements. The spontaneous symmetry breaking mechanism is exhibited through the broken Ward identities. An effective 4-dimensional action is constructed and the consequence of spontaneous symmetry breaking is envisaged for the effective action. 19 refs
Spontaneous breakdown of PT symmetry in the complex Coulomb ...
Indian Academy of Sciences (India)
P T symmetry is spontaneously broken, however, for complex values of the form L = − 1 2 + i . In this case the potential remains P T -symmetric, while the two independent solutions are transformed to each other by the P T operation and at the same time, the two series of discrete energy eigenvalues turn into each ...
Strong evidence for spontaneous chiral symmetry breaking in (quenched) QCD
International Nuclear Information System (INIS)
Barbour, I.M.; Gibbs, P.; Schierholz, G.; Teper, M.; Gilchrist, J.P.; Schneider, H.
1983-09-01
We calculate the chiral condensate for all quark masses using Kogut-Susskind fermions in lattice-regularized quenched QCD. The large volume behaviour of at small quark masses demonstrates that the explicit U(1) chiral symmetry is spontaneously broken. We perform the calculation for β = 5.1 to 5.9 and find very good continuum renormalization group behaviour. We infer that the spontaneous breaking we observe belongs to continuum QCD. This constitutes the first unambiguous demonstration of spontaneous chiral symmetry breaking in continuum quenched QCD. (orig.)
International Nuclear Information System (INIS)
Senjanovic, G.
1982-07-01
It is demonstrated that the spontaneous breakdown of CP invariance in grand unified theories requires the presence of intermediate mass scales. The simplest realization is provided by weakly broken left-right symmetry in the context of SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) model embedded in grand unified theories. (author)
Elastoconductivity as a probe of broken mirror symmetries
Energy Technology Data Exchange (ETDEWEB)
Hlobil, Patrik; Maharaj, Akash V.; Hosur, Pavan; Shapiro, M. C.; Fisher, I. R.; Raghu, S.
2015-07-27
We propose the possible detection of broken mirror symmetries in correlated two-dimensional materials by elastotransport measurements. Using linear response theory we calculate the“shear conductivity” Γ x x , x y , defined as the linear change of the longitudinal conductivity σ x x due to a shear strain ε x y . This quantity can only be nonvanishing when in-plane mirror symmetries are broken and we discuss how candidate states in the cuprate pseudogap regime (e.g., various loop current or charge orders) may exhibit a finite shear conductivity. We also provide a realistic experimental protocol for detecting such a response.
Two phases of the anyon gas and broken T symmetry
International Nuclear Information System (INIS)
Canright, G.S.; Rojo, A.G.
1991-01-01
This paper reports the first exact finite-temperature study of anyons. The authors' method is an extension to finite T of earlier numerical work with small numbers of anyons on a lattice. We study the spontaneous magnetization M 0 (T), since the signature has been identified as a key signature of broken T symmetry for anyon models. Our results confirm the two-phase picture suggested by earlier work: The authors find a low-temperature regime where M 0 is very small or zero, and a high-temperature regime where M 0 is of O(0.1 μ B ) per particle. In the high-temperature regime the authors can obtain an excellent estimate of M 0 (T) in the thermodynamic limit (which we call M 0 ∞ ). since our finite-size results extrapolate smoothly with little scatter. The authors' values for M 0 ∞ can then be compared with the results of μSR experiments on high-temperature superconductors, which set an upper experimental bound on the internal fields from such moments. The authors find that M 0 ∞ in a bulk material of many planes will almost certainly give a signal well above this threshold if (and only if) the planes are ordered ferromagnetically. In the antiferromagnetic case (which is strongly favored energetically) the signal from M 0 ∞ is probably undetectable. Finally, we estimate the transition temperature T c from our finite-size studies, obtaining a value on the order of a few hundred Kelvins
Non-Gaussianity from Broken Symmetries
Kolb, Edward W; Vallinotto, A; Kolb, Edward W.; Riotto, Antonio; Vallinotto, Alberto
2006-01-01
Recently we studied inflation models in which the inflaton potential is characterized by an underlying approximate global symmetry. In the first work we pointed out that in such a model curvature perturbations are generated after the end of the slow-roll phase of inflation. In this work we develop further the observational implications of the model and compute the degree of non-Gaussianity predicted in the scenario. We find that the corresponding nonlinearity parameter, $f_{NL}$, can be as large as 10^2.
Discrete symmetries: A broken look at QCD
International Nuclear Information System (INIS)
Goldman, T.
1996-01-01
The alphabet soup of discrete symmetries is briefly surveyed with a view towards those which can be tested at LISS and two particularly interesting cases are called out. A LISS experiment may be able to distinguish CP violation that is not due to the QCD θ term. The elements of a model of parity violation in proton-nucleon scattering, which is consistent with lower energy LAMPF and ANL results, are reviewed in the light of new information on diquarks and the proton spin fraction carried by quarks. The prediction that the parity violating total cross section asymmetry should be large at LISS energies is confirmed. The results of such an experiment can be used both to obtain new information about the diquark substructure of the nucleon and to provide bounds on new right-chiral weak interactions
Light hadrons in the bag model with broken chiral symmetry
International Nuclear Information System (INIS)
Efrosinin, V.P.; Zaikin, D.A.
1987-01-01
A version of the bag model with broken chiral symmetry is proposed. A satisfactory description of the experimental data on light hadrons including the pion is obtained. The estimate of the pion-nucleon σ term is given in the framework of this model. The pion and kaon decay constants are calculated. The centre-of-mass motion problem in bag models is discussed
Heavy axions from strong broken horizontal gauge symmetry
International Nuclear Information System (INIS)
Elliott, T.; King, S.F.
1993-01-01
We study the consequences of the existence and breaking of a Peccei-Quinn symmetry within the context of a dynamical model of electroweak symmetry breaking based on broken gauged flavour symmetries. We perform an estimate of the axion mass by including flavour instanton effects and show that, for low cut-offs, the axion is sufficiently massive to prevent it from being phenomenologically unacceptable. We conclude with an examination of the strong CP problem and show that our axion cannot solve the problem, though we indicate ways in which the model can be extended so that the strong CP problem is solved. (orig.)
Spontaneous symmetry breaking and response functions
International Nuclear Information System (INIS)
Beraudo, A.; De Pace, A.; Martini, M.; Molinari, A.
2005-01-01
We study the quantum phase transition occurring in an infinite homogeneous system of spin 1/2 fermions in a non-relativistic context. As an example we consider neutrons interacting through a simple spin-spin Heisenberg force. The two critical values of the coupling strength-signaling the onset into the system of a finite magnetization and of the total magnetization, respectively-are found and their dependence upon the range of the interaction is explored. The spin response function of the system in the region where the spin-rotational symmetry is spontaneously broken is also studied. For a ferromagnetic interaction the spin response along the direction of the spontaneous magnetization occurs in the particle-hole continuum and displays, for not too large momentum transfers, two distinct peaks. The response along the direction orthogonal to the spontaneous magnetization displays instead, beyond a softened and depleted particle-hole continuum, a collective mode to be identified with a Goldstone boson of type II. Notably, the random phase approximation on a Hartree-Fock basis accounts for it, in particular for its quadratic-close to the origin-dispersion relation. It is shown that the Goldstone boson contributes to the saturation of the energy-weighted sum rule for ∼25% when the system becomes fully magnetized (that is in correspondence of the upper critical value of the interaction strength) and continues to grow as the interaction strength increases
Broken symmetries at high temperatures and the problem of baryon excess of the universe
International Nuclear Information System (INIS)
Mohapatra, R.N.; Senjanovic, G.
1979-06-01
A class of gauge theories, where spontaneously broken symmetries, instead of being restored, persist as the temperature is increased is discussed. A renormalization group analysis of this phenomena suggests that there may be more than one phase transition in these models with at least one symmetric phase. Applying these ideas to the specific case of soft CP-violation in grand unified theories, a mechanism to generate the baryon to entropy ratio of the universe is discussed. 34 references
Gauge-Higgs unification with broken flavour symmetry
Energy Technology Data Exchange (ETDEWEB)
Olschewsky, M.
2007-05-15
We study a five-dimensional Gauge-Higgs unification model on the orbifold S{sup 1}/Z{sub 2} based on the extended standard model (SM) gauge group SU(2){sub L} x U(1){sub Y} x SO(3){sub F}. The group SO(3){sub F} is treated as a chiral gauged flavour symmetry. Electroweak-, flavour- and Higgs interactions are unified in one single gauge group SU(7). The unified gauge group SU(7) is broken down to SU(2){sub L} x U(1){sub Y} x SO(3){sub F} by orbifolding and imposing Dirichlet and Neumann boundary conditions. The compactification scale of the theory is O(1) TeV. Furthermore, the orbifold S{sup 1}/Z{sub 2} is put on a lattice. This setting gives a well-defined staring point for renormalisation group (RG) transformations. As a result of the RG-flow, the bulk is integrated out and the extra dimension will consist of only two points: the orbifold fixed points. The model obtained this way is called an effective bilayered transverse lattice model. Parallel transporters (PT) in the extra dimension become nonunitary as a result of the blockspin transformations. In addition, a Higgs potential V({phi}) emerges naturally. The PTs can be written as a product e{sup A{sub y}}e{sup {eta}}e{sup A{sub y}} of unitary factors e{sup A{sub y}} and a selfadjoint factor e{sup {eta}}. The reduction 48 {yields} 35 + 6 + anti 6 + 1 of the adjoint representation of SU(7) with respect to SU(6) contains SU(2){sub L} x U(1){sub Y} x SO(3){sub F} leads to three SU(2){sub L} Higgs doublets: one for the first, one for the second and one for the third generation. Their zero modes serve as a substitute for the SM Higgs. When the extended SM gauge group SU(2){sub L} x U(1){sub Y} x SO(3){sub F} is spontaneously broken down to U(1){sub em}, an exponential gauge boson mass splitting occurs naturally. At a first step SU(2){sub L} x U(1){sub Y} x SO(3){sub F} is broken to SU(2){sub L} x U(1){sub Y} by VEVs for the selfadjoint factor e{sup {eta}}. This breaking leads to masses of flavour changing SO(3){sub F
Gauge-Higgs unification with broken flavour symmetry
International Nuclear Information System (INIS)
Olschewsky, M.
2007-05-01
We study a five-dimensional Gauge-Higgs unification model on the orbifold S 1 /Z 2 based on the extended standard model (SM) gauge group SU(2) L x U(1) Y x SO(3) F . The group SO(3) F is treated as a chiral gauged flavour symmetry. Electroweak-, flavour- and Higgs interactions are unified in one single gauge group SU(7). The unified gauge group SU(7) is broken down to SU(2) L x U(1) Y x SO(3) F by orbifolding and imposing Dirichlet and Neumann boundary conditions. The compactification scale of the theory is O(1) TeV. Furthermore, the orbifold S 1 /Z 2 is put on a lattice. This setting gives a well-defined staring point for renormalisation group (RG) transformations. As a result of the RG-flow, the bulk is integrated out and the extra dimension will consist of only two points: the orbifold fixed points. The model obtained this way is called an effective bilayered transverse lattice model. Parallel transporters (PT) in the extra dimension become nonunitary as a result of the blockspin transformations. In addition, a Higgs potential V(Φ) emerges naturally. The PTs can be written as a product e A y e η e A y of unitary factors e A y and a selfadjoint factor e η . The reduction 48 → 35 + 6 + anti 6 + 1 of the adjoint representation of SU(7) with respect to SU(6) contains SU(2) L x U(1) Y x SO(3) F leads to three SU(2) L Higgs doublets: one for the first, one for the second and one for the third generation. Their zero modes serve as a substitute for the SM Higgs. When the extended SM gauge group SU(2) L x U(1) Y x SO(3) F is spontaneously broken down to U(1) em , an exponential gauge boson mass splitting occurs naturally. At a first step SU(2) L x U(1) Y x SO(3) F is broken to SU(2) L x U(1) Y by VEVs for the selfadjoint factor e η . This breaking leads to masses of flavour changing SO(3) F gauge bosons much above the compactification scale. Such a behaviour has no counterpart within the customary approximation scheme of an ordinary orbifold theory. This way tree
Conformal bootstrap with slightly broken higher spin symmetry
Energy Technology Data Exchange (ETDEWEB)
Alday, Luis F. [Mathematical Institute, University of Oxford,Andrew Wiles Building, Radcliffe Observatory Quarter,Woodstock Road, Oxford, OX2 6GG (United Kingdom); Zhiboedov, Alexander [Center for the Fundamental Laws of Nature,Harvard University, Cambridge, MA 02138 (United States)
2016-06-16
We consider conformal field theories with slightly broken higher spin symmetry in arbitrary spacetime dimensions. We analyze the crossing equation in the double light-cone limit and solve for the anomalous dimensions of higher spin currents γ{sub s} with large spin s. The result depends on the symmetries and the spectrum of the unperturbed conformal field theory. We reproduce all known results and make further predictions. In particular we make a prediction for the anomalous dimensions of higher spin currents in the 3d Ising model.
Spontaneously broken extended supersymmetry: Full superfield formulation
International Nuclear Information System (INIS)
Kandelakis, E.S.
1984-01-01
The superfield description, given by Samuel and Wess, of the non-linear Akulov-Volkov realization of (broken) supersymmetry, is generalized for the interesting cases of N=2 and 4 extended supersymmetry. The generalization, in terms of the full-superfield formulation, is straightforward. For the proof we first define the corresponding THETA-algebras; we then present explicitly many of the calculations. The schematic explanation makes the generalization manifest. We perform, for N=2, the coupling of the A-V field to standard-matter, in the way introduced by S-W, and schematically we make manifest the generalization for every N. The importance of our results consists in a complete, calculable description of the A-V fields (goldstinos) and of their interactions, easily applied to the tasks of today's phenomenology. (orig.) [de
Spontaneous symmetry breaking and its cosmological consequences
International Nuclear Information System (INIS)
Kobzarev, I.Yu.
1975-01-01
The concept of symmetry and of the spontaneous symmetry breaking are presented in popular form as applied to quantum physics. Though the presence of the spontaneous symmetry breaking is not proved directly for interactions of elementary particles, on considering the hypothesis of its presence as applied to the hot Universe theory a possibility of obtaining rather uncommon cosmological consequences is discussed. In particular, spontaneous symmetry breaking of vacuum and the rather hot Universe lead necessarily to the presence of the domain structure of the Universe with the surfase energy at the domain interface in the form of a real physical object
Spontaneously broken supersymmetry and Poincare invariance
International Nuclear Information System (INIS)
Tata, X.R.; Sudarshan, E.C.G.; Schechter, J.M.
1982-12-01
It is argued that the spontaneous breakdown of global supersymmetry is consistent with unbroken Poincare invariance if and only if the supersymmetry algebra A = 0 is understood to mean the invariance of the dynamical variables phi under the transformations generated by the algebra, i.e. [A, phi] = 0 rather than as an operator equation. It is further argued that this weakening of the algebra does not alter any of the conclusions about supersymmetric quantum field theories that have been obtained using the original (stronger) form of the algebra
Spontaneously broken supersymmetry and Poincare invariance
International Nuclear Information System (INIS)
Tata, X.R.; Sudarshan, E.C.G.; Schechter, J.M.
1983-01-01
It is argued that the spontaneous breakdown of global supersymmetry is consistent with unbroken Poincare invariance if and only if the supersymmetry algebra 'A=0' is understood to mean the invariance of the dynamical variables phi under the transformations generated by the algebra, i.e. [A, phi]=0 rather than as an operator equation. It is further argued that this 'weakening' of the algrebra does not alter any of the conclusions about supersymmetry quantum field theories that have been obtained using the original (stronger) form of the algebra. (orig.)
Spontaneous symmetry breaking in the $S_3$-symmetric scalar sector
Emmanuel-Costa, D.; Osland, P.; Rebelo, M.N.
2016-02-23
We present a detailed study of the vacua of the $S_3$-symmetric three-Higgs-doublet potential, specifying the region of parameters where these minimisation solutions occur. We work with a CP conserving scalar potential and analyse the possible real and complex vacua with emphasis on the cases in which the CP symmetry can be spontaneously broken. Results are presented both in the reducible-representation framework of Derman, and in the irreducible-representation framework. Mappings between these are given. Some of these implementations can in principle accommodate dark matter and for that purpose it is important to identify the residual symmetries of the potential after spontaneous symmetry breakdown. We are also concerned with constraints from vacuum stability.
Entanglement entropy in quantum spin chains with broken reflection symmetry
International Nuclear Information System (INIS)
Kadar, Zoltan; Zimboras, Zoltan
2010-01-01
We investigate the entanglement entropy of a block of L sites in quasifree translation-invariant spin chains concentrating on the effect of reflection-symmetry breaking. The Majorana two-point functions corresponding to the Jordan-Wigner transformed fermionic modes are determined in the most general case; from these, it follows that reflection symmetry in the ground state can only be broken if the model is quantum critical. The large L asymptotics of the entropy are calculated analytically for general gauge-invariant models, which have, until now, been done only for the reflection-symmetric sector. Analytical results are also derived for certain nongauge-invariant models (e.g., for the Ising model with Dzyaloshinskii-Moriya interaction). We also study numerically finite chains of length N with a nonreflection-symmetric Hamiltonian and report that the reflection symmetry of the entropy of the first L spins is violated but the reflection-symmetric Calabrese-Cardy formula is recovered asymptotically. Furthermore, for noncritical reflection-symmetry-breaking Hamiltonians, we find an anomaly in the behavior of the saturation entropy as we approach the critical line. The paper also provides a concise but extensive review of the block-entropy asymptotics in translation-invariant quasifree spin chains with an analysis of the nearest-neighbor case and the enumeration of the yet unsolved parts of the quasifree landscape.
Group theory of spontaneous symmetry breaking
International Nuclear Information System (INIS)
Ghaboussi, F.
1987-01-01
The connection between the minimality of the Higgs field potential and the maximal little groups of its representation obtained by spontaneous symmetry breaking is analyzed. It is shown that for several representations the lowest minimum of the potential is related to the maximal little group of those representations. Furthermore, a practical necessity criterion is given for the representation of the Higgs field needed for spontaneous symmetry breaking
Duality transformation of a spontaneously broken gauge theory
International Nuclear Information System (INIS)
Mizrachi, L.
1981-04-01
Duality transformation for a spontaneously broken gauge theory is constructed in the CDS gauge (xsub(μ)Asub(μ)sup(a)=0). The dual theory is expressed in terms of dual potentials which satisfy the same gauge condition, but with g→ 1 /g. Generally the theory is not self dual but in the weak coupling region (small g), self duality is found for the subgroup which is not spontaneously broken or in regions where monopoles and vortices are concentrated (in agreement with t'Hooft's ideas that monopoles and vortices in the Georgi-Glashow model make it self dual). In the strong coupling regime a systematic strong coupling expansion can be written. For this region the dual theory is generally not local gauge invariant, but it is invariant under global gauge transformations. (author)
Spontaneous symmetry breakdown in gauge theories
International Nuclear Information System (INIS)
Scadron, M.D.
1982-01-01
The dynamical theory of spontaneous breakdown correctly predicts the bound states and relates the order parameters of electron-photon superconductivity and quark-gluon chiral symmetry. A similar statement cannot be made for the standard electro-weak gauge symmetry. (author)
Spontaneous emergence of gauge symmetry
International Nuclear Information System (INIS)
Nielsen, H.B.; Brene, N.
1987-05-01
Within the framework of the random dynamics project we have demonstrated several mechanisms for breakdown of a preexisting exact gauge symmetry. This note concerns and reviews a mechanism which works essentially in the opposite direction, leading from am accidental approximate symmetry to an exact formal gauge symmetry. It was shown that although this symmetry is a priori only strictly formal, it can under certain circumstances lead to a physical consequence: the corresponding gauge boson becomes massless. In the chaotic models typical for our random dynamics project there is, of course, a strong competition between this mechanism and mechanisms which temd to destroy the symmetry and give mass(es) to the gauge boson(s). (orig.)
Broken chiral symmetry and the structure of hadrons
International Nuclear Information System (INIS)
Spence, W.L.
1982-01-01
The spontaneous breaking of chiral symmetry plays a decisive role in the structure of hadrons composed of light quarks. The formalism by which the dynamics of chiral symmetry breaking and its implications for hadronic structure can be explored in a simplified world in which fully relativistic zero-bare-mass quarks interact through a chirally symmetric instantaneous confining potential is presented. By thus modeling the essentials of the chiral limit-N/sub c/ infinity limit of QCD contact is made with the successes of existent semiphenomenological models of hadrons but post assumptions which explicitly violate chiral symetry are avoided. This revised approach then makes possible a unification of the dynamics of hadron structure with the mechanism of spontaneous chiral breaking and guarantees the appearance of the correct Goldstone excitations. The chiral breaking order parameter (absolute value anti psi psi), effective quark mass, and Goldstone boson wave function are obtainable by solving a single non-linear integral equation once a potential has been prescribed. The stability of the chiral asymmetric vacuum must then be established by studying the linear eigenvalue problem which determines the spectrum of states with vacuum quantum numbers. The nature of the instability of the chiral symmetric vacuum that leads to spontaneous symmetry breaking is explained and its apparent contingency on details of the dynamics is emphasized. It is argued that a single massless fermion in a chirally symmetric potential does form bound states for which a semi-classical description is given. Coupling to vacuum pairs of such bound states occasions the possibility of chiral symmetry breakdown
Spontaneous Symmetry Breaking and Nambu–Goldstone Bosons in Quantum Many-Body Systems
Directory of Open Access Journals (Sweden)
Tomáš Brauner
2010-04-01
Full Text Available Spontaneous symmetry breaking is a general principle that constitutes the underlying concept of a vast number of physical phenomena ranging from ferromagnetism and superconductivity in condensed matter physics to the Higgs mechanism in the standard model of elementary particles. I focus on manifestations of spontaneously broken symmetries in systems that are not Lorentz invariant, which include both nonrelativistic systems as well as relativistic systems at nonzero density, providing a self-contained review of the properties of spontaneously broken symmetries specific to such theories. Topics covered include: (i Introduction to the mathematics of spontaneous symmetry breaking and the Goldstone theorem. (ii Minimization of Higgs-type potentials for higher-dimensional representations. (iii Counting rules for Nambu–Goldstone bosons and their dispersion relations. (iv Construction of effective Lagrangians. Specific examples in both relativistic and nonrelativistic physics are worked out in detail.
Vacuum solutions of a gravity model with vector-induced spontaneous Lorentz symmetry breaking
International Nuclear Information System (INIS)
Bertolami, O.; Paramos, J.
2005-01-01
We study the vacuum solutions of a gravity model where Lorentz symmetry is spontaneously broken once a vector field acquires a vacuum expectation value. Results are presented for the purely radial Lorentz symmetry breaking (LSB), radial/temporal LSB and axial/temporal LSB. The purely radial LSB result corresponds to new black hole solutions. When possible, parametrized post-Newtonian parameters are computed and observational boundaries used to constrain the Lorentz symmetry breaking scale
Fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models
Energy Technology Data Exchange (ETDEWEB)
Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)
1983-04-28
We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.
The fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models
International Nuclear Information System (INIS)
Foda, O.E.
1983-01-01
We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes. (orig.)
Spontaneous symmetry breaking in N=3 supergravity
International Nuclear Information System (INIS)
Zinov'ev, Yu.M.
1986-01-01
The possibility of the spontaneous symmetry breaking without a cosmological term in N=3 supergravity is investigated. A new, dual version of N=3 supergravity - U(3)-supergravity is constructed. Such a theory is shown to admit a spontaneous supersymmetry breaking without a cosmological term and with three arbitrary scales, including partial super-Higgs effect N=3 → N=2 and N=3 → N=1
Effective potential for spontaneously broken gauge theories and gauge hierarchies
International Nuclear Information System (INIS)
Hagiwara, T.; Ovrut, B.
1979-01-01
The Appelquist-Carazzone effective-field-theory method, where one uses effective light-field coupling constants dependent on the heavy-field sector, is explicitly shown to be valid for the discussion of the gauge-hierarchy problem in grand unified gauge models. Using the method of functionals we derive an expression for the one-loop approximation to the scalar-field effective potential for spontaneously broken theories in an arbitrary R/sub xi/ gauge. We argue that this potential generates, through its derivatives, valid zero-momentum, one-particle-irreducible vertices for any value of xi (not just the xi→infinity Landau gauge). The equation that the one-loop vacuum correction must satisfy is presented, and we solve this equation for a number of spontaneously broken theories including gauge theories with gauge groups U(1) and SO(3). We find that a one-loop vacuum shift in a massless, non-Goldstone direction occurs via the Coleman-Weinberg mechanism with an effective coupling constant dependent on the heavy-field sector
Unified gauge theories with spontaneous symmetry breaking
International Nuclear Information System (INIS)
MacDowell, S.W.
1975-01-01
Unified gauge theories with spontaneous symmetry breaking are studied with a view to renormalize quantum field theory. Georgi-Glashow and Weinberg-Salam models to unify weak and electromagnetic interactions are discussed in detail. Gauge theories of strong interactions are also considered [pt
Broken symmetry in a two-qubit quantum control landscape
Bukov, Marin; Day, Alexandre G. R.; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj; Sels, Dries
2018-05-01
We analyze the physics of optimal protocols to prepare a target state with high fidelity in a symmetrically coupled two-qubit system. By varying the protocol duration, we find a discontinuous phase transition, which is characterized by a spontaneous breaking of a Z2 symmetry in the functional form of the optimal protocol, and occurs below the quantum speed limit. We study in detail this phase and demonstrate that even though high-fidelity protocols come degenerate with respect to their fidelity, they lead to final states of different entanglement entropy shared between the qubits. Consequently, while globally both optimal protocols are equally far away from the target state, one is locally closer than the other. An approximate variational mean-field theory which captures the physics of the different phases is developed.
Lynn, Bryan W.; Starkman, Glenn D.
2017-09-01
The weak-scale U (1 )Y Abelian Higgs model (AHM) is the simplest spontaneous symmetry breaking (SSB) gauge theory: a scalar ϕ =1/√{2 }(H +i π )≡1/√{2 }H ˜ei π ˜/⟨H ⟩ and a vector Aμ. The extended AHM (E-AHM) adds certain heavy (MΦ2,Mψ2˜MHeavy2≫⟨H ⟩2˜mWeak2 ) spin S =0 scalars Φ and S =1/2 fermions ψ . In Lorenz gauge, ∂μAμ=0 , the SSB AHM (and E-AHM) has a global U (1 )Y conserved physical current, but no conserved charge. As shown by T. W. B. Kibble, the Goldstone theorem applies, so π ˜ is a massless derivatively coupled Nambu-Goldstone boson (NGB). Proof of all-loop-orders renormalizability and unitarity for the SSB case is tricky because the Becchi-Rouet-Stora-Tyutin (BRST)-invariant Lagrangian is not U (1 )Y symmetric. Nevertheless, Slavnov-Taylor identities guarantee that on-shell T-matrix elements of physical states Aμ,ϕ , Φ , ψ (but not ghosts ω , η ¯ ) are independent of anomaly-free local U (1 )Y gauge transformations. We observe here that they are therefore also independent of the usual anomaly-free U (1 )Y global/rigid transformations. It follows that the associated global current, which is classically conserved only up to gauge-fixing terms, is exactly conserved for amplitudes of physical states in the AHM and E-AHM. We identify corresponding "undeformed" [i.e. with full global U (1 )Y symmetry] Ward-Takahashi identities (WTI). The proof of renormalizability and unitarity, which relies on BRST invariance, is undisturbed. In Lorenz gauge, two towers of "1-soft-pion" SSB global WTI govern the ϕ -sector, and represent a new global U (1 )Y⊗BRST symmetry not of the Lagrangian but of the physics. The first gives relations among off-shell Green's functions, yielding powerful constraints on the all-loop-orders ϕ -sector SSB E-AHM low-energy effective Lagrangian and an additional global shift symmetry for the NGB: π ˜→π ˜+⟨H ⟩θ . A second tower, governing on-shell T-matrix elements, replaces the old Adler
Spontaneous symmetry breaking in curved space-time
International Nuclear Information System (INIS)
Toms, D.J.
1982-01-01
An approach dealing with some of the complications which arise when studying spontaneous symmetry breaking beyond the tree-graph level in situations where the effective potential may not be used is discussed. These situations include quantum field theory on general curved backgrounds or in flat space-times with non-trivial topologies. Examples discussed are a twisted scalar field in S 1 xR 3 and instabilities in an expanding universe. From these it is seen that the topology and curvature of a space-time may affect the stability of the vacuum state. There can be critical length scales or times beyond which symmetries may be broken or restored in certain cases. These features are not present in Minkowski space-time and so would not show up in the usual types of early universe calculations. (U.K.)
Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.
Curran, P J; Desoky, W M; Milosević, M V; Chaves, A; Laloë, J-B; Moodera, J S; Bending, S J
2015-10-23
Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.
Nonrestoration of spontaneously broken P, CP and PQ at high temperature
International Nuclear Information System (INIS)
Dvali G.; Melfo, A.; Senjanovic, G.
1996-01-01
The possibility of P and CP violation at high temperature in models where these symmetries are spontaneously broken is investigated. It is found that in minimal models that include singlet fields, high T nonrestoration is possible for a wide range of parameters of the theory, in particular in models of CP violation with a CP-odd Higgs field. The same holds true for the invisible axion version of the Peccei-Quinn mechanism. This can provide both a way out for the domain wall problem in these theories and the CP violation required for baryogenesis. In the case of spontaneous P violation it turns out that high T nonrestoration required going beyond the minimal model. The results are shown to hold true when next-to-leading order effects are considered. (author). 33 refs, 3 figs
Spontaneous SUSY breaking without R symmetry in supergravity
Maekawa, Nobuhiro; Omura, Yuji; Shigekami, Yoshihiro; Yoshida, Manabu
2018-03-01
We discuss spontaneous supersymmetry (SUSY) breaking in a model with an anomalous U (1 )A symmetry. In this model, the size of the each term in the superpotential is controlled by the U (1 )A charge assignment and SUSY is spontaneously broken via the Fayet-Iliopoulos of U (1 )A at the metastable vacuum. In the global SUSY analysis, the gaugino masses become much smaller than the sfermion masses, because an approximate R symmetry appears at the SUSY breaking vacuum. In this paper, we show that gaugino masses can be as large as gravitino mass, taking the supergravity effect into consideration. This is because the R symmetry is not imposed so that the constant term in the superpotential, which is irrelevant to the global SUSY analysis, largely contributes to the soft SUSY breaking terms in the supergravity. As the mediation mechanism, we introduce the contributions of the field not charged under U (1 )A and the moduli field to cancel the anomaly of U (1 )A. We comment on the application of our SUSY breaking scenario to the grand unified theory.
Fibre multi-wave mixing combs reveal the broken symmetry of Fermi-Pasta-Ulam recurrence
Mussot, Arnaud; Naveau, Corentin; Conforti, Matteo; Kudlinski, Alexandre; Copie, Francois; Szriftgiser, Pascal; Trillo, Stefano
2018-05-01
In optical fibres, weak modulations can grow at the expense of a strong pump to form a triangular comb of sideband pairs, until the process is reversed. Repeated cycles of such conversion and back-conversion constitute a manifestation of the universal nonlinear phenomenon known as Fermi-Pasta-Ulam recurrence. However, it remains a major challenge to observe the coexistence of different types of recurrences owing to the spontaneous symmetry-breaking nature of such a phenomenon. Here, we implement a novel non-destructive technique that allows the evolution in amplitude and phase of frequency modes to be reconstructed via post-processing of the fibre backscattered light. We clearly observe how control of the input modulation seed results in different recursive behaviours emerging from the phase-space structure dictated by the spontaneously broken symmetry. The proposed technique is an important tool to characterize other mixing processes and new regimes of rogue-wave formation and wave turbulence in fibre optics.
Wess-Zumino model as linear σ-model of spontaneously broken conformal and OSp (1,4)-supersymmetries
International Nuclear Information System (INIS)
Ivanov, E.A.
1979-01-01
The massless Wess-Zumino model is shown to exhibit the spontaneous breaking of global conformal and orthosymplectic supersymmetries on account of the Fubini-type classical solutions to the equations of motion. The group structure of spontaneously broken phase is studied and its particle spectrum is analyzed. The little group of the ground state is found to be the graded subgroup OSp(1,4) of the conformal supergroup. The symmetry with respect to another OSp(1,4) subgroup (OSp(1,4))Ois broken to (2,3)-symmetry with emergence of massive Goldstone fermion. The superfield Weyl transformation is defined and with its help the model action is rewritten in terms of superspace OSp(1,4)/O(1,3), spinorial extension of anti de Sitter space. In such a representation the spontaneously broken phase admits the standard σ-model interpretation. We also construct the OSp(1,4)-analog of the massive Wess-Zumino model and examine its vacuum structure. An effect of the spontaneous breaking of P- and CP-parities with the strength related to anti de Sitter radius is found
On the membrane paradigm and spontaneous breaking of horizon BMS symmetries
International Nuclear Information System (INIS)
Eling, Christopher; Oz, Yaron
2016-01-01
We consider a BMS-type symmetry action on isolated horizons in asymptotically flat spacetimes. From the viewpoint of the non-relativistic field theory on a horizon membrane, supertranslations shift the field theory spatial momentum. The latter is related by a Ward identity to the particle number symmetry current and is spontaneously broken. The corresponding Goldstone boson shifts the horizon angular momentum and can be detected quantum mechanically. Similarly, area preserving superrotations are spontaneously broken on the horizon membrane and we identify the corresponding gapless modes. In asymptotically AdS spacetimes we study the BMS-type symmetry action on the horizon in a holographic superfluid dual. We identify the horizon supertranslation Goldstone boson as the holographic superfluid Goldstone mode.
International Nuclear Information System (INIS)
Capri, Marcio; Justo, Igor; Guimaraes, Marcelo; Sorella, Silvio; Dudal, David; Palhares, Leticia
2013-01-01
Full text: In recent years much attention has been devoted to the study of the issue of the Gribov copies and of its relevance for confinement in Yang-Mills theories. The existence of the Gribov copies is a general feature of the gauge-fixing quantization procedure, being related to the impossibility of finding a local gauge condition which picks up only one gauge configuration for each gauge orbit. As it has been shown by Gribov and Zwanziger, a partial solution of the Gribov problem in the Landau gauge can be achieved by restricting the domain of integration in the functional Euclidean integral to the first Gribov horizon. Among the various open aspects of the Gribov-Zwanziger framework, the issue of the BRST symmetry is a source of continuous investigations. In a recent work, we have been able to obtain an equivalent formulation of the Gribov-Zwanziger action which displays an exact BRST symmetry which turns out to be spontaneously broken by the restriction of the domain of integration to the Gribov horizon. In particular, the BRST operator retains the important property of being nilpotent. Moreover, it has also been shown that the Goldstone mode associated to the spontaneous breaking of the BRST symmetry is completely decoupled. The aim of the present work is that of fills up a gap not addressed in the previous work, namely, the renormalizability to all orders of the spontaneous symmetry breaking formulation of the Gribov-Zwanziger theory. As we shall see, the action obtained enjoys a large set of Ward identities which enables to prove that it is, in fact, multiplicatively renormalizable to all orders. (author)
Broken dynamical symmetries in quantum mechanics and phase transition phenomena
International Nuclear Information System (INIS)
Guenther, N.J.
1979-12-01
This thesis describes applications of dynamical symmetries to problems in quantum mechanics and many-body physics where the latter is formulated as a Euclidean scalar field theory in d-space dimensions. By invoking the concept of a dynamical symmetry group a unified understanding of apparently disparate results is achieved. (author)
Fluctuation relations for equilibrium states with broken discrete or continuous symmetries
International Nuclear Information System (INIS)
Lacoste, D; Gaspard, P
2015-01-01
Isometric fluctuation relations are deduced for the fluctuations of the order parameter in equilibrium systems of condensed-matter physics with broken discrete or continuous symmetries. These relations are similar to their analogues obtained for non-equilibrium systems where the broken symmetry is time reversal. At equilibrium, these relations show that the ratio of the probabilities of opposite fluctuations goes exponentially with the symmetry-breaking external field and the magnitude of the fluctuations. These relations are applied to the Curie–Weiss, Heisenberg, and XY models of magnetism where the continuous rotational symmetry is broken, as well as to the q-state Potts model and the p-state clock model where discrete symmetries are broken. Broken symmetries are also considered in the anisotropic Curie–Weiss model. For infinite systems, the results are calculated using large-deviation theory. The relations are also applied to mean-field models of nematic liquid crystals where the order parameter is tensorial. Moreover, their extension to quantum systems is also deduced. (paper)
International Nuclear Information System (INIS)
Masago, Akira; Suzuki, Naoshi
2001-01-01
By a group theoretical procedure we derive the possible spontaneously broken-symmetry states for the two-fold degenerate Hubbard model on a two-dimensional triangular lattice. For ordering wave vectors corresponding to the points Γ and K in the first BZ we find 22 states which include 16 collinear and six non-collinear states. The collinear states include the usual SDW and CDW states which appear also in the single-band Hubbard model. The non-collinear states include exotic ordering states of orbitals and spins as well as the triangular arrangement of spins
Nonreciprocal Linear Transmission of Sound in a Viscous Environment with Broken P Symmetry
Walker, E.; Neogi, A.; Bozhko, A.; Zubov, Yu.; Arriaga, J.; Heo, H.; Ju, J.; Krokhin, A. A.
2018-05-01
Reciprocity is a fundamental property of the wave equation in a linear medium that originates from time-reversal symmetry, or T symmetry. For electromagnetic waves, reciprocity can be violated by an external magnetic field. It is much harder to realize nonreciprocity for acoustic waves. Here we report the first experimental observation of linear nonreciprocal transmission of ultrasound through a water-submerged phononic crystal consisting of asymmetric rods. Viscosity of water is the factor that breaks the T symmetry. Asymmetry, or broken P symmetry along the direction of sound propagation, is the second necessary factor for nonreciprocity. Experimental results are in agreement with numerical simulations based on the Navier-Stokes equation. Our study demonstrates that a medium with broken PT symmetry is acoustically nonreciprocal. The proposed passive nonreciprocal device is cheap, robust, and does not require an energy source.
Broken SU(8) symmetry and the new particles
International Nuclear Information System (INIS)
Kramer, G.; Schiller, D.H.
1976-05-01
We study the mass spectra and wave functions for vector and pseudoscalar mesons in broken SU(8) (SU(8) is contained in SU(4)F * SU(2)J), where F stands for flavour and J for usual spin. The connection with the standard mass breaking in SU(4)F is worked out. We find that even in the presence of strong SU(8) breaking the ideal mixing scheme for the vector mesons can be approximately retained. For the pseudoscalar mesons the mixing of the singlet with the 63-plet representation of SU(8) turns out to be essential and stongly nonideal. (orig.) [de
Contraction of broken symmetries via Kac-Moody formalism
International Nuclear Information System (INIS)
Daboul, Jamil
2006-01-01
I investigate contractions via Kac-Moody formalism. In particular, I show how the symmetry algebra of the standard two-dimensional Kepler system, which was identified by Daboul and Slodowy as an infinite-dimensional Kac-Moody loop algebra, and was denoted by H 2 , gets reduced by the symmetry breaking term, defined by the Hamiltonian H(β)=(1/2m)(p 1 2 +p 2 2 )-α/r-βr -1/2 cos((φ-γ)/2). For this H(β) I define two symmetry loop algebras L i (β), i=1,2, by choosing the 'basic generators' differently. These L i (β) can be mapped isomorphically onto subalgebras of H 2 , of codimension two or three, revealing the reduction of symmetry. Both factor algebras L i (β)/I i (E,β), relative to the corresponding energy-dependent ideals I i (E,β), are isomorphic to so(3) and so(2,1) for E 0, respectively, just as for the pure Kepler case. However, they yield two different nonstandard contractions as E→0, namely to the Heisenberg-Weyl algebra h 3 =w 1 or to an Abelian Lie algebra, instead of the Euclidean algebra e(2) for the pure Kepler case. The above-noted example suggests a general procedure for defining generalized contractions, and also illustrates the 'deformation contraction hysteresis', where contraction which involves two contraction parameters can yield different contracted algebras, if the limits are carried out in different order
International Nuclear Information System (INIS)
Snyderman, N.J.
1976-01-01
The Schwinger-Dyson equation for the Nambu-Jona Lasinio model is solved systematically subject to the constraint of spontaneously broken chiral symmetry. The solution to this equation generates interactions not explicitly present in the original Lagrangian, and the original 4-fermion interaction is not present in the solution. The theory creates bound-states with respect to which a perturbation theory consistent with the chiral symmetry is set up. The analysis suggests that this theory is renormalizable in the sense that all divergences can be grouped into a few arbitrary parameters. The renormalized propagators of this model are shown to be identical to those of a new solution to the sigma-model in which the bare 4-field coupling lambda 0 is chosen to be twice the π-fermion coupling g 0 . Also considered is spontaneously broken abelian gauge model without fundamental scalar fields by coupling an axial vector gauge field to the N ambu-Jona Lasinio model. It is shown how the Goldstone consequence of spontaneous symmetry breaking is avoided in the radiation gauge, and verify the Guralnik, Hagen, and Kibble theorem that under these conditions the global charge conservation is lost even though there is still local current conservation. This is contrasted with the Lorentz gauge situation. This also demonstrated the way the various noncovariant components of the massive gauge field combine in a gauge invariant scattering amplitude to propagate covariantly as a massive spin-1 particle, and this is compared with the Lorentz gauge calculation. F inally, a new model of interacting massless fermions is introduced, based on the models of Nambu and Jona Lasinio, and the Bjorken, which spontaneously breaks both chiral symmetry and Lorentz invariance. The content of this model is the same as that of the gauge model without fundamental scalar fields, but without fundamental gauge fields as well
Jang, Iksu; Kim, Ki-Seok
2018-04-01
Anomaly cancellation has been shown to occur in broken time-reversal symmetry Weyl metals, which explains the existence of a Fermi arc. We extend this result in the case of broken inversion symmetry Weyl metals. Constructing a minimal model that takes a double pair of Weyl points, we demonstrate the anomaly cancellation explicitly. This demonstration explains why a chiral pair of Fermi arcs appear in broken inversion symmetry Weyl metals. In particular, we find that this pair of Fermi arcs gives rise to either "quantized" spin Hall or valley Hall effects, which corresponds to the "quantized" version of the charge Hall effect in broken time-reversal symmetry Weyl metals.
Reconstruction of the spontaneously broken gauge theory in non-commutative geometry
International Nuclear Information System (INIS)
Okumura, Y.; Morita, K.
1996-01-01
The scheme previously proposed by the present authors is modified to incorporate the strong interaction by affording the direct product internal symmetry. The authors do not need to prepare the extra discrete space for the colour gauge group responsible for the strong interaction to reconstruct the standard model and the left-right symmetric gauge model (LRSM). The approach based on non-commutative geometry leads us to present many attractive points such as the unified picture of the gauge and Higgs field as the generalized connection on the discrete space M 4 x Z N . This approach leads to unified picture of gauge and Higgs fields as the generalized connection. The standard model needs N=2 discrete space for reconstruction in this formalism. LRSM is still alive as a model with the intermediate symmetry of the spontaneously broken SO(10) grand unified theory (GUT). N=3 discrete space is needed for the reconstruction of LRSM to include two Higgs φ and ξ bosons usual transformed as (2, 2 * , 0) and (1, 3, -2) under SU(2) L x SU(2) R x U(1) Y , respectively. ξ is responsible to make v R Majorana fermion and so well explains the seesaw mechanism. Up and down quarks have different masses through the vacuum expectation value of φ
Broken Weyl symmetry. [Gauge model, coupling, Higgs field
Energy Technology Data Exchange (ETDEWEB)
Domokos, G.
1976-05-01
It is argued that conformal symmetry can be properly understood in the framework of field theories in curved space. In such theories, invariance is required under general coordinate transformations and conformal rescalings. A gauge model coupled to a Higgs field is examined. In the tree approximation, the vacuum solution exhibits two Higgs phenomena; both the phase (Goldstone boson) and the coordinate dependent part of the radial component of the scalar field can be removed by a Higgs-Kibble transformation. The resulting vacuum solution corresponds to a space of constant curvature and constant vacuum expectation value of the scalar field.
Interface properties of superlattices with artificially broken symmetry
International Nuclear Information System (INIS)
Lottermoser, Th.; Yamada, H.; Matsuno, J.; Arima, T.; Kawasaki, M.; Tokura, Y.
2007-01-01
We have used superlattices made of thin layers of transition metal oxides to design the so-called multiferroics, i.e. materials possessing simultaneously an electric polarization and a magnetic ordering. The polarization originates from the asymmetric stacking order accompanied by charge transfer effects, while the latter one also influences the magnetic properties of the interfaces. Due to the breaking of space and time-reversal symmetry by multiple ordering mechanism magnetic second harmonic generation is proven to be an ideal method to investigate the electric and magnetic properties of the superlattices
Broken flavor symmetries in high energy particle phenomenology
International Nuclear Information System (INIS)
Antaramian, A.
1995-01-01
Over the past couple of decades, the Standard Model of high energy particle physics has clearly established itself as an invaluable tool in the analysis of high energy particle phenomenon. However, from a field theorists point of view, there are many dissatisfying aspects to the model. One of these, is the large number of free parameters in the theory arising from the Yukawa couplings of the Higgs doublet. In this thesis, we examine various issues relating to the Yukawa coupeng structure of high energy particle field theories. We begin by examining extensions to the Standard Model of particle physics which contain additional scalar fields. By appealing to the flavor structure observed in the fermion mass and Kobayashi-Maskawa matrices, we propose a reasonable phenomenological parameterization of the new Yukawa couplings based on the concept of approximate flavor symmetries. It is shown that such a parameterization eliminates the need for discrete symmetries which limit the allowed couplings of the new scalars. New scalar particles which can mediate exotic flavor changing reactions can have masses as low as the weak scale. Next, we turn to the issue of neutrino mass matrices, where we examine a particular texture which leads to matter independent neutrino oscillation results for solar neutrinos. We, then, examine the basis for extremely strict limits placed on flavor changing interactions which also break lepton- and/or baryon-number. These limits are derived from cosmological considerations. Finally, we embark on an extended analysis of proton decay in supersymmetric SO(10) grand unified theories. In such theories, the dominant decay diagrams involve the Yukawa couplings of a heavy triplet superfield. We argue that past calculations of proton decay which were based on the minimal supersymmetric SU(5) model require reexamination because the Yukawa couplings of that theory are known to be wrong
Comment on bag models with spontaneously broken color symmetry
International Nuclear Information System (INIS)
Jandel, M.
1985-01-01
A recently suggested field-theoretic bag model, where gluons are confined via a Higgs mechanism, is discussed. It is found that the proposed model creates gluon boundary conditions that break global SU/sub c/(3) invariance. A modified scheme that removes this anomaly is suggested. However, some severe generic problems remain. Examples are the lack of a suppression mechanism for states with open color and the large surface energy of the bag states
Octonionic gauge theory from spontaneously broken SO(8)
International Nuclear Information System (INIS)
Lassig, C.C.; Joshi, G.C.
1995-01-01
An attempt is made to construct a gauge theory based on a bimodular representation of the octonion algebra, the non associativity of which is manifested as a non-closure of the bimodule algebra. It is found that this fact leads to gauge-noninvariance of the theory. However, the bimodule algebra can be embedded in SO(8), the gauge theory of which can be broken down to give a massless SO(7) theory together with a massive octonionic gauge theory. 7 refs
Reformulation od spontaneous symmetry breaking and the Weinberg-Salam model
International Nuclear Information System (INIS)
Rawat, A.S.; Rawat, S.; Negi, O.P.S.
1999-01-01
Spontaneous symmetry breaking and the Weinberg-Salam model have been reformulated in terms of quaternion-valued field variables. The quaternion-valued scalar Lagrangian reduces to four different field equations associated with the scalar quartet of a quaternion field φ φ 0 +e 1φ1 +e 2φ2 +e 3φ3 . It has been shown that the quaternion gauge group SO(4) is spontaneously broken to two gauge groups of SU(2) non Abelian gauge fields. The Weinberg-Salam model of electroweak interaction has been extensively studied to enlarge the gauge group structure SU(2) L xSU(2) R xU(1)
Spontaneous breaking of the BRST symmetry in the ABJM theory
International Nuclear Information System (INIS)
Faizal, Mir; Upadhyay, Sudhaker
2014-01-01
In this paper, we will analyze the ghost condensation in the ABJM theory. We will perform our analysis in N=1 superspace. We show that in the Delbourgo–Jarvis–Baulieu–Thierry–Mieg gauge the spontaneous breaking of BRST symmetry can occur in the ABJM theory. This spontaneous breaking of BRST symmetry is caused by ghost–anti-ghost condensation. We will also show that in the ABJM theory, the ghost–anti-ghost condensates remain present in the modified abelian gauge. Thus, the spontaneous breaking of BRST symmetry in ABJM theory can even occur in the modified abelian gauge
International Nuclear Information System (INIS)
Ezawa, Motohiko
2014-01-01
The Chern number is a genuine topological number. On the other hand, a symmetry protected topological (SPT) charge is a topological number only when a symmetry exists. We propose a formula for the SPT charge as a derivative of the Chern number in terms of the Green function in such a way that it is valid and related to the associated Hall current even when the symmetry is broken. We estimate the amount of deviation from the quantized value as a function of the strength of the broken symmetry. We present two examples. First, we consider Dirac electrons with the spin–orbit coupling on honeycomb lattice, where the SPT charges are given by the spin-Chern, valley-Chern and spin-valley-Chern numbers. Though the spin-Chern charge is not quantized in the presence of the Rashba coupling, the deviation is estimated to be 10 −7 in the case of silicene, a silicon cousin of graphene. Second, we analyze the effect of the mirror-symmetry breaking of the mirror-Chern number in a thin-film of topological crystalline insulator.
Localized surface plasmon resonance properties of symmetry-broken Au-ITO-Ag multilayered nanoshells
Lv, Jingwei; Mu, Haiwei; Lu, Xili; Liu, Qiang; Liu, Chao; Sun, Tao; Chu, Paul K.
2018-06-01
The plasmonic properties of symmetry-broken Au-ITO-Ag multilayered nanoshells by shell cutting are studied by the finite element method. The influence of the polarization of incident light and geometrical parameters on the plasmon resonances of the multilayered nanoshells are investigated. The polarization-dependent multiple plasmon resonances appear from the multilayered nanoshells due to symmetry breaking. In nanostructures with a broken symmetry, the localized surface plasmon resonance modes are enhanced resulting in higher order resonances. According to the plasmon hybridization theory, these resonance modes and greater spectral tunability derive from the interactions of an admixture of both primitive and multipolar modes between the inner Au core and outer Ag shell. By changing the radius of the Au core, the extinction resonance modes of the multilayered nanoshells can be easily tuned to the near-infrared region. To elucidate the symmetry-broken effects of multilayered nanoshells, we link the geometrical asymmetry to the asymmetrical distributions of surface charges and demonstrate dipolar and higher order plasmon modes with large associated field enhancements at the edge of the Ag rim. The spectral tunability of the multiple resonance modes from visible to near-infrared is investigated and the unique properties are attractive to applications including angularly selective filtering to biosensing.
Remarks on broken chiral SU(5) x SU(5) symmetry and B mesons
International Nuclear Information System (INIS)
Kim, D.Y.; Sinha, S.N.
1985-01-01
In a recent paper, Hatzis has estimated the masses and weak decay constants of b-flavored pseudoscalar mesons in a broken chiral SU(5) x SU(5) symmetry method. The estimated weak decay constant of B meson, f sub(B) f sub(K)(f sub(B)/f sub(K) approximately equal to 1.4) evaluated by Mathur et al. with the quantum chromodynamics (QCD) sum-rule model. We re-examined the problem applying the broken chiral SU(5) x SU(5) symmetry approach using a set of mass formulae. With this method we estimate the symmetry-breaking parameters and decay constants of pseudoscalar mesons. We found a consistent result for the decay constant: f sub(K) < or approximately equal to f sub(D) < or approximately equal to f sub(B). The explicit numerical value of these constants, however, are lower than that of the QCD sum rule. This may be due to the limited validity of the broken chiral symmetry approach for heavy mesons
Temperature renormalization group approach to spontaneous symmetry breaking
International Nuclear Information System (INIS)
Manesis, E.; Sakakibara, S.
1985-01-01
We apply renormalization group equations that describe the finite-temperature behavior of Green's functions to investigate thermal properties of spontaneous symmetry breaking. Specifically, in the O(N).O(N) symmetric model we study the change of symmetry breaking patterns with temperature, and show that there always exists the unbroken symmetry phase at high temperature, modifying the naive result of leading order in finite-temperature perturbation theory. (orig.)
Spontaneous symmetry breaking of (1+1)-dimensional φ4 theory in light-front field theory
International Nuclear Information System (INIS)
Bender, C.M.; Pinsky, S.; van de Sande, B.
1993-01-01
We study spontaneous symmetry breaking in (1+1)-dimensional φ 4 theory using the light-front formulation of field theory. Since the physical vacuum is always the same as the perturbative vacuum in light-front field theory the fields must develop a vacuum expectation value through the zero-mode components of the field. We solve the nonlinear operator equation for the zero mode in the one-mode approximation. We find that spontaneous symmetry breaking occurs at λ critical =4π(3+ √3 )μ 2 , which is consistent with the value λ critical =54.27μ 2 obtained in the equal-time theory. We calculate the vacuum expectation value as a function of the coupling constant in the broken phase both numerically and analytically using the δ expansion. We find two equivalent broken phases. Finally we show that the energy levels of the system have the expected behavior for the broken phase
Spontaneous symmetry breaking and fermion chirality in higher-dimensional gauge theory
International Nuclear Information System (INIS)
Wetterich, C.
1985-01-01
The number of chiral fermions may change in the course of spontaneous symmetry breaking. We discuss solutions of a six-dimensional Einstein-Yang-Mills theory based on SO(12). In the resulting effective four-dimensional theory they can be interpreted as spontaneous breaking of a gauge group SO(10) to H=SU(3)sub(C)xSU(2)sub(L)xU(1)sub(R)xU(1)sub(B-L). For all solutions, the fermions which are chiral with respect to H form standard generations. However, the number of generations for the solutions with broken SO(10) may be different compared to the symmetric solutions. All solutions considered here exhibit a local generation group SU(2)sub(G)xU(1)sub(G). For the solutions with broken SO(10) symmetry, the leptons and quarks within one generation transform differently with respect to SU(2)sub(G)xU(1)sub(G). Spontaneous symmetry breaking also modifies the SO(10) relations among Yukawa couplings. All this has important consequences for possible fermion mass relations obtained from higher-dimensional theories. (orig.)
CERN. Geneva
2011-01-01
- The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quant...
e +e- modes and U(1) spontaneous chiral symmetry breaking
International Nuclear Information System (INIS)
Steininger, K.
1992-01-01
In this paper, motivated by evidence for a chiral phase transition in strong coupling lattice QED, the authors calculate the two-particle spectrum of the broken QED phase. This is done in the framework of a Nambu and Jona-Lasinio model with U(1) symmetry including chiral symmetry and symmetry breaking properties of QED. The second order chiral phase transition behavior in our model and in lattice QED are in excellent agreement. The authors then present a detailed analysis of the spectra of the e + e - modes in the broken phase. The authors examine whether these modes have any possible relationship to the narrow e + e - resonances found in soft heavy ion collisions at GSL. The authors' answer is negative
Spontaneous symmetry breaking, self-trapping, and Josephson oscillations
2013-01-01
This volume collects a a number of contributions on spontaneous symmetry breaking. Current studies in this general field are going ahead at a full speed. The book present review chapters which give an overview on the major break throughs of recent years. It covers a number of different physical settings which are introduced when a nonlinearity is added to the underlying symmetric problems and its strength exceeds a certain critical value. The corresponding loss of symmetry, called spontaneous symmetry breaking, alias self-trapping into asymmetric states is extensively discussed in this book.
A topological approach unveils system invariances and broken symmetries in the brain.
Tozzi, Arturo; Peters, James F
2016-05-01
Symmetries are widespread invariances underscoring countless systems, including the brain. A symmetry break occurs when the symmetry is present at one level of observation but is hidden at another level. In such a general framework, a concept from algebraic topology, namely, the Borsuk-Ulam theorem (BUT), comes into play and sheds new light on the general mechanisms of nervous symmetries. The BUT tells us that we can find, on an n-dimensional sphere, a pair of opposite points that have the same encoding on an n - 1 sphere. This mapping makes it possible to describe both antipodal points with a single real-valued vector on a lower dimensional sphere. Here we argue that this topological approach is useful for the evaluation of hidden nervous symmetries. This means that symmetries can be found when evaluating the brain in a proper dimension, although they disappear (are hidden or broken) when we evaluate the same brain only one dimension lower. In conclusion, we provide a topological methodology for the evaluation of the most general features of brain activity, i.e., the symmetries, cast in a physical/biological fashion that has the potential to be operationalized. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Infrared aspects of spontaneous symmetry breaking of gauge theories in two and three dimensions
International Nuclear Information System (INIS)
Cho, H.T.
1987-01-01
The spontaneous chiral symmetry breaking in SU(N) quantum chromodynamics (QCD) in two dimensions is investigated by calculating the order parameter , where psi is the fermion in the theory, in the authors approximation. In the chiral limit, where the mass of the fermion m → O, is found to be non-zero both in the finite N and N → infinity cases. This implies that chiral symmetry is spontaneously broken by infrared effects in all these cases. The Wilson loop expectation value is calculated for again SU(N) QCD in two dimensions, without fermions. In two dimensions, the Coulomb potential is linear, and thus confining. Under the authors approximation, the area law of the Wilson loop is indeed obtained as expected, for all values of N; in addition, the N-dependent polynomial multiplying the Wilson exponential is also obtained. In quantum electrodynamics (QED) in three dimensions there is a possibility of spontaneous breaking of parity. The authors consider this possibility by studying and the photon propagator. It is found that in the limit m → O, is zero and the photon has a zero mass pole. Therefore, there is no sign of spontaneous parity violation in (QED) in three dimensions induced by infrared effects, in contrast to the positive result of chiral symmetry breaking in two dimensions
dRGT theory of massive gravity from spontaneous symmetry breaking
Torabian, Mahdi
2018-05-01
In this note we propose a topological action for a Poincare times diffeomorphism invariant gauge theory. We show that there is Higgs phase where the gauge symmetry is spontaneous broken to a diagonal Lorentz subgroup and gives the Einstein-Hilbert action plus the dRGT potential terms. In this vacuum, there are five (three from Goldstone modes) propagating degrees of freedom which form polarizations of a massive spin 2 particle, an extra healthy heavy scalar (Higgs) mode and no Boulware-Deser ghost mode. We further show that the action can be derived in a limit from a topological de Sitter invariant gauge theory in 4 dimensions.
Spontaneous symmetry breaking in N = 2 supergravity
International Nuclear Information System (INIS)
Zinov'ev, Y.M.
1987-01-01
A model describing the interaction of N = 2 supergravity with a vector and a linear multiplet is constructed. The model admits the introduction of spontaneous supersymmetry breaking with two arbitrary scales, one of which can be equal to zero, corresponding to the partial super-Higgs effect (N = 2→N = 1). The cosmological term is automatically equal to zero
Symmetry broken and restored coupled-cluster theory: I. Rotational symmetry and angular momentum
International Nuclear Information System (INIS)
Duguet, T
2015-01-01
We extend coupled-cluster (CC) theory performed on top of a Slater determinant breaking rotational symmetry to allow for the exact restoration of the angular momentum at any truncation order. The main objective relates to the description of near-degenerate finite quantum systems with an open-shell character. As such, the newly developed many-body formalism offers a wealth of potential applications and further extensions dedicated to the ab initio description of, e.g., doubly open-shell atomic nuclei and molecule dissociation. The formalism, which encompasses both single-reference CC theory and projected Hartree–Fock theory as particular cases, permits the computation of usual sets of connected diagrams while consistently incorporating static correlations through the highly non-perturbative restoration of rotational symmetry. Interestingly, the yrast spectroscopy of the system, i.e. the lowest energy associated with each angular momentum, is accessed within a single calculation. A key difficulty presently overcome relates to the necessity to handle generalized energy and norm kernels for which naturally terminating CC expansions could be eventually obtained. The present work focuses on SU(2) but can be extended to any (locally) compact Lie group and to discrete groups, such as most point groups. In particular, the formalism will be soon generalized to U(1) symmetry associated with particle number conservation. This is relevant to Bogoliubov CC theory that was recently applied to singly open-shell nuclei. (paper)
International Nuclear Information System (INIS)
Halpern, L.
1981-01-01
Invariant varieties of suitable semisimple groups of transformations can serve as models of the space-time of the universe. The metric is expressible in terms of the basis vectors of the group. The symmetry of the group is broken by introducing a gauge formalism in the space of the basis vectors with the adjoint group as gauge group. The gauge potentials are expressible in terms of the basis vectors for the case of the De Sitter group. The resulting gauge theory is equivalent to De Sitter covariant general relativity. Group covariant generalizations of gravitational theory are discussed. (Auth.)
Colak, Evrim; Serebryannikov, Andriy E.; Ozgur Cakmak, A.; Ozbay, Ekmel
2013-04-01
It is experimentally demonstrated that the combination of diode and splitter functions can be realized in one broadband reciprocal device. The suggested performance is based on the dielectric photonic crystal grating whose structural symmetry is broken owing to non-deep corrugations placed at one of the two interfaces. The study has been performed at a normally incident beam-type illumination obtained from a microwave horn antenna. The two unidirectionally transmitted, deflected beams can show large magnitude and high contrast, while the angular distance between their maxima is 90° and larger. The dual-band unidirectional splitting is possible when using TM and TE polarizations.
Spontaneously broken SU(2) gauge invariance and the ΔI=1/2 rule
International Nuclear Information System (INIS)
Shito, Okiyasu
1977-01-01
A model of nonleptonic weak interactions is proposed which is based on spontaneously broken SU(2) gauge invariance. The SU(2) group is taken analogously to the U-spin. To this scheme, the source of nonleptonic decays consists of only neutral currents, and violation of strangeness stems from weak vector boson mixings. The model can provide a natural explanation of the ΔI=1/2 rule and of the bulk of the ΔI=1/2 nonleptonic amplitude. As a consequence, a picture is obtained that weak interactions originate in spontaneously broken gauge invariance under orthogonal SU(2) groups. Finally, a possibility of unifying weak and electromagnetic interactions is indicated. (auth.)
Güngör, Özenç; Starkman, Glenn D.; Stora, Raymond
This work is dedicated to the memory of Raymond Stora (1930-2015). $SU(2)_L$ is the simplest spontaneous symmetry breaking (SSB) non-Abelian gauge theory: a complex scalar doublet $\\phi=\\frac{1}{\\sqrt{2}}\\begin{bmatrix}H+i\\pi_3-\\pi_2 +i\\pi_1\\end{bmatrix}\\equiv\\frac{1}{\\sqrt{2}}\\tilde{H}e^{2i\\tilde{t}\\cdot\\tilde{\\vec{\\pi}}/}\\begin{bmatrix}10\\end{bmatrix}$ and a vector $\\vec{W}^\\mu$. In Landau gauge, $\\vec{W}^\\mu$ is transverse, $\\vec{\\tilde{\\pi}}$ are massless derivatively coupled Nambu-Goldstone bosons (NGB). A global shift symmetry enforces $m^{2}_{\\tilde{\\pi}}=0$. We observe that on-shell T-matrix elements of physical states $\\vec{W}^\\mu$,$\\phi$ are independent of global $SU(2)_{L}$ transformations, and the associated global current is exactly conserved for amplitudes of physical states. We identify two towers of "1-soft-pion" global Ward-Takahashi Identities (WTI), which govern the $\\phi$-sector, and represent a new global symmetry, $SU(2)_L\\otimes$BRST, a symmetry not of the Lagrangian but of the physical...
Nonextensive Entropy, Prior PDFs and Spontaneous Symmetry Breaking
Shafee, Fariel
2008-01-01
We show that using nonextensive entropy can lead to spontaneous symmetry breaking when a parameter changes its value from that applicable for a symmetric domain, as in field theory. We give the physical reasons and also show that even for symmetric Dirichlet priors, such a defnition of the entropy and the parameter value can lead to asymmetry when entropy is maximized.
Spontaneous symmetry breaking in spinor Bose-Einstein condensates
DEFF Research Database (Denmark)
Scherer, Manuel; Lücke, Bernd; Peise, Jan
2013-01-01
We present an analytical model for the theoretical analysis of spin dynamics and spontaneous symmetry breaking in a spinor Bose-Einstein condensate (BEC). This allows for an excellent intuitive understanding of the processes and provides good quantitative agreement with the experimental results...
International Nuclear Information System (INIS)
Damski, Bogdan; Zurek, Wojciech H
2008-01-01
We discuss the dynamics of a quantum phase transition in a spin-1 Bose-Einstein condensate when it is driven from the magnetized broken-symmetry phase to the unmagnetized 'symmetric' polar phase. We determine where the condensate goes out of equilibrium as it approaches the critical point, and compute the condensate magnetization at the critical point. This is done within a quantum Kibble-Zurek scheme traditionally employed in the context of symmetry-breaking quantum phase transitions. Then we study the influence of the non-equilibrium dynamics near a critical point on the condensate magnetization. In particular, when the quench stops at the critical point, nonlinear oscillations of magnetization occur. They are characterized by a period and an amplitude that are inversely proportional. If we keep driving the condensate far away from the critical point through the unmagnetized 'symmetric' polar phase, the amplitude of magnetization oscillations slowly decreases reaching a nonzero asymptotic value. That process is described by an equation that can be mapped onto the classical mechanical problem of a particle moving under the influence of harmonic and 'anti-friction' forces whose interplay leads to surprisingly simple fixed-amplitude oscillations. We obtain several scaling results relating the condensate magnetization to the quench rate, and verify numerically all analytical predictions
International Nuclear Information System (INIS)
Ryu, S.; Furusaki, A.; Ludwig, A.W.W.; Mudry, C.
2007-01-01
We extend the analysis of the conductance fluctuations in disordered metals by Altshuler, Kravtsov, and Lerner (AKL) to disordered superconductors with broken time-reversal symmetry in d=(2+ε) dimensions (symmetry classes C and D of Altland and Zirnbauer). Using a perturbative renormalization group analysis of the corresponding non-linear sigma model (NLσM) we compute the anomalous scaling dimensions of the dominant scalar operators with 2s gradients to one-loop order. We show that, in analogy with the result of AKL for ordinary, metallic systems (Wigner-Dyson classes), an infinite number of high-gradient operators would become relevant (in the renormalization group sense) near two dimensions if contributions beyond one-loop order are ignored. We explore the possibility to compare, in symmetry class D, the ε=(2-d) expansion in d<2 with exact results in one dimension. The method we use to perform the one-loop renormalization analysis is valid for general symmetric spaces of Kaehler type, and suggests that this is a generic property of the perturbative treatment of NLσMs defined on Riemannian symmetric target spaces
Minimally doubled fermions and spontaneous chiral symmetry breaking
Directory of Open Access Journals (Sweden)
Osmanaj (Zeqirllari Rudina
2018-01-01
Full Text Available Chiral symmetry breaking in massless QCD is a very important feature in the current understanding of low energy physics. Low - lying Dirac modes are suitable to help us understand the spontaneous chiral symmetry breaking, since the formation of a non zero chiral condensate is an effect of their accumulation near zero. The Banks – Casher relation links the spectral density of the Dirac operator to the condensate with an identity that can be read in both directions. In this work we propose a spectral method to achieve a reliable determination of the density of eigenvalues of Dirac operator near zero using the Gauss – Lanczos quadrature. In order to understand better the dynamical chiral symmetry breaking and use the method we propose, we have chosen to work with minimally doubled fermions. These kind of fermions have been proposed as a strictly local discretization of the QCD fermions action, which preserves chiral symmetry at finite cut-off. Being chiral fermions, is easier to work with them and their low - lying Dirac modes and to understand the dynamical spontaneous chiral symmetry breaking.
Minimally doubled fermions and spontaneous chiral symmetry breaking
Osmanaj (Zeqirllari), Rudina; Hyka (Xhako), Dafina
2018-03-01
Chiral symmetry breaking in massless QCD is a very important feature in the current understanding of low energy physics. Low - lying Dirac modes are suitable to help us understand the spontaneous chiral symmetry breaking, since the formation of a non zero chiral condensate is an effect of their accumulation near zero. The Banks - Casher relation links the spectral density of the Dirac operator to the condensate with an identity that can be read in both directions. In this work we propose a spectral method to achieve a reliable determination of the density of eigenvalues of Dirac operator near zero using the Gauss - Lanczos quadrature. In order to understand better the dynamical chiral symmetry breaking and use the method we propose, we have chosen to work with minimally doubled fermions. These kind of fermions have been proposed as a strictly local discretization of the QCD fermions action, which preserves chiral symmetry at finite cut-off. Being chiral fermions, is easier to work with them and their low - lying Dirac modes and to understand the dynamical spontaneous chiral symmetry breaking.
Macroscopic influence on the spontaneous symmetry breaking in quantum field
International Nuclear Information System (INIS)
Kirzhnitz, D.A.
1977-01-01
Major results of investigations concerning macroscopic influence (heating, compression, external field and current) on elementary particle systems with spontaneous symmetry breaking are briefly reviewed. The study of this problem has been stimulated by recent progress in the unified renormalizable theory of elementary particles. Typically it appears that at some values of external parameters a phase transition with symmetry restoration takes place. There exists a profound and far going analogy with phase transition in many-body physics especially with superconductivity phenomenon. Some applications to cosmology are also considered
Zhang, Zhiwang; Wei, Qi; Cheng, Ying; Zhang, Ting; Wu, Dajian; Liu, Xiaojun
2017-02-01
The discovery of topological acoustics has revolutionized fundamental concepts of sound propagation, giving rise to strikingly unconventional acoustic edge modes immune to scattering. Because of the spinless nature of sound, the "spinlike" degree of freedom crucial to topological states in acoustic systems is commonly realized with circulating background flow or preset coupled resonator ring waveguides, which drastically increases the engineering complexity. Here we realize the acoustic pseudospin multipolar states in a simple flow-free symmetry-broken metamaterial lattice, where the clockwise (anticlockwise) sound propagation within each metamolecule emulates pseudospin down (pseudospin up). We demonstrate that tuning the strength of intermolecular coupling by simply contracting or expanding the metamolecule can induce the band inversion effect between the pseudospin dipole and quadrupole, which leads to a topological phase transition. Topologically protected edge states and reconfigurable topological one-way transmission for sound are further demonstrated. These results provide diverse routes to construct novel acoustic topological insulators with versatile applications.
Noncritical quadrature squeezing through spontaneous polarization symmetry breaking
Garcia-Ferrer, Ferran V.; Navarrete-Benlloch, Carlos; de Valcárcel, Germán J.; Roldán, Eugenio
2010-01-01
We discuss the possibility of generating noncritical quadrature squeezing by spontaneous polarization symmetry breaking. We consider first type-II frequency-degenerate optical parametric oscillators, but discard them for a number of reasons. Then we propose a four-wave mixing cavity in which the polarization of the output mode is always linear but has an arbitrary orientation. We show that in such a cavity complete noise suppression in a quadrature of the output field occurs, irrespective of ...
Noncritical quadrature squeezing through spontaneous polarization symmetry breaking.
Garcia-Ferrer, Ferran V; Navarrete-Benlloch, Carlos; de Valcárcel, Germán J; Roldán, Eugenio
2010-07-01
We discuss the possibility of generating noncritical quadrature squeezing by spontaneous polarization symmetry breaking. We first consider Type II frequency-degenerate optical parametric oscillators but discard them for a number of reasons. Then we propose a four-wave-mixing cavity, in which the polarization of the output mode is always linear but has an arbitrary orientation. We show that in such a cavity, complete noise suppression in a quadrature of the output field occurs, irrespective of the parameter values.
International Nuclear Information System (INIS)
Dicus, D.A.; Teplitz, V.L.; Young, J.E.
1974-01-01
A spontaneously broken gauge theory of leptons (e, μ, ν/sub e'/, ν/sub μ/) is constructed in which the two-body scattering amplitudes are dual. The resultant model leads to suppression of ν/sub μ/ + e → ν/sub μ/ + e and predictions for ν/sub e/ + e → ν/sub e/ + e and e + e → μ + μ - that are distinctly different from those of both the conventional V--A theory and the Weinberg-Salam model. (U.S.)
On van der Waals-like forces in spontaneously broken supersymmetries
International Nuclear Information System (INIS)
Radescu, E.E.
1982-12-01
In spontaneously broken rigid supersymmetry, Goldstone fermion pair exchange should lead to a universal interaction between massive bodies uniquely fixed by the existing low energy theorem. The resulting van der Waals-like potential is shown to be V(r)=Mmπ -3 F -4 r -7 +O(r -8 ), where M,m are the masses of the interacting bodies while √F is the scale of the breaking. The change in the situation when the supersymmetry is promoted to a local one is briefly discussed. (author)
New Boundary-Driven Twist States in Systems with Broken Spatial Inversion Symmetry
Hals, Kjetil M. D.; Everschor-Sitte, Karin
2017-09-01
A full description of a magnetic sample includes a correct treatment of the boundary conditions (BCs). This is in particular important in thin film systems, where even bulk properties might be modified by the properties of the boundary of the sample. We study generic ferromagnets with broken spatial inversion symmetry and derive the general micromagnetic BCs of a system with Dzyaloshinskii-Moriya interaction (DMI). We demonstrate that the BCs require the full tensorial structure of the third-rank DMI tensor and not just the antisymmetric part, which is usually taken into account. Specifically, we study systems with C∞ v symmetry and explore the consequences of the DMI. Interestingly, we find that the DMI already in the simplest case of a ferromagnetic thin film leads to a purely boundary-driven magnetic twist state at the edges of the sample. The twist state represents a new type of DMI-induced spin structure, which is completely independent of the internal DMI field. We estimate the size of the texture-induced magnetoresistance effect being in the range of that of domain walls.
Stock market speculation: Spontaneous symmetry breaking of economic valuation
Sornette, Didier
2000-09-01
Firm foundation theory estimates a security's firm fundamental value based on four determinants: expected growth rate, expected dividend payout, the market interest rate and the degree of risk. In contrast, other views of decision-making in the stock market, using alternatives such as human psychology and behavior, bounded rationality, agent-based modeling and evolutionary game theory, expound that speculative and crowd behavior of investors may play a major role in shaping market prices. Here, we propose that the two views refer to two classes of companies connected through a "phase transition". Our theory is based on (1) the identification of the fundamental parity symmetry of prices (p→-p), which results from the relative direction of payment flux compared to commodity flux and (2) the observation that a company's risk-adjusted growth rate discounted by the market interest rate behaves as a control parameter for the observable price. We find a critical value of this control parameter at which a spontaneous symmetry-breaking of prices occurs, leading to a spontaneous valuation in absence of earnings, similarly to the emergence of a spontaneous magnetization in Ising models in absence of a magnetic field. The low growth rate phase is described by the firm foundation theory while the large growth rate phase is the regime of speculation and crowd behavior. In practice, while large "finite-time horizon" effects round off the predicted singularities, our symmetry-breaking speculation theory accounts for the apparent over-pricing and the high volatility of fast growing companies on the stock markets.
International Nuclear Information System (INIS)
Bonanno, Luca; Drago, Alessandro
2009-01-01
We study matter at high density and temperature using a chiral Lagrangian in which the breaking of scale invariance is regulated by the value of a scalar field, called dilaton [E. K. Heide, S. Rudaz, and P. J. Ellis, Nucl. Phys. A571, 713 (1994); G. W. Carter, P. J. Ellis, and S. Rudaz, Nucl. Phys. A603, 367 (1996); G. W. Carter, P. J. Ellis, and S. Rudaz, Nucl. Phys. A618, 317 (1997); G. W. Carter and P. J. Ellis, Nucl. Phys. A628, 325 (1998)]. We provide a phase diagram describing the restoration of chiral and scale symmetries. We show that chiral symmetry is restored at large temperatures, but at low temperatures it remains broken at all densities. We also show that scale invariance is more easily restored at low rather than large baryon densities. The masses of vector-mesons scale with the value of the dilaton and their values initially slightly decrease with the density but then they increase again for densities larger than ∼3ρ 0 . The pion mass increases continuously with the density and at ρ 0 and T=0 its value is ∼30 MeV larger than in the vacuum. We show that the model is compatible with the bounds stemming from astrophysics, as, e.g., the one associated with the maximum mass of a neutron star. The most striking feature of the model is a very significant softening at large densities, which manifests also as a strong reduction of the adiabatic index. Although the softening has probably no consequence for supernova explosion via the direct mechanism, it could modify the signal in gravitational waves associated with the merging of two neutron stars.
A model of spontaneous symmetry breakdown in spatially flat cosmological spacetimes
International Nuclear Information System (INIS)
Kundu, P.
1984-01-01
This paper is an elaboration of a previous short exposition of a theory of spontaneous symmetry breaking in a conformally coupled, massless lambdaphi 4 model in a spatially flat Robertson-Walker spacetime. Under the weakened global boundary condition allowing the physical spacetime to be conformal to only a portion of the Minkowski spacetime, the model admits a pair of degenerate vacua in which the phi->phi symmetry is spontaneously broken. The model is formulated as a euclidean field theory in a space with a positive-definite metric obtained by analytically continuing the conformal time coordinate. An appropriate time-dependent zero energy solution of the euclidean equation of motion representing the field configuration in the asymmetric vacuum is considered and the corresponding quantum trace anomaly is computed in the one-loop approximation. The nontrivial infrared behavior of the model due to the singular nature of the classical background field forces a modification of the boundary conditions on the propagator. A general form for an 'improved' one-loop trace anomaly is found by a simple argument based on renormalization group invariance. Via the Einstein equation, the trace anomaly leads to a self-consistent dynamical equation for the cosmic expansion scale factor. Some physical aspects of the back-reaction problem based on a simple power law model of the expansion scale factor are discussed. (orig.)
The spontaneous breakdown of chiral symmetry in QCD
International Nuclear Information System (INIS)
Yoshida, K.
1980-02-01
It is suggested that the usual path integral representation of Euclidean vacuum amplitude (tunneling amplitude) in QCD must be supplemented by the explicit boundary condition corresponding to the spontaneous breaking of chiral SU(N) x SU(N). Adopting the trial wave function introduced by Nambu and Jona-Lasinio, one sees that such a path integral automatically breaks also the additional chiral U(1) symmetry of massless quarks. The catastrophe of semi-classical approach to QCD and 'U(1) problem' would be avoided in this way and one has, in principle, a better starting point for the self-consistent calculation
Cosmological constraints on spontaneous R-symmetry breaking models
Energy Technology Data Exchange (ETDEWEB)
Hamada, Yuta; Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research and Dept. of Physics
2012-11-15
We study general constraints on spontaneous R-symmetry breaking models coming from the cosmological effects of the pseudo Nambu-Goldstone bosons, R-axions. They are substantially produced in the early Universe and may cause several cosmological problems. We focus on relatively long-lived R-axions and find that in a wide range of parameter space, models are severely constrained. In particular, R-axions with mass less than 1 MeV are generally ruled out for relatively high reheating temperature, T{sub R}>10 GeV.
Inertial Spontaneous Symmetry Breaking and Quantum Scale Invariance
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Pedro G. [Oxford U.; Hill, Christopher T. [Fermilab; Ross, Graham G. [Oxford U., Theor. Phys.
2018-01-23
Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of "inertial spontaneous symmetry breaking" that does not involve a potential. This is dictated by the structure of the Weyl current, $K_\\mu$, and a cosmological phase during which the universe expands and the Einstein-Hilbert effective action is formed. Maintaining exact Weyl invariance in the renormalised quantum theory is straightforward when renormalisation conditions are referred back to the VEV's of fields in the action of the theory, which implies a conserved Weyl current. We do not require scale invariant regulators. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential.
Hong, R.; Li, J. C.; Hajjar, R.; Chakraborty Thakur, S.; Diamond, P. H.; Tynan, G. R.
2018-05-01
Detailed measurements of intrinsic axial flow generation parallel to the magnetic field in the controlled shear decorrelation experiment linear plasma device with no axial momentum input are presented and compared to theory. The results show a causal link from the density gradient to drift-wave turbulence with broken spectral symmetry and development of the axial mean parallel flow. As the density gradient steepens, the axial and azimuthal Reynolds stresses increase and radially sheared azimuthal and axial mean flows develop. A turbulent axial momentum balance analysis shows that the axial Reynolds stress drives the radially sheared axial mean flow. The turbulent drive (Reynolds power) for the azimuthal flow is an order of magnitude greater than that for axial flow, suggesting that the turbulence fluctuation levels are set by azimuthal flow shear regulation. The direct energy exchange between axial and azimuthal mean flows is shown to be insignificant. Therefore, the axial flow is parasitic to the turbulence-zonal flow system and is driven primarily by the axial turbulent stress generated by that system. The non-diffusive, residual part of the axial Reynolds stress is found to be proportional to the density gradient and is formed due to dynamical asymmetry in the drift-wave turbulence.
International Nuclear Information System (INIS)
Kazama, Y.; Yao, Y.
1982-01-01
In spontaneously broken non-Abelian gauge theories which admit gauge hierarchy at the tree level, we show, to all orders in perturbation theory, that (i) the superheavy particles decouple from the light sector at low energies, (ii) an effective low-energy renormalizable theory emerges together with appropriate counterterms, and (iii) the gauge hierarchy can be consistently maintained in the presence of radiative corrections. These assertions are explicitly demonstrated for O(3) gauge theory with two triplets of Higgs particles in a manner easily applicable to more realistic grand unified theories. Furthermore, as a by-product of our analysis, we obtain a systematic method of computing the parameters of the effective low-energy theory via renormalization-group equations to any desired accuracy
Spontaneous breaking of time-reversal symmetry in topological insulators
Energy Technology Data Exchange (ETDEWEB)
Karnaukhov, Igor N., E-mail: karnaui@yahoo.com
2017-06-21
Highlights: • Proposed a new approach for description of phase transitions in topological insulators. • Considered the mechanism of spontaneous breaking of time-reversal symmetry in topological insulators. • The Haldane model can be implemented in real compounds of the condensed matter physics. - Abstract: The system of spinless fermions on a hexagonal lattice is studied. We have considered tight-binding model with the hopping integrals between the nearest-neighbor and next-nearest-neighbor lattice sites, that depend on the direction of the link. The links are divided on three types depending on the direction, the hopping integrals are defined by different phases along the links. The energy of the system depends on the phase differences, the solutions for the phases, that correspond to the minimums of the energy, lead to a topological insulator state with the nontrivial Chern numbers. We have analyzed distinct topological states and phase transitions, the behavior of the chiral gapless edge modes, have defined the Chern numbers. The band structure of topological insulator (TI) is calculated, the ground-state phase diagram in the parameter space is obtained. We propose a novel mechanism of realization of TI, when the TI state is result of spontaneous breaking of time-reversal symmetry due to nontrivial stable solutions for the phases that determine the hopping integrals along the links and show that the Haldane model can be implemented in real compounds of the condensed matter physics.
Spontaneous chiral symmetry breaking in early molecular networks
Directory of Open Access Journals (Sweden)
Markovitch Omer
2010-05-01
Full Text Available Abstract Background An important facet of early biological evolution is the selection of chiral enantiomers for molecules such as amino acids and sugars. The origin of this symmetry breaking is a long-standing question in molecular evolution. Previous models addressing this question include particular kinetic properties such as autocatalysis or negative cross catalysis. Results We propose here a more general kinetic formalism for early enantioselection, based on our previously described Graded Autocatalysis Replication Domain (GARD model for prebiotic evolution in molecular assemblies. This model is adapted here to the case of chiral molecules by applying symmetry constraints to mutual molecular recognition within the assembly. The ensuing dynamics shows spontaneous chiral symmetry breaking, with transitions towards stationary compositional states (composomes enriched with one of the two enantiomers for some of the constituent molecule types. Furthermore, one or the other of the two antipodal compositional states of the assembly also shows time-dependent selection. Conclusion It follows that chiral selection may be an emergent consequence of early catalytic molecular networks rather than a prerequisite for the initiation of primeval life processes. Elaborations of this model could help explain the prevalent chiral homogeneity in present-day living cells. Reviewers This article was reviewed by Boris Rubinstein (nominated by Arcady Mushegian, Arcady Mushegian, Meir Lahav (nominated by Yitzhak Pilpel and Sergei Maslov.
International Nuclear Information System (INIS)
Chaichian, M.; Montonen, C.; Perez Rojas, H.
1991-01-01
The completely different conservation properties of charges associated to unbroken and broken symmetries are discussed. The impossibility of establishing a conservation law for nondegenerate Hilbert space representations in the broken case leads to a reciprocal of Coleman's theorem. The quantum statistical implication is that these charges cannot be introduced as conserved operators in the density matrix. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Del Cima, Oswaldo M.; Franco, Daniel H.T.; Piguet, Olivier, E-mail: opiguet@pq.cnpq.br
2016-11-15
In this paper, we revisit the issue intensively studied in recent years on the generation of terms by radiative corrections in models with broken Lorentz symmetry. The algebraic perturbative method of handling the problem of renormalization of the theories with Lorentz symmetry breaking, is used. We hope to make clear the Symanzik's aphorism: “Whether you like it or not, you have to include in the lagrangian all counter terms consistent with locality and power-counting, unless otherwise constrained by Ward identities.”{sup 1}.
Non-local ground-state functional for quantum spin chains with translational broken symmetry
Energy Technology Data Exchange (ETDEWEB)
Libero, Valter L.; Penteado, Poliana H.; Veiga, Rodrigo S. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica
2011-07-01
Full text. Thanks to the development and use of new materials with special doping, it becomes relevant the study of Heisenberg spin-chains with broken translational symmetry, induced for instance by finite-size effects, bond defects or by impurity spin in the chain. The exact numerical results demands huge computational efforts, due to the size of the Hilbert space involved and the lack of symmetry to exploit. Density Functional Theory (DFT) has been considered a simple alternative to obtain ground-state properties for such systems. Usually, DFT starts with a uniform system to build the correlation energy and after implement a local approximation to construct local functionals. Based on our prove of the Hohenberg-Kohn theorem for Heisenberg models, and in order to describe more realistic models, we have recently developed a non-local exchange functional for the ground-state energy of quantum-spin chains. A alternating-bond chain is used to obtain the correlation energy and a local unit-cell approximation - LUCA, is defined in the context of DFT. The alternating chain is a good starting point to construct functionals since it is intrinsically non-homogeneous, therefore instead of the usual local approximation (like LDA for electronic systems) we need to introduce an approximation based upon a unit cell concept, that renders a non-local functional in the bond exchange interaction. The agreement with exact numerical data (obtained only for small chains, although the functional can be applied for chains with arbitrary size) is significantly better than in our previous local formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. These results encourage us to extend the concept of LUCA for chains with alternating-spin magnitudes. We also have constructed a non-local functional based on an alternating-spin chain, instead of a local alternating-bond, using spin-wave-theory. Because of its non-local nature, this functional is expected to
Non-local ground-state functional for quantum spin chains with translational broken symmetry
International Nuclear Information System (INIS)
Libero, Valter L.; Penteado, Poliana H.; Veiga, Rodrigo S.
2011-01-01
Full text. Thanks to the development and use of new materials with special doping, it becomes relevant the study of Heisenberg spin-chains with broken translational symmetry, induced for instance by finite-size effects, bond defects or by impurity spin in the chain. The exact numerical results demands huge computational efforts, due to the size of the Hilbert space involved and the lack of symmetry to exploit. Density Functional Theory (DFT) has been considered a simple alternative to obtain ground-state properties for such systems. Usually, DFT starts with a uniform system to build the correlation energy and after implement a local approximation to construct local functionals. Based on our prove of the Hohenberg-Kohn theorem for Heisenberg models, and in order to describe more realistic models, we have recently developed a non-local exchange functional for the ground-state energy of quantum-spin chains. A alternating-bond chain is used to obtain the correlation energy and a local unit-cell approximation - LUCA, is defined in the context of DFT. The alternating chain is a good starting point to construct functionals since it is intrinsically non-homogeneous, therefore instead of the usual local approximation (like LDA for electronic systems) we need to introduce an approximation based upon a unit cell concept, that renders a non-local functional in the bond exchange interaction. The agreement with exact numerical data (obtained only for small chains, although the functional can be applied for chains with arbitrary size) is significantly better than in our previous local formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. These results encourage us to extend the concept of LUCA for chains with alternating-spin magnitudes. We also have constructed a non-local functional based on an alternating-spin chain, instead of a local alternating-bond, using spin-wave-theory. Because of its non-local nature, this functional is expected to
International Nuclear Information System (INIS)
Abe, Eiji; Saitoh, Koh; Takakura, H.; Tsai, A. P.; Steinhardt, P. J.; Jeong, H.-C.
2000-01-01
We present new evidence supporting the quasi-unit-cell description of the Al 72 Ni 20 Co 8 decagonal quasicrystal which shows that the solid is composed of repeating, overlapping decagonal cluster columns with broken tenfold symmetry. We propose an atomic model which gives a significantly improved fit to electron microscopy experiments compared to a previous proposal by us and to alternative proposals with tenfold symmetric clusters. (c) 2000 The American Physical Society
Charged tensor matter fields and Lorentz symmetry violation via spontaneous symmetry breaking
International Nuclear Information System (INIS)
Colatto, L.P.; Penna, A.L.A.; Santos, W.C.
2003-10-01
We consider a model with a charged vector field along with a Cremmer-Scherk-Kalb-Ramond (CSKR) matter field coupled to a U(1) gauge potential. We obtain a natural Lorentz symmetry violation due to the local U(1) spontaneous symmetry breaking mechanism triggered by the imaginary part of the vector matter. The choice of the unitary gauge leads to the decoupling of the gauge-Kr sector from the Higgs-Kr sector. The excitation spectrum is carefully analyzed and the physical modes are identified. We propose an identification of the neutral massive spin-1 Higgs-like field with the massive Z' boson of the so-called mirror matter models. (author)
Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas
2014-03-01
We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.
Dynamics of the universe and spontaneous symmetry breaking
Kazanas, D.
1980-01-01
It is shown that the presence of a phase transition early in the history of the universe, associated with spontaneous symmetry breaking (believed to take place at very high temperatures at which the various fundamental interactions unify), significantly modifies its dynamics and evolution. This is due to the energy 'pumping' during the phase transition from the vacuum to the substance, rather than the gravitating effects of the vacuum. The expansion law of the universe then differs substantially from the relation considered so far for the very early time expansion. In particular it is shown that under certain conditions this expansion law is exponential. It is further argued that under reasonable assumptions for the mass of the associated Higgs boson this expansion stage could last long enough to potentially account for the observed isotropy of the universe.
Turov, Evgenii A.; Shavrov, Vladimir G.
1983-07-01
This review of some aspects of the magnetoacoustics of ferro- and antiferromagnetic materials has been written in connection with the 25th anniversary of the rise of this field of physics of magnetic phenomena. Primary attention is paid to relatively new problems that have not been reflected in the existing monographs and reviews. The topic is a group of linear magnetoacoustic effects that manifest spontaneous symmetry breaking caused by magnetic ordering in a system of two coupled fields: the magnetization field M (r) and the deformation field uij(r). To some extent these effects are analogous to the Higgs effect in the theory of elementary particles (the Higgs mechanism of the origin of the mass of a particle) or the Meissner effect in the theory of superconductivity. A direct analog of the stated effects is the so-called magnetoelastic gap in the magnon spectrum, while an analog of an accompanying effect is the softening of the quasiacoustic modes interacting with it (up to the vanishing of the corresponding dynamic elastic moduli). However, a characteristic feature of such effects in crystalline (anisotropic) magnetic materials is that they are manifested mainly near points of magnetic (spin-reorientation) phase transitions. This review treats the coupled magnetoelastic waves in ferro- and antiferromagnetic materials of different types that show phase transitions with respect to temperature, magnetic field, or pressure.
Energy Technology Data Exchange (ETDEWEB)
Albright, Carl H.; /Northern Illinois U. /Fermilab; Rodejohann, Werner; /Heidelberg, Max Planck Inst.
2008-04-01
To address the issue of whether tri-bimaximal mixing (TBM) is a softly-broken hidden or an accidental symmetry, we adopt a model-independent analysis in which we perturb a neutrino mass matrix leading to TBM in the most general way but leave the three texture zeros of the diagonal charged lepton mass matrix unperturbed. We compare predictions for the perturbed neutrino TBM parameters with those obtained from typical SO(10) grand unified theories with a variety of flavor symmetries. Whereas SO(10) GUTs almost always predict a normal mass hierarchy for the light neutrinos, TBM has a priori no preference for neutrino masses. We find, in particular for the latter, that the value of |U{sub e3}| is very sensitive to the neutrino mass scale and ordering. Observation of |U{sub e3}|{sup 2} > 0.001 to 0.01 within the next few years would be incompatible with softly-broken TBM and a normal mass hierarchy and would suggest that the apparent TBM symmetry is an accidental symmetry instead. No such conclusions can be drawn for the inverted and quasi-degenerate hierarchy spectra.
International Nuclear Information System (INIS)
Ne'eman, Y.; Univ. of Texas, Austin, TX
1993-06-01
The collapse of the state-vector is described as a phase transition due to three features. First, there is the atrophying of indeterminacy for macroscopic objects -- including the measurement apparatus. Secondly, there is the environment decohering mechanism, as described by Zeh, Joos and others -- dominant in macroscopic objects. As a result, the classical background, an input in the Copenhagen prescriptions, is generated as an ''effective'' picture, similar to the ''effective'' introduction of Ohmic resistance or of thermodynamical variables, when going from the micro to the macroscopic; in this case, the collectivized substrate is provided by the multiplicity of photon scatterings, etc., on top of the effect of the large number of particles in macroscopic objects. Thirdly, there is the Everett ''branching'', i.e. the materialization of one of the now decoherent states, accompanied by the destruction of the other branches. By definition, quantum indeterminancy represents a symmetry; in a measurement, or in a branching, this symmetry is broken ''spontaneously'', involving a Ginzburg-Landau type potential with asymmetric minima, thus concretizing the quantum ''dice'' without the burden of ''many worlds''. The authors review and systematize the various phase transitions relating quantum to classical phenomena
Master formula approach to broken chiral U(3)xU(3) symmetry
Energy Technology Data Exchange (ETDEWEB)
Hiroyuki Kamano
2010-04-01
The master formula approach to chiral symmetry breaking proposed by Yamagishi and Zahed is extended to the U_R(3)xU_L(3) group, in which effects of the U_A(1) anomaly and the flavor symmetry breaking m_u \
DEFF Research Database (Denmark)
Andersen, Brian Møller; Graser, S.; Hirschfeld, P. J.
2012-01-01
Recent experimental and theoretical studies have highlighted the possible role of an electronic nematic liquid in underdoped cuprate superconductors. We calculate, within a model of d-wave superconductor with Hubbard correlations, the spin susceptibility in the case of a small explicitly broken...
Spontaneous breaking of conformal invariance and trace anomaly matching
International Nuclear Information System (INIS)
Schwimmer, A.; Theisen, S.
2011-01-01
We argue that when conformal symmetry is spontaneously broken the trace anomalies in the broken and unbroken phases are matched. This puts strong constraints on the various couplings of the dilaton. Using the uniqueness of the effective action for the Goldstone supermultiplet for broken N=1 superconformal symmetry the dilaton effective action is calculated.
Gauge principle, vector-meson dominance, and spontaneous symmetry breaking
International Nuclear Information System (INIS)
Nambu, Yoichiro
1989-01-01
The author concentrates on certain theoretical developments of the late 1950s which are concerned with the meaning and role of symmetries and symmetry breaking, and especially work done in Chicago, and notes his own involvement in this debate. He worked on symmetry-breaking in superconductivity, using a four-fermion interaction model. (UK)
Spontaneous breaking of spacetime symmetries and the inverse Higgs effect
Czech Academy of Sciences Publication Activity Database
Brauner, Tomáš; Watanabe, H.
2014-01-01
Roč. 89, č. 8 (2014), 085004 ISSN 1550-7998 Institutional support: RVO:61389005 Keywords : phenomenological Lagrangians * broken generators Subject RIV: BE - Theoretical Physics Impact factor: 4.643, year: 2014
Spontaneous chiral symmetry breaking and effective quark masses in quantum chromodynamics
International Nuclear Information System (INIS)
Miransky, V.A.
1982-01-01
The ultraviolet asymptotics of the dynamical effective quark mass is determined directly from the equation for the fermion mass function. The indications about the character of the dynamics of the spontaneous chiral symmetry breaking in QCD are obtained
Spontaneous Symmetry Breaking and Nambu-Goldstone Bosons in Quantum Many-Body Systems
Czech Academy of Sciences Publication Activity Database
Brauner, Tomáš
2010-01-01
Roč. 2, č. 2 (2010), s. 609-657 ISSN 2073-8994 Institutional support: RVO:61389005 Keywords : spontaneous symmetry breaking * Nambu-Goldstone bosons * effective field theory Subject RIV: BE - Theoretical Physics
Spontaneous symmetry breaking of (1+1)-dimensional φ4 theory in light-front field theory. II
International Nuclear Information System (INIS)
Pinsky, S.S.; van de Sande, B.
1994-01-01
We discuss spontaneous symmetry breaking of (1+1)-dimensional φ 4 theory in light-front field theory using a Tamm-Dancoff truncation. We show that, even though light-front field theory has a simple vacuum state which is an eigenstate of the full Hamiltonian, the field can develop a nonzero vacuum expectation value. This occurs because the zero mode of the field must satisfy an operator-valued constraint equation. In the context of (1+1)-dimensional φ 4 theory we present solutions to the constraint equation using a Tamm-Dancoff truncation to a finite number of particles and modes. We study the behavior of the zero mode as a function of coupling and Fock space truncation. The zero mode introduces new interactions into the Hamiltonian which breaks the Z 2 symmetry of the theory when the coupling is stronger than the critical coupling. We investigate the energy spectrum in the symmetric and broken phases, show that the theory does not break down in the vicinity of the critical coupling, and discuss the connection to perturbation theory. Finally, we study the spectrum of the field φ and show that, in the broken phase, the field is localized away from φ=0 as one would expect from equal-time calculations. We explicitly show that tunneling occurs
Broken SU(5) x SU(5) chiral symmetry and the classification of B mesons
International Nuclear Information System (INIS)
Hatzis, M.
1984-01-01
We consider broken SU(5) x SU(5) chiral summetry and we assume that the vacuum is SU(5)-symmetric. Using the observed mass spectrum of pseudoscalar mesons, and setting the bu mass in the range 5.2 +- 0.06 GeV, we predict the masses of bs, bc, and etasub(b) states as well as axial current couplings fsub(i)/fsub(π). SU(5) x SU(5) is found to be consistent with SU(4) x SU(4) breaking. The problem of eta - eta' - eta sub(c) - eta sub(b) mixing is also discussed
Broken symmetries and directed collective energy transport in spatially extended systems
DEFF Research Database (Denmark)
Flach, S.; Zolotaryuk, Yaroslav; Miroshnichenko, A. E.
2002-01-01
We study the appearance of directed energy current in homogeneous spatially extended systems coupled to a heat bath in the presence of an external ac field E(t) . The systems are described by nonlinear field equations. By making use of a symmetry analysis, we predict the right choice of E(t) and ...
Influence of broken flavor and C and P symmetry on the quark propagator
Energy Technology Data Exchange (ETDEWEB)
Maas, Axel; Mian, Walid Ahmed [University of Graz, Institute of Physics, NAWI Graz, Graz (Austria)
2017-02-15
Embedding QCD into the standard model breaks various symmetries of QCD explicitly, especially C and P. While these effects are usually perturbatively small, they can be amplified in extreme environments like merging neutron stars or by the interplay with new physics. To correctly treat these cases requires fully backcoupled calculations. To pave the way for later investigations of hadronic physics, we study the QCD quark propagator coupled to an explicit breaking. This substantially increases the tensor structure even for this simplest correlation function. To cope with the symmetry structure, and covering all possible quark masses, from the top quark mass to the chiral limit, we employ Dyson-Schwinger equations. While at weak breaking the qualitative effects have similar trends as in perturbation theory, even moderately strong breakings lead to qualitatively different effects, non-linearly amplified by the strong interactions. (orig.)
Broken symmetries at the origin of matter, at the origin of life and at the origin of culture
International Nuclear Information System (INIS)
Klinken, J. van
1998-01-01
In earliest cosmic history the universe started with matter and not with antimatter. Shortly after the beginning the electroweak interaction - prominent in nuclear β decay - acted as a left-hander. Much later, in pre biotic evolution, optically left-handed amino acids determined the unique signature of following terrestrial organic life. Again ae- ons later, homo sapiens appears as predominantly right handed and creates cultures with many broken symmetries. Along these pathways of history it was essential that choices were made - left or right, matter or antimatter - but on several instances it seemed less relevant which choice were made. We think that biochirality occurred by global chance; perhaps by local necessity, but without causal links to the PCT theorem. In other cases - e.g. the standardization to right-handed screws - the choice will have been made by causal necessity. (author)
Broken symmetry phase transition in solid p-H 2, o-D 2 and HD: crystal field effects
Freiman, Yu. A.; Hemley, R. J.; Jezowski, A.; Tretyak, S. M.
1999-04-01
We report the effect of the crystal field (CF) on the broken symmetry phase transition (BSP) in solid parahydrogen, orthodeuterium, and hydrogen deuteride. The CF was calculated taking into account a distortion from the ideal HCP structure. We find that, in addition to the molecular field generated by the coupling terms in the intermolecular potential, the Hamiltonian of the system contains a crystal-field term, originating from single-molecular terms in the intermolecular potential. Ignoring the CF is the main cause of the systematic underestimation of the transition pressure, characteristic of published theories of the BSP transition. The distortion of the lattice that gives rise to the negative CF in response to the applied pressure is in accord with the general Le Chatelier-Braun principle.
Broken symmetries at the origin of matter, at the origin of life and at the origin of culture
Energy Technology Data Exchange (ETDEWEB)
Klinken, J. van [Kernfysisch Versneller Instituut, University of Groningen, Groningen (Netherlands)
1998-01-01
In earliest cosmic history the universe started with matter and not with antimatter. Shortly after the beginning the electroweak interaction - prominent in nuclear {beta} decay - acted as a left-hander. Much later, in pre biotic evolution, optically left-handed amino acids determined the unique signature of following terrestrial organic life. Again ae- ons later, homo sapiens appears as predominantly right handed and creates cultures with many broken symmetries. Along these pathways of history it was essential that choices were made - left or right, matter or antimatter - but on several instances it seemed less relevant which choice were made. We think that biochirality occurred by global chance; perhaps by local necessity, but without causal links to the PCT theorem. In other cases - e.g. the standardization to right-handed screws - the choice will have been made by causal necessity. (author) 14 refs, 8 figs, 1 tab
International Nuclear Information System (INIS)
Shaing, K.C.; Hsu, C.T.
2014-01-01
A transport theory for energetic fusion born alpha particles in tokamaks with broken symmetry has been developed. The theory is a generalization of the theory for neoclassical toroidal plasma viscosity for thermal particles in tokamaks. It is shown that the radial energy transport rate can be comparable to the slowing down rate for energetic alpha particles when the ratio of the typical magnitude of the perturbed magnetic field strength to that of the equilibrium magnetic field strength is of the order of 10 −4 or larger. This imposes a constraint on the magnitude of the error fields in thermonuclear fusion reactors. The implications on stellarators as potential fusion reactors are also discussed. (paper)
Broken symmetry within crystallographic super-spaces: structural and dynamical aspects
International Nuclear Information System (INIS)
Mariette, Celine
2013-01-01
Aperiodic crystals have the property to possess long range order without translational symmetry. These crystals are described within the formalism of super-space crystallography. In this manuscript, we will focus on symmetry breaking which take place in such crystallographic super-space groups, considering the prototype family of n-alkane/urea. Studies performed by X-ray diffraction using synchrotron sources reveal multiple structural solutions implying or not changes of the dimension of the super-space. Once the characterization of the order parameter and of the symmetry breaking is done, we present the critical pre-transitional phenomena associated to phase transitions of group/subgroup types. Coherent neutron scattering and inelastic X-ray scattering allow a dynamical analysis of different kind of excitations in these materials (phonons, phasons). The inclusion compounds with short guest molecules (alkane C n H 2n+2 , n varying from 7 to 13) show at room temperature unidimensional 'liquid-like' phases. The dynamical disorder along the incommensurate direction of these materials generates new structural solutions at low temperature (inter-modulated monoclinic composite, commensurate lock-in). (author) [fr
Lu, Jin-Cheng; Chen, Xiao-Dong; Deng, Wei-Min; Chen, Min; Dong, Jian-Wen
2018-07-01
The valley is a flexible degree of freedom for light manipulation in photonic systems. In this work, we introduce the valley concept in magnetic photonic crystals with broken inversion symmetry. One-way propagation of bulk states is demonstrated by exploiting the pseudo-gap where bulk states only exist at one single valley. In addition, the transition between Hall and valley-Hall nontrivial topological phases is also studied in terms of the competition between the broken inversion and time-reversal symmetries. At the photonic boundary between two topologically distinct photonic crystals, we illustrate the one-way propagation of edge states and demonstrate their robustness against defects.
On the consistent solution of the gap-equation for spontaneously broken λΦ4-theory
International Nuclear Information System (INIS)
Nachbagauer, H.
1994-10-01
A self-consistent solution of the finite temperature gap-equation for λΦ 4 theory beyond the Hartree-Fock approximation is presented using a composite operator effective action. It was found that in a spontaneously broken theory not only the so-called daisy and super daisy graphs contribute to the re summed mass, but also re summed non-local diagrams are of the same order, thus altering the effective mass for small values of the latter. (author). 10 refs., 3 figs., 1 tab
Directory of Open Access Journals (Sweden)
Yaser Hajati
2015-04-01
Full Text Available We investigate the charge transport through a graphene-based ferromagnetic-insulator-superconductor junction with a broken time reversal symmetry (BTRS of dx2−y2 + is and dx2−y2 + idxy superconductor using the extended Blonder-Tinkham-Klapwijk formalism. Our analysis have shown several charateristics in this junction, providing a useful probe to understand the role of the order parameter symmetry in the superconductivity. We find that the presence of the BTRS (X state in the superconductor region has a strong effect on the tunneling conductance curves which leads to a decrease in the height of the zero-bias conductance peak (ZBCP. In particular, we show that the magnitude of the superconducting proximity effect depends to a great extent on X and by increasing X, the zero-bias charge conductance oscillations with respect to the rotation angle β are suppressed. In addition, we find that at the maximum rotation angle β = π/4, introducing BTRS in the FIS junction causes oscillatory behavior of the zero-bias charge conductance with the barrier strength (χG by a period of π and by approaching the X to 1, the amplitude of charge conductance oscillations increases. This behavior is drastically different from none BTRS similar graphene junctions. At last, we suggest an experimental setup for verifying our predicted effects.
Wang, Zhijian; Xu, Bin; Zhejiang Collaboration
2011-03-01
In social science, laboratory experiment with human subjects' interaction is a standard test-bed for studying social processes in micro level. Usually, as in physics, the processes near equilibrium are suggested as stochastic processes with time-reversal symmetry (TRS). To the best of our knowledge, near equilibrium, the breaking time symmetry, as well as the existence of robust time anti-symmetry processes, has not been reported clearly in experimental economics till now. By employing Markov transition method to analysis the data from human subject 2x2 Games with wide parameters and mixed Nash equilibrium, we study the time symmetry of the social interaction process near Nash equilibrium. We find that, the time symmetry is broken, and there exists a robust time anti-symmetry processes. We also report the weight of the time anti-symmetry processes in the total processes of each the games. Evidences in laboratory marketing experiments, at the same time, are provided as one-dimension cases. In these cases, time anti-symmetry cycles can also be captured. The proposition of time anti-symmetry processes is small, but the cycles are distinguishable.
Marginal deformations of 3d supersymmetric U(N) model and broken higher spin symmetry
Energy Technology Data Exchange (ETDEWEB)
Hikida, Yasuaki [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); Wada, Taiki [Department of Physical Sciences, College of Science and Engineering, Ritsumeikan University,Shiga 525-8577 (Japan)
2017-03-08
We examine the marginal deformations of double-trace type in 3d supersymmetric U(N) model with N complex free bosons and fermions. We compute the anomalous dimensions of higher spin currents to the 1/N order but to all orders in the deformation parameters by mainly applying the conformal perturbation theory. The 3d field theory is supposed to be dual to 4d supersymmetric Vasiliev theory, and the marginal deformations are argued to correspond to modifying boundary conditions for bulk scalars and fermions. Thus the modification should break higher spin gauge symmetry and generate the masses of higher spin fields. We provide supports for the dual interpretation by relating bulk computation in terms of Witten diagrams to boundary one in conformal perturbation theory.
Marginal deformations of 3d supersymmetric U(N) model and broken higher spin symmetry
International Nuclear Information System (INIS)
Hikida, Yasuaki; Wada, Taiki
2017-01-01
We examine the marginal deformations of double-trace type in 3d supersymmetric U(N) model with N complex free bosons and fermions. We compute the anomalous dimensions of higher spin currents to the 1/N order but to all orders in the deformation parameters by mainly applying the conformal perturbation theory. The 3d field theory is supposed to be dual to 4d supersymmetric Vasiliev theory, and the marginal deformations are argued to correspond to modifying boundary conditions for bulk scalars and fermions. Thus the modification should break higher spin gauge symmetry and generate the masses of higher spin fields. We provide supports for the dual interpretation by relating bulk computation in terms of Witten diagrams to boundary one in conformal perturbation theory.
Coherent non-linear optical response in SU(2) symmetry broken single and bilayer graphene
International Nuclear Information System (INIS)
Kumar, Vipin; Enamullah,; Kumar, Upendra; Setlur, Girish S.
2014-01-01
Anomalous Rabi oscillations in single and bilayer graphene, in the absence of time-reversal symmetry, are described. The main findings of this work are that intra-layer sublattice space asymmetry has a remarkable effect on anomalous Rabi frequency in single and bilayer graphene, namely it is offset by the asymmetry parameter. However, the conventional Rabi frequency is nearly independent of the asymmetry parameter. Inter-layer asymmetry in bilayer graphene has an even more significant effect on anomalous Rabi frequency. When inter-layer asymmetry is taken into account, the anomalous Rabi frequency versus the external field goes through a minimum. The induced current in the frequency domain in these systems shows a finite threshold behavior even for vanishingly small applied fields. These offset oscillations are attributable to the asymmetry parameter in these systems, and are observable only for weak applied fields. For stronger applied fields these phenomena tend towards those without asymmetry
Spontaneous symmetry breaking as a basis of particle mass
International Nuclear Information System (INIS)
Quigg, Chris
2007-01-01
Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions-so different in their manifestations-to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the 'standard model' of particle physics was formulated in the 1960s by Higgs, by Brout and Englert and by Guralnik, Hagen, and Kibble: the agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leaving a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W ± and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story-though an incomplete story-and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some 'big questions' that will guide our explorations
Spontaneous Symmetry Breaking as a Basis of Particle Mass
International Nuclear Information System (INIS)
Quigg, Chris
2007-01-01
Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions--so different in their manifestations--to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the ''standard model'' of particle physics was formulated in the 1960s by Higgs, by Brout and Englert, and by Guralnik, Hagen, and Kibble: The agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leaving a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W ± and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story--though an incomplete story--and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some ''Big Questions'' that will guide our explorations
Spontaneous Symmetry Breaking as a Basis of Particle Mass
Energy Technology Data Exchange (ETDEWEB)
Quigg, Chris; /Fermilab /CERN
2007-04-01
Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions--so different in their manifestations--to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the ''standard model'' of particle physics was formulated in the 1960s by Higgs, by Brout & Englert, and by Guralnik, Hagen, & Kibble: The agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leaving a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W{sup {+-}} and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story--though an incomplete story--and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some ''Big Questions'' that will guide our explorations.
Canonical forms of tensor representations and spontaneous symmetry breaking
International Nuclear Information System (INIS)
Cummins, C.J.
1986-01-01
An algorithm for constructing canonical forms for any tensor representation of the classical compact Lie groups is given. This method is used to find a complete list of the symmetry breaking patterns produced by Higgs fields in the third-rank antisymmetric representations of U(n), SU(n) and SO(n) for n<=7. A simple canonical form is also given for kth-rank symmetric tensor representations. (author)
International Nuclear Information System (INIS)
Shirkov, Dmitrii V
2009-01-01
This is a retrospective historical review of the ideas that led to the concept of the spontaneous symmetry breaking (SSB), the issue that has been implemented in quantum field theory in the form of the Higgs mechanism. The key stages covered include: the Bogoliubov microscopic theory of superfluidity (1946); the Bardeen-Cooper-Schrieffer-Bogoliubov microscopic theory of superconductivity (1957); superconductivity as superfluidity of Cooper pairs (Bogoliubov, 1958); the extension of the SSB concept to simple quantum field models (early 1960s); triumph of the Higgs model in electroweak theory (early 1980s). The role and status of the Higgs mechanism in the current Standard Model are discussed. (oral issue of the journal 'uspekhi fizicheskikh nauk')
Spontaneous symmetry breaking in ΡΤ symmetric systems with nonlinear damping
International Nuclear Information System (INIS)
Karthiga, S.; Chandrasekar, V.K.; Senthilvelan, M.; Lakshmanan, M.
2016-01-01
In this talk, we discuss the remarkable role of position dependent damping in determining the parametric regions of symmetry breaking in nonlinear ΡΤ -symmetric systems. We illustrate the nature of ΡΤ-symmetry preservation and breaking with reference to a remarkable integrable scalar nonlinear system. In the two dimensional cases of such position dependent damped systems, we unveil the existence of a class of novel bi-ΡΤ -symmetric systems which have two fold ΡΤ symmetries. We discuss the dynamics of these systems and show how symmetry breaking occurs, that is whether the symmetry breaking of the two ΡΤ symmetries occurs in pair or occurs one by one. The addition of linear damping in these nonlinearly damped systems induces competition between the two types of damping. This competition results in a ΡΤ phase transition in which the ΡΤ symmetry is broken for lower loss/gain strength and is restored by increasing the loss/gain strength. We also show that by properly designing the form of the position dependent damping, we can tailor the ΡΤ-symmetric regions of the system. (author)
Chains of benzenes with lithium-atom adsorption: Vibrations and spontaneous symmetry breaking
Ortiz, Yenni P.; Stegmann, Thomas; Klein, Douglas J.; Seligman, Thomas H.
2017-09-01
We study effects of different configurations of adsorbates on the vibrational modes as well as symmetries of polyacenes and poly-p-phenylenes focusing on lithium atom adsorption. We found that the spectra of the vibrational modes distinguish the different configurations. For more regular adsorption schemes the lowest states are bending and torsion modes of the skeleton, which are essentially followed by the adsorbate. On poly-p-phenylenes we found that lithium adsorption reduces and often eliminates the torsion between rings thus increasing symmetry. There is spontaneous symmetry breaking in poly-p-phenylenes due to double adsorption of lithium atoms on alternating rings.
International Nuclear Information System (INIS)
Bertolami, Orfeu; Paramos, Jorge
2006-01-01
The vacuum solutions arising from a spontaneous breaking of Lorentz symmetry due to the acquisition of a vacuum expectation value by a vector field are derived. These include the purely radial Lorentz symmetry breaking (LSB), radial/temporal LSB and axial/temporal LSB scenarios. It is found that the purely radial LSB case gives rise to new black hole solutions. Whenever possible. Parametrized Post-Newtonian (PPN) parameters are computed and compared to observational bounds, in order to constrain the Lorentz symmetry breaking scale
Chubb, Scott
2003-03-01
Three, Key, Unanswered Questions posed by LENR's are: 1. How do we explain the lack of high energy particles (HEP's)? 2. Can we understand and prioritize the way coupling can occur between nuclear- and atomic- lengthscales, and 3. What are the roles of Surface-Like (SL), as opposed to Bulk-Like (BL), processes in triggering nuclear phenomena. One important source of confusion associated with each of these questions is the common perception that the quantum mechanical phases of different particles are not correlated with each other. When the momenta p of interacting particles is large, and reactions occur rapidly (between HEP's, for example), this is a valid assumption. But when the relative difference in p becomes vanishingly small, between one charge, and many others, as a result of implicit electromagnetic coupling, each charge can share a common phase, relative to the others, modulo 2nπ, where n is an integer, even when outside forces are introduced. The associated forms of broken gauge symmetry, distinguish BL from SL phenomena, at room temperature, also explain super- and normal- conductivity in solids, and can be used to address the Three, Key, Unanswered Questions posed by LENR's.
Spontaneous symmetry breaking and self-consistent equations for the free-energy
International Nuclear Information System (INIS)
Lovesey, S.W.
1980-03-01
A variational procedure for the free-energy is used to derive self-consistent equations that allow for spontaneous symmetry breaking. For an N-component phi 4 -model the equations are identical to those obtained by summing all loops to order 1/N. (author)
Spontaneous symmetry breaking in local gauge quantum field theory; the Higgs mechanism
International Nuclear Information System (INIS)
Strocchi, F.
1977-01-01
Spontaneous symmetry breakings in indefinite metric quantum field theories are analyzed and a generalization of the Goldstone theorem is proved. The case of local gauge quantum field theories is discussed in detail and a characterization is given of the occurrence of the Higgs mechanism versus the Goldstone mechanism. The Higgs phenomenon is explained on general grounds without the introduction of the so-called Higgs fields. The basic property is the relation between the local internal symmetry group and the local group of gauge transformations of the second kind. Spontaneous symmetry breaking of c-number gauge transformations of the second kind is shown to always occur if there are charged local fields. The implications about the absence of mass gap in the Wightman functions and the occurrence of massless particles associated with the unbroken generators in the Higgs phenomenon are discussed. (orig.) [de
Effective potential and spontaneous symmetry breaking in the noncommutative φ6 model
International Nuclear Information System (INIS)
Barbosa, G.D.
2004-01-01
We study the conditions for spontaneous symmetry breaking of the (2+1)-dimensional noncommutative φ 6 model in the small-θ limit. In this regime, considering the model as a cutoff theory, it is reasonable to assume translational invariance as a property of the vacuum state and study the conditions for spontaneous symmetry breaking by an effective potential analysis. An investigation of up to the two-loop level reveals that noncommutative effects can modify drastically the shape of the effective potential. Under reasonable conditions, the nonplanar sector of the theory can become dominant and induce symmetry breaking for values of the mass and coupling constants not reached by the commutative counterpart
International Nuclear Information System (INIS)
Fischer, I.; Hollik, W.; Roth, M.; Stoeckinger, D.
2004-01-01
Supersymmetric Slavnov-Taylor and Ward identities are investigated in the presence of soft and spontaneous symmetry breaking. We consider an Abelian model where soft supersymmetry breaking yields a mass splitting between electron and selectron and triggers spontaneous symmetry breaking, and we derive the corresponding identities that relate the electron and selectron masses to the Yukawa coupling. We demonstrate that the identities are valid in dimensional reduction and invalid in dimensional regularization and compute the necessary symmetry-restoring counterterms
International Nuclear Information System (INIS)
Fischer, I.; Hollik, W.; Roth, M.; Stoeckinger, D.
2003-12-01
Supersymmetric Slavnov-Taylor and Ward identities are investigated in presence of soft and spontaneous symmetry breaking. We consider an abelian model where soft supersymmetry breaking yields a mass splitting between electron and selectron and triggers spontaneous symmetry breaking, and we derive corresponding identities that relate the electron and selectron masses with the Yukawa coupling. We demonstrate that the identities are valid in dimensional reduction and invalid in dimensional regularization and compute the necessary symmetry-restoring counterterms. (orig.)
Gauge symmetry breaking in gauge theories -- in search of clarification
Friederich, Simon
2013-01-01
The paper investigates the spontaneous breaking of gauge symmetries in gauge theories from a philosophical angle, taking into account the fact that the notion of a spontaneously broken local gauge symmetry, though widely employed in textbook expositions of the Higgs mechanism, is not supported by
Neutrino masses and family symmetry
International Nuclear Information System (INIS)
Grinstein, B.; Preskill, J.; Wise, M.B.
1985-01-01
Neutrino masses in the 100 eV-1 MeV range are permitted if there is a spontaneously broken global family symmetry that allows the heavy neutrinos to decay by Goldstone boson emission with a cosmologically acceptable lifetime. The family symmetry may be either abelian or nonabelian; we present models illustrating both possibilities. If the family symmetry is nonabelian, then the decay tau -> μ + Goldstone boson or tau -> e + Goldstone may have an observable rate. (orig.)
Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals.
Pyka, K; Keller, J; Partner, H L; Nigmatullin, R; Burgermeister, T; Meier, D M; Kuhlmann, K; Retzker, A; Plenio, M B; Zurek, W H; del Campo, A; Mehlstäubler, T E
2013-01-01
Symmetry breaking phase transitions play an important role in nature. When a system traverses such a transition at a finite rate, its causally disconnected regions choose the new broken symmetry state independently. Where such local choices are incompatible, topological defects can form. The Kibble-Zurek mechanism predicts the defect densities to follow a power law that scales with the rate of the transition. Owing to its ubiquitous nature, this theory finds application in a wide field of systems ranging from cosmology to condensed matter. Here we present the successful creation of defects in ion Coulomb crystals by a controlled quench of the confining potential, and observe an enhanced power law scaling in accordance with numerical simulations and recent predictions. This simple system with well-defined critical exponents opens up ways to investigate the physics of non-equilibrium dynamics from the classical to the quantum regime.
Spontaneous symmetry breaking and neutral stability in the noncanonical Hamiltonian formalism
International Nuclear Information System (INIS)
Morrison, P.J.; Eliezer, S.
1985-10-01
The noncanonical Hamiltonian formalism is based upon a generalization of the Poisson bracket, a particular form of which is possessed by continuous media fields. Associated with this generalization are special constants of motion called Casimirs. These are constants that can be viewed as being built into the phase space, for they are invariant for all Hamiltonians. Casimirs are important because when added to the Hamiltonian they yield an effective Hamiltonian that produces equilibrium states upon variation. The stability of these states can be ascertained by a second variation. Goldstone's theorem, in its usual context, determines zero eigenvalues of the mass matrix for a given vacuum state, the equilibrium with minimum energy. Here, since for fluids and plasmas the vacuum state is uninteresting, we examine symmetry breaking for general equilibria. Broken symmetries imply directions of neutral stability. Two examples are presented: the nonlinear Alfven wave of plasma physics and the Korteweg-de Vries soliton. 46 refs
International Nuclear Information System (INIS)
Schabinger, Robert; Wells, James D.
2005-01-01
Little experimental data bears on the question of whether there is a spontaneously broken hidden sector that has no Standard Model quantum numbers. Here we discuss the prospects of finding evidence for such a hidden sector through renormalizable interactions of the Standard Model Higgs boson with a Higgs boson of the hidden sector. We find that the lightest Higgs boson in this scenario has smaller rates in standard detection channels, and it can have a sizeable invisible final state branching fraction. Details of the hidden sector determine whether the overall width of the lightest state is smaller or larger than the Standard Model width. We compute observable rates, total widths and invisible decay branching fractions within the general framework. We also introduce the 'A-Higgs Model', which corresponds to the limit of a hidden sector Higgs boson weakly mixing with the Standard Model Higgs boson. This model has only one free parameter in addition to the mass of the light Higgs state and it illustrates most of the generic phenomenology issues, thereby enabling it to be a good benchmark theory for collider searches. We end by presenting an analogous supersymmetry model with similar phenomenology, which involves hidden sector Higgs bosons interacting with MSSM Higgs bosons through D-terms
Noncritical generation of nonclassical frequency combs via spontaneous rotational symmetry breaking
Navarrete-Benlloch, Carlos; Patera, Giuseppe; de Valcárcel, Germán J.
2017-10-01
Synchronously pumped optical parametric oscillators (SPOPOs) are optical cavities driven by mode-locked lasers, and containing a nonlinear crystal capable of down-converting a frequency comb to lower frequencies. SPOPOs have received a lot of attention lately because their intrinsic multimode nature makes them compact sources of quantum correlated light with promising applications in modern quantum information technologies. In this work we show that SPOPOs are also capable of accessing the challenging and interesting regime where spontaneous symmetry breaking confers strong nonclassical properties to the emitted light, which has eluded experimental observation so far. Apart from opening the possibility of studying experimentally this elusive regime of dissipative phase transitions, our predictions will have a practical impact, since we show that spontaneous symmetry breaking provides a specific spatiotemporal mode with large quadrature squeezing for any value of the system parameters, turning SPOPOs into robust sources of highly nonclassical light above threshold.
Spontaneous breaking of Lorentz symmetry by ghost condensation in perturbative quantum gravity
Faizal, Mir
2011-10-01
In this paper, we will study the spontaneous breakdown of the Lorentz symmetry by ghost condensation in perturbative quantum gravity. Our analysis will be done in the Curci-Ferrari gauge. We will also analyse the modification of the BRST and anti-BRST transformations by the formation of this ghost condensate. It will be shown that even though the modified BRST and anti-BRST transformations are not nilpotent, their nilpotency is restored on-shell.
Spontaneous symmetry breaking, quantization of the electric charge and the anomalies
International Nuclear Information System (INIS)
Abbas, Afsar
1990-01-01
Cancellation of anomalies and on ensuring that fermions are massive, one obtains quantization of the electric charge, which is shown to be independent of the hypercharge quantum number of the Higgs doublet in the Standard Model. Ignorance of this fact can lead to pitfalls. It is shown that contrary to the popular belief, charge quantization is not a consequence of the anomalies but that in addition spontaneous symmetry breaking is essential. (author)
Effective lagrangian description on discrete gauge symmetries
International Nuclear Information System (INIS)
Banks, T.
1989-01-01
We exhibit a simple low-energy lagrangian which describes a system with a discrete remnant of a spontaneously broken continuous gauge symmetry. The lagrangian gives a simple description of the effects ascribed to such systems by Krauss and Wilczek: black holes carry discrete hair and interact with cosmic strings, and wormholes cannot lead to violation of discrete gauge symmetries. (orig.)
Pauli-Guersey symmetry in gauge theories
International Nuclear Information System (INIS)
Stern, J.
1983-05-01
Gauge theories with massless or massive fermions in a selfcontragredient representation exhibit global symmetries of Pauli-Guersey type. Some of them are broken spontaneously leading to a difermion Goldstone bosons. An example of a boson version of the Pauli-Guersey symmetry is provided by the Weinberg-Salam model in the limit THETAsub(w)→O
Fermion mass hierarchy as a consequence of the spontaneous breakdown of the four-flavor symmetry
International Nuclear Information System (INIS)
Cveti, M.
1985-01-01
We study the fermion mass matrix in the case of four fermionic flavors u, d, c, and s. The original Lagrangian of the effective gauge theory respects the full four-flavor symmetry and fermions are massless. We analyze a vacuum expectation pattern of the elementary Higgs-field multiplet Phi/sub a/b [(a,b) = u,d,c,s]. Nonzero vacuum expectation values of Phi spontaneously break the original flavor symmetry with fermionic masses being directly proportional to these vacuum expectation values. In the Higgs potential, hard terms in Phi respect the global symmetry SU(4)/sub L/ x SU(4)/sub R/ of four flavors while soft terms in Psi break this symmetry down to the effective anomaly-free gauge group SU(2)/sub L//sup e/+μ x SU(2)/sub R//sup e/+μ. These soft terms are due to radiative as well as nonperturbative effects. Such a symmetry structure of the Higgs potential can be motivated by the underlying preonic dynamics. The desired solution, i.e., the proper interfamily and intrafamily hierarchy as well as the desired Cabibbo mixing angle, can emerge as a consequence of a subtle interplay between the soft terms and certain hard terms of the Higgs potential
International Nuclear Information System (INIS)
Gaiotto, Davide; Kapustin, Anton; Seiberg, Nathan; Willett, Brian
2015-01-01
A q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q=0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a subgroup). They can also have ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.
International Nuclear Information System (INIS)
Strinati, G.C.; Pieri, P.
2004-01-01
The linear response to a space- and time-dependent external disturbance of a system of dilute condensed composite bosons at zero temperature, as obtained from the linearized version of the time-dependent Gross-Pitaevskii equation, is shown to result also from the strong-coupling limit of the time-dependent BCS (or broken-symmetry random-phase) approximation for the constituent fermions subject to the same external disturbance. In this way, it is possible to connect excited-state properties of the bosonic and fermionic systems by placing the Gross-Pitaevskii equation in perspective with the corresponding fermionic approximations
International Nuclear Information System (INIS)
Lazzaro, Enzo
2009-01-01
Established results of neoclassical kinetic theory are used in a fluid model to show that in low collisionality regimes (ν and 1/ν) the propagation velocity of Neoclassical Tearing Modes (NTM) magnetic islands of sufficient width is determined self-consistently by the Neoclassical Toroidal Viscosity (NTV) appearing because of broken symmetry. The NTV effect on bulk plasma rotation, may also explain recent observations on momentum transport. At the same time this affects the role of the neoclassical ion polarization current on neoclassical tearing modes (NTM) stability.
Energy Technology Data Exchange (ETDEWEB)
Grinstein, Benjamín [Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Murphy, Christopher W. [Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126 (Italy); Uttayarat, Patipan [Department of Physics, Srinakharinwirot University, Wattana, Bangkok 10110 (Thailand)
2016-06-13
We compute all of the one-loop corrections that are enhanced, O(λ{sub i}λ{sub j}/16π{sup 2}), in the limit s≫|λ{sub i}|v{sup 2}≫M{sub W}{sup 2}, s≫m{sub 12}{sup 2} to all the 2→2 longitudinal vector boson and Higgs boson scattering amplitudes in the CP-conserving two-Higgs doublet model with a softly broken ℤ{sub 2} symmetry. In the two simplified scenarios we study, the typical bound we find is |λ{sub i}(s)|⪅4.
Spontaneous symmetry breaking due to the trade-off between attractive and repulsive couplings.
Sathiyadevi, K; Karthiga, S; Chandrasekar, V K; Senthilkumar, D V; Lakshmanan, M
2017-04-01
Spontaneous symmetry breaking is an important phenomenon observed in various fields including physics and biology. In this connection, we here show that the trade-off between attractive and repulsive couplings can induce spontaneous symmetry breaking in a homogeneous system of coupled oscillators. With a simple model of a system of two coupled Stuart-Landau oscillators, we demonstrate how the tendency of attractive coupling in inducing in-phase synchronized (IPS) oscillations and the tendency of repulsive coupling in inducing out-of-phase synchronized oscillations compete with each other and give rise to symmetry breaking oscillatory states and interesting multistabilities. Further, we provide explicit expressions for synchronized and antisynchronized oscillatory states as well as the so called oscillation death (OD) state and study their stability. If the Hopf bifurcation parameter (λ) is greater than the natural frequency (ω) of the system, the attractive coupling favors the emergence of an antisymmetric OD state via a Hopf bifurcation whereas the repulsive coupling favors the emergence of a similar state through a saddle-node bifurcation. We show that an increase in the repulsive coupling not only destabilizes the IPS state but also facilitates the reentrance of the IPS state.
A model of spontaneous CP violation and neutrino phenomenology with approximate LμLτ symmetry
International Nuclear Information System (INIS)
Adhikary, Biswajit
2013-01-01
We introduce a model where CP and Z 2 symmetry violate spontaneously. CP and Z 2 violate spontaneously through a singlet complex scalar S which obtains vacuum expectation value with phase S = Ve iα /2 and this is the only source of CP violation in this model. Low energy CP violation in the leptonic sector is connected to the large scale phase by three generations of left and right handed singlet fermions in the inverse see-saw like structure of model. We have considered approximate LμL τ symmetry to study neutrino phenomenology. Considering two mass square differences and three mixing angles including non zero θ 13 to their experimental 3σ limit, we have restricted the Lagrangian parameters for reasonably small value of L μ L τ symmetry breaking parameters. We have predicted the three masses, Dirac phase and two Majorana phases. We also evaluate CP violating parameter J CP , sum-mass and effective mass parameter involved in neutrino less double beta decay. (author)
Gu, Pei-Hong
2017-10-01
We introduce a mirror copy of the ordinary fermions and Higgs scalars for embedding the SU(2) L × U(1) Y electroweak gauge symmetry into an SU(2) L × SU(2) R × U(1) B-L left-right gauge symmetry. We then show the spontaneous left-right symmetry breaking can automatically break the parity symmetry motivated by solving the strong CP problem. Through the SU(2) R gauge interactions, a mirror Majorana neutrino can decay into a mirror charged lepton and two mirror quarks. Consequently we can obtain a lepton asymmetry stored in the mirror charged leptons. The Yukawa couplings of the mirror and ordinary charged fermions to a dark matter scalar then can transfer the mirror lepton asymmetry to an ordinary lepton asymmetry which provides a solution to the cosmic baryon asymmetry in association with the SU(2) L sphaleron processes. In this scenario, the baryon asymmetry can be well described by the neutrino mass matrix up to an overall factor.
Truncation effects in the functional renormalization group study of spontaneous symmetry breaking
International Nuclear Information System (INIS)
Defenu, N.; Mati, P.; Márián, I.G.; Nándori, I.; Trombettoni, A.
2015-01-01
We study the occurrence of spontaneous symmetry breaking (SSB) for O(N) models using functional renormalization group techniques. We show that even the local potential approximation (LPA) when treated exactly is sufficient to give qualitatively correct results for systems with continuous symmetry, in agreement with the Mermin-Wagner theorem and its extension to systems with fractional dimensions. For general N (including the Ising model N=1) we study the solutions of the LPA equations for various truncations around the zero field using a finite number of terms (and different regulators), showing that SSB always occurs even where it should not. The SSB is signalled by Wilson-Fisher fixed points which for any truncation are shown to stay on the line defined by vanishing mass beta functions.
More on cosmological constraints on spontaneous R-symmetry breaking models
Energy Technology Data Exchange (ETDEWEB)
Hamada, Yuta; Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. de Theorie des Phenomenes Physiques; Ookouchi, Yutaka [Kyushu Univ., Fukuoka (Japan). Faculty of Arts and Science
2013-10-15
We study the spontaneous R-symmetry breaking model and investigate the cosmological constraints on this model due to the pseudo Nambu-Goldstone boson, R-axion. We consider the R-axion which has relatively heavy mass in order to complement our previous work. In this regime, model parameters, R-axions mass and R-symmetry breaking scale, are constrained by Big Bang Nucleosynthesis and overproduction of the gravitino produced from R-axion decay and thermal plasma. We find that the allowed parameter space is very small for high reheating temperature. For low reheating temperature, the U(1){sub R} breaking scale f{sub a} is constrained as f{sub a}<10{sup 12-14} GeV regardless of the value of R-axion mass.
More on cosmological constraints on spontaneous R-symmetry breaking models
International Nuclear Information System (INIS)
Hamada, Yuta; Kobayashi, Tatsuo; Kamada, Kohei; Ecole Polytechnique Federale de Lausanne; Ookouchi, Yutaka
2013-10-01
We study the spontaneous R-symmetry breaking model and investigate the cosmological constraints on this model due to the pseudo Nambu-Goldstone boson, R-axion. We consider the R-axion which has relatively heavy mass in order to complement our previous work. In this regime, model parameters, R-axions mass and R-symmetry breaking scale, are constrained by Big Bang Nucleosynthesis and overproduction of the gravitino produced from R-axion decay and thermal plasma. We find that the allowed parameter space is very small for high reheating temperature. For low reheating temperature, the U(1) R breaking scale f a is constrained as f a 12-14 GeV regardless of the value of R-axion mass.
Penrose limit, spontaneous symmetry breaking, and holography in a pp-wave background
International Nuclear Information System (INIS)
Das, Sumit R.; Gomez, Cesar; Rey, Soo-Jong
2002-01-01
We argue that the gauge theory dual to the type IIB string theory in a ten-dimensional pp-wave background resides on a Euclidean subspace spanning four of the eight transverse coordinates. We then show that the evolution of the string along one of the light cone directions in the bulk is identifiable as the RG flow of the gauge theory, a relation facilitating the 'holography' of the pp-wave background. The 'holography' reorganizes the dual gauge theory into theories defined over Hilbert subspaces of fixed R charge. The reorganization breaks the SO(4,2)xSO(6) symmetry to a maximal subgroup SO(4)xSO(4) spontaneously. We argue that the low-energy string modes may be regarded as Goldstone modes resulting from such a symmetry breaking pattern
Relativistic Hydrodynamics of Color-Flavor Locking Phase with Spontaneous Symmetry Breaking
Institute of Scientific and Technical Information of China (English)
ZHANG Sun; WANG Fan
2004-01-01
We study the hydrodynamics of color-flavor locking phase of three flavors of light quarks in high density QCD with spontaneous symmetry breaking. The basic hydrodynamic equations are presented based on the Poisson bracket method and the Goldstone phonon and the thermo phonon are compared. The dissipative equations are constructed in the frame of the first-order theory and all the transport coefficients are also defined, which could be looked on as the general case including the Landau's theory and the Eckart's theory
Bogoliubov condensation of gluons and spontaneous gauge symmetry breaking in QCD
International Nuclear Information System (INIS)
Pervushin, V.N.; Roepke, G.; Volkov, M.K.; Blaschke, D.; Pavel, H.P.; Litvin, A.
1995-08-01
The ''squeezed'' representation of commutation relations for gluon fields in QCD is formulated as the mathematical tool for the description of the gluon condensate. We first consider λφ 4 theory and show that the ''squeezed'' Bogoliubov condensate can lead to the spontaneous appearance of a mass. Using the ''squeezed'' representation, we show that in the non-Abelian theory spontaneous gauge symmetry breaking (SGSB) and the appearance of a constituent mass of gluons can be described. We construct a projector onto the oscillator - like variables, for which the ''squeezed'' representation is valid, by using the formal solution of the Gauss equation instead of fixing a gauge. We discuss the effects of the SGSB and present as an application of the approach the calculation of the gluon mass from the difference of the η' and the η - meson masses. (author). 27 refs
Spontaneous Symmetry-Breaking in a Network Model for Quadruped Locomotion
Stewart, Ian
2017-12-01
Spontaneous symmetry-breaking proves a mechanism for pattern generation in legged locomotion of animals. The basic timing patterns of animal gaits are produced by a network of spinal neurons known as a Central Pattern Generator (CPG). Animal gaits are primarily characterized by phase differences between leg movements in a periodic gait cycle. Many different gaits occur, often having spatial or spatiotemporal symmetries. A natural way to explain gait patterns is to assume that the CPG is symmetric, and to classify the possible symmetry-breaking periodic motions. Pinto and Golubitsky have discussed a four-node model CPG network for biped gaits with ℤ2 × ℤ2 symmetry, classifying the possible periodic states that can arise. A more specific rate model with this structure has been analyzed in detail by Stewart. Here we extend these methods to quadruped gaits, using an eight-node network with ℤ4 × ℤ2 symmetry proposed by Golubitsky and coworkers. We formulate a rate model and calculate how the first steady or Hopf bifurcation depends on its parameters, which represent four connection strengths. The calculations involve a distinction between “real” gaits with one or two phase shifts (pronk, bound, pace, trot) and “complex” gaits with four phase shifts (forward and reverse walk, forward and reverse buck). The former correspond to real eigenvalues of the connection matrix, the latter to complex conjugate pairs. The partition of parameter space according to the first bifurcation, ignoring complex gaits, is described explicitly. The complex gaits introduce further complications, not yet fully understood. All eight gaits can occur as the first bifurcation from a fully synchronous equilibrium, for suitable parameters, and numerical simulations indicate that they can be asymptotically stable.
Energy Technology Data Exchange (ETDEWEB)
Ito, Yuta [KEK Theory Center, High Energy Accelerator Research Organization,1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nishimura, Jun [KEK Theory Center, High Energy Accelerator Research Organization,1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies (SOKENDAI),1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)
2016-12-05
In many interesting physical systems, the determinant which appears from integrating out fermions becomes complex, and its phase plays a crucial role in the determination of the vacuum. An example of this is QCD at low temperature and high density, where various exotic fermion condensates are conjectured to form. Another example is the Euclidean version of the type IIB matrix model for 10d superstring theory, where spontaneous breaking of the SO(10) rotational symmetry down to SO(4) is expected to occur. When one applies the complex Langevin method to these systems, one encounters the singular-drift problem associated with the appearance of nearly zero eigenvalues of the Dirac operator. Here we propose to avoid this problem by deforming the action with a fermion bilinear term. The results for the original system are obtained by extrapolations with respect to the deformation parameter. We demonstrate the power of this approach by applying it to a simple matrix model, in which spontaneous symmetry breaking from SO(4) to SO(2) is expected to occur due to the phase of the complex fermion determinant. Unlike previous work based on a reweighting-type method, we are able to determine the true vacuum by calculating the order parameters, which agree with the prediction by the Gaussian expansion method.
DEFF Research Database (Denmark)
Denisov, S.; Flach, S.; Ovchinnikov, A. A.
2002-01-01
We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response is em...... is employed to explain the effect. We consider a case of a particle in a periodic potential as an example and discuss the relevant symmetry breakings and the mechanisms of rectification of the current in such a system.......We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response...
Symmetries in eleven dimensional supergravity compactified on a parallelized seven sphere
Englert, F; Spindel, P
1983-01-01
We analyse, in eleven-dimensional supergravity compactified on S7, the spontaneous symmetry breaking induced by a spontaneous parallelization of the sphere. The eight supersymmetries are broken at a common scale and the SO(8) gauge group is reduced to Spin (7). Such a large residual symmetry has a simple geometrical significance revealed through use of octonions; this is explained in elementary terms.
Spontaneous symmetry breaking, and strings defects in hypercomplex gauge field theories
Energy Technology Data Exchange (ETDEWEB)
Cartas-Fuentevilla, R. [Universidad Autonoma de Puebla, Instituto de Fisica, Puebla, Pue. (Mexico); Meza-Aldama, O. [Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, Pue. (Mexico)
2016-02-15
Inspired by the appearance of split-complex structures in the dimensional reduction of string theory, and in the theories emerging as byproducts, we study the hypercomplex formulation of Abelian gauge field theories by incorporating a new complex unit to the usual complex one. The hypercomplex version of the traditional Mexican hat potential associated with the U(1) gauge field theory, corresponds to a hybrid potential with two real components, and with U(1) x SO(1,1) as symmetry group. Each component corresponds to a deformation of the hat potential, with the appearance of a new degenerate vacuum. Hypercomplex electrodynamics will show novel properties, such as spontaneous symmetry breaking scenarios with running masses for the vectorial and scalar Higgs fields, and such as Aharonov-Bohm type strings defects as exact solutions; these topological defects may be detected only by quantum interference of charged particles through gauge invariant loop integrals. In a particular limit, the hyperbolic electrodynamics does not admit topological defects associated with continuous symmetries. (orig.)
International Nuclear Information System (INIS)
Becker, R.L.; Svenne, J.P.
1975-12-01
Energy levels of states connected by a symmetry of the Hamiltonian normally should be degenerate. In self-consistent field theories, when only one of a pair of single-particle levels connected by a symmetry of the full Hamiltonian is occupied, the degeneracy is split and the unoccupied level often lies below the occupied one. Inversions of neutron-proton (charge) and time-reversal doublets in odd nuclei, charge doublets in even nuclei with a neutron excess, and spin-orbit doublets in spherical configurations with spin-unsaturated shells are examined. The origin of the level inversion is investigated, and the following explanation offered. Unoccupied single-particle levels, from a calculation in an A-particle system, should be interpreted as levels of the (A + 1)-particle system. When the symmetry-related level, occupied in the A-particle system, is also calculated in the (A + 1)-particle system it is degenerate with or lies lower than the other. That is, when both levels are calculated in the (A + 1)-particle system, they are not inverted. It is demonstrated that the usual prescription to occupy the lowest-lying orbitals should be modified to refer to the single-particle energies calculated in the (A + 1)- or the (A - 1)-particle system. This observation is shown to provide a justification for avoiding an oscillation of occupancy between symmetry-related partners in successive iterations leading to a self-consistency. It is pointed out that two degenerate determinants arise from occupying one or the other partner of an initially degenerate pair of levels and then iterating to self-consistency. The existence of the degenerate determinants indicates the need for introducing correlations, either by mixing the two configurations or by allowing additional symmetry-breaking (resulting in a more highly deformed non-degenerate configuration). 2 figures, 3 tables, 43 references
International Nuclear Information System (INIS)
Hupin, G; Lacroix, D; Bender, M
2011-01-01
The Multi-Reference Energy Density Functional (MR-EDF) approach (also called configuration mixing or Generator Coordinate Method), that is commonly used to treat pairing in finite nuclei and project onto particle number, is re-analyzed. It is shown that, under certain conditions, the MR-EDF energy can be interpreted as a functional of the one-body density matrix of the projected state with good particle number. Based on this observation, we propose a new approach, called Symmetry-Conserving EDF (SC-EDF), where the breaking and restoration of symmetry are accounted for simultaneously. We show, that such an approach is free from pathologies recently observed in MR-EDF and can be used with a large flexibility on the density dependence of the functional.
Yu, Yang; Li, Chen; Yin, Bing; Li, Jian-Li; Huang, Yuan-He; Wen, Zhen-Yi; Jiang, Zhen-Yi
2013-08-07
The structures, relative stabilities, vertical electron detachment energies, and magnetic properties of a series of trinuclear clusters are explored via combined broken-symmetry density functional theory and ab initio study. Several exchange-correlation functionals are utilized to investigate the effects of different halogen elements and central atoms on the properties of the clusters. These clusters are shown to possess stronger superhalogen properties than previously reported dinuclear superhalogens. The calculated exchange coupling constants indicate the antiferromagnetic coupling between the transition metal ions. Spin density analysis demonstrates the importance of spin delocalization in determining the strengths of various couplings. Spin frustration is shown to occur in some of the trinuclear superhalogens. The coexistence of strong superhalogen properties and spin frustration implies the possibility of trinuclear superhalogens working as the building block of new materials of novel magnetic properties.
Broken symmetry in the mean field theory of the ising spin glass: replica way and no replica way
International Nuclear Information System (INIS)
De Dominicis, C.
1983-06-01
We review the type of symmetry breaking involved in the solution discovered by Parisi and in the static derivation of the solution first introduced via dynamics by Sompolinsky. We turn to a formulation of the problem due to Thouless, Anderson and Palmer (TAP) that put a set of equations for the magnetization. A probability law for the magnetization is then built. We consider two cases: (i) a canonical distribution which is shown to give indentical results to the Hamiltonian formulation under a weak and physical assumption and (ii) a white distribution characterized by two matrices and a response. We show what symmetry breaking is necessary to recover Sompolinsky free energy. In section III we supplement replica indices in the Hamiltonian approach by ''time'' indices ans show in particular that the analytic continuation involved in Sompolinsky's equilibrium derivation, is trying to mimick a translational symmetry breaking in ''time'' that incorporates Sompolinsky's ansatz of a long time scale sequence. In section IV we apply the same treatment to the white average approach and show that, replicas can be altogether discorded and replaced by ''time''. Finally, we briefly discuss the attribution of distinct answers for the standard spin glass order parameter depending on the physical situation: equilibrium or non equilibrium associated with canonical or white (non canonical) initial conditions and density matrices
International Nuclear Information System (INIS)
Becker, D.; Reuter, M.
2014-01-01
The most momentous requirement a quantum theory of gravity must satisfy is Background Independence, necessitating in particular an ab initio derivation of the arena all non-gravitational physics takes place in, namely spacetime. Using the background field technique, this requirement translates into the condition of an unbroken split-symmetry connecting the (quantized) metric fluctuations to the (classical) background metric. If the regularization scheme used violates split-symmetry during the quantization process it is mandatory to restore it in the end at the level of observable physics. In this paper we present a detailed investigation of split-symmetry breaking and restoration within the Effective Average Action (EAA) approach to Quantum Einstein Gravity (QEG) with a special emphasis on the Asymptotic Safety conjecture. In particular we demonstrate for the first time in a non-trivial setting that the two key requirements of Background Independence and Asymptotic Safety can be satisfied simultaneously. Carefully disentangling fluctuation and background fields, we employ a ‘bi-metric’ ansatz for the EAA and project the flow generated by its functional renormalization group equation on a truncated theory space spanned by two separate Einstein–Hilbert actions for the dynamical and the background metric, respectively. A new powerful method is used to derive the corresponding renormalization group (RG) equations for the Newton- and cosmological constant, both in the dynamical and the background sector. We classify and analyze their solutions in detail, determine their fixed point structure, and identify an attractor mechanism which turns out instrumental in the split-symmetry restoration. We show that there exists a subset of RG trajectories which are both asymptotically safe and split-symmetry restoring: In the ultraviolet they emanate from a non-Gaussian fixed point, and in the infrared they loose all symmetry violating contributions inflicted on them by the
Chiral polarization scale of QCD vacuum and spontaneous chiral symmetry breaking
International Nuclear Information System (INIS)
Alexandru, Andrei; Horv, Ivan
2013-01-01
It has recently been found that dynamics of pure glue QCD supports the low energy band of Dirac modes with local chiral properties qualitatively different from that of a bulk: while bulk modes suppress chirality relative to statistical independence between left and right, the band modes enhance it. The width of such chirally polarized zone – chiral polarization scale bigwedge ch – has been shown to be finite in the continuum limit at fixed physical volume. Here we present evidence that bigwedge ch remains non-zero also in the infinite volume, and is therefore a dynamical scale in the theory. Our experiments in N f = 2+1 QCD support the proposition that the same holds in the massless limit, connecting bigwedge ch to spontaneous chiral symmetry breaking. In addition, our results suggest that thermal agitation in quenched QCD destroys both chiral polarization and condensation of Dirac modes at the same temperature T ch > T c .
International Nuclear Information System (INIS)
Greenberger, D.M.
1978-01-01
We take two rather abstract concepts from elementary particle physics, and show that there actually exist analogs to both of them in undergraduate physics. In the case of spontaneous symmetry breaking, we provide an example where the most symmetrical state of a simple system suddenly becomes unstable, while a less symmetrical state develops lower energy and becomes stable. In the case of scale invariance, we consider an example with no natural scale determined, and show that a straightforward dimensional analysis of the problem leads to incorrect results, because of the occurrence of infinities, even though they would appear to be irrelevant infinities that might not be expected to affect the dimensions of the answer. We then show how a simple use of the scale invariance of the problem leads to the correct answer
Spontaneous symmetry breaking and the Goldstone theorem in non-Hermitian field theories arXiv
Alexandre, Jean; Millington, Peter; Seynaeve, Dries
We demonstrate the extension to PT-symmetric field theories of the Goldstone theorem, confirming that the spontaneous appearance of a field vacuum expectation value via minimisation of the effective potential in a non-Hermitian model is accompanied by a massless scalar boson. Laying a basis for our analysis, we first show how the conventional quantisation of the path-integral formulation of quantum field theory can be extended consistently to a non-Hermitian model by considering PT conjugation instead of Hermitian conjugation. The extension of the Goldstone theorem to a PT-symmetric field theory is made possible by the existence of a conserved current that does not, however, correspond to a symmetry of the non-Hermitian Lagrangian. In addition to extending the proof of the Goldstone theorem to a PT-symmetric theory, we exhibit a specific example in which we verify the existence of a massless boson at the tree and one-loop levels.
Can the family group be a global symmetry
International Nuclear Information System (INIS)
Reiss, D.B.
1982-01-01
We consider the possibility that the family group may be a spontaneously broken continuous global symmetry. In the context of grand unification, the couplings of the associated Goldstone bosons to fermions can be sufficiently suppressed so as to satisfy the phenomenological bounds. For a maximal family symmetry this requires a large number of Higgs fields. (orig.)
Gauged Supergravities and Spontaneous Supersymmetry Breaking from the Double Copy Construction
Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R.
2018-04-01
Supergravities with gauged R symmetry and Minkowski vacua allow for spontaneous supersymmetry breaking and, as such, provide a framework for building supergravity models of phenomenological relevance. In this Letter, we initiate the study of double copy constructions for these supergravities. We argue that, on general grounds, we expect their scattering amplitudes to be described by a double copy of the type (spontaneously broken gauge theory)⊗ (gauge theory with broken supersymmetry). We present a simple realization in which the resulting supergravity has U (1 )R gauge symmetry, spontaneously broken N =2 supersymmetry, and massive gravitini. This is the first instance of a double copy construction of a gauged supergravity and of a theory with spontaneously broken supersymmetry. The construction extends in a straightforward manner to a large family of gauged Yang-Mills-Einstein supergravity theories with or without spontaneous gauge-symmetry breaking.
Renormalizable massive charged vector-boson theory without spontaneous symmetry breakdown
International Nuclear Information System (INIS)
Mac, E.
1977-01-01
A renormalizable and unitary theory of massive charged vector bosons is proposed. This theory has a similarity with the Georgi-Glashow theory, the difference being that in the former the Lagrangian does not contain the potential term in the scalar fields necessary in theories with spontaneous symmetry breaking. The mass M > 0 of the charged vector bosons are introduced in the Lagrangian in such a way that the Lagrangian is still invariant under a ''distorted'' local gauge symmetry. This Lagrangian is studied in the generalized renormalizable gauge (gauge R /sub xi/), by means of the Lagrange multiplier formalism. In this way, the fictitious Lagrangian that restores unitarity to the theory can be constructed. The fictitious Lagrangian constructed using the Lagrange multiplier formalism is compared to the one obtained due to the variation of the gauge condition under the gauge transformations. The renormalizability of this theory is studied and the Ward-Takahaski identities are derived; these identities are checked by explicit calculations. Using the Becchi-Rouet-Stora transformation, one can obtain the equation satisfied by the renormalized Lagrangian; solving this equation the most general form of the renormalized Lagrangian is obtained. Also the classical solutions of this kind of theories are studied. Solutions are found suggesting the presence of dyons
Grosse, E.; Junghans, A. R.; Wilson, J. N.
2017-11-01
The basic parameters for calculations of radiative neutron capture, photon strength functions and nuclear level densities near the neutron separation energy are determined based on experimental data without an ad hoc assumption about axial symmetry—at variance to previous analysis. Surprisingly few global fit parameters are needed in addition to information on nuclear deformation, taken from Hartree Fock Bogolyubov calculations with the Gogny force, and the generator coordinator method assures properly defined angular momentum. For a large number of nuclei the GDR shapes and the photon strength are described by the sum of three Lorentzians, extrapolated to low energies and normalised in accordance to the dipole sum rule. Level densities are influenced strongly by the significant collective enhancement based on the breaking of shape symmetry. The replacement of axial symmetry by the less stringent requirement of invariance against rotation by 180° leads to a novel prediction for radiative neutron capture. It compares well to recent compilations of average radiative widths and Maxwellian average cross sections for neutron capture by even target nuclei. An extension to higher spin promises a reliable prediction for various compound nuclear reactions also outside the valley of stability. Such predictions are of high importance for future nuclear energy systems and waste transmutation as well as for the understanding of the cosmic synthesis of heavy elements.
Liu, Yinan; Gu, Qiangqiang; Peng, Yu; Qi, Shaomian; Zhang, Na; Zhang, Yinong; Ma, Xiumei; Zhu, Rui; Tong, Lianming; Feng, Ji; Liu, Zheng; Chen, Jian-Hao
2018-05-07
The layered ternary compound TaIrTe 4 is an important candidate to host the recently predicted type-II Weyl fermions. However, a direct and definitive proof of the absence of inversion symmetry in this material, a prerequisite for the existence of Weyl Fermions, has so far remained evasive. Herein, an unambiguous identification of the broken inversion symmetry in TaIrTe 4 is established using angle-resolved polarized Raman spectroscopy. Combining with high-resolution transmission electron microscopy, an efficient and nondestructive recipe to determine the exact crystallographic orientation of TaIrTe 4 crystals is demonstrated. Such technique could be extended to the fast identification and characterization of other type-II Weyl fermions candidates. A surprisingly strong in-plane electrical anisotropy in TaIrTe 4 thin flakes is also revealed, up to 200% at 10 K, which is the strongest known electrical anisotropy for materials with comparable carrier density, notably in such good metals as copper and silver. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DEFF Research Database (Denmark)
Aarøe, Morten; Monaco, Roberto; Dmitriev, P
2007-01-01
We report on new investigations of spontaneous symmetry breaking in non-adiabatic phase transitions. This Zurek-Kibble (ZK) process is mimicked in solid state systems by trapping of magnetic flux quanta, fluxons, in a long annular Josephson tunnel junction quenched through the normal-superconducting...
Spin-flip dynamics of the Curie-Weiss model Loss of Gibbsianness with possibly broken symmetry.
Külske, C
2005-01-01
We study the conditional probabilities of the Curie-Weiss Ising model in vanishing external field under a symmetric independent stochastic spin-flip dynamics and discuss their set of bad configurations (points of discontinuity). We exhibit a complete analysis of the transition between Gibbsian and non-Gibbsian behavior as a function of time, extending the results for the corresponding lattice model, where only partial answers can be obtained. For initial inverse temperature $\\b \\leq 1$, we prove that the time-evolved measure is always Gibbsian. For $1 \\frac{3}{2}$, we observe the new phenomenon of symmetry-breaking of bad configurations: The time-evolved measure loses its Gibbsian character at a sharp transition time, and bad configurations with non-zero spin-average appear. These bad configurations merge into a neutral configuration at a later transition time, while the measure stays non-Gibbs. In our proof we give a detailed analysis of the phase-diagram of a Curie-Weiss random field Ising model with possi...
International Nuclear Information System (INIS)
Greene, L.H.; Hentges, P.J.; Aubin, H.; Aprili, M.; Badica, E.; Covington, M.; Pafford, M.M.; Westwood, G.; Klemperer, W.G.; Jian, Sha; Hinks, D.G.
2004-01-01
Quasiparticle planar tunneling spectroscopy is used to study unconventional superconductivity in YBa 2 Cu 3 O 7 (YBCO) thin films and Bi 2 Sr 2 CaCu 2 O 8 (BSCCO) single crystals. Tunneling conductances are obtained as a function of crystallographic orientation, applied magnetic field (magnitude and orientation), atomic substitution and surface damage. Our systematic studies confirm that the observed zero-bias conductance peak (ZBCP), a measure of the near-surface quasiparticle (QP) density of states (DoS), is comprised of Andreev bound states (ABS) resulting directly from the sign change of the d-wave order parameter (OP) at the Fermi surface. Our data, plus a literature search, reveals a consistency in the observation of the splitting of the ZBCP in optimally-doped materials. We note that the splitting of the ZBCP observed in applied field, and the spontaneous splitting observed at lower temperatures in zero field, occur concomitantly in a given junction, and that observation of this splitting is dependent upon two parameters: (1) the magnitude of the tunneling cone and (2) the degree of atomic-scale disorder at the interface
Spontaneous symmetry breaking of Bose-Fermi mixtures in double-well potentials
International Nuclear Information System (INIS)
Adhikari, S. K.; Malomed, B. A.; Salasnich, L.; Toigo, F.
2010-01-01
We study the spontaneous symmetry breaking (SSB) of a superfluid Bose-Fermi (BF) mixture in a double-well potential (DWP). The mixture is described by the Gross-Pitaevskii equation (GPE) for the bosons, coupled to an equation for the order parameter of the Fermi superfluid, which is derived from the respective density functional in the unitarity limit (a similar model applies to the BCS regime, too). Straightforward SSB in the degenerate Fermi gas loaded into a DWP is impossible, as it requires an attractive self-interaction, and the intrinsic nonlinearity in the Fermi gas is repulsive. Nonetheless, we demonstrate that the symmetry breaking is possible in the mixture with attraction between fermions and bosons, like 40 K and 87 Rb. Numerical results are represented by dependencies of asymmetry parameters for both components on particle numbers of the mixture, N F and N B , and by phase diagrams in the (N F ,N B ) plane, which displays regions of symmetric and asymmetric ground states. The dynamical picture of the SSB, induced by a gradual transformation of the single-well potential into the DWP, is reported too. An analytical approximation is proposed for the case when the GPE for the boson wave function may be treated by means of the Thomas-Fermi (TF) approximation. Under a special linear relationship between N F and N B , the TF approximation allows us to reduce the model to a single equation for the fermionic function, which includes competing repulsive and attractive nonlinear terms. The latter one directly displays the mechanism of the generation of the effective attraction in the Fermi superfluid, mediated by the bosonic component of the mixture.
Twisted Spectral Triple for the Standard Model and Spontaneous Breaking of the Grand Symmetry
Energy Technology Data Exchange (ETDEWEB)
Devastato, Agostino, E-mail: agostino.devastato@na.infn.it; Martinetti, Pierre, E-mail: martinetti@dima.unige.it [Università di Napoli Federico II, Dipartimento di Fisica (Italy)
2017-03-15
Grand symmetry models in noncommutative geometry, characterized by a non-trivial action of functions on spinors, have been introduced to generate minimally (i.e. without adding new fermions) and in agreement with the first order condition an extra scalar field beyond the standard model, which both stabilizes the electroweak vacuum and makes the computation of the mass of the Higgs compatible with its experimental value. In this paper, we use a twist in the sense of Connes-Moscovici to cure a technical problem due to the non-trivial action on spinors, that is the appearance together with the extra scalar field of unbounded vectorial terms. The twist makes these terms bounded and - thanks to a twisted version of the first-order condition that we introduce here - also permits to understand the breaking to the standard model as a dynamical process induced by the spectral action, as conjectured in [24]. This is a spontaneous breaking from a pre-geometric Pati-Salam model to the almost-commutativegeometryofthestandardmodel,withtwoHiggs-likefields: scalar and vector.
Kishi, Ryohei; Nakano, Masayoshi
2011-04-21
A novel method for the calculation of the dynamic polarizability (α) of open-shell molecular systems is developed based on the quantum master equation combined with the broken-symmetry (BS) time-dependent density functional theory within the Tamm-Dancoff approximation, referred to as the BS-DFTQME method. We investigate the dynamic α density distribution obtained from BS-DFTQME calculations in order to analyze the spatial contributions of electrons to the field-induced polarization and clarify the contributions of the frontier orbital pair to α and its density. To demonstrate the performance of this method, we examine the real part of dynamic α of singlet 1,3-dipole systems having a variety of diradical characters (y). The frequency dispersion of α, in particular in the resonant region, is shown to strongly depend on the exchange-correlation functional as well as on the diradical character. Under sufficiently off-resonant condition, the dynamic α is found to decrease with increasing y and/or the fraction of Hartree-Fock exchange in the exchange-correlation functional, which enhances the spin polarization, due to the decrease in the delocalization effects of π-diradical electrons in the frontier orbital pair. The BS-DFTQME method with the BHandHLYP exchange-correlation functional also turns out to semiquantitatively reproduce the α spectra calculated by a strongly correlated ab initio molecular orbital method, i.e., the spin-unrestricted coupled-cluster singles and doubles.
International Nuclear Information System (INIS)
Bogolyubov, N.P.
1988-01-01
A model of the spontaneous breaking of chiral symmetry motivated by quantum chromodynamics is considered at a finite density of the quarks and zero temperature. For zero chemical potential the dynamical quark mass, the bag constant, and the vacuum expectation value are estimated. The dependence of the grand thermodynamic potential on the chemical potential of the quarks and of the energy on the particle number density are calculated. It is found that there is a phase transition of the first kind with respect to the density of the quarks accompanied by restoration of the chiral symmetry. The critical values of the fermion density are found
Shamim, S; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, A
2014-06-13
We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in two-dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si:P and Ge:P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow half-filled impurity bands.
International Nuclear Information System (INIS)
Srivastava, Prem P.
1994-01-01
The Dirac procedure is used to construct the Hamiltonian formulation of the scalar field theory on the light-front. The theory is quantized and the mechanism of the spontaneous symmetry breaking in the front form and the instant form dynamics are compared. The phase transition in (φ 4 )2 theory is also discussed and found to be of the second order. (author). 36 refs
Off-shell Ward identities and gauge symmetries in string theory
International Nuclear Information System (INIS)
Porrati, M.
1989-01-01
I describe a new method of obtaining gauge-symmetry transformation laws for the effective lagrangian of an arbitrary string theory. The method applies to exact as well as spontaneously broken gauge symmetries. The transformation laws, exact to all orders in α' are determined inductively in the number of fields by the corresponding off-shell Ward identities. The case of broken supersymmetry is examined in some detail. (orig.)
Bosonization, dual transformation and non-local hidden symmetry in two dimensions
International Nuclear Information System (INIS)
Hata, Hiroyuki
1985-01-01
The non-local hidden symmetry is investigated in the bosonized non-abelian Thirring model and the dual representation of the chiral model. In these representations the first non-local symmetry is spontaneously broken in naive pertubation theory. (orig.)
Axions from chiral family symmetry
International Nuclear Information System (INIS)
Chang, D.; Pal, P.B.; Maryland Univ., College Park; Senjanovic, G.
1985-01-01
We investigate the possibility that family symmetry, Gsub(F), is spontaneously broken chiral global symmetry. We classify the interesting cases when family symmetry can result in an automatic Peccei-Quinn symmetry U(1)sub(PQ) and thus provide a solution to the strong CP problem. The result disfavors having two or four families. For more than four families, U(1)sub(PQ) is in general automatic. In the case of three families, a unique Higgs sector allows U(1)sub(PQ) in the simplest case of Gsub(F)=[SU(3)] 3 . Cosmological consideration also puts strong constraint on the number of families. For Gsub(F)=[SU(N)] 3 cosmology singles out the three-family (N=3) case as a unique solution if there are three light neutrinos. Possible implication of decoupling theorem as applied to family symmetry breaking is also discussed. (orig.)
Samardak, Alexander; Kolesnikov, Alexander; Stebliy, Maksim; Chebotkevich, Ludmila; Sadovnikov, Alexandr; Nikitov, Sergei; Talapatra, Abhishek; Mohanty, Jyoti; Ognev, Alexey
2018-05-01
An enhancement of the spin-orbit effects arising on an interface between a ferromagnet (FM) and a heavy metal (HM) is possible through the strong breaking of the structural inversion symmetry in the layered films. Here, we show that an introduction of an ultrathin W interlayer between Co and Ru in Ru/Co/Ru films enables to preserve perpendicular magnetic anisotropy (PMA) and simultaneously induce a large interfacial Dzyaloshinskii-Moriya interaction (iDMI). The study of the spin-wave propagation in the Damon-Eshbach geometry by Brillouin light scattering spectroscopy reveals the drastic increase in the iDMI value with the increase in W thickness (tW). The maximum iDMI of -3.1 erg/cm2 is observed for tW = 0.24 nm, which is 10 times larger than for the quasi-symmetrical Ru/Co/Ru films. We demonstrate the evidence of the spontaneous field-driven nucleation of isolated skyrmions supported by micromagnetic simulations. Magnetic force microscopy measurements reveal the existence of sub-100-nm skyrmions in the zero magnetic field. The ability to simultaneously control the strength of PMA and iDMI in quasi-symmetrical HM/FM/HM trilayer systems through the interface engineered inversion asymmetry at the nanoscale excites new fundamental and practical interest in ultrathin ferromagnets, which are a potential host for stable magnetic skyrmions.
Introduction to symmetry-breaking phenomena in physics
CERN. Geneva. Audiovisual Unit
2001-01-01
The notion of broken symmetries started slowly to emerge in the 19th century. The early studies of Pasteur on the parity asymmetry of life, the studies of Curie on piezoelectricity and on the symmetries of effects versus the symmetry of causes ( which clearly excluded spontaneous symmetry breaking), are important historical landmarks. However the possibility of spontaneous symmetry breaking within the usual principles of statistical mechanics, waited for the work of Peierls and Onsager. The whole theory of phase transitions and critical phenomena, as well as the construction of field theoretic models as long distance limit of yet unknown physics, relies nowadays on the concept of criticality associated to spontaneous symmetry breaking. The phenomena of Goldstone bosons, of Meissner-Higgs effects, are central to the theory of condensed matter as well as to particle physics. In cosmology as well, the various inflationary scenarios begin similarly with this same concept. The three lectures will provide a simple ...
... Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Broken bone URL of this page: //medlineplus.gov/ency/ ... following steps to reduce your risk of a broken bone: Wear protective ... pads. Create a safe home for young children. Place a gate at stairways ...
A minimal spontaneous CP violation model with small neutrino mass and SU(2) x U(1) x Z3 symmetry
International Nuclear Information System (INIS)
Geng, C.Q.; Ng, J.N.
1988-04-01
It is shown that spontaneous CP violation and natural flavor conservation can occur in the SU(2) L x U(1) Y model based on two Higgs doublet and one Higgs singlet fields with a Z 3 discrete symmetry. Physical CP nonconservation is purely due to scalar-pseudoscalar mixings. In order for this to be a major source of CP violation a light spin-O boson of mass less than 10 GeV is required. The see-saw mechanism can be implemented to generate small neutrino masses. The model implies a relatively large electric dipole moment for charged leptons and small value for ε'/ε
Hairs of discrete symmetries and gravity
Energy Technology Data Exchange (ETDEWEB)
Choi, Kang Sin [Scranton Honors Program, Ewha Womans University, Seodaemun-Gu, Seoul 03760 (Korea, Republic of); Center for Fields, Gravity and Strings, CTPU, Institute for Basic Sciences, Yuseong-Gu, Daejeon 34047 (Korea, Republic of); Kim, Jihn E., E-mail: jihnekim@gmail.com [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), 291 Daehakro, Yuseong-Gu, Daejeon 34141 (Korea, Republic of); Kyae, Bumseok [Department of Physics, Pusan National University, 2 Busandaehakro-63-Gil, Geumjeong-Gu, Busan 46241 (Korea, Republic of); Nam, Soonkeon [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of)
2017-06-10
Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
Hairs of discrete symmetries and gravity
Directory of Open Access Journals (Sweden)
Kang Sin Choi
2017-06-01
Full Text Available Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
CP and other gauge symmetries in string theory
International Nuclear Information System (INIS)
Dine, M.; Leigh, R.G.; MacIntire, D.A.
1992-01-01
We argue that CP is a gauge symmetry in string theory. As a consequence, CP cannot be explicitly broken either perturbatively or nonperturbatively; there can be no nonperturbative CP-violating parameters. String theory is thus an example of a theory where all θ angles arise due to spontaneous CP violation, and are in principle calculable
... of falling — including football, soccer, gymnastics, skiing and skateboarding — also increases the risk of a broken arm. ... for high-risk activities, such as in-line skating, snowboarding, rugby and football. Don't smoke. Smoking ...
Symmetry realization via a dynamical inverse Higgs mechanism
Rothstein, Ira Z.; Shrivastava, Prashant
2018-05-01
The Ward identities associated with spontaneously broken symmetries can be saturated by Goldstone bosons. However, when space-time symmetries are broken, the number of Goldstone bosons necessary to non-linearly realize the symmetry can be less than the number of broken generators. The loss of Goldstones may be due to a redundancy or the generation of a gap. In either case the associated Goldstone may be removed from the spectrum. This phenomena is called an Inverse Higgs Mechanism (IHM) and its appearance has a well defined mathematical condition. However, there are cases when a Goldstone boson associated with a broken generator does not appear in the low energy theory despite the lack of the existence of an associated IHM. In this paper we will show that in such cases the relevant broken symmetry can be realized, without the aid of an associated Goldstone, if there exists a proper set of operator constraints, which we call a Dynamical Inverse Higgs Mechanism (DIHM). We consider the spontaneous breaking of boosts, rotations and conformal transformations in the context of Fermi liquids, finding three possible paths to symmetry realization: pure Goldstones, no Goldstones and DIHM, or some mixture thereof. We show that in the two dimensional degenerate electron system the DIHM route is the only consistent way to realize spontaneously broken boosts and dilatations, while in three dimensions these symmetries could just as well be realized via the inclusion of non-derivatively coupled Goldstone bosons. We present the action, including the leading order non-linearities, for the rotational Goldstone (angulon), and discuss the constraint associated with the possible DIHM that would need to be imposed to remove it from the spectrum. Finally we discuss the conditions under which Goldstone bosons are non-derivatively coupled, a necessary condition for the existence of a Dynamical Inverse Higgs Constraint (DIHC), generalizing the results for Vishwanath and Wantanabe.
Dynamical symmetry breaking with hypercolour and high colour representations
International Nuclear Information System (INIS)
Zoupanos, G.
1985-01-01
A model is presented in which the electroweak gauge group is spontaneously broken according to a dynamical scenario based on the existence of high colour representations. An unattractive feature of this scenario was the necessity to introduce elementary Higgs fields in order to obtain the spontaneous symmetry breaking of part of the theory. In the present model, this breaking can also be understood dynamically with the introduction of hypercolour interactions. (author)
On spontaneous breakdown in Σ-models
International Nuclear Information System (INIS)
Ivanov, E.A.
1975-01-01
The group theory aspects of spontaneous breakdown in linear Σ-models are discussed. General conditions are formulated under which multiplet of group G (compact or noncompact) is suitable for constructing the Σ-model with a given subgroup of stability of vacuum. It is shown that the Σ-models of spontaneously broken space-time symmetries can be constructed in general only if some extra coordinates are introduced in addition to an ordinary 4-coordinate xsub(μ). The connection between Σ-models of internal symmetries and appropriate nonlinear realizations has also been investigated
Discrete quark-lepton symmetry need not pose a cosmological domain wall problem
International Nuclear Information System (INIS)
Lew, H.; Volkas, R.R.
1992-01-01
Quarks and leptons may be related to each other through a spontaneously broken discrete symmetry. Models with acceptable and interesting collider phenomenology have been constructed which incorporate this idea. However, the standard Hot Big Bang model of cosmology is generally considered to eschew spontaneously broken discrete symmetries because they often lead to the formation of unacceptably massive domain walls. It is pointed out that there are a number of plausible quark-lepton symmetric models in nature which do not produce cosmologically troublesome domain walls. 30 refs
Chains of benzenes with lithium-atom adsorption: Vibrations and spontaneous symmetry breaking
Ortiz, Yenni P.; Stegmann, Thomas; Klein, Douglas J.; Seligman, Thomas H.
2016-01-01
We study effects of different configurations of adsorbates on the vibrational modes as well as symmetries of polyacenes and poly-p-phenylenes focusing on lithium atom adsorption. We found that the spectra of the vibrational modes distinguish the different configurations. For more regular adsorption schemes the lowest states are bending and torsion modes of the skeleton, which are essentially followed by the adsorbate. On poly-p-phenylenes we found that lithium adsorption reduces and often eli...
The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry
International Nuclear Information System (INIS)
Hinterbichler, Kurt; Khoury, Justin
2012-01-01
We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential accelerated expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. The conformal fields develop a time-dependent expectation value which breaks the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de Sitter, giving perturbations a scale invariant spectrum. The solution is an attractor, at least in the case of a single time-dependent field. Meanwhile, the metric background remains approximately flat but slowly contracts, which makes the universe increasingly flat, homogeneous and isotropic, akin to the smoothing mechanism of ekpyrotic cosmology. Our scenario is very general, requiring only a conformal field theory capable of developing the appropriate time-dependent expectation values, and encompasses existing incarnations of this idea, specifically the U(1) model of Rubakov and the Galileon Genesis scenario. Its essential features depend only on the symmetry breaking pattern and not on the details of the underlying lagrangian. It makes generic observational predictions that make it potentially distinguishable from standard inflation, in particular significant non-gaussianities and the absence of primordial gravitational waves
Unbroken versus broken mirror world: a tale of two vacua
International Nuclear Information System (INIS)
Foot, R.; Lew, H.; Volkas, R.R.
2000-01-01
If the Lagrangian of nature respects parity invariance then there are two distinct possibilities: either parity is unbroken by the vacuum or it is spontaneously broken. We examine the two simplest phenomenologically consistent gauge models which have unbroken and spontaneously broken parity symmetries, respectively. These two models have a Lagrangian of the same form, but a different parameter range is chosen in the Higgs potential. They both predict the existence of dark matter and can explain the MACHO events. However, the models predict quite different neutrino physics. Although both have light mirror (effectively sterile) neutrinos, the ordinary-mirror neutrino mixing angles are unobservably tiny in the broken parity case. The minimal broken parity model therefore cannot simultaneously explain the solar, atmospheric and LSND data. By contrast, the unbroken parity version can explain all of the neutrino anomalies. Furthermore, we argue that the unbroken case provides the most natural explanation of the neutrino physics anomalies (irrespective of whether evidence from the LSND experiment is included) because of its characteristic maximal mixing prediction. (author)
Domain walls and the C P anomaly in softly broken supersymmetric QCD
Draper, Patrick
2018-04-01
In ordinary QCD with light, degenerate, fundamental flavors, C P symmetry is spontaneously broken at θ =π , and domain wall solutions connecting the vacua can be constructed in chiral perturbation theory. In some cases the breaking of C P saturates a 't Hooft anomaly, and anomaly inflow requires nontrivial massless excitations on the domain walls. Analogously, C P can be spontaneously broken in supersymmetric QCD (SQCD) with light flavors and small soft breaking parameters. We study C P breaking and domain walls in softly broken SQCD with Nfcomputed at leading order in the soft breaking parameters, producing a phase diagram for the stable wall trajectory. We also comment on domain walls in the similar case of QCD with an adjoint and fundamental flavors, and on the impact of adding an axion in this theory.
Scale gauge symmetry and the standard model
International Nuclear Information System (INIS)
Sola, J.
1990-01-01
This paper speculates on a version of the standard model of the electroweak and strong interactions coupled to gravity and equipped with a spontaneously broken, anomalous, conformal gauge symmetry. The scalar sector is virtually absent in the minimal model but in the general case it shows up in the form of a nonlinear harmonic map Lagrangian. A Euclidean approach to the phenological constant problem is also addressed in this framework
Automatic O(a) improvement for twisted mass QCD in the presence of spontaneous symmetry breaking
International Nuclear Information System (INIS)
Aoki, Sinya; Baer, Oliver
2006-01-01
In this paper we present a proof for automatic O(a) improvement in twisted mass lattice QCD at maximal twist, which uses only the symmetries of the leading part in the Symanzik effective action. In the process of the proof we clarify that the twist angle is dynamically determined by vacuum expectation values in the Symanzik theory. For maximal twist according to this definition, we show that scaling violations of all quantities which have nonzero values in the continuum limit are even in a. In addition, using Wilson chiral perturbation theory, we investigate this definition for maximal twist and compare it to other definitions which were already employed in actual simulations
Sum rules for the spontaneous chiral symmetry breaking parameters of QCD
International Nuclear Information System (INIS)
Craigie, N.S.; Stern, J.
1981-03-01
We discuss in the spirit of the work of Shifman, Vainshtein and Zakharov (SVZ), sum rules involving current-current vacuum correlation functions, whose Wilson expansion starts off with the operators anti qq or (anti qq) 2 , and thus provide information about the chiral symmetry breaking parameters of QCD. We point out that under the type of crude approximations made by SVZ, a value of sub(vac) (250MeV) 3 is obtained from one of these sum rules, in agreement with current expectations. Further we show that a Borel transformed version of the Weinberg sum rule, for VV - AA, current products seem only to make sense for an A 1 mass close to 1.3GeV and it makes little sense with the current algebra mass Msub(A)=anti 2M. We also give an estimate for the chiral symmetry breaking parameters μ 1 6 =2 2 (anti qsub(L) lambda sup(a)γsub(μ)qsub(L))(anti qsub(R) lambdasup(a) γsup(μ)qsub(R)) >sub(vac) entering in the Weinberg sum rules and μ 2 6 =g 2 sub(vac) entering in a new sum rule we propose involving antisymmetric tensor currents J=anti q σsub(μnu) q. (author)
Zheng, Guo-Qing
Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break additional symmetries. In particular, spin rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been obtained so far in any candidate compounds. We report 77Se nuclear magnetic resonance measurements which showed that spin rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc =3.4 K. Our results not only establish spin-triplet (odd parity) superconductivity in this compound, but also serve to lay a foundation for the research of topological superconductivity (Ref.). We will also report the doping mechanism and superconductivity in Sn1-xInxTe.
International Nuclear Information System (INIS)
Henley, E.M.
1981-09-01
Internal and space-time symmetries are discussed in this group of lectures. The first of the lectures deals with an internal symmetry, or rather two related symmetries called charge independence and charge symmetry. The next two discuss space-time symmetries which also hold approximately, but are broken only by the weak forces; that is, these symmetries hold for both the hadronic and electromagnetic forces
The Effect of Retardation on the Spontaneous Breaking of Chiral Symmetry in GCM
Institute of Scientific and Technical Information of China (English)
YANG Sheng-Dong; ZHAI Chen-Yang; ZHOU Zhi-Ning; YANG Ze-Sen
2001-01-01
An effective Hamiltonian including current-current coupling from the global color symmetry model is -R2 2derived.Retardation effects are introduced by the factor ( R/ ) e ,instead of δ (r) in the correlation kernel,from which the retardation gap equation with α-α coupling in the 3po vacuum is obtained,qq condensations of different retardation parameters R with or without the α-α term are calculated.The results show the effects of retardation,and indicate that the typical value of R is about 2 fm-1 at reasonable value of qq condensation.And while taking typical value 1 fm-1 of R,the condensation 1/3 is about 13% larger than that with no retardation effect.With the α-αterms,the condensation (qq) 1/3 is about 17%o larger than that without it for all values of the parameter R.This shows that the retardation effects and the α-α terms are important for further studying in the Iow-energy region.``
Conribution to the study of spontaneous breakdown of the chiral symmetry in gauge theories
International Nuclear Information System (INIS)
Gamonal, R.
1984-01-01
In the framework of quantum chromodynamics, we have been interested in the order parameters for the breakdown of the non-abelian chiral symmetry. Using the functional integral representation in the euclidean formalism, we have performed the fermionic integration after having inverted the chiral limit and the integration over gluonic fields. So, we were led to look for what gauge field configurations, the fermionic integrand has a non-vanishing chiral limit. We have been able to show, in a general manner, that the generating functional of all the order parameters vanishes in the chiral limit for the gauge field configurations which lead to a discrete spectrum for the Dirac operator around zero. For those leading to a continuous spectrum from the zero eigenvalue, the existence of a non-vanishing infra-red limit for the spectral density of the Dirac operator is crucial. We have exhibited gauge field configurations which give such a behaviour. Nevertheless, our analysis reveals the necessity to get a degeneracy for the zero modes belonging to the continuum of the Dirac operator. We have been able to demonstrate, for the class of gluonic fields, previously considered, an absence of degeneracy [fr
The geometric role of symmetry breaking in gravity
International Nuclear Information System (INIS)
Wise, Derek K
2012-01-01
In gravity, breaking symmetry from a group G to a group H plays the role of describing geometry in relation to the geometry of the homogeneous space G/H. The deep reason for this is Cartan's 'method of equivalence,' giving, in particular, an exact correspondence between metrics and Cartan connections. I argue that broken symmetry is thus implicit in any gravity theory, for purely geometric reasons. As an application, I explain how this kind of thinking gives a new approach to Hamiltonian gravity in which an observer field spontaneously breaks Lorentz symmetry and gives a Cartan connection on space.
International Nuclear Information System (INIS)
Srivastava, P.P.
1993-01-01
The field theory quantized on the light-front is compared with the conventional equal-time quantized theory. The arguments based on the micro causality principle would imply that the light-front field theory may become nonlocal with respect to the longitudinal coordinate even though the corresponding equal-time formulation is local. This is found to be the case for the scalar theory. The conventional instant form theory is sometimes required to be constrained by invoking external physical considerations; the analogous conditions seem to be already built in the theory on the light-front. In spite of the different mechanisms of the spontaneous symmetry breaking in the two forms of dynamics they result in the same physical content. The phase transition in (φ 4 ) 2 theory is also discussed. The symmetric vacuum state for vanishingly small couplings is found to turn into an unstable symmetric one when the coupling is increased and may result in a phase transition of the second order in contrast to the first order transition concluded from the usual variational methods. (author)
International Nuclear Information System (INIS)
Vakhnenko, Oleksiy O.; Vakhnenko, Vyacheslav O.
2014-01-01
The new integrable semidiscrete multicomponent nonlinear system characterized by two coupling parameters is presented. Relying upon the lowest local conservation laws the concise form of the system is given and its selfconsistent symmetric parametrization in terms of four independent field variables is found. The comprehensive analysis of quartic dispersion equation for the system low-amplitude excitations is made. The criteria distinguishing the domains of stability and instability of low-amplitude excitations are formulated and a collection of qualitatively distinct realizations of a dispersion law are graphically presented. The loop-like structure of a low-amplitude dispersion law of reduced system emerging within certain windows of adjustable coupling parameter turns out to resemble the loop-like structure of a dispersion law typical of beam-plasma oscillations. Basing on the peculiarities of low-amplitude dispersion law as the function of adjustable coupling parameter it is possible to predict the windows of spontaneous symmetry breaking even without an explicit knowledge of the system Lagrangian function. Having been rewritten in terms of properly chosen modified field variables the reduced four wave integrable system can be qualified as consisting of two coupled nonlinear lattice subsystems, namely the self-dual ladder network and the vibrational ones
Directory of Open Access Journals (Sweden)
Meng Cheng
2016-12-01
Full Text Available The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a “spinon” excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of “anyonic spin-orbit coupling,” which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.
Liang, Hong-Qin; Liu, Bin; Hu, Jin-Feng; He, Xing-Dao
2018-05-01
An all-optical plasmonic diode, comprising a metal-insulator-metal waveguide coupled with a stub cavity, is proposed based on a nonlinear Fano structure. The key technique used is to break structural spatial symmetry by a simple reflector layer in the waveguide. The spatial asymmetry of the structure gives rise to the nonreciprocity of coupling efficiencies between the Fano cavity and waveguides on both sides of the reflector layer, leading to a nonreciprocal nonlinear response. Transmission properties and dynamic responses are numerically simulated and investigated by the nonlinear finite-difference time-domain method. In the proposed structure, high-efficiency nonreciprocal transmission can be achieved with a low power threshold and an ultrafast response time (subpicosecond level). A high maximum transmittance of 89.3% and an ultra-high transmission contrast ratio of 99.6% can also be obtained. The device can be flexibly adjusted for working wavebands by altering the stub cavity length.
Janesko, Benjamin G.
2018-02-01
Parameter-free atomistic simulations of entangled solid-state paramagnetic defects may aid in the rational design of devices for quantum information science. This work applies time-dependent density functional theory (TDDFT) embedded-cluster simulations to a prototype entangled-defect system, namely two adjacent singlet-coupled F color centers in lithium fluoride. TDDFT calculations accurately reproduce the experimental visible absorption of both isolated and coupled F centers. The most accurate results are obtained by combining spin symmetry breaking to simulate strong correlation, a large fraction of exact (Hartree-Fock-like) exchange to minimize the defect electrons' self-interaction error, and a standard semilocal approximation for dynamical correlations between the defect electrons and the surrounding ionic lattice. These results motivate application of two-reference correlated ab initio approximations to the M-center, and application of TDDFT in parameter-free simulations of more complex entangled paramagnetic defect architectures.
Kemeth, Felix P.; Haugland, Sindre W.; Krischer, Katharina
2018-05-01
Symmetry broken states arise naturally in oscillatory networks. In this Letter, we investigate chaotic attractors in an ensemble of four mean-coupled Stuart-Landau oscillators with two oscillators being synchronized. We report that these states with partially broken symmetry, so-called chimera states, have different setwise symmetries in the incoherent oscillators, and in particular, some are and some are not invariant under a permutation symmetry on average. This allows for a classification of different chimera states in small networks. We conclude our report with a discussion of related states in spatially extended systems, which seem to inherit the symmetry properties of their counterparts in small networks.
Energy Technology Data Exchange (ETDEWEB)
Yerin, Yuriy; Omelyanchouk, Alexander [Verkin Inst. for Low Temperature Physics and Engineering. 61103 Kharkiv (Ukraine); Drechsler, Stefan-Ludwig; Brink, Jeroen van den; Efremov, Dmitriy [Inst. for Theorretical Solid State Physics at the Leibniz Inst. for Solid State an Materials Research, IFW-Dresden, D-01171 Dresden (Germany)
2016-07-01
Within the Ginzburg-Landau formalism we provide a classification of all possible ground states (GS) of a three-band superconductor (3BSC) where either frustrated states with BTRS or a single non-BTRS GS with unconventional/conventional s-wave symmetry, respectively, exist. The necessary condition for a BTRS GS in general cannot be reduced to a ''-''sign of the product of all interband couplings (IBC) valid in the case of 3 equivalent bands with repulsive equal IBC, only. It corresponds to a maximal IBC frustration. We show that with increasing diversity of the parameter space this frustration is reduced and the regions of possible BTRS GS start to shrink. We track possible evolutions of a BTRS GS of a 3BSC based doubly-connected system in an external magnetic field. Depending on its parameters, a magnetic flux can induce various current density leaps, connected with adiabatic or non-adiabatic transitions from BTRS to non-BTRS states and vice versa. The current induced magnetic flux response of samples with a doubly-connected geometry e.g. as a thin tube provides a suitable experimental tool for the detection of BTRS GS.
International Nuclear Information System (INIS)
Weinberg, S.
1976-01-01
The problem of how gauge symmetries of the weak interactions get broken is discussed. Some reasons why such a heirarchy of gauge symmetry breaking is needed, the reason gauge heirarchies do not seem to arise in theories of a given and related type, and the implications of theories with dynamical symmetry breaking, which can exhibit a gauge hierarchy
Spontaneous continum symmetry breaking
International Nuclear Information System (INIS)
Perez, J.F.
1983-01-01
Some recent results on the Goldstone's theories and Coleman's theorem in the framework of Classical or Quantum Statistical Mechanics of discrete systems in lattice or in continum are related. (L.C.) [pt
Greschner, S.; Piraud, M.; Heidrich-Meisner, F.; McCulloch, I. P.; Schollwöck, U.; Vekua, T.
2016-12-01
We study the quantum phases of bosons with repulsive contact interactions on a two-leg ladder in the presence of a uniform Abelian gauge field. The model realizes many interesting states, including Meissner phases, vortex fluids, vortex lattices, charge density waves, and the biased-ladder phase. Our work focuses on the subset of these states that breaks a discrete symmetry. We use density matrix renormalization group simulations to demonstrate the existence of three vortex-lattice states at different vortex densities and we characterize the phase transitions from these phases into neighboring states. Furthermore, we provide an intuitive explanation of the chiral-current reversal effect that is tied to some of these vortex lattices. We also study a charge-density-wave state that exists at 1/4 particle filling at large interaction strengths and flux values close to half a flux quantum. By changing the system parameters, this state can transition into a completely gapped vortex-lattice Mott-insulating state. We elucidate the stability of these phases against nearest-neighbor interactions on the rungs of the ladder relevant for experimental realizations with a synthetic lattice dimension. A charge-density-wave state at 1/3 particle filling can be stabilized for flux values close to half a flux quantum and for very strong on-site interactions in the presence of strong repulsion on the rungs. Finally, we analytically describe the emergence of these phases in the low-density regime, and, in particular, we obtain the boundaries of the biased-ladder phase, i.e., the phase that features a density imbalance between the legs. We make contact with recent quantum-gas experiments that realized related models and discuss signatures of these quantum states in experimentally accessible observables.
Vacuum polarization and dynamical chiral symmetry breaking in quantum electrodynamics
International Nuclear Information System (INIS)
Gusynin, V.P.
1989-01-01
The Schwinger-Dyson equation in the ladder approximation is considered for the fermion mass function taking into account the vacuum polarization effects. It is shown that even in the 'zero-charge' situation there exists, at rather large coupling constant (α>α c >0), a solution with spontaneously broken chiral symmetry. The existence of the local limit in the model concerned is discussed. 30 refs.; 1 fig
... Safe Videos for Educators Search English Español Broken Bones KidsHealth / For Parents / Broken Bones What's in this ... bone fragments in place. When Will a Broken Bone Heal? Fractures heal at different rates, depending upon ...
BOOK REVIEW: Symmetry Breaking
Ryder, L. H.
2005-11-01
One of the most fruitful and enduring advances in theoretical physics during the last half century has been the development of the role played by symmetries. One needs only to consider SU(3) and the classification of elementary particles, the Yang Mills enlargement of Maxwell's electrodynamics to the symmetry group SU(2), and indeed the tremendous activity surrounding the discovery of parity violation in the weak interactions in the late 1950s. This last example is one of a broken symmetry, though the symmetry in question is a discrete one. It was clear to Gell-Mann, who first clarified the role of SU(3) in particle physics, that this symmetry was not exact. If it had been, it would have been much easier to discover; for example, the proton, neutron, Σ, Λ and Ξ particles would all have had the same mass. For many years the SU(3) symmetry breaking was assigned a mathematical form, but the importance of this formulation fell away when the quark model began to be taken seriously; the reason the SU(3) symmetry was not exact was simply that the (three, in those days) quarks had different masses. At the same time, and in a different context, symmetry breaking of a different type was being investigated. This went by the name of `spontaneous symmetry breaking' and its characteristic was that the ground state of a given system was not invariant under the symmetry transformation, though the interactions (the Hamiltonian, in effect) was. A classic example is ferromagnetism. In a ferromagnet the atomic spins are aligned in one direction only—this is the ground state of the system. It is clearly not invariant under a rotation, for that would change the ground state into a (similar but) different one, with the spins aligned in a different direction; this is the phenomenon of a degenerate vacuum. The contribution of the spin interaction, s1.s2, to the Hamiltonian, however, is actually invariant under rotations. As Coleman remarked, a little man living in a ferromagnet would
Topics in broken supersymmetry
International Nuclear Information System (INIS)
Lee, I.H.
1984-01-01
Studies on two topics in the framework of broken supersymmetry are presented. Chapter I is a brief introduction in which the motivation and the background of this work are discussed. In Chapter II, the author studies the decay K + → π + γγ in models with spontaneous supersymmetry breaking and find that it is generally suppressed relative to the decay K + → π + anti nu nu of the conventional model, except possibly for a class of models where the scalar quark masses are generated by radiative corrections from a much larger supersymmetry breaking scale. For a small range of scalar quark and photino mass parameters, the cascade decay process K + → π + π 0 → π + γγ will become dominant over the anti nu nu mode. The author also comments on the possibility of probing the neutrino mass through the K + → π + π 0 → π + anti nu nu cascade decay. Chapter III is concerned with the implications of explicit lepton number violating soft operators in a general low energy effective theory with softly broken supersymmetry
Broken supersymmetries and shifted superpropagators
International Nuclear Information System (INIS)
Helayel-Neto, J.A.; Rabelo de Carvalho, F.A.B.; Smith, A.W.
1985-06-01
Superfield Feynman rules are derived for a general case where global supersymmetry is spontaneously broken by F-terms. The complete superspace dependence of the superpropagators is factored out and they are employed to discuss the corrections to the effective action and the non-renormalization theorems. Their coupling to external gauge superfields is also contemplated and finite matter contributions to the gaugino mass and the Fayet-Iliopoulos term are considered. (author)
Dark matter, baryon asymmetry, and spontaneous B and L breaking
International Nuclear Information System (INIS)
Dulaney, Timothy R.; Wise, Mark B.; Perez, Pavel Fileviez
2011-01-01
We investigate the dark matter and the cosmological baryon asymmetry in a simple theory where baryon (B) and lepton (L) number are local gauge symmetries that are spontaneously broken. In this model, the cold dark matter candidate is the lightest new field with baryon number and its stability is an automatic consequence of the gauge symmetry. Dark matter annihilation is either through a leptophobic gauge boson whose mass must be below a TeV or through the Higgs boson. Since the mass of the leptophobic gauge boson has to be below the TeV scale, one finds that in the first scenario there is a lower bound on the elastic cross section of about 5x10 -46 cm 2 . Even though baryon number is gauged and not spontaneously broken until the weak scale, a cosmologically acceptable baryon excess is possible. There can be a tension between achieving both the measured baryon excess and the dark matter density.
Invariant renormalization method for nonlinear realizations of dynamical symmetries
International Nuclear Information System (INIS)
Kazakov, D.I.; Pervushin, V.N.; Pushkin, S.V.
1977-01-01
The structure of ultraviolet divergences is investigated for the field theoretical models with nonlinear realization of the arbitrary semisimple Lie group, with spontaneously broken symmetry of vacuum. An invariant formulation of the background field method of renormalization is proposed which gives the manifest invariant counterterms off mass shell. A simple algorithm for construction of counterterms is developed. It is based on invariants of the group of dynamical symmetry in terms of the Cartan forms. The results of one-loop and two-loop calculations are reported
Turok, Neil
2018-01-01
Professor David Olive was a renowned British theoretical physicist who made seminal contributions to superstrings, quantum gauge theories and mathematical physics. He was awarded the Dirac Medal by the International Centre for Theoretical Physics in Trieste in 1997, with his long-standing collaborator Peter Goddard. David Olive was a Fellow of the Royal Society and a Founding Fellow of the Learned Society of Wales. David Olive was known for his visionary conjectures, including electromagnetic duality in spontaneously broken gauge theories, as well as his exceptionally clear and insightful style of exposition. These lectures, delivered by David Olive in 1982 at the University of Virginia, provide a pedagogical, self-contained introduction to gauge theory, Lie algebras, electromagnetic duality and integrable models. Despite enormous subsequent developments, they still provide a valuable entry point to some of the deepest topics in quantum gauge theory.
SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene
Wu, Lian-Ao; Murphy, Matthew; Guidry, Mike
2017-03-01
A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.
Some General Thoughts about Broken Symmetry.
1981-01-21
Higgs boson excitations, the long-range elastic-like forces (such as Suhl-Nakamura interactions in magnets) but most important of all the property I call...parameter is also a constant of the motion, which has important consequences for the nature of the relevant Goldstone bosons . It is too bad that in
International Nuclear Information System (INIS)
Choi, K.; Kaplan, D.B.; Nelson, A.E.
1993-01-01
Conventional solutions to the strong CP problem all require the existence of global symmetries. However, quantum gravity may destroy global symmetries, making it hard to understand why the electric dipole moment of the neutron (EDMN) is so small. We suggest here that CP is actually a discrete gauge symmetry, and is therefore not violated by quantum gravity. We show that four-dimensional CP can arise as a discrete gauge symmetry in theories with dimensional compactification, if the original number of Minkowski dimensions equals 8k+1, 8k+2 or 8k+3, and if there are certain restrictions on the gauge group; these conditions are met by superstrings. CP may then be broken spontaneously below 10 9 GeV, explaining the observed CP violation in the kaon system without inducing a large EDMN. We discuss the phenomenology of such models, as well as the peculiar properties of cosmic 'SP strings' which could be produced at the compactification scale. Such strings have the curious property that a particle carried around the string is turned into its CP conjugate. A single CP string renders four-dimensional space-time nonorientable. (orig.)
... Safe Videos for Educators Search English Español Broken Bones KidsHealth / For Kids / Broken Bones What's in this ... sticking through the skin . What Happens When a Bone Breaks? It hurts to break a bone! It's ...
Sequential flavor symmetry breaking
International Nuclear Information System (INIS)
Feldmann, Thorsten; Jung, Martin; Mannel, Thomas
2009-01-01
The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.
Sequential flavor symmetry breaking
Feldmann, Thorsten; Jung, Martin; Mannel, Thomas
2009-08-01
The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.
Parastatistics and gauge symmetries
International Nuclear Information System (INIS)
Govorkov, A.B.
1982-01-01
A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed
Broken Scale Invariance and Anomalous Dimensions
Wilson, K. G.
1970-05-01
Mack and Kastrup have proposed that broken scale invariance is a symmetry of strong interactions. There is evidence from the Thirring model and perturbation theory that the dimensions of fields defined by scale transformations will be changed by the interaction from their canonical values. We review these ideas and their consequences for strong interactions.
International Nuclear Information System (INIS)
Ioffe, B. L.
2009-01-01
A short review is presented of the spontaneous violation of chiral symmetry in QCD vacuum. It is demonstrated that this phenomenon is the origin of baryon masses in QCD. The value of nucleon mass is calculated, as well as the masses of hyperons and some baryonic resonances, and expressed mainly through the values of quark condensates - , q = u, d, s,-the vacuum expectation values (v.e.v.) of quark field. The concept of v.e.v. induced by external fields is introduced. It is demonstrated that such v.e.v. induced by static electromagnetic field results in quark condensate magnetic susceptibility, which plays the main role in determination of baryon magnetic moments. The magnetic moments of proton, neutron, and hyperons are calculated. The results of calculation of baryon octet β-decay constants are also presented.
Electroweak symmetry breaking: Higgs/whatever
International Nuclear Information System (INIS)
Chanowitz, M.S.
1990-01-01
In these two lectures the author discusses electroweak symmetry breaking from a general perspective, stressing properties that are model independent and follow just from the assumption that the electroweak interactions are described by a spontaneously broken gauge theory. This means he assumes the Higgs mechanism though not necessarily the existence of Higgs bosons. The first lecture presents the general framework of a spontaneously broken gauge theory: (1) the Higgs mechanism sui generis, with or without Higgs boson(s) and (2) the implications of symmetry and unitarity for the mass scale and interaction strength of the new physics that the Higgs mechanism requires. In addition he reviews a softer theoretical argument based on the naturalness problem which leads to a prejudice against Higgs bosons unless they are supersymmetric. This is a prejudice, not a theorem, and it could be overturned in the future by a clever new idea. In the second lecture he illustrates the general framework by reviewing some specific models: (1) the Weinberg-Salam model of the Higgs sector; (2) the minimal supersymmetric extension of the Weinberg-Salam model; and (3) technicolor as an example of the Higgs mechanism without Higgs bosons. He concludes the second lecture with a discussion of strong WW scattering that must occur if L SB lives above 1 TeV. In particular he describes some of the experimental signals and backgrounds at the SSC. 57 refs., 12 figs
Quantum diffusion in two-dimensional random systems with particle–hole symmetry
International Nuclear Information System (INIS)
Ziegler, K
2012-01-01
We study the scattering dynamics of an n-component spinor wavefunction in a random environment on a two-dimensional lattice. If the particle–hole symmetry of the Hamiltonian is spontaneously broken the dynamics of the quantum particles becomes diffusive on large scales. The latter is described by a non-interacting Grassmann field, indicating a special kind of asymptotic freedom on large scales in d = 2. (paper)
International Nuclear Information System (INIS)
Giacosa, Francesco
2010-01-01
A σ-model with two linked Mexican hats is discussed. This scenario could be realized in low-energy QCD when the ground state and the first excited (pseudo)scalar mesons are included, and where not only in the subspace of the ground states, but also in that of the first excited states, a Mexican hat potential is present. This possibility can change some basic features of a low-energy hadronic theory of QCD. It is also shown that spontaneous breaking of parity can occur in the vacuum for some parameter choice of the model. (orig.)
International Nuclear Information System (INIS)
Arima, A.
2003-01-01
(1) There are symmetries in nature, and the concept of symmetry has been used in art and architecture. The symmetry is evaluated high in the European culture. In China, the symmetry is broken in the paintings but it is valued in the architecture. In Japan, however, the symmetry has been broken everywhere. The serious and interesting question is why these differences happens? (2) In this lecture, I reviewed from the very beginning the importance of the rotational symmetry in quantum mechanics. I am sorry to be too fundamental for specialists of nuclear physics. But for people who do not use these theories, I think that you could understand the mathematical aspects of quantum mechanics and the relation between the angular momentum and the rotational symmetry. (3) To the specialists of nuclear physics, I talked about my idea as follows: dynamical treatment of collective motions in nuclei by IBM, especially the meaning of the degeneracy observed in the rotation bands top of γ vibration and β vibration, and the origin of pseudo-spin symmetry. Namely, if there is a symmetry, a degeneracy occurs. Conversely, if there is a degeneracy, there must be a symmetry. I discussed some details of the observed evidence and this correspondence is my strong belief in physics. (author)
Normalization sum rule and spontaneous breaking of U(N) invariance in random matrix ensembles
International Nuclear Information System (INIS)
Canali, C.M.; Kravtsov, V.E.
1995-03-01
It is shown that the two-level correlation function R(s,s') in the invariant random matrix ensembles (RME) with soft confinement exhibits a ''ghost peak'' at s approx. -s'. This lifts the sum rule prohibition for the level number variance to have a Poisson-like term var(n) = ηn that is typical of RME with broken U(N) symmetry. Thus we conclude that the U(N) invariance is broken spontaneously in the RME with soft confinement, η playing the role of an order-parameter. (author). 16 refs, 1 fig
Chiral symmetry and chiral-symmetry breaking
International Nuclear Information System (INIS)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed
Webber, C J
2001-05-01
This article shows analytically that single-cell learning rules that give rise to oriented and localized receptive fields, when their synaptic weights are randomly and independently initialized according to a plausible assumption of zero prior information, will generate visual codes that are invariant under two-dimensional translations, rotations, and scale magnifications, provided that the statistics of their training images are sufficiently invariant under these transformations. Such codes span different image locations, orientations, and size scales with equal economy. Thus, single-cell rules could account for the spatial scaling property of the cortical simple-cell code. This prediction is tested computationally by training with natural scenes; it is demonstrated that a single-cell learning rule can give rise to simple-cell receptive fields spanning the full range of orientations, image locations, and spatial frequencies (except at the extreme high and low frequencies at which the scale invariance of the statistics of digitally sampled images must ultimately break down, because of the image boundary and the finite pixel resolution). Thus, no constraint on completeness, or any other coupling between cells, is necessary to induce the visual code to span wide ranges of locations, orientations, and size scales. This prediction is made using the theory of spontaneous symmetry breaking, which we have previously shown can also explain the data-driven self-organization of a wide variety of transformation invariances in neurons' responses, such as the translation invariance of complex cell response.
Symmetry breaking in clogging for oppositely driven particles
Glanz, Tobias; Wittkowski, Raphael; Löwen, Hartmut
2016-11-01
The clogging behavior of a symmetric binary mixture of colloidal particles that are driven in opposite directions through constrictions is explored by Brownian dynamics simulations and theory. A dynamical state with a spontaneously broken symmetry occurs where one species is flowing and the other is blocked for a long time, which can be tailored by the size of the constrictions. Moreover, we find self-organized oscillations in clogging and unclogging of the two species. Apart from statistical physics, our results are of relevance for fields like biology, chemistry, and crowd management, where ions, microparticles, pedestrians, or other particles are driven in opposite directions through constrictions.
Chiral symmetry breaking and the pion quark structure
International Nuclear Information System (INIS)
Bernard, V.
1986-01-01
The mechanism of dynamical breaking of chiral symmetry in hadronic matter is first studied in the framework of the Nambu and Jona-Lasinio model on one hand and its generalisation to finite hadron size on the other hand. The analysis uses a variational procedure modelled after the BCS superconductor. Our study indicates for example, a great sensitivity of various quantities characterizing the breaking of symmetry to the shape of the interaction. Also the mechanism of breaking of chiral symmetry is essentially related to the mechanism of confinement. When a symmetry is spontaneously broken, there exists a Goldstone particle of zero mass. This is true in our model. This particle, the pion, is obtained as solution of a Bethe Salpeter equation for a qantiq bound state. This enables us to establish a connection between the pion as a Goldstone boson related to spontaneous symmetry breaking and the quark-antiquark structure of the pion. The finite mass of the physical pion is obtained with non zero current quark mass. Various properties of this particle are then studied in the RPA formalism. One important point of our model is the highly collective character of the pion. 85 refs [fr
... broken or dislocated jaw requires prompt medical attention. Emergency symptoms include difficulty breathing or heavy bleeding. ... safety equipment, such as a helmet when playing football, or using ... can prevent or minimize some injuries to the face or jaw.
Neutron-antineutron oscillation and baryonic majoron: low scale spontaneous baryon violation
Energy Technology Data Exchange (ETDEWEB)
Berezhiani, Zurab [Universita dell' Aquila, Dipartimento delle Scienze Fisiche e Chimiche, L' Aquila (Italy); INFN, Laboratori Nazionali Gran Sasso, L' Aquila (Italy)
2016-12-15
We discuss the possibility that baryon number B is spontaneously broken at low scales, of the order of MeV or even smaller, inducing the neutron-antineutron oscillation at the experimentally accessible level. An associated Goldstone particle-baryonic majoron can have observable effects in neutron to antineutron transitions in nuclei or dense nuclear matter. By extending baryon number to an anomaly-free B - L symmetry, the baryo-majoron can be identified with the ordinary majoron associated with the spontaneous breaking of lepton number, and it can have interesting implications for neutrinoless 2β decay with the majoron emission. We also discuss the hypothesis that baryon number can be spontaneously broken by QCD itself via the six-quark condensates. (orig.)
The spontaneous ℤ_2 breaking Twin Higgs
International Nuclear Information System (INIS)
Beauchesne, Hugues; Earl, Kevin; Grégoire, Thomas
2016-01-01
The Twin Higgs model seeks to address the little hierarchy problem by making the Higgs a pseudo-Goldstone of a global SU(4) symmetry that is spontaneously broken to SU(3). Gauge and Yukawa couplings, which explicitly break SU(4), enjoy a discrete ℤ_2 symmetry that accidentally maintains SU(4) at the quadratic level and therefore keeps the Higgs light. Contrary to most beyond the Standard Model theories, the quadratically divergent corrections to the Higgs mass are cancelled by a mirror sector, which is uncharged under the Standard Model groups. However, the Twin Higgs with an exact ℤ_2 symmetry leads to equal vevs in the Standard Model and mirror sectors, which is phenomenologically unviable. An explicit ℤ_2 breaking potential must then be introduced and tuned against the SU(4) breaking terms to produce a hierarchy of vevs between the two sectors. This leads to a moderate but non-negligible tuning. We propose a model to alleviate this tuning, without the need for an explicit ℤ_2 breaking sector. The model consists of two SU(4) fundamental Higgses, one whose vacuum preserves ℤ_2 and one whose vacuum breaks it. As the interactions between the two Higgses are turned on, the ℤ_2 breaking is transmitted from the broken to the unbroken sector and a small hierarchy of vevs is naturally produced. The presence of an effective tadpole and feedback between the two Higgses lead to a sizable improvement of the tuning. The resulting Higgs boson is naturally very Standard Model like.
''Natural'' left-right symmetry
International Nuclear Information System (INIS)
Mohapatra, R.N.; Pati, J.C.
1975-01-01
It is remarked that left-right symmetry of the starting gauge interactions is retained as a ''natural'' symmetry if it is broken in no way except possibly by mass terms in the Lagrangian. The implications of this result for the unification of coupling constants and for parity nonconservation at low and high energies are stressed
Symmetry breaking and scalar bosons
International Nuclear Information System (INIS)
Gildener, E.; Weinberg, S.
1976-01-01
There are reasons to suspect that the spontaneous breakdown of the gauge symmetries of the observed weak and electromagnetic interactions may be produced by the vacuum expectation values of massless weakly coupled elementary scalar fields. A method is described for finding the broken-symmetry solutions of such theories even when they contain arbitrary numbers of scalar fields with unconstrained couplings. In any such theory, there should exist a number of heavy Higgs bosons, with masses comparable to the intermediate vector bosons, plus one light Higgs boson, or ''scalon'' with mass of order αG/sub F/sub 1/2/. The mass and couplings of the scalon are calculable in terms of other masses, even without knowing all the details of the theory. For an SU(2) direct-product U(1) model with arbitrary numbers of scalar isodoublets, the scalon mass is greater than 5.26 GeV; a likely value is 7--10 GeV. The production and decay of the scalon are briefly considered. Some comments are offered on the relation between the mass scales associated with the weak and strong interactions
Anomaly-free gauged R-symmetry in local supersymmetry
International Nuclear Information System (INIS)
Chamseddine, A.H.; Dreiner, H.
1996-01-01
We discuss local R-symmetry as a potentially powerful new model building tool. We first review and clarify that a U(1) R-symmetry can only be gauged in local and not in global supersymmetry. We determine the anomaly-cancellation conditions for the gauged R-symmetry. For the standard superpotential these equations have no solution, independently of how many Standard Model singlets are added to the model. There is also no solution when we increase the number of families and the number of pairs of Higgs doublets. When the Green-Schwarz mechanism is employed to cancel the anomalies, solutions only exist for a large number of singlets. We find many anomaly-free family-independent models with an extra SU(3) c octet chiral superfield. We consider in detail the conditions for an anomaly-free family-dependent U(1) R and find solutions with one, two, three and four extra singlets. Only with three and four extra singlets do we naturally obtain sfermion masses of the order of the weak scale. For these solutions we consider the spontaneous breaking of supersymmetry and the R-symmetry in the context of local supersymmetry. In general the U(1) R gauge group is broken at or close to the Planck scale. We consider the effects of the R-symmetry on baryon- and lepton-number violation in supersymmetry. There is no logical connection between a conserved R-symmetry and a conserved R-parity. For conserved R-symmetry we have models for all possibilities of conserved or broken R-parity. Most models predict dominant effects which could be observed at HERA. (orig.)
Symmetry non-restoration at high temperature and supersymmetry
Dvali, Gia; Dvali, Gia
1996-01-01
We analyse the high temperature behaviour of softly broken supersymmetric theories taking into account the role played by effective non-renormalizable terms generated by the decoupling of superheavy degrees of freedom or the Planck scale physics. It turns out that discrete or continuous symmetries, spontaneously broken at intermediate scales, may never be restored, at least up to temperatures of the cutoff scale. There are a few interesting differences from the usual non-restoration in non-supersymmetric theories case where one needs at least two Higgs fields and non-restoration takes place for a range of parameters only. We show that with non-renormalizable interactions taken into account the non-restoration can occur for any nonzero range of parameters even for a single Higgs field. We show that such theories in general solve the cosmological domain wall problem, since the thermal production of the dangerous domain walls is enormously suppressed.
Electroweak symmetry breaking studies at the pp colliders of the 1990's and beyond
International Nuclear Information System (INIS)
Chanowitz, M.S.
1989-01-01
Within the conventional framework of a spontaneously broken gauge theory, general principles establish that the electroweak symmetry is broken by a new force that may be weak with associated new quanta below 1 TeV or strong with quanta above 1 TeV. The SSC parameters, √s = 40 TeV and L = 10 33 cm/sup /minus/2/s/sup /minus/1/, define a minimal facility with assured capability to observe the signals of symmetry breaking by a strong force above 1 TeV. Foreseeable luminosity upgrades would not be able to compensate a much lower collider energy for these physics signals. If the strong WW scattering signal were seen at the SSC in the 1990's it would provide a clear imperative for a collider with the physics reach of the ELOISATRON to begin detailed studies of the new force and quanta early in the next century. 35 refs., 7 figs., 4 tabs
Hermes, Matthew R.; Dukelsky, Jorge; Scuseria, Gustavo E.
2017-06-01
The failures of single-reference coupled-cluster theory for strongly correlated many-body systems is flagged at the mean-field level by the spontaneous breaking of one or more physical symmetries of the Hamiltonian. Restoring the symmetry of the mean-field determinant by projection reveals that coupled-cluster theory fails because it factorizes high-order excitation amplitudes incorrectly. However, symmetry-projected mean-field wave functions do not account sufficiently for dynamic (or weak) correlation. Here we pursue a merger of symmetry projection and coupled-cluster theory, following previous work along these lines that utilized the simple Lipkin model system as a test bed [J. Chem. Phys. 146, 054110 (2017), 10.1063/1.4974989]. We generalize the concept of a symmetry-projected mean-field wave function to the concept of a symmetry projected state, in which the factorization of high-order excitation amplitudes in terms of low-order ones is guided by symmetry projection and is not exponential, and combine them with coupled-cluster theory in order to model the ground state of the Agassi Hamiltonian. This model has two separate channels of correlation and two separate physical symmetries which are broken under strong correlation. We show how the combination of symmetry collective states and coupled-cluster theory is effective in obtaining correlation energies and order parameters of the Agassi model throughout its phase diagram.
Broken superfluid in dense quark matter
Energy Technology Data Exchange (ETDEWEB)
Parganlija, Denis; Schmitt, Andreas [Institut fuer Theoretische Physik, Technische Universitaet Wien, 1040 Vienna (Austria); Alford, Mark [Department of Physics, Washington University St Louis, MO, 63130 (United States)
2014-07-01
Quark matter at high densities is a superfluid. Properties of the superfluid become highly non-trivial if the effects of strange-quark mass and the weak interactions are considered. These properties are relevant for a microscopic description of compact stars. We discuss the effect of a (small) explicitly symmetry-breaking term on the properties of a zero-temperature superfluid in a relativistic φ{sup 4} theory. If the U(1) symmetry is exact, chemical potential and superflow can be equivalently introduced either via (1) a background gauge field or (2) a topologically nontrivial mode. However, in the case of the explicitly broken symmetry, we demonstrate that the scenarios (1) and (2) lead to quantitatively different results for the mass of the pseudo-Goldstone mode and the critical velocity for superfluidity.
Symmetry, Symmetry Breaking and Topology
Directory of Open Access Journals (Sweden)
Siddhartha Sen
2010-07-01
Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.
Tschierske, Carsten; Ungar, Goran
2016-01-04
Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spontaneous Lorentz breaking at high energies
International Nuclear Information System (INIS)
Cheng, H.-C.; Luty, Markus A.; Mukohyama, Shinji; Thaler, Jesse
2006-01-01
Theories that spontaneously break Lorentz invariance also violate diffeomorphism symmetries, implying the existence of extra degrees of freedom and modifications of gravity. In the minimal model ('ghost condensation') with only a single extra degree of freedom at low energies, the scale of Lorentz violation cannot be larger than about M ∼ 100GeV due to an infrared instability in the gravity sector. We show that Lorentz symmetry can be broken at much higher scales in a non-minimal theory with additional degrees of freedom, in particular if Lorentz symmetry is broken by the vacuum expectation value of a vector field. This theory can be constructed by gauging ghost condensation, giving a systematic effective field theory description that allows us to estimate the size of all physical effects. We show that nonlinear effects become important for gravitational fields with strength Φ 1/2 ∼> g, where g is the gauge coupling, and we argue that the nonlinear dynamics is free from singularities. We then analyze the phenomenology of the model, including nonlinear dynamics and velocity-dependent effects. The strongest bounds on the gravitational sector come from either black hole accretion or direction-dependent gravitational forces, and imply that the scale of spontaneous Lorentz breaking is M ∼ 12 GeV, g 2 10 15 GeV). If the Lorentz breaking sector couples directly to matter, there is a spin-dependent inverse-square law force, which has a different angular dependence from the force mediated by the ghost condensate, providing a distinctive signature for this class of models
Fractures (Broken Bones): First Aid
First aid Fractures (broken bones) Fractures (broken bones): First aid By Mayo Clinic Staff A fracture is a ... 10, 2018 Original article: http://www.mayoclinic.org/first-aid/first-aid-fractures/basics/ART-20056641 . Mayo Clinic ...
International Nuclear Information System (INIS)
Zastavenko, L.G.
1979-01-01
The usual proof of the phase transition existence in the gphi 4 model is considered. (For M 2 >M 0 2 minimum of the effective potential is at phi(0)=0, for M 2 >M 0 2 this minimum is at phi(0)=+-lambda not equal to 0, lambda→+ infinity at M 2 →- infinity). This proof is shown to be wrong, thus suggesting the absence in the model considered of the phase transition, vacuum degeneration, spontaneous symmetry breaking and zero-mass Goldstone-bosons
Mass splittings within composite Goldstone supermultiplets from broken supersymmetry
International Nuclear Information System (INIS)
Clark, T.E.; Love, S.T.
1985-01-01
The supersymmetric (SUSY) Dashen formulas are modified to include effects of softly broken supersymmetry and are used to compute the mass splittings and differences in decay constants among the various components of a Goldstone supermultiplet. The general results are applied to chiral-symmetry breaking in two-flavor SUSY QCD
Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics
International Nuclear Information System (INIS)
Chernodub, M.N.; Gongyo, Shinya
2017-01-01
We study rotating fermionic matter at finite temperature in the framework of the Nambu-Jona-Lasinio model. In order to respect causality the rigidly rotating system must be bound by a cylindrical boundary with appropriate boundary conditions that confine the fermions inside the cylinder. We show the finite geometry with the MIT boundary conditions affects strongly the phase structure of the model leading to three distinct regions characterized by explicitly broken (gapped), partially restored (nearly gapless) and spontaneously broken (gapped) phases at, respectively, small, moderate and large radius of the cylinder. The presence of the boundary leads to specific steplike irregularities of the chiral condensate as functions of coupling constant, temperature and angular frequency. These steplike features have the same nature as the Shubnikov-de Haas oscillations with the crucial difference that they occur in the absence of both external magnetic field and Fermi surface. At finite temperature the rotation leads to restoration of spontaneously broken chiral symmetry while the vacuum at zero temperature is insensitive to rotation (“cold vacuum cannot rotate”). As the temperature increases the critical angular frequency decreases and the transition becomes softer. A phase diagram in angular frequency-temperature plane is presented. We also show that at fixed temperature the fermion matter in the chirally restored (gapless) phase has a higher moment of inertia compared to the one in the chirally broken (gapped) phase.
Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Chernodub, M.N. [CNRS, Laboratoire de Mathématiques et Physique Théorique, Université de Tours,Tours (France); Laboratory of Physics of Living Matter, Far Eastern Federal University,Vladivostok (Russian Federation); Gongyo, Shinya [CNRS, Laboratoire de Mathématiques et Physique Théorique, Université de Tours,Tours (France); Theoretical Research Division, Nishina Center, RIKEN,Saitama (Japan)
2017-01-30
We study rotating fermionic matter at finite temperature in the framework of the Nambu-Jona-Lasinio model. In order to respect causality the rigidly rotating system must be bound by a cylindrical boundary with appropriate boundary conditions that confine the fermions inside the cylinder. We show the finite geometry with the MIT boundary conditions affects strongly the phase structure of the model leading to three distinct regions characterized by explicitly broken (gapped), partially restored (nearly gapless) and spontaneously broken (gapped) phases at, respectively, small, moderate and large radius of the cylinder. The presence of the boundary leads to specific steplike irregularities of the chiral condensate as functions of coupling constant, temperature and angular frequency. These steplike features have the same nature as the Shubnikov-de Haas oscillations with the crucial difference that they occur in the absence of both external magnetic field and Fermi surface. At finite temperature the rotation leads to restoration of spontaneously broken chiral symmetry while the vacuum at zero temperature is insensitive to rotation (“cold vacuum cannot rotate”). As the temperature increases the critical angular frequency decreases and the transition becomes softer. A phase diagram in angular frequency-temperature plane is presented. We also show that at fixed temperature the fermion matter in the chirally restored (gapless) phase has a higher moment of inertia compared to the one in the chirally broken (gapped) phase.
Takahashi, Daisuke A.; Ohashi, Keisuke; Fujimori, Toshiaki; Nitta, Muneto
2017-08-01
Bose-Einstein condensates (BECs) confined in a two-dimensional (2D) harmonic trap are known to possess a hidden 2D Schrödinger symmetry, that is, the Schrödinger symmetry modified by a trapping potential. Spontaneous breaking of this symmetry gives rise to a breathing motion of the BEC, whose oscillation frequency is robustly determined by the strength of the harmonic trap. In this paper, we demonstrate that the concept of the 2D Schrödinger symmetry can be applied to predict the nature of three-dimensional (3D) collective modes propagating along a condensate confined in an elongated trap. We find three kinds of collective modes whose existence is robustly ensured by the Schrödinger symmetry, which are physically interpreted as one breather mode and two Kelvin-ripple complex modes, i.e., composite modes in which the vortex core and the condensate surface oscillate interactively. We provide analytical expressions for the dispersion relations (energy-momentum relation) of these modes using the Bogoliubov theory [D. A. Takahashi and M. Nitta, Ann. Phys. 354, 101 (2015), 10.1016/j.aop.2014.12.009]. Furthermore, we point out that these modes can be interpreted as "quasi-massive-Nambu-Goldstone (NG) modes", that is, they have the properties of both quasi-NG and massive NG modes: quasi-NG modes appear when a symmetry of a part of a Lagrangian, which is not a symmetry of a full Lagrangian, is spontaneously broken, while massive NG modes appear when a modified symmetry is spontaneously broken.
Marginal deformations of vacua with massive boson-fermion degeneracy symmetry
International Nuclear Information System (INIS)
Florakis, Ioannis; Kounnas, Costas; Toumbas, Nicolaos
2010-01-01
Two-dimensional string vacua with Massive Spectrum boson-fermion Degeneracy Symmetry, [MSDS] d=2 , are explicitly constructed in Type II and Heterotic superstring theories. The study of their moduli space indicates the existence of large marginal deformations that connect continuously the initial [MSDS] d=2 vacua to higher-dimensional conventional superstring vacua, where spacetime supersymmetry is spontaneously broken by geometrical fluxes. We find that the maximally symmetric, [Max:MSDS] d=2 , Type II vacuum, is in correspondence with the maximal, N=8, d=4 'gauged supergravity', where the supergravity gauging is induced by the fluxes. This correspondence is extended to less symmetric cases where the initial MSDS symmetry is reduced by orbifolds: [Z orb :MSDS] d=2 ↔[N≤8:SUGRA] d=4,fluxes . We also exhibit and analyse thermal interpretations of some Euclidean versions of the models and identify classes of MSDS vacua that remain tachyon-free under arbitrary marginal deformations about the extended symmetry point. The connection between the two-dimensional MSDS vacua and the resulting four-dimensional effective supergravities arises naturally within the context of an adiabatic cosmological evolution, where the very early Universe is conjectured to be described by an MSDS vacuum, while at late cosmological times it is described by an effective N=1 supergravity theory with spontaneously broken supersymmetry.
General conditions for the PT symmetry of supersymmetric partner potentials
International Nuclear Information System (INIS)
Levai, G.
2004-01-01
Complete text of publication follows. A common feature of symmetries of quantum systems is that they restrict the form of the Hamiltonian, and consequently they also influence the structure of the energy spectrum. This is also the case with two symmetry concepts that are typically applied in non-relativistic quantum mechanics: supersymmetric quantum mechanics (SUSYQM) and PT symmetry. SUSYQM connects one-dimensional potentials pairwise via the relation V (±) (x) W 2 (x) ± dW/dx + ε, where ε is the factorization energy, V (-) (x) and V (+) (x) are the SUSY partner potentials, while W(x) is the superpotential. In the simplest case, when supersymmetry is unbroken, W(x) is defined in terms of the ground-state wavefunction of V (-) (x) as W(x) = - d/dx lnψ 0 (-) (x), and the factorization energy is chosen as ε E 0 (-) . Under these conditions the SUSY partner potentials possess the same energy levels, except that E 0 (-) is missing from the spectrum of V (+) (x), and the degenerate levels are connected by the SUSY ladder operators A = d/dx + W(x) and A † = - d/dx + W(x). The PT symmetry of a Hamiltonian prescribes its invariance under simultaneous space and time inversion, which boils down to the condition V (x) = V*(-x) in the case of one-dimensional potentials. The unusual feature of this new symmetry concept is that PT-symmetric potentials are complex in general, nevertheless, they possess real energy eigen-values, unless PT symmetry is spontaneously broken, in which case the energy spectrum consists of complex conjugate energy pairs. The interplay of these two symmetry concepts has been analyzed in a number of works, and it has been found that when V (-) (x) has unbroken PT symmetry, then the same applies to V (+) (x), while the spontaneous breakdown of the PT symmetry of V (-) (x) implies the manifest breakdown of the PT symmetry of V (+) (x). The factorization energy ε was found to be real in the former case, and imaginary in the latter one. The examples
Is the standard model saved asymptotically by conformal symmetry?
Gorsky, A.; Mironov, A.; Morozov, A.; Tomaras, T. N.
2015-03-01
It is pointed out that the top-quark and Higgs masses and the Higgs VEV with great accuracy satisfy the relations 4 m {/H 2} = 2 m {/T 2} = v 2, which are very special and reminiscent of analogous ones at Argyres-Douglas points with enhanced conformal symmetry. Furthermore, the RG evolution of the corresponding Higgs self-interaction and Yukawa couplings λ(0) = 1/8 and y(0) = 1 leads to the free-field stable point in the pure scalar sector at the Planck scale, also suggesting enhanced conformal symmetry. Thus, it is conceivable that the Standard Model is the low-energy limit of a distinct special theory with (super?) conformal symmetry at the Planck scale. In the context of such a "scenario," one may further speculate that the Higgs particle is the Goldstone boson of (partly) spontaneously broken conformal symmetry. This would simultaneously resolve the hierarchy and Landau pole problems in the scalar sector and would provide a nearly flat potential with two almost degenerate minima at the electroweak and Planck scales.
Symmetry and symmetry breaking
International Nuclear Information System (INIS)
Balian, R.; Lambert, D.; Brack, A.; Lachieze-Rey, M.; Emery, E.; Cohen-Tannoudji, G.; Sacquin, Y.
1999-01-01
The symmetry concept is a powerful tool for our understanding of the world. It allows a reduction of the volume of information needed to apprehend a subject thoroughly. Moreover this concept does not belong to a particular field, it is involved in the exact sciences but also in artistic matters. Living beings are characterized by a particular asymmetry: the chiral asymmetry. Although this asymmetry is visible in whole organisms, it seems it comes from some molecules that life always produce in one chirality. The weak interaction presents also the chiral asymmetry. The mass of particles comes from the breaking of a fundamental symmetry and the void could be defined as the medium showing as many symmetries as possible. The texts put together in this book show to a great extent how symmetry goes far beyond purely geometrical considerations. Different aspects of symmetry ideas are considered in the following fields: the states of matter, mathematics, biology, the laws of Nature, quantum physics, the universe, and the art of music. (A.C.)
At the origins of mass: elementary particles and fundamental symmetries
International Nuclear Information System (INIS)
Iliopoulos, Jean; Englert, Francois
2015-01-01
After a brief recall of the history of cosmology, the author proposes an overview of the different symmetries (symmetries in space and in time, internal symmetries, local or gauge symmetries), describes the mass issue (gauge interactions, quarks and leptons as matter mass constituents, chirality), addresses the spontaneous symmetry breaking (the Curie theorem, spontaneous symmetry breaking in classical physics and in quantum physics, the Goldstone theorem, spontaneous symmetry breaking in presence of gauge interactions), presents the standard theory (electromagnetic and weak interactions, strong interactions, relationship with experiment). An appendix presents elementary particles, and notably reports the story of the neutrino
Energy Technology Data Exchange (ETDEWEB)
Mendes, R V [Instituto de Fisica e Matematica, Lisbon (Portugal)
1976-07-01
A special type of symmetry is studied, wherein manifest invariance is restored by direct integration over a set of spontaneously broken ground states. In addition to invariant states and multiplets these symmetry realizations are shown to lead, in general, to clustering effects and quantum supercurrents. A systematic exploration of these symmetry realizations is proposed, mostly in physical situations where it has so far been believed that the only consequences of the symmetry are invariant states and multiplets. An application of these ideas to the quark system yields a possible explanation for the unobservability of free quarks and an interpretation of the Pomeron as a generalized Josephson current. Furthermore, the 'narrowing gap mechanism' suggests an explanation for the behavior of the e/sup +/ e/sup -/ ..-->.. hadrons cross section and a speculation on an approaching phase transition in hadronic production and the observation of free quarks.
Energy Technology Data Exchange (ETDEWEB)
Blum, Alexander Simon
2009-06-10
This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)
International Nuclear Information System (INIS)
Blum, Alexander Simon
2009-01-01
This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D 4 , the other describing quarks and employing the symmetry D 14 . In the latter model it is the quark mixing matrix element V ud - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)
Gauge origin of discrete flavor symmetries in heterotic orbifolds
Directory of Open Access Journals (Sweden)
Florian Beye
2014-09-01
Full Text Available We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kähler modulus T. Using this mechanism it is shown that the Δ(54 non-Abelian discrete symmetry group originates from a SU(3 gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2 gauge symmetry.
PT-symmetry breaking in complex nonlinear wave equations and their deformations
International Nuclear Information System (INIS)
Cavaglia, Andrea; Fring, Andreas; Bagchi, Bijan
2011-01-01
We investigate complex versions of the Korteweg-deVries equations and an Ito-type nonlinear system with two coupled nonlinear fields. We systematically construct rational, trigonometric/hyperbolic and elliptic solutions for these models including those which are physically feasible in an obvious sense, that is those with real energies, but also those with complex energy spectra. The reality of the energy is usually attributed to different realizations of an antilinear symmetry, as for instance PT-symmetry. It is shown that the symmetry can be spontaneously broken in two alternative ways either by specific choices of the domain or by manipulating the parameters in the solutions of the model, thus leading to complex energies. Surprisingly, the reality of the energies can be regained in some cases by a further breaking of the symmetry on the level of the Hamiltonian. In many examples, some of the fixed points in the complex solution for the field undergo a Hopf bifurcation in the PT-symmetry breaking process. By employing several different variants of the symmetries we propose many classes of new invariant extensions of these models and study their properties. The reduction of some of these models yields complex quantum mechanical models previously studied.
Spontaneous Hall effect in a chiral p-wave superconductor
Furusaki, Akira; Matsumoto, Masashige; Sigrist, Manfred
2001-08-01
In a chiral superconductor with broken time-reversal symmetry a ``spontaneous Hall effect'' may be observed. We analyze this phenomenon by taking into account the surface properties of a chiral superconductor. We identify two main contributions to the spontaneous Hall effect. One contribution originates from the Bernoulli (or Lorentz) force due to spontaneous currents running along the surfaces of the superconductor. The other contribution has a topological origin and is related to the intrinsic angular momentum of Cooper pairs. The latter can be described in terms of a Chern-Simons-like term in the low-energy field theory of the superconductor and has some similarities with the quantum Hall effect. The spontaneous Hall effect in a chiral superconductor is, however, nonuniversal. Our analysis is based on three approaches to the problem: a self-consistent solution of the Bogoliubov-de Gennes equation, a generalized Ginzburg-Landau theory, and a hydrodynamic formulation. All three methods consistently lead to the same conclusion that the spontaneous Hall resistance of a two-dimensional superconducting Hall bar is of order h/(ekFλ)2, where kF is the Fermi wave vector and λ is the London penetration depth; the Hall resistance is substantially suppressed from a quantum unit of resistance. Experimental issues in measuring this effect are briefly discussed.
International Nuclear Information System (INIS)
Watamura, S.
1983-01-01
Solutions of ten-dimensional Maxwell-Einstein theory and a bosonic part of N = 2, D = 10 supergravity theory are examined. It is shown that there is a solution for which six-dimensional internal space is compactified into CP 2 x S 2 . The gauge symmetry of the effective four-dimensional theory is SU(3) x SU(2) x U(1). The introduction of fermions is also considered. The requirement of consistency in introducing a spinsup(C) structure on CP 2 results in a U(1) charge quantization condition. (orig.)
Large leptonic Dirac CP phase from broken democracy with random perturbations
Ge, Shao-Feng; Kusenko, Alexander; Yanagida, Tsutomu T.
2018-06-01
A large value of the leptonic Dirac CP phase can arise from broken democracy, where the mass matrices are democratic up to small random perturbations. Such perturbations are a natural consequence of broken residual S3 symmetries that dictate the democratic mass matrices at leading order. With random perturbations, the leptonic Dirac CP phase has a higher probability to attain a value around ± π / 2. Comparing with the anarchy model, broken democracy can benefit from residual S3 symmetries, and it can produce much better, realistic predictions for the mass hierarchy, mixing angles, and Dirac CP phase in both quark and lepton sectors. Our approach provides a general framework for a class of models in which a residual symmetry determines the general features at leading order, and where, in the absence of other fundamental principles, the symmetry breaking appears in the form of random perturbations.
Hausdorff dimensions for sets with broken scaling symmetry
International Nuclear Information System (INIS)
Umberger, D.K.; Mayer-Kress, G.; Jen, E.
1985-01-01
Based on Hausdorff's original approach to fractional dimensions, we study systems which are not sufficiently characterized by their ''fractal'' or scaling dimension. We construct informative examples of such sets and relate them to sets observed in the context of dynamical systems. 18 refs., 5 figs
The geometry of lie algebras and broken SO(6) symmetries
International Nuclear Information System (INIS)
Lawrence, T.R.
2001-10-01
Non-linear realisations of the groups SU(2), SO(1,4) and SO(2,4) are analysed, described by the coset spaces SU(2)/U(1), SO(1,4)/SO(1,3) and SO(2,4)/SO(1,3) x SO(1,1). The Lie algebras of certain special unitary and special orthogonal groups are studied and their projection operators are determined in order to facilitate the above analyses, in particular that of SO(2,4)/SO(l,3) x SO(1,1). The analysis consists of determining the transformation properties of the Goldstone bosons, constructing the most general possible Lagrangian for the realisations and finding the metric of the coset space. (author)
Hadrons and broken symmetries with WASA-at-COSY
Indian Academy of Sciences (India)
Physics of Hadrons and QCD Volume 75 Issue 2 August 2010 pp 225-234 ... is an internal experiment at the cooler synchrotron (COSY) in Jülich, Germany. ... Higher orders in chiral perturbation theory are probed with the → 0 decay.
Hadrons and broken symmetries with WASA- at-COSY
Indian Academy of Sciences (India)
Abstract. The WASA Detector Facility is an internal experiment at the cooler syn- .... This is an improvement of more than two orders of magnitude in the event ..... demonstrates the quality of the data for events coming from the reaction 1 GeV.
Quantum restoration of broken symmetry in one- dimensional loop ...
Indian Academy of Sciences (India)
Though quantum theory and classical theory are completely different from ... authors) that the classical property of a system and the classical limit of the ..... pactly supported function (for example, the alternate deposition of thin layers of GaAs.
Fractured toe - self-care; Broken bone - toe - self-care; Fracture - toe - self-care; Fracture phalanx - toe ... often treated without surgery and can be taken care of at home. Severe injuries include: Breaks that ...
... pumping action and blood flow, go to the Health Topics How the Heart Works article.) Researchers are trying to identify the precise way in which the stress hormones affect the heart. Broken heart syndrome may result from ...
Noncommutative gauge theory and symmetry breaking in matrix models
International Nuclear Information System (INIS)
Grosse, Harald; Steinacker, Harold; Lizzi, Fedele
2010-01-01
We show how the fields and particles of the standard model can be naturally realized in noncommutative gauge theory. Starting with a Yang-Mills matrix model in more than four dimensions, an SU(n) gauge theory on a Moyal-Weyl space arises with all matter and fields in the adjoint of the gauge group. We show how this gauge symmetry can be broken spontaneously down to SU(3) c xSU(2) L xU(1) Q [resp. SU(3) c xU(1) Q ], which couples appropriately to all fields in the standard model. An additional U(1) B gauge group arises which is anomalous at low energies, while the trace-U(1) sector is understood in terms of emergent gravity. A number of additional fields arise, which we assume to be massive, in a pattern that is reminiscent of supersymmetry. The symmetry breaking might arise via spontaneously generated fuzzy spheres, in which case the mechanism is similar to brane constructions in string theory.
Job loss and broken partnerships
DEFF Research Database (Denmark)
Kriegbaum, Margit; Christensen, Ulla; Lund, Rikke
2008-01-01
The aim of this study was to investigate the effects of the accumulated number of job losses and broken partnerships (defined as the end of cohabitation) on the risk of fatal and nonfatal events of ischemic heart disease (IHD).......The aim of this study was to investigate the effects of the accumulated number of job losses and broken partnerships (defined as the end of cohabitation) on the risk of fatal and nonfatal events of ischemic heart disease (IHD)....
Killing symmetries in neutron transport
International Nuclear Information System (INIS)
Lukacs, B.; Racz, A.
1992-10-01
Although inside the reactor zone there is no exact continuous spatial symmetry, in certain configurations neutron flux distribution is close to a symmetrical one. In such cases the symmetrical solution could provide a good starting point to determine the non-symmetrical power distribution. All possible symmetries are determined in the 3-dimensional Euclidean space, and the form of the transport equation is discussed in such a coordinate system which is adapted to the particular symmetry. Possible spontaneous symmetry breakings are pointed out. (author) 6 refs
Leptogenesis and residual CP symmetry
International Nuclear Information System (INIS)
Chen, Peng; Ding, Gui-Jun; King, Stephen F.
2016-01-01
We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.
Energy Technology Data Exchange (ETDEWEB)
Hill, Christopher T.
2018-03-19
We review and expand upon recent work demonstrating that Weyl invariant theories can be broken "inertially," which does not depend upon a potential. This can be understood in a general way by the "current algebra" of these theories, independently of specific Lagrangians. Maintaining the exact Weyl invariance in a renormalized quantum theory can be accomplished by renormalization conditions that refer back to the VEV's of fields in the action. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential that breaks a U(1) symmetry together,with scale invariance.
Anomaly-free discrete gauge symmetries in Froggatt-Nielsen models
International Nuclear Information System (INIS)
Luhn, C.
2006-05-01
Discrete symmetries (DS) can forbid dangerous B- and L-violating operators in the supersymmetric Lagrangian. Due to the violation of global DSs by quantum gravity effects, the introduced DS should be a remnant of a spontaneously broken local gauge symmetry. Demanding anomaly freedom of the high-energy gauge theory, we determine all family-independent anomaly-free Z N symmetries which are consistent with the trilinear MSSM superpotential terms in Part I. We find one outstanding Z 6 symmetry, proton hexality P 6 , which prohibits all B- and L-violating operators up to dimension five, except for the Majorana neutrino mass terms LH u LH u . In Part II, we combine the idea that a DS should have a gauge origin with the scenario of Froggatt and Nielsen (FN). We construct concise U(1) X FN models in which the Z 3 symmetry baryon triality, B 3 , arises from U(1) X breaking. We choose this specific DGS because it allows for R-parity violating interactions; thus neutrino masses can be explained without introducing right-handed neutrinos. We find six phenomenologically viable B 3 -conserving FN models. (orig.)
Anomaly-free discrete gauge symmetries in Froggatt-Nielsen models
Energy Technology Data Exchange (ETDEWEB)
Luhn, C.
2006-05-15
Discrete symmetries (DS) can forbid dangerous B- and L-violating operators in the supersymmetric Lagrangian. Due to the violation of global DSs by quantum gravity effects, the introduced DS should be a remnant of a spontaneously broken local gauge symmetry. Demanding anomaly freedom of the high-energy gauge theory, we determine all family-independent anomaly-free Z{sub N} symmetries which are consistent with the trilinear MSSM superpotential terms in Part I. We find one outstanding Z{sub 6} symmetry, proton hexality P{sub 6}, which prohibits all B- and L-violating operators up to dimension five, except for the Majorana neutrino mass terms LH{sub u}LH{sub u}. In Part II, we combine the idea that a DS should have a gauge origin with the scenario of Froggatt and Nielsen (FN). We construct concise U(1){sub X} FN models in which the Z{sub 3} symmetry baryon triality, B{sub 3}, arises from U(1){sub X} breaking. We choose this specific DGS because it allows for R-parity violating interactions; thus neutrino masses can be explained without introducing right-handed neutrinos. We find six phenomenologically viable B{sub 3}-conserving FN models. (orig.)
Strong Electroweak Symmetry Breaking
Grinstein, Benjamin
2011-01-01
Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...
Kim, Jihn E.; Nam, Soonkeon; Semetzidis, Yannis K.
2018-01-01
Pseudoscalars appearing in particle physics are reviewed systematically. From the fundamental point of view at an ultraviolet completed theory, they can be light if they are realized as pseudo-Goldstone bosons of some spontaneously broken global symmetries. The spontaneous breaking scale is parametrized by the decay constant f. The global symmetry is defined by the lowest order terms allowed in the effective theory consistent with the gauge symmetry in question. Since any global symmetry is known to be broken at least by quantum gravitational effects, all pseudoscalars should be massive. The mass scale is determined by f and the explicit breaking terms ΔV in the effective potential and also anomaly terms ΔΛG4 for some non-Abelian gauge groups G. The well-known example by non-Abelian gauge group breaking is the potential for the “invisible” QCD axion, via the Peccei-Quinn symmetry, which constitutes a major part of this review. Even if there is no breaking terms from gauge anomalies, there can be explicit breaking terms ΔV in the potential in which case the leading term suppressed by f determines the pseudoscalar mass scale. If the breaking term is extremely small and the decay constant is trans-Planckian, the corresponding pseudoscalar can be a candidate for a “quintessential axion.” In general, (ΔV )1/4 is considered to be smaller than f, and hence the pseudo-Goldstone boson mass scales are considered to be smaller than the decay constants. In such a case, the potential of the pseudo-Goldstone boson at the grand unification scale is sufficiently flat near the top of the potential that it can be a good candidate for an inflationary model, which is known as “natural inflation.” We review all these ideas in the bosonic collective motion framework.
On the character of scale symmetry breaking in gauge theories
International Nuclear Information System (INIS)
Gusijnin, V.P.; Kushnir, V.A.; Miransky, V.A.
1988-01-01
The problem of scale symmetry breaking in gauge theories is discussed. It is shown that the phenomenon of spontaneous breaking of scale symmetry in gauge theories is incompatible with the PCAAC dynamics. 12 refs
Broken Homes: Impact on Adolescents.
Koziey, Paul W.; Davies, Leigh
1982-01-01
Tends to support assertion that children from homes broken by separation, divorce, or death are less well-adjusted in terms of California Personality Inventory scales of self-control, socialization, femininity, and good impression, than children from intact homes. Age and sex were not found to be linked to the degree of maladjustment. (AH)
Discrete symmetries in the MSSM
Energy Technology Data Exchange (ETDEWEB)
Schieren, Roland
2010-12-02
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)
Discrete symmetries in the MSSM
International Nuclear Information System (INIS)
Schieren, Roland
2010-01-01
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z R 4 symmetry is discovered which solves the μ-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z R 4 is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z R 4 symmetry and other desirable features. (orig.)
On the origin of neutrino flavour symmetry
International Nuclear Information System (INIS)
King, Stephen F.; Luhn, Christoph
2009-01-01
We study classes of models which are based on some discrete family symmetry which is completely broken such that the observed neutrino flavour symmetry emerges indirectly as an accidental symmetry. For such 'indirect' models we discuss the D-term flavon vacuum alignments which are required for such an accidental flavour symmetry consistent with tri-bimaximal lepton mixing to emerge. We identify large classes of suitable discrete family symmetries, namely the Δ(3n 2 ) and Δ(6n 2 ) groups, together with other examples such as Z 7 x Z 3 . In such indirect models the implementation of the type I see-saw mechanism is straightforward using constrained sequential dominance. However the accidental neutrino flavour symmetry may be easily violated, for example leading to a large reactor angle, while maintaining accurately the tri-bimaximal solar and atmospheric predictions.
The spectral density of the QCD Dirac operator and patterns of chiral symmetry breaking
International Nuclear Information System (INIS)
Toublan, D.; Verbaarschot, J.J.M.
1999-01-01
We study the spectrum of the QCD Dirac operator for two colors with fermions in the fundamental representation and for two or more colors with adjoint fermions. For N f flavors, the chiral flavor symmetry of these theories is spontaneously broken according to SU (2N f → Sp (2N f ) and SU (N f → O (N f ), respectively, rather than the symmetry breaking pattern SU (N f ) x SU (N f ) → SU (N f ) for QCD with three or more colors and fundamental fermions. In this paper we study the Dirac spectrum for the first two symmetry breaking patterns. Following previous work for the third case we find the Dirac spectrum in the domain λ QCD by means of partially quenched chiral perturbation theory. In particular, this result allows us to calculate the slope of the Dirac spectrum at λ = 0. We also show that for λ 2 Λ QCD (wing L the linear size of the system) the Dirac spectrum is given by a chiral Random Matrix Theory with the symmetries of the Dirac operator
Pole Inflation - Shift Symmetry and Universal Corrections
Broy, Benedict J.; Galante, Mario; Roest, Diederik; Westphal, Alexander
2015-01-01
An appealing explanation for the Planck data is provided by inflationary models with a singular non-canonical kinetic term: a Laurent expansion of the kinetic function translates into a potential with a nearly shift-symmetric plateau in canonical fields. The shift symmetry can be broken at large
Symmetry breaking patterns for inflation
Klein, Remko; Roest, Diederik; Stefanyszyn, David
2018-06-01
We study inflationary models where the kinetic sector of the theory has a non-linearly realised symmetry which is broken by the inflationary potential. We distinguish between kinetic symmetries which non-linearly realise an internal or space-time group, and which yield a flat or curved scalar manifold. This classification leads to well-known inflationary models such as monomial inflation and α-attractors, as well as a new model based on fixed couplings between a dilaton and many axions which non-linearly realises higher-dimensional conformal symmetries. In this model, inflation can be realised along the dilatonic direction, leading to a tensor-to-scalar ratio r ˜ 0 .01 and a spectral index n s ˜ 0 .975. We refer to the new model as ambient inflation since inflation proceeds along an isometry of an anti-de Sitter ambient space-time, which fully determines the kinetic sector.
Large gauge symmetries and asymptotic states in QED
Energy Technology Data Exchange (ETDEWEB)
Gabai, Barak; Sever, Amit [School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)
2016-12-19
Large Gauge Transformations (LGT) are gauge transformations that do not vanish at infinity. Instead, they asymptotically approach arbitrary functions on the conformal sphere at infinity. Recently, it was argued that the LGT should be treated as an infinite set of global symmetries which are spontaneously broken by the vacuum. It was established that in QED, the Ward identities of their induced symmetries are equivalent to the Soft Photon Theorem. In this paper we study the implications of LGT on the S-matrix between physical asymptotic states in massive QED. In appose to the naively free scattering states, physical asymptotic states incorporate the long range electric field between asymptotic charged particles and were already constructed in 1970 by Kulish and Faddeev. We find that the LGT charge is independent of the particles’ momenta and may be associated to the vacuum. The soft theorem’s manifestation as a Ward identity turns out to be an outcome of not working with the physical asymptotic states.
Lepton flavour symmetry and the neutrino magnetic moment
International Nuclear Information System (INIS)
Ecker, G.; Grimus, W.
1990-01-01
With the standard model gauge group and the three standard left-handed Weyl neutrinos, two minimal scenarios are investigated where an arbitrary non-abelian lepton flavour symmetry group G H is responsible for a light neutrino with a large magnetic moment. In the first case, with scalar fields carrying lepton flavour, some finetuning is necessary to get a small enough neutrino mass for μ ν = O(10 -11 μ B ). In the second scenario, the introduction of heavy charged gauge singlet fermions with lepton flavour allows for a strictly massless neutrino to one-loop order. In both cases, the interference mechanisms for small m ν and large μ ν is unique, independently of G H . In explicit realizations of the two scenarios, the horizontal groups are found to be non-abelian extensions of a Zeldovich-Konopinski-Mahmoud lepton number symmetry. Only a discrete part of G H is spontaneously broken leading to a light Dirac neutrino with a large magnetic moment. (Authors) 22 refs., 3 figs
Asymptotic symmetries in de Sitter and inflationary spacetimes
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Ricardo Z.; Sandora, McCullen; Sloth, Martin S., E-mail: ferreira@cp3.sdu.dk, E-mail: sandora@cp3.sdu.dk, E-mail: sloth@cp3.sdu.dk [CP3-Origins, Center for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark)
2017-04-01
Soft gravitons produced by the expansion of de Sitter can be viewed as the Nambu-Goldstone bosons of spontaneously broken asymptotic symmetries of the de Sitter spacetime. We explicitly construct the associated charges, and show that acting with the charges on the vacuum creates a new state equivalent to a change in the local coordinates induced by the soft graviton. While the effect remains unobservable within the domain of a single observer where the symmetry is unbroken, this change is physical when comparing different asymptotic observers, or between a transformed and un-transformed initial state, consistent with the scale-dependent statistical anisotropies previously derived using semiclassical relations. We then compute the overlap, (0| 0'), between the unperturbed de Sitter vacuum |0), and the state | 0') obtained by acting N times with the charge. We show that when N→ M {sub p} {sup 2}/ H {sup 2} this overlap receives order one corrections and 0(0| 0')→ , which corresponds to an infrared perturbative breakdown after a time t {sub dS} ∼ M {sub p} {sup 2}/ H {sup 3} has elapsed, consistent with earlier arguments in the literature arguing for a perturbative breakdown on this timescale. We also discuss the generalization to inflation, and rederive the 3-point and one-loop consistency relations.
Symmetry breaking in string theory
International Nuclear Information System (INIS)
Potting, R.
1998-01-01
A mechanism for a spontaneous breakdown of CPT symmetry appears in string theory, with possible implications for particle models. A realistic string theory might exhibit CPT violation at levels detectable in current or future experiments. A possible new mechanism for baryogenesis in the early Universe is also discussed
Aniello, Paolo; Chruściński, Dariusz
2017-07-01
A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner’s theorem, the set of pure states—the rank-one projections—is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the sets of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e. reasoning in terms of quantum states, the sets of ‘uniform’ density operators of corresponding fixed rank are symmetry witnesses too.
Symmetry breaking and restoration in gauge theories
International Nuclear Information System (INIS)
Natale, A.A.
A review is made of the utilization of the Higgs mechanism in spontaneous symmetry breaking. It is shown that such as ideas came from an analogy with the superconductivity phenomenological theory based on a Ginzburg-Landau lagrangean. The symmetry restoration through the temperature influence is studied. (L.C.) [pt
Rotational Symmetry Breaking in Baby Skyrme Models
Karliner, Marek; Hen, Itay
We discuss one of the most interesting phenomena exhibited by baby skyrmions - breaking of rotational symmetry. The topics we will deal with here include the appearance of rotational symmetry breaking in the static solutions of baby Skyrme models, both in flat as well as in curved spaces, the zero-temperature crystalline structure of baby skyrmions, and finally, the appearance of spontaneous breaking of rotational symmetry in rotating baby skyrmions.
Holography without translational symmetry
Vegh, David
2013-01-01
We propose massive gravity as a holographic framework for describing a class of strongly interacting quantum field theories with broken translational symmetry. Bulk gravitons are assumed to have a Lorentz-breaking mass term as a substitute for spatial inhomogeneities. This breaks momentum-conservation in the boundary field theory. At finite chemical potential, the gravity duals are charged black holes in asymptotically anti-de Sitter spacetime. The conductivity in these systems generally exhibits a Drude peak that approaches a delta function in the massless gravity limit. Furthermore, the optical conductivity shows an emergent scaling law: $|\\sigma(\\omega)| \\approx {A \\over \\omega^{\\alpha}} + B$. This result is consistent with that found earlier by Horowitz, Santos, and Tong who introduced an explicit inhomogeneous lattice into the system.
Voisin, Claire
1999-01-01
This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...
A search for symmetries in the genetic code
International Nuclear Information System (INIS)
Hornos, J.E.M.; Hornos, Y.M.M.
1991-01-01
A search for symmetries based on the classification theorem of Cartan for the compact simple Lie algebras is performed to verify to what extent the genetic code is a manifestation of some underlying symmetry. An exact continuous symmetry group cannot be found to reproduce the present, universal code. However a unique approximate symmetry group is compatible with codon assignment for the fundamental amino acids and the termination codon. In order to obtain the actual genetic code, the symmetry must be slightly broken. (author). 27 refs, 3 figs, 6 tabs
International Nuclear Information System (INIS)
Wang Dianfu
2008-01-01
In terms of the Nambu-Jona-Lasinio mechanism, dynamical breaking of gauge symmetry for the maximally generalized Yang-Mills model is investigated. The gauge symmetry behavior at finite temperature is also investigated and it is shown that the gauge symmetry broken dynamically at zero temperature can be restored at finite temperatures
Dynamics of symmetry breaking in strongly coupled QED
International Nuclear Information System (INIS)
Bardeen, W.A.
1988-10-01
I review the dynamical structure of strong coupled QED in the quenched planar limit. The symmetry structure of this theory is examined with reference to the nature of both chiral and scale symmetry breaking. The renormalization structure of the strong coupled phase is analysed. The compatibility of spontaneous scale and chiral symmetry breaking is studied using effective lagrangian methods. 14 refs., 3 figs
Dynamical study of symmetries: breaking and restauration
International Nuclear Information System (INIS)
Schuck, P.
1986-09-01
First symmetry breaking (spontaneous) is explained and the physical implication discussed for infinite systems. The relation with phase transitions is indicated. Then the specific aspects of symmetry breaking in finite systems is treated and illustrated in detail for the case of translational invariance with the help of an oversimplified but exactly solvable model. The method of projection (restauration of symmetry) is explained for the static case and also applied to the model. Symmetry breaking in the dynamical case and for instance the notion of a soft mode responsible for the symmetry breaking is discussed in the case of superfluidity and another exactly solvable model is introduced. The Goldstone mode is treated in detail. Some remarks on analogies with the breaking of chiral symmetry are made. Some recent developments in the theory of symmetry restauration are briefly outlined [fr
Investigations of chiral symmetry breaking and topological aspects of lattice QCD
International Nuclear Information System (INIS)
Garcia Ramos, Elena
2013-01-01
The spontaneous breaking of chiral symmetry is a fascinating phenomenon of QCD whose mechanism is still not well understood and it has fundamental phenomenological implications. It is, for instance, responsible for the low mass of the pions which are effectively Goldstone bosons of the spontaneously broken symmetry. Since these phenomena belong to the low energy regime of QCD, non-perturbative techniques have to be applied in order to study them. In this work we use the twisted mass lattice QCD regularization to compute the chiral condensate, the order parameter of spontaneous chiral symmetry breaking. To this end we apply the recently introduced method of spectral projectors which allows us to perform calculations in large volumes due to its inherently low computational cost. This approach, moreover, enables a direct calculation of the chiral condensate based on a theoretically clean definition of the observable via density chains. We thus present a continuum limit determination of the chirally extrapolated condensate for N f =2 and N f =2+1+1 flavours of twisted mass fermions at maximal twist. In addition we study the chiral behavior of the topological susceptibility, a measure of the topological fluctuations of the gauge fields. We again apply the spectral projector method for this calculation. We comment on the difficulties which appear in the calculation of this observable due to the large autocorrelations involved. Finally we present the continuum limit result of the topological susceptibility in the pure gluonic theory which allows us to perform a test of the Witten-Veneziano relation. We found that this relation is well satisfied. Our results support the validity of the Witten-Veneziano formula which relates the topological fluctuations of the gauge fields with the unexpectedly large value of the η' mass.
Lie-algebra approach to symmetry breaking
International Nuclear Information System (INIS)
Anderson, J.T.
1981-01-01
A formal Lie-algebra approach to symmetry breaking is studied in an attempt to reduce the arbitrariness of Lagrangian (Hamiltonian) models which include several free parameters and/or ad hoc symmetry groups. From Lie algebra it is shown that the unbroken Lagrangian vacuum symmetry can be identified from a linear function of integers which are Cartan matrix elements. In broken symmetry if the breaking operators form an algebra then the breaking symmetry (or symmetries) can be identified from linear functions of integers characteristic of the breaking symmetries. The results are applied to the Dirac Hamiltonian of a sum of flavored fermions and colored bosons in the absence of dynamical symmetry breaking. In the partially reduced quadratic Hamiltonian the breaking-operator functions are shown to consist of terms of order g 2 , g, and g 0 in the color coupling constants and identified with strong (boson-boson), medium strong (boson-fermion), and fine-structure (fermion-fermion) interactions. The breaking operators include a boson helicity operator in addition to the familiar fermion helicity and ''spin-orbit'' terms. Within the broken vacuum defined by the conventional formalism, the field divergence yields a gauge which is a linear function of Cartan matrix integers and which specifies the vacuum symmetry. We find that the vacuum symmetry is chiral SU(3) x SU(3) and the axial-vector-current divergence gives a PCAC -like function of the Cartan matrix integers which reduces to PCAC for SU(2) x SU(2) breaking. For the mass spectra of the nonets J/sup P/ = 0 - ,1/2 + ,1 - the integer runs through the sequence 3,0,-1,-2, which indicates that the breaking subgroups are the simple Lie groups. Exact axial-vector-current conservation indicates a breaking sum rule which generates octet enhancement. Finally, the second-order breaking terms are obtained from the second-order spin tensor sum of the completely reduced quartic Hamiltonian
Miller, G A
2003-01-01
Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...
Peccei-Quinn invariant singlet extended SUSY with anomalous U(1) gauge symmetry
Energy Technology Data Exchange (ETDEWEB)
Im, Sang Hui; Seo, Min-Seok [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon 305-811 (Korea, Republic of)
2015-05-13
Recent discovery of the SM-like Higgs boson with m{sub h}≃125 GeV motivates an extension of the minimal supersymmetric standard model (MSSM), which involves a singlet Higgs superfield with a sizable Yukawa coupling to the doublet Higgs superfields. We examine such singlet-extended SUSY models with a Peccei-Quinn (PQ) symmetry that originates from an anomalous U(1){sub A} gauge symmetry. We focus on the specific scheme that the PQ symmetry is spontaneously broken at an intermediate scale v{sub PQ}∼√(m{sub SUSY}M{sub Pl}) by an interplay between Planck scale suppressed operators and tachyonic soft scalar mass m{sub SUSY}∼√(D{sub A}) induced dominantly by the U(1){sub A}D-term D{sub A}. This scheme also results in spontaneous SUSY breaking in the PQ sector, generating the gaugino masses M{sub 1/2}∼√(D{sub A}) when it is transmitted to the MSSM sector by the conventional gauge mediation mechanism. As a result, the MSSM soft parameters in this scheme are induced mostly by the U(1){sub A}D-term and the gauge mediated SUSY breaking from the PQ sector, so that the sparticle masses can be near the present experimental bounds without causing the SUSY flavor problem. The scheme is severely constrained by the condition that a phenomenologically viable form of the low energy operators of the singlet and doublet Higgs superfields is generated by the PQ breaking sector in a way similar to the Kim-Nilles solution of the μ problem, and the resulting Higgs mass parameters allow the electroweak symmetry breaking with small tan β. We find two minimal models with two singlet Higgs superfields, satisfying this condition with a relatively simple form of the PQ breaking sector, and briefly discuss some phenomenological aspects of the model.
[Dehydration due to "mouth broken"].
Meijler, D P M; van Mossevelde, P W J; van Beek, R H T
2012-09-01
Two children were admitted to a medical centre due to dehydration after an oral injury and the extraction of a tooth. One child complained of "mouth broken". Dehydration is the most common water-electrolyte imbalance in children. Babies and young children are prone to dehydration due to their relatively large body surface area, the high percentage extracellular fluid, and the limited ability of the kidneys to conserve water. After the removal ofa tooth, after an oral trauma or in case of oral discomfort, a child is at greater risk of dehydration by reduced fluid and food intake due to oral pain and/or discomfort and anxiety to drink. In those cases, extra attention needs to be devoted to the intake of fluids.
Gauge theories as theories of spontaneous breakdown
International Nuclear Information System (INIS)
Ivanov, E.A.; Ogievetsky, V.I.
1976-01-01
Any gauge theory is proved to arise from spontaneous breakdown of symmetry under certain infinite parameter group, the corresponding gauge field being the Goldstone field by which this breakdown is accompanied
Emergent Electroweak Symmetry Breaking with Composite W, Z Bosons
Cui, Yanou; Wells, James D
2009-01-01
We present a model of electroweak symmetry breaking in a warped extra dimension where electroweak symmetry is broken at the UV (or Planck) scale. An underlying conformal symmetry is broken at the IR (or TeV) scale generating masses for the electroweak gauge bosons without invoking a Higgs mechanism. By the AdS/CFT correspondence the W,Z bosons are identified as composite states of a strongly-coupled gauge theory, suggesting that electroweak symmetry breaking is an emergent phenomenon at the IR scale. The model satisfies electroweak precision tests with reasonable fits to the S and T parameter. In particular the T parameter is sufficiently suppressed since the model naturally admits a custodial SU(2) symmetry. The composite nature of the W,Z-bosons provide a novel possibility of unitarizing WW scattering via form factor suppression. Constraints from LEP and the Tevatron as well as discovery opportunities at the LHC are discussed for these composite electroweak gauge bosons.
Structural symmetry and protein function.
Goodsell, D S; Olson, A J
2000-01-01
The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of
Flavor universal dynamical electroweak symmetry breaking
International Nuclear Information System (INIS)
Burdman, G.; Evans, N.
1999-01-01
The top condensate seesaw mechanism of Dobrescu and Hill allows electroweak symmetry to be broken while deferring the problem of flavor to an electroweak singlet, massive sector. We provide an extended version of the singlet sector that naturally accommodates realistic masses for all the standard model fermions, which play an equal role in breaking electroweak symmetry. The models result in a relatively light composite Higgs sector with masses typically in the range of (400 - 700) GeV. In more complete models the dynamics will presumably be driven by a broken gauged family or flavor symmetry group. As an example of the higher scale dynamics a fully dynamical model of the quark sector with a GIM mechanism is presented, based on an earlier top condensation model of King using broken family gauge symmetry interactions (that model was itself based on a technicolor model of Georgi). The crucial extra ingredient is a reinterpretation of the condensates that form when several gauge groups become strong close to the same scale. A related technicolor model of Randall which naturally includes the leptons too may also be adapted to this scenario. We discuss the low energy constraints on the massive gauge bosons and scalars of these models as well as their phenomenology at the TeV scale. copyright 1999 The American Physical Society
Alvarez-Gaumé, Luís; Kounnas, Costas; Marino, M; Alvarez-Gaume, Luis; Distler, Jacques; Kounnas, Costas; Marino, Marcos
1996-01-01
We analyze the possible soft breaking of N=2 supersymmetric Yang-Mills theory with and without matter flavour preserving the analyticity properties of the Seiberg-Witten solution. For small supersymmetry breaking parameter with respect to the dynamical scale of the theory we obtain an exact expression for the effective potential. We describe in detail the onset of the confinement transition and some of the patterns of chiral symmetry breaking. If we extrapolate the results to the limit where supersymmetry decouples, we obtain hints indicating that perhaps a description of the QCD vacuum will require the use of Lagrangians containing simultaneously mutually non-local degrees of freedom (monopoles and dyons).
Chiral symmetry and eta, eta' → 3π decays. Grand unified theories
International Nuclear Information System (INIS)
Roiesnel, C.
1982-11-01
Two different topics related to symmetry breaking are discussed. First the eta, eta' → 3π decays are presented. The amplitudes eta, eta' → 3π are calculated with the square root threshold singularity induced by the strong pion-pion final state interaction properly taken into account. It is shown that the eta' → 3π decay rate depends sensitively upon an improved treatment of the pseudoscalar nonet mass matrix. Then symmetry-breaking effects in grand unified theories are discussed. The threshold effects in a spontaneously broken gauge theory are studied. In particular a computation of the symmetry-breaking effects in the SU(5) grand unified theory including those of the breaking of SU(2)xU(1) is presented. As an application a precise value of the superheavy gauge boson mass Mx is given. It is possible in SU(5) to define a natural effective weak angle theta w(μ) for any scale μ, below as well as above Mw, and the predicted curve for sin 2 theta w(μ) is given [fr
Fermion masses and flavor mixings in a model with S4 flavor symmetry
International Nuclear Information System (INIS)
Ding Guijun
2010-01-01
We present a supersymmetric model of quark and lepton based on S 4 xZ 3 xZ 4 flavor symmetry. The S 4 symmetry is broken down to Klein four and Z 3 subgroups in the neutrino and the charged lepton sectors, respectively. Tri-Bimaximal mixing and the charged lepton mass hierarchies are reproduced simultaneously at leading order. Moreover, a realistic pattern of quark masses and mixing angles is generated with the exception of the mixing angle between the first two generations, which requires a small accidental enhancement. It is remarkable that the mass hierarchies are controlled by the spontaneous breaking of flavor symmetry in our model. The next to leading order contributions are studied, all the fermion masses and mixing angles receive corrections of relative order λ c 2 with respect to the leading order results. The phenomenological consequences of the model are analyzed, the neutrino mass spectrum can be normal hierarchy or inverted hierarchy, and the combined measurement of the 0ν2β decay effective mass m ββ and the lightest neutrino mass can distinguish the normal hierarchy from the inverted hierarchy.
Self Derogation and Childhood Broken Home
Kaplan, Howard B; Pokorny, Alex D.
1971-01-01
The data from this study makes clear that it is not the fact of broken homes per se that is related to self derogation but rather the particular characteristics of the broken home situation. Prediction of self derogation is also contingent upon such subject characteristics as race, sex and social class. (Author/CG)
"Broken Expectations" from a Global Business Perspective
Koca, A.; Karapanos, E.; Brombacher, A.C.
2009-01-01
Especially in the past few years, there has been an increase in the rejection rate of interactive consumer electronics products in the field, not due to broken hardware or software, but due to ‘broken expectations’ of users. However, operational methods to capture triggering contextual reasons are
International Nuclear Information System (INIS)
Souriau, J.M.
1984-01-01
The sky uniformity can be noticed in studying the repartition of objects far enough. The sky isotropy description uses space rotations. The group theory elements will allow to give a meaning at the same time precise and general to the word a ''symmetry''. Universe models are reviewed, which must have both of the following qualities: - conformity with the physic known laws; - rigorous symmetry following one of the permitted groups. Each of the models foresees that universe evolution obeys an evolution equation. Expansion and big-bang theory are recalled. Is universe an open or closed space. Universe is also electrically neutral. That leads to a work hypothesis: the existing matter is not given data of universe but it appeared by evolution from nothing. Problem of matter and antimatter is then raised up together with its place in universe [fr
Dynamically broken gauge model without fundamental scalar fields
International Nuclear Information System (INIS)
Snyderman, N.J.; Guralnik, G.S.
1976-01-01
It is shown that the structure that must be generated by dynamical symmetry breaking solutions to gauge theories can be explicitly implemented with a 4-fermion interaction. This structure arises in order to obtain consistency with the constraints imposed by a Goldstone commutator proportional to [anti psi psi]. One demonstrates these ideas within the context of axial electrodynamics, dynamically breaking chiral symmetry. As a pre-requisite it is shown how the Nambu-Jona-Lasinio model becomes renormalizable with respect to a systematic approximation scheme that respects the Goldstone commutator of dynamically broken chiral symmetry to each order of approximation. (This approximation scheme is equivalent to a l/N expansion, where N is set to unity at the end of the calculations). This solution generates new interactions not explicitly present in the original Lagrangian and does not have a 4-fermion contact interaction. The renormalized Green's functions are shown to correspond to those of the sigma-model, summed as though the fermions had N components, and for which lambda 0 = 2g 0 2 . This correspondence is exact except for the possibility that the renormalized coupling of the Nambu-Jona-Lasinio model may be a determined number
Dynamically broken gauge model without fundamental scalar fields
Energy Technology Data Exchange (ETDEWEB)
Snyderman, N. J.; Guralnik, G. S.
1976-01-01
It is shown that the structure that must be generated by dynamical symmetry breaking solutions to gauge theories can be explicitly implemented with a 4-fermion interaction. This structure arises in order to obtain consistency with the constraints imposed by a Goldstone commutator proportional to (anti psi psi). One demonstrates these ideas within the context of axial electrodynamics, dynamically breaking chiral symmetry. As a pre-requisite it is shown how the Nambu-Jona-Lasinio model becomes renormalizable with respect to a systematic approximation scheme that respects the Goldstone commutator of dynamically broken chiral symmetry to each order of approximation. (This approximation scheme is equivalent to a l/N expansion, where N is set to unity at the end of the calculations). This solution generates new interactions not explicitly present in the original Lagrangian and does not have a 4-fermion contact interaction. The renormalized Green's functions are shown to correspond to those of the sigma-model, summed as though the fermions had N components, and for which lambda/sub 0/ = 2g/sub 0//sup 2/. This correspondence is exact except for the possibility that the renormalized coupling of the Nambu-Jona-Lasinio model may be a determined number.
Gapless Symmetry-Protected Topological Order
Directory of Open Access Journals (Sweden)
Thomas Scaffidi
2017-11-01
Full Text Available We introduce exactly solvable gapless quantum systems in d dimensions that support symmetry-protected topological (SPT edge modes. Our construction leads to long-range entangled, critical points or phases that can be interpreted as critical condensates of domain walls “decorated” with dimension (d-1 SPT systems. Using a combination of field theory and exact lattice results, we argue that such gapless SPT systems have symmetry-protected topological edge modes that can be either gapless or symmetry broken, leading to unusual surface critical properties. Despite the absence of a bulk gap, these edge modes are robust against arbitrary symmetry-preserving local perturbations near the edges. In two dimensions, we construct wave functions that can also be interpreted as unusual quantum critical points with diffusive scaling in the bulk but ballistic edge dynamics.
Discrete symmetries and their stringy origin
International Nuclear Information System (INIS)
Mayorga Pena, Damian Kaloni
2014-05-01
Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.
Cosmoparticle physics of family symmetry breaking
International Nuclear Information System (INIS)
Khlopov, M.Yu.
1993-07-01
The foundations of both particle theory and cosmology are hidden at super energy scale and can not be tested by direct laboratory means. Cosmoparticle physics is developed to probe these foundations by the proper combination of their indirect effects, thus providing definite conclusions on their reliability. Cosmological and astrophysical tests turn to be complementary to laboratory searches of rare processes, induced by new physics, as it can be seen in the case of gauge theory of broken symmetry of quark and lepton families, ascribing to the hierarchy of the horizontal symmetry breaking the observed hierarchy of masses and the mixing between quark and lepton families. 36 refs
Extensions of automorphisms and gauge symmetries
International Nuclear Information System (INIS)
Buchholz, D.; Doplicher, S.; Longo, R.; Roberts, J.E.
1993-01-01
We characterize the automophisms of a C*-algebra A which extend to automorphisms of the crossed product B of A by a compact group dual. The case where the inclusion A contains or equal to B is equipped with a group of automorphisms commuting with the dual action is also treated. These results are applied to the analysis of broken gauge symmetries in Quantum Field Theory to draw conclusions on the structure of the degenerate vacua on the field algebra. (orig.)
Is space-time symmetry a suitable generalization of parity-time symmetry?
International Nuclear Information System (INIS)
Amore, Paolo; Fernández, Francisco M.; Garcia, Javier
2014-01-01
We discuss space-time symmetric Hamiltonian operators of the form H=H 0 +igH ′ , where H 0 is Hermitian and g real. H 0 is invariant under the unitary operations of a point group G while H ′ is invariant under transformation by elements of a subgroup G ′ of G. If G exhibits irreducible representations of dimension greater than unity, then it is possible that H has complex eigenvalues for sufficiently small nonzero values of g. In the particular case that H is parity-time symmetric then it appears to exhibit real eigenvalues for all 0
Inflation via Gravitino Condensation in Dynamically Broken Supergravity
Alexandre, Jean; Mavromatos, Nick E
2015-01-01
Gravitino-condensate-induced inflation via the super-Higgs effect is a UV-motivated scenario for both inflating the early universe and breaking local supersymmetry dynamically, entirely independent of any coupling to external matter. As an added benefit, this also removes the (as of yet unobserved) massless Goldstino associated to global supersymmetry breaking from the particle spectrum. In this review we detail the pertinent properties and outline previously hidden details of the various steps required in this context in order to make contact with current inflationary phenomenology. The class of models of SUGRA we use to exemplify our approach are minimal four-dimensional N=1 supergravity and conformal extensions thereof (with broken conformal symmetry). Therein, the gravitino condensate itself can play the role of the inflaton, however the requirement of slow-roll necessitates unnaturally large values of the wave-function renormalisation. Nevertheless, there is an alternative scenario that may provide Staro...
Progress toward the effective Quantum Chromodynamic Lagrangian from symmetry considerations
International Nuclear Information System (INIS)
Salomone, A.N.
1982-01-01
The properties of an effective Lagrangian which satisfies both the axial and trace anomaly equations of Quantum Chromodynamics are investigated both from the theoretical and phenomenological points of view. The model Lagrangian requires that chiral symmetry be broken spontaneously. The non-linear approximation of the model illuminates eta-glue duality or mixing. The phase transition behavior of the model of Quantum Chromodynamics can be studied as the numbers of flavors and the vacuum angle are varied by analyzing a simple mechanical analog. The analog of the model is similar to the massive Schwinger model. The possibility of a physical scalar glue state is discussed and it is shown that it is characterized by a pronounced eta to two glue decay width. A nonperturbative Quantum Chromodynamic vacuum is seen to follow directly from satisfying the trace anomaly. The quark matter meson, eta, is at least as prominent as the glueball, iota, in the gluon dominated reaction psi to gamma plus anything. An associated large breaking of flavor SU(3) is shown to be ameliorated as the model is made more realistic by lowering scalar meson masses from infinity. The pi delta decay of the iota (1440) can be reasonably well estimated without the need of introducing any new parameters
Supersymmetry and intermediate symmetry breaking in SO(10) superunification
International Nuclear Information System (INIS)
Asatryan, H.M.; Ioannisyan, A.N.
1985-01-01
A scheme of simultaneous breakdown of intermediate symmetry SO(10) → SU(3)sub(c) x U(1) x SU(2)sub(L) x SU(2)sub(R) and supersymmetry by means of a single scale parameter is suggested. This intermediate symmetry, which is preferable physically, owing to the broken supersymmetry has a minimum lying lower than SU(4) x SU(2)sub(L) x SU(2)sub(R). The intermediate symmetry is broken by the vacuum expectation value of the Higgs superfields. Owing to the quantum corrections the potential minimum turns out to correspond to breakdown of the intermediate symmetry up to the standard group SU(3)sub(c) x SU(2)sub(L) x U(1)sub(y). The value of the Weinberg angle is less than that in the supersymmetric SU(5) model and agrees with the experiment
Neutrino Masses with Inverse Hierarchy from Broken $L_{e}-L_{\\mu}-L_{\\tau}$: a Reappraisal
Altarelli, Guido; Altarelli, Guido; Franceschini, Roberto
2006-01-01
We discuss a class of models of neutrino masses and mixings with inverse hierarchy based on a broken U(1)_F flavour symmetry with charge L_e-L_\\mu-L_\\tau. The symmetry breaking sector receives separate contributions from flavon vev breaking terms and from soft mass breaking in the right handed Majorana sector. The model is able to reproduce in a natural way all observed features of the charged lepton mass spectrum and of neutrino masses and mixings (even with arbitrarily small \\theta_{13}), with the exception of a moderate fine tuning which is needed to accomodate the observed small value of r = Delta m^2_{sol} / Delta m^2_{atm}.
Perilaku Agresif Siswa dari Keluarga Broken Home
Directory of Open Access Journals (Sweden)
Randi Pratama
2016-12-01
Full Text Available This research is based because of the aggressive behavior shown by the students, especially students who come from a broken home. The purpose of this study is to describe the aggressive behavior that is owned by a student who comes from a broken home in terms of attacking people physically, verbally, and damaging and destroying property and wealth of others. The results of this research shows that in general student’s aggressivebehavior are on average level. Implications of research in guidance and counseling is as the basis for programs to prevent and cope with aggressive behavior that is owned by the students, especially students who come from a broken home. Cooperation with the homeroom teacher mentors, teachers and other school personnel will also help identify students who have an aggressive behavior, especially students who come from a broken home to immediately provided services.
Open-string models with broken supersymmetry
International Nuclear Information System (INIS)
Sagnotti, A.
2002-01-01
I review the salient features of three classes of open-string models with broken supersymmetry. These suffice to exhibit, in relatively simple settings, the two phenomena of 'brane supersymmetry' and 'brane supersymmetry breaking'. In the first class of models, to lowest order supersymmetry is broken both in the closed and in the open sectors. In the second class of models, to lowest order supersymmetry is broken in the closed sector, but is exact in the open sector, at least for the low-lying modes, and often for entire towers of string excitations. Finally, in the third class of models, to lowest order supersymmetry is exact in the closed (bulk) sector, but is broken in the open sector. Brane supersymmetry breaking provides a natural solution to some old difficulties met in the construction of open-string vacua. (author)
Open-string models with broken supersymmetry
International Nuclear Information System (INIS)
Sagnotti, Augusto
2000-01-01
We review the salient features of three classes of open-string models with broken supersymmetry. These suffice to exhibit, in relatively simple settings, the two phenomena of 'brane supersymmetry' and 'brane supersymmetry breaking'. In the first class of models, to lowest order supersymmetry is broken both in the closed and in the open sectors. In the second class of models, to lowest order supersymmetry is broken in the closed sector, but is exact in the open sector, at least for the low-lying modes, and often for entire towers of string excitations. Finally, in the third class of models, to lowest order supersymmetry is exact in the closed (bulk) sector, but is broken in the open sector. Brane supersymmetry breaking provides a natural solution to some old difficulties met in the construction of open-string vacua
Subconjunctival Hemorrhage (Broken Blood Vessel in Eye)
Subconjunctival hemorrhage (broken blood vessel in eye) Overview A subconjunctival hemorrhage (sub-kun-JUNK-tih-vul HEM-uh-ruj) ... may not even realize you have a subconjunctival hemorrhage until you look in the mirror and notice ...
Quark diquark symmetry breaking
International Nuclear Information System (INIS)
Souza, M.M. de
1980-01-01
Assuming the baryons are made of quark-diquark pairs, the wave functions for the 126 allowed ground states are written. The quark creation and annihilations operators are generalized to describe the quark-diquark structure in terms of a parameter σ. Assuming that all quark-quark interactions are mediated by gluons transforming like an octet of vector mesons, the effective Hamiltonian and the baryon masses as constraint equations for the elements of the mass matrix is written. The symmetry is the SU(6) sub(quark)x SU(21) sub(diquark) broken by quark-quark interactions respectively invariant under U(6), U(2) sub(spin), U(3) and also interactions transforming like the eighth and the third components of SU(3). In the limit of no quark-diquark structure (σ = 0), the ground state masses is titted to within 1% of the experimental data, except for the Δ(1232), where the error is almost 2%. Expanding the decuplet mass equations in terms of σ and keeping terms only up to the second order, this error is reduced to 67%. (Author) [pt
Symmetry behavior of the effective gauge theory
International Nuclear Information System (INIS)
Midorikawa, S.
1981-01-01
The restoration of spontaneously broken CP invariance is investigated by using the effective QED lagrangian obtained from the standard SU(2) x U(1) gauge theory with two Higgs doublets. It is shown that the large electromagnetic field may restore CP invariance by changing the relative phase angle of Higgs vacuum expectation values even before one of the vacuum expectation values of the two Higgs doublets disappears. Further large magnetic field may lead to the fine structure constant with discontinuous behavior. (orig.)
String Threshold corrections in models with spondaneously broken supersymmetry
Kiritsis, Elias B; Petropoulos, P M; Rizos, J
1999-01-01
We analyse a class of four-dimensional heterotic ground states with N=2 space-time supersymmetry. From the ten-dimensional perspective, such models can be viewed as compactifications on a six-dimensional manifold with SU(2) holonomy, which is locally but not globally K3 x T^2. The maximal N=4 supersymmetry is spontaneously broken to N=2. The masses of the two massive gravitinos depend on the (T,U) moduli of T^2. We evaluate the one-loop threshold corrections of gauge and R^2 couplings and we show that they fall in several universality classes, in contrast to what happens in usual K3 x T^2 compactifications, where the N=4 supersymmetry is explicitly broken to N=2, and where a single universality class appears. These universality properties follow from the structure of the elliptic genus. The behaviour of the threshold corrections as functions of the moduli is analysed in detail: it is singular across several rational lines of the T^2 moduli because of the appearance of extra massless states, and suffers only f...
Scale-chiral symmetry, ω meson, and dense baryonic matter
Ma, Yong-Liang; Rho, Mannque
2018-05-01
It is shown that explicitly broken scale symmetry is essential for dense skyrmion matter in hidden local symmetry theory. Consistency with the vector manifestation fixed point for the hidden local symmetry of the lowest-lying vector mesons and the dilaton limit fixed point for scale symmetry in dense matter is found to require that the anomalous dimension (|γG2| ) of the gluon field strength tensor squared (G2 ) that represents the quantum trace anomaly should be 1.0 ≲|γG2|≲3.5 . The magnitude of |γG2| estimated here will be useful for studying hadron and nuclear physics based on the scale-chiral effective theory. More significantly, that the dilaton limit fixed point can be arrived at with γG2≠0 at some high density signals that scale symmetry can arise in dense medium as an "emergent" symmetry.
Chiral symmetry breaking and confinement - solutions of relativistic wave equations
International Nuclear Information System (INIS)
Murugesan, P.
1983-01-01
In this thesis, an attempt is made to explore the question whether confinement automatically leads to chiral symmetry breaking. While it should be accepted that chiral symmetry breaking manifests in nature in the absence of scalar partners of pseudoscalar mesons, it does not necessarily follow that confinement should lead to chiral symmetry breaking. If chiral conserving forces give rise to observed spectrum of hadrons, then the conjuncture that confinement is responsible for chiral symmetry breaking is not valid. The method employed to answer the question whether confinement leads to chiral symmetry breaking or not is to solve relativistic wave equations by introducing chiral conserving as well as chiral breaking confining potentials and compare the results with experimental observations. It is concluded that even though chiral symmetry is broken in nature, confinement of quarks need not be the cause of it
Dark matter and global symmetries
Directory of Open Access Journals (Sweden)
Yann Mambrini
2016-09-01
Full Text Available General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left–Right, Singlet Fermionic, Zee–Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i global symmetries are broken at the Planck scale, that (ii the non-renormalizable operators mediating dark matter decay have O(1 couplings, that (iii the dark matter is a singlet field, and that (iv the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV–TeV, including the WIMP regime.
Softly Broken Lepton Numbers: an Approach to Maximal Neutrino Mixing
International Nuclear Information System (INIS)
Grimus, W.; Lavoura, L.
2001-01-01
We discuss models where the U(1) symmetries of lepton numbers are responsible for maximal neutrino mixing. We pay particular attention to an extension of the Standard Model (SM) with three right-handed neutrino singlets in which we require that the three lepton numbers L e , L μ , and L τ be separately conserved in the Yukawa couplings, but assume that they are softly broken by the Majorana mass matrix M R of the neutrino singlets. In this framework, where lepton-number breaking occurs at a scale much higher than the electroweak scale, deviations from family lepton number conservation are calculable, i.e., finite, and lepton mixing stems exclusively from M R . We show that in this framework either maximal atmospheric neutrino mixing or maximal solar neutrino mixing or both can be imposed by invoking symmetries. In this way those maximal mixings are stable against radiative corrections. The model which achieves maximal (or nearly maximal) solar neutrino mixing assumes that there are two different scales in M R and that the lepton number (dash)L=L e -L μ -L τ 1 is conserved in between them. We work out the difference between this model and the conventional scenario where (approximate) (dash)L invariance is imposed directly on the mass matrix of the light neutrinos. (author)
Nonperturbative calculation of symmetry breaking in quantum field theory
Bender, Carl M.; Milton, Kimball A.
1996-01-01
A new version of the delta expansion is presented, which, unlike the conventional delta expansion, can be used to do nonperturbative calculations in a self-interacting scalar quantum field theory having broken symmetry. We calculate the expectation value of the scalar field to first order in delta, where delta is a measure of the degree of nonlinearity in the interaction term.
Topological symmetry breakdown in cholesterics, nematics, and 3He
International Nuclear Information System (INIS)
Balachandran, A.P.; Lizzi, F.; Rodgers, V.G.J.
1984-01-01
Cholesterics, uniaxial and biaxial nematics, and the dipole-free A phase of superfluid 3 He are characterized by order parameters which are left invariant by suitable ''symmetry'' groups H. We show that in the presence of defects, the full group H may not be implementable on the states because of topological obstructions. Thus H is topologically broken in the presence of suitable defects
CP properties of symmetry-constrained two-Higgs-doublet models
Ferreira, P M; Nachtmann, O; Silva, Joao P
2010-01-01
The two-Higgs-doublet model can be constrained by imposing Higgs-family symmetries and/or generalized CP symmetries. It is known that there are only six independent classes of such symmetry-constrained models. We study the CP properties of all cases in the bilinear formalism. An exact symmetry implies CP conservation. We show that soft breaking of the symmetry can lead to spontaneous CP violation (CPV) in three of the classes.
Large lepton mixings from continuous symmetries
International Nuclear Information System (INIS)
Everett, Lisa; Ramond, Pierre
2007-01-01
Within the broad context of quark-lepton unification, we investigate the implications of broken continuous family symmetries which result from requiring that in the limit of exact symmetry, the Dirac mass matrices yield hierarchical masses for the quarks and charged leptons, but lead to degenerate light neutrino masses as a consequence of the seesaw mechanism, without requiring hierarchical right-handed neutrino mass terms. Quark mixing is then naturally small and proportional to the size of the perturbation, but lepton mixing is large as a result of degenerate perturbation theory, shifted from maximal mixing by the size of the perturbation. Within this approach, we study an illustrative two-family prototype model with an SO(2) family symmetry, and discuss extensions to three-family models
The symmetry of large N=4 holography
International Nuclear Information System (INIS)
Gaberdiel, Matthias R.; Peng, Cheng
2014-01-01
For the proposed duality relating a family of N=4 superconformal coset models to a certain supersymmetric higher spin theory on AdS_3, the asymptotic symmetry algebra of the bulk description is determined. It is shown that, depending on the choice of the boundary charges, one may obtain either the linear or the non-linear superconformal algebra on the boundary. We compare the non-linear version of the asymptotic symmetry algebra with the non-linear coset algebra and find non-trivial agreement in the ’t Hooft limit, thus giving strong support for the proposed duality. As a by-product of our analysis we also show that the W_∞ symmetry of the coset theory is broken under the exactly marginal perturbation that preserves the N=4 superconformal algebra
Fermion-number violation in regularizations that preserve fermion-number symmetry
Golterman, Maarten; Shamir, Yigal
2003-01-01
There exist both continuum and lattice regularizations of gauge theories with fermions which preserve chiral U(1) invariance (“fermion number”). Such regularizations necessarily break gauge invariance but, in a covariant gauge, one recovers gauge invariance to all orders in perturbation theory by including suitable counterterms. At the nonperturbative level, an apparent conflict then arises between the chiral U(1) symmetry of the regularized theory and the existence of ’t Hooft vertices in the renormalized theory. The only possible resolution of the paradox is that the chiral U(1) symmetry is broken spontaneously in the enlarged Hilbert space of the covariantly gauge-fixed theory. The corresponding Goldstone pole is unphysical. The theory must therefore be defined by introducing a small fermion-mass term that breaks explicitly the chiral U(1) invariance and is sent to zero after the infinite-volume limit has been taken. Using this careful definition (and a lattice regularization) for the calculation of correlation functions in the one-instanton sector, we show that the ’t Hooft vertices are recovered as expected.
Recurrence and symmetry of time series: Application to transition detection
International Nuclear Information System (INIS)
Girault, Jean-Marc
2015-01-01
Highlights: •A new theoretical framework based on the symmetry concept is proposed. •Four types of symmetry present in any time series were analyzed. •New descriptors make possible the analysis of regime changes in logistic systems. •Chaos–chaos, chaos–periodic, symmetry-breaking, symmetry-increasing bifurcations can be detected. -- Abstract: The study of transitions in low dimensional, nonlinear dynamical systems is a complex problem for which there is not yet a simple, global numerical method able to detect chaos–chaos, chaos–periodic bifurcations and symmetry-breaking, symmetry-increasing bifurcations. We present here for the first time a general framework focusing on the symmetry concept of time series that at the same time reveals new kinds of recurrence. We propose several numerical tools based on the symmetry concept allowing both the qualification and quantification of different kinds of possible symmetry. By using several examples based on periodic symmetrical time series and on logistic and cubic maps, we show that it is possible with simple numerical tools to detect a large number of bifurcations of chaos–chaos, chaos–periodic, broken symmetry and increased symmetry types
Discrete symmetries, strong CP problem and gravity
International Nuclear Information System (INIS)
Senjanovic, G.
1993-05-01
Spontaneous breaking of parity or time reversal invariance offers a solution to the strong CP problem, the stability of which under quantum gravitational effects provides an upper limit on the scale of symmetry breaking. Even more important, these Planck scale effects may provide a simple and natural way out of the resulting domain wall problem. (author). 22 refs
PT symmetry breaking in non-central potentials
International Nuclear Information System (INIS)
Levai, G.
2007-01-01
implies that P can be factorized into two angular terms as P = P θ P ψ , where P θ θ = π-θ and P ψ ψ = ψ + π. Note that these angular P operators differ from the usual space reflection operator defined in one dimension as Px = -x. Applying the above P operator, the PT invariance of implies V 0 (r) = V 0 * (r) , P*(π - θ) = P(θ), K*(ψ + π) = K(ψ) and k* = k, i.e. the centrally symmetric component of the potential has to be real, while the two angular potentials have to exhibit a kind of PT symmetry themselves, furthermore, the eigenvalue of the azimuthal equation has to be real. Note that the last condition can be dropped if the last two terms of can be combined. This can happen when the state dependence of the potential is eliminated by applying the PT-symmetric Scarf I or Rosen-Morse I potentials in the polar equation. This finding confirms the results of an earlier study, i.e that the angular variables are essential in introducing PT symmetry. The spontaneous breakdown of PT symmetry occurs when the energy eigenvalues turn into complex conjugate pairs. This can happen if the eigenvalue p of the polar equation becomes complex, i.e. if the PT symmetry of is spontaneously broken. The spontaneous breakdown of PT symmetry in noncentral potentials has been discussed previously only in two dimensions. The results of that study can also be used to introduce the spontaneous breakdown of PT symmetry in the three-dimensional case via the azimuth angle component of the potential
Brane Lorentz symmetry from Lorentz breaking in the bulk
Energy Technology Data Exchange (ETDEWEB)
Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisbon (Portugal); Carvalho, C [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisbon (Portugal)
2007-05-15
We propose the mechanism of spontaneous symmetry breaking of a bulk vector field as a way to generate the selection of bulk dimensions invisible to the standard model confined to the brane. By assigning a nonvanishing vacuum value to the vector field, a direction is singled out in the bulk vacuum, thus breaking the bulk Lorentz symmetry. We present the condition for induced Lorentz symmetry on the brane, as phenomenologically required.
Dynamics of symmetry breaking during quantum real-time evolution in a minimal model system.
Heyl, Markus; Vojta, Matthias
2014-10-31
One necessary criterion for the thermalization of a nonequilibrium quantum many-particle system is ergodicity. It is, however, not sufficient in cases where the asymptotic long-time state lies in a symmetry-broken phase but the initial state of nonequilibrium time evolution is fully symmetric with respect to this symmetry. In equilibrium, one particular symmetry-broken state is chosen as a result of an infinitesimal symmetry-breaking perturbation. From a dynamical point of view the question is: Can such an infinitesimal perturbation be sufficient for the system to establish a nonvanishing order during quantum real-time evolution? We study this question analytically for a minimal model system that can be associated with symmetry breaking, the ferromagnetic Kondo model. We show that after a quantum quench from a completely symmetric state the system is able to break its symmetry dynamically and discuss how these features can be observed experimentally.
Symmetry breaking in gauge glasses
International Nuclear Information System (INIS)
Hansen, K.
1988-09-01
In order to explain why nature selects the gauge groups of the Standard Model, Brene and Nielsen have proposed a way to break gauge symmetry which does not rely on the existence of a Higgs field. The observed gauge groups will in this scheme appear as the only surviving ones when this mechanism is applied to a random selection of gauge groups. The essential assumption is a discrete space-time with random couplings. Some working assumptions were made for computational reasons of which the most important is that quantum fluctuations were neclected. This work presents an example which under the same conditions show that a much wider class of groups than predicted by Brene and Nielsen will be broken. In particular no possible Standard Model Group survives unbroken. Numerical calculations support the analytical result. (orig.)
Of Slot Machines and Broken Test Tubes
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Of Slot Machines and Broken Test Tubes. S Mahadevan. General Article Volume 19 Issue 5 May 2014 pp 395-405. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/019/05/0395-0405. Keywords.
International Nuclear Information System (INIS)
Henley, E.M.
1987-01-01
Nuclei are very useful for testing symmetries, and for studies of symmetry breaking. This thesis is illustrated for two improper space-time transformations, parity and time-reversal and for one internal symmetry: charge symmetry and independence. Recent progress and present interest is reviewed. 23 refs., 8 figs., 2 tabs
Quark-flavour phenomenology of models with extended gauge symmetries
International Nuclear Information System (INIS)
Carlucci, Maria Valentina
2013-01-01
Gauge invariance is one of the fundamental principles of the Standard Model of particles and interactions, and it is reasonable to believe that it also regulates the physics beyond it. In this thesis we have studied the theory and phenomenology of two New Physics models based on gauge symmetries that are extensions of the Standard Model group. Both of them are particularly interesting because they provide some answers to the question of the origin of flavour, which is still unexplained. Moreover, the flavour sector represents a promising field for the research of indirect signatures of New Physics, since after the first run of LHC we do not have any direct hint of it yet. The first model assumes that flavour is a gauge symmetry of nature, SU(3) 3 f , spontaneously broken by the vacuum expectation values of new scalar fields; the second model is based on the gauge group SU(3) c x SU(3) L x U(1) X , the simplest non-abelian extension of the Standard Model group. We have traced the complete theoretical building of the models, from the gauge group, passing through the nonanomalous fermion contents and the appropriate symmetry breakings, up to the spectra and the Feynman rules, with a particular attention to the treatment of the flavour structure, of tree-level Flavour Changing Neutral Currents and of new CP-violating phases. In fact, these models present an interesting flavour phenomenology, and for both of them we have analytically calculated the contributions to the ΔF=2 and ΔF=1 down-type transitions, arising from new tree-level and box diagrams. Subsequently, we have performed a comprehensive numerical analysis of the phenomenology of the two models. In both cases we have found very effective the strategy of first to identify the quantities able to provide the strongest constraints to the parameter space, then to systematically scan the allowed regions of the latter in order to obtain indications about the key flavour observables, namely the mixing parameters of
Symmetries and symmetry breaking beyond the electroweak theory
International Nuclear Information System (INIS)
Grojean, Ch.
1999-01-01
The Glashow-Salam-Weinberg theory describing electroweak interactions is one of the best successes of quantum field theory; it has passed all the experimental tests of particles physics with a high accuracy. However, this theory suffers from some deficiencies in the sense that some parameters, especially those involved in the generation of the mass of the elementary particles, are fixed to unnatural values. Moreover gravitation whose quantization cannot be achieved in ordinary quantum filed theory is hot taken into account. The aim of this PhD dissertation is to study some theories beyond the Standard Model and inspired by superstring theories. My endeavour has been to develop theoretical aspects of an effective dynamical description of one of the soltonic states of the strongly coupled strings. An important part of my results is also devoted to a more phenomenological analysis of the low energy effects of the symmetries that assure the coherence of the theories at high energy: these symmetries could explain the fermion mass hierarchy and could be directly observable in collider experiments. It is also shown how the geometrical properties of compactified spaces characterize the vacuum of string theory in a non-perturbative regime; such a vacuum can be used to construct a unified theory of gauge and gravitational interactions with a supersymmetry softy broken at a TcV scale. (author)
Hidden symmetries and critical dimensions in the theory of modulated structures
International Nuclear Information System (INIS)
Babich, A.V.; Berezovsky, S.V.; Klepikov, V.F.
2009-01-01
Some aspects of the theory of the critical phenomena in systems with spontaneous symmetry breaking are considered. The applicability range of the mean field approximation for the systems with modulated structures is discussed. Connection between symmetries of a corresponding model and the existence of exact solutions is showed. The role of symmetries in the theory of dynamic long range ordering is discussed
Spontaneous decoherence of coupled harmonic oscillators confined in a ring
Gong, ZhiRui; Zhang, ZhenWei; Xu, DaZhi; Zhao, Nan; Sun, ChangPu
2018-04-01
We study the spontaneous decoherence of coupled harmonic oscillators confined in a ring container, where the nearest-neighbor harmonic potentials are taken into consideration. Without any external symmetry-breaking field or surrounding environment, the quantum superposition state prepared in the relative degrees of freedom gradually loses its quantum coherence spontaneously. This spontaneous decoherence is interpreted by the gauge couplings between the center-of-mass and the relative degrees of freedoms, which actually originate from the symmetries of the ring geometry and the corresponding nontrivial boundary conditions. In particular, such spontaneous decoherence does not occur at all at the thermodynamic limit because the nontrivial boundary conditions become the trivial Born-von Karman boundary conditions when the perimeter of the ring container tends to infinity. Our investigation shows that a thermal macroscopic object with certain symmetries has a chance for its quantum properties to degrade even without applying an external symmetry-breaking field or surrounding environment.
Contact symmetries and Hamiltonian thermodynamics
International Nuclear Information System (INIS)
Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.
2015-01-01
It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production
Patterns of symmetry breaking in chiral QCD
Bolognesi, Stefano; Konishi, Kenichi; Shifman, Mikhail
2018-05-01
We consider S U (N ) Yang-Mills theory with massless chiral fermions in a complex representation of the gauge group. The main emphasis is on the so-called hybrid ψ χ η model. The possible patterns of realization of the continuous chiral flavor symmetry are discussed. We argue that the chiral symmetry is broken in conjunction with a dynamical Higgsing of the gauge group (complete or partial) by bifermion condensates. As a result a color-flavor locked symmetry is preserved. The 't Hooft anomaly matching proceeds via saturation of triangles by massless composite fermions or, in a mixed mode, i.e. also by the "weakly" coupled fermions associated with dynamical Abelianization, supplemented by a number of Nambu-Goldstone mesons. Gauge-singlet condensates are of the multifermion type and, though it cannot be excluded, the chiral symmetry realization via such gauge invariant condensates is more contrived (requires a number of four-fermion condensates simultaneously and, even so, problems remain) and less plausible. We conclude that in the model at hand, chiral flavor symmetry implies dynamical Higgsing by bifermion condensates.
Edelman, Benjamin; Geradin, Damien
Platform businesses such as Airbnb and Uber have risen to success partly by sidestepping laws and regulations that encumber their traditional competitors. Such rule flouting is what the authors call “spontaneous private deregulation,” and it’s happening in a growing number of industries. The authors
Ermolenko, Alexander E; Perepada, Elena A
2007-01-01
The paper contains a description of basic regularities in the manifestation of symmetry of human structural organization and its ontogenetic and phylogenetic development. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant. The symmetry of the chromosome, of the embrio at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described. An hypothesis is postulated that the two-plane symmetry is formed by two mechanisms: a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and, b) genetic mechanisms of the development of chromosomes having two-plane symmetry.
Simple Technique for Removing Broken Pedicular Screws
Directory of Open Access Journals (Sweden)
A Agrawal
2014-03-01
Full Text Available The procedure for removing a broken pedicle screw should ideally be technically easy and minimally invasive, as any damage to the pedicle, during removal of the broken screw, may weaken the pedicle, thus compromising on the success of re-instrumentation. We describe the case of a 32-year old man who had undergone surgery for traumatic third lumbar vertebral body fracture three years prior to current admission and had developed the complication of pedicle screw breakage within the vertebral body. The patient underwent re-exploration and removal of the distal screws. Through a paravertebral incision and muscle separation, the screws and rods were exposed and the implants were removed.
New particles and breaking the colour symmetry
International Nuclear Information System (INIS)
Krolikowski, W.
1975-01-01
In the framework of one-gluon-exchange static forces mediated by a colour octet or nonet of vector gluons, we discuss quark binding in coloured-meson states and its connection with breaking the colour symmetry. A possible identification of psi (3.1), psi(3.7) and the broad bump at 4.1 GeV with some coloured bound states of quarks and antiquarks is pointed out. This identification implies the existence of a second bump in the region of 5 GeV. The general conclusion of the paper is that the colour interpretation of the new particles may be true only if the colour symmetry is badly broken (provided the considered forces are relevant). (author)
Lepton flavor violation and seesaw symmetries
Energy Technology Data Exchange (ETDEWEB)
Aristizabal Sierra, D., E-mail: daristizabal@ulg.ac.be [Universite de Liege, IFPA, Department AGO (Belgium)
2013-03-15
When the standard model is extended with right-handed neutrinos the symmetries of the resulting Lagrangian are enlarged with a new global U(1){sub R} Abelian factor. In the context of minimal seesaw models we analyze the implications of a slightly broken U(1){sub R} symmetry on charged lepton flavor violating decays. We find, depending on the R-charge assignments, models where charged lepton flavor violating rates can be within measurable ranges. In particular, we show that in the resulting models due to the structure of the light neutrino mass matrix muon flavor violating decays are entirely determined by neutrino data (up to a normalization factor) and can be sizable in a wide right-handed neutrino mass range.
Broken Homes: Stable Risk, Changing Reasons, Changing Forms.
Sweetser, Dorrian Apple
1985-01-01
Cohort membership and two measures of social disadvantage were used as explanatory variables in analysis of the risk of growing up in a broken home and of the living arrangements of children with broken homes. The risk of a broken home by age 16 proved to be stable across cohorts and greater for those from disadvantaged homes. (Author/BL)
International Nuclear Information System (INIS)
Nilles, Hans Peter
2012-04-01
Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.
Energy Technology Data Exchange (ETDEWEB)
Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-04-15
Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.
Momentum-resolved hidden-order gap reveals symmetry breaking and origin of entropy loss in URu2Si2
Bareille, C.; Boariu, F. L.; Schwab, H.; Lejay, P.; Reinert, F.; Santander-Syro, A. F.
2014-07-01
Spontaneous symmetry breaking in physical systems leads to salient phenomena at all scales, from the Higgs mechanism and the emergence of the mass of the elementary particles, to superconductivity and magnetism in solids. The hidden-order state arising below 17.5 K in URu2Si2 is a puzzling example of one of such phase transitions: its associated broken symmetry and gap structure have remained longstanding riddles. Here we directly image how, across the hidden-order transition, the electronic structure of URu2Si2 abruptly reconstructs. We observe an energy gap of 7 meV opening over 70% of a large diamond-like heavy-fermion Fermi surface, resulting in the formation of four small Fermi petals, and a change in the electronic periodicity from body-centred tetragonal to simple tetragonal. Our results explain the large entropy loss in the hidden-order phase, and the similarity between this phase and the high-pressure antiferromagnetic phase found in quantum-oscillation experiments.
Directory of Open Access Journals (Sweden)
Hongfa Xu
2017-01-01
Full Text Available To estimate postgrouting rock mass strength growth is important for engineering design. In this paper, using self-developed indoor pressure-grouting devices, 19 groups of test cubic blocks were made of the different water cement ratio grouting into the broken rock of three kinds of particle sizes. The shear strength parameters of each group under different conditions were tested. Then this paper presents a quantitative calculation method for predicting the strength growth of grouted broken rock. Relational equations were developed to investigate the relationship between the growth rates of uniaxial compressive strength (UCS, absolute value of uniaxial tensile strength (AUTS, internal friction angle, and cohesion for post- to pregrouting broken rock based on Mohr-Coulomb strength criterion. From previous test data, the empirical equation between the growth rate of UCS and the ratio of the initial rock mass UCS to the grout concretion UCS has been determined. The equations of the growth rates of the internal friction coefficient and UCS for grouting broken rock with rock mass rating (RMR and its increment have been established. The calculated results are consistent with the experimental results. These observations are important for engineered design of grouting reinforcement for broken rock mass.
Symmetry, asymmetry and dissymmetry
International Nuclear Information System (INIS)
Wackenheim, A.; Zollner, G.
1987-01-01
The authors discuss the concept of symmetry and defect of symmetry in radiological imaging and recall the definition of asymmetry (congenital or constitutional) and dissymmetry (acquired). They then describe a rule designed for the cognitive method of automatic evaluation of shape recognition data and propose the use of reversal symmetry [fr
International Nuclear Information System (INIS)
Fuentes Cobas, L.E.; Font Hernandez, R.
1993-01-01
An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs
Rehren, K. -H.
1996-01-01
Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field theories, when braid group statistics prevents group symmetries. Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory of local observables are discussed.
No-go for tree-level R-symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Liu, Feihu [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Liu, Muyang [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China); Sun, Zheng [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China); Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China)
2017-11-15
We show that in gauge mediation models with tree-level R-symmetry breaking where supersymmetry and R-symmetries are broken by different fields, the gaugino mass either vanishes at one loop or finds a contribution from loop-level R-symmetry breaking. Thus tree-level R-symmetry breaking for phenomenology is either no-go or redundant in the simplest type of models. Including explicit messenger mass terms in the superpotential with a particular R-charge arrangement is helpful to bypass the no-go theorem, and the resulting gaugino mass is suppressed by the messenger mass scale. (orig.)
Performance improvements of symmetry-breaking reflector structures in nonimaging devices
Winston, Roland
2004-01-13
A structure and method for providing a broken symmetry reflector structure for a solar concentrator device. The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quantity, referred to as the translational skew invariant, is conserved in rotationally symmetric optical systems. Performance limits for translationally symmetric nonimaging optical devices are derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. A numerically optimized non-tracking solar concentrator utilizing symmetry-breaking reflector structures can overcome the performance limits associated with translational symmetry.
Effective potential and chiral symmetry breaking
International Nuclear Information System (INIS)
Hochberg, David
2010-01-01
The nonequilibrium effective potential is calculated for the Frank model of spontaneous mirror-symmetry breaking in chemistry in which external noise is introduced to account for random environmental effects. The well-mixed limit, corresponding to negligible diffusion, and the case of diffusion in two space dimensions are studied in detail. White noise has a disordering effect in the former case, whereas in the latter case a phase transition occurs for external noise exceeding a critical intensity which racemizes the system.
Raibert, M H
1986-03-14
Symmetry plays a key role in simplifying the control of legged robots and in giving them the ability to run and balance. The symmetries studied describe motion of the body and legs in terms of even and odd functions of time. A legged system running with these symmetries travels with a fixed forward speed and a stable upright posture. The symmetries used for controlling legged robots may help in elucidating the legged behavior of animals. Measurements of running in the cat and human show that the feet and body sometimes move as predicted by the even and odd symmetry functions.
Leptonic Dirac CP violation predictions from residual discrete symmetries
Directory of Open Access Journals (Sweden)
I. Girardi
2016-01-01
Full Text Available Assuming that the observed pattern of 3-neutrino mixing is related to the existence of a (lepton flavour symmetry, corresponding to a non-Abelian discrete symmetry group Gf, and that Gf is broken to specific residual symmetries Ge and Gν of the charged lepton and neutrino mass terms, we derive sum rules for the cosine of the Dirac phase δ of the neutrino mixing matrix U. The residual symmetries considered are: i Ge=Z2 and Gν=Zn, n>2 or Zn×Zm, n,m≥2; ii Ge=Zn, n>2 or Zn×Zm, n,m≥2 and Gν=Z2; iii Ge=Z2 and Gν=Z2; iv Ge is fully broken and Gν=Zn, n>2 or Zn×Zm, n,m≥2; and v Ge=Zn, n>2 or Zn×Zm, n,m≥2 and Gν is fully broken. For given Ge and Gν, the sum rules for cosδ thus derived are exact, within the approach employed, and are valid, in particular, for any Gf containing Ge and Gν as subgroups. We identify the cases when the value of cosδ cannot be determined, or cannot be uniquely determined, without making additional assumptions on unconstrained parameters. In a large class of cases considered the value of cosδ can be unambiguously predicted once the flavour symmetry Gf is fixed. We present predictions for cosδ in these cases for the flavour symmetry groups Gf=S4, A4, T′ and A5, requiring that the measured values of the 3-neutrino mixing parameters sin2θ12, sin2θ13 and sin2θ23, taking into account their respective 3σ uncertainties, are successfully reproduced.
Structure of pheomenological lagrangians for broken supersymmetry
International Nuclear Information System (INIS)
Uematsu, T.; Zachos, C.K.
1982-01-01
We consider the explicit connection between linear representations of supersymetry and the non-linear realizations associated with the generic effective lagrangians of the Volkov-Akulov type. We specify and illustrate a systematic approach for deriving the appropriate phenomenological lagrangian by transforming a pedagogical linear model, in which supersymmetry is broken at the tree level, into its corresponding non-linear lagrangian, in close analogy to the linear sigma model of pion dynamics. We discuss the significance and some properties of such phenomenological lagrangians. (orig.)
Neutrino mass and mixing with discrete symmetry
International Nuclear Information System (INIS)
King, Stephen F; Luhn, Christoph
2013-01-01
This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A 4 , S 4 and Δ(96). (review article)
Applications of flavor symmetry to the phenomenology of elementary particles
International Nuclear Information System (INIS)
Kaeding, T.A.
1995-05-01
Some applications of flavor symmetry are examined. Approximate flavor symmetries and their consequences in the MSSM (Minimal Supersymmetric Standard Model) are considered, and found to give natural values for the possible B- and L-violating couplings that are empirically acceptable, except for the case of proton decay. The coupling constants of SU(3) are calculated and used to parameterize the decays of the D mesons in broken flavor SU(3). The resulting couplings are used to estimate the long-distance contributions to D-meson mixing
Symmetry and symmetry breaking in quantum mechanics
International Nuclear Information System (INIS)
Chomaz, Philippe
1998-01-01
In the world of infinitely small, the world of atoms, nuclei and particles, the quantum mechanics enforces its laws. The discovery of Quanta, this unbelievable castration of the Possible in grains of matter and radiation, in discrete energy levels compels us of thinking the Single to comprehend the Universal. Quantum Numbers, magic Numbers and Numbers sign the wave. The matter is vibration. To describe the music of the world one needs keys, measures, notes, rules and partition: one needs quantum mechanics. The particles reduce themselves not in material points as the scholars of the past centuries thought, but they must be conceived throughout the space, in the accomplishment of shapes of volumes. When Einstein asked himself whether God plays dice, there was no doubt among its contemporaries that if He exists He is a geometer. In a Nature reduced to Geometry, the symmetries assume their role in servicing the Harmony. The symmetries allow ordering the energy levels to make them understandable. They impose there geometrical rules to the matter waves, giving them properties which sometimes astonish us. Hidden symmetries, internal symmetries and newly conceived symmetries have to be adopted subsequently to the observation of some order in this world of Quanta. In turn, the symmetries provide new observables which open new spaces of observation
Absorption of solar radiation in broken clouds
Energy Technology Data Exchange (ETDEWEB)
Zuev, V.E.; Titov, G.A.; Zhuravleva, T.B. [Institute of Atmospheric Optics, Tomsk (Russian Federation)
1996-04-01
It is recognized now that the plane-parallel model unsatisfactorily describes the transfer of radiation through broken clouds and that, consequently, the radiation codes of general circulation models (GCMs) must be refined. However, before any refinement in a GCM code is made, it is necessary to investigate the dependence of radiative characteristics on the effects caused by the random geometry of cloud fields. Such studies for mean fluxes of downwelling and upwelling solar radiation in the visible and near-infrared (IR) spectral range were performed by Zuev et al. In this work, we investigate the mean spectral and integrated absorption of solar radiation by broken clouds (in what follows, the term {open_quotes}mean{close_quotes} will be implied but not used, for convenience). To evaluate the potential effect of stochastic geometry, we will compare the absorption by cumulus (0.5 {le} {gamma} {le} 2) to that by equivalent stratus ({gamma} <<1) clouds; here {gamma} = H/D, H is the cloud layer thickness and D the characteristic horizontal cloud size. The equivalent stratus clouds differ from cumulus only in the aspect ratio {gamma}, all the other parameters coinciding.
Numerical study of self-couplings in the broken phase of the lattice Ising model
International Nuclear Information System (INIS)
Munehisa, T.; Munehisa, Y.
1989-01-01
A Monte Carlo study of a one-component scalar Φ 4 model was made on a 10 4 hypercubic lattice in its Ising limit. We measured the renormalized mass and coupling of the three-point vertex in the spontaneously broken phase. By measuring them at non-zero momenta, we successfully settled problems caused by the finite vacuum expectation value of the scalar field. To suppress artificial fluctuation of observables, a uniform source was introduced. Our results are in good agreement with the one-loop relation between the vacuum expectation value, mass and the three-point coupling. (orig.)
Mass generation and chiral symmetry breaking by pseudoparticles
International Nuclear Information System (INIS)
Hietarinta, J.; Palmer, W.F.; Pinsky, S.S.
1978-01-01
Massless QCD is studied with regard to mass generation and chiral SU(N/sub f/) symmetry breaking from pseudoparticle effects. While mass is generated when there is only one massless quark, and chiral U(1) is always broken, no rigorous indication of the breaking of chiral SU(N/sub f/) and mass generation is seen when there are more than one massless quarks in the original theory
Heavy quark condensates from dynamically borken flavour symmetry
International Nuclear Information System (INIS)
Elliott, T.; King, S.F.
1992-01-01
We study the dynamics of top quark condensation induced by gauge interactions resulting from a broken flavour symmetry. The gap equation in dressed ladder approximation is solved numerically to obtain directly the top quark mass. The new high energy dynamics reduces the prediction of m t somewhat, but the usual problems of m t being too large and fine tuning remain. In order to solve these problems we extend our discussion to include fourth generation quark condensates. (orig.)
A Slot Machine, A Broken Test Tube
Indian Academy of Sciences (India)
IAS Admin
through discoveries in science, he also touches upon all ... dent of the middle class. So, what set this ... After secondary education he was left with 'a good ... finally went into medical school due to .... hand, if it was spontaneous and could have.
International Nuclear Information System (INIS)
Mainzer, K.
1988-01-01
Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs
Energy Technology Data Exchange (ETDEWEB)
Mainzer, K
1988-05-01
Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs.
Energy Technology Data Exchange (ETDEWEB)
Miller, G.A. [Department of Physics, University of Washington, Seattle (United States); Kolck, U. van [Department of Physics, University of Arizona, Tucson (United States)
2003-06-01
Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of {sup i}sospin{sup ,} and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while the down quark has a negative charge of -1/3. If charge symmetry was exact, the proton and the neutron would have the same mass and they would both be electrically neutral. This is because the proton is made of two up quarks and a down quark, while the neutron comprises two downs and an up. Replacing up quarks with down quarks, and vice versa, therefore transforms a proton into a neutron. Charge-symmetry breaking causes the neutron to be about 0.1% heavier than the proton because the down quark is slightly heavier than the up quark. Physicists had already elucidated certain aspects of charge-symmetry breaking, but our spirits were raised greatly when we heard of the recent work of Allena Opper of Ohio University in the US and co-workers at the TRIUMF laboratory in British Columbia, Canada. Her team has been trying to observe a small charge-symmetry-breaking effect for several years, using neutron beams at the TRIUMF accelerator. The researchers studied the
CP nonconservation in dynamically broken gauge theories
International Nuclear Information System (INIS)
Lane, K.
1981-01-01
The recent proposal of Eichten, Lane, and Preskill for CP nonconservation in electroweak gauge theories with dynamical symmetry breaking is reviewed. Through the alignment of the vacuum with the explicit chiral symmetry breaking Hamiltonian, these theories provide a natural way to understand the dynamical origin of CP nonconservation. Special attention is paid to the problem of strong CP violation. Even through all vacuum angles are zero, this problem is not automatically avoided. In the absence of strong CP violation, the neutron electric dipole moment is expected to be 10 -24 -10 -26 e-cm. A new class of models is proposed in which both strong CP violation and large /ΔS/ = 2 effects may be avoided. In these models, /ΔC/ = 2 processes such as D/sup o/ D/sup -o/ mixing may be large enough to observe
Campbell, Ian M; Stewart, Jonathan R; James, Regis A; Lupski, James R; Stankiewicz, Paweł; Olofsson, Peter; Shaw, Chad A
2014-10-02
Most new mutations are observed to arise in fathers, and increasing paternal age positively correlates with the risk of new variants. Interestingly, new mutations in X-linked recessive disease show elevated familial recurrence rates. In male offspring, these mutations must be inherited from mothers. We previously developed a simulation model to consider parental mosaicism as a source of transmitted mutations. In this paper, we extend and formalize the model to provide analytical results and flexible formulas. The results implicate parent of origin and parental mosaicism as central variables in recurrence risk. Consistent with empirical data, our model predicts that more transmitted mutations arise in fathers and that this tendency increases as fathers age. Notably, the lack of expansion later in the male germline determines relatively lower variance in the proportion of mutants, which decreases with paternal age. Subsequently, observation of a transmitted mutation has less impact on the expected risk for future offspring. Conversely, for the female germline, which arrests after clonal expansion in early development, variance in the mutant proportion is higher, and observation of a transmitted mutation dramatically increases the expected risk of recurrence in another pregnancy. Parental somatic mosaicism considerably elevates risk for both parents. These findings have important implications for genetic counseling and for understanding patterns of recurrence in transmission genetics. We provide a convenient online tool and source code implementing our analytical results. These tools permit varying the underlying parameters that influence recurrence risk and could be useful for analyzing risk in diverse family structures. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Liu, Xiaojun; Christensen, Johan
2017-12-01
Topologically protected wave engineering in artificially structured media resides at the frontier of ongoing metamaterials research, which is inspired by quantum mechanics. Acoustic analogs of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation by means of robust edge mode excitations through analogies drawn to exotic quantum states. A variety of artificial acoustic systems hosting topological edge states have been proposed analogous to the quantum Hall effect, topological insulators, and Floquet topological insulators in electronic systems. However, those systems were characterized by a fixed geometry and a very narrow frequency response, which severely hinders the exploration and design of useful applications. Here we establish acoustic multipolar pseudospin states as an engineering degree of freedom in time-reversal invariant flow-free phononic crystals and develop reconfigurable topological insulators through rotation of their meta-atoms and reshaping of the metamolecules. Specifically, we show how rotation forms man-made snowflakelike molecules, whose topological phase mimics pseudospin-down (pseudospin-up) dipolar and quadrupolar states, which are responsible for a plethora of robust edge confined properties and topological controlled refraction disobeying Snell's law.
Noise-induced drift in systems with broken symmetry and classical routes to superconductivity
International Nuclear Information System (INIS)
Shapiro, V.E.
1994-01-01
We discuss concepts and mechanisms of particle motion in a variety of conditions of asymmetry towards spatial inversion that suggest an idea for the possibility of persistent currents within classical statistical considerations. We expose misapplications of Gibbs statistics and the Langevin approach and show that the idea does not contradict general principles. It gains support from the classical mechanism of capillary wave instability and keeps within the detailed balance and fluctuation-dissipation theorems. (author). 7 refs., 2 figs
Investigation of broken symmetry of Sb/Cu(111) surface alloys by VT-STM
CSIR Research Space (South Africa)
Ndlovu, GF
2011-07-01
Full Text Available This work present an in situ Variable Temperature Scanning Tunneling Microscopy (VT-STM) study of the Sb/Cu(111) system studied at various temperatures. The experimental data support a structural model in which Sb atoms displace up to 1...
Cho, J.; Kim, N.H.; Lee, S.; Kim, J.S.; Lavrijsen, R.; Solignac, A.M.P.; Yin, Y.; Han, D.; Hoof, N.J.J.; Swagten, H.J.M.; Koopmans, B.; You, C.-H.
In magnetic multilayer systems, a large spin-orbit coupling at the interface between heavy metals and ferromagnets can lead to intriguing phenomena such as the perpendicular magnetic anisotropy, the spin Hall effect, the Rashba effect, and especially the interfacial Dzyaloshinskii–Moriya (IDM)
Kim, Sung-Cheol; Wunsch, Benjamin H; Hu, Huan; Smith, Joshua T; Austin, Robert H; Stolovitzky, Gustavo
2017-06-27
Deterministic lateral displacement (DLD) is a technique for size fractionation of particles in continuous flow that has shown great potential for biological applications. Several theoretical models have been proposed, but experimental evidence has demonstrated that a rich class of intermediate migration behavior exists, which is not predicted. We present a unified theoretical framework to infer the path of particles in the whole array on the basis of trajectories in a unit cell. This framework explains many of the unexpected particle trajectories reported and can be used to design arrays for even nanoscale particle fractionation. We performed experiments that verify these predictions and used our model to develop a condenser array that achieves full particle separation with a single fluidic input.
Structural versus electronic distortions of symmetry-broken IrTe$_2$
Kim, Hyo Sung; Kim, Tae-Hwan; Yang, Junjie; Cheong, Sang-Wook; Yeom, Han Woong
2014-01-01
We investigate atomic and electronic structures of the intriguing low temperature phase of IrTe2 using high-resolution scanning tunneling microscopy and spectroscopy. We confirm various stripe superstructures such as $\\times$3, $\\times$5, and $\\times$8. The strong vertical and lateral distortions of the lattice for the stripe structures are observed in agreement with recent calculations. The spatial modulations of electronic density of states are clearly identified as separated from the struc...
Broken-symmetry ground states in .nu.=2 bilayer quantum Hall systems
Czech Academy of Sciences Publication Activity Database
MacDonald, A. H.; Rajaraman, R. U.; Jungwirth, Tomáš
1999-01-01
Roč. 60, č. 12 (1999), s. 8817-8826 ISSN 0163-1829 R&D Projects: GA ČR GA202/98/0085; GA MŠk ME 104 Institutional research plan: CEZ:AV0Z1010914 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.008, year: 1999
Control the polarization state of light with symmetry-broken metallic metastructures
International Nuclear Information System (INIS)
Xiong, Xiang; Jiang, Shang-Chi; Hu, Yuan-Sheng; Hu, Yu-Hui; Wang, Zheng-Han; Peng, Ru-Wen; Wang, Mu
2015-01-01
Controlling the polarization state, the transmission direction, the amplitude and the phase of light in a very limited space is essential for the development of on-chip photonics. Over the past decades, numerous sub-wavelength metallic microstructures have been proposed and fabricated to fulfill these demands. In this article, we review our efforts in achieving negative refractive index, controlling the polarization state, and tuning the amplitude of light with two-dimensional (2D) and three-dimensional (3D) microstructures. We designed an assembly of stacked metallic U-shaped resonators that allow achieving negative refraction for pure magnetic and electric responses respectively at the same frequency by selecting the polarization of incident light. Based on this, we tune the permittivity and permeability of the structure, and achieve negative refractive index. Further, by control the excitation and radiation of surface electric current on a number of 2D and 3D asymmetric metallic metastructures, we are able to control the polarization state of light. It is also demonstrated that with a stereostructured metal film, the whole metal surfaces can be used to construct either polarization-sensitive or polarization-insensitive prefect absorbers, with the advantage of efficient heat dissipation and electric conductivity. Our practice shows that metamaterials, including metasurface, indeed help to master light in nanoscale, and are promising in the development of new generation of photonics
Odd-parity magnetoresistance in pyrochlore iridate thin films with broken time-reversal symmetry
Fujita, T. C.; Kozuka, Y.; Uchida, M.; Tsukazaki, A.; Arima, T.; Kawasaki, M.
2015-01-01
A new class of materials termed topological insulators have been intensively investigated due to their unique Dirac surface state carrying dissipationless edge spin currents. Recently, it has been theoretically proposed that the three dimensional analogue of this type of band structure, the Weyl Semimetal phase, is materialized in pyrochlore oxides with strong spin-orbit coupling, accompanied by all-in-all-out spin ordering. Here, we report on the fabrication and magnetotransport of Eu2Ir2O7 single crystalline thin films. We reveal that one of the two degenerate all-in-all-out domain structures, which are connected by time-reversal operation, can be selectively formed by the polarity of the cooling magnetic field. Once formed, the domain is robust against an oppositely polarised magnetic field, as evidenced by an unusual odd field dependent term in the magnetoresistance and an anomalous term in the Hall resistance. Our findings pave the way for exploring the predicted novel quantum transport phenomenon at the surfaces/interfaces or magnetic domain walls of pyrochlore iridates. PMID:25959576
New fermion mass textures from anomalous U(1) symmetries with baryon and lepton number conservation
Leontaris, George K
2000-01-01
In this paper, we present solutions to the fermion mass hierarchy problem in the context of the minimal supersymmetric standard theory augmented by an anomalous family-dependent U(1)_X symmetry. The latter is spontaneously broken by non-zero vevs of a pair of singlet fields whose magnitude is determined through the D- and F-flatness conditions of the superpotential. We derive the general solutions to the anomaly cancellation conditions and show that they allow numerous choices for the U(1)_X fermion charges which give several fermion mass textures in agreement with the observed fermion mass hierarchy and mixing. Solutions with U(1)_X fermion charge assignments are found which forbid or substantially suppress the dangerous baryon and lepton number violating operators and the lepton-higgs mixing coupling while a higgs mixing mass classification of the fermion mass textures with respect to the sum of the doublet-higgs U(1)_X-charges and show that suppression of dimension-five operators naturally occurs for vario...
From physical symmetries to emergent gauge symmetries
International Nuclear Information System (INIS)
Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.
2016-01-01
Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.
Harris, A. Brooks
2006-01-01
This paper represents a detailed instruction manual for constructing the Landau expansion for magnetoelectric coupling in incommensurate ferroelectric magnets. The first step is to describe the magnetic ordering in terms of symmetry adapted coordinates which serve as complex valued magnetic order parameters whose transformation properties are displayed. In so doing we use the previously proposed technique to exploit inversion symmetry, since this symmetry had been universally overlooked. Havi...
International Nuclear Information System (INIS)
Arkani-Hamed, Nima; Cheng, Hsin-Chia; Luty, Markus; Thaler, Jesse
2005-01-01
We study the universal low-energy dynamics associated with the spontaneous breaking of Lorentz invariance down to spatial rotations. The effective lagrangian for the associated Goldstone field can be uniquely determined by the non-linear realization of a broken time diffeomorphism symmetry, up to some overall mass scales. It has previously been shown that this symmetry breaking pattern gives rise to a Higgs phase of gravity, in which gravity is modified in the infrared. In this paper, we study the effects of direct couplings between the Goldstone boson and standard model fermions, which necessarily accompany Lorentz-violating terms in the theory. The leading interaction is the coupling to the axial vector current, which reduces to spin in the non-relativistic limit. A spin moving relative to the 'ether' rest frame will emit Goldstone Cerenkov radiation. The Goldstone also induces a long-range inverse-square law force between spin sources with a striking angular dependence, reflecting the underlying Goldstone shockwaves and providing a smoking gun for this theory. We discuss the regime of validity of the effective theory describing these phenomena, and the possibility of probing Lorentz violations through Goldstone boson signals in a way that is complementary to direct tests in some regions of parameter space
Effective action of softly broken supersymmetric theories
International Nuclear Information System (INIS)
Groot Nibbelink, S.; Nyawelo, T.S
2006-12-01
We study the renormalization of (softly) broken supersymmetric theories at the one loop level in detail. We perform this analysis in a superspace approach in which the supersymmetry breaking interactions are parameterized using spurion insertions. We comment on the uniqueness of this parameterization. We compute the one loop renormalization of such theories by calculating superspace vacuum graphs with multiple spurion insertions. To preform this computation efficiently we develop algebraic properties of spurion operators, that naturally arise because the spurions are often surrounded by superspace projection operators. Our results are general apart from the restrictions that higher super covariant derivative terms and some finite effects due to non-commutativity of superfield dependent mass matrices are ignored. One of the soft potentials induces renormalization of the Kaehler potential. (author)
Approximate and renormgroup symmetries
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling
2009-07-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Approximate and renormgroup symmetries
International Nuclear Information System (INIS)
Ibragimov, Nail H.; Kovalev, Vladimir F.
2009-01-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Modified broken rice starch as fat substitute in sausages
Directory of Open Access Journals (Sweden)
Valéria Maria Limberger
2011-09-01
Full Text Available The demand for low-fat beef products has led the food industry to use fat substitutes such as modified starch. About 14% of broken rice is generated during processing. Nevertheless, this by-product contains high levels of starch; being therefore, great raw material for fat substitution. This study evaluated the applicability of chemically and physically modified broken rice starch as fat substitute in sausages. Extruded and phosphorylated broken rice was used in low-fat sausage formulation. All low-fat sausages presented about 55% reduction in the fat content and around 28% reduction in the total caloric value. Fat replacement with phosphorylated and extruded broken rice starch increased the texture acceptability of low-fat sausages, when compared to low-fat sausages with no modified broken rice. Results suggest that modified broken rice can be used as fat substitute in sausage formulations, yielding lower caloric value products with acceptable sensory characteristics.
Holographic theories of electroweak symmetry breaking without a Higgs Boson
International Nuclear Information System (INIS)
Burdman, Gustavo; Nomura, Yasunori
2003-01-01
Recently, realistic theories of electroweak symmetry breaking have been constructed in which the electroweak symmetry is broken by boundary conditions imposed at a boundary of higher dimensional spacetime. These theories have equivalent 4D dual descriptions, in which the electroweak symmetry is dynamically broken by non-trivial infrared dynamics of some gauge interaction, whose gauge coupling (tilde g) and size N satisfy (tilde g) 2 N ∼> 16π 2 . Such theories allow one to calculate electroweak radiative corrections, including the oblique parameters S, T and U, as long as (tilde g) 2 N/16π 2 and N are sufficiently larger than unity. We study how the duality between the 4D and 5D theories manifests itself in the computation of various physical quantities. In particular, we calculate the electroweak oblique parameters in a warped 5D theory where the electroweak symmetry is broken by boundary conditions at the infrared brane. We show that the value of S obtained in the minimal theory exceeds the experimental bound if the theory is in a weakly coupled regime. This requires either an extension of the minimal model or departure from weak coupling. A particularly interesting scenario is obtained if the gauge couplings in the 5D theory take the largest possible values--the value suggested by naive dimensional analysis. We argue that such a theory can provide a potentially consistent picture for dynamical electroweak symmetry breaking: corrections to the electroweak observables are sufficiently small while realistic fermion masses are obtained without conflicting with bounds from flavor violation. The theory contains only the standard model quarks, leptons and gauge bosons below ≅2 TeV, except for a possible light scalar associated with the radius of the extra dimension. At ≅2 TeV increasingly broad string resonances appear. An analysis of top-quark phenomenology and flavor violation is also presented, which is applicable to both the weakly-coupled and strongly
Family symmetries in F-theory GUTs
King, S F; Ross, G G
2010-01-01
We discuss F-theory SU(5) GUTs in which some or all of the quark and lepton families are assigned to different curves and family symmetry enforces a leading order rank one structure of the Yukawa matrices. We consider two possibilities for the suppression of baryon and lepton number violation. The first is based on Flipped SU(5) with gauge group SU(5)\\times U(1)_\\chi \\times SU(4)_{\\perp} in which U(1)_{\\chi} plays the role of a generalised matter parity. We present an example which, after imposing a Z_2 monodromy, has a U(1)_{\\perp}^2 family symmetry. Even in the absence of flux, spontaneous breaking of the family symmetry leads to viable quark, charged lepton and neutrino masses and mixing. The second possibility has an R-parity associated with the symmetry of the underlying compactification manifold and the flux. We construct an example of a model with viable masses and mixing angles based on the gauge group SU(5)\\times SU(5)_{\\perp} with a U(1)_{\\perp}^3 family symmetry after imposing a Z_2 monodromy.
Logotherapy Counseling to Improve Acceptance of Broken Home Child
Erlangga, Erwin
2017-01-01
This study aims to increase the enrollment of children of a broken home that life has meaning. Subjects are 100 children in Demak whose families experiencing divorce. Research themes include three things: individual counseling, engineering logotherapy, reception, and a child of a broken home. Data obtained based on interviews, observation, and psychological scale showed that of the 100 children of a broken home has a low acceptance that individual counseling with logotherapy techniques were c...
Logotherapy Counseling to Improve Acceptance of Broken Home Child
Directory of Open Access Journals (Sweden)
Erwin Erlangga
2017-08-01
Full Text Available This study aims to increase the enrollment of children of a broken home that life has meaning. Subjects are 100 children in Demak whose families experiencing divorce. Research themes include three things: individual counseling, engineering logotherapy, reception, and a child of a broken home. Data obtained based on interviews, observation, and psychological scale showed that of the 100 children of a broken home has a low acceptance that individual counseling with logotherapy techniques were considered appropriate to increase the enrollment of children of a broken home. Factors - factors that affect the acceptance of a child of a broken home is self-blame, anger and did not have a purpose in life again. In addition the environment is also a significant effect on the enrollment of children of a broken home. Environmental labeling of families experiencing divorce as a family that failed so that children are increasingly stressed with the stamp of the community. Based on the field test results, the level of acceptance of the child of a broken home increases after the individual is given counseling services with logotherapy techniques. Indicated by changes in the level of acceptance of children of a broken home before being given treatment (initial evaluation and after (final evaluation of 130 points. The results of effectiveness test statistic t test calculations also showed 0,010 <0.05.It was concluded that counseling individuals with logotherapy effective technique to increase the enrollment of children of a broken home
Model for predicting the frequency of broken rails
Directory of Open Access Journals (Sweden)
S. Vesković
2012-04-01
Full Text Available Broken rails can cause train delays, trains cancelations and, unfortunately, they are common causes of accidents. This affects planning of a resources, budget and organization of railway track maintenance. Planning of railway track maintenance cannot be done without an estimation of number of rails that will be replaced due to the broken rail incidents. There are many factors that influence broken rails and the most common are: rail age, annual gross tonnage, degree of curve and temperature in the time of breakage. The fuzzy logic model uses acquired data as input variables to predict the frequency of broken rails for the certain rail types on some Sections.
Ellorhaoui, M; Schultze, W
1977-01-15
On the basis of a survey is attempted to describe mode of development, symptomatology, individual forms and the different possibilities of therapy of the spontaneous hypoglycaemias. A particularly broad range was devoted to the cerebral sequelae, since in these cases--according to our experience--on account of simulation of neurologico-psychiatric symptoms at the soonest wrong diagnoses are to be expected. Furthermore, it is attempted to classify the hypoglycemias according to their development, in which cases their incompleteness was evident from the very beginning. The individual forms of appearance are treated according their to significance. Out of the inducible hypoglycaemias a particular attention is devoted to the forms caused by insulin and oral antidiabetics, since these most frequently participate in the development. Finally the author inquires into diagnostic measures for recognition of special forms of hypoglycaemia. In this place the diagnostics of hyperinsulinism conditioned by adenomatosis or tumours of other kinds is of particular importance. Finally conservative and operative possibilities of the therapy of these tumours are discussed,whereby the only recently tested treatment with streptotocin is mentioned.
International Nuclear Information System (INIS)
Haxton, W.C.
1988-01-01
I discuss a number of the themes of the Symmetries and Spin session of the 8th International Symposium on High Energy Spin Physics: parity nonconservation, CP/T nonconservation, and tests of charge symmetry and charge independence. 28 refs., 1 fig
2016-01-01
The Symmetry Festival is a science and art program series, the most important periodic event (see its history) to bring together scientists, artists, educators and practitioners interested in symmetry (its roots, what is behind, applications, etc.), or in the consequences of its absence.