WorldWideScience

Sample records for spontaneously active cells

  1. Noise-induced effects on multicellular biopacemaker spontaneous activity: Differences between weak and strong pacemaker cells

    Science.gov (United States)

    Aghighi, Alireza; Comtois, Philippe

    2017-09-01

    Self-organization of spontaneous activity of a network of active elements is important to the general theory of reaction-diffusion systems as well as for pacemaking activity to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes, consisting of resting and pacemaker cells, exhibit spontaneous activation of their electrical activity. Similarly, one proposed approach to the development of biopacemakers as an alternative to electronic pacemakers for cardiac therapy is based on heterogeneous cardiac cells with resting and spontaneously beating phenotypes. However, the combined effect of pacemaker characteristics, density, and spatial distribution of the pacemaker cells on spontaneous activity is unknown. Using a simple stochastic pattern formation algorithm, we previously showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of pacemaker cells. In this study, we show that this behavior is dependent on the pacemaker cell characteristics, with weaker pacemaker cells requiring higher density and larger clusters to sustain multicellular activity. These multicellular structures also demonstrated an increased sensitivity to voltage noise that favored spontaneous activity at lower density while increasing temporal variation in the period of activity. This information will help researchers overcome the current limitations of biopacemakers.

  2. Endo- and exocytic rate constants for spontaneous and protein kinase C-activated T cell receptor cycling

    DEFF Research Database (Denmark)

    Menné, Charlotte; Møller Sørensen, Tine; Siersma, Volkert

    2002-01-01

    To determine the rate constants of spontaneous and activated TCR cycling, we examined TCR endo- and exocytosis in the human T cell line Jurkat by three different methods. Using a simple kinetic model for TCR cycling and non-linear regression analyses, we found that the spontaneous endocytic rate...... constant of the TCR was low (approximately 0.012 min(-1)) whereas the spontaneous exocytic rate constant was similar to that of other cycling receptors (approximately 0.055 min(-1)). Following protein kinase C activation (PKC) the endocytic rate constant was increased tenfold (to approximately 0.128 min(-1......)) whereas the exocytic rate constant was unaffected. Thus, the TCR becomes a rapidly cycling receptor with kinetics similar to classical cycling receptors subsequent to PKC activation. This results in a reduction of the half-life of cell surface expressed TCR from approximately 58 to 6 min and allows rapid...

  3. Concanavalin A-induced and spontaneous suppressor cell activities in peripheral blood lymphocytes and spleen cells from gastric cancer patients.

    Science.gov (United States)

    Toge, T; Hamamoto, S; Itagaki, E; Yajima, K; Tanada, M; Nakane, H; Kohno, H; Nakanishi, K; Hattori, T

    1983-11-01

    In 173 gastric cancer patients, activities of Concanavalin-A-induced suppressor cells (Con-AS) and spontaneous suppressor cells (SpS) in peripheral blood lymphocytes (PBL), splenic vein lymphocytes (SVL), and spleen cells (SCs) were investigated. Suppressions by Con-AS in PBL were significantly effective in patients of Stages III and IV, while suppressions by SpS were effective in patients with recurrent tumors. Thus, in PBLs of cancer patients, suppressor precursors, which are considered to be activated in vitro by Concanavalin-A, seemed to appear with the advances of the disease, and SpS activities, which could be already activated in vivo, seemed to increase in the terminal stage. In SCs, increased activities of Con-AS, but normal activities of SpS, were observed, and these suppressor-cell populations consisted of glass nonadherent cells. Suppressor activities of SCs would be due to suppressor T-cells, not to other types of cells. Furthermore, Con-AS existed in the medium-sized lymphocytes, which were fractionated on the basis of cell size, while SpS in the large-sized lymphocytes. A higher proportion of T-cells, bearing Fc receptors for IgG, was observed in the larger-sized lymphocyte fractions. Cell numbers in the large-sized lymphocyte fraction tended to increase with the advances of tumors. From these results, it is suggested that higher presence of suppressor precursors and the increase of SpS activities may occur in cancer patients, depending on the tumor advancing.

  4. Active hippocampal networks undergo spontaneous synaptic modification.

    Directory of Open Access Journals (Sweden)

    Masako Tsukamoto-Yasui

    Full Text Available The brain is self-writable; as the brain voluntarily adapts itself to a changing environment, the neural circuitry rearranges its functional connectivity by referring to its own activity. How the internal activity modifies synaptic weights is largely unknown, however. Here we report that spontaneous activity causes complex reorganization of synaptic connectivity without any external (or artificial stimuli. Under physiologically relevant ionic conditions, CA3 pyramidal cells in hippocampal slices displayed spontaneous spikes with bistable slow oscillations of membrane potential, alternating between the so-called UP and DOWN states. The generation of slow oscillations did not require fast synaptic transmission, but their patterns were coordinated by local circuit activity. In the course of generating spontaneous activity, individual neurons acquired bidirectional long-lasting synaptic modification. The spontaneous synaptic plasticity depended on a rise in intracellular calcium concentrations of postsynaptic cells, but not on NMDA receptor activity. The direction and amount of the plasticity varied depending on slow oscillation patterns and synapse locations, and thus, they were diverse in a network. Once this global synaptic refinement occurred, the same neurons now displayed different patterns of spontaneous activity, which in turn exhibited different levels of synaptic plasticity. Thus, active networks continuously update their internal states through ongoing synaptic plasticity. With computational simulations, we suggest that with this slow oscillation-induced plasticity, a recurrent network converges on a more specific state, compared to that with spike timing-dependent plasticity alone.

  5. Spontaneous food allergy in Was-/- mice occurs independent of FcεRI-mediated mast cell activation.

    Science.gov (United States)

    Lexmond, W S; Goettel, J A; Sallis, B F; McCann, K; Rings, E H H M; Jensen-Jarolim, E; Nurko, S; Snapper, S B; Fiebiger, E

    2017-12-01

    Food allergies are a growing health problem, and the development of therapies that prevent disease onset is limited by the lack of adjuvant-free experimental animal models. We compared allergic sensitization in patients with food allergy or Wiskott-Aldrich syndrome (WAS) and defined whether spontaneous disease in Was -/- mice recapitulates the pathology of a conventional disease model and/or human food allergy. Comparative ImmunoCAP ISAC microarray was performed in patients with food allergy or WAS. Spontaneous food allergy in Was -/- mice was compared to an adjuvant-based model in wild-type mice (WT-OVA/alum). Intestinal and systemic anaphylaxis was assessed, and the role of the high-affinity IgE Fc receptor (FcεRI) in allergic sensitization was evaluated using Was -/- Fcer1a -/- mice. Polysensitization to food was detected in both WAS and food-allergic patients which was recapitulated in the Was -/- model. Oral administration of ovalbumin (OVA) in Was -/- mice induced low titers of OVA-specific IgE compared to the WT-OVA/alum model. Irrespectively, 79% of Was -/- mice developed allergic diarrhea following oral OVA challenge. Systemic anaphylaxis occurred in Was -/- mice (95%) with a mortality rate >50%. Spontaneous sensitization and intestinal allergy occurred independent of FcεRI expression on mast cells (MCs) and basophils. Was -/- mice provide a model of food allergy with the advantage of mimicking polysensitization and low food-antigen IgE titers as observed in humans with clinical food allergy. This model will facilitate studies on aberrant immune responses during spontaneous disease development. Our results imply that therapeutic targeting of the IgE/FcεRI activation cascade will not affect sensitization to food. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  6. Spontaneous Plasticity of Multineuronal Activity Patterns in Activated Hippocampal Networks

    Directory of Open Access Journals (Sweden)

    Atsushi Usami

    2008-01-01

    Full Text Available Using functional multineuron imaging with single-cell resolution, we examined how hippocampal networks by themselves change the spatiotemporal patterns of spontaneous activity during the course of emitting spontaneous activity. When extracellular ionic concentrations were changed to those that mimicked in vivo conditions, spontaneous activity was increased in active cell number and activity frequency. When ionic compositions were restored to the control conditions, the activity level returned to baseline, but the weighted spatial dispersion of active cells, as assessed by entropy-based metrics, did not. Thus, the networks can modify themselves by altering the internal structure of their correlated activity, even though they as a whole maintained the same level of activity in space and time.

  7. Spontaneous Gamma Activity in Schizophrenia.

    Science.gov (United States)

    Hirano, Yoji; Oribe, Naoya; Kanba, Shigenobu; Onitsuka, Toshiaki; Nestor, Paul G; Spencer, Kevin M

    2015-08-01

    A major goal of translational neuroscience is to identify neural circuit abnormalities in neuropsychiatric disorders that can be studied in animal models to facilitate the development of new treatments. Oscillations in the gamma band (30-100 Hz) of the electroencephalogram have received considerable interest as the basic mechanisms underlying these oscillations are understood, and gamma abnormalities have been found in schizophrenia (SZ). Animal models of SZ based on hypofunction of the N-methyl-d-aspartate receptor (NMDAR) demonstrate increased spontaneous broadband gamma power, but this phenomenon has not been identified clearly in patients with SZ. To examine spontaneous gamma power and its relationship to evoked gamma oscillations in the auditory cortex of patients with SZ. We performed a cross-sectional study including 24 patients with chronic SZ and 24 matched healthy control participants at the Veterans Affairs Boston Healthcare System from January 1, 2009, through December 31, 2012. Electroencephalograms were obtained during auditory steady-state stimulation at multiple frequencies (20, 30, and 40 Hz) and during a resting state in 18 participants in each group. Electroencephalographic activity in the auditory cortex was estimated using dipole source localization. Auditory steady-state response (ASSR) measures included the phase-locking factor and evoked power. Spontaneous gamma power was measured as induced (non-phase-locked) gamma power in the ASSR data and as total gamma power in the resting-state data. The ASSR phase-locking factor was reduced significantly in patients with SZ compared with controls for the 40-Hz stimulation (mean [SD], 0.075 [0.028] vs 0.113 [0.065]; F1,46 = 6.79 [P = .012]) but not the 20- or the 30-Hz stimulation (0.042 [0.038] vs 0.043 [0.034]; F1,46 = 0.006 [P = .938] and 0.084 [0.040] vs 0.098 [0.050]; F1,46 = 1.605 [P = .212], respectively), repeating previous findings. The mean [SD] broadband-induced (30

  8. Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes - A Possible Biological Pacemaker.

    Directory of Open Access Journals (Sweden)

    Yukihiro Saito

    Full Text Available Establishment of a biological pacemaker is expected to solve the persisting problems of a mechanical pacemaker including the problems of battery life and electromagnetic interference. Enhancement of the funny current (If flowing through hyperpolarization-activated cyclic nucleotide-gated (HCN channels and attenuation of the inward rectifier K+ current (IK1 flowing through inward rectifier potassium (Kir channels are essential for generation of a biological pacemaker. Therefore, we generated HCN4-overexpressing mouse embryonic stem cells (mESCs and induced cardiomyocytes that originally show poor IK1 currents, and we investigated whether the HCN4-overexpressing mESC-derived cardiomyocytes (mESC-CMs function as a biological pacemaker in vitro.The rabbit Hcn4 gene was transfected into mESCs, and stable clones were selected. mESC-CMs were generated via embryoid bodies and purified under serum/glucose-free and lactate-supplemented conditions. Approximately 90% of the purified cells were troponin I-positive by immunostaining. In mESC-CMs, expression level of the Kcnj2 gene encoding Kir2.1, which is essential for generation of IK1 currents that are responsible for stabilizing the resting membrane potential, was lower than that in an adult mouse ventricle. HCN4-overexpressing mESC-CMs expressed about a 3-times higher level of the Hcn4 gene than did non-overexpressing mESC-CMs. Expression of the Cacna1h gene, which encodes T-type calcium channel and generates diastolic depolarization in the sinoatrial node, was also confirmed. Additionally, genes required for impulse conduction including Connexin40, Connexin43, and Connexin45 genes, which encode connexins forming gap junctions, and the Scn5a gene, which encodes sodium channels, are expressed in the cells. HCN4-overexpressing mESC-CMs showed significantly larger If currents and more rapid spontaneous beating than did non-overexpressing mESC-CMs. The beating rate of HCN4-overexpressing mESC-CMs responded

  9. Active caspase-3 and ultrastructural evidence of apoptosis in spontaneous and induced cell death in bovine in vitro produced pre-implantation embryos

    DEFF Research Database (Denmark)

    Gjørret, Jakob O.; Fabian, Dusan; Avery, Birthe

    2007-01-01

    In this study we investigated chronological onset and involvement of active caspase-3, apoptotic nuclear morphology, and TUNEL-labeling, as well as ultrastructural evidence of apoptosis, in both spontaneous and induced cell death during pre-implantation development of bovine in vitro produced...... microscopy in both treated and untreated blastocysts. Activation of caspase-3 is likely involved in both spontaneous and induced apoptosis in bovine pre-implantation embryos, and immunohistochemical staining of active caspase-3 may be used in combination with other markers to identify apoptosis in pre...... embryos. Pre-implantation embryos (2-cell to Day 8 blastocysts) were cultured with either no supplementation (untreated) or with 10 µM staurosporine for 24 hr (treated). Embryos were subjected to immunohistochemical staining of active caspase-3, TUNEL-reaction for detection of DNA degradation and DAPI...

  10. The activity of spontaneous action potentials in developing hair cells is regulated by Ca(2+-dependence of a transient K+ current.

    Directory of Open Access Journals (Sweden)

    Snezana Levic

    Full Text Available Spontaneous action potentials have been described in developing sensory systems. These rhythmic activities may have instructional roles for the functional development of synaptic connections. The importance of spontaneous action potentials in the developing auditory system is underpinned by the stark correlation between the time of auditory system functional maturity, and the cessation of spontaneous action potentials. A prominent K(+ current that regulates patterning of action potentials is I(A. This current undergoes marked changes in expression during chicken hair cell development. Although the properties of I(A are not normally classified as Ca(2+-dependent, we demonstrate that throughout the development of chicken hair cells, I(A is greatly reduced by acute alterations of intracellular Ca(2+. As determinants of spike timing and firing frequency, intracellular Ca(2+ buffers shift the activation and inactivation properties of the current to more positive potentials. Our findings provide evidence to demonstrate that the kinetics and functional expression of I(A are tightly regulated by intracellular Ca(2+. Such feedback mechanism between the functional expression of I(A and intracellular Ca(2+ may shape the activity of spontaneous action potentials, thus potentially sculpting synaptic connections in an activity-dependent manner in the developing cochlea.

  11. Spontaneous regression of metastatic Merkel cell carcinoma.

    LENUS (Irish Health Repository)

    Hassan, S J

    2010-01-01

    Merkel cell carcinoma is a rare aggressive neuroendocrine carcinoma of the skin predominantly affecting elderly Caucasians. It has a high rate of local recurrence and regional lymph node metastases. It is associated with a poor prognosis. Complete spontaneous regression of Merkel cell carcinoma has been reported but is a poorly understood phenomenon. Here we present a case of complete spontaneous regression of metastatic Merkel cell carcinoma demonstrating a markedly different pattern of events from those previously published.

  12. Spontaneous locomotor activity correlates with the degranulation of mast cells in the meninges rather than in the thalamus: disruptive effect of cocaine.

    Science.gov (United States)

    Larson, Alice A; Thomas, Mark J; McElhose, Alex; Kovács, Katalin J

    2011-06-13

    Mast cells are located in the central nervous system (CNS) of many mammals and stress induces their degranulation. We postulated that mast cells are associated with wakefulness and stimulatory tone in the CNS, as reflected by spontaneous motor activity. Because stress also precipitates drug-seeking behavior in cocaine addicts, we also postulated that cocaine manifests its effects through this relationship. We investigated the influence of single and repeated injections of cocaine on circulating corticosterone, motor activity and degranulation of mast cells in both the thalamus and meninges of mice. Mice were subjected to 5 consecutive days of cocaine or saline followed by a single injection of cocaine or saline 11 days later. Spontaneous locomotor activity was measure for 1h after the final injection before death. Neither a single injection nor prior treatment with cocaine increased motor activity compared to saline-injected controls, however, repeated administration of cocaine induced a significant sensitization to its behavioral effect when delivered 11 days later. In mice that received only saline, motor activity correlated positively with mast cell degranulation in the meninges but not in the thalamus. Cocaine, regardless of the treatment schedule, disrupted this correlation. The concentration of corticosterone did not differ amongst groups and did not correlate with either behavior or mast cell parameters in any group. The correlation between behavioral activity and the mast cell degranulation in the meninges suggests that these parameters are linked. The disruptive effect of cocaine on this relationship indicates a role downstream from mast cells in the regulation of motor activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Spontaneous focal activation of invariant natural killer T (iNKT cells in mouse liver and kidney

    Directory of Open Access Journals (Sweden)

    Zeng Jia

    2010-11-01

    Full Text Available Abstract Background Invariant natural killer T (iNKT cells differ from other T cells by their hyperactive effector T-cell status, in addition to the expression of NK lineage receptors and semi-invariant T-cell receptors. It is generally agreed that the immune phenotype of iNKT cells is maintained by repeated activation in peripheral tissues although no explicit evidence for such iNKT cell activity in vivo has so far been reported. Results We used an interferon (IFN-γ-inducible cytoplasmic protein, Irga6, as a histological marker for local IFN-γ production. Irga6 was intensely expressed in small foci of liver parenchymal cells and kidney tubular epithelium. Focal Irga6 expression was unaffected by germ-free status or loss of TLR signalling and was totally dependent on IFN-γ secreted by T cells in the centres of expression foci. These were shown to be iNKT cells by diagnostic T cell receptor usage and their activity was lost in both CD1 d and Jα-deficient mice. Conclusions This is the first report that supplies direct evidence for explicit activation events of NKT cells in vivo and raises issues about the triggering mechanism and consequences for immune functions in liver and kidney.

  14. Associative memory model with spontaneous neural activity

    Science.gov (United States)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2012-05-01

    We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.

  15. Involvement of cyclic nucleotide-gated channels in spontaneous activity generated in isolated interstitial cells of Cajal from the rabbit urethra.

    Science.gov (United States)

    Sancho, Maria; Bradley, Eamonn; Garcia-Pascual, Angeles; Triguero, Domingo; Thornbury, Keith D; Hollywood, Mark A; Sergeant, Gerard P

    2017-11-05

    Cyclic nucleotide-gated (CNG) channels are non-selective cation channels that mediate influx of extracellular Na + and Ca 2+ in various cell types. L-cis-Diltiazem, a CNG channel blocker, inhibits contraction of urethral smooth muscle (USM), however the mechanisms underlying this effect are still unclear. We investigated the possibility that CNG channels contribute to spontaneous pacemaker activity in freshly isolated interstitial cells of Cajal (ICC) isolated from the rabbit urethra (RUICC). Using immunocytochemistry, we found intense CNG1-immunoreactivity in vimentin-immunoreactive RUICC, mainly within patches of the cellular body and processes. In contrast, α-actin immunoreactive smooth muscle cells (SMC) did not show significant reactivity to a specific CNGA1 antibody. Freshly isolated RUICC, voltage clamped at -60mV, developed spontaneous transient inward currents (STICs) that were inhibited by L-cis-Diltiazem (50µM). Similarly, L-cis-Diltiazem (50µM) also inhibited Ca 2+ waves in isolated RUICC, recorded using a Nipkow spinning disk confocal microscope. L-cis-Diltiazem (50µM) did not affect caffeine (10mM)-induced Ca 2+ transients, but significantly reduced phenylephrine-evoked Ca 2+ oscillations and inward currents in in RUICC. L-type Ca 2+ current amplitude in isolated SMC was reduced by ~18% in the presence of L-cis-Diltiazem (50µM), however D-cis-Diltiazem, a recognised L-type Ca 2+ channel blocker, abolished L-type Ca 2+ current but did not affect Ca 2+ waves or STICs in RUICC. These results indicate that the effects of L-cis-diltiazem on rabbit USM could be mediated by inhibition of CNG1 channels that are present in urethral ICC and therefore CNG channels contribute to spontaneous activity in these cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Aspirin-induced AMP-activated protein kinase activation regulates the proliferation of vascular smooth muscle cells from spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Sung, Jin Young; Choi, Hyoung Chul

    2011-01-01

    Highlights: → Aspirin-induced AMPK phosphorylation was greater in VSMC from SHR than WKY. → Aspirin-induced AMPK phosphorylation inhibited proliferation of VSMC from SHR. → Low basal AMPK phosphorylation in SHR elicits increased VSMC proliferation. → Inhibition of AMPK restored decreased VSMC proliferation by aspirin in SHR. → Aspirin exerts anti-proliferative effect through AMPK activation in VSMC from SHR. -- Abstract: Acetylsalicylic acid (aspirin), used to reduce risk of cardiovascular disease, plays an important role in the regulation of cellular proliferation. However, mechanisms responsible for aspirin-induced growth inhibition are not fully understood. Here, we investigated whether aspirin may exert therapeutic effects via AMP-activated protein kinase (AMPK) activation in vascular smooth muscle cells (VSMC) from wistar kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Aspirin increased AMPK and acetyl-CoA carboxylase phosphorylation in a time- and dose-dependent manner in VSMCs from WKY and SHR, but with greater efficacy in SHR. In SHR, a low basal phosphorylation status of AMPK resulted in increased VSMC proliferation and aspirin-induced AMPK phosphorylation inhibited proliferation of VSMCs. Compound C, an AMPK inhibitor, and AMPK siRNA reduced the aspirin-mediated inhibition of VSMC proliferation, this effect was more pronounced in SHR than in WKY. In VSMCs from SHR, aspirin increased p53 and p21 expression and inhibited the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. These results indicate that in SHR VSMCs aspirin exerts anti-proliferative effects through the induction of AMPK phosphorylation.

  17. Aspirin-induced AMP-activated protein kinase activation regulates the proliferation of vascular smooth muscle cells from spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Jin Young [Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr [Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of)

    2011-05-06

    Highlights: {yields} Aspirin-induced AMPK phosphorylation was greater in VSMC from SHR than WKY. {yields} Aspirin-induced AMPK phosphorylation inhibited proliferation of VSMC from SHR. {yields} Low basal AMPK phosphorylation in SHR elicits increased VSMC proliferation. {yields} Inhibition of AMPK restored decreased VSMC proliferation by aspirin in SHR. {yields} Aspirin exerts anti-proliferative effect through AMPK activation in VSMC from SHR. -- Abstract: Acetylsalicylic acid (aspirin), used to reduce risk of cardiovascular disease, plays an important role in the regulation of cellular proliferation. However, mechanisms responsible for aspirin-induced growth inhibition are not fully understood. Here, we investigated whether aspirin may exert therapeutic effects via AMP-activated protein kinase (AMPK) activation in vascular smooth muscle cells (VSMC) from wistar kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Aspirin increased AMPK and acetyl-CoA carboxylase phosphorylation in a time- and dose-dependent manner in VSMCs from WKY and SHR, but with greater efficacy in SHR. In SHR, a low basal phosphorylation status of AMPK resulted in increased VSMC proliferation and aspirin-induced AMPK phosphorylation inhibited proliferation of VSMCs. Compound C, an AMPK inhibitor, and AMPK siRNA reduced the aspirin-mediated inhibition of VSMC proliferation, this effect was more pronounced in SHR than in WKY. In VSMCs from SHR, aspirin increased p53 and p21 expression and inhibited the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. These results indicate that in SHR VSMCs aspirin exerts anti-proliferative effects through the induction of AMPK phosphorylation.

  18. Healthy human CSF promotes glial differentiation of hESC-derived neural cells while retaining spontaneous activity in existing neuronal networks

    Directory of Open Access Journals (Sweden)

    Heikki Kiiski

    2013-05-01

    The possibilities of human pluripotent stem cell-derived neural cells from the basic research tool to a treatment option in regenerative medicine have been well recognized. These cells also offer an interesting tool for in vitro models of neuronal networks to be used for drug screening and neurotoxicological studies and for patient/disease specific in vitro models. Here, as aiming to develop a reductionistic in vitro human neuronal network model, we tested whether human embryonic stem cell (hESC-derived neural cells could be cultured in human cerebrospinal fluid (CSF in order to better mimic the in vivo conditions. Our results showed that CSF altered the differentiation of hESC-derived neural cells towards glial cells at the expense of neuronal differentiation. The proliferation rate was reduced in CSF cultures. However, even though the use of CSF as the culture medium altered the glial vs. neuronal differentiation rate, the pre-existing spontaneous activity of the neuronal networks persisted throughout the study. These results suggest that it is possible to develop fully human cell and culture-based environments that can further be modified for various in vitro modeling purposes.

  19. Spontaneous emission from active dielectric microstructures

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Tromborg, Bjarne

    2001-01-01

    and engineered due to the dependence of the emission rate on the location and polarisation of the emitters in the structure. This paper addresses the methods of quantum electrodynamics of dielectric media which enable calculation of the local rate of spontaneous emission in active microstructures....

  20. Spontaneous neutrophil activation in HTLV-1 infected patients

    Directory of Open Access Journals (Sweden)

    Jaqueline B. Guerreiro

    Full Text Available Human T cell lymphotropic Virus type-1 (HTLV-1 induces lymphocyte activation and proliferation, but little is known about the innate immune response due to HTLV-1 infection. We evaluated the percentage of neutrophils that metabolize Nitroblue tetrazolium (NBT to formazan in HTLV-1 infected subjects and the association between neutrophil activation and IFN-gamma and TNF-alpha levels. Blood was collected from 35 HTLV-1 carriers, from 8 patients with HAM/TSP (HTLV-1- associated myelopathy; 22 healthy individuals were evaluated for spontaneous and lipopolysaccharide (LPS-stimulated neutrophil activity (reduction of NBT to formazan. The production of IFN-gamma and TNF-alpha by unstimulated mononuclear cells was determined by ELISA. Spontaneous NBT levels, as well as spontaneous IFN-gamma and TNF-alpha production, were significantly higher (p<0.001 in HTLV-1 infected subjects than in healthy individuals. A trend towards a positive correlation was noted, with increasing percentage of NBT positive neutrophils and levels of IFN-gamma. The high IFN-gamma producing HTLV-1 patient group had significantly greater NBT than healthy controls, 43±24% and 17±4.8% respectively (p< 0.001, while no significant difference was observed between healthy controls and the low IFN-gamma-producing HTLV-1 patient group (30±20%. Spontaneous neutrophil activation is another marker of immune perturbation resulting from HTLV-1 infection. In vivo activation of neutrophils observed in HTLV-1 infected subjects is likely to be the same process that causes spontaneous IFN-gamma production, or it may partially result from direct IFN-gamma stimulation.

  1. The ducky2J mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression

    Science.gov (United States)

    Donato, Roberta; Page, Karen M.; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A.; Dolphin, Annette C.

    2006-01-01

    The mouse mutant ducky and its allele ducky2J represent a model for absence epilepsy characterized by spike-wave seizures, and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the α2δ-2 calcium channel subunit. Of relevance to the ataxic phenotype, α2δ-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2du2J mutation results in a two base-pair deletion in the coding region and a complete loss of α2δ-2 protein. Here we show that du2J/du2J mice have a 30% reduction in somatic calcium current, and a marked fall in the spontaneous PC firing rate at 22°C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34°C du2J/du2J PCs show no spontaneous intrinsic activity. Du2J/du2J mice also have alterations in the cerebellar expression of several genes related to PC function. At P21 there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du2J/+ mice have a marked reduction in α2δ-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tryrosine hydroxylase gene expression. However, du2J/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in α2δ-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of α2δ-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma. PMID:17135419

  2. The ducky(2J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression.

    Science.gov (United States)

    Donato, Roberta; Page, Karen M; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A; Dolphin, Annette C

    2006-11-29

    The mouse mutant ducky and its allele ducky(2J) represent a model for absence epilepsy characterized by spike-wave seizures and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the alpha2delta-2 calcium channel subunit. Of relevance to the ataxic phenotype, alpha2delta-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2(du2J) mutation results in a 2 bp deletion in the coding region and a complete loss of alpha2delta-2 protein. Here we show that du(2J)/du(2J) mice have a 30% reduction in somatic calcium current and a marked fall in the spontaneous PC firing rate at 22 degrees C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34 degrees C, du(2J)/du(2J) PCs show no spontaneous intrinsic activity. Du(2J)/du(2J) mice also have alterations in the cerebellar expression of several genes related to PC function. At postnatal day 21, there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du(2J)/+ mice have a marked reduction in alpha2delta-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tyrosine hydroxylase gene expression. However, du(2J)/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in alpha2delta-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of alpha2delta-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma.

  3. Spontaneous cholangiohepatitis in broiler chickens: immunohistochemical study of Ito cells

    Directory of Open Access Journals (Sweden)

    E Handharyani

    2001-12-01

    Full Text Available The function of Ito cells is expanding from a fat-storing site to a center of extracellular matrix metabolism and mediator production in the liver. Immunohistochemical reactivities of Ito cells were examined in eight livers of broiler chickens affected with spontaneous cholangiohepatitis and six chicken livers with malformation of extrahepatic biliary tracts. The livers in both groups revealed severe diffuse fibrosis. Ito cells expressing HHF35 muscle actin and desmin actively proliferated in the fibrotic foci of the all livers. The immunoreactivities of Ito cells to antibodies were enhanced compared with those in normal livers. There were no immunohistochemical differences between the Ito cells of two groups. From these findings, it was suggested that Ito cells actively proliferate and show enhanced immunoreactivities in the livers affected with cholangiohepatitis andmalformation of extrahepatic biliary tracts.

  4. Spontaneous interleukin-5 production in cutaneous T-cell lymphoma lines is mediated by constitutively activated Stat3

    DEFF Research Database (Denmark)

    Nielsen, Mette; Nissen, Mogens H; Gerwien, Jens

    2002-01-01

    Mycosis fungoides is a low-grade cutaneous T-cell lymphoma (CTCL) of unknown etiology. In advanced stages of CTCL, a shift in cytokine profile from T(H)1 to T(H)2 is observed, which coincides with eosinophilia, high levels of immunoglobulin E, and increased susceptibility to bacterial infections....

  5. Vision drives correlated activity without patterned spontaneous activity in developing Xenopus retina.

    Science.gov (United States)

    Demas, James A; Payne, Hannah; Cline, Hollis T

    2012-04-01

    Developing amphibians need vision to avoid predators and locate food before visual system circuits fully mature. Xenopus tadpoles can respond to visual stimuli as soon as retinal ganglion cells (RGCs) innervate the brain, however, in mammals, chicks and turtles, RGCs reach their central targets many days, or even weeks, before their retinas are capable of vision. In the absence of vision, activity-dependent refinement in these amniote species is mediated by waves of spontaneous activity that periodically spread across the retina, correlating the firing of action potentials in neighboring RGCs. Theory suggests that retinorecipient neurons in the brain use patterned RGC activity to sharpen the retinotopy first established by genetic cues. We find that in both wild type and albino Xenopus tadpoles, RGCs are spontaneously active at all stages of tadpole development studied, but their population activity never coalesces into waves. Even at the earliest stages recorded, visual stimulation dominates over spontaneous activity and can generate patterns of RGC activity similar to the locally correlated spontaneous activity observed in amniotes. In addition, we show that blocking AMPA and NMDA type glutamate receptors significantly decreases spontaneous activity in young Xenopus retina, but that blocking GABA(A) receptor blockers does not. Our findings indicate that vision drives correlated activity required for topographic map formation. They further suggest that developing retinal circuits in the two major subdivisions of tetrapods, amphibians and amniotes, evolved different strategies to supply appropriately patterned RGC activity to drive visual circuit refinement. Copyright © 2011 Wiley Periodicals, Inc.

  6. Active suppression of host-vs-graft reaction in pregnant mice. VII. Spontaneous abortion of allogeneic CBA/J x DBA/2 fetuses in the uterus of CBA/J mice correlates with deficient non-T suppressor cell activity

    International Nuclear Information System (INIS)

    Clark, D.A.; Chaput, A.; Tutton, D.

    1986-01-01

    The mammalian fetus has been viewed as an unusually successful type of allograft and unexplained spontaneous abortion as a possible example of maternal rejection. Previous studies have shown the presence of small lymphocytic suppressor cells in the murine decidua which block the generation and reactivation of anti-paternal cytotoxic T lymphocytes (CTL) and lymphokine-activated killer cells (LAK) by elaborating a factor that inhibits the response to interleukin 2 (IL 2). A deficiency of these suppressor cells was associated with implants of xenogeneic Mus caroli embryos in the Mus musculus uterus which are infiltrated by maternal lymphoid cells and aborted. A deficiency of such suppressor cells in the lymph nodes draining the uterus of CBA/J females in the process of aborting their semi-allogeneic CBA x DBA/2 F 1 progeny has also been shown. CBA/J females possess significantly lower levels of decidua-associated non-T suppressor cells on day 8.5 to 10.5 of allopregnancy than do mothers that will produce large litters of live babies. The F 1 embryos are infiltrated by maternal lymphocytes prior to abortion, and the infiltration and abortion rate appears to be augmented by pre-immunization with paternal DBA/2 spleen cells. The CBA/J x DBA/2J mating combination provides a model of spontaneous abortion in which immunologic factors play an important role and demonstrates that the association between deficiency of decidua-associated suppressor cells and xenopregnancy failure also holds true for the failure of allopregnancies resulting from natural within-species mating

  7. Diploid yeast cells yield homozygous spontaneous mutations

    Science.gov (United States)

    Esposito, M. S.; Bruschi, C. V.; Brushi, C. V. (Principal Investigator)

    1993-01-01

    A leucine-requiring hybrid of Saccharomyces cerevisiae, homoallelic at the LEU1 locus (leu1-12/leu1-12) and heterozygous for three chromosome-VII genetic markers distal to the LEU1 locus, was employed to inquire: (1) whether spontaneous gene mutation and mitotic segregation of heterozygous markers occur in positive nonrandom association and (2) whether homozygous LEU1/LEU1 mutant diploids are generated. The results demonstrate that gene mutation of leu1-12 to LEU1 and mitotic segregation of heterozygous chromosome-VII markers occur in strong positive nonrandom association, suggesting that the stimulatory DNA lesion is both mutagenic and recombinogenic. In addition, genetic analysis of diploid Leu+ revertants revealed that approximately 3% of mutations of leu1-12 to LEU1 result in LEU1/LEU1 homozygotes. Red-white sectored Leu+ colonies exhibit genotypes that implicate post-replicational chromatid breakage and exchange near the site of leu1-12 reversion, chromosome loss, and subsequent restitution of diploidy, in the sequence of events leading to mutational homozygosis. By analogy, diploid cell populations can yield variants homozygous for novel recessive gene mutations at biologically significant rates. Mutational homozygosis may be relevant to both carcinogenesis and the evolution of asexual diploid organisms.

  8. Recruitment of Perisomatic Inhibition during Spontaneous Hippocampal Activity In Vitro.

    Directory of Open Access Journals (Sweden)

    Anna Beyeler

    Full Text Available It was recently shown that perisomatic GABAergic inhibitory postsynaptic potentials (IPSPs originating from basket and chandelier cells can be recorded as population IPSPs from the hippocampal pyramidal layer using extracellular electrodes (eIPSPs. Taking advantage of this approach, we have investigated the recruitment of perisomatic inhibition during spontaneous hippocampal activity in vitro. Combining intracellular and extracellular recordings from pyramidal cells and interneurons, we confirm that inhibitory signals generated by basket cells can be recorded extracellularly, but our results suggest that, during spontaneous activity, eIPSPs are mostly confined to the CA3 rather than CA1 region. CA3 eIPSPs produced the powerful time-locked inhibition of multi-unit activity expected from perisomatic inhibition. Analysis of the temporal dynamics of spike discharges relative to eIPSPs suggests significant but moderate recruitment of excitatory and inhibitory neurons within the CA3 network on a 10 ms time scale, within which neurons recruit each other through recurrent collaterals and trigger powerful feedback inhibition. Such quantified parameters of neuronal interactions in the hippocampal network may serve as a basis for future characterisation of pathological conditions potentially affecting the interactions between excitation and inhibition in this circuit.

  9. Copper is an endogenous modulator of neural circuit spontaneous activity.

    Science.gov (United States)

    Dodani, Sheel C; Firl, Alana; Chan, Jefferson; Nam, Christine I; Aron, Allegra T; Onak, Carl S; Ramos-Torres, Karla M; Paek, Jaeho; Webster, Corey M; Feller, Marla B; Chang, Christopher J

    2014-11-18

    For reasons that remain insufficiently understood, the brain requires among the highest levels of metals in the body for normal function. The traditional paradigm for this organ and others is that fluxes of alkali and alkaline earth metals are required for signaling, but transition metals are maintained in static, tightly bound reservoirs for metabolism and protection against oxidative stress. Here we show that copper is an endogenous modulator of spontaneous activity, a property of functional neural circuitry. Using Copper Fluor-3 (CF3), a new fluorescent Cu(+) sensor for one- and two-photon imaging, we show that neurons and neural tissue maintain basal stores of loosely bound copper that can be attenuated by chelation, which define a labile copper pool. Targeted disruption of these labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the spatiotemporal properties of spontaneous activity in developing hippocampal and retinal circuits. The data identify an essential role for copper neuronal function and suggest broader contributions of this transition metal to cell signaling.

  10. Spontaneous complement activation on human B cells results in localized membrane depolarization and the clustering of complement receptor type 2 and C3 fragments

    DEFF Research Database (Denmark)

    Løbner, Morten; Leslie, Robert G Q; Prodinger, Wolfgang M

    2009-01-01

    While our previous studies have demonstrated that complement activation induced by complement receptors type 2 (CR2/CD21) and 1 (CR1/CD35) results in C3-fragment deposition and membrane attack complex (MAC) formation in human B cells, the consequences of these events for B-cell functions remain u...

  11. Factors affecting the spontaneous mutational spectra in somatic mammalian cells

    Directory of Open Access Journals (Sweden)

    О.А. Ковальова

    2006-04-01

    Full Text Available  In our survey of references we are discussed the influence of factors biological origin on the spontaneous mutation specters in mammalian. Seasonal and age components influence on the frequence of cytogenetic anomalies. The immune and endocrinous systems are take part in control of the alteration of the spontaneous mutation specters. Genetical difference of sensibility in animal and human at the alteration of factors enviroment as and  genetical differences of repair systems activity are may influence on individual variation of spontaneous destabilization characters of chromosomal apparatus.

  12. Synaptic model for spontaneous activity in developing networks

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Rinzel, J.

    2005-01-01

    Spontaneous rhythmic activity occurs in many developing neural networks. The activity in these hyperexcitable networks is comprised of recurring "episodes" consisting of "cycles" of high activity that alternate with "silent phases" with little or no activity. We introduce a new model of synaptic...... dynamics that takes into account that only a fraction of the vesicles stored in a synaptic terminal is readily available for release. We show that our model can reproduce spontaneous rhythmic activity with the same general features as observed in experiments, including a positive correlation between...

  13. Voluntary breath holding affects spontaneous brain activity measured by magnetoencephalography

    NARCIS (Netherlands)

    Schellart, N. A.; Reits, D.

    1999-01-01

    Spontaneous brain activity was measured by multichannel magnetoencephalography (MEG) during voluntary breath holds. Significant changes in the activity are limited to the alpha rhythm: 0.25 Hz frequency increase and narrowing of the peak. The area of alpha activity shifts slightly toward (fronto-)

  14. Spontaneous Electrical Activity in the Nervous System and its ...

    African Journals Online (AJOL)

    The present study was carried out to examine the effects of biogenic amines on the spontaneous electrical activity of the nervous system in the silkworm Bombyx mori. The activity recorded from different segments of the ventral nerve cord differed in the frequency and number of spike categories firing. The activity was highest ...

  15. Patchwork-Type Spontaneous Activity in Neonatal Barrel Cortex Layer 4 Transmitted via Thalamocortical Projections

    Directory of Open Access Journals (Sweden)

    Hidenobu Mizuno

    2018-01-01

    Full Text Available Summary: Establishment of precise neuronal connectivity in the neocortex relies on activity-dependent circuit reorganization during postnatal development; however, the nature of cortical activity during this period remains largely unknown. Using two-photon calcium imaging of the barrel cortex in vivo during the first postnatal week, we reveal that layer 4 (L4 neurons within the same barrel fire synchronously in the absence of peripheral stimulation, creating a “patchwork” pattern of spontaneous activity corresponding to the barrel map. By generating transgenic mice expressing GCaMP6s in thalamocortical axons, we show that thalamocortical axons also demonstrate the spontaneous patchwork activity pattern. Patchwork activity is diminished by peripheral anesthesia but is mostly independent of self-generated whisker movements. The patchwork activity pattern largely disappeared during postnatal week 2, as even L4 neurons within the same barrel tended to fire asynchronously. This spontaneous L4 activity pattern has features suitable for thalamocortical (TC circuit refinement in the neonatal barrel cortex. : By two-photon calcium imaging of layer 4 neurons and thalamocortical axon terminals in neonatal mouse barrel cortex, Mizuno et al. find a patchwork-like spontaneous activity pattern corresponding to the barrel map, which may be important for thalamocortical circuit maturation. Keywords: activity-dependent development, spontaneous activity, synchronized activity, barrel cortex, thalamocortical axons, neonates, in vivo calcium imaging, awake, single-cell labeling, whisker monitoring

  16. Functioning of spontaneous and induced Con A regulators of T-cell proliferation. Modifying factors

    International Nuclear Information System (INIS)

    Kuz'mina, E.G.

    1989-01-01

    It is shown that active spontaneous non-specific regulators of T-cell proliferation are activated in peripheral blood ''in vivo'' by endogenous metabolites; non-specific regulator action can be induced ''in vitro'' by Con A, FGA. Non-specific regulators suppress and increase lymphocyte proliferation. Cyclic character of their functioning is revealed. 4 refs.; 1 tab

  17. Spatial diversity of spontaneous activity in the cortex

    Directory of Open Access Journals (Sweden)

    Andrew Yong-Yi Tan

    2015-09-01

    Full Text Available The neocortex is a layered sheet across which a basic organization is thought to widely apply. The variety of spontaneous activity patterns is similar throughout the cortex, consistent with the notion of a basic cortical organization. However, the basic organization is only an outline which needs adjustments and additions to account for the structural and functional diversity across cortical layers and areas. Such diversity suggests that spontaneous activity is spatially diverse in any particular behavioral state. Accordingly, this review summarizes the laminar and areal diversity in cortical activity during fixation and slow oscillations, and the effects of attention, anesthesia and plasticity on the cortical distribution of spontaneous activity. Among questions that remain open, characterizing the spatial diversity in spontaneous membrane potential may help elucidate how differences in circuitry among cortical regions supports their varied functions. More work is also needed to understand whether cortical spontaneous activity not only reflects cortical circuitry, but also contributes to determining the outcome of plasticity, so that it is itself a factor shaping the functional diversity of the cortex.

  18. Spontaneous calcium transients in human neural progenitor cells mediated by transient receptor potential channels.

    Science.gov (United States)

    Morgan, Peter J; Hübner, Rayk; Rolfs, Arndt; Frech, Moritz J

    2013-09-15

    Calcium signals affect many developmental processes, including proliferation, migration, survival, and apoptosis, processes that are of particular importance in stem cells intended for cell replacement therapies. The mechanisms underlying Ca(2+) signals, therefore, have a role in determining how stem cells respond to their environment, and how these responses might be controlled in vitro. In this study, we examined the spontaneous Ca(2+) activity in human neural progenitor cells during proliferation and differentiation. Pharmacological characterization indicates that in proliferating cells, most activity is the result of transient receptor potential (TRP) channels that are sensitive to Gd(3+) and La(3+), with the more subtype selective antagonist Ruthenium red also reducing activity, suggesting the involvement of transient receptor potential vanilloid (TRPV) channels. In differentiating cells, Gd(3+) and La(3+)-sensitive TRP channels also appear to underlie the spontaneous activity; however, no sub-type-specific antagonists had any effect. Protein levels of TRPV2 and TRPV3 decreased in differentiated cells, which is demonstrated by western blot. Thus, it appears that TRP channels represent the main route of Ca(2+) entry in human neural progenitor cells (hNPCs), but the responsible channel types are subject to substitution under differentiating conditions. The level of spontaneous activity could be increased and decreased by lowering and raising the extracellular K(+) concentration. Proliferating cells in low K(+) slowed the cell cycle, with a disproportionate increased percentage of cells in G1 phase and a reduction in S phase. Taken together, these results suggest a link between external K(+) concentration, spontaneous Ca(2+) transients, and cell cycle distribution, which is able to influence the fate of stem and progenitor cells.

  19. Uncovering intrinsic modular organization of spontaneous brain activity in humans.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available The characterization of topological architecture of complex brain networks is one of the most challenging issues in neuroscience. Slow (<0.1 Hz, spontaneous fluctuations of the blood oxygen level dependent (BOLD signal in functional magnetic resonance imaging are thought to be potentially important for the reflection of spontaneous neuronal activity. Many studies have shown that these fluctuations are highly coherent within anatomically or functionally linked areas of the brain. However, the underlying topological mechanisms responsible for these coherent intrinsic or spontaneous fluctuations are still poorly understood. Here, we apply modern network analysis techniques to investigate how spontaneous neuronal activities in the human brain derived from the resting-state BOLD signals are topologically organized at both the temporal and spatial scales. We first show that the spontaneous brain functional networks have an intrinsically cohesive modular structure in which the connections between regions are much denser within modules than between them. These identified modules are found to be closely associated with several well known functionally interconnected subsystems such as the somatosensory/motor, auditory, attention, visual, subcortical, and the "default" system. Specifically, we demonstrate that the module-specific topological features can not be captured by means of computing the corresponding global network parameters, suggesting a unique organization within each module. Finally, we identify several pivotal network connectors and paths (predominantly associated with the association and limbic/paralimbic cortex regions that are vital for the global coordination of information flow over the whole network, and we find that their lesions (deletions critically affect the stability and robustness of the brain functional system. Together, our results demonstrate the highly organized modular architecture and associated topological properties in

  20. Behavioral Modulation by Spontaneous Activity of Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    Toshiharu Ichinose

    2017-12-01

    Full Text Available Dopamine modulates a variety of animal behaviors that range from sleep and learning to courtship and aggression. Besides its well-known phasic firing to natural reward, a substantial number of dopamine neurons (DANs are known to exhibit ongoing intrinsic activity in the absence of an external stimulus. While accumulating evidence points at functional implications for these intrinsic “spontaneous activities” of DANs in cognitive processes, a causal link to behavior and its underlying mechanisms has yet to be elucidated. Recent physiological studies in the model organism Drosophila melanogaster have uncovered that DANs in the fly brain are also spontaneously active, and that this activity reflects the behavioral/internal states of the animal. Strikingly, genetic manipulation of basal DAN activity resulted in behavioral alterations in the fly, providing critical evidence that links spontaneous DAN activity to behavioral states. Furthermore, circuit-level analyses have started to reveal cellular and molecular mechanisms that mediate or regulate spontaneous DAN activity. Through reviewing recent findings in different animals with the major focus on flies, we will discuss potential roles of this physiological phenomenon in directing animal behaviors.

  1. Learning shapes spontaneous activity itinerating over memorized states.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Learning is a process that helps create neural dynamical systems so that an appropriate output pattern is generated for a given input. Often, such a memory is considered to be included in one of the attractors in neural dynamical systems, depending on the initial neural state specified by an input. Neither neural activities observed in the absence of inputs nor changes caused in the neural activity when an input is provided were studied extensively in the past. However, recent experimental studies have reported existence of structured spontaneous neural activity and its changes when an input is provided. With this background, we propose that memory recall occurs when the spontaneous neural activity changes to an appropriate output activity upon the application of an input, and this phenomenon is known as bifurcation in the dynamical systems theory. We introduce a reinforcement-learning-based layered neural network model with two synaptic time scales; in this network, I/O relations are successively memorized when the difference between the time scales is appropriate. After the learning process is complete, the neural dynamics are shaped so that it changes appropriately with each input. As the number of memorized patterns is increased, the generated spontaneous neural activity after learning shows itineration over the previously learned output patterns. This theoretical finding also shows remarkable agreement with recent experimental reports, where spontaneous neural activity in the visual cortex without stimuli itinerate over evoked patterns by previously applied signals. Our results suggest that itinerant spontaneous activity can be a natural outcome of successive learning of several patterns, and it facilitates bifurcation of the network when an input is provided.

  2. Efffects of vigabatrin on spontaneous locomotor activity of rats

    NARCIS (Netherlands)

    Bouwman, B.M.; Rijn, C.M. van; Willems-van Bree, P.C.M.; Coenen, A.M.L.

    2003-01-01

    Effects of vigibatrin (saline, 125, 250, or 500 mg/kg i.p.) on spontaneous locomotor activity in Wistar rats were investigated. There was a dose dependent decrease in amount of locomotion for doses up to 250 mg/kg. This decrease was measurable 2-4 hours after injection and still became more

  3. Merkel Cell Carcinoma with Spontaneous Regression: A Case Report and Immunohistochemical Study

    Directory of Open Access Journals (Sweden)

    Hitoshi Terui

    2016-02-01

    Full Text Available Merkel cell carcinoma (MCC is an aggressive neuroendocrine carcinoma that only rarely regresses spontaneously. Since little is known about the immunological mechanisms involved in the spontaneous regression of MCC, we describe a case of MCC with spontaneous regression and employed immunohistochemical staining for cytotoxic and immunosuppressive molecules to investigate possible mechanisms involved in the spontaneous regression of MCC. Interestingly, compared to conventional MCC, tumor-infiltrating lymphocytes in MCC with spontaneous regression contained higher numbers of CD8+ cells and granulysin-bearing cells and lower numbers of CD206+ cells. Our present study suggests one of the possible reasons for the spontaneous regression of MCC.

  4. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in

  5. Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the tokay gecko's cochlea.

    Directory of Open Access Journals (Sweden)

    Michael Gelfand

    2010-06-01

    Full Text Available The hearing of tetrapods including humans is enhanced by an active process that amplifies the mechanical inputs associated with sound, sharpens frequency selectivity, and compresses the range of responsiveness. The most striking manifestation of the active process is spontaneous otoacoustic emission, the unprovoked emergence of sound from an ear. Hair cells, the sensory receptors of the inner ear, are known to provide the energy for such emissions; it is unclear, though, how ensembles of such cells collude to power observable emissions.We have measured and modeled spontaneous otoacoustic emissions from the ear of the tokay gecko, a convenient experimental subject that produces robust emissions. Using a van der Pol formulation to represent each cluster of hair cells within a tonotopic array, we have examined the factors that influence the cooperative interaction between oscillators.A model that includes viscous interactions between adjacent hair cells fails to produce emissions similar to those observed experimentally. In contrast, elastic coupling yields realistic results, especially if the oscillators near the ends of the array are weakened so as to minimize boundary effects. Introducing stochastic irregularity in the strength of oscillators stabilizes peaks in the spectrum of modeled emissions, further increasing the similarity to the responses of actual ears. Finally, and again in agreement with experimental findings, the inclusion of a pure-tone external stimulus repels the spectral peaks of spontaneous emissions. Our results suggest that elastic coupling between oscillators of slightly differing strength explains several properties of the spontaneous otoacoustic emissions in the gecko.

  6. Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the tokay gecko's cochlea.

    Science.gov (United States)

    Gelfand, Michael; Piro, Oreste; Magnasco, Marcelo O; Hudspeth, A J

    2010-06-15

    The hearing of tetrapods including humans is enhanced by an active process that amplifies the mechanical inputs associated with sound, sharpens frequency selectivity, and compresses the range of responsiveness. The most striking manifestation of the active process is spontaneous otoacoustic emission, the unprovoked emergence of sound from an ear. Hair cells, the sensory receptors of the inner ear, are known to provide the energy for such emissions; it is unclear, though, how ensembles of such cells collude to power observable emissions. We have measured and modeled spontaneous otoacoustic emissions from the ear of the tokay gecko, a convenient experimental subject that produces robust emissions. Using a van der Pol formulation to represent each cluster of hair cells within a tonotopic array, we have examined the factors that influence the cooperative interaction between oscillators. A model that includes viscous interactions between adjacent hair cells fails to produce emissions similar to those observed experimentally. In contrast, elastic coupling yields realistic results, especially if the oscillators near the ends of the array are weakened so as to minimize boundary effects. Introducing stochastic irregularity in the strength of oscillators stabilizes peaks in the spectrum of modeled emissions, further increasing the similarity to the responses of actual ears. Finally, and again in agreement with experimental findings, the inclusion of a pure-tone external stimulus repels the spectral peaks of spontaneous emissions. Our results suggest that elastic coupling between oscillators of slightly differing strength explains several properties of the spontaneous otoacoustic emissions in the gecko.

  7. Mechanisms of morphine enhancement of spontaneous seizure activity.

    Science.gov (United States)

    Saboory, Ehsan; Derchansky, Miron; Ismaili, Mohammed; Jahromi, Shokrollah S; Brull, Richard; Carlen, Peter L; El Beheiry, Hossam

    2007-12-01

    High-dose opioid therapy can precipitate seizures; however, the mechanism of such a dangerous adverse effect remains poorly understood. The aim of our study was to determine whether the neuroexcitatory activity of high-dose morphine is mediated by selective stimulation of opioid receptors. Mice hippocampi were resected intact and bathed in low magnesium artificial cerebrospinal fluid to induce spontaneous seizure-like events recorded from CA1 neurons. Application of morphine had a biphasic effect on the recorded spontaneous seizure-like events. In a low concentration (10 microM), morphine depressed electrographic seizure activity. Higher morphine concentrations (30 and 100 microM) enhanced seizure activity in an apparent dose-dependent manner. Naloxone, a nonselective opiate antagonist blocked the proconvulsant action of morphine. Selective mu and kappa opiate receptor agonists and antagonists enhanced and suppressed the spontaneous seizure activity, respectively. On the contrary, delta opioid receptor ligands did not have an effect. The proseizure effect of morphine is mediated through selective stimulation of mu and kappa opiate receptors but not the activation of the delta receptor system. The observed dose-dependent mechanism of morphine neuroexcitation underscores careful adjustment and individualized opioid dosing in the clinical setting.

  8. [Cellular mechanism of the generation of spontaneous activity in gastric muscle].

    Science.gov (United States)

    Nakamura, Eri; Kito, Yoshihiko; Fukuta, Hiroyasu; Yanai, Yoshimasa; Hashitani, Hikaru; Yamamoto, Yoshimichi; Suzuki, Hikaru

    2004-03-01

    In gastric smooth muscles, interstitial cells of Cajal (ICC) might be the pacemaker cells of spontaneous activities since ICC are rich in mitochondria and are connected with smooth muscle cells via gap junctions. Several types of ICC are distributed widely in the stomach wall. A group of ICC distributed in the myenteric layer (ICC-MY) were the pacemaker cells of gastrointestinal smooth muscles. Pacemaker potentials were generated in ICC-MY, and the potentials were conducted to circular smooth muscles to trigger slow waves and also conducted to longitudinal muscles to form follower potentials. In circular muscle preparations, interstitial cells distributed within muscle bundles (ICC-IM) produced unitary potentials, which were conducted to circular muscles to form slow potentials by summation. In mutant mice lacking inositol trisphosphate (IP(3)) receptor, slow waves were absent in gastric smooth muscles. The generation of spontaneous activity was impaired by the inhibition of Ca(2+)-release from internal stores through IP(3) receptors, inhibition of mitochondrial Ca(2+)-handling with proton pump inhibitors, and inhibition of ATP-sensitive K(+)-channels at the mitochondrial inner membrane. These results suggested that mitochondrial Ca(2+)-handling causes the generation of spontaneous activity in pacemaker cells. Possible involvement of protein kinase C (PKC) in the Ca(2+) signaling system was also suggested.

  9. Interactions between Hair Cells Shape Spontaneous Otoacoustic Emissions in a Model of the Tokay Gecko's Cochlea

    OpenAIRE

    Gelfand, Michael; Piro, Oreste; Magnasco, Marcelo O.; Hudspeth, A. J.

    2010-01-01

    Background The hearing of tetrapods including humans is enhanced by an active process that amplifies the mechanical inputs associated with sound, sharpens frequency selectivity, and compresses the range of responsiveness. The most striking manifestation of the active process is spontaneous otoacoustic emission, the unprovoked emergence of sound from an ear. Hair cells, the sensory receptors of the inner ear, are known to provide the energy for such emissions; it is unclear, though, how ens...

  10. Spontaneously immortalised bovine mammary epithelial cells exhibit a distinct gene expression pattern from the breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li Qianqian

    2010-10-01

    Full Text Available Abstract Background Spontaneous immortalisation of cultured mammary epithelial cells (MECs is an extremely rare event, and the molecular mechanism behind spontaneous immortalisation of MECs is unclear. Here, we report the establishment of a spontaneously immortalised bovine mammary epithelial cell line (BME65Cs and the changes in gene expression associated with BME65Cs cells. Results BME65Cs cells maintain the general characteristics of normal mammary epithelial cells in morphology, karyotype and immunohistochemistry, and are accompanied by the activation of endogenous bTERT (bovine Telomerase Reverse Transcriptase and stabilisation of the telomere. Currently, BME65Cs cells have been passed for more than 220 generations, and these cells exhibit non-malignant transformation. The expression of multiple genes was investigated in BME65Cs cells, senescent BMECs (bovine MECs cells, early passage BMECs cells and MCF-7 cells (a human breast cancer cell line. In comparison with early passage BMECs cells, the expression of senescence-relevant apoptosis-related gene were significantly changed in BME65Cs cells. P16INK4a was downregulated, p53 was low expressed and Bax/Bcl-2 ratio was reversed. Moreover, a slight upregulation of the oncogene c-Myc, along with an undetectable level of breast tumor-related gene Bag-1 and TRPS-1, was observed in BME65Cs cells while these genes are all highly expressed in MCF-7. In addition, DNMT1 is upregulated in BME65Cs. These results suggest that the inhibition of both senescence and mitochondrial apoptosis signalling pathways contribute to the immortality of BME65Cs cells. The expression of p53 and p16INK4a in BME65Cs was altered in the pattern of down-regulation but not "loss", suggesting that this spontaneous immortalization is possibly initiated by other mechanism rather than gene mutation of p53 or p16INK4a. Conclusions Spontaneously immortalised BME65Cs cells maintain many characteristics of normal BMEC cells and

  11. Molecular and biochemical analyses of spontaneous and X-ray-induced mutants in human lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Liber, H L; Call, K M; Little, J B

    1987-05-01

    The authors have isolated a series of 14 spontaneously arising and 28 X-ray-induced mutants at the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus in human lymphoblastoid cells. Among the spontaneous mutants, 5/14 (36%) had detectable alterations in their restriction fragment pattern after hybridization with a human cDNA probe for hgprt. Of the 10 remaining mutants, 4 had partial HGPRT enzyme activity, which suggested that they contained point mutations. Among the 28 mutants induced by 150 rad of X-rays, 15 (54%) had deletions of part or all of the hgprt gene. Of the remaining 13 (18% overall) 5 had partial HGPRT enzyme activity, which suggested that they contained point mutations. These data imply that in this human cell system, X-rays induce both point mutants which have residual enzyme activity as well as mutations involving relatively large deletions of DNA. 48 reference, 1 figure, 4 tables.

  12. Spontaneous lung metastasis formation of human Merkel cell carcinoma cell lines transplanted into scid mice.

    Science.gov (United States)

    Knips, Jill; Czech-Sioli, Manja; Spohn, Michael; Heiland, Max; Moll, Ingrid; Grundhoff, Adam; Schumacher, Udo; Fischer, Nicole

    2017-07-01

    Merkel cell carcinoma (MCC) is an aggressive skin cancer entity that frequently leads to rapid death due to its high propensity to metastasize. The etiology of most MCC cases is linked to Merkel cell polyomavirus (MCPyV), a virus which is monoclonally integrated in up to 95% of tumors. While there are presently no animal models to study the role of authentic MCPyV infection on transformation, tumorigenesis or metastasis formation, xenograft mouse models employing engrafted MCC-derived cell lines (MCCL) represent a promising approach to study certain aspects of MCC pathogenesis. Here, the two MCPyV-positive MCC cell lines WaGa and MKL-1 were subcutaneously engrafted in scid mice. Engraftment of both MCC cell lines resulted in the appearance of circulating tumor cells and metastasis formation, with WaGa-engrafted mice showing a significantly shorter survival time as well as increased numbers of spontaneous lung metastases compared to MKL-1 mice. Interestingly, explanted tumors compared to parental cell lines exhibit an upregulation of MCPyV sT-Antigen expression in all tumors, with WaGa tumors showing significantly higher sT-Antigen expression than MKL-1 tumors. RNA-Seq analysis of explanted tumors and parental cell lines furthermore revealed that in the more aggressive WaGa tumors, genes involved in inflammatory response, growth factor activity and Wnt signalling pathway are significantly upregulated, suggesting that sT-Antigen is the driver of the observed differences in metastasis formation. © 2017 UICC.

  13. Modifications of spontaneous oculomotor activity in microgravitational conditions

    Science.gov (United States)

    Kornilova, L. N.; Goncharenko, A. M.; Polyakov, V. V.; Grigorova, V.; Manev, A.

    Investigations on spontaneous oculomotor activity were carried out prior to and after (five cosmonauts) and during space flight (two cosmonauts) on the 3rd, 5th and 164th days of the space flight. Recording of oculomotor activity was carried out by electrooculography on automated data acquisition and processing system "Zora" based on personal computers. During the space flight and after it all the cosmonauts with the eyes closed or open and dark-goggled showed an essential increase of the movements' amplitude when removing the eyes into the extreme positions especially in a vertical direction, occurrence of correcting saccadic movements (or nystagmus), an increase in time of fixing reactions.

  14. [Decidual natural killer cells in recurrent spontaneous abortions].

    Science.gov (United States)

    Janosević, Dragana Radović; Lilić, Vekoslav; Basić, Hakija; Pavlović, Aleksandra Tubić; Stefanović, Milan; Milosević, Jelena

    2011-01-01

    A repeated or habitual miscarriage (PSP) is defined as three or more consecutive losses of pregnancy. In the first three months of pregnancy, habitual miscarriages occur in about 1% of pregnant women, out of which 50% are of an unknown etiology. It is believed that among them, the greatest number is the consequence of an inadequate alloimmune response of a women to the pregnancy. The endocrine and immune systems are in a close interaction during the implantation and maintaining of pregnancy. This communication is the most obvious on endometrium of pregnancy decidua. The aim of the study was to identify the number and the subpopulation distribution of the decidual NK cells in the decidua by using an immunohistochemical method. The research included a group of 30 women who had had two spontaneous miscarriages consecutively in the first three months of their pregnancy, while the curettage after the third spontaneous abortion was histopathologically and immunohistochemically analyzed. The control group consisted of 20 women without a problematic reproductive anamnesis, who had had their pregnancy terminated for social reasons. The criteria for the eliminating from the research were the diagnosed uterus anomalies, positive screening on thrombophilia, as well as women suffering from diabetes melitus and the ones with the thyroid gland function disorder. The number and the phenotype structure of the uterus NK cells were significantly different between the decidua of a normal pregnancy and that in PSP. In the decidua in PSP, there were much more NK cells with the phenotype of the peripheral circulation CD57 and CD56dim, while in the decidua of the control group the dominant cells were the typical uNK cell subpopulation CD56bright. The above mentioned results show that the disregulation of the immunocompetent cells of the decidua, by creating an inadequate cytokine milieu, is one of the mechanism of rejecting the semiallogeneic blastocyst.

  15. The rate of spontaneous mutations in human myeloid cells

    International Nuclear Information System (INIS)

    Araten, David J.; Krejci, Ondrej; DiTata, Kimberly; Wunderlich, Mark; Sanders, Katie J.; Zamechek, Leah; Mulloy, James C.

    2013-01-01

    Highlights: • We provide the first measurement of the mutation rate (μ) in human myeloid cells. • μ is measured to be 3.6–23 × 10 −7 per cell division. • The AML-ETO and MLL-AF9 fusions do not seem to increase μ. • Cooperating mutations in NRAS, FLT3 and p53 not seem to increase μ. • Hypermutability may be required to explain leukemogenesis. - Abstract: The mutation rate (μ) is likely to be a key parameter in leukemogenesis, but historically, it has been difficult to measure in humans. The PIG-A gene has some advantages for the detection of spontaneous mutations because it is X-linked, and therefore only one mutation is required to disrupt its function. Furthermore, the PIG-A-null phenotype is readily detected by flow cytometry. Using PIG-A, we have now provided the first in vitro measurement of μ in myeloid cells, using cultures of CD34+ cells that are transduced with either the AML-ETO or the MLL-AF9 fusion genes and expanded with cytokines. For the AML-ETO cultures, the median μ value was ∼9.4 × 10 −7 (range ∼3.6–23 × 10 −7 ) per cell division. In contrast, few spontaneous mutations were observed in the MLL-AF9 cultures. Knockdown of p53 or introduction of mutant NRAS or FLT3 alleles did not have much of an effect on μ. Based on these data, we provide a model to predict whether hypermutability must occur in the process of leukemogenesis

  16. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells

    Science.gov (United States)

    Johnson, Stuart L.; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M.; Roberts, Terri P.; Masetto, Sergio; Knipper, Marlies; Kros, Corné J.; Marcotti, Walter

    2011-01-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion cells and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials are intrinsically generated by immature IHCs of altricial rodents and that apical IHCs exhibit bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter ACh, by fine-tuning the IHC’s resting membrane potential (Vm), is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the Vm of apical and basal IHCs by activating SK2 channels. We hypothesize that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway. PMID:21572434

  17. Ordered patterns of cell shape and orientational correlation during spontaneous cell migration.

    Directory of Open Access Journals (Sweden)

    Yusuke T Maeda

    Full Text Available BACKGROUND: In the absence of stimuli, most motile eukaryotic cells move by spontaneously coordinating cell deformation with cell movement in the absence of stimuli. Yet little is known about how cells change their own shape and how cells coordinate the deformation and movement. Here, we investigated the mechanism of spontaneous cell migration by using computational analyses. METHODOLOGY: We observed spontaneously migrating Dictyostelium cells in both a vegetative state (round cell shape and slow motion and starved one (elongated cell shape and fast motion. We then extracted regular patterns of morphological dynamics and the pattern-dependent systematic coordination with filamentous actin (F-actin and cell movement by statistical dynamic analyses. CONCLUSIONS/SIGNIFICANCE: We found that Dictyostelium cells in both vegetative and starved states commonly organize their own shape into three ordered patterns, elongation, rotation, and oscillation, in the absence of external stimuli. Further, cells inactivated for PI3-kinase (PI3K and/or PTEN did not show ordered patterns due to the lack of spatial control in pseudopodial formation in both the vegetative and starved states. We also found that spontaneous polarization was achieved in starved cells by asymmetric localization of PTEN and F-actin. This breaking of the symmetry of protein localization maintained the leading edge and considerably enhanced the persistence of directed migration, and overall random exploration was ensured by switching among the different ordered patterns. Our findings suggest that Dictyostelium cells spontaneously create the ordered patterns of cell shape mediated by PI3K/PTEN/F-actin and control the direction of cell movement by coordination with these patterns even in the absence of external stimuli.

  18. Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level

    Science.gov (United States)

    Nanda, Arun M.; Heyer, Antonia; Krämer, Christina; Grünberger, Alexander; Kohlheyer, Dietrich

    2014-01-01

    The genome of the Gram-positive soil bacterium Corynebacterium glutamicum ATCC 13032 contains three integrated prophage elements (CGP1 to -3). Recently, it was shown that the large lysogenic prophage CGP3 (∼187 kbp) is excised spontaneously in a small number of cells. In this study, we provide evidence that a spontaneously induced SOS response is partly responsible for the observed spontaneous CGP3 induction. Whereas previous studies focused mainly on the induction of prophages at the population level, we analyzed the spontaneous CGP3 induction at the single-cell level using promoters of phage genes (Pint2 and Plysin) fused to reporter genes encoding fluorescent proteins. Flow-cytometric analysis revealed a spontaneous CGP3 activity in about 0.01 to 0.08% of the cells grown in standard minimal medium, which displayed a significantly reduced viability. A PrecA-eyfp promoter fusion revealed that a small fraction of C. glutamicum cells (∼0.2%) exhibited a spontaneous induction of the SOS response. Correlation of PrecA to the activity of downstream SOS genes (PdivS and PrecN) confirmed a bona fide induction of this stress response rather than stochastic gene expression. Interestingly, the reporter output of PrecA and CGP3 promoter fusions displayed a positive correlation at the single-cell level (ρ = 0.44 to 0.77). Furthermore, analysis of the PrecA-eyfp/Pint2-e2-crimson strain during growth revealed the highest percentage of spontaneous PrecA and Pint2 activity in the early exponential phase, when fast replication occurs. Based on these studies, we postulate that spontaneously occurring DNA damage induces the SOS response, which in turn triggers the induction of lysogenic prophages. PMID:24163339

  19. Brain modularity controls the critical behavior of spontaneous activity.

    Science.gov (United States)

    Russo, R; Herrmann, H J; de Arcangelis, L

    2014-03-13

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  20. Immunohistochemical study of Ito cells of spontaneous cholangiohepatitis in broiler chickens

    Directory of Open Access Journals (Sweden)

    E Handharyani

    2001-12-01

    Full Text Available The function of Ito cells is expanding from a fat-storing site to a center of extracellular matrix metabolism and mediator production in the liver. Immunohistochemical reactivities of Ito cells were examined in eight livers of broiler chickens affected with spontaneous cholangiohepatitis and six chicken livers with malformation of extrahepatic biliary tracts. The livers in both groups revealed severe diffuse fibrosis. Ito cells expressing HHF35 muscle actin and desmin actively proliferated in the fibrotic foci of the all livers. The immunoreactivities of Ito cells to antibodies were enhanced compared with those in normal livers. There were no immunohistochemical differences between the Ito cells of two groups. From these findings, it was suggested that Ito cells actively proliferate and show enhanced immunoreactivities in the livers affected with cholangiohepatitis and malformation of extrahepatic biliary tracts.

  1. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory.

    Science.gov (United States)

    Bui, Anh D; Nguyen, Theresa M; Limouse, Charles; Kim, Hannah K; Szabo, Gergely G; Felong, Sylwia; Maroso, Mattia; Soltesz, Ivan

    2018-02-16

    Temporal lobe epilepsy (TLE) is characterized by debilitating, recurring seizures and an increased risk for cognitive deficits. Mossy cells (MCs) are key neurons in the hippocampal excitatory circuit, and the partial loss of MCs is a major hallmark of TLE. We investigated how MCs contribute to spontaneous ictal activity and to spatial contextual memory in a mouse model of TLE with hippocampal sclerosis, using a combination of optogenetic, electrophysiological, and behavioral approaches. In chronically epileptic mice, real-time optogenetic modulation of MCs during spontaneous hippocampal seizures controlled the progression of activity from an electrographic to convulsive seizure. Decreased MC activity is sufficient to impede encoding of spatial context, recapitulating observed cognitive deficits in chronically epileptic mice. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Spontaneous activity in the developing mammalian retina: Form and function

    Science.gov (United States)

    Butts, Daniel Allison

    Spontaneous neuronal activity is present in the immature mammalian retina during the initial stages of visual system development, before the retina is responsive to light. This activity consists of bursts of action potentials fired by retinal ganglion cells, and propagates in a wavelike manner across the inner plexiform layer of the retina. Unlike waves in other neural systems, retinal waves have large variability in both their rate and direction of propagation, and individual waves only propagate across small regions of the retina. The unique properties of retinal activity arise from dynamic processes within the developing retina, and produce characteristic spatiotemporal properties. These spatiotemporal properties are of particular interest, since they are believed to play a role in visual system development. This dissertation addresses the complex spatiotemporal patterning of the retinal waves from two different perspectives. First, it proposes how the immature circuitry of the developing retina generates these patterns of activity. In order to reproduce the distinct spatiotemporal properties observed in experiments, a model of the immature retinal circuitry must meet certain requirements, which are satisfied by a coarse-grained model of the developing retina that we propose. Second, this dissertation addresses how the particular spatiotemporal patterning of the retinal waves provides information to the rest of the visual system and, as a result, can be used to guide visual system development. By measuring the properties of this information, we place constraints on the developmental mechanisms that use this activity, and show how the particular spatiotemporal properties of the retinal waves provide this information. Together, this dissertation demonstrates how the apparent complexity of retinal wave patterning can be understood both through the immature circuitry that generates it, and through the developmental mechanisms that may use it. The first three

  3. Spatiotemporal stability of neonatal rat cardiomyocyte monolayers spontaneous activity is dependent on the culture substrate.

    Directory of Open Access Journals (Sweden)

    Jonathan Boudreau-Béland

    Full Text Available In native conditions, cardiac cells must continuously comply with diverse stimuli necessitating a perpetual adaptation. Polydimethylsiloxane (PDMS is commonly used in cell culture to study cellular response to changes in the mechanical environment. The aim of this study was to evaluate the impact of using PDMS substrates on the properties of spontaneous activity of cardiomyocyte monolayer cultures. We compared PDMS to the gold standard normally used in culture: a glass substrate. Although mean frequency of spontaneous activity remained unaltered, incidence of reentrant activity was significantly higher in samples cultured on glass compared to PDMS substrates. Higher spatial and temporal instability of the spontaneous rate activation was found when cardiomyocytes were cultured on PDMS, and correlated with decreased connexin-43 and increased CaV3.1 and HCN2 mRNA levels. Compared to cultures on glass, cultures on PDMS were associated with the strongest response to isoproterenol and acetylcholine. These results reveal the importance of carefully selecting the culture substrate for studies involving mechanical stimulation, especially for tissue engineering or pharmacological high-throughput screening of cardiac tissue analog.

  4. Neurofeedback Tunes Scale-Free Dynamics in Spontaneous Brain Activity.

    Science.gov (United States)

    Ros, T; Frewen, P; Théberge, J; Michela, A; Kluetsch, R; Mueller, A; Candrian, G; Jetly, R; Vuilleumier, P; Lanius, R A

    2017-10-01

    Brain oscillations exhibit long-range temporal correlations (LRTCs), which reflect the regularity of their fluctuations: low values representing more random (decorrelated) while high values more persistent (correlated) dynamics. LRTCs constitute supporting evidence that the brain operates near criticality, a state where neuronal activities are balanced between order and randomness. Here, healthy adults used closed-loop brain training (neurofeedback, NFB) to reduce the amplitude of alpha oscillations, producing a significant increase in spontaneous LRTCs post-training. This effect was reproduced in patients with post-traumatic stress disorder, where abnormally random dynamics were reversed by NFB, correlating with significant improvements in hyperarousal. Notably, regions manifesting abnormally low LRTCs (i.e., excessive randomness) normalized toward healthy population levels, consistent with theoretical predictions about self-organized criticality. Hence, when exposed to appropriate training, spontaneous cortical activity reveals a residual capacity for "self-tuning" its own temporal complexity, despite manifesting the abnormal dynamics seen in individuals with psychiatric disorder. Lastly, we observed an inverse-U relationship between strength of LRTC and oscillation amplitude, suggesting a breakdown of long-range dependence at high/low synchronization extremes, in line with recent computational models. Together, our findings offer a broader mechanistic framework for motivating research and clinical applications of NFB, encompassing disorders with perturbed LRTCs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Spontaneous brain activity predicts learning ability of foreign sounds.

    Science.gov (United States)

    Ventura-Campos, Noelia; Sanjuán, Ana; González, Julio; Palomar-García, María-Ángeles; Rodríguez-Pujadas, Aina; Sebastián-Gallés, Núria; Deco, Gustavo; Ávila, César

    2013-05-29

    Can learning capacity of the human brain be predicted from initial spontaneous functional connectivity (FC) between brain areas involved in a task? We combined task-related functional magnetic resonance imaging (fMRI) and resting-state fMRI (rs-fMRI) before and after training with a Hindi dental-retroflex nonnative contrast. Previous fMRI results were replicated, demonstrating that this learning recruited the left insula/frontal operculum and the left superior parietal lobe, among other areas of the brain. Crucially, resting-state FC (rs-FC) between these two areas at pretraining predicted individual differences in learning outcomes after distributed (Experiment 1) and intensive training (Experiment 2). Furthermore, this rs-FC was reduced at posttraining, a change that may also account for learning. Finally, resting-state network analyses showed that the mechanism underlying this reduction of rs-FC was mainly a transfer in intrinsic activity of the left frontal operculum/anterior insula from the left frontoparietal network to the salience network. Thus, rs-FC may contribute to predict learning ability and to understand how learning modifies the functioning of the brain. The discovery of this correspondence between initial spontaneous brain activity in task-related areas and posttraining performance opens new avenues to find predictors of learning capacities in the brain using task-related fMRI and rs-fMRI combined.

  6. Spontaneous calcium waves in granule cells in cerebellar slice cultures

    DEFF Research Database (Denmark)

    Apuschkin, Mia; Ougaard, Maria; Rekling, Jens C

    2013-01-01

    Multiple regions in the CNS display propagating correlated activity during embryonic and postnatal development. This activity can be recorded as waves of increased calcium concentrations in spiking neurons or glia cells, and have been suggested to be involved in patterning, axonal guidance and es......, that the propagating wave activity is carried through the tissue by axonal collaterals formed by neighboring granule cells, and further suggest that the correlated activity may be related to processes that ensure correct postnatal wiring of the cerebellar circuits....

  7. The influence of spontaneous activity on stimulus processing in primary visual cortex.

    Science.gov (United States)

    Schölvinck, M L; Friston, K J; Rees, G

    2012-02-01

    Spontaneous activity in the resting human brain has been studied extensively; however, how such activity affects the local processing of a sensory stimulus is relatively unknown. Here, we examined the impact of spontaneous activity in primary visual cortex on neuronal and behavioural responses to a simple visual stimulus, using functional MRI. Stimulus-evoked responses remained essentially unchanged by spontaneous fluctuations, combining with them in a largely linear fashion (i.e., with little evidence for an interaction). However, interactions between spontaneous fluctuations and stimulus-evoked responses were evident behaviourally; high levels of spontaneous activity tended to be associated with increased stimulus detection at perceptual threshold. Our results extend those found in studies of spontaneous fluctuations in motor cortex and higher order visual areas, and suggest a fundamental role for spontaneous activity in stimulus processing. Copyright © 2011. Published by Elsevier Inc.

  8. Changes in spontaneous brain activity in early Parkinson's disease.

    Science.gov (United States)

    Yang, Hong; Zhou, Xiaohong Joe; Zhang, Min-Ming; Zheng, Xu-Ning; Zhao, Yi-Lei; Wang, Jue

    2013-08-09

    Resting state brain activity can provide valuable insights into the pathophysiology of Parkinson's disease (PD). The purpose of the present study was (a) to investigate abnormal spontaneous neuronal activity in early PD patients using resting-state functional MRI (fMRI) with a regional homogeneity (ReHo) method and (b) to demonstrate the potential of using changes in abnormal spontaneous neuronal activity for monitoring the progression of PD during its early stages. Seventeen early PD patients were assessed with the Unified Parkinson's Disease Rating Scale (UPDRS), the Hoehn and Yahr disability scale and the Mini-mental State Examination (MMSE) were compared with seventeen gender- and age-matched healthy controls. All subjects underwent MRI scans using a 1.5T General Electric Signa Excite II scanner. The MRI scan protocol included whole-brain volumetric imaging using a 3D inversion recovery prepared (IR-Prep) fast spoiled gradient-echo pulse sequence and 2D multi-slice (22 axial slices covering the whole brain) resting-state fMRI using an echo planar imaging (EPI) sequence. Images were analyzed in SPM5 together with a ReHo algorithm using the in-house software program REST. A corrected threshold of pbrain regions, including the left cerebellum, left parietal lobe, right middle temporal lobe, right sub-thalamic nucleus areas, right superior frontal gyrus, middle frontal gyrus (MFG), right inferior parietal lobe (IPL), right precuneus lobe, left MFG and left IPL. Additionally, significantly reduced ReHo was also observed in the early PD patients in the following brain regions: the left putamen, left inferior frontal gyrus, right hippocampus, right anterior cingulum, and bilateral lingual gyrus. Moreover, in PD patients, ReHo in the left putamen was negatively correlated with the UPDRS scores (r=-0.69). These results indicate that the abnormal resting state spontaneous brain activity associated with patients with early PD can be revealed by Reho analysis. Copyright

  9. Enhanced endogenous type I interferon cell-driven survival and inhibition of spontaneous apoptosis by Riluzole

    International Nuclear Information System (INIS)

    Achour, Ammar; M'Bika, Jean-Pierre; Biquard, Jean-Michel

    2009-01-01

    Highly active antiretroviral therapy (HAART), although effective in improving the survival of HIV-1-infected individuals, has not been able to reconstitute the adaptive immune response. We have described the use of novel chemical agents to restore T-cell survival/proliferation by inducing cytokine production. Due to its cationic amphiphilic structure, these molecules appear to enhance immune restoration. In this study, we investigated the action of Riluzole (2-amino-6-trifuromethoxybenzothiazole) in HIV-1 infection. Riluzole is able to increase (effective dose from 1 to 1000 nM) the cell-survival of T cells from HIV-1-infected patients and inhibit spontaneous apoptosis. The immunomodulatory effect of riluzole-sensitized cells was ascribed to endogenous type I interferon (IFN) derived from monocytes. Riluzole might be used for restoring the cell survival of immunocompromised patients and eliminating latent infected cells upon HIV-1 reactivation

  10. Spontaneous and Evoked Activity from Murine Ventral Horn Cultures on Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Bryan J. Black

    2017-09-01

    Full Text Available Motor neurons are the site of action for several neurological disorders and paralytic toxins, with cell bodies located in the ventral horn (VH of the spinal cord along with interneurons and support cells. Microelectrode arrays (MEAs have emerged as a high content assay platform for mechanistic studies and drug discovery. Here, we explored the spontaneous and evoked electrical activity of VH cultures derived from embryonic mouse spinal cord on multi-well plates of MEAs. Primary VH cultures from embryonic day 15–16 mice were characterized by expression of choline acetyltransferase (ChAT by immunocytochemistry. Well resolved, all-or-nothing spontaneous spikes with profiles consistent with extracellular action potentials were observed after 3 days in vitro, persisting with consistent firing rates until at least day in vitro 19. The majority of the spontaneous activity consisted of tonic firing interspersed with coordinated bursting across the network. After 5 days in vitro, spike activity was readily evoked by voltage pulses where a minimum amplitude and duration required for excitation was 300 mV and 100 μs/phase, respectively. We characterized the sensitivity of spontaneous and evoked activity to a host of pharmacological agents including AP5, CNQX, strychnine, ω-agatoxin IVA, and botulinum neurotoxin serotype A (BoNT/A. These experiments revealed sensitivity of the cultured VH to both agonist and antagonist compounds in a manner consistent with mature tissue derived from slices. In the case of BoNT/A, we also demonstrated intoxication persistence over an 18-day period, followed by partial intoxication recovery induced by N- and P/Q-type calcium channel agonist GV-58. In total, our findings suggest that VH cultures on multi-well MEA plates may represent a moderate throughput, high content assay for performing mechanistic studies and for screening potential therapeutics pertaining to paralytic toxins and neurological disorders.

  11. Bidirectional global spontaneous network activity precedes the canonical unidirectional circuit organization in the developing hippocampus.

    Science.gov (United States)

    Shi, Yulin; Ikrar, Taruna; Olivas, Nicholas D; Xu, Xiangmin

    2014-06-15

    Spontaneous network activity is believed to sculpt developing neural circuits. Spontaneous giant depolarizing potentials (GDPs) were first identified with single-cell recordings from rat CA3 pyramidal neurons, but here we identify and characterize a large-scale spontaneous network activity we term global network activation (GNA) in the developing mouse hippocampal slices, which is measured macroscopically by fast voltage-sensitive dye imaging. The initiation and propagation of GNA in the mouse is largely GABA-independent and dominated by glutamatergic transmission via AMPA receptors. Despite the fact that signal propagation in the adult hippocampus is strongly unidirectional through the canonical trisynaptic circuit (dentate gyrus [DG] to CA3 to CA1), spontaneous GNA in the developing hippocampus originates in distal CA3 and propagates both forward to CA1 and backward to DG. Photostimulation-evoked GNA also shows prominent backward propagation in the developing hippocampus from CA3 to DG. Mouse GNA is strongly correlated to electrophysiological recordings of highly localized single-cell and local field potential events. Photostimulation mapping of neural circuitry demonstrates that the enhancement of local circuit connections to excitatory pyramidal neurons occurs over the same time course as GNA and reveals the underlying pathways accounting for GNA backward propagation from CA3 to DG. The disappearance of GNA coincides with a transition to the adult-like unidirectional circuit organization at about 2 weeks of age. Taken together, our findings strongly suggest a critical link between GNA activity and maturation of functional circuit connections in the developing hippocampus. Copyright © 2013 Wiley Periodicals, Inc.

  12. Cell Imaging by Spontaneous and Amplified Raman Spectroscopies

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    2017-01-01

    Full Text Available Raman spectroscopy (RS is a powerful, noninvasive optical technique able to detect vibrational modes of chemical bonds. The high chemical specificity due to its fingerprinting character and the minimal requests for sample preparation have rendered it nowadays very popular in the analysis of biosystems for diagnostic purposes. In this paper, we first discuss the main advantages of spontaneous RS by describing the study of a single protozoan (Acanthamoeba, which plays an important role in a severe ophthalmological disease (Acanthamoeba keratitis. Later on, we point out that the weak signals that originated from Raman scattering do not allow probing optically thin samples, such as cellular membrane. Experimental approaches able to overcome this drawback are based on the use of metallic nanostructures, which lead to a huge amplification of the Raman yields thanks to the excitation of localized surface plasmon resonances. Surface-enhanced Raman scattering (SERS and tip-enhanced Raman scattering (TERS are examples of such innovative techniques, in which metallic nanostructures are assembled on a flat surface or on the tip of a scanning probe microscope, respectively. Herein, we provide a couple of examples (red blood cells and bacterial spores aimed at studying cell membranes with these techniques.

  13. The wiring of developing sensory circuits - from patterned spontaneous activity to mechanisms of synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Alexandra Helen Leighton

    2016-09-01

    Full Text Available In order to accurately process incoming sensory stimuli, neurons must be organized into functional networks, with both genetic and environmental factors influencing the precise arrangement of connections between cells. Teasing apart the relative contributions of molecular guidance cues, spontaneous activity and visual experience during this maturation is on-going. During development of the sensory system, the first, rough organization of connections is created by molecular factors. These connections are then modulated by the intrinsically generated activity of neurons, even before the senses have become operational. Spontaneous waves of depolarisations sweep across the nervous system, placing them in a prime position to strengthen correct connections and weaken others, shaping synapses into a useful network. A large body of work now supports the idea that, rather than being a mere side-effect of the system, spontaneous activity actually contains information which readies the nervous system so that, as soon as the senses become active, sensory information can be utilized by the animal. An example is the neonatal mouse. As soon as the eyelids first open, neurons in the cortex respond to visual information without the animal having previously encountered structured sensory input (Cang et al., 2005a; Ko et al., 2013; Rochefort et al., 2011; Zhang et al., 2012. In vivo imaging techniques have advanced considerably, allowing observation of the natural activity in the brain of living animals down to the level of the individual synapse. New (optogenetic methods make it possible to subtly modulate the spatio-temporal properties of activity, aiding our understanding of how these characteristics relate to the function of spontaneous activity. Such experiments have had a huge impact on our knowledge by permitting direct testing of ideas about the plasticity mechanisms at play in the intact system, opening up a provocative range of fresh questions. Here, we

  14. Spontaneous recombinase activity of Cre-ERT2 in vivo.

    Science.gov (United States)

    Kristianto, Jasmin; Johnson, Michael G; Zastrow, Ryley K; Radcliff, Abigail B; Blank, Robert D

    2017-06-01

    Inducible Cre-ERT recombinase technology is widely used for gene targeting studies. The second generation of inducible Cre-ERT recombinase, hemizygous B6.129S-Tg(UBC-cre/ERT2)1Ejb/J (hereafter abbreviated as Cre-ERT2), a fusion of a mutated estrogen receptor and Cre recombinase, was engineered to be more efficient and specific than the original Cre-ERT. The putative mechanism of selective Cre-mediated recombination is Cre sequestration in the cytoplasm in the basal state with translocation to the nucleus only in the presence of tamoxifen. We utilized both a reporter mouse (B6.129 (Cg)-Gt(ROSA)26Sor tm4(ACTB-tdTomato,-EGFP)Luo /J) and endothelin converting enzyme-1 floxed transgenic mouse line to evaluate Cre-ERT2 activity. We observed spontaneous Cre activity in both settings. Unintended Cre activity is a confounding factor that has a potentially large impact on data interpretation. Thus, it is important to consider background Cre activity in experimental design.

  15. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells

    Science.gov (United States)

    Lee, Jong Ho; Shin, Yong Cheol; Jin, Oh Seong; Kang, Seok Hee; Hwang, Yu-Shik; Park, Jong-Chul; Hong, Suck Won; Han, Dong-Wook

    2015-07-01

    Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite the potential biomedical applications of graphene and its derivatives, only limited information is available regarding their osteogenic activity. This study concentrates upon the effects of reduced graphene oxide (rGO)-coated hydroxyapatite (HAp) composites on osteogenic differentiation of hMSCs. The average particle sizes of HAp and rGO were 1270 +/- 476 nm and 438 +/- 180 nm, respectively. When coated on HAp particulates, rGO synergistically enhanced spontaneous osteogenic differentiation of hMSCs, without hampering their proliferation. This result was confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. It is suggested that rGO-coated HAp composites can be effectively utilized as dental and orthopedic bone fillers since these graphene-based particulate materials have potent effects on stimulating the spontaneous differentiation of MSCs and show superior bioactivity and osteoinductive potential.Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite

  16. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps

    KAUST Repository

    Takaku, Yasuharu; Hwang, Jung Shan; Wolf, Alexander; Bö ttger, Angelika; Shimizu, Hiroshi; David, Charles N.; Gojobori, Takashi

    2014-01-01

    Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential

  17. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Margarida Carrolo

    Full Text Available Streptococcus pneumoniae (pneumococcus is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.

  18. Endogenous activation of adenosine A(1) receptors accelerates ischemic suppression of spontaneous electrocortical activity

    DEFF Research Database (Denmark)

    Ilie, Andrei; Ciocan, Dragos; Zagrean, Ana-Maria

    2006-01-01

    Cerebral ischemia induces a rapid suppression of spontaneous brain rhythms prior to major alterations in ionic homeostasis. It was found in vitro during ischemia that the rapidly formed adenosine, resulting from the intracellular breakdown of ATP, may inhibit synaptic transmission via the A(1......) receptor subtype. The link between endogenous A(1) receptor activation during ischemia and the suppression of spontaneous electrocortical activity has not yet been established in the intact brain. The aim of this study was to investigate in vivo the effects of A(1) receptor antagonism by 8-cyclopentyl-1...

  19. Functional structure of spontaneous sleep slow oscillation activity in humans.

    Directory of Open Access Journals (Sweden)

    Danilo Menicucci

    Full Text Available BACKGROUND: During non-rapid eye movement (NREM sleep synchronous neural oscillations between neural silence (down state and neural activity (up state occur. Sleep Slow Oscillations (SSOs events are their EEG correlates. Each event has an origin site and propagates sweeping the scalp. While recent findings suggest a SSO key role in memory consolidation processes, the structure and the propagation of individual SSO events, as well as their modulation by sleep stages and cortical areas have not been well characterized so far. METHODOLOGY/PRINCIPAL FINDINGS: We detected SSO events in EEG recordings and we defined and measured a set of features corresponding to both wave shapes and event propagations. We found that a typical SSO shape has a transition to down state, which is steeper than the following transition from down to up state. We show that during SWS SSOs are larger and more locally synchronized, but less likely to propagate across the cortex, compared to NREM stage 2. Also, the detection number of SSOs as well as their amplitudes and slopes, are greatest in the frontal regions. Although derived from a small sample, this characterization provides a preliminary reference about SSO activity in healthy subjects for 32-channel sleep recordings. CONCLUSIONS/SIGNIFICANCE: This work gives a quantitative picture of spontaneous SSO activity during NREM sleep: we unveil how SSO features are modulated by sleep stage, site of origin and detection location of the waves. Our measures on SSOs shape indicate that, as in animal models, onsets of silent states are more synchronized than those of neural firing. The differences between sleep stages could be related to the reduction of arousal system activity and to the breakdown of functional connectivity. The frontal SSO prevalence could be related to a greater homeostatic need of the heteromodal association cortices.

  20. New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter.

    Science.gov (United States)

    Tozzi, Arturo; Zare, Marzieh; Benasich, April A

    2016-01-01

    Spontaneous brain activity has received increasing attention as demonstrated by the exponential rise in the number of published article on this topic over the last 30 years. Such "intrinsic" brain activity, generated in the absence of an explicit task, is frequently associated with resting-state or default-mode networks (DMN)s. The focus on characterizing spontaneous brain activity promises to shed new light on questions concerning the structural and functional architecture of the brain and how they are related to "mind". However, many critical questions have yet to be addressed. In this review, we focus on a scarcely explored area, specifically the energetic requirements and constraints of spontaneous activity, taking into account both thermodynamical and informational perspectives. We argue that the "classical" definitions of spontaneous activity do not take into account an important feature, that is, the critical thermodynamic energetic differences between spontaneous and evoked brain activity. Spontaneous brain activity is associated with slower oscillations compared with evoked, task-related activity, hence it exhibits lower levels of enthalpy and "free-energy" (i.e., the energy that can be converted to do work), thus supporting noteworthy thermodynamic energetic differences between spontaneous and evoked brain activity. Increased spike frequency during evoked activity has a significant metabolic cost, consequently, brain functions traditionally associated with spontaneous activity, such as mind wandering, require less energy that other nervous activities. We also review recent empirical observations in neuroscience, in order to capture how spontaneous brain dynamics and mental function can be embedded in a non-linear dynamical framework, which considers nervous activity in terms of phase spaces, particle trajectories, random walks, attractors and/or paths at the edge of the chaos. This takes us from the thermodynamic free-energy, to the realm of "variational

  1. Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro

    International Nuclear Information System (INIS)

    Ren, Zhenhua; Wang, Jiayin; Zhu, Wanwan; Guan, Yunqian; Zou, Chunlin; Chen, Zhiguo; Zhang, Y. Alex

    2011-01-01

    Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy. -- Highlights: ► Spontaneous transformation of cynomolgus monkey MSCs in vitro. ► Transformed mesenchymal cells lack multipotency. ► Transformed mesenchymal cells are highly tumorigenic. ► Transformed mesenchymal cells do not have the characteristics of cancer stem cells.

  2. Hydrodynamic interaction induced spontaneous rotation of coupled active filaments.

    Science.gov (United States)

    Jiang, Huijun; Hou, Zhonghuai

    2014-12-14

    We investigate the coupled dynamics of active filaments with long range hydrodynamic interactions (HI). Remarkably, we find that filaments can rotate spontaneously under the same conditions in which a single filament alone can only move in translation. Detailed analysis reveals that the emergence of coupled rotation originates from an asymmetric flow field associated with HI which breaks the symmetry of translational motion when filaments approach. The breaking is then further stabilized by HI to form self-sustained coupled rotation. Intensive simulations show that coupled rotation forms easily when one filament tends to collide with the front-half of the other. For head-to-tail approaching, we observe another interesting HI-induced coupled motion, where filaments move together in the form of one following the other. Moreover, the radius of coupled rotation increases exponentially as the rigidity of the filament increases, which suggests that HI are also important for the alignment of rigid-rod-like filaments which has been assumed to be solely a consequence of direct collisions.

  3. Tamsulosin modulates, but does not abolish the spontaneous activity in the guinea pig prostate gland.

    Science.gov (United States)

    Chakrabarty, Basu; Dey, Anupa; Lam, Michelle; Ventura, Sabatino; Exintaris, Betty

    2015-06-01

    To examine the effects of the α1A -adrenoceptor antagonist, tamsulosin, on spontaneous contractile and electrical activity in the guinea-pig prostate gland. The effects of tamsulosin (0.1 and 0.3 nM) were investigated in adult and ageing male guinea pig prostate glands using conventional tension recording and electrophysiological intracellular microelectrode recording techniques. Tamsulosin reduced spontaneous activity, and had different age-dependent effects on adult and ageing guinea pigs at different concentrations. 0.1 nM tamsulosin caused a significantly greater reduction of spontaneous contractile and electrical activity in ageing guinea pigs in comparison to adult guinea pigs. In contrast, 0.3 nM tamsulosin had a significantly greater reduction of spontaneous contractile and electrical activity in adult guinea pigs in comparison to ageing guinea pigs. This study demonstrates that tamsulosin can modulate spontaneous myogenic stromal contractility and the underlying spontaneous electrical activity; tamsulosin does not block spontaneous activity. This reduction in spontaneous activity suggests that downstream cellular mechanisms underlying smooth muscle tone are being targeted, and these may represent novel therapeutic targets to better treat benign prostatic hyperplasia. © 2014 Wiley Periodicals, Inc.

  4. Spontaneous, local diastolic subsarcolemmal calcium releases in single, isolated guinea-pig sinoatrial nodal cells.

    Science.gov (United States)

    Sirenko, Syevda G; Yang, Dongmei; Maltseva, Larissa A; Kim, Mary S; Lakatta, Edward G; Maltsev, Victor A

    2017-01-01

    Uptake and release calcium from the sarcoplasmic reticulum (SR) (dubbed "calcium clock"), in the form of spontaneous, rhythmic, local diastolic calcium releases (LCRs), together with voltage-sensitive ion channels (membrane clock) form a coupled system that regulates the action potential (AP) firing rate. LCRs activate Sodium/Calcium exchanger (NCX) that accelerates diastolic depolarization and thus participating in regulation of the time at which the next AP will occur. Previous studies in rabbit SA node cells (SANC) demonstrated that the basal AP cycle length (APCL) is tightly coupled to the basal LCR period (time from the prior AP-induced Ca2+ transient to the diastolic LCR occurrence), and that this coupling is further modulated by autonomic receptor stimulation. Although spontaneous LCRs during diastolic depolarization have been reported in SANC of various species (rabbit, cat, mouse, toad), prior studies have failed to detect LCRs in spontaneously beating SANC of guinea-pig, a species that has been traditionally used in studies of cardiac pacemaker cell function. We performed a detailed investigation of whether guinea-pig SANC generate LCRs and whether they play a similar key role in regulation of the AP firing rate. We used two different approaches, 2D high-speed camera and classical line-scan confocal imaging. Positioning the scan-line beneath sarcolemma, parallel to the long axis of the cell, we found that rhythmically beating guinea-pig SANC do, indeed, generate spontaneous, diastolic LCRs beneath the surface membrane. The average key LCR characteristics measured in confocal images in guinea-pig SANC were comparable to rabbit SANC, both in the basal state and in the presence of β-adrenergic receptor stimulation. Moreover, the relationship between the LCR period and APCL was subtended by the same linear function. Thus, LCRs in guinea-pig SANC contribute to the diastolic depolarization and APCL regulation. Our findings indicate that coupled-clock system

  5. Distinct Temporal Coordination of Spontaneous Population Activity between Basal Forebrain and Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Josue G. Yague

    2017-09-01

    Full Text Available The basal forebrain (BF has long been implicated in attention, learning and memory, and recent studies have established a causal relationship between artificial BF activation and arousal. However, neural ensemble dynamics in the BF still remains unclear. Here, recording neural population activity in the BF and comparing it with simultaneously recorded cortical population under both anesthetized and unanesthetized conditions, we investigate the difference in the structure of spontaneous population activity between the BF and the auditory cortex (AC in mice. The AC neuronal population show a skewed spike rate distribution, a higher proportion of short (≤80 ms inter-spike intervals (ISIs and a rich repertoire of rhythmic firing across frequencies. Although the distribution of spontaneous firing rate in the BF is also skewed, a proportion of short ISIs can be explained by a Poisson model at short time scales (≤20 ms and spike count correlations are lower compared to AC cells, with optogenetically identified cholinergic cell pairs showing exceptionally higher correlations. Furthermore, a smaller fraction of BF neurons shows spike-field entrainment across frequencies: a subset of BF neurons fire rhythmically at slow (≤6 Hz frequencies, with varied phase preferences to ongoing field potentials, in contrast to a consistent phase preference of AC populations. Firing of these slow rhythmic BF cells is correlated to a greater degree than other rhythmic BF cell pairs. Overall, the fundamental difference in the structure of population activity between the AC and BF is their temporal coordination, in particular their operational timescales. These results suggest that BF neurons slowly modulate downstream populations whereas cortical circuits transmit signals on multiple timescales. Thus, the characterization of the neural ensemble dynamics in the BF provides further insight into the neural mechanisms, by which brain states are regulated.

  6. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Federica; Wurth, Roberto [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Thellung, Stefano [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Daga, Antonio [Laboratory of Translational Oncology, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Cilli, Michele [Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Ferrari, Angelo [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Florio, Tullio, E-mail: tullio.florio@unige.it [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy)

    2012-04-15

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black

  7. Prevention and Treatment of Spontaneous Mammary Carcinoma with Dendritic Tumor Fusion Cell Vaccine

    National Research Council Canada - National Science Library

    Gong, Jianlin

    2002-01-01

    In the present study, the prevention of cancer development by vaccination with fusion cells was evaluated In a genetically engineered murine model which develops spontaneous mammary carcinomas. The mice (MMT...

  8. Computed tomographic demonstration of a spontaneous subcapsular hematoma due to a small renal cell carcinoma

    International Nuclear Information System (INIS)

    Hilton, S.; Bosniak, M.A.; Megibow, A.J.; Ambos, M.A.

    1981-01-01

    Computed tomography (CT) was able to demonstrate a small renal cell carcinoma as the cause of a spontaneous subcapsular hematoma. Angiographic and pathologic correlation were obtained. A review of the causes for nontraumatic renal subcapsular hematoma is included

  9. Spontaneous mutation rate in Chinese hamster cell clones differing in UV-sensitivity

    International Nuclear Information System (INIS)

    Manuilova, E.S.; Bagrova, A.M.; Moskovskij Gosudarstvennyj Univ.

    1983-01-01

    The spontaneous rate of appearance of mutations to 6-mercaptopurine (6 MP) resistence in the cells of CHR2 and CHs2 clones dofferent in sensitivity to lethal and matagenous effect of UV-rays, is investigated. Increased UV-sensitivity of CHs2 clone is caused by the violation of postreplicative DNA reparation. It is established that the purity of spontaneously occuring mutations in both clones turns out to be similar, i.e. (1.5-1.8)x10 -5 for the cell pergeneration. It is shown that the effect of postreplicative DNA reparation in the cells of chinese hamster is not connected with the increase of spontaneous mutation ability. The problem on the possible role of reparation in the mechanism of appearance of spontaneous and induced mutations in the cells of Chinese hamster with increased UV-sensitivity is discussed

  10. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    International Nuclear Information System (INIS)

    Barbieri, Federica; Wurth, Roberto; Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina; Thellung, Stefano; Daga, Antonio; Cilli, Michele; Ferrari, Angelo; Florio, Tullio

    2012-01-01

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell–like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-α and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: ► Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 ► These grow as spheres in serum-free medium and self-renew ► Isolated stem-like cancer cells initiate tumor in immunodeficient mice ► Xenografted tumors are phenotypically similar to the original tumor ► Upon differentiation, cells grow as monolayers, loosing the tumorigenic potential

  11. Isolation, Characterization, and Establishment of Spontaneously Immortalized Cell Line HRPE-2S With Stem Cell Properties.

    Science.gov (United States)

    Shams Najafabadi, Hoda; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Ranaei Pirmardan, Ehsan; Masoumi, Maryam

    2017-10-01

    The retinal pigment epithelium is a monolayer of highly specialized pigmented cells located between the neural retina and the Bruch's membrane of the choroid. RPE cells play a crucial role in the maintenance and function of the underlying photoreceptors. This study introduces a spontaneously arising human retinal pigment epithelial cell line, HRPE-2S, which was isolated from primary RPE cell culture of 2 days old male donor. We characterized morphology and functional properties of the new cell line. The immortalized cell line was maintained in culture for more than 70 passages and 240 divisions. The average doubling time of the cells was approximately 22 h and got freezed at 26th passage. The cell line expressed RPE-specific markers RPE65 and cell junction protein ZO1 as an epithelial cell marker. It also expressed CHX10, PAX6, Nestin, SOX2 as stem and retinal progenitor cell markers. Ki67 as a marker of cell proliferation was expressed in all HRPE-2S cells. It represented typical epithelial cobblestone morphology and did not phenotypically change through several passages. Stem cell-like aggregations (neurospheres) were observed in SEM microscopy. The cells represented high mitotic index. They could be viable under hypoxic conditions and serum deprivation. According to functional studies, the cell line exhibited stem cell-like behaviors with particular emphasis on its self-renewal capacity. LDH isoenzymes expression pattern confirmed the same cellular source for both of the HRPE-2S cells and primary RPE cells. Characteristics of HRPE-2S cells promise it as an in vitro model for RPE stem cell-based researches. J. Cell. Physiol. 232: 2626-2640, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Malignant transformation potentials of human umbilical cord mesenchymal stem cells both spontaneously and via 3-methycholanthrene induction.

    Directory of Open Access Journals (Sweden)

    Qiuling Tang

    Full Text Available Human umbilical cord mesenchymal stem cells (HUMSCs are highly proliferative and can be induced to differentiate into advanced derivatives of all three germ layers. Thus, HUMSCs are considered to be a promising source for cell-targeted therapies and tissue engineering. However there are reports on spontaneous transformation of mesenchymal stem cells (MSCs derived from human bone marrows. The capacity for HUMSCs to undergo malignant transform spontaneously or via induction by chemical carcinogens is presently unknown. Therefore, we isolated HUMSCs from 10 donors and assessed their transformation potential either spontaneously or by treating them with 3-methycholanthrene (3-MCA, a DNA-damaging carcinogen. The malignant transformation of HUMSCs in vitro was evaluated by morphological changes, proliferation rates, ability to enter cell senescence, the telomerase activity, chromosomal abnormality, and the ability to form tumors in vivo. Our studies showed that HUMSCs from all 10 donors ultimately entered senescence and did not undergo spontaneous malignant transformation. However, HUMSCs from two of the 10 donors treated with 3-MCA displayed an increased proliferation rate, failed to enter senescence, and exhibited an altered cell morphology. When these cells (tHUMSCs were injected into immunodeficient mice, they gave rise to sarcoma-like or poorly differentiated tumors. Moreover, in contrast to HUMSCs, tHUMSCs showed a positive expression of human telomerase reverse transcriptase (hTERT and did not exhibit a shortening of the relative telomere length during the long-term culture in vitro. Our studies demonstrate that HUMSCs are not susceptible to spontaneous malignant transformation. However, the malignant transformation could be induced by chemical carcinogen 3-MCA.

  13. Malignant Transformation Potentials of Human Umbilical Cord Mesenchymal Stem Cells Both Spontaneously and via 3-Methycholanthrene Induction

    Science.gov (United States)

    Lai, Xiulan; Liu, Sizheng; Chen, Yezeng; Zheng, Zexin; Xie, Qingdong; Maldonado, Martin; Cai, Zhiwei; Qin, Shan; Ho, Guyu; Ma, Lian

    2013-01-01

    Human umbilical cord mesenchymal stem cells (HUMSCs) are highly proliferative and can be induced to differentiate into advanced derivatives of all three germ layers. Thus, HUMSCs are considered to be a promising source for cell-targeted therapies and tissue engineering. However there are reports on spontaneous transformation of mesenchymal stem cells (MSCs) derived from human bone marrows. The capacity for HUMSCs to undergo malignant transform spontaneously or via induction by chemical carcinogens is presently unknown. Therefore, we isolated HUMSCs from 10 donors and assessed their transformation potential either spontaneously or by treating them with 3-methycholanthrene (3-MCA), a DNA-damaging carcinogen. The malignant transformation of HUMSCs in vitro was evaluated by morphological changes, proliferation rates, ability to enter cell senescence, the telomerase activity, chromosomal abnormality, and the ability to form tumors in vivo. Our studies showed that HUMSCs from all 10 donors ultimately entered senescence and did not undergo spontaneous malignant transformation. However, HUMSCs from two of the 10 donors treated with 3-MCA displayed an increased proliferation rate, failed to enter senescence, and exhibited an altered cell morphology. When these cells (tHUMSCs) were injected into immunodeficient mice, they gave rise to sarcoma-like or poorly differentiated tumors. Moreover, in contrast to HUMSCs, tHUMSCs showed a positive expression of human telomerase reverse transcriptase (hTERT) and did not exhibit a shortening of the relative telomere length during the long-term culture in vitro. Our studies demonstrate that HUMSCs are not susceptible to spontaneous malignant transformation. However, the malignant transformation could be induced by chemical carcinogen 3-MCA. PMID:24339974

  14. The increased concentration of 2,3-diphosphoglycerate in red blood cells of spontaneously hypertensive rats.

    Science.gov (United States)

    Przybylski, J; Skotnicka-Fedorowicz, B; Lisiecka, A; Siński, M; Abramczyk, P

    1997-12-01

    It has been recognised that high haemoglobin oxygen capacity is essential for the development of high blood pressure in spontaneously hypertensive rats. In the present study we have found increased concentration of 2,3 diphosphoglycerate (2,3-DPG) in red blood cells of spontaneously hypertensive rats (SHR) of Okamoto-Aoki strain. As 2,3-DPG is the major factor decreasing haemoglobin affinity to oxygen, our finding suggests that at given value of pO2 oxygen delivery to the tissue of SHR would be increased. Therefore increased concentration of 2,3-DPG in red blood cells of SHR would be of the pathophysiological meaning by promoting autoregulatory increase in total vascular resistance in this strain of rats. The mechanism responsible for enhanced synthesis of 2,3-DPG in SHR remains unclear. Intracellular alkalosis due to either hypocapnia and/or an enhanced activity of Na+/H+ antiporter occurring in SHR are the most plausible explanations for the above finding.

  15. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells.

    Science.gov (United States)

    Johnson, Stuart L; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M; Roberts, Terri P; Masetto, Sergio; Knipper, Marlies; Kros, Corné J; Marcotti, Walter

    2011-06-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials were intrinsically generated by immature IHCs of altricial rodents and that apical IHCs showed bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter acetylcholine fine-tunes the IHC's resting membrane potential (V(m)), and as such is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the V(m) of apical and basal IHCs by triggering small-conductance Ca(2+)-activated K(+) (SK2) channels. We propose that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway.

  16. Spontaneous brain network activity: Analysis of its temporal complexity

    Directory of Open Access Journals (Sweden)

    Mangor Pedersen

    2017-06-01

    Full Text Available The brain operates in a complex way. The temporal complexity underlying macroscopic and spontaneous brain network activity is still to be understood. In this study, we explored the brain’s complexity by combining functional connectivity, graph theory, and entropy analyses in 25 healthy people using task-free functional magnetic resonance imaging. We calculated the pairwise instantaneous phase synchrony between 8,192 brain nodes for a total of 200 time points. This resulted in graphs for which time series of clustering coefficients (the “cliquiness” of a node and participation coefficients (the between-module connectivity of a node were estimated. For these two network metrics, sample entropy was calculated. The procedure produced a number of results: (1 Entropy is higher for the participation coefficient than for the clustering coefficient. (2 The average clustering coefficient is negatively related to its associated entropy, whereas the average participation coefficient is positively related to its associated entropy. (3 The level of entropy is network-specific to the participation coefficient, but not to the clustering coefficient. High entropy for the participation coefficient was observed in the default-mode, visual, and motor networks. These results were further validated using an independent replication dataset. Our work confirms that brain networks are temporally complex. Entropy is a good candidate metric to explore temporal network alterations in diseases with paroxysmal brain disruptions, including schizophrenia and epilepsy. In recent years, connectomics has provided significant insights into the topological complexity of brain networks. However, the temporal complexity of brain networks still remains somewhat poorly understood. In this study we used entropy analysis to demonstrate that the properties of network segregation (the clustering coefficient and integration (the participation coefficient are temporally complex

  17. Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli.

    Science.gov (United States)

    Galán, Roberto F; Weidert, Marcel; Menzel, Randolf; Herz, Andreas V M; Galizia, C Giovanni

    2006-01-01

    Sensory memory is a short-lived persistence of a sensory stimulus in the nervous system, such as iconic memory in the visual system. However, little is known about the mechanisms underlying olfactory sensory memory. We have therefore analyzed the effect of odor stimuli on the first odor-processing network in the honeybee brain, the antennal lobe, which corresponds to the vertebrate olfactory bulb. We stained output neurons with a calcium-sensitive dye and measured across-glomerular patterns of spontaneous activity before and after a stimulus. Such a single-odor presentation changed the relative timing of spontaneous activity across glomeruli in accordance with Hebb's theory of learning. Moreover, during the first few minutes after odor presentation, correlations between the spontaneous activity fluctuations suffice to reconstruct the stimulus. As spontaneous activity is ubiquitous in the brain, modifiable fluctuations could provide an ideal substrate for Hebbian reverberations and sensory memory in other neural systems.

  18. Which nerve conduction parameters can predict spontaneous electromyographic activity in carpal tunnel syndrome?

    Science.gov (United States)

    Chang, Chia-Wei; Lee, Wei-Ju; Liao, Yi-Chu; Chang, Ming-Hong

    2013-11-01

    We investigate electrodiagnostic markers to determine which parameters are the best predictors of spontaneous electromyographic (EMG) activity in carpal tunnel syndrome (CTS). We enrolled 229 patients with clinically proven and nerve conduction study (NCS)-proven CTS, as well as 100 normal control subjects. All subjects were evaluated using electrodiagnostic techniques, including median distal sensory latencies (DSLs), sensory nerve action potentials (SNAPs), distal motor latencies (DMLs), compound muscle action potentials (CMAPs), forearm median nerve conduction velocities (FMCVs) and wrist-palm motor conduction velocities (W-P MCVs). All CTS patients underwent EMG examination of the abductor pollicis brevis (APB) muscle, and the presence or absence of spontaneous EMG activities was recorded. Normal limits were determined by calculating the means ± 2 standard deviations from the control data. Associations between parameters from the NCS and EMG findings were investigated. In patients with clinically diagnosed CTS, abnormal median CMAP amplitudes were the best predictors of spontaneous activity during EMG examination (p95% (positive predictive rate >95%). If the median CMAP amplitude was higher than the normal limit (>4.9 mV), the rate of no spontaneous EMG activity was >94% (negative predictive rate >94%). An abnormal SNAP amplitude was the second best predictor of spontaneous EMG activity (p<0.001; OR 4.13; 95% CI 2.16-7.90), and an abnormal FMCV was the third best predictor (p=0.01; OR 2.10; 95% CI 1.20-3.67). No other nerve conduction parameters had significant power to predict spontaneous activity upon EMG examination. The CMAP amplitudes of the APB are the most powerful predictors of the occurrence of spontaneous EMG activity. Low CMAP amplitudes are strongly associated with spontaneous activity, whereas high CMAP amplitude are less associated with spontaneous activity, implying that needle EMG examination should be recommended for the detection of

  19. Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes)

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, M.L. [Facultad de Ciencias Exactas, Fisicas y Naturales, Catedra Diversidad Animal II, Universidad Nacional de Cordoba, Av. Velez Sarsfield 299, 5000 Cordoba (Argentina); Durando, P.E. [Facultad de Ciencias Exactas, Fisicas y Naturales, Departamento de Biologia, Catedra de Fisiologia Animal, Universidad Nacional de San Juan, Complejo ' Islas Malvinas' , Av. Jose I. de la Roza y Meglioli, Rivadavia, San Juan (Argentina); Nores, M.L. [Facultad de Ciencias Medicas, Universidad Nacional de Cordoba-CONICET, Ciudad Universitaria, Cordoba (Argentina); Diaz, M.P. [Facultad de Ciencias Medicas, Catedra de Estadistica y Bioestadistica, Escuela de Nutricion, Universidad Nacional de Cordoba, Pabellon Chile, Ciudad Universitaria, 5000 Cordoba (Argentina); Bistoni, M.A., E-mail: mbistoni@com.uncor.ed [Facultad de Ciencias Exactas, Fisicas y Naturales, Catedra Diversidad Animal II, Universidad Nacional de Cordoba, Av. Velez Sarsfield 299, 5000 Cordoba (Argentina); Wunderlin, D.A. [Facultad de Ciencias Quimicas, Dto. Bioquimica Clinica-CIBICI, Universidad Nacional de Cordoba-CONICET, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2009-05-15

    We assessed changes in spontaneous swimming activity and acetylcholinesterase (AchE) activity of Jenynsia multidentata exposed to Endosulfan (EDS). Females of J. multidentata were exposed to 0.072 and 1.4 mug L{sup -1} EDS. Average speed and movement percentage were recorded during 48 h. We also exposed females to EDS at five concentrations between 0.072 and 1.4 mug L{sup -1} during 24 h, and measured the AchE activity in brain and muscle. At 0.072 mug L{sup -1} EDS swimming motility decreased relative to the control group after 45 h, while at 1.4 mug L{sup -1} EDS swimming motility decreased after 24 h. AchE activity significantly decreased in muscle when J. multidentata were exposed to EDS above 0.072 mug L{sup -1}, while no significant changes were observed in brain. Thus, changes in swimming activity and AchE activity in muscle are good biomarkers of exposure to EDS in J. multidentata. - This work reports changes observed in spontaneous swimming activity and AchE activity of Jenynsia multidentata exposed to sublethal concentrations of Endosulfan.

  20. Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes)

    International Nuclear Information System (INIS)

    Ballesteros, M.L.; Durando, P.E.; Nores, M.L.; Diaz, M.P.; Bistoni, M.A.; Wunderlin, D.A.

    2009-01-01

    We assessed changes in spontaneous swimming activity and acetylcholinesterase (AchE) activity of Jenynsia multidentata exposed to Endosulfan (EDS). Females of J. multidentata were exposed to 0.072 and 1.4 μg L -1 EDS. Average speed and movement percentage were recorded during 48 h. We also exposed females to EDS at five concentrations between 0.072 and 1.4 μg L -1 during 24 h, and measured the AchE activity in brain and muscle. At 0.072 μg L -1 EDS swimming motility decreased relative to the control group after 45 h, while at 1.4 μg L -1 EDS swimming motility decreased after 24 h. AchE activity significantly decreased in muscle when J. multidentata were exposed to EDS above 0.072 μg L -1 , while no significant changes were observed in brain. Thus, changes in swimming activity and AchE activity in muscle are good biomarkers of exposure to EDS in J. multidentata. - This work reports changes observed in spontaneous swimming activity and AchE activity of Jenynsia multidentata exposed to sublethal concentrations of Endosulfan.

  1. SHIP-1 Deficiency in AID+ B Cells Leads to the Impaired Function of B10 Cells with Spontaneous Autoimmunity.

    Science.gov (United States)

    Chen, Yingjia; Hu, Fanlei; Dong, Xuejiao; Zhao, Meng; Wang, Jing; Sun, Xiaolin; Kim, Tae Jin; Li, Zhanguo; Liu, Wanli

    2017-11-01

    Unlike conventional B cells, regulatory B cells exhibit immunosuppressive functions to downregulate inflammation via IL-10 production. However, the molecular mechanism regulating the production of IL-10 is not fully understood. In this study, we report the finding that activation-induced cytidine deaminase (AID) is highly upregulated in the IL-10-competent B cell (B10) cell from Innp5d fl/fl Aicda Cre/+ mice, whereas the 5' inositol phosphatase SHIP-1 is downregulated. Notably, SHIP-1 deficiency in AID + B cells leads to a reduction in cell count and impaired IL-10 production by B10 cells. Furthermore, the Innp5d fl/fl Aicda Cre/+ mouse model shows B cell-dependent autoimmune lupus-like phenotypes, such as elevated IgG serum Abs, formation of spontaneous germinal centers, production of anti-dsDNA and anti-nuclear Abs, and the obvious deposition of IgG immune complexes in the kidney with age. We observe that these lupus-like phenotypes can be reversed by the adoptive transfer of B10 cells from control Innp5d fl/fl mice, but not from the Innp5d fl/fl Aicda Cre/+ mice. This finding highlights the importance of defective B10 cells in Innp5d fl/fl Aicda Cre/+ mice. Whereas p-Akt is significantly upregulated, MAPK and AP-1 activation is impaired in B10 cells from Innp5d fl/fl Aicda Cre/+ mice, resulting in the reduced production of IL-10. These results show that SHIP-1 is required for the maintenance of B10 cells and production of IL-10, and collectively suggests that SHIP-1 could be a new potential therapeutic target for the treatment of autoimmune diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Spontaneous NF-κB activation by autocrine TNFα signaling: a computational analysis.

    Directory of Open Access Journals (Sweden)

    Jakub Pękalski

    Full Text Available NF-κB is a key transcription factor that regulates innate immune response. Its activity is tightly controlled by numerous feedback loops, including two negative loops mediated by NF-κB inducible inhibitors, IκBα and A20, which assure oscillatory responses, and by positive feedback loops arising due to the paracrine and autocrine regulation via TNFα, IL-1 and other cytokines. We study the NF-κB system of interlinked negative and positive feedback loops, combining bifurcation analysis of the deterministic approximation with stochastic numerical modeling. Positive feedback assures the existence of limit cycle oscillations in unstimulated wild-type cells and introduces bistability in A20-deficient cells. We demonstrated that cells of significant autocrine potential, i.e., cells characterized by high secretion of TNFα and its receptor TNFR1, may exhibit sustained cytoplasmic-nuclear NF-κB oscillations which start spontaneously due to stochastic fluctuations. In A20-deficient cells even a small TNFα expression rate qualitatively influences system kinetics, leading to long-lasting NF-κB activation in response to a short-pulsed TNFα stimulation. As a consequence, cells with impaired A20 expression or increased TNFα secretion rate are expected to have elevated NF-κB activity even in the absence of stimulation. This may lead to chronic inflammation and promote cancer due to the persistent activation of antiapoptotic genes induced by NF-κB. There is growing evidence that A20 mutations correlate with several types of lymphomas and elevated TNFα secretion is characteristic of many cancers. Interestingly, A20 loss or dysfunction also leaves the organism vulnerable to septic shock and massive apoptosis triggered by the uncontrolled TNFα secretion, which at high levels overcomes the antiapoptotic action of NF-κB. It is thus tempting to speculate that some cancers of deregulated NF-κB signaling may be prone to the pathogen-induced apoptosis.

  3. Spontaneous high-gamma band activity reflects functional organization of auditory cortex in the awake macaque.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2012-06-07

    In the absence of sensory stimuli, spontaneous activity in the brain has been shown to exhibit organization at multiple spatiotemporal scales. In the macaque auditory cortex, responses to acoustic stimuli are tonotopically organized within multiple, adjacent frequency maps aligned in a caudorostral direction on the supratemporal plane (STP) of the lateral sulcus. Here, we used chronic microelectrocorticography to investigate the correspondence between sensory maps and spontaneous neural fluctuations in the auditory cortex. We first mapped tonotopic organization across 96 electrodes spanning approximately two centimeters along the primary and higher auditory cortex. In separate sessions, we then observed that spontaneous activity at the same sites exhibited spatial covariation that reflected the tonotopic map of the STP. This observation demonstrates a close relationship between functional organization and spontaneous neural activity in the sensory cortex of the awake monkey. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Interleukin 2 and alpha interferon induced in vitro modulation of spontaneous cell mediated cytotoxicity in patients with cancer of the uterine cervix undergoing radiotherapy

    International Nuclear Information System (INIS)

    Radhakrishna Pillai, M.; Balaram, P.; Padmanabhan, T.K.; Abraham, T.; Nair, M.K.; Regional Cancer Centre, Trivandrum

    1989-01-01

    In vitro modulation of spontaneous cell mediated cytotoxicity by interferon and interleukin 2 was carried out using peripheral blood lymphocytes from patients with cancer of the uterine cervix before and at different intervals after commencement of radiation treatment. A total of 150 patients with various stages of the disease were included and cytotoxicity was measured using the single cell cytotoxic assay. These results indicate a beneficial effect in vitro of interleukin 2 and interferon in augmenting spontaneous cell mediated cytotoxicity, a possibly vital antitumour immune mechanism in patients with relatively early cervix cancer. Natural killer cell, lymphokine activated killer cell and interferon activated killer cell activity was depressed immediately following radiotherapy. The activity of these cell types later on increased above pretreatment levels in patients with stages I, IIA and IIB. A similar rebound above pretreatment levels was not observed in patients with stages III and IV. (orig.)

  5. Spontaneous cytotoxic T-Cell reactivity against indoleamine 2,3-dioxygenase-2

    DEFF Research Database (Denmark)

    Sørensen, Rikke Bæk; Køllgaard, Tania; Andersen, Rikke Sick

    2011-01-01

    in mouse models of cancer in a nontoxic fashion. Here, we describe the immunogenicity of IDO2 by showing the presence of spontaneous cytotoxic T-cell reactivity against IDO2 in peripheral blood of both healthy donors and cancer patients. Furthermore, we show that these IDO2-specific T cells are cytotoxic...

  6. Spontaneous Physical Activity Downregulates Pax7 in Cancer Cachexia

    Directory of Open Access Journals (Sweden)

    Dario Coletti

    2016-01-01

    Full Text Available Emerging evidence suggests that the muscle microenvironment plays a prominent role in cancer cachexia. We recently showed that NF-kB-induced Pax7 overexpression impairs the myogenic potential of muscle precursors in cachectic mice, suggesting that lowering Pax7 expression may be beneficial in cancer cachexia. We evaluated the muscle regenerative potential after acute injury in C26 colon carcinoma tumor-bearing mice and healthy controls. Our analyses confirmed that the delayed muscle regeneration observed in muscles form tumor-bearing mice was associated with a persistent local inflammation and Pax7 overexpression. Physical activity is known to exert positive effects on cachectic muscles. However, the mechanism by which a moderate voluntary exercise ameliorates muscle wasting is not fully elucidated. To verify if physical activity affects Pax7 expression, we hosted control and C26-bearing mice in wheel-equipped cages and we found that voluntary wheel running downregulated Pax7 expression in muscles from tumor-bearing mice. As expected, downregulation of Pax7 expression was associated with a rescue of muscle mass and fiber size. Our findings shed light on the molecular basis of the beneficial effect exerted by a moderate physical exercise on muscle stem cells in cancer cachexia. Furthermore, we propose voluntary exercise as a physiological tool to counteract the overexpression of Pax7 observed in cancer cachexia.

  7. Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness.

    Directory of Open Access Journals (Sweden)

    Stanislas Dehaene

    2005-05-01

    Full Text Available Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden "ignition" of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of "inattentional blindness," in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness.

  8. Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness.

    Science.gov (United States)

    Dehaene, Stanislas; Changeux, Jean-Pierre

    2005-05-01

    Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden "ignition" of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of "inattentional blindness," in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness.

  9. On nature of spontaneous elongation of polymers preliminarily stretched in adsorption-active media under irradiation

    International Nuclear Information System (INIS)

    Sinevich, E.A.; Prazdnichnyj, A.M.; Tikhomirov, V.S.; Bakeev, N.F.

    1989-01-01

    The nature of the spontaneous elongation under irradiation with fast electrons of polymers preliminary stretched in adsorption-active media has been studied. This effect is related with radiation-induced heating of microporous polymer samples. Its manifestation in amorphous PETP requires the presence of crazes having well developed microfibrillar structure. The spontaneous elongation effect is shown to be a result of crystallization of partially oriented material in transitional regions relating the oriented material of microfibrils inside crazes with nonstrained polymer between them

  10. Spontaneous regression of primary cutaneous diffuse large B-cell lymphoma, leg type with significant T-cell immune response

    Directory of Open Access Journals (Sweden)

    Paul M. Graham, DO

    2018-05-01

    Full Text Available We report a case of histologically confirmed primary cutaneous diffuse large B-cell lymphoma, leg type (PCDLBCL-LT that subsequently underwent spontaneous regression in the absence of systemic treatment. The case showed an atypical lymphoid infiltrate that was CD20+ and MUM-1+ and CD10–. A subsequent biopsy of the spontaneously regressed lesion showed fibrosis associated with a lymphocytic infiltrate comprising reactive T cells. PCDLBCL-LT is a cutaneous B-cell lymphoma with a poor prognosis, which is usually treated with chemotherapy. We describe a case of clinical and histologic spontaneous regression in a patient with PCDLBCL-LT who had a negative systemic workup but a recurrence over a year after his initial presentation. Key words: B cell, lymphoma, primary cutaneous diffuse large B-cell lymphoma, leg type, regression

  11. Spontaneous chromosome aberrations in cancer cells. Evidence of existence of hidden genetic lesions in genetic structures

    International Nuclear Information System (INIS)

    Poryadkova-Luchnik, N.A.; Kuz'mina, E.G.

    1996-01-01

    Chromosome aberrations spontaneously observed in cancer cells were quantitively studied under the effect of non-mutagenic (suboptimal temperature, low content of propilgallate and caffeine) and mutagenic (ionizing radiation) factors. Human larynx cancer cells during several years or gamma-irradiation were used to carry out experiments. The experiments linked with cloning of the initial population and investigation into chromosome aberrations in 22 clones demonstrated persuasively the occurrence of latent genetic lesions in cancer cells

  12. Clonal nature of spontaneously immortalized 3T3 cells.

    Science.gov (United States)

    Rittling, S R

    1996-11-25

    Mouse embryo fibroblasts (MEFs), when plated at appropriate densities, proliferate vigorously for several passages, and then the growth rate of the culture slows considerably. If the cells are plated at a high enough density and continuously passed, the cultures will eventually overcome this "crisis" period and resume rapid growth. Here, we have addressed the question of what the changes are that cells undergo in overcoming the growth restraints of crisis. Primary MEF cells were infected with a retrovirus which confers G418 resistance and selected in G418. The resultant pre-crisis population comprised cells which each contained a retrovirus integrated at a unique genomic location. These cells were then passed according to the 3T3 protocol until immortal, rapidly growing cells emerged. The integration pattern of the retrovirus in the immortal population was examined. In two independent experiments, the immortal population of cells grown in the presence of G418 comprised two independent clones of cells, with additional clones undetectable at the level of detection of the assays used. The integration pattern was also examined in parallel infected cultures grown in the absence of selection. In one experiment the unselected immortal population contained the same labeled clone that appeared in the sister infected culture, indicating that an immortal precursor was present in the precrisis population. These results are consistent with the idea that a mutation is responsible for the immortal phenotype.

  13. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps

    KAUST Repository

    Takaku, Yasuharu

    2014-01-07

    Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia.

  14. Nitric oxide signaling pathways involved in the inhibition of spontaneous activity in the guinea pig prostate.

    Science.gov (United States)

    Dey, Anupa; Lang, Richard J; Exintaris, Betty

    2012-06-01

    We investigated nitric oxide mediated inhibition of spontaneous activity recorded in young and aging guinea pig prostates. Conventional intracellular microelectrode and tension recording techniques were used. The nitric oxide donor sodium nitroprusside (10 μM) abolished spontaneous contractions and slow wave activity in 5 young and 5 aging prostates. Upon adding the nitric oxide synthase inhibitor L-NAME (10 μM) the frequency of spontaneous contractile and electrical activity was significantly increased in each age group. This increase was significantly larger in 4 to 8 preparations of younger vs aging prostates (about 40% to 50% vs about 10% to 20%, 2-way ANOVA pguinea pig prostates (Student paired t test pproduction. This may further explain the increase in prostatic smooth muscle tone observed in age related prostate specific conditions, such as benign prostatic hyperplasia. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. Search for spontaneous fission activity in Salton Sea and Atlantis II hot brines

    International Nuclear Information System (INIS)

    Ter-Akopian, G.M.; Sokol, E.A.; Fam Ngoc Chuong; Ivanov, M.P.; Popeko, G.S.; Molzahn, D.; Lund, T.; Feige, G.; Brandt, R.

    1984-01-01

    A search for an unknown spontaneously fissioning activity, possibly due to SHE, was carried out with the Dubna 3 He-counter system. In the investigation of Salton Sea samples and Atlantis II samples no such activity could be detected with limits -12 g/g. (orig.)

  16. Heme oxygenase-1 affects generation and spontaneous cardiac differentiation of induced pluripotent stem cells.

    Science.gov (United States)

    Stepniewski, Jacek; Pacholczak, Tomasz; Skrzypczyk, Aniela; Ciesla, Maciej; Szade, Agata; Szade, Krzysztof; Bidanel, Romain; Langrzyk, Agnieszka; Grochowski, Radoslaw; Vandermeeren, Felix; Kachamakova-Trojanowska, Neli; Jez, Mateusz; Drabik, Grazyna; Nakanishi, Mahito; Jozkowicz, Alicja; Dulak, Jozef

    2018-02-01

    Cellular stress can influence efficiency of iPSCs generation and their differentiation. However, the role of intracellular cytoprotective factors in these processes is still not well known. Therefore, we investigated the effect of HO-1 (Hmox1) or Nrf2 (Nfe2l2), two major cytoprotective genes. Hmox1 -/- fibroblasts demonstrated decreased reprogramming efficiency in comparison to Hmox1 +/+ cells. Reversely, pharmacological enhancement of HO-1 resulted in higher number of iPSCs colonies. Importantly, elevated level of both p53 and p53-regulated miR-34a and 14-3-3σ was observed in HO-1-deficient fibroblasts whereas downregulation of p53 in these cells markedly increased their reprogramming efficiency. In human fibroblasts HO-1 silencing also induced p53 expression and affected reprogramming outcome. Hmox1 +/+ and Hmox1 -/- iPSCs similarly differentiated in vitro to cells originating from three germ layers, however, lower number of contracting cells was observed during this process in HO-1-deficient cells indicating attenuated cardiac differentiation. Importantly, silencing of Hmox1 in murine ESC using CRISPR/Cas-9 editing also impaired their spontaneous cardiac differentiation. Decreased reprogramming efficiency was also observed in Nrf2-lacking fibroblasts. Reversely, sulforaphane, a Nrf2 activator, increased the number of iPSCs colonies. However, both Nfe2l2 +/+ and Nfe2l2 -/- iPSCs showed similar pluripotency and differentiation capacity. These results indicate that regulation of HO-1 expression can further optimize generation and cardiac differentiation of iPSCs. © 2018 IUBMB Life, 70(2):129-142, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  17. Particle-in-cell simulations on spontaneous thermal magnetic field fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Simões, F. J. R. Jr.; Pavan, J. [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil); Gaelzer, R.; Ziebell, L. F. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States)

    2013-10-15

    In this paper an electromagnetic particle code is used to investigate the spontaneous thermal emission. Specifically we perform particle-in-cell simulations employing a non-relativistic isotropic Maxwellian particle distribution to show that thermal fluctuations are related to the origin of spontaneous magnetic field fluctuation. These thermal fluctuations can become seed for further amplification mechanisms and thus be considered at the origin of the cosmological magnetic field, at microgauss levels. Our numerical results are in accordance with theoretical results presented in the literature.

  18. Crosstalk between type II NKT cells and T cells leads to spontaneous chronic inflammatory liver disease.

    Science.gov (United States)

    Weng, Xiufang; He, Ying; Visvabharathy, Lavanya; Liao, Chia-Min; Tan, Xiaosheng; Balakumar, Arjun; Wang, Chyung-Ru

    2017-10-01

    Natural killer T (NKT) cells are CD1d-restricted innate-like T cells that modulate innate and adaptive immune responses. Unlike the well-characterized invariant/type I NKT cells, type II NKT cells with a diverse T cell receptor repertoire are poorly understood. This study defines the pathogenic role of type II NKT cells in the etiology of chronic liver inflammation. Transgenic mice with the Lck promoter directing CD1d overexpression on T cells in Jα18 wild-type (Lck-CD1dTgJα18 + ; type I NKT cell sufficient) and Jα18-deficient (Lck-CD1dTgJα18 o , type I NKT cell deficient) mice were analyzed for liver pathology and crosstalk between type II NKT cells and conventional T cells. CD1d expression on T cells in peripheral blood samples and liver sections from autoimmune hepatitis patients and healthy individuals were also examined. Lck-CD1dTgJα18 o and Lck-CD1dTgJα18 + mice developed similar degrees of liver pathology resembling chronic autoimmune hepatitis in humans. Increased CD1d expression on T cells promoted the activation of type II NKT cells and other T cells. This resulted in T h 1-skewing and impaired T h 2 cytokine production in type II NKT cells. Dysfunction of type II NKT cells was accompanied by conventional T cell activation and pro-inflammatory cytokine production, leading to a hepatic T/B lymphocyte infiltration, elevated autoantibodies and hepatic injury in Lck-CD1dTg mice. A similar mechanism could be extended to humans as CD1d expression is upregulated on activated human T cells and increased presence of CD1d-expressing T cells was observed in autoimmune hepatitis patients. Our data reveals enhanced crosstalk between type II NKT cells and conventional T cells, leading to a T h 1-skewed inflammatory milieu, and consequently, to the development of chronic autoimmune liver disease. Lay summary: CD1d overexpression on T cells enhances crosstalk between type II NKT cells and T cells, resulting in their aberrant activation and leading to the

  19. Spontaneous regression in an ulcerated CK7 positive Merkel cell carcinoma

    Directory of Open Access Journals (Sweden)

    Anza Khader

    2015-01-01

    Full Text Available Merkel cell carcinoma is an aggressive and frequently lethal tumor of the elderly, associated with sun exposure and immunosuppression which is less common in the dark-skinned. We report the case of a 40-year-old woman who presented with multiple slowly progressive, mildly itchy ulcerated plaques of size ranging from 2 × 3 cm to 5 × 7 cm on the left knee of 1 year duration. Skin biopsy showed diffuse dermal infiltration by small round cells with molding of cells and lymphocyte infiltration. The cells stained positive for cytokeratin (CK 20, CK7, neuron-specific enolase, and chromogranin. The skin lesions underwent spontaneous regression within 1 month of skin biopsy and have not recurred during the past 2 years. The immune mechanisms triggered by biopsy possibly explain the spontaneous regression.

  20. Transplants of cells engineered to produce GABA suppress spontaneous seizures

    Czech Academy of Sciences Publication Activity Database

    Thompson, K. W.; Suchomelová, Lucie

    2004-01-01

    Roč. 45, č. 1 (2004), s. 4-12 ISSN 0013-9580 Grant - others:VA Greater Los Angeles Healthcare System Research Service(US) MREP Institutional research plan: CEZ:AV0Z5011922 Keywords : cell transplantation * epilepsy * seizures Subject RIV: FH - Neurology Impact factor: 3.329, year: 2004

  1. Cell-free DNA, inflammation, and the initiation of spontaneous term labor.

    Science.gov (United States)

    Herrera, Christina A; Stoerker, Jay; Carlquist, John; Stoddard, Gregory J; Jackson, Marc; Esplin, Sean; Rose, Nancy C

    2017-11-01

    Hypomethylated cell-free DNA from senescent placental trophoblasts may be involved in the activation of the inflammatory cascade to initiate labor. To determine the changes in cell-free DNA concentrations, the methylation ratio, and inflammatory markers between women in labor at term vs women without labor. In this prospective cohort study, eligible participants carried a nonanomalous singleton fetus. Women with major medical comorbidity, preterm labor, progesterone use, aneuploidy, infectious disease, vaginal bleeding, abdominal trauma, or invasive procedures during the pregnancy were excluded. Maternal blood samples were collected at 28 weeks, 36 weeks, and at admission for delivery. Total cell-free DNA concentration, methylation ratio, and interleukin-6 were analyzed. The primary outcome was the difference in methylation ratio in women with labor vs without labor. Secondary outcomes included the longitudinal changes in these biomarkers corresponding to labor status. A total of 55 women were included; 20 presented in labor on admission and 35 presented without labor. Women in labor had significantly greater methylation ratio (P = .001) and interleukin-6 (P < .001) on admission for delivery than women without labor. After we controlled for body mass index and maternal age, methylation ratio (adjusted relative risk, 1.38; 95% confidence interval, 1.13 to 1.68) and interleukin-6 (adjusted relative risk, 1.12, 95% confidence interval, 1.07 to 1.17) remained greater in women presenting in labor. Total cell-free DNA was not significantly different in women with labor compared with women without. Longitudinally, total cell-free DNA (P < .001 in labor, P = .002 without labor) and interleukin-6 (P < .001 in labor, P = .01 without labor) increased significantly across gestation in both groups. The methylation ratio increased significantly in women with labor from 36 weeks to delivery (P = .02). Spontaneous labor at term is associated with a greater cell-free DNA

  2. Skeletal Muscle Satellite Cells Are Committed to Myogenesis and Do Not Spontaneously Adopt Nonmyogenic Fates

    Science.gov (United States)

    Starkey, Jessica D.; Yamamoto, Masakazu; Yamamoto, Shoko; Goldhamer, David J.

    2011-01-01

    The developmental potential of skeletal muscle stem cells (satellite cells) remains controversial. The authors investigated satellite cell developmental potential in single fiber and clonal cultures derived from MyoDiCre/+;R26REYFP/+ muscle, in which essentially all satellite cells are permanently labeled. Approximately 60% of the clones derived from cells that co-purified with muscle fibers spontaneously underwent adipogenic differentiation. These adipocytes stained with Oil-Red-O and expressed the terminal differentiation markers, adipsin and fatty acid binding protein 4, but did not express EYFP and were therefore not of satellite cell origin. Satellite cells mutant for either MyoD or Myf-5 also maintained myogenic programming in culture and did not adopt an adipogenic fate. Incorporation of additional wash steps prior to muscle fiber plating virtually eliminated the non-myogenic cells but did not reduce the number of adherent Pax7+ satellite cells. More than half of the adipocytes observed in cultures from Tie2-Cre mice were recombined, further demonstrating a non-satellite cell origin. Under adipogenesis-inducing conditions, satellite cells accumulated cytoplasmic lipid but maintained myogenic protein expression and did not fully execute the adipogenic differentiation program, distinguishing them from adipocytes observed in muscle fiber cultures. The authors conclude that skeletal muscle satellite cells are committed to myogenesis and do not spontaneously adopt an adipogenic fate. PMID:21339173

  3. Multiple origins of spontaneously arising micronuclei in HeLa cells: Direct evidence from long-term live cell imaging

    International Nuclear Information System (INIS)

    Rao Xiaotang; Zhang Yingyin; Yi Qiyi; Hou Heli; Xu Bo; Chu Liang; Huang Yun; Zhang Wenrui; Fenech, Michael; Shi Qinghua

    2008-01-01

    Although micronuclei (MNi) are extensively used to evaluate genotoxic effects and chromosome instability, the most basic issue regarding their origins has not been completely addressed due to limitations of traditional methods. Recently, long-term live cell imaging was developed to monitor the dynamics of single cell in a real-time and high-throughput manner. In the present study, this state-of-the-art technique was employed to examine spontaneous micronucleus (MN) formation in untreated HeLa cells. We demonstrate that spontaneous MNi are derived from incorrectly aligned chromosomes in metaphase (displaced chromosomes, DCs), lagging chromosomes (LCs) and broken chromosome bridges (CBs) in later mitotic stages, but not nuclear buds in S phase. However, most of bipolar mitoses with DCs (91.29%), LCs (73.11%) and broken CBs (88.93%) did not give rise to MNi. Our data also show directly, for the first time, that MNi could originate spontaneously from (1) MNi already presented in the mother cells; (2) nuclear fragments that appeared during mitosis with CB; and (3) chromosomes being extruded into a minicell which fused with one of the daughter cells later. Quantitatively, most of MNi originated from LCs (63.66%), DCs (10.97%) and broken CBs (9.25%). Taken together, these direct evidences show that there are multiple origins for spontaneously arising MNi in HeLa cells and each mechanism contributes to overall MN formation to different extents

  4. Multiple origins of spontaneously arising micronuclei in HeLa cells: Direct evidence from long-term live cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rao Xiaotang; Zhang Yingyin; Yi Qiyi; Hou Heli; Xu Bo; Chu Liang; Huang Yun; Zhang Wenrui [Laboratory of Molecular and Cell Genetics, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Fenech, Michael [CSIRO Human Nutrition, PO Box 10041, Adelaide BC, Adelaide, SA 5000 (Australia); Shi Qinghua [Laboratory of Molecular and Cell Genetics, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China)], E-mail: qshi@ustc.edu.cn

    2008-11-10

    Although micronuclei (MNi) are extensively used to evaluate genotoxic effects and chromosome instability, the most basic issue regarding their origins has not been completely addressed due to limitations of traditional methods. Recently, long-term live cell imaging was developed to monitor the dynamics of single cell in a real-time and high-throughput manner. In the present study, this state-of-the-art technique was employed to examine spontaneous micronucleus (MN) formation in untreated HeLa cells. We demonstrate that spontaneous MNi are derived from incorrectly aligned chromosomes in metaphase (displaced chromosomes, DCs), lagging chromosomes (LCs) and broken chromosome bridges (CBs) in later mitotic stages, but not nuclear buds in S phase. However, most of bipolar mitoses with DCs (91.29%), LCs (73.11%) and broken CBs (88.93%) did not give rise to MNi. Our data also show directly, for the first time, that MNi could originate spontaneously from (1) MNi already presented in the mother cells; (2) nuclear fragments that appeared during mitosis with CB; and (3) chromosomes being extruded into a minicell which fused with one of the daughter cells later. Quantitatively, most of MNi originated from LCs (63.66%), DCs (10.97%) and broken CBs (9.25%). Taken together, these direct evidences show that there are multiple origins for spontaneously arising MNi in HeLa cells and each mechanism contributes to overall MN formation to different extents.

  5. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks

    Science.gov (United States)

    Amin, Hayder; Maccione, Alessandro; Nieus, Thierry

    2017-01-01

    Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs), interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities) that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity. PMID:28749937

  6. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks.

    Directory of Open Access Journals (Sweden)

    Davide Lonardoni

    2017-07-01

    Full Text Available Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs, interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity.

  7. Non-traumatic spontaneous acute epidural hematoma in a patient with sickle cell disease.

    Science.gov (United States)

    Serarslan, Yurdal; Aras, Mustafa; Altaş, Murat; Kaya, Hasan; Urfalı, Boran

    2014-01-01

    A 19-year-old female with sickle cell anemia (SCD) was referred to our hospital after two days of hospitalization at another hospital for a headache crisis. This headache crisis was due to a raised intracranial pressure; these symptoms were noted and included in her comprehensive list of symptoms. There was an acute drop in the hemoglobin and hematocrit levels. The cranial CT scan demonstrated a left fronto-parietal acute epidural hematoma (AEH) and a calvarial bone expansion, which was suggestive of medullary hematopoiesis. The patient underwent emergent craniotomy and evacuation of the hematoma. There were no abnormal findings intra-operatively apart from the AEH, except skull thickening and active petechial bleeding from the dural arteries. Repeated CT scan showed a complete evacuation of the hematoma. The possible underlying pathophysiological mechanisms were discussed. In addition to the factors mentioned in the relevant literature, any active petechial bleeding from the dural arteries on the separated surface of the dura from the skull could have contributed to the expanding of the AEH in our patient. Neurosurgeons and other health care providers should be aware of spontaneous AEH in patients with SCD. Copyright © 2013 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  8. Spontaneous neuronal activity as a self-organized critical phenomenon

    Science.gov (United States)

    de Arcangelis, L.; Herrmann, H. J.

    2013-01-01

    Neuronal avalanches are a novel mode of activity in neuronal networks, experimentally found in vitro and in vivo, and exhibit a robust critical behaviour. Avalanche activity can be modelled within the self-organized criticality framework, including threshold firing, refractory period and activity-dependent synaptic plasticity. The size and duration distributions confirm that the system acts in a critical state, whose scaling behaviour is very robust. Next, we discuss the temporal organization of neuronal avalanches. This is given by the alternation between states of high and low activity, named up and down states, leading to a balance between excitation and inhibition controlled by a single parameter. During these periods both the single neuron state and the network excitability level, keeping memory of past activity, are tuned by homeostatic mechanisms. Finally, we verify if a system with no characteristic response can ever learn in a controlled and reproducible way. Learning in the model occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. Learning is a truly collective process and the learning dynamics exhibits universal features. Even complex rules can be learned provided that the plastic adaptation is sufficiently slow.

  9. Changes of spontaneous oscillatory activity to tonic heat pain.

    Science.gov (United States)

    Peng, Weiwei; Hu, Li; Zhang, Zhiguo; Hu, Yong

    2014-01-01

    Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG) data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A) resting condition; (B) innoxious-distracted condition; (C) noxious-distracted condition; (D) noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C) may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A) may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes.

  10. Changes of spontaneous oscillatory activity to tonic heat pain.

    Directory of Open Access Journals (Sweden)

    Weiwei Peng

    Full Text Available Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A resting condition; (B innoxious-distracted condition; (C noxious-distracted condition; (D noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes.

  11. Salicylate-induced changes in spontaneous activity of single units in the inferior colliculus of the guinea pig.

    Science.gov (United States)

    Jastreboff, P J; Sasaki, C T

    1986-11-01

    Changes in spontaneous neuronal activity of the inferior colliculus in albino guinea pigs before and after administration of sodium salicylate were analyzed. Animals were anesthetized with pentobarbital, and two microelectrodes separated by a few hundred microns were driven through the inferior colliculus. After collecting a sufficiently large sample of cells, sodium salicylate (450 mg/kg) was injected i.p. and recordings again made 2 h after the injection. Comparison of spontaneous activity recorded before and after salicylate administration revealed highly statistically significant differences (p less than 0.001). After salicylate, the mean rate of the cell population increased from 29 to 83 Hz and the median from 26 to 74 Hz. Control experiments in which sodium salicylate was replaced by saline injection revealed no statistically significant differences in cell discharges. Recordings made during the same experiments from lobulus V of the cerebellar vermis revealed no changes in response to salicylate. The observed changes in single-unit activity due to salicylate administration may represent the first systematic evidence of a tinnituslike phenomenon in animals.

  12. Modulation by endothelin-1 of spontaneous activity and membrane currents of atrioventricular node myocytes from the rabbit heart.

    Directory of Open Access Journals (Sweden)

    Stéphanie C Choisy

    Full Text Available The atrioventricular node (AVN is a key component of the cardiac pacemaker-conduction system. Although it is known that receptors for the peptide hormone endothelin-1 (ET-1 are expressed in the AVN, there is very little information available on the modulatory effects of ET-1 on AVN electrophysiology. This study characterises for the first time acute modulatory effects of ET-1 on AVN cellular electrophysiology.Electrophysiological experiments were conducted in which recordings were made from rabbit isolated AVN cells at 35-37°C using the whole-cell patch clamp recording technique.Application of ET-1 (10 nM to spontaneously active AVN cells led rapidly (within ~13 s to membrane potential hyperpolarisation and cessation of spontaneous action potentials (APs. This effect was prevented by pre-application of the ET(A receptor inhibitor BQ-123 (1 µM and was not mimicked by the ET(B receptor agonist IRL-1620 (300 nM. In whole-cell voltage-clamp experiments, ET-1 partially inhibited L-type calcium current (I(Ca,L and rapid delayed rectifier K(+ current (I(Kr, whilst it transiently activated the hyperpolarisation-activated current (I(f at voltages negative to the pacemaking range, and activated an inwardly rectifying current that was inhibited by both tertiapin-Q (300 nM and Ba(2+ ions (2 mM; each of these effects was sensitive to ET(A receptor inhibition. In cells exposed to tertiapin-Q, ET-1 application did not produce membrane potential hyperpolarisation or immediate cessation of spontaneous activity; instead, there was a progressive decline in AP amplitude and depolarisation of maximum diastolic potential.Acutely applied ET-1 exerts a direct modulatory effect on AVN cell electrophysiology. The dominant effect of ET-1 in this study was activation of a tertiapin-Q sensitive inwardly rectifying K(+ current via ET(A receptors, which led rapidly to cell quiescence.

  13. General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Tromborg, Bjarne

    2001-01-01

    A model for spontaneous emission in active dielectric microstructures is given in terms of the classical electric field Green's tensor and the quantum-mechanical operators for the generating currents. A formalism is given for calculating the Green's tensor, which does not rely on the existence...

  14. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available BACKGROUND: The neurophysiological mechanisms underlying tinnitus perception are not well understood. Surprisingly, there have been no group studies comparing abnormalities in ongoing, spontaneous neuronal activity in individuals with and without tinnitus perception. METHODS AND FINDINGS: Here, we show that the spontaneous neuronal activity of a group of individuals with tinnitus (n = 17 is characterised by a marked reduction in alpha (8-12 Hz power together with an enhancement in delta (1.5-4 Hz as compared to a normal hearing control group (n = 16. This pattern was especially pronounced for temporal regions. Moreover, correlations with tinnitus-related distress revealed strong associations with this abnormal spontaneous activity pattern, particularly in right temporal and left frontal areas. Overall, effects were stronger for the alpha than for the delta frequency band. A data stream of 5 min, recorded with a whole-head neuromagnetometer under a resting condition, was sufficient to extract the marked differences. CONCLUSIONS: Despite some limitations, there are arguments that the regional pattern of abnormal spontaneous activity we found could reflect a tinnitus-related cortical network. This finding, which suggests that a neurofeedback approach could reduce the adverse effects of this disturbing condition, could have important implications for the treatment of tinnitus.

  15. Slow-light enhancement of spontaneous emission in active photonic crystal waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Chen, Yaohui; Semenova, Elizaveta

    2012-01-01

    Photonic crystal defect waveguides with embedded active layers containing single or multiple quantum wells or quantum dots have been fabricated. Spontaneous emission spectra are enhanced close to the bandedge, consistently with the enhancement of gain by slow light effects. These are promising...... results for future compact devices for terabit/s communication, such as miniaturised semiconductor optical amplifiers and mode-locked lasers....

  16. Circadian and individual variations in duration of spontaneous activity among ankle muscles of the cat

    NARCIS (Netherlands)

    Hensbergen, E; Kernell, D

    This article concerns the spontaneous motor behavior of cat hindlimb muscles and muscle regions using 24-h electromyographic (EMG) recordings. Previously, we found marked differences in average daily "duty time" (i.e., the percentage of total sampling time filled with EMG activity) between different

  17. Altered spontaneous activity in anisometropic amblyopia subjects: revealed by resting-state FMRI.

    Directory of Open Access Journals (Sweden)

    Xiaoming Lin

    Full Text Available Amblyopia, also known as lazy eye, usually occurs during early childhood and results in poor or blurred vision. Recent neuroimaging studies have found cortical structural/functional abnormalities in amblyopia. However, until now, it was still not known whether the spontaneous activity of the brain changes in amblyopia subjects. In the present study, regional homogeneity (ReHo, a measure of the homogeneity of functional magnetic resonance imaging signals, was used for the first time to investigate changes in resting-state local spontaneous brain activity in individuals with anisometropic amblyopia. Compared with age- and gender-matched subjects with normal vision, the anisometropic amblyopia subjects showed decreased ReHo of spontaneous brain activity in the right precuneus, the left medial prefrontal cortex, the left inferior frontal gyrus, and the left cerebellum, and increased ReHo of spontaneous brain activity was found in the bilateral conjunction area of the postcentral and precentral gyri, the left paracentral lobule, the left superior temporal gyrus, the left fusiform gyrus, the conjunction area of the right insula, putamen and the right middle occipital gyrus. The observed decreases in ReHo may reflect decreased visuo-motor processing ability, and the increases in ReHo in the somatosensory cortices, the motor areas and the auditory area may indicate compensatory plasticity in amblyopia.

  18. Spontaneous membrane formation and self-encapsulation of active rods in an inhomogeneous motility field

    NARCIS (Netherlands)

    Grauer, J.; Löwen, H.; Janssen, L.M.C.

    2018-01-01

    We study the collective dynamics of self-propelled rods in an inhomogeneous motility field. At the interface between two regions of constant but different motility, a smectic rod layer is spontaneously created through aligning interactions between the active rods, reminiscent of an artificial,

  19. Altered spontaneous brain activity in patients with hemifacial spasm: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Ye Tu

    Full Text Available Resting-state functional magnetic resonance imaging (fMRI has been used to detect the alterations of spontaneous neuronal activity in various neurological and neuropsychiatric diseases, but rarely in hemifacial spasm (HFS, a nervous system disorder. We used resting-state fMRI with regional homogeneity (ReHo analysis to investigate changes in spontaneous brain activity of patients with HFS and to determine the relationship of these functional changes with clinical features. Thirty patients with HFS and 33 age-, sex-, and education-matched healthy controls were included in this study. Compared with controls, HFS patients had significantly decreased ReHo values in left middle frontal gyrus (MFG, left medial cingulate cortex (MCC, left lingual gyrus, right superior temporal gyrus (STG and right precuneus; and increased ReHo values in left precentral gyrus, anterior cingulate cortex (ACC, right brainstem, and right cerebellum. Furthermore, the mean ReHo value in brainstem showed a positive correlation with the spasm severity (r = 0.404, p = 0.027, and the mean ReHo value in MFG was inversely related with spasm severity in HFS group (r = -0.398, p = 0.028. This study reveals that HFS is associated with abnormal spontaneous brain activity in brain regions most involved in motor control and blinking movement. The disturbances of spontaneous brain activity reflected by ReHo measurements may provide insights into the neurological pathophysiology of HFS.

  20. Spontaneous transformation of human granulosa cell tumours into an aggressive phenotype: a metastasis model cell line

    International Nuclear Information System (INIS)

    Imai, Misa; Muraki, Miho; Takamatsu, Kiyoshi; Saito, Hidekazu; Seiki, Motoharu; Takahashi, Yuji

    2008-01-01

    Granulosa cell tumours (GCTs) are frequently seen in menopausal women and are relatively indolent. Although the physiological properties of normal granulosa cells have been studied extensively, little is known about the molecular mechanism of GCT progression. Here, we characterise the unique behavioural properties of a granulosa tumour cell line, KGN cells, for the molecular analysis of GCT progression. Population doubling was carried out to examine the proliferation capacity of KGN cells. Moreover, the invasive capacity of these cells was determined using the in vitro invasion assay. The expression level of tumour markers in KGN cells at different passages was then determined by Western blot analysis. Finally, the growth and metastasis of KGN cells injected subcutaneously (s.c.) into nude mice was observed 3 months after injection. During in vitro culture, the advanced passage KGN cells grew 2-fold faster than the early passage cells, as determined by the population doubling assay. Moreover, we found that the advanced passage cells were 2-fold more invasive than the early passage cells. The expression pattern of tumour markers, such as p53, osteopontin, BAX and BAG-1, supported the notion that with passage, KGN cells became more aggressive. Strikingly, KGN cells at both early and advanced passages metastasized to the bowel when injected s.c. into nude mice. In addition, more tumour nodules were formed when the advanced passage cells were implanted. KGN cells cultured in vitro acquire an aggressive phenotype, which was confirmed by the analysis of cellular activities and the expression of biomarkers. Interestingly, KGN cells injected s.c. are metastatic with nodule formation occurring mostly in the bowel. Thus, this cell line is a good model for analysing GCT progression and the mechanism of metastasis in vivo

  1. Biologically active polymers from spontaneous carotenoid oxidation: a new frontier in carotenoid activity.

    Directory of Open Access Journals (Sweden)

    James B Johnston

    Full Text Available In animals carotenoids show biological activity unrelated to vitamin A that has been considered to arise directly from the behavior of the parent compound, particularly as an antioxidant. However, the very property that confers antioxidant activity on some carotenoids in plants also confers susceptibility to oxidative transformation. As an alternative, it has been suggested that carotenoid oxidative breakdown or metabolic products could be the actual agents of activity in animals. However, an important and neglected aspect of the behavior of the highly unsaturated carotenoids is their potential to undergo addition of oxygen to form copolymers. Recently we reported that spontaneous oxidation of ß-carotene transforms it into a product dominated by ß-carotene-oxygen copolymers. We now report that the polymeric product is biologically active. Results suggest an overall ability to prime innate immune function to more rapidly respond to subsequent microbial challenges. An underlying structural resemblance to sporopollenin, found in the outer shell of spores and pollen, may allow the polymer to modulate innate immune responses through interactions with the pattern recognition receptor system. Oxygen copolymer formation appears common to all carotenoids, is anticipated to be widespread, and the products may contribute to the health benefits of carotenoid-rich fruits and vegetables.

  2. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    International Nuclear Information System (INIS)

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-01-01

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development

  3. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Carol F., E-mail: carol-webb@omrf.org [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Ratliff, Michelle L., E-mail: michelle-ratliff@omrf.org [Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Powell, Rebecca, E-mail: rebeccapowell@gmail.com [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Wirsig-Wiechmann, Celeste R., E-mail: celeste-wirsig@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Lakiza, Olga, E-mail: olga-lakiza@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Obara, Tomoko, E-mail: tomoko-obara@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  4. Different responses of spontaneous and stimulus-related alpha activity to ambient luminance changes.

    Science.gov (United States)

    Benedetto, Alessandro; Lozano-Soldevilla, Diego; VanRullen, Rufin

    2017-12-04

    Alpha oscillations are particularly important in determining our percepts and have been implicated in fundamental brain functions. Oscillatory activity can be spontaneous or stimulus-related. Furthermore, stimulus-related responses can be phase- or non-phase-locked to the stimulus. Non-phase-locked (induced) activity can be identified as the average amplitude changes in response to a stimulation, while phase-locked activity can be measured via reverse-correlation techniques (echo function). However, the mechanisms and the functional roles of these oscillations are far from clear. Here, we investigated the effect of ambient luminance changes, known to dramatically modulate neural oscillations, on spontaneous and stimulus-related alpha. We investigated the effect of ambient luminance on EEG alpha during spontaneous human brain activity at rest (experiment 1) and during visual stimulation (experiment 2). Results show that spontaneous alpha amplitude increased by decreasing ambient luminance, while alpha frequency remained unaffected. In the second experiment, we found that under low-luminance viewing, the stimulus-related alpha amplitude was lower, and its frequency was slightly faster. These effects were evident in the phase-locked part of the alpha response (echo function), but weaker or absent in the induced (non-phase-locked) alpha responses. Finally, we explored the possible behavioural correlates of these modulations in a monocular critical flicker frequency task (experiment 3), finding that dark adaptation in the left eye decreased the temporal threshold of the right eye. Overall, we found that ambient luminance changes impact differently on spontaneous and stimulus-related alpha expression. We suggest that stimulus-related alpha activity is crucial in determining human temporal segmentation abilities. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. TH17 cells mediate inflammation in a novel model of spontaneous experimental autoimmune lacrimal keratoconjunctivitis with neural damage.

    Science.gov (United States)

    Seo, Kyoung Yul; Kitamura, Kazuya; Han, Soo Jung; Kelsall, Brian

    2017-09-27

    Dry eye disease (DED) affects one third of the population worldwide. In prior studies, experimental autoimmune lacrimal keratoconjunctivitis (EALK) induced by desiccating stress in mice has been used as a model of DED. This model is complicated by a requirement for exogenous epithelial cell injury and administration of anticholinergic agents with broad immunologic effects. We sought to develop a novel mouse model of EALK and to demonstrate the responsible pathogenic mechanisms. CD4 + CD45RB high naive T cells with and without CD4 + CD45RB low regulatory T cells were adoptively transferred to C57BL/10 recombination-activating gene 2 (Rag2) -/- mice. The eyes, draining lymph nodes, lacrimal glands, and surrounding tissues of mice with and without spontaneous keratoconjunctivitis were evaluated for histopathologic changes, cellular infiltration, and cytokine production in tissues and isolated cells. Furthermore, the integrity of the corneal nerves was evaluated using whole-tissue immunofluorescence imaging. Gene-deficient naive T cells or RAG2-deficient hosts were evaluated to assess the roles of IFN-γ, IL-17A, and IL-23 in disease pathogenesis. Finally, cytokine levels were determined in the tears of patients with DED. EALK developed spontaneously in C57BL/10 Rag2 -/- mice after adoptive transfer of CD4 + CD45RB high naive T cells and was characterized by infiltration of CD4 + T cells, macrophages, and neutrophils. In addition to lacrimal keratoconjunctivitis, mice had damage to the corneal nerve, which connects components of the lacrimal functional unit. Pathogenic T-cell differentiation was dependent on IL-23p40 and controlled by cotransferred CD4 + CD45RB low regulatory T cells. T H 17 rather than T H 1 CD4 + cells were primarily responsible for EALK, even though levels of both IL-17 and IFN-γ were increased in inflammatory tissues, likely because of their ability to drive expression of CXC chemokines within the cornea and the subsequent influx of myeloid cells

  6. Spontaneous oscillatory rhythms in the degenerating mouse retina modulate retinal ganglion cell responses to electrical stimulation

    Directory of Open Access Journals (Sweden)

    Yong Sook eGoo

    2016-01-01

    Full Text Available Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD and retinitis pigmentosa (RP, but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice, where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs. Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties.

  7. Spontaneous pyrogen production by mouse histiocytic and myelomonocytic tumor cell lines in vitro.

    Science.gov (United States)

    Bodel, P

    1978-05-01

    Tumor-associated fever occurs commonly in acute leukemias and lymphomas. We investigated the capacity for in vitro production of pyrogen by three mouse histiocytic lymphoma cell lines (J-774, PU5-1.8, p 388 D1), one myelomonoyctic line (WEHI-3), and tow lymphoma-derived lines, RAW-8 and R-8. Pyrogen was released spontaneously into the culture medium during growth by all cell lines with macrophage or myeloid characteristics including lysozyme production; R-8 cells, of presumed B-lymphocyte origin, did not produce pyrogen. When injected into mice, the pyrogens gave fever curves typical of endogenous pyrogen, were inactived by heating to 56 degrees C and by pronase digestion, and appeared to be secreted continuously by viable cells. Two pyrogenic molecular species produced by H-774 cells were identified by Sephadex filtration, one of mol wt approximately equal to 30,000, and the other greater than or equal to 60,000. By contrast, three carcinoma cell lines of human origin and SV-40 3T3 mouse fibroblasts did not produce pyrogen in vitro. These results suggest that some malignant cells derived from phagocytic cells of bone marrow origin retain their capacity for pyrogen production, and may spontaneously secrete pyrogen during growth.

  8. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro.

    Science.gov (United States)

    Kemény, Lajos V; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B

    2016-06-02

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells' nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma-stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments.

  9. Oscillatory brain activity in spontaneous and induced sleep stages in flies

    OpenAIRE

    Yap, Melvyn H. W.; Grabowska, Martyna J.; Rohrscheib, Chelsie; Jeans, Rhiannon; Troup, Michael; Paulk, Angelique C.; van Alphen, Bart; Shaw, Paul J.; van Swinderen, Bruno

    2017-01-01

    Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABAA ago...

  10. Lack of spontaneous and radiation-induced chromosome breakage at interstitial telomeric sites in murine scid cells.

    Science.gov (United States)

    Wong, H-P; Mozdarani, H; Finnegan, C; McIlrath, J; Bryant, P E; Slijepcevic, P

    2004-01-01

    Interstitial telomeric sites (ITSs) in chromosomes from DNA repair-proficient mammalian cells are sensitive to both spontaneous and radiation-induced chromosome breakage. Exact mechanisms of this chromosome breakage sensitivity are not known. To investigate factors that predispose ITSs to chromosome breakage we used murine scid cells. These cells lack functional DNA-PKcs, an enzyme involved in the repair of DNA double-strand breaks. Interestingly, our results revealed lack of both spontaneous and radiation-induced chromosome breakage at ITSs found in scid chromosomes. Therefore, it is possible that increased sensitivity of ITSs to chromosome breakage is associated with the functional DNA double-strand break repair machinery. To investigate if this is the case we used scid cells in which DNA-PKcs deficiency was corrected. Our results revealed complete disappearance of ITSs in scid cells with functional DNA-PKcs, presumably through chromosome breakage at ITSs, but their unchanged frequency in positive and negative control cells. Therefore, our results indicate that the functional DNA double-strand break machinery is required for elevated sensitivity of ITSs to chromosome breakage. Interestingly, we observed significant differences in mitotic chromosome condensation between scid cells and their counterparts with restored DNA-PKcs activity suggesting that lack of functional DNA-PKcs may cause a defect in chromatin organization. Increased condensation of mitotic chromosomes in the scid background was also confirmed in vivo. Therefore, our results indicate a previously unanticipated role of DNA-PKcs in chromatin organisation, which could contribute to the lack of ITS sensitivity to chromosome breakage in murine scid cells. Copyright 2003 S. Karger AG, Basel

  11. Auditory Tones and Foot-Shock Recapitulate Spontaneous Sub-Threshold Activity in Basolateral Amygdala Principal Neurons and Interneurons.

    Directory of Open Access Journals (Sweden)

    François Windels

    Full Text Available In quiescent states such as anesthesia and slow wave sleep, cortical networks show slow rhythmic synchronized activity. In sensory cortices this rhythmic activity shows a stereotypical pattern that is recapitulated by stimulation of the appropriate sensory modality. The amygdala receives sensory input from a variety of sources, and in anesthetized animals, neurons in the basolateral amygdala (BLA show slow rhythmic synchronized activity. Extracellular field potential recordings show that these oscillations are synchronized with sensory cortex and the thalamus, with both the thalamus and cortex leading the BLA. Using whole-cell recording in vivo we show that the membrane potential of principal neurons spontaneously oscillates between up- and down-states. Footshock and auditory stimulation delivered during down-states evokes an up-state that fully recapitulates those occurring spontaneously. These results suggest that neurons in the BLA receive convergent input from networks of cortical neurons with slow oscillatory activity and that somatosensory and auditory stimulation can trigger activity in these same networks.

  12. A gravimetric method for the measurement of total spontaneous activity in rats.

    Science.gov (United States)

    Biesiadecki, B J; Brand, P H; Koch, L G; Britton, S L

    1999-10-01

    Currently available methods for the measurement of spontaneous activity of laboratory animals require expensive, specialized equipment and may not be suitable for use in low light conditions with nocturnal species. We developed a gravimetric method that uses common laboratory equipment to quantify the total spontaneous activity of rats and is suitable for use in the dark. The rat in its home cage is placed on a top-loading electronic balance interfaced to a computer. Movements are recorded by the balance as changes in weight and transmitted to the computer at 10 Hz. Data are analyzed on-line to derive the absolute value of the difference in weight between consecutive samples, and the one-second average of the absolute values is calculated. The averages are written to file for off-line analysis and summed over the desired observation period to provide a measure of total spontaneous activity. The results of in vitro experiments demonstrated that: 1) recorded weight changes were not influenced by position of the weight on the bottom of the cage, 2) values recorded from a series of weight changes were not significantly different from the calculated values, 3) the constantly decreasing force exerted by a swinging pendulum placed on the balance was accurately recorded, 4) the measurement of activity was not influenced by the evaporation of a fluid such as urine, and 5) the method can detect differences in the activity of sleeping and waking rats over a 10-min period, as well as during 4-hr intervals recorded during active (night-time) and inactive (daytime) periods. These results demonstrate that this method provides an inexpensive, accurate, and noninvasive method to quantitate the spontaneous activity of small animals.

  13. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chen

    2018-03-01

    Full Text Available Purpose: Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI approach.Methods: Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF and regional homogeneity (ReHo of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis.Results: Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG, parahippocampal gyrus (PHG, precuneus and inferior parietal lobule (IPL as well as increased neural activity in the middle frontal gyrus (MFG, cuneus and postcentral gyrus (PoCG. A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B scores, indicative of impaired cognitive function involving the frontal lobe.Conclusions: Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the

  14. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI.

    Science.gov (United States)

    Chen, Yu-Chen; Chen, Huiyou; Jiang, Liang; Bo, Fan; Xu, Jin-Jing; Mao, Cun-Nan; Salvi, Richard; Yin, Xindao; Lu, Guangming; Gu, Jian-Ping

    2018-01-01

    Purpose : Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI) approach. Methods : Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis. Results : Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG), parahippocampal gyrus (PHG), precuneus and inferior parietal lobule (IPL) as well as increased neural activity in the middle frontal gyrus (MFG), cuneus and postcentral gyrus (PoCG). A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B) scores, indicative of impaired cognitive function involving the frontal lobe. Conclusions : Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the

  15. Bone marrow stromal cells spontaneously produce Flt3-ligand: influence of ionizing radiations and cytokine stimulation.

    Science.gov (United States)

    Bertho, Jean Marc; Demarquay, Christelle; Mouiseddine, Moubarak; Douenat, Noémie; Stefani, Johanna; Prat, Marie; Paquet, François

    2008-08-01

    To define the ability of human bone marrow (BM) stromal cells to produce fms-like tyrosine kinase 3 (Flt3)-ligand (FL), and the effect of irradiation, tumour necrosis factor-alpha (TNFalpha) or tumour growth factor beta (TGFbeta) on FL production. Primary BM stromal cell cultures were irradiated at 2-10 Gy or were stimulated with TNFalpha or TGFbeta1. The presence of FL was tested in culture supernatants and in cell lysate. The presence of a membrane-bound form of FL and the level of gene expression were also tested. Primary BM stromal cells spontaneously released FL. This production was increased by TNFalpha but not by TGFbeta1 or by irradiation. Chemical induction of osteoblastic differentiation from BM stromal cells also induced an increase in FL release. Our results suggest that the observed increase in FL concentration after in vivo irradiation is an indirect effect. The possible implication of BM stromal cells in these mechanisms is discussed.

  16. Spontaneous emergence of large-scale cell cycle synchronization in amoeba colonies

    International Nuclear Information System (INIS)

    Segota, Igor; Boulet, Laurent; Franck, David; Franck, Carl

    2014-01-01

    Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. Here we show that cell populations grown on a substrate spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state. (paper)

  17. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment.

    Science.gov (United States)

    Berkes, Pietro; Orbán, Gergo; Lengyel, Máté; Fiser, József

    2011-01-07

    The brain maintains internal models of its environment to interpret sensory inputs and to prepare actions. Although behavioral studies have demonstrated that these internal models are optimally adapted to the statistics of the environment, the neural underpinning of this adaptation is unknown. Using a Bayesian model of sensory cortical processing, we related stimulus-evoked and spontaneous neural activities to inferences and prior expectations in an internal model and predicted that they should match if the model is statistically optimal. To test this prediction, we analyzed visual cortical activity of awake ferrets during development. Similarity between spontaneous and evoked activities increased with age and was specific to responses evoked by natural scenes. This demonstrates the progressive adaptation of internal models to the statistics of natural stimuli at the neural level.

  18. Computational Account of Spontaneous Activity as a Signature of Predictive Coding.

    Directory of Open Access Journals (Sweden)

    Veronika Koren

    2017-01-01

    Full Text Available Spontaneous activity is commonly observed in a variety of cortical states. Experimental evidence suggested that neural assemblies undergo slow oscillations with Up ad Down states even when the network is isolated from the rest of the brain. Here we show that these spontaneous events can be generated by the recurrent connections within the network and understood as signatures of neural circuits that are correcting their internal representation. A noiseless spiking neural network can represent its input signals most accurately when excitatory and inhibitory currents are as strong and as tightly balanced as possible. However, in the presence of realistic neural noise and synaptic delays, this may result in prohibitively large spike counts. An optimal working regime can be found by considering terms that control firing rates in the objective function from which the network is derived and then minimizing simultaneously the coding error and the cost of neural activity. In biological terms, this is equivalent to tuning neural thresholds and after-spike hyperpolarization. In suboptimal working regimes, we observe spontaneous activity even in the absence of feed-forward inputs. In an all-to-all randomly connected network, the entire population is involved in Up states. In spatially organized networks with local connectivity, Up states spread through local connections between neurons of similar selectivity and take the form of a traveling wave. Up states are observed for a wide range of parameters and have similar statistical properties in both active and quiescent state. In the optimal working regime, Up states are vanishing, leaving place to asynchronous activity, suggesting that this working regime is a signature of maximally efficient coding. Although they result in a massive increase in the firing activity, the read-out of spontaneous Up states is in fact orthogonal to the stimulus representation, therefore interfering minimally with the network

  19. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    International Nuclear Information System (INIS)

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W.

    1991-01-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication

  20. Prolonged Expansion Induces Spontaneous Neural Progenitor Differentiation from Human Gingiva-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Rajan, Thangavelu Soundara; Scionti, Domenico; Diomede, Francesca; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2017-12-01

    Neural crest-derived mesenchymal stem cells (MSCs) obtained from dental tissues received considerable interest in regenerative medicine, particularly in nerve regeneration owing to their embryonic origin and ease of harvest. Proliferation efficacy and differentiation capacity into diverse cell lineages propose dental MSCs as an in vitro tool for disease modeling. In this study, we investigated the spontaneous differentiation efficiency of dental MSCs obtained from human gingiva tissue (hGMSCs) into neural progenitor cells after extended passaging. At passage 41, the morphology of hGMSCs changed from typical fibroblast-like shape into sphere-shaped cells with extending processes. Next-generation transcriptomics sequencing showed increased expression of neural progenitor markers such as NES, MEIS2, and MEST. In addition, de novo expression of neural precursor genes, such as NRN1, PHOX2B, VANGL2, and NTRK3, was noticed in passage 41. Immunocytochemistry results showed suppression of neurogenesis repressors TP53 and p21, whereas Western blot results revealed the expression of neurotrophic factors BDNF and NT3 at passage 41. Our results showed the spontaneous efficacy of hGMSCs to differentiate into neural precursor cells over prolonged passages and that these cells may assist in producing novel in vitro disease models that are associated with neural development.

  1. Comparative Analysis of Human and Rodent Brain Primary Neuronal Culture Spontaneous Activity Using Micro-Electrode Array Technology.

    Science.gov (United States)

    Napoli, Alessandro; Obeid, Iyad

    2016-03-01

    Electrical activity in embryonic brain tissue has typically been studied using Micro Electrode Array (MEA) technology to make dozens of simultaneous recordings from dissociated neuronal cultures, brain stem cell progenitors, or brain slices from fetal rodents. Although these rodent neuronal primary culture electrical properties are mostly investigated, it has not been yet established to what extent the electrical characteristics of rodent brain neuronal cultures can be generalized to those of humans. A direct comparison of spontaneous spiking activity between rodent and human primary neurons grown under the same in vitro conditions using MEA technology has never been carried out before and will be described in the present study. Human and rodent dissociated fetal brain neuronal cultures were established in-vitro by culturing on a glass grid of 60 planar microelectrodes neurons under identical conditions. Three different cultures of human neurons were produced from tissue sourced from a single aborted fetus (at 16-18 gestational weeks) and these were compared with seven different cultures of embryonic rat neurons (at 18 gestational days) originally isolated from a single rat. The results show that the human and rodent cultures behaved significantly differently. Whereas the rodent cultures demonstrated robust spontaneous activation and network activity after only 10 days, the human cultures required nearly 40 days to achieve a substantially weaker level of electrical function. These results suggest that rat neuron preparations may yield inferences that do not necessarily transfer to humans. © 2015 Wiley Periodicals, Inc.

  2. Two types of mental fatigue affect spontaneous oscillatory brain activities in different ways

    OpenAIRE

    Shigihara, Yoshihito; Tanaka, Masaaki; Ishii, Akira; Kanai, Etsuko; Funakura, Masami; Watanabe, Yasuyoshi

    2013-01-01

    Abstract Background Fatigue has a multi-factorial nature. We examined the effects of two types of mental fatigue on spontaneous oscillatory brain activity using magnetoencephalography (MEG). Methods Participants were randomly assigned to two groups in a single-blinded, crossover fashion to perform two types of mental fatigue-inducing experiments. Each experiment consisted of a 30-min fatigue-inducing 0- or 2-back test session and two evaluation sessions performed just before and after the fat...

  3. Blockage of spontaneous Ca2+ oscillation causes cell death in intraerythrocitic Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Masahiro Enomoto

    Full Text Available Malaria remains one of the world's most important infectious diseases and is responsible for enormous mortality and morbidity. Resistance to antimalarial drugs is a challenging problem in malaria control. Clinical malaria is associated with the proliferation and development of Plasmodium parasites in human erythrocytes. Especially, the development into the mature forms (trophozoite and schizont of Plasmodium falciparum (P. falciparum causes severe malaria symptoms due to a distinctive property, sequestration which is not shared by any other human malaria. Ca(2+ is well known to be a highly versatile intracellular messenger that regulates many different cellular processes. Cytosolic Ca(2+ increases evoked by extracellular stimuli are often observed in the form of oscillating Ca(2+ spikes (Ca(2+ oscillation in eukaryotic cells. However, in lower eukaryotic and plant cells the physiological roles and the molecular mechanisms of Ca(2+ oscillation are poorly understood. Here, we showed the observation of the inositol 1,4,5-trisphospate (IP(3-dependent spontaneous Ca(2+ oscillation in P. falciparum without any exogenous extracellular stimulation by using live cell fluorescence Ca(2+ imaging. Intraerythrocytic P. falciparum exhibited stage-specific Ca(2+ oscillations in ring form and trophozoite stages which were blocked by IP(3 receptor inhibitor, 2-aminoethyl diphenylborinate (2-APB. Analyses of parasitaemia and parasite size and electron micrograph of 2-APB-treated P. falciparum revealed that 2-APB severely obstructed the intraerythrocytic maturation, resulting in cell death of the parasites. Furthermore, we confirmed the similar lethal effect of 2-APB on the chloroquine-resistant strain of P. falciparum. To our best knowledge, we for the first time showed the existence of the spontaneous Ca(2+ oscillation in Plasmodium species and clearly demonstrated that IP(3-dependent spontaneous Ca(2+ oscillation in P. falciparum is critical for the development

  4. Kölliker’s Organ and the Development of Spontaneous Activity in the Auditory System: Implications for Hearing Dysfunction

    Directory of Open Access Journals (Sweden)

    M. W. Nishani Dayaratne

    2014-01-01

    Full Text Available Prior to the “onset of hearing,” developing cochlear inner hair cells (IHCs and primary auditory neurons undergo experience-independent activity, which is thought to be important in retaining and refining neural connections in the absence of sound. One of the major hypotheses regarding the origin of such activity involves a group of columnar epithelial supporting cells forming Kölliker’s organ, which is only present during this critical period of auditory development. There is strong evidence for a purinergic signalling mechanism underlying such activity. ATP released through connexin hemichannels may activate P2 purinergic receptors in both Kölliker’s organ and the adjacent IHCs, leading to generation of electrical activity throughout the auditory system. However, recent work has suggested an alternative origin, by demonstrating the ability of IHCs to generate this spontaneous activity without activation by ATP. Regardless, developmental abnormalities of Kölliker’s organ may lead to congenital hearing loss, considering that mutations in ion channels (hemichannels, gap junctions, and calcium channels involved in Kölliker’s organ activity share strong links with such types of deafness.

  5. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data

    Science.gov (United States)

    Llinás, Rodolfo R.; Ustinin, Mikhail N.; Rykunov, Stanislav D.; Boyko, Anna I.; Sychev, Vyacheslav V.; Walton, Kerry D.; Rabello, Guilherme M.; Garcia, John

    2015-01-01

    A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in 10 healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in 10 healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject's head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space. PMID:26528119

  6. Spontaneous development of hepatocellular carcinoma with cancer stem cell properties in PR-SET7-deficient livers

    Science.gov (United States)

    Nikolaou, Kostas C; Moulos, Panagiotis; Chalepakis, George; Hatzis, Pantelis; Oda, Hisanobu; Reinberg, Danny; Talianidis, Iannis

    2015-01-01

    PR-SET7-mediated histone 4 lysine 20 methylation has been implicated in mitotic condensation, DNA damage response and replication licensing. Here, we show that PR-SET7 function in the liver is pivotal for maintaining genome integrity. Hepatocyte-specific deletion of PR-SET7 in mouse embryos resulted in G2 phase arrest followed by massive cell death and defect in liver organogenesis. Inactivation at postnatal stages caused cell duplication-dependent hepatocyte necrosis, accompanied by inflammation, fibrosis and compensatory growth induction of neighboring hepatocytes and resident ductal progenitor cells. Prolonged necrotic regenerative cycles coupled with oncogenic STAT3 activation led to the spontaneous development of hepatic tumors composed of cells with cancer stem cell characteristics. These include a capacity to self-renew in culture or in xenografts and the ability to differentiate to phenotypically distinct hepatic cells. Hepatocellular carcinoma in PR-SET7-deficient mice displays a cancer stem cell gene signature specified by the co-expression of ductal progenitor markers and oncofetal genes. PMID:25515659

  7. Spontaneous and radiation induced cell death in HeLa S3 human carcinoma

    International Nuclear Information System (INIS)

    Zaric, B.; Milosavljevic, B.; Radojcic, M.

    2001-01-01

    Radiation biologists have classified radiation-induced cell death based on cell proliferative capacity to either mitotic or interphase death. Cytologists have revealed two morphologically and biochemically diverse forms of cell death, apoptosis and necrosis. While the knowledge of the former is already well exploited by radiologists, cell susceptibility to apoptosis and necrosis is still under investigation. We studied characteristics of spontaneous cell death, and dose dependence and time course of radiation-induced cell death of human uterine cervix epitheloid carcinoma HeLaS 3 in culture. Cells were irradiated with 2-40 Gy of γ-rays. The effect on growth, viability, morphology and genomic DNA structure were followed 24-72 h after irradiation. Cell viability was evaluated by trypan-blue exclusion assay and cell morphology by in situ DNA staining with propidium iodide. Cell genomic DNA fragmentation pattern was determined by electrophoresis on 2% agarose gels. At all cell densities 25-35% cells were PI positive and their DNA was fragmented to a high molecular size (≥20 kbp), but the internucleosomal ladder was not observed. A significant decrease in viability to 33% was observed 72 h post 40 Gy irradiation. It corresponded to 55% of PI positive cells. A smear of smaller DNA fragments (0.1-1 kbp), 24 h after 10-20 Gy irradiation was considered as proof that the dominant form of radiation-induced cell death was necrosis. It was concluded that the dominant form of radiation-induced cell death in HeLaS 3 population was necrosis and the radiation dose which caused 50% of cell death after 72 h (termed ND 50 ) was between 30-40 Gy. (author)

  8. Reproduction of overall spontaneous pain pattern by manual stimulation of active myofascial trigger points in fibromyalgia patients

    DEFF Research Database (Denmark)

    Ge, Hong-You; Wang, Ying; Fernandez-de-las-Penas, Cesar

    2011-01-01

    It has previously been reported that local and referred pain from active myofascial trigger points (MTPs) in the neck and shoulder region contribute to fibromyalgia (FM) pain and that the pain pattern induced from active MTPs can reproduce parts of the spontaneous clinical FM pain pattern....... The current study investigated whether the overall spontaneous FM pain pattern can be reproduced by local and referred pain from active MTPs located in different muscles....

  9. Supramolecular oligothiophene microfibers spontaneously assembled on surfaces or coassembled with proteins inside live cells.

    Science.gov (United States)

    Barbarella, Giovanna; Di Maria, Francesca

    2015-08-18

    During the last few decades, multifunctional nano- and microfibers made of semiconducting π-conjugated oligomers and polymers have generated much interest because of a broad range of applications extending from sensing to bioelectronic devices and (opto)electronics. The simplest technique for the fabrication of these anisotropic supramolecular structures is to let the molecules do the work by spontaneous organization driven by the information encoded in their molecular structure. Oligothiophenes-semiconducting and fluorescent compounds that have been extensively investigated for applications in thin-film field-effect transistors and solar cells and to a lesser extent as dyes for fluorescent labeling of proteins, DNA, and live cells-are particularly suited as building blocks for supramolecular architectures because of the peculiar properties of the thiophene ring. Because of the great polarizability of sulfur outer-shell electrons and the consequent facile geometric deformability and adaptability of the ring to the environment, thiophene can generate multiple nonbonding interactions to promote non-covalent connections between blocks. Furthermore, sulfur can be hypervalent, i.e., it can accommodate more than the eight electrons normally associated with s and p shells. Hypervalent oligothiophene-S,S-dioxides whose oxygen atoms can be involved in hydrogen bonding have been synthesized. These compounds are amphiphilic, and some of them are able to spontaneously cross the membrane of live cells. Hypervalent nonbonding interactions of divalent sulfur, defined as weak coordination to a proximate nitrogen or oxygen, have also been invoked in the solid-state packing of many organic molecules and in the architecture of proteins. In this Account, we describe two different types of thiophene-based building blocks that can induce the spontaneous formation of nanostructured microfibers in very different environments. The first, based on the synthesis of "sulfur

  10. Dynamic 3D culture promotes spontaneous embryonic stem cell differentiation in vitro.

    Science.gov (United States)

    Gerlach, Jörg C; Hout, Mariah; Edsbagge, Josefina; Björquist, Petter; Lübberstedt, Marc; Miki, Toshio; Stachelscheid, Harald; Schmelzer, Eva; Schatten, Gerald; Zeilinger, Katrin

    2010-02-01

    Spontaneous in vitro differentiation of mouse embryonic stem cells (mESC) is promoted by a dynamic, three-dimensional (3D), tissue-density perfusion technique with continuous medium perfusion and exchange in a novel four-compartment, interwoven capillary bioreactor. We compared ectodermal, endodermal, and mesodermal immunoreactive tissue structures formed by mESC at culture day 10 with mouse fetal tissue development at gestational day E9.5. The results show that the bioreactor cultures more closely resemble mouse fetal tissue development at gestational day E9.5 than control mESC cultured in Petri dishes.

  11. p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Armesilla-Diaz, Alejandro, E-mail: aarmesilla@cib.csic.es [Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biologicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid (Spain); Elvira, Gema; Silva, Augusto [Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biologicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid (Spain)

    2009-12-10

    Mesenchymal stem cells (MSC) have been extensively studied and gained wide popularity due to their therapeutic potential. Spontaneous transformation of MSC, from both human and murine origin, has been reported in many studies. MSC transformation depends on the culture conditions, the origin of the cells and the time on culture; however, the precise biological characteristics involved in this process have not been fully defined yet. In this study, we investigated the role of p53 in the biology and transformation of murine bone marrow (BM)-derived MSC. We demonstrate that the MSC derived from p53KO mice showed an augmented proliferation rate, a shorter doubling time and also morphologic and phenotypic changes, as compared to MSC derived from wild-type animals. Furthermore, the MSC devoid of p53 had an increased number of cells able to generate colonies. In addition, not only proliferation but also MSC differentiation is controlled by p53 since its absence modifies the speed of the process. Moreover, genomic instability, changes in the expression of c-myc and anchorage independent growth were also observed in p53KO MSC. In addition, the absence of p53 implicates the spontaneous transformation of MSC in long-term cultures. Our results reveal that p53 plays a central role in the biology of MSC.

  12. Oscillatory brain activity in spontaneous and induced sleep stages in flies.

    Science.gov (United States)

    Yap, Melvyn H W; Grabowska, Martyna J; Rohrscheib, Chelsie; Jeans, Rhiannon; Troup, Michael; Paulk, Angelique C; van Alphen, Bart; Shaw, Paul J; van Swinderen, Bruno

    2017-11-28

    Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABA A agonist Gaboxadol. We find a transitional sleep stage associated with a 7-10 Hz oscillation in the central brain during spontaneous sleep. Oscillatory activity is also evident when we acutely activate sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila. In contrast, sleep following Gaboxadol exposure is characterized by low-amplitude LFPs, during which dFB-induced effects are suppressed. Sleep in flies thus appears to involve at least two distinct stages: increased oscillatory activity, particularly during sleep induction, followed by desynchronized or decreased brain activity.

  13. Role of mitochondria in modulation of spontaneous Ca2+ waves in freshly dispersed interstitial cells of Cajal from the rabbit urethra.

    Science.gov (United States)

    Sergeant, Gerard P; Bradley, Eamonn; Thornbury, Keith D; McHale, Noel G; Hollywood, Mark A

    2008-10-01

    Interstitial cells of Cajal (ICC) isolated from the rabbit urethra exhibit pacemaker activity that results from spontaneous Ca(2+) waves. The purpose of this study was to investigate if this activity was influenced by Ca(2+) uptake into mitochondria. Spontaneous Ca(2+) waves were recorded using a Nipkow spinning disk confocal microscope and spontaneous transient inward currents (STICs) were recorded using the whole-cell patch clamp technique. Disruption of the mitochondrial membrane potential with the electron transport chain inhibitors rotenone (10 microm) and antimycin A (5 microm) abolished Ca(2+) waves and increased basal Ca(2+) levels. Similar results were achieved when mitochondria membrane potential was collapsed using the protonophores FCCP (0.2 microm) and CCCP (1 microm). Spontaneous Ca(2+) waves were not inhibited by the ATP synthase inhibitor oligomycin (1 microm), suggesting that these effects were not attributable to an effect on ATP levels. STICs recorded under voltage clamp at -60 mV were also inhibited by CCCP and antimycin A. Dialysis of cells with the mitochondrial uniporter inhibitor RU360 (10 microm) also inhibited STICS. Stimulation of Ca(2+) uptake into mitochondria using the plant flavonoid kaempferol (10 microm) induced a series of propagating Ca(2+) waves. The kaempferol-induced activity was inhibited by application of caffeine (10 mm) or removal of extracellular Ca(2+), but was not significantly affected by the IP(3) receptor blocker 2-APB (100 microm). These data suggest that spontaneous Ca(2+) waves in urethral ICC are regulated by buffering of cytoplasmic Ca(2+) by mitochondria.

  14. Behavior of a Spontaneously Arising Human Retinal Pigment Epithelial Cell Line Cultivated on Thin Alginate Film.

    Science.gov (United States)

    Najafabadi, Hoda Shams; Soheili, Zahra-Soheila; Ganji, Shahla Mohammad

    2015-01-01

    A cell line spontaneously derived from human retinal pigment epithelium (hRPE) was cultured on alginate film gelatinized with different concentrations of neurobasal cell culture medium (NCCM) to assess its growth and morphological behavior on this naturally occurring polysaccharide. Neonatal human globes were used to isolate hRPE cells. They were cultured in Dulbecco's modified Eagle's-medium-and-Ham's-F12-medium-(DMEM/F12) supplemented with 10% fetal bovine serum (FBS). Cultures were continuously studied using phase contrast microscopy. After the nineth passage, cells were characterized through immunocytochemical analysis for Oct4, Chx10, and Pax6 and Ki67 markers. In each well of a 6-well microplate, 1 and 2% weight/volume (w/v) alginate in deionized water was added and gelatinized using 1× and 10× NCCM. hRPE cells were cultured at a density of 2 × 105 cells/well in alginate-coated microplates. After 5 days, hRPE colonies were harvested and re-plated on polystyrene substrates. Morphology and growth of hRPE cultures were determined during the next 2 weeks. The first few passages of the cultures were purely hRPE cells that revealed typical morphological features of the pigmented epithelium. They made spaces, devoid of cells, between hRPE cell monolayer and fill in the unoccupied spaces. They grew faster than native RPE cells and rapidly overgrew. Immunocytochemical test revealed that the founded cells expressed Chx10, Pax6, Ki67 and Oct4. The hRPE cells survived unlimitedly on alginate film and formed giant adjoining colonies. After re-plating, hRPE colonies adhered quickly on polystyrene and displayed native hRPE morphological features. Alginate film can support the survival and growth of hRPE cells and induce the cells to re-organize in tissue-like structures.

  15. Spontaneous Ca2+ transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine

    Science.gov (United States)

    Baker, Salah A.; Drumm, Bernard T.; Saur, Dieter; Hennig, Grant W.; Ward, Sean M.

    2016-01-01

    Key points Interstitial cells of Cajal at the level of the deep muscular plexus (ICC‐DMP) in the small intestine generate spontaneous Ca2+ transients that consist of localized Ca2+ events and limited propagating Ca2+ waves.Ca2+ transients in ICC‐DMP display variable characteristics: from discrete, highly localized Ca2+ transients to regionalized Ca2+ waves with variable rates of occurrence, amplitude, duration and spatial spread.Ca2+ transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells.Ca2+ transients in ICC‐DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s).Functional intracellular Ca2+ stores are essential for spontaneous Ca2+ transients, and the sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) pump is necessary for maintenance of spontaneity.Ca2+ release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3Rs). Release from these channels is interdependent.ICC express transcripts of multiple RyRs and InsP3Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. Abstract Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC‐DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC‐DMP are mediated by activation of Ca2+‐activated Cl− channels; thus, Ca2+ signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca2+ transients in ICC‐DMP within intact jejunal muscles expressing a genetically encoded Ca2+ indicator (GCaMP3) selectively in ICC. ICC‐DMP displayed spontaneous Ca2+ transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca2+ transients was highly variable, and it was

  16. Spontaneous Ca(2+) transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine.

    Science.gov (United States)

    Baker, Salah A; Drumm, Bernard T; Saur, Dieter; Hennig, Grant W; Ward, Sean M; Sanders, Kenton M

    2016-06-15

    Interstitial cells of Cajal at the level of the deep muscular plexus (ICC-DMP) in the small intestine generate spontaneous Ca(2+) transients that consist of localized Ca(2+) events and limited propagating Ca(2+) waves. Ca(2+) transients in ICC-DMP display variable characteristics: from discrete, highly localized Ca(2+) transients to regionalized Ca(2+) waves with variable rates of occurrence, amplitude, duration and spatial spread. Ca(2+) transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells. Ca(2+) transients in ICC-DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s). Functional intracellular Ca(2+) stores are essential for spontaneous Ca(2+) transients, and the sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump is necessary for maintenance of spontaneity. Ca(2+) release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3 Rs). Release from these channels is interdependent. ICC express transcripts of multiple RyRs and InsP3 Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC-DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC-DMP are mediated by activation of Ca(2+) -activated Cl(-) channels; thus, Ca(2+) signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca(2+) transients in ICC-DMP within intact jejunal muscles expressing a genetically encoded Ca(2+) indicator (GCaMP3) selectively in ICC. ICC-DMP displayed spontaneous Ca(2+) transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca(2+) transients was highly variable, and it

  17. Activation of Akt/FKHR in the medulla oblongata contributes to spontaneous respiratory recovery after incomplete spinal cord injury in adult rats.

    Science.gov (United States)

    Felix, M S; Bauer, S; Darlot, F; Muscatelli, F; Kastner, A; Gauthier, P; Matarazzo, V

    2014-09-01

    After incomplete spinal cord injury (SCI), patients and animals may exhibit some spontaneous functional recovery which can be partly attributed to remodeling of injured neural circuitry. This post-lesion plasticity implies spinal remodeling but increasing evidences suggest that supraspinal structures contribute also to the functional recovery. Here we tested the hypothesis that partial SCI may activate cell-signaling pathway(s) at the supraspinal level and that this molecular response may contribute to spontaneous recovery. With this aim, we used a rat model of partial cervical hemisection which injures the bulbospinal respiratory tract originating from the medulla oblongata of the brainstem but leads to a time-dependent spontaneous functional recovery of the paralyzed hemidiaphragm. We first demonstrate that after SCI the PI3K/Akt signaling pathway is activated in the medulla oblongata of the brainstem, resulting in an inactivation of its pro-apoptotic downstream target, forkhead transcription factor (FKHR/FOXO1A). Retrograde labeling of medullary premotoneurons including respiratory ones which project to phrenic motoneurons reveals an increased FKHR phosphorylation in their cell bodies together with an unchanged cell number. Medulla infusion of the PI3K inhibitor, LY294002, prevents the SCI-induced Akt and FKHR phosphorylations and activates one of its death-promoting downstream targets, Fas ligand. Quantitative EMG analyses of diaphragmatic contractility demonstrate that the inhibition of medulla PI3K/Akt signaling prevents spontaneous respiratory recovery normally observed after partial cervical SCI. Such inhibition does not however affect either baseline contractile frequency or the ventilatory reactivity under acute respiratory challenge. Together, these findings provide novel evidence of supraspinal cellular contribution to the spontaneous respiratory recovery after partial SCI. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Early spontaneous intermittent myocardial reperfusion during acute myocardial infarction is associated with augmented thrombogenic activity and less myocardial damage

    NARCIS (Netherlands)

    Haider, A.W.; Andreotti, F.; Hackett, D.R.; Tousoulis, D.; Kluft, C.; Maseri, A.; Davies, G.J.

    1995-01-01

    Objectives. This study investigated the influence of early spontaneous intermittent reperfusion on the extent of myocardial damage and its relation to endogenous hemostatic activity, Background. In the early phase of acute myocardial infarction coronary occlusion is often intermittent, even before

  19. Spontaneous oscillations of cell voltage, power density, and anode exit CO concentration in a PEM fuel cell.

    Science.gov (United States)

    Lu, Hui; Rihko-Struckmann, Liisa; Sundmacher, Kai

    2011-10-28

    The spontaneous oscillations of the cell voltage and output power density of a PEMFC (with PtRu/C anode) using CO-containing H(2) streams as anodic fuels have been observed during galvanostatic operating. It is ascribed to the dynamic coupling of the CO adsorption (poisoning) and the electrochemical CO oxidation (reactivating) processes in the anode chamber of the single PEMFC. Accompanying the cell voltage and power density oscillations, the discrete CO concentration oscillations at the anode outlet of the PEMFC were also detected, which directly confirms the electrochemical CO oxidation taking place in the anode chamber during galvanostatic operating. This journal is © the Owner Societies 2011

  20. Bilateral Changes of Spontaneous Activity Within the Central Auditory Pathway Upon Chronic Unilateral Intracochlear Electrical Stimulation.

    Science.gov (United States)

    Basta, Dietmar; Götze, Romy; Gröschel, Moritz; Jansen, Sebastian; Janke, Oliver; Tzschentke, Barbara; Boyle, Patrick; Ernst, Arne

    2015-12-01

    In recent years, cochlear implants have been applied successfully for the treatment of unilateral hearing loss with quite surprising benefit. One reason for this successful treatment, including the relief from tinnitus, could be the normalization of spontaneous activity in the central auditory pathway because of the electrical stimulation. The present study, therefore, investigated at a cellular level, the effect of a unilateral chronic intracochlear stimulation on key structures of the central auditory pathway. Normal-hearing guinea pigs were mechanically single-sided deafened through a standard HiFocus1j electrode array (on a HiRes 90k cochlear implant) being inserted into the first turn of the cochlea. Four to five electrode contacts could be used for the stimulation. Six weeks after surgery, the speech processor (Auria) was fitted, based on tNRI values and mounted on the animal's back. The two experimental groups were stimulated 16 hours per day for 90 days, using a HiRes strategy based on different stimulation rates (low rate (275 pps/ch), high rate (5000 pps/ch)). The results were compared with those of unilateral deafened controls (implanted but not stimulated), as well as between the treatment groups. All animals experienced a standardized free field auditory environment. The low-rate group showed a significantly lower average spontaneous activity bilaterally in the dorsal cochlear nucleus and the medial geniculate body than the controls. However, there was no difference in the inferior colliculus and the primary auditory cortex. Spontaneous activity of the high-rate group was also reduced bilaterally in the dorsal cochlear nucleus and in the primary auditory cortex. No differences could be observed between the high-rate group and the controls in the contra-lateral inferior colliculus and medial geniculate body. The high-rate group showed bilaterally a higher activity in the CN and the MGB compared with the low-rate group, whereas in the IC and in the

  1. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules.

    Science.gov (United States)

    Green, David W; Kim, Eun-Jung; Jung, Han-Sung

    2015-09-01

    The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. © 2015 Wiley Periodicals, Inc.

  2. Canine spontaneous head and neck squamous cell carcinomas represent their human counterparts at the molecular level.

    Directory of Open Access Journals (Sweden)

    Deli Liu

    2015-06-01

    Full Text Available Spontaneous canine head and neck squamous cell carcinoma (HNSCC represents an excellent model of human HNSCC but is greatly understudied. To better understand and utilize this valuable resource, we performed a pilot study that represents its first genome-wide characterization by investigating 12 canine HNSCC cases, of which 9 are oral, via high density array comparative genomic hybridization and RNA-seq. The analyses reveal that these canine cancers recapitulate many molecular features of human HNSCC. These include analogous genomic copy number abnormality landscapes and sequence mutation patterns, recurrent alteration of known HNSCC genes and pathways (e.g., cell cycle, PI3K/AKT signaling, and comparably extensive heterogeneity. Amplification or overexpression of protein kinase genes, matrix metalloproteinase genes, and epithelial-mesenchymal transition genes TWIST1 and SNAI1 are also prominent in these canine tumors. This pilot study, along with a rapidly growing body of literature on canine cancer, reemphasizes the potential value of spontaneous canine cancers in HNSCC basic and translational research.

  3. Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity.

    Science.gov (United States)

    Kawamoto, Kohei; Izumikawa, Masahiko; Beyer, Lisa A; Atkin, Graham M; Raphael, Yehoash

    2009-01-01

    Whereas most epithelial tissues turn-over and regenerate after a traumatic lesion, this restorative ability is diminished in the sensory epithelia of the inner ear; it is absent in the cochlea and exists only in a limited capacity in the vestibular epithelium. The extent of regeneration in vestibular hair cells has been characterized for several mammalian species including guinea pig, rat, and chinchilla, but not yet in mouse. As the fundamental model species for investigating hereditary disease, the mouse can be studied using a wide variety of genetic and molecular tools. To design a mouse model for vestibular hair cell regeneration research, an aminoglycoside-induced method of complete hair cell elimination was developed in our lab and applied to the murine utricle. Loss of utricular hair cells was observed using scanning electron microscopy, and corroborated by a loss of fluorescent signal in utricles from transgenic mice with GFP-positive hair cells. Regenerative capability was characterized at several time points up to six months following insult. Using scanning electron microscopy, we observed that as early as two weeks after insult, a few immature hair cells, demonstrating the characteristic immature morphology indicative of regeneration, could be seen in the utricle. As time progressed, larger numbers of immature hair cells could be seen along with some mature cells resembling surface morphology of type II hair cells. By six months post-lesion, numerous regenerated hair cells were present in the utricle, however, neither their number nor their appearance was normal. A BrdU assay suggested that at least some of the regeneration of mouse vestibular hair cells involved mitosis. Our results demonstrate that the vestibular sensory epithelium in mice can spontaneously regenerate, elucidate the time course of this process, and identify involvement of mitosis in some cases. These data establish a road map of the murine vestibular regenerative process, which can be

  4. Subcutaneous Panniculitis-Like T-Cell Lymphoma (SPTL in a Child with Spontaneous Resolution

    Directory of Open Access Journals (Sweden)

    Achiléa L. Bittencourt

    2011-01-01

    Full Text Available Subcutaneous panniculitis-like T-cell lymphomas (SPTLs α/β are rare in childhood. The present report refers to a case of a 7-year-old male child presenting an extensive skin lesion that began when he was 5 years of age. Two biopsies were evaluated using the CD3, CD4, CD8, CD56, βF1, and TIA markers. A dense infiltrate of CD3+, CD4−, CD8+, CD56−, βF1+, and TIA+ pleomorphic lymphocytes was found in the subcutis. The previous biopsy showed cytophagic histiocytic panniculitis with a small focus on CD8+ and βF1+ malignant cells. The lesion regressed spontaneously. This case shows that prognosis may be excellent in SPTL (α/β. On the other hand, it also serves as an alert that a biopsy performed in an area of cytophagic panniculitis may lead to misdiagnosis.

  5. Accuracy of rate coding: When shorter time window and higher spontaneous activity help

    Czech Academy of Sciences Publication Activity Database

    Leváková, Marie; Tamborrino, M.; Košťál, Lubomír; Lánský, Petr

    2017-01-01

    Roč. 95, č. 2 (2017), č. článku 022310. ISSN 2470-0045 R&D Projects: GA ČR(CZ) GA15-08066S; GA MŠk(CZ) 7AMB17AT048 Institutional support: RVO:67985823 Keywords : rate coding * observation window * spontaneous activity * Fisher information * perfect integrate- and -fire model * Wiener process Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 2.366, year: 2016

  6. Spontaneous and evoked cerebral activity modifications on whole-body γ irradiated adult rabbit

    International Nuclear Information System (INIS)

    Court, L.; Dufour, R.; Bassant, M.H.; Fatome, M.

    1976-01-01

    Whole-body γ-exposure from 150 to 850 rads (dose-rate: 14 rads.min -1 ) delivered to adult rabbits chronically implanted with electrodes resulted in prompt and delayed changes of behavior, arousal and spontaneous and evoked electrical activities. Electrophysiological techniques of polygraphic recording and signal processing showed that the alterations were related to the absorbed dose. The threshold dose accompanied with transient changes of arousal should be in the range of 50-100 rads; below this range, to the exclusion of some possible behavior changes, exposure should act as a stimulation that would become nociceptive at higher doses only [fr

  7. Impact of Molecular Orientation and Spontaneous Interfacial Mixing on the Performance of Organic Solar Cells

    KAUST Repository

    Ngongang Ndjawa, Guy Olivier; Graham, Kenneth; Li, Ruipeng; Conron, Sarah M; Erwin, Patrick; Chou, Kang Wei; Burkhard, George; Zhao, Kui; Hoke, Eric T.; Thompson, Mark E; McGehee, Michael D.; Amassian, Aram

    2015-01-01

    A critically important question that must be answered to understand how organic solar cells operate and should be improved is how the orientation of the donor and acceptor molecules at the interface influences exciton diffusion, exciton dissociation by electron transfer and recombination. It is exceedingly difficult to probe the orientation in bulk heterojunctions because there are many interfaces and they are arranged with varying angles with respect to the substrate. One of the best ways to study the interface is to make bilayer solar cells with just one donor-acceptor interface. Zinc phthalocyanine is particularly interesting to study because its orientation can be adjusted by using a 2-nm-thick copper iodide seed layer before it is deposited. Previous studies have claimed that solar cells in which fullerene acceptor molecules touch the face of zinc phthalocyanine have more current than ones in which the fullerenes touch the edge of zinc phthalocyanine because of suppressed recombination. We have more thoroughly characterized the system using in situ x-ray photoelectron spectroscopy and found that the interfaces are not as sharp as previous studies claimed when formed at room temperature or above. Fullerenes have a much stronger tendency to mix into the face-on films than into the edge-on films. Moreover we show that almost all of the increase in the current with face-on films can be attributed to improved exciton diffusion and to the formation of a spontaneously mixed interface, not suppressed recombination. This work highlights the importance of spontaneous interfacial molecular mixing in organic solar cells, the extent of which depends on molecular orientation of frontier molecules in donor domains.

  8. Impact of Molecular Orientation and Spontaneous Interfacial Mixing on the Performance of Organic Solar Cells

    KAUST Repository

    Ngongang Ndjawa, Guy Olivier

    2015-07-28

    A critically important question that must be answered to understand how organic solar cells operate and should be improved is how the orientation of the donor and acceptor molecules at the interface influences exciton diffusion, exciton dissociation by electron transfer and recombination. It is exceedingly difficult to probe the orientation in bulk heterojunctions because there are many interfaces and they are arranged with varying angles with respect to the substrate. One of the best ways to study the interface is to make bilayer solar cells with just one donor-acceptor interface. Zinc phthalocyanine is particularly interesting to study because its orientation can be adjusted by using a 2-nm-thick copper iodide seed layer before it is deposited. Previous studies have claimed that solar cells in which fullerene acceptor molecules touch the face of zinc phthalocyanine have more current than ones in which the fullerenes touch the edge of zinc phthalocyanine because of suppressed recombination. We have more thoroughly characterized the system using in situ x-ray photoelectron spectroscopy and found that the interfaces are not as sharp as previous studies claimed when formed at room temperature or above. Fullerenes have a much stronger tendency to mix into the face-on films than into the edge-on films. Moreover we show that almost all of the increase in the current with face-on films can be attributed to improved exciton diffusion and to the formation of a spontaneously mixed interface, not suppressed recombination. This work highlights the importance of spontaneous interfacial molecular mixing in organic solar cells, the extent of which depends on molecular orientation of frontier molecules in donor domains.

  9. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data

    Directory of Open Access Journals (Sweden)

    Rodolfo R Llinas

    2015-10-01

    Full Text Available A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in ten healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in ten healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject’s head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space.

  10. Where's the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network.

    Directory of Open Access Journals (Sweden)

    Christoph Hartmann

    2015-12-01

    Full Text Available Even in the absence of sensory stimulation the brain is spontaneously active. This background "noise" seems to be the dominant cause of the notoriously high trial-to-trial variability of neural recordings. Recent experimental observations have extended our knowledge of trial-to-trial variability and spontaneous activity in several directions: 1. Trial-to-trial variability systematically decreases following the onset of a sensory stimulus or the start of a motor act. 2. Spontaneous activity states in sensory cortex outline the region of evoked sensory responses. 3. Across development, spontaneous activity aligns itself with typical evoked activity patterns. 4. The spontaneous brain activity prior to the presentation of an ambiguous stimulus predicts how the stimulus will be interpreted. At present it is unclear how these observations relate to each other and how they arise in cortical circuits. Here we demonstrate that all of these phenomena can be accounted for by a deterministic self-organizing recurrent neural network model (SORN, which learns a predictive model of its sensory environment. The SORN comprises recurrently coupled populations of excitatory and inhibitory threshold units and learns via a combination of spike-timing dependent plasticity (STDP and homeostatic plasticity mechanisms. Similar to balanced network architectures, units in the network show irregular activity and variable responses to inputs. Additionally, however, the SORN exhibits sequence learning abilities matching recent findings from visual cortex and the network's spontaneous activity reproduces the experimental findings mentioned above. Intriguingly, the network's behaviour is reminiscent of sampling-based probabilistic inference, suggesting that correlates of sampling-based inference can develop from the interaction of STDP and homeostasis in deterministic networks. We conclude that key observations on spontaneous brain activity and the variability of neural

  11. Overexpression of miR-9 in mast cells is associated with invasive behavior and spontaneous metastasis

    International Nuclear Information System (INIS)

    Fenger, Joelle M; Bear, Misty D; Volinia, Stefano; Lin, Tzu-Yin; Harrington, Bonnie K; London, Cheryl A; Kisseberth, William C

    2014-01-01

    While microRNA (miRNA) expression is known to be altered in a variety of human malignancies contributing to cancer development and progression, the potential role of miRNA dysregulation in malignant mast cell disease has not been previously explored. The purpose of this study was to investigate the potential contribution of miRNA dysregulation to the biology of canine mast cell tumors (MCTs), a well-established spontaneous model of malignant mast cell disease. We evaluated the miRNA expression profiles from biologically low-grade and biologically high-grade primary canine MCTs using real-time PCR-based TaqMan Low Density miRNA Arrays and performed real-time PCR to evaluate miR-9 expression in primary canine MCTs, malignant mast cell lines, and normal bone marrow-derived mast cells (BMMCs). Mouse mast cell lines and BMMCs were transduced with empty or pre-miR-9 expressing lentiviral constructs and cell proliferation, caspase 3/7 activity, and invasion were assessed. Transcriptional profiling of cells overexpressing miR-9 was performed using Affymetrix GeneChip Mouse Gene 2.0 ST arrays and real-time PCR was performed to validate changes in mRNA expression. Our data demonstrate that unique miRNA expression profiles correlate with the biological behavior of primary canine MCTs and that miR-9 expression is increased in biologically high grade canine MCTs and malignant cell lines compared to biologically low grade tumors and normal canine BMMCs. In transformed mouse malignant mast cell lines expressing either wild-type (C57) or activating (P815) KIT mutations and mouse BMMCs, miR-9 overexpression significantly enhanced invasion but had no effect on cell proliferation or apoptosis. Transcriptional profiling of normal mouse BMMCs and P815 cells possessing enforced miR-9 expression demonstrated dysregulation of several genes, including upregulation of CMA1, a protease involved in activation of matrix metalloproteases and extracellular matrix remodeling. Our findings

  12. Alpha-Band Activity Reveals Spontaneous Representations of Spatial Position in Visual Working Memory.

    Science.gov (United States)

    Foster, Joshua J; Bsales, Emma M; Jaffe, Russell J; Awh, Edward

    2017-10-23

    An emerging view suggests that spatial position is an integral component of working memory (WM), such that non-spatial features are bound to locations regardless of whether space is relevant [1, 2]. For instance, past work has shown that stimulus position is spontaneously remembered when non-spatial features are stored. Item recognition is enhanced when memoranda appear at the same location where they were encoded [3-5], and accessing non-spatial information elicits shifts of spatial attention to the original position of the stimulus [6, 7]. However, these findings do not establish that a persistent, active representation of stimulus position is maintained in WM because similar effects have also been documented following storage in long-term memory [8, 9]. Here we show that the spatial position of the memorandum is actively coded by persistent neural activity during a non-spatial WM task. We used a spatial encoding model in conjunction with electroencephalogram (EEG) measurements of oscillatory alpha-band (8-12 Hz) activity to track active representations of spatial position. The position of the stimulus varied trial to trial but was wholly irrelevant to the tasks. We nevertheless observed active neural representations of the original stimulus position that persisted throughout the retention interval. Further experiments established that these spatial representations are dependent on the volitional storage of non-spatial features rather than being a lingering effect of sensory energy or initial encoding demands. These findings provide strong evidence that online spatial representations are spontaneously maintained in WM-regardless of task relevance-during the storage of non-spatial features. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Neural activation and memory for natural scenes: Explicit and spontaneous retrieval.

    Science.gov (United States)

    Weymar, Mathias; Bradley, Margaret M; Sege, Christopher T; Lang, Peter J

    2018-05-06

    Stimulus repetition elicits either enhancement or suppression in neural activity, and a recent fMRI meta-analysis of repetition effects for visual stimuli (Kim, 2017) reported cross-stimulus repetition enhancement in medial and lateral parietal cortex, as well as regions of prefrontal, temporal, and posterior cingulate cortex. Repetition enhancement was assessed here for repeated and novel scenes presented in the context of either an explicit episodic recognition task or an implicit judgment task, in order to study the role of spontaneous retrieval of episodic memories. Regardless of whether episodic memory was explicitly probed or not, repetition enhancement was found in medial posterior parietal (precuneus/cuneus), lateral parietal cortex (angular gyrus), as well as in medial prefrontal cortex (frontopolar), which did not differ by task. Enhancement effects in the posterior cingulate cortex were significantly larger during explicit compared to implicit task, primarily due to a lack of functional activity for new scenes. Taken together, the data are consistent with an interpretation that medial and (ventral) lateral parietal cortex are associated with spontaneous episodic retrieval, whereas posterior cingulate cortical regions may reflect task or decision processes. © 2018 Society for Psychophysiological Research.

  14. Multichannel detrended fluctuation analysis reveals synchronized patterns of spontaneous spinal activity in anesthetized cats.

    Directory of Open Access Journals (Sweden)

    Erika E Rodríguez

    Full Text Available The analysis of the interaction and synchronization of relatively large ensembles of neurons is fundamental for the understanding of complex functions of the nervous system. It is known that the temporal synchronization of neural ensembles is involved in the generation of specific motor, sensory or cognitive processes. Also, the intersegmental coherence of spinal spontaneous activity may indicate the existence of synaptic neural pathways between different pairs of lumbar segments. In this study we present a multichannel version of the detrended fluctuation analysis method (mDFA to analyze the correlation dynamics of spontaneous spinal activity (SSA from time series analysis. This method together with the classical detrended fluctuation analysis (DFA were used to find out whether the SSA recorded in one or several segments in the spinal cord of the anesthetized cat occurs either in a random or in an organized manner. Our results are consistent with a non-random organization of the sets of neurons involved in the generation of spontaneous cord dorsum potentials (CDPs recorded either from one lumbar segment (DFA-α mean = 1.04[Formula: see text]0.09 or simultaneously from several lumbar segments (mDFA-α mean = 1.01[Formula: see text]0.06, where α = 0.5 indicates randomness while α = 0.5 indicates long-term correlations. To test the sensitivity of the mDFA method we also examined the effects of small spinal lesions aimed to partially interrupt connectivity between neighboring lumbosacral segments. We found that the synchronization and correlation between the CDPs recorded from the L5 and L6 segments in both sides of the spinal cord were reduced when a lesion comprising the left dorsal quadrant was performed between the segments L5 and L6 (mDFA-[Formula: see text] = 0.992 as compared to initial conditions mDFA-α = 1.186. The synchronization and correlation were reduced even further after a similar additional right spinal lesion (mDFA-α = 0

  15. Dopamine Attenuates Ketamine-Induced Neuronal Apoptosis in the Developing Rat Retina Independent of Early Synchronized Spontaneous Network Activity.

    Science.gov (United States)

    Dong, Jing; Gao, Lingqi; Han, Junde; Zhang, Junjie; Zheng, Jijian

    2017-07-01

    Deprivation of spontaneous rhythmic electrical activity in early development by anesthesia administration, among other interventions, induces neuronal apoptosis. However, it is unclear whether enhancement of neuronal electrical activity attenuates neuronal apoptosis in either normal development or after anesthesia exposure. The present study investigated the effects of dopamine, an enhancer of spontaneous rhythmic electrical activity, on ketamine-induced neuronal apoptosis in the developing rat retina. TUNEL and immunohistochemical assays indicated that ketamine time- and dose-dependently aggravated physiological and ketamine-induced apoptosis and inhibited early-synchronized spontaneous network activity. Dopamine administration reversed ketamine-induced neuronal apoptosis, but did not reverse the inhibitory effects of ketamine on early synchronized spontaneous network activity despite enhancing it in controls. Blockade of D1, D2, and A2A receptors and inhibition of cAMP/PKA signaling partially antagonized the protective effect of dopamine against ketamine-induced apoptosis. Together, these data indicate that dopamine attenuates ketamine-induced neuronal apoptosis in the developing rat retina by activating the D1, D2, and A2A receptors, and upregulating cAMP/PKA signaling, rather than through modulation of early synchronized spontaneous network activity.

  16. Moringa oleifera-rich diet and T cell calcium signaling in spontaneously hypertensive rats.

    Science.gov (United States)

    Attakpa, E S; Bertin, G A; Chabi, N W; Ategbo, J-M; Seri, B; Khan, N A

    2017-11-24

    Moringa oleifera is a plant whose fruits, roots and leaves have been advocated for traditional medicinal uses. The physicochemical analysis shows that Moringa oleifera contains more dietary polyunsaturated fatty acids (PUFA) than saturated fatty acids (SFA). The consumption of an experimental diet enriched with Moringa oleifera extracts lowered blood pressure in spontaneously hypertensive rats (SHR), but not in normotensive Wistar-Kyoto (WKY) rats as compared to rats fed an unsupplemented control diet. Anti-CD3-stimulated T cell proliferation was diminished in both strains of rats fed the Moringa oleifera. The experimental diet lowered secretion of interleukin-2 in SHR, but not in WKY rats compared with rats fed the control diet. Studies of platelets from patients with primary hypertension and from SHR support the notion that the concentration of intracellular free calcium [Ca(2+)](i) is modified in both clinical and experimental hypertension. We observed that the basal, [Ca(2+)](i) was lower in T cells of SHR than in those of WKY rats fed the control diet. Feeding the diet with Moringa oleifera extracts to WKY rats did not alter basal [Ca(2+)](i) in T cells but increased basal [Ca(2+)](i) in SHR. Our study clearly demonstrated that Moringa oleifera exerts antihypertensive effects by inhibiting the secretion of IL-2 and modulates T cell calcium signaling in hypertensive rats.

  17. Spontaneous chylothorax complicating small cell lung cancer – Review of aetiology and diagnosis

    Directory of Open Access Journals (Sweden)

    S. Hanina

    2015-01-01

    Full Text Available We report the first case of spontaneous chylothorax complicating small cell lung cancer. A 52 year old female presented with exertional dyspnoea, left-sided chest and neck pain, and dysphagia. The chest X-ray on admission revealed a large left-sided pleural effusion. A subsequent CT chest showed a large anterior mediastinal mass with a left brachiocephalic and jugular vein thrombosis. The patient underwent medical thoracoscopy with chest drain insertion, which drained pleural fluid high in triglycerides, consistent with a chylothorax. Due to its uncommon nature, the management of chylothorax is not well defined. Alongside the case report, we provide a review of aetiology, mechanism and diagnosis with a brief summary of treatment options.

  18. Spaced sessions of avoidance extinction reduce spontaneous recovery and promote infralimbic cortex activation.

    Science.gov (United States)

    Tapias-Espinosa, Carles; Kádár, Elisabet; Segura-Torres, Pilar

    2018-01-15

    Extinction-based therapies (EBT) are the psychological treatments of choice for certain anxiety disorders, such as post-traumatic stress disorder. However, some patients relapse and suffer spontaneous recovery (SR) of anxiety symptoms and persistence of avoidance behaviour, which underlines the need for improving EBT. In rats, recent evidence has highlighted the relevance of the temporal distribution of extinction sessions in reducing SR of auditory fear conditioning, although it has seldom been studied in procedures involving proactive avoidance responses, such as two-way active avoidance conditioning (TWAA). We examined whether the temporal distribution of two extinction sessions separated by 24h or 7days (contiguous versus spaced extinction paradigms, respectively), influences SR after 28days of a TWAA task. c-Fos expression, as a marker of neuronal activation, was also measured by immunohistochemistry 90min after the SR test in the amygdala and the medial prefrontal cortex. The temporal distribution of extinction sessions did not affect the degree of extinction learning. However, only the rats that underwent the 7-day spaced extinction paradigm maintained the level of extinction in the long term, showing no SR in TWAA. This behavioural finding was consistent with a greater number of c-Fos-labelled neurons in the infralimbic cortex in the 7-day group, and in the Lateral and Central nuclei of the amygdala in the 24-hour group. These findings show that a time-spaced extinction paradigm reduces the spontaneous recovery of active avoidance behaviour, and that this behavioural advantage appears to be related to the activation of the infralimbic cortex. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Research on spontaneous activity in adult anisometropic amblyopia with regional homogeneity

    Science.gov (United States)

    Huang, Yufeng; Zhou, Yifeng

    2017-06-01

    Amblyopia usually occurs in early childhood and results in monocular visual impairment. The functional magnetic resonance imaging (fMRI) studies have reflected functional anomaly in amblyopia. In resting-state fMRI study, spontaneous activity changes abnormally in anisometropic amblyopia could be revealed by the regional homogeneity (ReHo). Twenty two adult anisometropic amblyopes and Twenty one normal controls participated in this fMRI study. Two sample T test was carried out to analysis ReHo within the whole brain for the inter groups. Compare with normal group, our study found that the amblyopia’s ReHo mainly increased in the left frontal lobe, while decreased in the left cerebellum, the temporal lobe (left and right), and the left parietal lobe. And the ReHo values in middle and inferior temporal lobe, the prefrontal lobe, frontal lobe (positive) and parietal lobe and medial frontal gyrus (negative) could be correlated with the acuity deficit of amblyopia. The results increased in ReHo may indicate compensatory plasticity in higher vision information process, while the decreased in ReHo may reflect decreased ability in eye movement, spatial sense and visuo-motor coordination. The correlation revealed that the vision deficit may correspond to the spontaneous in certain brain area.

  20. Outcomes of Nulliparous Women with Spontaneous Labor Onset Admitted to Hospitals in Pre-active versus Active Labor

    Science.gov (United States)

    NEAL, Jeremy L.; LAMP, Jane M.; BUCK, Jacalyn S.; LOWE, Nancy K.; GILLESPIE, Shannon L.; RYAN, Sharon L.

    2014-01-01

    Introduction The timing of when a woman is admitted to the hospital for labor care following spontaneous contraction onset may be among the most important decisions that labor attendants make as it can influence care patterns and birth outcomes. The aims of this study were to estimate the percentage of low-risk, nulliparous women at term who are admitted to labor units prior to active labor and to evaluate the effects of the timing of admission (i.e., pre-active versus active labor) on labor interventions and mode of birth. Methods Obstetrics data from low-risk, nulliparous women with spontaneous labor onset at term gestation (N = 216) were merged from two prospective studies conducted at three large, Midwestern hospitals. Baseline characteristics, labor interventions, and outcomes were compared between groups using Fisher’s exact and Mann-Whitney U tests, as appropriate. Likelihoods for oxytocin augmentation, amniotomy, and cesarean delivery were assessed by logistic regression. Results Of the sample of 216 low-risk nulliparous women, 114 (52.8%) were admitted in pre-active labor and 102 (47.2%) were admitted in active labor. Women admitted in pre-active labor were more likely to undergo oxytocin augmentation (84.2% and 45.1%, respectively; odds ratio (OR) 6.5, 95% confidence interval (CI) 3.43–12.27) but not amniotomy (55.3% and 61.8%, respectively; OR 0.8, 95% CI 0.44–1.32) when compared to women admitted in active labor. The likelihood of cesarean delivery was higher for women admitted before active labor onset (15.8% and 6.9%, respectively; OR 2.6, 95% CI 1.02–6.37). Discussion Many low-risk nulliparous women with regular, spontaneous uterine contractions are admitted to labor units before active labor onset, which increases their likelihood of receiving oxytocin and being delivered via cesarean section. An evidence-based, standardized approach for labor admission decision-making is recommended to decrease inadvertent admissions of women in pre-active

  1. Graphene nanoplatelets spontaneously translocate into the cytosol and physically interact with cellular organelles in the fish cell line PLHC-1

    Energy Technology Data Exchange (ETDEWEB)

    Lammel, Tobias; Navas, José M., E-mail: jmnavas@inia.es

    2014-05-01

    Highlights: • We assessed the cytotoxicity and uptake of graphene nanomaterials in PLHC-1 cells. • GO and CXYG nanoplatelets caused physical injury of the plasma membrane. • GO and CXYG accumulated in the cytosol and interacted with cellular organelles. • PLHC-1 cells exposed to GO/CXYG demonstrated high ROS levels but low cytotoxicity. • ROS formation was related with GO/CXYG-induced structural damage of mitochondria. - Abstract: Graphene and graphene derivatives constitute a novel class of carbon-based nanomaterials being increasingly produced and used in technical and consumer applications. Release of graphene nanoplatelets during the life cycle of these applications may result in human and environmental exposure calling for assessment of their potential to cause harm to humans and wildlife. This study aimed to assess the toxicity of graphene oxide (GO) and carboxyl graphene (CXYG) nanoplatelets to non-mammalian species using the fish cell line PLHC-1 as in vitro model. The cytotoxicity of GO and CXYG was assessed using different assays measuring alterations in plasma membrane integrity, metabolic activity, and lysosomal and mitochondrial function. The induction of oxidative stress was assessed by measuring intracellular reactive oxygen species (ROS) levels. Interaction with the plasma membrane and internalization of nanoplatelets were investigated by electron microscopy. Graphene nanoplatelets spontaneously penetrated through the plasma membrane and accumulated in the cytosol, where they further interacted with mitochondrial and nuclear membranes. PLHC-1 cells demonstrated significantly reduced mitochondrial membrane potential (MMP) and increased ROS levels at 16 μg/ml GO and CXYG (72 h), but barely any decrease in cell viability. The observation of intracellular graphene accumulations not enclosed by membranes suggests that GO and CXYG internalization in fish hepatoma cells occurs through an endocytosis-independent mechanism.

  2. Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs

    Directory of Open Access Journals (Sweden)

    Lokeshwar Bal L

    2009-07-01

    Full Text Available Abstract Background The progression of all cancers is characterized by increased-cell proliferation and decreased-apoptosis. The androgen-independent prostate cancer (AIPC is the terminal stage of the disease. Many chemokines and cytokines are suspects to cause this increased tumor cell survival that ultimately leads to resistance to therapy and demise of the host. The AIPC cells, but not androgen-responsive cells, constitutively express abundant amount of the pro-inflammatory chemokine, Interleukin-8 (IL-8. The mechanism of IL-8 mediated survival and therapeutic resistance in AIPC cells is unclear at present. The purpose of this report is to show the pervasive role of IL-8 in malignant progression of androgen-independent prostate cancer (AIPC and to provide a potential new therapeutic avenue, using RNA interference. Results The functional consequence of IL-8 depletion in AIPC cells was investigated by RNA interference in two IL-8 secreting AIPC cell lines, PC-3 and DU145. The non-IL-8 secreting LNCaP and LAPC-4 cells served as controls. Cells were transfected with RISC-free siRNA (control or validated-pool of IL-8 siRNA. Transfection with 50 nM IL-8 siRNA caused >95% depletion of IL-8 mRNA and >92% decrease in IL-8 protein. This reduction in IL-8 led to cell cycle arrest at G1/S boundary and decreases in cell cycle-regulated proteins: Cyclin D1 and Cyclin B1 (both decreased >50% and inhibition of ERK1/2 activity by >50%. Further, the spontaneous apoptosis was increased by >43% in IL-8 depleted cells, evidenced by increases in caspase-9 activation and cleaved-PARP. IL-8 depletion caused significant decreases in anti-apoptotic proteins, BCL-2, BCL-xL due to decrease in both mRNA and post-translational stability, and increased levels of pro-apoptotic BAX and BAD proteins. More significantly, depletion of intracellular IL-8 increased the cytotoxic activity of multiple chemotherapeutic drugs. Specifically, the cytotoxicity of Docetaxel

  3. Reproduction of overall spontaneous pain pattern by manual stimulation of active myofascial trigger points in fibromyalgia patients

    DEFF Research Database (Denmark)

    Ge, Hong-You; Wang, Ying; Fernández-de-las-Peñas, César

    2011-01-01

    It has previously been reported that local and referred pain from active myofascial trigger points (MTPs) in the neck and shoulder region contribute to fibromyalgia (FM) pain and that the pain pattern induced from active MTPs can reproduce parts of the spontaneous clinical FM pain pattern. The cu...

  4. Locomotor activity and catecholamine receptor binding in adult normotensive and spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Hellstrand, K.; Engel, J.

    1980-01-01

    The binding of 3 H-WB 4101, an α 1 -adrenoceptor antagonist, the membranes of the cerebral cortex, the hypothalamus, and the lower brainstem was examined in adult spontaneously hypertensive (SH) rats and in normotensive Wistar Kyoto (WK) controls. The specific binding of 3 H-WB 4101 (0.33 nM) was significantly higher in homogenates from the cerebral cortex of SH rats as compared to WK rats. No differences were detected between SH and WK rats in the specific binding of 3 H-spiroperidol (0.25 nM), a dopamine receptor antagonist, to membranes from the corpus striatum and the limbic forebrain. The locomotor activity was significantly higher in SH rats as compared to WK controls, in all probability due to a lack of habituation to environmental change. It is suggested that the high reactivity of SH rats is related to a disfunction in the noradrenergic neurons in the central nervous system. (author)

  5. ANTIMICROBIAL ACTIVITY OF EXTRACTS OF WILD GARLIC (Allium ursinum FROM ROMANIAN SPONTANEOUS FLORA

    Directory of Open Access Journals (Sweden)

    MARIANA LUPOAE

    2014-05-01

    Full Text Available Wild Romanian spontaneous garlic’s (Allium ursinum antimicrobial activity was tested in order to establish the inhibition potential of growth of some microorganisms. As test microorganisms were used pure cultures of fungs (Aspergillus glaucus, Geotrichum candidum, Mucor mucedo, Saccharomyces cerevisiae and bacteria (Bacillus subtilis isolated from food microbiota. There were also, used microbial strains isolated from different pathological products: wound secretions (Staphylococcus aureus, throat swab (Streptococcus pyogenes, urine (Escherichia coli and oral mucosa (Candida albicans. The antimicrobial potential of used extracts is highlighted depending on the type of the vegetal tissue (leaves, roots, bulbs and the nature of the solvent used for extraction. Extracts used in these experiments are recommended to use in food industry to preserve the stability and to improve the organoleptic quality of products.

  6. Establishment and characterization of a spontaneously immortalized trophoblast cell line (HPT-8) and its hepatitis B virus-expressing clone.

    Science.gov (United States)

    Zhang, Lei; Zhang, Weilu; Shao, Chen; Zhang, Jingxia; Men, Ke; Shao, Zhongjun; Yan, Yongping; Xu, Dezhong

    2011-08-01

    Most trophoblast cell lines currently available to study vertical transmission of hepatitis B virus (HBV) are immortalized by viral transformation. Our goal was to establish and characterize a spontaneously immortalized human first-trimester trophoblast cell line and its HBV-expressing clone. Chorionic villi of Asian human first-trimester placentae were digested with trypsin and collagenase I to obtain the primary trophoblast cell culture. A spontaneously immortalized trophoblast cell line (HPT-8) was analyzed by scanning and transmission electron microscopy, cell cycle analysis, immunohistochemistry and immunofluorescence. HPT-8 cells were stably transfected with the adr subtype of HBV (HPT-8-HBV) and characterized by PCR and enzyme-linked immunosorbent assay. We obtained a clonal derivative of a spontaneously immortalized primary cell clone (HPT-8). HPT-8 cells were epithelioid and polygonal, and formed multinucleate, giant cells. They exhibited microvilli, distinct desmosomes between adjacent cells, abundant endoplasm, lipid inclusions and glycogen granules, which are all characteristic of cytotrophoblasts. HPT-8 cells expressed cytokeratin 7, cytokeratin 18, vimentin, cluster of differentiation antigen 9, epidermal growth factor receptor, stromal cell-derived factor 1 and placental alkaline phosphatase. They secreted prolactin, estradiol, progesterone and hCG, and were positive for HLA-G, a marker of extravillous trophoblasts. HPT-8-HBV cells were positive for HBV relaxed-circular, covalently closed circular DNA and pre-S sequence. HPT-8-HBV cells also produced and secreted HBV surface antigen and HBV e antigen. We established a trophoblast cell line, HPT-8 and its HBV-expressing clone which could be valuable in exploring the mechanism of HBV viral integration in human trophoblasts during intrauterine infection.

  7. Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells.

    Science.gov (United States)

    Lv, Lei; Zhang, Tianwei; Yi, Qiyi; Huang, Yun; Wang, Zheng; Hou, Heli; Zhang, Huan; Zheng, Wei; Hao, Qiaomei; Guo, Zongyou; Cooke, Howard J; Shi, Qinghua

    2012-08-01

    Most ovarian cancers originate from the ovarian surface epithelium and are characterized by aneuploid karyotypes. Aneuploidy, a consequence of chromosome instability, is an early event during the development of ovarian cancers. However, how aneuploid cells are evolved from normal diploid cells in ovarian cancers remains unknown. In the present study, cytogenetic analyses of a mouse syngeneic ovarian cancer model revealed that diploid mouse ovarian surface epithelial cells (MOSECs) experienced an intermediate tetraploid cell stage, before evolving to aneuploid (mainly near-tetraploid) cells. Using long-term live-cell imaging followed by fluorescence in situ hybridization (FISH), we demonstrated that tetraploid cells originally arose from cytokinesis failure of bipolar mitosis in diploid cells, and gave rise to aneuploid cells through chromosome mis-segregation during both bipolar and multipolar mitoses. Injection of the late passage aneuploid MOSECs resulted in tumor formation in C57BL/6 mice. Therefore, we reveal a pathway for the evolution of diploid to aneuploid MOSECs and elucidate a mechanism for the development of near-tetraploid ovarian cancer cells.

  8. Reduced spontaneous neuronal activity in the insular cortex and thalamus in healthy adults with insomnia symptoms.

    Science.gov (United States)

    Liu, Chun-Hong; Liu, Cun-Zhi; Zhang, Jihui; Yuan, Zhen; Tang, Li-Rong; Tie, Chang-Le; Fan, Jin; Liu, Qing-Quan

    2016-10-01

    Poor sleep and insomnia have been recognized to be strongly correlated with the development of depression. The exploration of the basic mechanism of sleep disturbance could provide the basis for improved understanding and treatment of insomnia and prevention of depression. In this study, 31 subjects with insomnia symptoms as measured by the Hamilton Rating Scale for Depression (HAMD-17) and 71 age- and gender-matched subjects without insomnia symptoms were recruited to participate in a clinical trial. Using resting-state functional magnetic resonance imaging (rs-fMRI), we examined the alterations in spontaneous brain activity between the two groups. Correlations between the fractional amplitude of low frequency fluctuations (fALFF) and clinical measurements (e.g., insomnia severity and Hamilton Depression Rating Scale [HAMD] scores) were also tested in all subjects. Compared to healthy participants without insomnia symptoms, participants with insomnia symptoms showed a decreased fALFF in the left ventral anterior insula, bilateral posterior insula, left thalamus, and pons but an increased fALFF in the bilateral middle occipital gyrus and right precentral gyrus. More specifically, a significant, negative correlation of fALFF in the left thalamus with early morning awakening scores and HAMD scores in the overall sample was identified. These results suggest that insomnia symptoms are associated with altered spontaneous activity in the brain regions of several important functional networks, including the insular cortex of the salience and the thalamus of the hyperarousal network. The altered fALFF in the left thalamus supports the "hyperarousal theory" of insomnia symptoms, which could serve as a biomarker for insomnia. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Generation of an induced pluripotent stem cell line from chorionic villi of a Turner syndrome spontaneous abortion.

    Science.gov (United States)

    Parveen, Shagufta; Panicker, M M; Gupta, Pawan Kumar

    2017-03-01

    A major cause of spontaneous abortions is chromosomal abnormality of foetal cells. We report the generation of an induced pluripotent stem cell line from the fibroblasts isolated from chorionic villi of an early spontaneously aborted foetus with Turner syndrome. The Turner syndrome villus induced pluripotent stem cell line is transgene free, retains the original XO karyotype, expresses pluripotency markers and undergoes trilineage differentiation. This pluripotent stem cell model of Turner syndrome should serve as a tool to study the developmental abnormalities of foetus and placenta that lead to early embryo lethality and profound symptoms like infertility in 45 XO survivors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia.

    Science.gov (United States)

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng

    2015-01-01

    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN.

  11. Etiology of spontaneous pneumothorax in 105 HIV-infected patients without highly active antiretroviral therapy

    International Nuclear Information System (INIS)

    Rivero, Antonio; Perez-Camacho, Ines; Lozano, Fernando; Santos, Jesus; Camacho, Angela; Serrano, Ascencion; Cordero, Elisa; Jimenez, Francisco; Torres-Tortosa, Manuel; Torre-Cisneros, Julian

    2009-01-01

    Introduction: Spontaneous pneumothorax (SP) is a frequent complication in non-treated HIV-infected patients as a complication of opportunistic infections and tumours. Objective: To analyse the aetiology of SP in non-treated HIV patients. Patients and methods: Observational study of SP cases observed in a cohort of 9831 of non-treated HIV-infected patients attended in seven Spanish hospitals. Results: 105 patients (1.06%) developed SP. The aetiological cause was identified in 89 patients. The major causes identified were: bacterial pneumonia (36 subjects, 34.3%); Pneumocystis jiroveci pneumonia (PJP) (31 patients, 29.5%); and pulmonary tuberculosis (17 cases, 15.2%). The most common cause of SP in drugs users was bacterial pneumonia (40%), whereas PJP was more common (65%) in sexual transmitted HIV-patients. The most common cause of bilateral SP was PJP (62.5%) whereas unilateral SP was most commonly associated with bacterial pneumonia (40.2%). The most common cause of SP in patients with a CD4+ lymphocyte count >200 cells/ml and in patients without AIDS criteria was bacterial pneumonia. PJP was the more common cause in patients with a CD4+ lymphocyte count <200 cells/ml or with AIDS. Conclusion: The incidence of SP in non-treated HIV-infected patients was 1.06%. The aetiology was related to the patients risk practices and to their degree of immunosuppression. Bacterial pneumonia was the most common cause of SP.

  12. Peripheral blood cells from children with RASopathies show enhanced spontaneous colonies growth in vitro and hyperactive RAS signaling

    International Nuclear Information System (INIS)

    Gaipa, G; Bugarin, C; Cianci, P; Sarno, J; Bonaccorso, P; Biondi, A; Selicorni, A

    2015-01-01

    Germline mutations in genes coding for molecules involved in the RAS/RAF/MEK/ERK pathway are the hallmarks of a newly classified family of autosomal dominant syndromes termed RASopathies. Myeloproliferative disorders (MPDs), in particular, juvenile myelomonocytic leukemia, can lead to potentially severe complications in children with Noonan syndrome (NS). We studied 27 children with NS or other RASopathies and 35 age-matched children as control subjects. Peripheral blood (PB) cells from these patients were studied for in vitro colony-forming units (CFUs) activity, as well as for intracellular phosphosignaling. Higher spontaneous growth of both burst-forming units-erythroid (BFU-E) and CFU-granulocyte/macrophage (CFU-GM) colonies from RAS-mutated patients were observed as compared with control subjects. We also observed a significantly higher amount of GM-colony-stimulating factor-induced p-ERK in children with RASopathies. Our findings demonstrate for the first time that PB cells isolated from children suffering from NS or other RASopathies without MPD display enhanced BFU-E and CFU-GM colony formation in vitro. The biological significance of these findings clearly awaits further studies. Collectively, our data provide a basis for further investigating of only partially characterized hematological alterations present in children suffering from RASopathies, and may provide new markers for progression toward malignant MPD in these patients

  13. Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer.

    Science.gov (United States)

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Lagioia, Michelle; Gendler, Sandra J; Mukherjee, Pinku

    2004-11-01

    Cyclooxygenase-2 (COX-2) inhibitors are rapidly emerging as a new generation of therapeutic drug in combination with chemotherapy or radiation therapy for the treatment of cancer. The mechanisms underlying its antitumor effects are not fully understood and more thorough preclinical trials are needed to determine if COX-2 inhibition represents a useful approach for prevention and/or treatment of breast cancer. The purpose of this study was to evaluate the growth inhibitory mechanism of a highly selective COX-2 inhibitor, celecoxib, in an in vivo oncogenic mouse model of spontaneous breast cancer that resembles human disease. The oncogenic mice carry the polyoma middle T antigen driven by the mouse mammary tumor virus promoter and develop primary adenocarcinomas of the breast. Results show that oral administration of celecoxib caused significant reduction in mammary tumor burden associated with increased tumor cell apoptosis and decreased proliferation in vivo. In vivo apoptosis correlated with significant decrease in activation of protein kinase B/Akt, a cell survival signaling kinase, with increased expression of the proapoptotic protein Bax and decreased expression of the antiapoptotic protein Bcl-2. In addition, celecoxib treatment reduced levels of proangiogenic factor (vascular endothelial growth factor), suggesting a role of celecoxib in suppression of angiogenesis in this model. Results from these preclinical studies will form the basis for assessing the feasibility of celecoxib therapy alone or in combination with conventional therapies for treatment and/or prevention of breast cancer.

  14. Complete Spontaneous Regression of Merkel Cell Carcinoma After Biopsy: A Case Report and Review of the Literature.

    Science.gov (United States)

    Ahmadi Moghaddam, Parnian; Cornejo, Kristine M; Hutchinson, Lloyd; Tomaszewicz, Keith; Dresser, Karen; Deng, April; OʼDonnell, Patrick

    2016-11-01

    Merkel cell carcinoma (MCC) is a rare primary cutaneous neuroendocrine tumor that typically occurs on the head and neck of the elderly and follows an aggressive clinical course. Merkel cell polyomavirus (MCPyV) has been identified in up to 80% of cases and has been shown to participate in MCC tumorigenesis. Complete spontaneous regression of MCC has been rarely reported in the literature. We describe a case of a 79-year-old man that presented with a rapidly growing, 3-cm mass on the left jaw. An incisional biopsy revealed MCC. Additional health issues were discovered in the preoperative workup of this patient which delayed treatment. One month after the biopsy, the lesion showed clinical regression in the absence of treatment. Wide excision of the biopsy site with sentinel lymph node dissection revealed no evidence of MCC 2 months later. The tumor cells in the patient's biopsy specimen were negative for MCPyV by polymerase chain reaction and immunohistochemistry (CM2B4 antibody, Santa Cruz, CA). The exact mechanism for complete spontaneous regression in MCC is unknown. To our knowledge, only 2 previous studies evaluated the presence of MCPyV by polymerase chain reaction in MCC with spontaneous regression. Whether the presence or absence of MCPyV correlates with spontaneous regression warrants further investigation.

  15. [Effects of reversing the feeding cycle and the light period on the spontaneous activity of the rat (author's transl)].

    Science.gov (United States)

    Ticca, M

    1976-01-01

    The amount and the circadian distribution of spontaneous activity in the rat are influenced by a number of factors, whose importance and interrelationships are still deeply discussed. In order to check the reliability of previous studies about the effects of meal-eating on the spontaneous activity (wheel running) of rats of our Sprague-Dawley strain, the adjustment to the modifications of the normal day-night cycle and of the normal nocturnal feeding rhythm have been controlled. Reversing the normal light and dark periods caused the rats, after a 24 hours period, to lower and to irregularly distribute their spontaneous activity. Rats shifted their pattern of maximal activity by 12 hours in the new period of darkness in about five days, and showed to have completely fixed the new reversed running habit. Also feeding habits changed in a similar way, but more slowly. The levels of mean daily activity did not change. In a second experiment, rats, received food during light hours, and were deprived during dark hours. Their activity increased considerably and irregularly during dark hours, while a very slight rise of wheel running was shown during light hours. Body weight gain and food consumption were similar to those of the control group. These results slightly differ from those obtained using other rat strains, and are an interesting example of reinforcement of a spontaneous behavior resulting more from the light-dark cycle than from cues provided by food deprivation.

  16. Spontaneous and cytokine induced expression and activity of matrix metalloproteinases in human colonic epithelium

    DEFF Research Database (Denmark)

    Pedersen, G; Saermark, T; Kirkegaard, T

    2009-01-01

    levels in cells from inflamed IBD mucosa. MMP-2 and -8 mRNA were expressed inconsistently and MMP-11, -13 and -14 mRNA undetectable. Proteolytic MMP activity was detected in CEC supernatants and the level was increased significantly in inflamed IBD epithelium. The enzyme activity was inhibited strongly......Matrix metalloproteinases (MMPs) have been implicated in tissue damage associated with inflammatory bowel disease (IBD).As the role of the intestinal epithelium in this process is unknown, we determined MMP expression and enzyme activity in human colonic epithelial cells (CEC). MMP mRNA expression...... was assessed by reverse transcription-polymerase chain reaction in HT-29 and DLD-1 cells and in CEC isolated from biopsies from IBD and control patients. Total MMP activity in the cells was measured by a functional assay, based on degradation of a fluorescent synthetic peptide containing the specific bond...

  17. Drug-induced modification of the system properties associated with spontaneous human electroencephalographic activity

    Science.gov (United States)

    Liley, David T.; Cadusch, Peter J.; Gray, Marcus; Nathan, Pradeep J.

    2003-11-01

    The benzodiazepine (BZ) class of minor tranquilizers are important modulators of the γ-amino butyric acid (GABAA)/BZ receptor complex that are well known to affect the spectral properties of spontaneous electroencephalographic activity. While it is experimentally well established that the BZs reduce total alpha band (8 13 Hz) power and increase total beta band (13 30 Hz) power, it is unclear what the physiological basis for this effect is. Based on a detailed theory of cortical electrorhythmogenesis it is conjectured that such an effect is explicable in terms of the modulation of GABAergic neurotransmission within locally connected populations of excitatory and inhibitory cortical neurons. Motivated by this theory, fixed order autoregressive moving average (ARMA) models were fitted to spontaneous eyes-closed electroencephalograms recorded from subjects before and approximately 2 h after the oral administration of a single 1 mg dose of the BZ alprazolam. Subsequent pole-zero analysis revealed that BZs significantly transform the dominant system pole such that its frequency and damping increase. Comparisons of ARMA derived power spectra with fast Fourier transform derived spectra indicate an enhanced ability to identify benzodiazepine induced electroencephalographic changes. This experimental result is in accord with the theoretical predictions implying that alprazolam enhances inhibition acting on inhibitory neurons more than inhibition acting on excitatory neurons. Further such a result is consistent with reported cortical neuronal distributions of the various GABAA receptor pharmacological subtypes. Therefore physiologically specified fixed order ARMA modeling is expected to become an important tool for the systematic investigation and modeling of a wide range of cortically acting compounds.

  18. Activation of KCNQ Channels Suppresses Spontaneous Activity in Dorsal Root Ganglion Neurons and Reduces Chronic Pain after Spinal Cord Injury.

    Science.gov (United States)

    Wu, Zizhen; Li, Lin; Xie, Fuhua; Du, Junhui; Zuo, Yan; Frost, Jeffrey A; Carlton, Susan M; Walters, Edgar T; Yang, Qing

    2017-03-15

    A majority of people who have sustained spinal cord injury (SCI) experience chronic pain after injury, and this pain is highly resistant to available treatments. Contusive SCI in rats at T10 results in hyperexcitability of primary sensory neurons, which contributes to chronic pain. KCNQ channels are widely expressed in nociceptive dorsal root ganglion (DRG) neurons, are important for controlling their excitability, and their activation has proven effective in reducing pain in peripheral nerve injury and inflammation models. The possibility that activators of KCNQ channels could be useful for treating SCI-induced chronic pain is strongly supported by the following findings. First, SCI, unlike peripheral nerve injury, failed to decrease the functional or biochemical expression of KCNQ channels in DRG as revealed by electrophysiology, real-time quantitative polymerase chain reaction, and Western blot; therefore, these channels remain available for pharmacological targeting of SCI pain. Second, treatment with retigabine, a specific KCNQ channel opener, profoundly decreased spontaneous activity in primary sensory neurons of SCI animals both in vitro and in vivo without changing the peripheral mechanical threshold. Third, retigabine reversed SCI-induced reflex hypersensitivity, adding to our previous demonstration that retigabine supports the conditioning of place preference after SCI (an operant measure of spontaneous pain). In contrast to SCI animals, naïve animals showed no effects of retigabine on reflex sensitivity or conditioned place preference by pairing with retigabine, indicating that a dose that blocks chronic pain-related behavior has no effect on normal pain sensitivity or motivational state. These results encourage the further exploration of U.S. Food and Drug Administration-approved KCNQ activators for treating SCI pain, as well as efforts to develop a new generation of KCNQ activators that lack central side effects.

  19. Endogenous WNT Signals Mediate BMP-Induced and Spontaneous Differentiation of Epiblast Stem Cells and Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Dorota Kurek

    2015-01-01

    Full Text Available Therapeutic application of human embryonic stem cells (hESCs requires precise control over their differentiation. However, spontaneous differentiation is prevalent, and growth factors induce multiple cell types; e.g., the mesoderm inducer BMP4 generates both mesoderm and trophoblast. Here we identify endogenous WNT signals as BMP targets that are required and sufficient for mesoderm induction, while trophoblast induction is WNT independent, enabling the exclusive differentiation toward either lineage. Furthermore, endogenous WNT signals induce loss of pluripotency in hESCs and their murine counterparts, epiblast stem cells (EpiSCs. WNT inhibition obviates the need to manually remove differentiated cells to maintain cultures and improves the efficiency of directed differentiation. In EpiSCs, WNT inhibition stabilizes a pregastrula epiblast state with novel characteristics, including the ability to contribute to blastocyst chimeras. Our findings show that endogenous WNT signals function as hidden mediators of growth factor-induced differentiation and play critical roles in the self-renewal of hESCs and EpiSCs.

  20. Electromyographic activity associated with spontaneous functional recovery after spinal cord injury in rats.

    Science.gov (United States)

    Kaegi, Sibille; Schwab, Martin E; Dietz, Volker; Fouad, Karim

    2002-07-01

    This investigation was designed to study the spontaneous functional recovery of adult rats with incomplete spinal cord injury (SCI) at thoracic level during a time course of 2 weeks. Daily testing sessions included open field locomotor examination and electromyographic (EMG) recordings from a knee extensor (vastus lateralis, VL) and an ankle flexor muscle (tibialis anterior, TA) in the hindlimbs of treadmill walking rats. The BBB score (a locomotor score named after Basso et al., 1995, J. Neurotrauma, 12, 1-21) and various measures from EMG recordings were analysed (i.e. step cycle duration, rhythmicity of limb movements, flexor and extensor burst duration, EMG amplitude, root-mean-square, activity overlap between flexor and extensor muscles and hindlimb coupling). Directly after SCI, a marked drop in locomotor ability occurred in all rats with subsequent partial recovery over 14 days. The recovery was most pronounced during the first week. Significant changes were noted in the recovery of almost all analysed EMG measures. Within the 14 days of recovery, many of these measures approached control levels. Persistent abnormalities included a prolonged flexor burst and increased activity overlap between flexor and extensor muscles. Activity overlap between flexor and extensor muscles might be directly caused by altered descending input or by maladaptation of central pattern generating networks and/or sensory feedback.

  1. Hypotensive and Angiotensin-Converting Enzyme Inhibitory Activities of Eisenia fetida Extract in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Shumei Mao

    2015-01-01

    Full Text Available Objectives. This study aimed to investigate the antihypertensive effects of an Eisenia fetida extract (EFE and its possible mechanisms in spontaneously hypertensive rats (SHR rats. Methods. Sixteen-week-old SHR rats and Wistar-Kyoto rats (WKY rats were used in this study. Rats were, respectively, given EFE (EFE group, captopril (captopril group, or phosphate-buffered saline (PBS (normal control group and SHR group for 4 weeks. ACE inhibitory activity of EFE in vitro was determined. The systolic blood pressure (SBP and diastolic blood pressure (DBP were measured using a Rat Tail-Cuff Blood Pressure System. Levels of angiotensin II (Ang II, aldosterone (Ald, and 6-keto-prostaglandin F1 alpha (6-keto-PGF1α in plasma were determined by radioimmunoassay, and serum nitric oxide (NO concentration was measured by Griess reagent systems. Results. EFE had marked ACE inhibitory activity in vitro (IC50 = 2.5 mg/mL. After the 4-week drug management, SHR rats in EFE group and in captopril group had lower SBP and DBP, lower levels of Ang II and Ald, and higher levels of 6-keto-PGF1α and NO than the SHR rats in SHR group. Conclusion. These results indicate that EFE has hypotensive effects in SHR rats and its effects might be associated with its ACE inhibitory activity.

  2. Electrophysiological study in the infraorbital nerve of the rat: Spontaneous and evoked activity

    Energy Technology Data Exchange (ETDEWEB)

    AlbarracIn, A L [Catedra de Neurociencias, Facultad de Medicina, Universidad Nacional de Tucuman, Av. Roca 2200, PC 4000 (Argentina); Farfan, F D [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, PC 4000 (Argentina); Felice, C J [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, PC 4000 (Argentina)

    2007-11-15

    In this work we present some studies in the afferent nerve of the rat vibrissae. Studies on spontaneous activity (SA) in this sensorial system are of long data. Nevertheless, SA recordings in the nerve of a single vibrissa have not been made until present. In this work, we use an algorithm based on signal decomposition with Continuous Wavelet Transform (CWT) to analyse the discharges of two nerves. The action potentials of both nerves were detected and the firing rates were calculated. These results suggest that the firing rate of one vibrissa innervation is low considering that this nerve contains hundred of fibers. In addition, we present preliminary studies suggesting important effects of the hair shaft length in the afferent discharge during the vibrissae movements. The experiments consisted in recording the nerve activity after the vibrissae were sectioned at two different levels. The results showed important differences in the signal energy contents. It suggests that the hair shaft length would produce a differential activation of the mechanoreceptors located in the vibrissae follicle.

  3. Electrophysiological study in the infraorbital nerve of the rat: Spontaneous and evoked activity

    International Nuclear Information System (INIS)

    AlbarracIn, A L; Farfan, F D; Felice, C J

    2007-01-01

    In this work we present some studies in the afferent nerve of the rat vibrissae. Studies on spontaneous activity (SA) in this sensorial system are of long data. Nevertheless, SA recordings in the nerve of a single vibrissa have not been made until present. In this work, we use an algorithm based on signal decomposition with Continuous Wavelet Transform (CWT) to analyse the discharges of two nerves. The action potentials of both nerves were detected and the firing rates were calculated. These results suggest that the firing rate of one vibrissa innervation is low considering that this nerve contains hundred of fibers. In addition, we present preliminary studies suggesting important effects of the hair shaft length in the afferent discharge during the vibrissae movements. The experiments consisted in recording the nerve activity after the vibrissae were sectioned at two different levels. The results showed important differences in the signal energy contents. It suggests that the hair shaft length would produce a differential activation of the mechanoreceptors located in the vibrissae follicle

  4. Ouabain binding to cultured vascular smooth muscle cells of the spontaneously hypertensive rat

    International Nuclear Information System (INIS)

    Hopp, L.; Khalil, F.; Tamura, H.; Kino, M.; Searle, B.M.; Tokushige, A.; Aviv, A.

    1986-01-01

    The binding of ouabain and K + to the Na + pump were analyzed in serially passed cultured vascular smooth muscle cells (VSMCs) originating from spontaneously hypertensive (SH) Wistar-Kyoto (WKY), and American Wistar (W) rats. The techniques have utilized analyses of displacement of [ 3 H]ouabain by both unlabeled ouabain and K + from specific binding sites on the VSMCs. The authors have found that 1) each of the VSMC preparations from the three rat strains appeared to demonstrate one population of specific ouabain receptors (Na + pumps); 2) the number of Na + pump units of both the SH and WKY rats was significantly lower than the number of Na + pump units of W rat VSMCs; 3) the equilibrium dissociation constant values (μM) for ouabain in VSMCs of SH and WKY rats were similar but were significantly higher than that of VSMCs derived from W rats; and 4) among the VSMCs originating from the three rat strains, the apparent equilibrium dissociation constant value for K + (mM) was the lowest in those of the SH rat compared with VSMCs of the WKY rat and W rat. Previous studies have demonstrated increased passive Na + and K + transport rate constants of SH rat VSMCs compared with either W or WKY rat cells. These findings suggest the possibility of higher permeabilities of the SH cells. They propose that the combined effect of a low number of Na + pump units with higher permeabilities to Na + and K + predisposes VSMCs of the SH rat to disturbances in their cellular ionic regulation. These genetic defects, if they occur in vivo, may lead to an increase in the vascular tone

  5. Altered spontaneous brain activity in adolescent boys with pure conduct disorder revealed by regional homogeneity analysis.

    Science.gov (United States)

    Wu, Qiong; Zhang, Xiaocui; Dong, Daifeng; Wang, Xiang; Yao, Shuqiao

    2017-07-01

    Functional magnetic resonance imaging (fMRI) studies have revealed abnormal neural activity in several brain regions of adolescents with conduct disorder (CD) performing various tasks. However, little is known about the spontaneous neural activity in people with CD in a resting state. The aims of this study were to investigate CD-associated regional activity abnormalities and to explore the relationship between behavioral impulsivity and regional activity abnormalities. Resting-state fMRI (rs-fMRI) scans were administered to 28 adolescents with CD and 28 age-, gender-, and IQ-matched healthy controls (HCs). The rs-fMRI data were subjected to regional homogeneity (ReHo) analysis. ReHo can demonstrate the temporal synchrony of regional blood oxygen level-dependent signals and reflect the coordination of local neuronal activity facilitating similar goals or representations. Compared to HCs, the CD group showed increased ReHo bilaterally in the insula as well as decreased ReHo in the right inferior parietal lobule, right middle temporal gyrus and right fusiform gyrus, left anterior cerebellum anterior, and right posterior cerebellum. In the CD group, mean ReHo values in the left and the right insula correlated positively with Barratt Impulsivity Scale (BIS) total scores. The results suggest that CD is associated with abnormal intrinsic brain activity, mainly in the cerebellum and temporal-parietal-limbic cortices, regions that are related to emotional and cognitive processing. BIS scores in adolescents with CD may reflect severity of abnormal neuronal synchronization in the insula.

  6. Electrical responses and spontaneous activity of human iPS-derived neuronal networks characterized for three-month culture with 4096-electrode arrays

    Directory of Open Access Journals (Sweden)

    Hayder eAmin

    2016-03-01

    Full Text Available The recent availability of human induced pluripotent stem cells (hiPSCs holds great promise as a novel source of human-derived neurons for cell and tissue therapies as well as for in vitro drug screenings that might replace the use of animal models. However, there is still a considerable lack of knowledge on the functional properties of hiPSC-derived neuronal networks, thus limiting their application. Here, upon optimization of cell culture protocols, we demonstrate that both spontaneous and evoked electrical spiking activities of these networks can be characterized on-chip by taking advantage of the resolution provided by CMOS multielectrode arrays (CMOS-MEAs. These devices feature a large and closely-spaced array of 4096 simultaneously recording electrodes and multi-site on-chip electrical stimulation. Our results show that networks of human-derived neurons can respond to electrical stimulation with a physiological repertoire of spike waveforms after three months of cell culture, a period of time during which the network undergoes the expression of developing patterns of spontaneous spiking activity. To achieve this, we have investigated the impact on the network formation and on the emerging network-wide functional properties induced by different biochemical substrates, i.e. poly-dl-ornithine (PDLO, poly-l-ornithine (PLO, and polyethylenimine (PEI, that were used as adhesion promoters for the cell culture. Interestingly, we found that neuronal networks grown on PDLO coated substrates show significantly higher spontaneous firing activity, reliable responses to low-frequency electrical stimuli, and an appropriate level of PSD-95 that may denote a physiological neuronal maturation profile and synapse stabilization. However, our results also suggest that even three-month culture might not be sufficient for human-derived neuronal network maturation. Taken together, our results highlight the tight relationship existing between substrate coatings

  7. Characterization of a spontaneously generated murine retinal pigmented epithelium cell line; a model for in vitro experiments

    International Nuclear Information System (INIS)

    Ranaei Pirmardan, Ehsan; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Mowla, Seyed Javad; Ezzati, Razie; Naseri, Marzieh

    2016-01-01

    Retinal pigmented epithelium (RPE), the outermost layer of the retina, has a key role in maintaining retinal cells’ functions. Severity of the culture of RPE cells has exerted many limitations to both in vitro and in vivo studies and its therapeutic applications. Therefore, establishment of RPE cell lines with high proliferative potential can considerably improve study of RPE cell biology. Here we report generation of a spontaneously immortalized murine RPE cell line in primary mouse RPE cell culture. Founded colonized cells were picked up and expression of RPE and retinal progenitor cells’ (RPC) markers were studied using immunocytochemistry (ICC). Emerged cells cultured over 35 passages and population doubling times in different serum concentrations were calculated. We also investigated the ability of cells for becoming transfected by calcium-phosphate method and for becoming infected by adeno-associated virus serotype 2 (AAV2) using flow cytometry. Data showed that the cobblestone constituent cells expressed RPE65, cytokeratin and ZO1 and moreover several progenitor markers such as Pax6, Sox2, Nestin and Chx10. It revealed that, despite primary RPE cells, the newly emerged cells were easily transfectable and were highly infectable when compared with HEK293T cells. Our data indicated that the emerged mouse RPE cell line pretended RPC-like phenotype and also simultaneously expressed RPE markers. It would be a promising model for leading studies on RPE and RPC cells and substantially confirmed the great RPE plasticity and its invaluable potential in research studies. - Highlights: • Isolation of a spontaneously generated retinal pigmented epithelium cell line is reported. • The cells express some of the retinal progenitor cell markers in addition to the RPE markers. • The aforesaid cell line is highly transfecable and considerably infectable by AAV2. • These results confirm the great RPE plasticity and its invaluable potential in research studies.

  8. Characterization of a spontaneously generated murine retinal pigmented epithelium cell line; a model for in vitro experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ranaei Pirmardan, Ehsan [Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Soheili, Zahra-Soheila [Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of); Samiei, Shahram [Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran (Iran, Islamic Republic of); Ahmadieh, Hamid [Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mowla, Seyed Javad [Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ezzati, Razie [Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of); Naseri, Marzieh [Department of Molecular Medicine, Faculty of Advanced Technology, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-10-01

    Retinal pigmented epithelium (RPE), the outermost layer of the retina, has a key role in maintaining retinal cells’ functions. Severity of the culture of RPE cells has exerted many limitations to both in vitro and in vivo studies and its therapeutic applications. Therefore, establishment of RPE cell lines with high proliferative potential can considerably improve study of RPE cell biology. Here we report generation of a spontaneously immortalized murine RPE cell line in primary mouse RPE cell culture. Founded colonized cells were picked up and expression of RPE and retinal progenitor cells’ (RPC) markers were studied using immunocytochemistry (ICC). Emerged cells cultured over 35 passages and population doubling times in different serum concentrations were calculated. We also investigated the ability of cells for becoming transfected by calcium-phosphate method and for becoming infected by adeno-associated virus serotype 2 (AAV2) using flow cytometry. Data showed that the cobblestone constituent cells expressed RPE65, cytokeratin and ZO1 and moreover several progenitor markers such as Pax6, Sox2, Nestin and Chx10. It revealed that, despite primary RPE cells, the newly emerged cells were easily transfectable and were highly infectable when compared with HEK293T cells. Our data indicated that the emerged mouse RPE cell line pretended RPC-like phenotype and also simultaneously expressed RPE markers. It would be a promising model for leading studies on RPE and RPC cells and substantially confirmed the great RPE plasticity and its invaluable potential in research studies. - Highlights: • Isolation of a spontaneously generated retinal pigmented epithelium cell line is reported. • The cells express some of the retinal progenitor cell markers in addition to the RPE markers. • The aforesaid cell line is highly transfecable and considerably infectable by AAV2. • These results confirm the great RPE plasticity and its invaluable potential in research studies.

  9. Spontaneous motor activity during the development and maintenance of diet-induced obesity in the rat.

    Science.gov (United States)

    Levin, B E

    1991-09-01

    More than 80% of most daily spontaneous activities (assessed in an Omnitech activity monitor) occurred during the last hour of light and 12 h of the dark phase in 8 chow-fed male Sprague-Dawley rats. Thirty additional rats were, therefore, monitored over this 13-h period to assess the relationship of activity to the development and maintenance of diet-induced obesity (DIO) on a diet high in energy, fat and sucrose (CM diet). Nine of 20 rats became obese after 3 months on the CM diet, with 71% greater weight gain than 10 chow-fed controls. Eleven of 20 rats were diet resistant (DR), gaining the same amount of weight as chow-fed rats. Neither initial activity levels nor initial body weights on chow (Period I) differed significantly across retrospectively identified groups. After 3 months on CM diet or chow (Period II), as well as after an additional 3 months after CM diet-fed rats returned to chow (Period III), there were significant inverse correlations (r = -.606 to -.370) between body weight at the time of testing and various measures of movement in the horizontal plane. There was no relationship to dietary content nor consistent correlations of body weight or diet group to vertical movements, an indirect measure of ingestive behavior. Patterns of time spent in the vertical position were significantly different for DIO vs. DR rats in Period III, however. Thus, differences in food intake and metabolic efficiency, rather than differences in nocturnal activity, are probably responsible for the greater weight gain in DIO-prone rats placed on CM diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. On-off intermittency in time series of spontaneous paroxysmal activity in rats with genetic absence epilepsy

    International Nuclear Information System (INIS)

    Hramov, Alexander; Koronovskii, Alexey A.; Midzyanovskaya, I.S.; Sitnikova, E.; Rijn, C.M. van

    2006-01-01

    In the present paper we consider the on-off intermittency phenomena observed in time series of spontaneous paroxysmal activity in rats with genetic absence epilepsy. The method to register and analyze the electroencephalogram with the help of continuous wavelet transform is also suggested

  11. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI. However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo analysis based on resting-state functional magnetic resonance imaging.A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for

  12. Exacerbation of spontaneous autoimmune nephritis following regulatory T cell depletion in B cell lymphoma 2-interacting mediator knock-out mice.

    Science.gov (United States)

    Wang, Y M; Zhang, G Y; Wang, Y; Hu, M; Zhou, J J; Sawyer, A; Cao, Q; Wang, Y; Zheng, G; Lee, V W S; Harris, D C H; Alexander, S I

    2017-05-01

    Regulatory T cells (T regs ) have been recognized as central mediators for maintaining peripheral tolerance and limiting autoimmune diseases. The loss of T regs or their function has been associated with exacerbation of autoimmune disease. However, the temporary loss of T regs in the chronic spontaneous disease model has not been investigated. In this study, we evaluated the role of T regs in a novel chronic spontaneous glomerulonephritis model of B cell lymphoma 2-interacting mediator (Bim) knock-out mice by transient depleting T regs . Bim is a pro-apoptotic member of the B cell lymphoma 2 (Bcl-2) family. Bim knock-out (Bim -/- ) mice fail to delete autoreactive T cells in thymus, leading to chronic spontaneous autoimmune kidney disease. We found that T reg depletion in Bim -/- mice exacerbated the kidney injury with increased proteinuria, impaired kidney function, weight loss and greater histological injury compared with wild-type mice. There was a significant increase in interstitial infiltrate of inflammatory cells, antibody deposition and tubular damage. Furthermore, the serum levels of cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17α, interferon (IFN)-γ and tumour necrosis factor (TNF)-α were increased significantly after T reg depletion in Bim -/- mice. This study demonstrates that transient depletion of T regs leads to enhanced self-reactive T effector cell function followed by exacerbation of kidney disease in the chronic spontaneous kidney disease model of Bim-deficient mice. © 2017 British Society for Immunology.

  13. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia

    Directory of Open Access Journals (Sweden)

    Wang Y

    2015-10-01

    Full Text Available Yanping Wang,1,2 Xiaoling Zhang,2 Qiaobing Guan,2 Lihong Wan,2 Yahui Yi,2 Chun-Feng Liu1 1Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 2Department of Neurology, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang Province, People’s Republic of China Abstract: The pathophysiology of idiopathic trigeminal neuralgia (ITN has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected. Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002. Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN. Keywords: trigeminal neuralgia, resting fMRI, brain, chronic pain, local connectivity

  14. Effects of DISC1 Polymorphisms on Resting-State Spontaneous Neuronal Activity in the Early-Stage of Schizophrenia

    Directory of Open Access Journals (Sweden)

    Ningzhi Gou

    2018-05-01

    Full Text Available Background: Localized abnormalities in the synchrony of spontaneous neuronal activity, measured with regional homogeneity (ReHo, has been consistently reported in patients with schizophrenia (SCZ and their unaffected siblings. To date, little is known about the genetic influences affecting the spontaneous neuronal activity in SCZ. DISC1, a strong susceptible gene for SCZ, has been implicated in neuronal excitability and synaptic function possibly associated with regional spontaneous neuronal activity. This study aimed to examine the effects of DISC1 variations on the regional spontaneous neuronal activity in SCZ.Methods: Resting-state fMRI data were obtained from 28 SCZ patients and 21 healthy controls (HC for ReHo analysis. Six single nucleotide polymorphisms (SNPs of DISC1 gene were genotyped using the PCR and direct sequencing.Results: Significant diagnosis × genotype interactions were noted for three SNPs (rs821616, rs821617, and rs2738880. For rs821617, the interactions were localized to the precuneus, basal ganglia and pre-/post-central regions. Significant interactive effects were identified at the temporal and post-central gyri for rs821616 (Ser704Cys and the inferior temporal gyrus for rs2738880. Furthermore, post-hoc analysis revealed that the DISC1 variations on these SNPs exerted different influences on ReHo between SCZ patients and HC.Conclusion: To our knowledge this is the first study to unpick the influence of DISC1 variations on spontaneous neuronal activity in SCZ; Given the emerging evidence that ReHo is a stable inheritable phenotype for schizophrenia, our findings suggest the DISC1 variations are possibly an inheritable source for the altered ReHo in this disorder.

  15. Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells.

    Science.gov (United States)

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-07-01

    In this study, anthraquinone-2-sulfonic acid (AQS), an electron transfer mediator, was immobilized onto graphite felt surface via spontaneous reduction of the in situ generated AQS diazonium cations. Cyclic voltammetry (CV) and energy dispersive spectrometry (EDS) characterizations of AQS modified graphite demonstrated that AQS was covalently grafted onto the graphite surface. The modified graphite, with a surface AQS concentration of 5.37 ± 1.15 × 10(-9)mol/cm(2), exhibited good electrochemical activity and high stability. The midpoint potential of the modified graphite was about -0.248 V (vs. normal hydrogen electrode, NHE), indicating that electrons could be easily transferred from NADH in bacteria to the electrode. AQS modified anode in MFCs increased the maximum power density from 967 ± 33 mW/m(2) to 1872 ± 42 mW/m(2). These results demonstrated that covalently modified AQS functioned as an electron transfer mediator to facilitate extracellular electron transfer from bacteria to electrode and significantly enhanced the power production in MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Association of the interleukin 1 beta gene and brain spontaneous activity in amnestic mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Zhuang Liying

    2012-12-01

    Full Text Available Abstract Purpose The inflammatory response has been associated with the pathogenesis of Alzheimer’s disease (AD. The purpose of this study is to determine whether the rs1143627 polymorphism of the interleukin-1 beta (IL-1β gene moderates functional magnetic resonance imaging (fMRI-measured brain regional activity in amnestic mild cognitive impairment (aMCI. Methods Eighty older participants (47 with aMCI and 33 healthy controls were recruited for this study. All of the participants were genotyped for variant rs1143627 in the IL1B gene and were scanned using resting-state fMRI. Brain activity was assessed by amplitude of low-frequency fluctuation (ALFF. Results aMCI patients had abnormal ALFF in many brain regions, including decreases in the inferior frontal gyrus, the superior temporal lobe and the middle temporal lobe, and increases in the occipital cortex (calcarine, parietal cortex (Pcu and cerebellar cortex. The regions associated with an interaction of group X genotypes of rs1143627 C/T were the parietal cortex (left Pcu, frontal cortex (left superior, middle, and medial gyrus, right anterior cingulum, occipital cortex (left middle lobe, left cuneus and the bilateral posterior lobes of the cerebellum. Regarding the behavioral significance, there were significant correlations between ALFF in different regions of the brain and with the cognitive scores of each genotype group. Conclusions The present study provided evidence that aMCI patients had abnormal ALFF in many brain regions. Specifically, the rs1143627 C/T polymorphism of the IL1B gene may modulate regional spontaneous brain activity in aMCI patients.

  17. Electroacupuncture Delays Hypertension Development through Enhancing NO/NOS Activity in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Hye Suk Hwang

    2011-01-01

    Full Text Available Using spontaneously hypertensive rats (SHR, this study investigated whether electroacupuncture (EA could reduce early stage hypertension by examining nitric oxide (NO levels in plasma and nitric oxide synthase (NOS levels in the mesenteric resistance artery. EA was applied to the acupuncture point Governor Vessel 20 (GV20 or to a non-acupuncture point in the tail twice weekly for 3 weeks under anesthesia. In conscious SHR and normotensive Wistar Kyoto (WKY rats, blood pressure was determined the day after EA treatment by the tail-cuff method. We measured plasma NO concentration, and evaluated endothelial NO syntheses (eNOS and neuronal NOS (nNOS protein expression in the mesenteric artery. Systolic blood pressure (SBP and diastolic blood pressure (DBP were lower after 3 weeks of GV20 treatment than EA at non-acupuncture point and no treatment control in SHR. nNOS expression by EA was significantly different between both WKY and no treatment SHR control, and EA at GV20 in SHR. eNOS expression was significantly high in EA at GV 20 compared with no treatment control. In conclusion, EA could attenuate the blood pressure elevation of SHR, along with enhancing NO/NOS activity in the mesenteric artery in SHR.

  18. Intrinsic spontaneous brain activity predicts individual variability in associative memory in older adults.

    Science.gov (United States)

    Zheng, Zhiwei; Li, Rui; Xiao, Fengqiu; He, Rongqiao; Zhang, Shouzi; Li, Juan

    2018-04-19

    Older adults demonstrate notable individual differences in associative memory. Here, resting-state functional magnetic resonance imaging (rsfMRI) was used to investigate whether intrinsic brain activity at rest could predict individual differences in associative memory among cognitively healthy older adults. Regional amplitude of low-frequency fluctuations (ALFF) analysis and a correlation-based resting-state functional connectivity (RSFC) approach were used to analyze data acquired from 102 cognitively normal elderly who completed the paired-associative learning test (PALT) and underwent fMRI scans. Participants were divided into two groups based on the retrospective self-reports on whether or not they utilized encoding strategies during the PALT. The behavioral results revealed better associative memory performance in the participants who reported utilizing memory strategies compared with participants who reported not doing so. The fMRI results showed that higher associative memory performance was associated with greater functional connectivity between the right superior frontal gyrus and the right posterior cerebellum lobe in the strategy group. The regional ALFF values in the right superior frontal gyrus were linked to associative memory performance in the no-strategy group. These findings suggest that the regional spontaneous fluctuations and functional connectivity during rest may subserve the individual differences in the associative memory in older adults, and that this is modulated by self-initiated memory strategy use. © 2018 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  19. Visual learning alters the spontaneous activity of the resting human brain: an fNIRS study.

    Science.gov (United States)

    Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan

    2014-01-01

    Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning.

  20. Effects of taurine on resting-state fMRI activity in spontaneously hypertensive rats.

    Science.gov (United States)

    Chen, Vincent Chin-Hung; Hsu, Tsai-Ching; Chen, Li-Jeng; Chou, Hong-Chun; Weng, Jun-Cheng; Tzang, Bor-Show

    2017-01-01

    Attention deficit hyperactivity disorder (ADHD) is a global behavior illness among children and adults. To investigate the effects of taurine on resting-state fMRI activity in ADHD, a spontaneously hypertensive rat (SHR) animal model was adopted. Significantly decreased serum C-reactive protein (CRP) was detected in rats of Wistar Kyoto (WKY) high-taurine group and significantly decreased interleukin (IL)-1β and CRP were detected in rats of SHR low-taurine and high-taurine groups. Moreover, significantly higher horizontal locomotion was detected in rats of WKY low-taurine and SHR low-taurine groups than in those of controls. In contrast, significantly lower horizontal locomotion was detected in rats of the SHR high-taurine group than in those of the SHR control group. Additionally, significantly lower functional connectivity (FC) and mean amplitude of low-frequency fluctuation (mALFF) in the bilateral hippocampus in rats of WKY high-taurine and SHR high-taurine groups was detected. Notably, the mALFF in rats of the SHR low-taurine and high-taurine groups was significantly lower than in those of the SHR control group. These findings suggest that the administration of a high-dose taurine probably improves hyperactive behavior in SHR rats by ameliorating the inflammatory cytokines and modulating brain functional signals in SHR rats.

  1. Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception.

    Science.gov (United States)

    Megumi, Fukuda; Bahrami, Bahador; Kanai, Ryota; Rees, Geraint

    2015-02-15

    The neural mechanisms underlying conscious visual perception have been extensively investigated using bistable perception paradigms. Previous functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) studies suggest that the right anterior superior parietal (r-aSPL) and the right posterior superior parietal lobule (r-pSPL) have opposite roles in triggering perceptual reversals. It has been proposed that these two areas are part of a hierarchical network whose dynamics determine perceptual switches. However, how these two parietal regions interact with each other and with the rest of the brain during bistable perception is not known. Here, we investigated such a model by recording brain activity using fMRI while participants viewed a bistable structure-from-motion stimulus. Using dynamic causal modeling (DCM), we found that resolving such perceptual ambiguity was specifically associated with reciprocal interactions between these parietal regions and V5/MT. Strikingly, the strength of bottom-up coupling between V5/MT to r-pSPL and from r-pSPL to r-aSPL predicted individual mean dominance duration. Our findings are consistent with a hierarchical predictive coding model of parietal involvement in bistable perception and suggest that visual information processing underlying spontaneous perceptual switches can be described as changes in connectivity strength between parietal and visual cortical regions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Observation of new spontaneous fission activities from elements 100 to 105

    International Nuclear Information System (INIS)

    Somerville, L.P.

    1982-03-01

    Several new Spontaneous Fission (SF) activities have been found. No definite identification could be made for any of the new SF activities; however, half-lives and possible assignments to element-104 isotopes consistent with several cross bombardments include 257 Rf(3.8 s, 14% SF), 258 Rf(13 ms), 259 Rf(approx. 3 s, 8% SF), 260 Rf(approx. 20 ms), and 262 Rf(approx. 50 ms). The 80-ms SF activity claimed by the Dubna group for the discovery of element 104 ( 260 104) was not observed. A difficulty exists in the interpretation that 260 Rf is a approx. 20-ms SF activity: in order to be correct, for example, the SF activities with half-lives between 14 and 24 ms produced in the reactions 109- to 119-MeV 18 O + 248 Cm, 88- to 100-MeV 15 N + 249 Bk, and 96-MeV 18 O + 249 Cf must be other nuclides due to their large production cross sections, or the cross sections for production of 260 Rf must be enhanced by unknown mechanisms. Based on calculated total production cross sections a possible approx. 1% electron-capture branch in 258 Lr(4.5 s) to the SF emitter 258 No(1.2 ms) and an upper limit of 0.05% for SF branching in 254 No(55 s) were determined. Other measured half-lives from unknown nuclides produced in respective reactions include approx. 1.6 s ( 18 O + 248 CM), indications of a approx. 47-s SF activity (75-MeV 12 C + 249 Cf), and two or more SF activities with 3 s less than or equal to T/sub 1/2/ less than or equal to 60 s ( 18 O + 249 Bk). The most exciting conclusion of this work is that if the tentative assignments to even-even element 104 isotopes are correct, there would be a sudden change in the SF half-life systematics at element 104 which has been predicted theoretically and attributed to the disappearance of the second hump of the double-humped fission barrier

  3. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells

    International Nuclear Information System (INIS)

    Kyoizumi, Seishi; Akiyama, Mitoshi; Hirai, Yuko; Kusunoki; Yoichiro; Tanabe, Kazumi; Umeki, Shigeko; Nakamura, Nori; Yamakido, Michio; Hamamoto, Kazuko.

    1990-04-01

    The T-cell receptor CD3 (TCR/CD3) complex plays a central role in antigen recognition and activation of mature T cells, and therefore abnormalities in the expression of the complex should induce unresponsiveness of T cells to antigen stimulus. Using flow cytometry, we detected and enumerated variant cells with loss or alteration of surface TCR/CD3 expression among human mature CD4 + T cells. The presence of variant CD4 + T cells was demonstrated by isolating and cloning them from peripheral blood, and their abnormalities can be accounted for by alterations in TCR expression such as defects of protein expression and partial protein deletion. The variant frequency in peripheral blood increased with aging in normal donors and was highly elevated in patients with ataxia telangiectasia, an autosomal recessive inherited disease with defective DNA repair and variable T-cell immunodeficiency. These findings suggest that such alterations in TCR expression are induced by somatic mutagenesis of TCR genes and can be important factors related to age-dependent and genetic disease-associated T-cell dysfunction. (author)

  4. Chronic hepatitis C virus infection triggers spontaneous differential expression of biosignatures associated with T cell exhaustion and apoptosis signaling in peripheral blood mononucleocytes.

    Science.gov (United States)

    Barathan, Muttiah; Gopal, Kaliappan; Mohamed, Rosmawati; Ellegård, Rada; Saeidi, Alireza; Vadivelu, Jamuna; Ansari, Abdul W; Rothan, Hussin A; Ravishankar Ram, M; Zandi, Keivan; Chang, Li Y; Vignesh, Ramachandran; Che, Karlhans F; Kamarulzaman, Adeeba; Velu, Vijayakumar; Larsson, Marie; Kamarul, Tunku; Shankar, Esaki M

    2015-04-01

    Persistent hepatitis C virus (HCV) infection appears to trigger the onset of immune exhaustion to potentially assist viral persistence in the host, eventually leading to hepatocellular carcinoma. The role of HCV on the spontaneous expression of markers suggestive of immune exhaustion and spontaneous apoptosis in immune cells of chronic HCV (CHC) disease largely remain elusive. We investigated the peripheral blood mononuclear cells of CHC patients to determine the spontaneous recruitment of cellular reactive oxygen species (cROS), immunoregulatory and exhaustion markers relative to healthy controls. Using a commercial QuantiGenePlex(®) 2.0 assay, we determined the spontaneous expression profile of 80 different pro- and anti-apoptotic genes in persistent HCV disease. Onset of spontaneous apoptosis significantly correlated with the up-regulation of cROS, indoleamine 2,3-dioxygenase (IDO), cyclooxygenase-2/prostaglandin H synthase (COX-2/PGHS), Foxp3, Dtx1, Blimp1, Lag3 and Cd160. Besides, spontaneous differential surface protein expression suggestive of T cell inhibition viz., TRAIL, TIM-3, PD-1 and BTLA on CD4+ and CD8+ T cells, and CTLA-4 on CD4+ T cells was also evident. Increased up-regulation of Tnf, Tp73, Casp14, Tnfrsf11b, Bik and Birc8 was observed, whereas FasLG, Fas, Ripk2, Casp3, Dapk1, Tnfrsf21, and Cflar were moderately up-regulated in HCV-infected subjects. Our observation suggests the spontaneous onset of apoptosis signaling and T cell exhaustion in chronic HCV disease.

  5. Correlations between specific patterns of spontaneous activity and stimulation efficiency in degenerated retina.

    Directory of Open Access Journals (Sweden)

    Christine Haselier

    Full Text Available Retinal prostheses that are currently used to restore vision in patients suffering from retinal degeneration are not adjusted to the changes occurring during the remodeling process of the retina. Recent studies revealed abnormal rhythmic activity in the retina of genetic mouse models of retinitis pigmentosa. Here we describe this abnormal activity also in a pharmacologically-induced (MNU mouse model of retinal degeneration. To investigate how this abnormal activity affects the excitability of retinal ganglion cells, we recorded the electrical activity from whole mounted retinas of rd10 mice and MNU-treated mice using a microelectrode array system and applied biphasic current pulses of different amplitude and duration to stimulate ganglion cells electrically. We show that the electrical stimulation efficiency is strongly reduced in degenerated retinas, in particular when abnormal activity such as oscillations and rhythmic firing of bursts of action potentials can be observed. Using a prestimulus pulse sequence, we could abolish rhythmic retinal activity. Under these conditions, the stimulation efficiency was enhanced in a few cases but not in the majority of tested cells. Nevertheless, this approach supports the idea that modified stimulation protocols could help to improve the efficiency of retinal prostheses in the future.

  6. Spontaneous transformation of murine oviductal epithelial cells: A model system to investigate the onset of fallopian-derived tumors

    Directory of Open Access Journals (Sweden)

    MIchael P. Endsley

    2015-07-01

    Full Text Available High-grade serous carcinoma (HGSC is the most lethal ovarian cancer histotype. The fallopian tube secretory epithelial cells (FTSECs are a proposed progenitor cell type. Genetically altered FTSECs form tumors in mice; however, a spontaneous HGSC model has not been described. Apart from a subpopulation of genetically predisposed women, most women develop ovarian cancer spontaneously, which is associated with aging and lifetime ovulations. A murine oviductal cell line (MOELOW was developed and continuously passaged in culture to mimic cellular aging (MOEHIGH. The MOEHIGH cellular model exhibited a loss of acetylated tubulin consistent with an outgrowth of secretory epithelial cells in culture. MOEHIGH cells proliferated significantly faster than MOELOW, and the MOEHIGH cells produced more 2D foci and 3D soft agar colonies as compared to MOELOW. MOEHIGH were xenografted into athymic female nude mice both in the subcutaneous and the intraperiteonal compartments. Only the subcutaneous grafts formed tumors that were negative for cytokeratin, but positive for oviductal markers such as oviductal glycoprotein 1 and Pax8. These tumors were considered to be poorly differentiated carcinoma. The differential molecular profiles between MOEHIGH and MOELOW were determined using RNA-Seq and confirmed by protein expression to uncover pathways important in transformation, like the p53 pathway, the FOXM1 pathway, WNT signaling, and splicing. MOEHIGH had enhanced protein expression of c-myc, Cyclin E, p53 and FOXM1 with reduced expression of p21. MOEHIGH were also less sensitive to cisplatin and DMBA, which induce lesions typically repaired by base-excision repair. A model of spontaneous tumorogenesis was generated starting with normal oviductal cells. Their transition to cancer involved alterations in pathways associated with high-grade serous cancer in humans.

  7. Learning to modulate one's own brain activity: The effect of spontaneous mental strategies

    Directory of Open Access Journals (Sweden)

    Silvia Erika Kober

    2013-10-01

    Full Text Available Using neurofeedback (NF, individuals can learn to modulate their own brain activity, in most cases electroencephalographic (EEG rhythms. Although a large body of literature reports positive effects of NF training on behavior and cognitive functions, there are hardly any reports on how participants can successfully learn to gain control over their own brain activity. About one third of people fail to gain significant control over their brain signals even after repeated training sessions. The reasons for this failure are still largely unknown. In this context, we investigated the effects of spontaneous mental strategies on NF performance. Twenty healthy participants performed either a SMR (sensorimotor rhythm, 12-15 Hz based or a Gamma (40-43 Hz based NF training over ten sessions. After the first and the last training session, they were asked to write down which mental strategy they have used for self-regulating their EEG. After the first session, all participants reported the use of various types of mental strategies such as visual strategies, concentration, or relaxation. After the last NF training session, four participants of the SMR group reported to employ no specific strategy. These four participants showed linear improvements in NF performance over the ten training sessions. In contrast, participants still reporting the use of specific mental strategies in the last NF session showed no changes in SMR based NF performance over the ten sessions. This effect could not be observed in the Gamma group. The Gamma group showed no prominent changes in Gamma power over the NF training sessions, regardless of the mental strategies used. These results indicate that successful SMR based NF performance is associated with implicit learning mechanisms. Participants stating vivid reports on strategies to control their SMR probably overload cognitive resources, which might be counterproductive in terms of increasing SMR power.

  8. Spontaneous cluster activity in the inferior olivary nucleus in brainstem slices from postnatal mice

    DEFF Research Database (Denmark)

    Rekling, Jens C; Reveles Jensen, Kristian; Jahnsen, Henrik

    2012-01-01

    -active with separate clusters at different times. The coherence between calcium transients in IO neurons decreased with Euclidean distance between the cells reaching low values at 100-200 µm distances. Intracellular recordings from IO neurons during cluster formation revealed the presence of spikelet-like potentials...

  9. Membrane Potential Dynamics of Spontaneous and Visually Evoked Gamma Activity in V1 of Awake Mice

    NARCIS (Netherlands)

    Perrenoud, Q.; Pennartz, C.M.A.; Gentet, L.J.

    2016-01-01

    Cortical gamma activity (30-80 Hz) is believed to play important functions in neural computation and arises from the interplay of parvalbumin-expressing interneurons (PV) and pyramidal cells (PYRs). However, the subthreshold dynamics underlying its emergence in the cortex of awake animals remain

  10. Spontaneous fertility in a male thalassemic patient after allogeneic hematopoietic cell transplantation

    Directory of Open Access Journals (Sweden)

    Nicoletta Iacovidou

    2017-11-01

    Full Text Available Patients with thalassemia major who received allogeneic hematopoietic cell transplantation are at increased risk of gonadal insufficiency and reduced fertility due to the toxicity of both the transfusional iron overload and the gonadotoxic effects of drugs used in the conditioning regimen. We present a case of an ex-thalassemic patient with spontaneous recovery of spermatogenesis that fathered a healthy, term male neonate. Maternal hemoglobin electrophoresis was within normal limits. At the age of 9.5 years the patient underwent hematopoietic cell transplantation. The conditioning therapy included busulfan (16 mg/kg and cyclophosphamide (200 mg/kg. No irradiation was administered. Thirty-two days after the hematopoietic cell transplantation the patient developed acute graft-versus-host disease needing long-term treatment with methylprednisolone, cyclosporine and immunoglobulin. Although consecutive semen analyses after the hematopoietic cell transplantation revealed azoospermia, the last semen analysis before conception, at the age of 33 years, was improved and normal follicle stimulating hormone (FSH, luteinizing hormone (LH and testosterone (Te levels were detected. The current pregnancy was the result of physical conception. In this case, it seems that thalassemia major along with the respective treatment prior to- and posthematopoietic cell transplantation did not irreparably impair spermatogenesis, probably due to the pre-pubertal time frame they were implemented.   对于接受异基因造血细胞移植的重型地中海贫血患者,由于输注性铁过载的毒性和预处理方案中所用药物性腺毒性作用这两方面的原因,都使其面临更大的性腺功能不全风险和更低的生育力。本文报道一例精子发生出现自然恢复的原重型地中海贫血患者,他成功孕育出一个健康的足月男婴。母体血红蛋白电泳在正常范围内。患者在9岁半时接受了造血细胞移植。预

  11. Generation of T-cells reactive to the poorly immunogenic B16-BL6 melanoma with efficacy in the treatment of spontaneous metastases.

    Science.gov (United States)

    Geiger, J D; Wagner, P D; Cameron, M J; Shu, S; Chang, A E

    1993-04-01

    The B16-BL6 (BL6) melanoma is a poorly immunogenic murine tumor that is highly invasive and spontaneously metastasizes from the primary site. Utilizing an established anti-CD3/interleukin-2 (IL-2) culture procedure, we have previously reported that lymph nodes (LNs) draining immunogenic murine sarcomas contained preeffector cells that could be activated to differentiate into therapeutic effector cells for adoptive immunotherapy. By contrast, LNs draining the poorly immunogenic BL6 melanoma were found not to be a reliable source of preeffector cells. Instead, sensitization of preeffector cells reactive to BL6 required the subcutaneous inoculation of tumor admixed with Corynebacterium parvum. LN cells draining these vaccination sites demonstrated therapeutic efficacy only after subsequent anti-CD3/IL-2 activation. The sensitization of preeffector cells was dependent on the presence of tumor antigen and an optimal dose of C. parvum ( 140 days. All mice except one that received no treatment or was treated with IL-2 alone succumbed to visceral metastases with an MST of approximately 23 days. This study characterizes a model whereby the weak immune response to the BL6 melanoma can be positively or negatively modulated for the generation of antitumor reactive T-cells useful in adoptive immunotherapy.

  12. Loss of lysosomal membrane protein NCU-G1 in mice results in spontaneous liver fibrosis with accumulation of lipofuscin and iron in Kupffer cells

    Directory of Open Access Journals (Sweden)

    Xiang Y. Kong

    2014-03-01

    Full Text Available Human kidney predominant protein, NCU-G1, is a highly conserved protein with an unknown biological function. Initially described as a nuclear protein, it was later shown to be a bona fide lysosomal integral membrane protein. To gain insight into the physiological function of NCU-G1, mice with no detectable expression of this gene were created using a gene-trap strategy, and Ncu-g1gt/gt mice were successfully characterized. Lysosomal disorders are mainly caused by lack of or malfunctioning of proteins in the endosomal-lysosomal pathway. The clinical symptoms vary, but often include liver dysfunction. Persistent liver damage activates fibrogenesis and, if unremedied, eventually leads to liver fibrosis/cirrhosis and death. We demonstrate that the disruption of Ncu-g1 results in spontaneous liver fibrosis in mice as the predominant phenotype. Evidence for an increased rate of hepatic cell death, oxidative stress and active fibrogenesis were detected in Ncu-g1gt/gt liver. In addition to collagen deposition, microscopic examination of liver sections revealed accumulation of autofluorescent lipofuscin and iron in Ncu-g1gt/gt Kupffer cells. Because only a few transgenic mouse models have been identified with chronic liver injury and spontaneous liver fibrosis development, we propose that the Ncu-g1gt/gt mouse could be a valuable new tool in the development of novel treatments for the attenuation of fibrosis due to chronic liver damage.

  13. Computer algorithms for automated detection and analysis of local Ca2+ releases in spontaneously beating cardiac pacemaker cells.

    Directory of Open Access Journals (Sweden)

    Alexander V Maltsev

    Full Text Available Local Ca2+ Releases (LCRs are crucial events involved in cardiac pacemaker cell function. However, specific algorithms for automatic LCR detection and analysis have not been developed in live, spontaneously beating pacemaker cells. In the present study we measured LCRs using a high-speed 2D-camera in spontaneously contracting sinoatrial (SA node cells isolated from rabbit and guinea pig and developed a new algorithm capable of detecting and analyzing the LCRs spatially in two-dimensions, and in time. Our algorithm tracks points along the midline of the contracting cell. It uses these points as a coordinate system for affine transform, producing a transformed image series where the cell does not contract. Action potential-induced Ca2+ transients and LCRs were thereafter isolated from recording noise by applying a series of spatial filters. The LCR birth and death events were detected by a differential (frame-to-frame sensitivity algorithm applied to each pixel (cell location. An LCR was detected when its signal changes sufficiently quickly within a sufficiently large area. The LCR is considered to have died when its amplitude decays substantially, or when it merges into the rising whole cell Ca2+ transient. Ultimately, our algorithm provides major LCR parameters such as period, signal mass, duration, and propagation path area. As the LCRs propagate within live cells, the algorithm identifies splitting and merging behaviors, indicating the importance of locally propagating Ca2+-induced-Ca2+-release for the fate of LCRs and for generating a powerful ensemble Ca2+ signal. Thus, our new computer algorithms eliminate motion artifacts and detect 2D local spatiotemporal events from recording noise and global signals. While the algorithms were developed to detect LCRs in sinoatrial nodal cells, they have the potential to be used in other applications in biophysics and cell physiology, for example, to detect Ca2+ wavelets (abortive waves, sparks and

  14. AN INFLUENCE OF SPONTANEOUS MICROFLORA OF FERMENTED HORSEMEAT PRODUCTS ON THE FORMATION OF BIOLOGICALLY ACTIVE PEPTIDES

    Directory of Open Access Journals (Sweden)

    I. M. Chernukha

    2017-01-01

    Full Text Available At present, different methods are used to accumulate functional peptides in meat raw materials, including the use of spontaneous microflora during autolysis, the use of the microbial enzymes (the application of starter cultures and the use of the non-microbial enzymes (enzymes of animals and plant origin. Each method has its own specific characteristics of an impact on raw materials, which requires their detail study. This paper examines an effect of spontaneous microflora of fermented meat products from horsemeat on formation of biologically active peptides. Using the T-RFLP analysis, it was established that in air dried and uncooked smoked sausages produced with the use of the muscle tissue of horsemeat as a raw material, a significant proportion of microflora was presented by lactic acid microorganisms. The highest content of lactic acid microflora was observed in sample 1 (52.45 %, and the least in sample 3 (29.62 %. Sample 2 had the medium percent content of microflora compared to samples 1 and 3 — 38.82 %. It is necessary to note that about 25 % of microflora was unculturable; i.e., it had metabolic processes but did not grow on culture media. In the samples, the representatives of Actinobacteria and Pseudomonadales were found. Pathogenic and conditionally pathogenic microflora was not detected. Not only quantitative but also qualitative changes were observed in the studied samples. For example, in samples 1 and 2, the fractions of amilo-1,6-glucosidase, fast-type muscle myosin-binding-protein C; glucose-6-phosphate isomerase; fast skeletal muscle troponin I, phosphoglycerate kinase, pyruvate kinase and skeletal muscle actin were found, which were absent or reduced in sample 3. Therefore, in the studied product, good preservation of the main spectra of muscle proteins was observed, and the identified fractions, apparently, can be sources of new functional peptides. Not only quantitative but also qualitative changes were observed in the

  15. Intraoperative Active Bleeding in Endoscopic Surgery for Spontaneous Intracerebral Hemorrhage is Predicted by the Spot Sign.

    Science.gov (United States)

    Miki, Koichi; Yagi, Kenji; Nonaka, Masani; Iwaasa, Mitsutoshi; Abe, Hiroshi; Morishita, Takashi; Arima, Hisatomi; Inoue, Tooru

    2018-05-30

    Endoscopic evacuation of hematoma (EEH) has recently been applied to treat patients with spontaneous intracerebral hemorrhage (sICH). Intraoperative active bleeding (IAB), which is occasionally observed in EEH, might lead to greater blood loss, further brain damage, and more postoperative recurrent hemorrhage. However, no definite predictor of IAB has been established. Because the spot sign is associated with other hemorrhagic complications, we aimed to evaluate whether it predicts IAB. We retrospectively assessed the incidence and risk factors of IAB, including the spot sign, in 127 sICH patients who underwent EEH within 6 hours after computed tomography angiography at our institution between June 2009 and December 2017. The study included 53 women and 74 men with an average age of 66.7 ± 11.8 years. IAB occurred in 40 (31.5%) of the 127 patients, and it was more frequent in patients with the spot sign than in patients without it (14/24 [58.3%] vs. 26/103 [25.2%]; P = 0.003). Multivariable regression analyses suggested that the spot sign was an independent predictor of IAB (odds ratio [OR], 3.02; 95% confidence interval [CI], 1.10-8.30; P = 0.03). In addition, earlier surgery gradually increased the risk of IAB, and surgery within 4 hours of onset was an independent risk factor (OR, 4.34; 95% CI, 1.12-16.9; P = 0.03, referring to postonset 8 hours or more). The spot sign and early surgery were independent predictors of IAB in EEH for sICH. In patients with sICH and spot sign, complete treatment of IAB by electrocoagulation might be important for minimizing surgical complications. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Linking inter-individual differences in the conflict adaptation effect to spontaneous brain activity.

    Science.gov (United States)

    Wang, Ting; Chen, Zhencai; Zhao, Guang; Hitchman, Glenn; Liu, Congcong; Zhao, Xiaoyue; Liu, Yijun; Chen, Antao

    2014-04-15

    Conflict adaptation has been widely researched in normal and clinical populations. There are large individual differences in conflict adaptation, and it has been linked to the schizotypal trait. However, no study to date has examined how individual differences in spontaneous brain activity are related to behavioral conflict adaptation (performance). Resting-state functional magnetic resonance imaging (RS-fMRI) is a promising tool to investigate this issue. The present study evaluated the regional homogeneity (ReHo) of RS-fMRI signals in order to explore the neural basis of individual differences in conflict adaptation across two independent samples comprising a total of 67 normal subjects. A partial correlation analysis was carried out to examine the relationship between ReHo and behavioral conflict adaptation, while controlling for reaction time, standard deviation and flanker interference effects. This analysis was conducted on 39 subjects' data (sample 1); the results showed significant positive correlations in the left dorsolateral prefrontal cortex (DLPFC) and left ventrolateral prefrontal cortex. We then conducted a test-validation procedure on the remaining 28 subjects' data (sample 2) to examine the reliability of the results. Regions of interest were defined based on the correlation results. Regression analysis showed that variability in ReHo values in the DLPFC accounted for 48% of the individual differences in the conflict adaptation effect in sample 2. The present findings provide further support for the importance of the DLPFC in the conflict adaptation process. More importantly, we demonstrated that ReHo of RS-fMRI signals in the DLPFC can predict behavioral performance in conflict adaptation, which provides potential biomarkers for the early detection of cognitive control deterioration. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Spontaneous squamous cell carcinoma of the tongue and multiple bronchioloalveolar carcinomas in a Virginia opossum (Didelphis virginiana).

    Science.gov (United States)

    Kim, D Y; Mitchell, M A; De las Heras, M; Taylor, H W; Cho, D-Y

    2002-01-01

    Two primary tumours, squamous cell carcinoma of the tongue and multiple bronchioloalveolar carcinomas, were diagnosed in a Virginia opossum (Didelphis virginiana). Two oral masses were located in the right ventrolateral surface of the tongue, near the frenulum, and the lungs contained multiple, widely distributed, nodular masses. Microscopically, the oral masses were composed of invasive cords of pleomorphic, polyhedral cells, typical of squamous cells. The multiple pulmonary masses consisted of non-ciliated, cuboidal, columnar, or occasionally polyhedral cells arranged in an alveolar pattern with multifocal areas of necrosis. This is the first report of spontaneous oropharyngeal squamous cell carcinoma in the Virginia opossum. However, multiple pulmonary adenomas have been reported previously in this species, the lesions being similar to those in sheep pulmonary adenomatosis (jaagsiekte). In the present study, immunohistochemical examination of the pulmonary tumours with a rabbit polyclonal antiserum to jaagsiekte retroviral capsid protein proved negative. Copyright Harcourt Publishers Ltd.

  18. Brain activity for spontaneous and explicit mentalizing in adults with autism spectrum disorder: An fMRI study

    Directory of Open Access Journals (Sweden)

    Annabel D. Nijhof

    Full Text Available The socio-communicative difficulties of individuals with autism spectrum disorder (ASD are hypothesized to be caused by a specific deficit in the ability to represent one's own and others' mental states, referred to as Theory of Mind or mentalizing. However, many individuals with ASD show successful performance on explicit measures of mentalizing, and for this reason, the deficit is thought to be better captured by measures of spontaneous mentalizing. While there is initial behavioral support for this hypothesis, spontaneous mentalizing in ASD has not yet been studied at the neural level. Recent findings indicate involvement of the right temporoparietal junction (rTPJ in both explicit and spontaneous mentalizing (Bardi et al., 2016. In the current study, we investigated brain activation during explicit and spontaneous mentalizing in adults with ASD by means of fMRI. Based on our hypothesis of a core mentalizing deficit in ASD, decreased rTPJ activity was expected for both forms of mentalizing. A group of 24 adults with ASD and 21 neurotypical controls carried out a spontaneous and an explicit version of the same mentalizing task. They watched videos in which both they themselves and another agent formed a belief about the location of an object (belief formation phase. Only in the explicit task version participants were instructed to report the agent's belief on some trials. At the behavioral level, no group differences were revealed in either of the task versions. A planned region-of-interest analysis of the rTPJ showed that this region was more active for false- than for true-belief formation, independent of task version, especially when the agent's belief had a positive content (when the agent was expecting the object. This effect of belief was absent in adults with ASD. A whole-brain analysis revealed reduced activation in the anterior middle temporal pole in ASD for false - versus true-belief trials, independent of task version. Our findings

  19. Energy expenditure, spontaneous physical activity and with weight gain in kidney transplant recipients.

    Science.gov (United States)

    Heng, Anne-Elisabeth; Montaurier, Christophe; Cano, Noël; Caillot, Nicolas; Blot, A; Meunier, Nathalie; Pereira, Bruno; Marceau, Geoffroy; Sapin, Vincent; Jouve, Christelle; Boirie, Yves; Deteix, Patrice; Morio, Beatrice

    2015-06-01

    Alterations in energy metabolism could trigger weight gain after renal transplantation. Nineteen transplanted non-diabetic men, 53 ± 1.6 years old, receiving calcineurin inhibitors but no corticosteroids were studied. They were compared with nine healthy men matched for height, age and lean body mass. Daily energy expenditure and its components (sleeping, basal and absorptive metabolic rates) were analyzed for 24 h in calorimetric chambers and for 4 days in free living conditions using calibrated accelerometry. Other variables known to influence energy expenditure were assessed: body composition, physical activity, 4-day food intake, drug consumption, serum C-reactive protein, interleukin-6, thyroid and parathyroid hormones, and epinephrine. Transplant recipients who gained more than 5% body weight after transplantation (n = 11, +11.0 ± 1.5 kg) were compared with those who did not (n = 8) and with the controls. Weight gain compared with non-weight gain patients and controls exhibited higher fat mass without change in lean body mass. Daily, sleeping and resting energy expenditure adjusted for lean body mass was significantly higher in non-weight gain (167.1 ± 4.2 kJ/kg/lean body mass/24 h, P controls (146.1 ± 4.6). Weight gain compared with controls and non-weight gain subjects had lower free living physical activity and a higher consumption of antihypertensive drugs and β-blockers. After kidney transplantation, weight gain patients were characterized by lower adjusted energy expenditure, reduced spontaneous physical activity but a more sedentary life style and a trend toward a higher energy intake explaining the reason they gained weight. The nWG KTR had increased resting and sleeping EE which protected them from weight gain. Such hypermetabolism was also observed in 24-h EE measurements. By comparison with the nWG patients, the WG transplant recipients were characterized by higher β-blocker consumption. These data could be helpful in the prevention of weight

  20. Spontaneous fragmentation of an alpha-active ceramic: a mechanism for dispersion of solid waste

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.; Rohr, D.L.

    1980-01-01

    Studies underway to characterize spontaneous fragmentation in 238 PuO 2 and to determine the mechanism(s) responsible are reported. Results reported here show that: spontaneous fragmentation of 238 PuO 2 generates a wide range of particle sizes, from a few mm to 1000 A or less; the phenomenon may continue with time or may saturate, depending on starting material; the magnitude of the effect is dependent on storage environment. Neither thermal stresses nor lattice damage appear to be solely responsible for fragmentation, but radiolysis of the environment could play an important role. Work is continuing in an effort to identify the controlling factors in this phenomenon

  1. Aggressive natural killer-cell leukemia with jaundice and spontaneous splenic rupture: a case report and review of the literature.

    Science.gov (United States)

    Gao, Li-min; Liu, Wei-ping; Yang, Qun-pei; Li, Hui-fang; Chen, Jun-jie; Tang, Yuan; Zou, Yan; Liao, Dian-Ying; Liu, Yan-mei; Zhao, Sha

    2013-03-11

    Aggressive natural killer cell leukemia/lymphoma (ANKL) is a rare aggressive form of NK-cell neoplasm. We report an uncommon case of 36-year-old male who showed jaundice and spontaneous splenic rupture. The diagnosis was established by the biopsy of liver and spleen. The monomorphous medium-size neoplastic cells infiltrated into portal areas and sinus of liver as well as the cords and sinus of the spleen. Necrosis, mitotic figures and significant apoptosis could be seen easily. These neoplastic cells demonstrated a typical immunophenotype of CD3ε+, CD56+, CD16+, Granzyme B+, TIA-1+. T-cell receptor γ (TCR-γ) gene rearrangement analysis showed germline configuration and the result of in situ hybridization for Epstein-Barr virus-encoded RNA (EBER-ISH) was positive. The patient has undergone an aggressive clinical course and died of multi-organ function failure 14 days later after admission. To the best of our knowledge, this is the first case of ANKL with spontaneous splenic rupture, and we should pay more attention to recognize it. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2048154883890867.

  2. Mesenchymal to Epithelial Transition Mediated by CDH1 Promotes Spontaneous Reprogramming of Male Germline Stem Cells to Pluripotency

    Directory of Open Access Journals (Sweden)

    Junhui An

    2017-02-01

    Full Text Available Cultured spermatogonial stem cells (GSCs can spontaneously form pluripotent cells in certain culture conditions. However, GSC reprogramming is a rare event that is largely unexplained. We show GSCs have high expression of mesenchymal to epithelial transition (MET suppressors resulting in a developmental barrier inhibiting GSC reprogramming. Either increasing OCT4 or repressing transforming growth factor β (TGF-β signaling promotes GSC reprogramming by upregulating CDH1 and boosting MET. Reducing ZEB1 also enhances GSC reprogramming through its direct effect on CDH1. RNA sequencing shows that rare GSCs, identified as CDH1+ after trypsin digestion, are epithelial-like cells. CDH1+ GSCs exhibit enhanced reprogramming and become more prevalent during the course of reprogramming. Our results provide a mechanistic explanation for the spontaneous emergence of pluripotent cells from GSC cultures; namely, rare GSCs upregulate CDH1 and initiate MET, processes normally kept in check by ZEB1 and TGF-β signaling, thereby ensuring germ cells are protected from aberrant acquisition of pluripotency.

  3. Role of spontaneous physical activity in prediction of susceptibility to activity based anorexia in male and female rats.

    Science.gov (United States)

    Perez-Leighton, Claudio E; Grace, Martha; Billington, Charles J; Kotz, Catherine M

    2014-08-01

    Anorexia nervosa (AN) is a chronic eating disorder affecting females and males, defined by body weight loss, higher physical activity levels and restricted food intake. Currently, the commonalities and differences between genders in etiology of AN are not well understood. Animal models of AN, such as activity-based anorexia (ABA), can be helpful in identifying factors determining individual susceptibility to AN. In ABA, rodents are given an access to a running wheel while food restricted, resulting in paradoxical increased physical activity levels and weight loss. Recent studies suggest that different behavioral traits, including voluntary exercise, can predict individual weight loss in ABA. A higher inherent drive for movement may promote development and severity of AN, but this hypothesis remains untested. In rodents and humans, drive for movement is defined as spontaneous physical activity (SPA), which is time spent in low-intensity, non-volitional movements. In this paper, we show that a profile of body weight history and behavioral traits, including SPA, can predict individual weight loss caused by ABA in male and female rats with high accuracy. Analysis of the influence of SPA on ABA susceptibility in males and females rats suggests that either high or low levels of SPA increase the probability of high weight loss in ABA, but with larger effects in males compared to females. These results suggest that the same behavioral profile can identify individuals at-risk of AN for both male and female populations and that SPA has predictive value for susceptibility to AN. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Effects of harman and norharman on spontaneous and ultraviolet light-induced mutagenesis in cultured Chinese hamster cells

    International Nuclear Information System (INIS)

    Chang, C.C.; Castellazzi, M.; Glover, T.W.; Trosko, J.E.

    1978-01-01

    Nontoxic concentrations of harman and norharman were tested in cultured Chinese hamster cells for their effects on DNA repair and mutagenesis. The following effects of harman were observed: (a) the survival of ultraviolet light- or x-ray-damaged cells was reduced; (b) the ultraviolet light-induced unscheduled DNA synthesis was slightly inhibited; and (c) the frequency of spontaneous or ultraviolet light-induced ouabain-resistant (ouar) or 6-thioguanine-resistant (6-TGr) mutations was reduced. Furthermore, the effect of harman on survival and mutagenesis was greater than that of norharman and was detected primarily in treatments in which cells were exposed to harman immediately following ultraviolet light irradiation. Our data clearly indicate that harman decreases the capacity to repair DNA damage and fix mutations in Chinese hamster cells, possibly because of the intercalation properties of this compound

  5. Y-chromosome lineage determines cardiovascular organ T-cell infiltration in the stroke-prone spontaneously hypertensive rat.

    Science.gov (United States)

    Khan, Shanzana I; Andrews, Karen L; Jackson, Kristy L; Memon, Basimah; Jefferis, Ann-Maree; Lee, Man K S; Diep, Henry; Wei, Zihui; Drummond, Grant R; Head, Geoffrey A; Jennings, Garry L; Murphy, Andrew J; Vinh, Antony; Sampson, Amanda K; Chin-Dusting, Jaye P F

    2018-05-01

    The essential role of the Y chromosome in male sex determination has largely overshadowed the possibility that it may exert other biologic roles. Here, we show that Y-chromosome lineage is a strong determinant of perivascular and renal T-cell infiltration in the stroke-prone spontaneously hypertensive rat, which, in turn, may influence vascular function and blood pressure (BP). We also show, for the first time to our knowledge, that augmented perivascular T-cell levels can directly instigate vascular dysfunction, and that the production of reactive oxygen species that stimulate cyclo-oxygenase underlies this. We thus provide strong evidence for the consideration of Y-chromosome lineage in the diagnosis and treatment of male hypertension, and point to the modulation of cardiovascular organ T-cell infiltration as a possible mechanism that underpins Y- chromosome regulation of BP.-Khan, S. I., Andrews, K. L., Jackson, K. L., Memon, B., Jefferis, A.-M., Lee, M. K. S., Diep, H., Wei, Z., Drummond, G. R., Head, G. A., Jennings, G. L., Murphy, A. J., Vinh, A., Sampson, A. K., Chin-Dusting, J. P. F. Y-chromosome lineage determines cardiovascular organ T-cell infiltration in the stroke-prone spontaneously hypertensive rat.

  6. Characterization of a spontaneously generated murine retinal pigmented epithelium cell line; a model for in vitro experiments.

    Science.gov (United States)

    Ranaei Pirmardan, Ehsan; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Mowla, Seyed Javad; Ezzati, Razie; Naseri, Marzieh

    2016-10-01

    Retinal pigmented epithelium (RPE), the outermost layer of the retina, has a key role in maintaining retinal cells' functions. Severity of the culture of RPE cells has exerted many limitations to both in vitro and in vivo studies and its therapeutic applications. Therefore, establishment of RPE cell lines with high proliferative potential can considerably improve study of RPE cell biology. Here we report generation of a spontaneously immortalized murine RPE cell line in primary mouse RPE cell culture. Founded colonized cells were picked up and expression of RPE and retinal progenitor cells' (RPC) markers were studied using immunocytochemistry (ICC). Emerged cells cultured over 35 passages and population doubling times in different serum concentrations were calculated. We also investigated the ability of cells for becoming transfected by calcium-phosphate method and for becoming infected by adeno-associated virus serotype 2 (AAV2) using flow cytometry. Data showed that the cobblestone constituent cells expressed RPE65, cytokeratin and ZO1 and moreover several progenitor markers such as Pax6, Sox2, Nestin and Chx10. It revealed that, despite primary RPE cells, the newly emerged cells were easily transfectable and were highly infectable when compared with HEK293T cells. Our data indicated that the emerged mouse RPE cell line pretended RPC-like phenotype and also simultaneously expressed RPE markers. It would be a promising model for leading studies on RPE and RPC cells and substantially confirmed the great RPE plasticity and its invaluable potential in research studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Combining task-evoked and spontaneous activity to improve pre-operative brain mapping with fMRI

    Science.gov (United States)

    Fox, Michael D.; Qian, Tianyi; Madsen, Joseph R.; Wang, Danhong; Li, Meiling; Ge, Manling; Zuo, Huan-cong; Groppe, David M.; Mehta, Ashesh D.; Hong, Bo; Liu, Hesheng

    2016-01-01

    Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice for over 20 years. Recently, pre-operative fMRI mapping based on correlations in spontaneous brain activity has been demonstrated, however this approach has its own limitations and has not seen widespread clinical use. Here we show that spontaneous and task-based mapping can be performed together using the same pre-operative fMRI data, provide complimentary information relevant for functional localization, and can be combined to improve identification of eloquent motor cortex. Accuracy, sensitivity, and specificity of our approach are quantified through comparison with electrical cortical stimulation mapping in eight patients with intractable epilepsy. Broad applicability and reproducibility of our approach is demonstrated through prospective replication in an independent dataset of six patients from a different center. In both cohorts and every individual patient, we see a significant improvement in signal to noise and mapping accuracy independent of threshold, quantified using receiver operating characteristic curves. Collectively, our results suggest that modifying the processing of fMRI data to incorporate both task-based and spontaneous activity significantly improves functional localization in pre-operative patients. Because this method requires no additional scan time or modification to conventional pre-operative data acquisition protocols it could have widespread utility. PMID:26408860

  8. Urokinase vs Tissue-Type Plasminogen Activator for Thrombolytic Evacuation of Spontaneous Intracerebral Hemorrhage in Basal Ganglia

    Directory of Open Access Journals (Sweden)

    Yuqian Li

    2017-08-01

    Full Text Available Spontaneous intracerebral hemorrhage (ICH is a devastating form of stroke, which leads to a high rate of mortality and poor neurological outcomes worldwide. Thrombolytic evacuation with urokinase-type plasminogen activator (uPA or tissue-type plasminogen activator (tPA has been showed to be a hopeful treatment for ICH. However, to the best of our knowledge, no clinical trials were reported to compare the efficacy and safety of these two fibrinolytics administrated following minimally invasive stereotactic puncture (MISP in patients with spontaneous basal ganglia ICH. Therefore, the authors intended here to evaluate the differential impact of uPA and tPA in a retrospective study. In the present study, a total of 86 patients with spontaneous ICH in basal ganglia using MISP received either uPA (uPA group, n = 45 or tPA (tPA group, n = 41, respectively. The clinical baseline characteristics prior to the operation were collected. In addition, therapeutic responses were assessed by the short-term outcomes within 30 days postoperation, as well as long-term outcomes at 1 year postoperation. Our findings showed that, in comparison with tPA, uPA was able to better promote hematoma evacuation and ameliorate perihematomal edema, but the differences were not statistically significant. Moreover, the long-term functional outcomes of both groups were similar, with no statistical difference. In conclusion, these results provide evidence supporting that uPA and tPA are similar in the efficacy and safety for thrombolytic evacuation in combination with MISP in patients with spontaneous basal ganglia ICH.

  9. Lectin histochemistry and alkaline phosphatase activity in the pia mater vessels of spontaneously hypertensive rats (SHR).

    Science.gov (United States)

    Szumańska, G; Gadamski, R

    1992-01-01

    Some lectins were used to study the localization of sugar residues on the endothelial cell surface in the pia mater blood vessels of control (WKY) and hypertensive rats (SHR). The lectins tested recognized the following residues: beta-D-galactosyl (Ricinus communis agglutinin 120, RCA-1), alpha-L-fucosyl (Ulex europaeus agglutinin, UEA-1), N-acetylglucosaminyl and sialyl (Wheat germ agglutinin, WGA), N-glycolyl-neuraminic acid (Limax flavus agglutinin, LFA), and N-acetyl-D-galactosaminyl (Helix pomatia agglutinin, HPA). Several differences were revealed in the presence of sugar receptors on the surface of endothelial cells between the control and the hypertensive rats. Our studies showed also differences in the localization of the tested glycoconjugates between pial capillaries, small, medium-size and large pial arteries. The histochemical evaluation of alkaline phosphatase revealed an increased activity of the enzyme in the pial vessels of SHRs as compared with control rats with a similar localization of the enzyme activity. Some differences in the distribution of lectin binding sites and alkaline phosphatase activity could be associated with the different functions of particular segments of the pial vascular network.

  10. DNA Amplification by Breakage/Fusion/Bridge Cycles Initiated by Spontaneous Telomere Loss in a Human Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Anthony W.l. Lo

    2002-01-01

    Full Text Available The development of genomic instability is an important step in generatingthe multiple genetic changes required for cancer. One consequence of genomic instability is the overexpression of oncogenes due to gene amplification. One mechanism for gene amplification is the breakagelfusionlbridge (B/F/Bcyclethatinvolvesthe repeated fusion and breakage of chromosomes following the loss of a telomere. B/F/B cycles have been associated with low-copy gene amplification in human cancer cells, and have been proposed to be an initiating event in high-copy gene amplification. We have found that spontaneous telomere loss on a marker chromosome 16 in a human tumor cell line results in sister chromatid fusion and prolonged periods of chromosome instability. The high rate of anaphase bridges involving chromosome 16 demonstrates that this instability results from B/F/B cycles. The amplification of subtelomeric DNA on the marker chromosome provides conclusive evidence that B/F/B cycles initiated by spontaneous telomere loss are a mechanism for gene amplification in human cancer cells.

  11. Spontaneous confocal Raman microscopy--a tool to study the uptake of nanoparticles and carbon nanotubes into cells

    Science.gov (United States)

    Romero, Gabriela; Rojas, Elena; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio Enrique

    2011-06-01

    Confocal Raman microscopy as a label-free technique was applied to study the uptake and internalization of poly(lactide- co-glycolide) (PLGA) nanoparticles (NPs) and carbon nanotubes (CNTs) into hepatocarcinoma human HepG2 cells. Spontaneous confocal Raman spectra was recorded from the cells exposed to oxidized CNTs and to PLGA NPs. The Raman spectra showed bands arising from the cellular environment: lipids, proteins, nucleic acids, as well as bands characteristic for either PLGA NPs or CNTs. The simultaneous generation of Raman bands from the cell and nanomaterials from the same spot proves internalization, and also indicates the cellular region, where the nanomaterial is located. For PLGA NPs, it was found that they preferentially co-localized with lipid bodies, while the oxidized CNTs are located in the cytoplasm.

  12. Sources of variation and genetic profile of spontaneous, out-of-season ovulatory activity in the Chios sheep

    Directory of Open Access Journals (Sweden)

    Kouttos Athanasios

    2003-01-01

    Full Text Available Abstract Organising the breeding plan of a seasonally breeding species, such as sheep, presents a challenge to farmers and the industry as a whole, since both economical and biological considerations need to be carefully balanced. Understanding the breeding activity of individual animals becomes a prerequisite for a successful breeding program. This study set out to investigate the sources of variation and the genetic profile of the spontaneous, out-of-season ovulatory activity of ewes of the Chios dairy sheep breed in Greece. The definition of the trait was based on blood progesterone levels, measured before exposing the ewes to rams, which marks the onset of the usual breeding season. Data were 707 records, taken over two consecutive years, of 435 ewes kept at the Agricultural Research Station of Chalkidiki in northern Greece. When all available pedigree was included, the total number of animals involved was 1068. On average, 29% of all ewes exhibited spontaneous, out-of-season ovulatory activity, with no substantial variation between the years. Significant sources of systematic variation were the ewe age and live weight, and the month of previous lambing. Older, heavier ewes, that had lambed early the previous autumn, exhibited more frequent activity. Heritability estimates were 0.216 (± 0.084 with a linear and 0.291 with a threshold model. The latter better accounts for the categorical nature of the trait. The linear model repeatability was 0.230 (± 0.095. The results obtained in this study support the notion that spontaneous out-of-season ovulatory activity can be considered in the development of a breeding plan for the Chios sheep breed.

  13. Dentate gyrus progenitor cell proliferation after the onset of spontaneous seizures in the tetanus toxin model of temporal lobe epilepsy.

    Science.gov (United States)

    Jiruska, Premysl; Shtaya, Anan B Y; Bodansky, David M S; Chang, Wei-Chih; Gray, William P; Jefferys, John G R

    2013-06-01

    Temporal lobe epilepsy alters adult neurogenesis. Existing experimental evidence is mainly from chronic models induced by an initial prolonged status epilepticus associated with substantial cell death. In these models, neurogenesis increases after status epilepticus. To test whether status epilepticus is necessary for this increase, we examined precursor cell proliferation and neurogenesis after the onset of spontaneous seizures in a model of temporal lobe epilepsy induced by unilateral intrahippocampal injection of tetanus toxin, which does not cause status or, in most cases, detectable neuronal loss. We found a 4.5 times increase in BrdU labeling (estimating precursor cells proliferating during the 2nd week after injection of toxin and surviving at least up to 7days) in dentate gyri of both injected and contralateral hippocampi of epileptic rats. Radiotelemetry revealed that the rats experienced 112±24 seizures, lasting 88±11s each, over a period of 8.6±1.3days from the first electrographic seizure. On the first day of seizures, their duration was a median of 103s, and the median interictal period was 23min, confirming the absence of experimentally defined status epilepticus. The total increase in cell proliferation/survival was due to significant population expansions of: radial glial-like precursor cells (type I; 7.2×), non-radial type II/III neural precursors in the dentate gyrus stem cell niche (5.6×), and doublecortin-expressing neuroblasts (5.1×). We conclude that repeated spontaneous brief temporal lobe seizures are sufficient to promote increased hippocampal neurogenesis in the absence of status epilepticus. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Goniothalamin prevents the development of chemically induced and spontaneous colitis in rodents and induces apoptosis in the HT-29 human colon tumor cell line

    Energy Technology Data Exchange (ETDEWEB)

    Vendramini-Costa, Débora Barbosa, E-mail: vendramini.debora@gmail.com [Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP (Brazil); Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, Campinas, SP (Brazil); Alcaide, Antonio [Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville (Spain); Pelizzaro-Rocha, Karin Juliane [Department of Biochemistry, Institute of Biology, University of Campinas, Campinas, SP (Brazil); Talero, Elena; Ávila-Román, Javier [Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville (Spain); Garcia-Mauriño, Sofia [Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville (Spain); Pilli, Ronaldo Aloise [Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP (Brazil); Carvalho, João Ernesto de [Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, Campinas, SP (Brazil); Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP (Brazil); Motilva, Virginia [Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville (Spain)

    2016-06-01

    Colon cancer is the third most incident type of cancer worldwide. One of the most important risk factors for colon cancer development are inflammatory bowel diseases (IBD), thus therapies focusing on IBD treatment have great potential to be used in cancer prevention. Nature has been a source of new therapeutic and preventive agents and the racemic form of the styryl-lactone goniothalamin (GTN) has been shown to be a promising antiproliferative agent, with gastroprotective, antinociceptive and anti-inflammatory effects. As inflammation is a well-known tumor promoter, the major goal of this study was to evaluate the therapeutic and preventive potentials of GTN on chemically induced and spontaneous colitis, as well as the cytotoxic effects of GTN on a human colon tumor cell line (HT-29). GTN treatments inhibited TNBS-induced acute and chronic colitis development in Wistar rats, reducing myeloperoxidase levels and inflammatory cells infiltration in the mucosa. In spontaneous-colitis using IL-10 deficient mice (C57BL/6 background), GTN prevented colitis development through downregulation of TNF-α, upregulation of SIRT-1 and inhibition of proliferation (PCNA index), without signs of toxicity after three months of treatment. In HT-29 cells, treatment with 10 μM of GTN induced apoptosis by increasing BAX/BCL2, p-JNK1/JNK1, p-P38/P38 ratios as well as through ROS generation. Caspase 8, 9 and 3 activation also occurred, suggesting caspase-dependent apoptotic pathway, culminating in PARP-1 cleavage. Together with previous data, these results show the importance of GTN as a pro-apoptotic, preventive and therapeutic agent for IBD and highlight its potential as a chemopreventive agent for colon cancer. - Highlights: • Goniothalamin (GTN) inhibits the development of TNBS-induced colitis in rats. • Moreover, GTN prevents the development of spontaneous colitis in IL-10 deficient mice. • This activity relies on downregulation of TNF-α and upregulation of SIRT-1 expression

  15. Effect of in vitro irradiation and cell cycle-inhibitory drugs on the spontaneous human IgE synthesis in vitro

    International Nuclear Information System (INIS)

    Del Prete, G.F.; Vercelli, D.; Tiri, A.; Maggi, E.; Rossi, O.; Romagnani, S.; Ricci, M.

    1987-01-01

    The in vitro effects of radiation, diterpine forskolin (FK), and hydrocortisone (HC) on the in vitro spontaneous IgE synthesis by peripheral blood B-lymphocytes from atopic patients were investigated. Without affecting cell viability, in vitro irradiation inhibited in a dose-dependent fashion de novo IgE synthesis in vitro by B cells from all patients examined with a mean 40% reduction of in vitro IgE product after treatment with 100 rads. In contrast, the in vitro IgE production by the U266 myeloma cell line was unaffected, even by irradiation with 1600 rads. The addition to B cell cultures from atopic patients of FK consistently resulted in a dose-dependent inhibition of the spontaneous IgE production in vitro. The addition to cultures of 10(-5) and 10(-6) molar concentrations of HC was also usually inhibitory, whereas lower HC concentrations were uneffective or even enhanced the spontaneous in vitro IgE synthesis. When 10(-6) molar concentrations of both HC and FK were combined in culture, a summation inhibitory effect on the spontaneous IgE synthesis was observed. In contrast, neither FK nor HC had inhibitory effect on the in vitro spontaneous IgE synthesis by the U266 myeloma cell line. The spontaneous in vitro IgE synthesis by B cells from patients with Hodgkin's disease, demonstrating high levels of serum IgE, was strongly reduced or virtually abolished after patients underwent total nodal irradiation to prevent the spread of the disease. In addition, the in vitro spontaneous IgE synthesis by B cells from atopic patients was markedly decreased or abolished by in vivo administration of betamethasone

  16. Mast cell activation disease

    African Journals Online (AJOL)

    EL-HAKIM

    remodeling, wound healing, and tumor repression or growth. The broad scope .... lesions, and (iv) MC leukemia, probably representing the ..... Slow-release Vitamin C (increased degranulation of histamine; inhibition of mast cell degranulation ...

  17. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study

    OpenAIRE

    Wei Pan; Wei Pan; Wei Pan; Xuemei Gao; Shuo Shi; Fuqu Liu; Chao Li

    2018-01-01

    A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the...

  18. Population calcium imaging of spontaneous respiratory and novel motor activity in the facial nucleus and ventral brainstem in newborn mice

    DEFF Research Database (Denmark)

    Persson, Karin; Rekling, Jens C

    2011-01-01

    The brainstem contains rhythm and pattern forming circuits, which drive cranial and spinal motor pools to produce respiratory and other motor patterns. Here we used calcium imaging combined with nerve recordings in newborn mice to reveal spontaneous population activity in the ventral brainstem...... and in the facial nucleus. In Fluo-8AM loaded brainstem-spinal cord preparations, respiratory activity on cervical nerves was synchronized with calcium signals at the ventrolateral brainstem surface. Individual ventrolateral neurons at the level of the parafacial respiratory group showed perfect or partial...... synchrony with respiratory nerve bursts. In brainstem-spinal cord preparations, cut at the level of the mid-facial nucleus, calcium signals were recorded in the dorsal, lateral and medial facial subnuclei during respiratory activity. Strong activity initiated in the dorsal subnucleus, followed by activity...

  19. Abnormal proliferation of CD4- CD8+ gammadelta+ T cells with chromosome 6 anomaly: role of Fas ligand expression in spontaneous regression of the cells.

    Science.gov (United States)

    Ichikawa, N; Kitano, K; Ito, T; Nakazawa, T; Shimodaira, S; Ishida, F; Kiyosawa, K

    1999-04-01

    We report a case of granular lymphocyte proliferative disorder accompanied with hemolytic anemia and neutropenia. Phenotypes of the cells were T cell receptor gammadelta+ CD3+ CD4- CD8+ CD16+ CD56- CD57-. Southern blot analysis of T cell receptor beta and gamma chains demonstrated rearranged bands in both. Chromosomal analysis after IL-2 stimulation showed deletion of chromosome 6. Sorted gammadelta+ T cells showed an increase in Fas ligand expression compared with the levels in sorted alphabeta+ T cells. The expression of Fas ligand on these gammadelta+ T cells increased after IL-2 stimulation. The patient's anemia improved along with a decrease in granular lymphocyte count and disappearance of the abnormal karyotype without treatment. The expression of Fas ligand may be involved in spontaneous regression of granular lymphocyte proliferation with hemolytic anemia.

  20. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism

    DEFF Research Database (Denmark)

    Dodson, Paul D.; Dreyer, Jakob K.; Jennings, Katie Ann

    2016-01-01

    receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson's disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types......Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson's disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates...... of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine...

  1. Optimization of an NLEO-based algorithm for automated detection of spontaneous activity transients in early preterm EEG

    International Nuclear Information System (INIS)

    Palmu, Kirsi; Vanhatalo, Sampsa; Stevenson, Nathan; Wikström, Sverre; Hellström-Westas, Lena; Palva, J Matias

    2010-01-01

    We propose here a simple algorithm for automated detection of spontaneous activity transients (SATs) in early preterm electroencephalography (EEG). The parameters of the algorithm were optimized by supervised learning using a gold standard created from visual classification data obtained from three human raters. The generalization performance of the algorithm was estimated by leave-one-out cross-validation. The mean sensitivity of the optimized algorithm was 97% (range 91–100%) and specificity 95% (76–100%). The optimized algorithm makes it possible to systematically study brain state fluctuations of preterm infants. (note)

  2. Spontaneous presence of FOXO3-specific T cells in cancer patients

    DEFF Research Database (Denmark)

    Larsen, Stine Kiaer; Ahmad, Shamaila Munir; Idorn, Manja

    2014-01-01

    In the present study, we describe forkhead box O3 (FOXO3)-specific, cytotoxic CD8(+) T cells existent among peripheral-blood mononuclear cells (PBMCs) of cancer patients. FOXO3 immunogenicity appears specific, as we did not detect reactivity toward FOXO3 among T cells in healthy individuals. FOXO3...... may naturally serve as a target antigen for tumor-reactive T cells as it is frequently over-expressed in cancer cells. In addition, expression of FOXO3 plays a critical role in immunosuppression mediated by tumor-associated dendritic cells (TADCs). Indeed, FOXO3-specific cytotoxic T lymphocytes (CTLs......) were able to specifically recognize and kill both FOXO3-expressing cancer cells as well as dendritic cells. Thus, FOXO3 was processed and presented by HLA-A2 on the cell surface of both immune cells and cancer cells. As FOXO3 programs TADCs to become tolerogenic, FOXO3 signaling thereby comprises...

  3. Isolation and characterization of a new cell line from spontaneous mouse mammary tumour, MBL-6, for in vivo cancer studies

    Directory of Open Access Journals (Sweden)

    Ladan Langroudi

    2017-12-01

    Full Text Available In search for treatments against breast cancer, cell lines are one of the basic resources, particularly as in vitro models. Additionally, animal models of cancer are used as the successive step in therapeutics research. In this regard, human breast cancer cell lines provide fundamental models in vitro. However, in vivo studies require immunodeficient mice, which lack the influence of other in vivo factors such as the native microenvironment and the immune system. There are few standard models to study the pathogenic mechanism at molecular level and cell signaling pathway of breast cancer. In this study, a new mouse breast cancer cell line, MBL-6, was successfully established and characterized from tissues of a spontaneous mammary tumor. The cell line had epithelial morphology, formed adherent monolayer, maintained continuously in vitro and was able to form new tumors when injected subcutaneously in syngeneic mice. The growth pattern and metastasis evaluations revealed a considerable in situ duration before invading distant organs. Real time polymerase chain reaction (PCR analysis showed the expression of ER-, PR- and Her-2 receptors. The chromosome analysis showed numerous chromosomal abnormalities. Aggressive tumorigenecity in tumorigenesis test and the IC50 to cyclophosphamide (CTX, celecoxib (CLX and cisplatin (CPN was also evaluated. The numerous tests performed on the new MBL-6 cell line suggest that it is in good quality and may be used in animal models of breast cancer studies.

  4. Essential Oil Composition, Antioxidant, Cytotoxic and Antiviral Activities of Teucrium pseudochamaepitys Growing Spontaneously in Tunisia

    Directory of Open Access Journals (Sweden)

    Saoussen Hammami

    2015-11-01

    Full Text Available The chemical composition, antioxidant, cytotoxic and antiviral activities of the essential oil obtained by hydrodistillation from the aerial parts of Teucrium pseudochamaepitys (Lamiaceae collected from Zaghouan province of Tunisia are reported. The essential oil was analyzed by gas chromatography equipped with a flame ionization detector (GC-FID and gas chromatography coupled with mass spectrometry (GC/MS. Thirty-one compounds were identified representing 88.6% of the total essential oil. Hexadecanoic acid was found to be the most abundant component (26.1% followed by caryophyllene oxide (6.3%, myristicin (4.9% and α-cubebene (3.9%. The antioxidant capacity of the oil was measured on the basis of the scavenging activity to the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH. The IC50 value of the oil was evaluated as 0.77 mg·mL−1. In addition, the essential oil was found to possess moderate cytotoxic effects on the HEp-2 cell line (50% cytotoxic concentration (CC50 = 653.6 µg·mL−1. The potential antiviral effect was tested against Coxsackievirus B (CV-B, a significant human and mouse pathogen that causes pediatric central nervous system disease, commonly with acute syndromes. The reduction of viral infectivity by the essential oil was measured using a cytopathic (CPE reduction assay.

  5. Combining task-evoked and spontaneous activity to improve pre-operative brain mapping with fMRI.

    Science.gov (United States)

    Fox, Michael D; Qian, Tianyi; Madsen, Joseph R; Wang, Danhong; Li, Meiling; Ge, Manling; Zuo, Huan-Cong; Groppe, David M; Mehta, Ashesh D; Hong, Bo; Liu, Hesheng

    2016-01-01

    Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice for over 20years. Recently, pre-operative fMRI mapping based on correlations in spontaneous brain activity has been demonstrated, however this approach has its own limitations and has not seen widespread clinical use. Here we show that spontaneous and task-based mapping can be performed together using the same pre-operative fMRI data, provide complimentary information relevant for functional localization, and can be combined to improve identification of eloquent motor cortex. Accuracy, sensitivity, and specificity of our approach are quantified through comparison with electrical cortical stimulation mapping in eight patients with intractable epilepsy. Broad applicability and reproducibility of our approach are demonstrated through prospective replication in an independent dataset of six patients from a different center. In both cohorts and every individual patient, we see a significant improvement in signal to noise and mapping accuracy independent of threshold, quantified using receiver operating characteristic curves. Collectively, our results suggest that modifying the processing of fMRI data to incorporate both task-based and spontaneous activity significantly improves functional localization in pre-operative patients. Because this method requires no additional scan time or modification to conventional pre-operative data acquisition protocols it could have widespread utility. Copyright © 2015. Published by Elsevier Inc.

  6. Translational Science: How experimental research has contributed to the understanding of spontaneous Physical Activity and Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Izabelle D Benfato

    2017-05-01

    Full Text Available Abstract Spontaneous physical activity (SPA consists of all daily living activities other than volitional exercise (e.g. sports and fitness-related activities. SPA is an important component of energy expenditure and may protect from overweight and obesity. Little is known about the biological regulation of SPA, but animal researchhas contributedsignificantly to expand our knowledge in this field. Studies in rodents have shown that SPA is influenced by nutrients and volitional exercise. High-fat diet seems to decrease SPA, which contributes to weigh gain. Volitional exercisemayalso reduce SPA, helping to explain the commonly reported low efficiency of exercise to cause weight loss, and highlighting the need to finda volume/intensity of exercise to maximize total daily energy expenditure. Animal studieshave also allowed for the identification of some brain areas and chemical mediatorsinvolved in SPA regulation. These discoveries could enable the development of new therapeutics aiming to enhance SPA.

  7. High-Efficiency Fullerene Solar Cells Enabled by a Spontaneously Formed Mesostructured CuSCN-Nanowire Heterointerface

    KAUST Repository

    Sit, Wai-Yu

    2018-02-02

    Fullerenes and their derivatives are widely used as electron acceptors in bulk-heterojunction organic solar cells as they combine high electron mobility with good solubility and miscibility with relevant semiconducting polymers. However, studies on the use of fullerenes as the sole photogeneration and charge-carrier material are scarce. Here, a new type of solution-processed small-molecule solar cell based on the two most commonly used methanofullerenes, namely [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) and [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM), as the light absorbing materials, is reported. First, it is shown that both fullerene derivatives exhibit excellent ambipolar charge transport with balanced hole and electron mobilities. When the two derivatives are spin-coated over the wide bandgap p-type semiconductor copper (I) thiocyanate (CuSCN), cells with power conversion efficiency (PCE) of ≈1%, are obtained. Blending the CuSCN with PC70BM is shown to increase the performance further yielding cells with an open-circuit voltage of ≈0.93 V and a PCE of 5.4%. Microstructural analysis reveals that the key to this success is the spontaneous formation of a unique mesostructured p–n-like heterointerface between CuSCN and PC70BM. The findings pave the way to an exciting new class of single photoactive material based solar cells.

  8. Infusion of adrenergic receptor agonists and antagonists into the locus coeruleus and ventricular system of the brain. Effects on swim-motivated and spontaneous motor activity.

    Science.gov (United States)

    Weiss, J M; Simson, P G; Hoffman, L J; Ambrose, M J; Cooper, S; Webster, A

    1986-04-01

    These studies examined how pharmacological stimulation and blockade of alpha receptors would affect active motor behavior in rats. In experiment I, alpha-2 receptor antagonists (piperoxane, yohimbine) and agonists [clonidine, norepinephrine (NE)] were infused into various locations in the ventricular system of the brain, including the locus coeruleus region, and motor activity was measured. Activity was measured principally in a swim test but spontaneous (ambulatory) activity was also recorded while drugs were being infused. When infused into the locus coeruleus region, small doses of the antagonists piperoxane and yohimbine depressed activity in the swim test while infusion of the agonists clonidine and NE had the opposite effect of stimulating activity. These effects were highly specific to the region of the locus coeruleus, since infusions of these drugs into other nearby locations in the ventricular system or use of larger doses had different, often opposite effects. This was especially true of clonidine and NE which profoundly depressed activity when infused posterior to the locus coeruleus, particularly over the dorsal vagal complex. Infusion of small doses of these drugs into the lateral ventricle had effects similar to infusion into the locus coeruleus region, though less pronounced. Changes in spontaneous motor activity were also observed, but this measure differentiated the groups less well than did the swim test. In experiment II, the predominantly postsynaptic receptor agonists isoproterenol (beta agonist) and phenylephrine (alpha-1 agonist) were infused into the ventricular system. Since infusions of piperoxane and yohimbine into the locus coeruleus that decreased activity in experiment I increase the release of NE by blocking alpha-2 inhibitory receptors on cell bodies and dendrites of the locus coeruleus, experiment II tested whether ventricular infusion of predominantly postsynaptic receptor agonists would also decrease activity in the swim test

  9. SP-100 reactor cell activation

    International Nuclear Information System (INIS)

    Wilcox, A.D.

    1991-09-01

    There are plans to test the SP-100 space reactor for 2 yr in the test facility shown in Figure 1. The vacuum vessel will be in the reactor experiment (RX) cell surrounded by an inert gas atmosphere. It is proposed that the reactor test cell could contain removable-water- shielding tanks to reduce the residual activation dose rates in the test cell after the tests are completed. This reduction will allow the facility to be considered for other uses after the SP-100 tests are completed. The radiation dose rates in the test cell were calculated for several configurations of water-shielding tanks to help evaluate this concept

  10. Blockade of persistent sodium currents contributes to the riluzole-induced inhibition of spontaneous activity and oscillations in injured DRG neurons.

    Directory of Open Access Journals (Sweden)

    Rou-Gang Xie

    Full Text Available In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (I(NaP. The I(NaP is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG is the gateway for ectopic impulses that originate in pathological pain signals from the periphery. However, the role of I(NaP in DRG neurons remains unclear, particularly in neuropathic pain states. Using in vivo recordings from single medium- and large-diameter fibers isolated from the compressed DRG in Sprague-Dawley rats, we show that local application of riluzole, which blocks the I(NaP, also inhibits the spontaneous activity of A-type DRG neurons in a dose-dependent manner. Significantly, riluzole also abolished subthreshold membrane potential oscillations (SMPOs, although DRG neurons still responded to intracellular current injection with a single full-sized spike. In addition, the I(NaP was enhanced in medium- and large-sized neurons of the compressed DRG, while bath-applied riluzole significantly inhibited the I(NaP without affecting the transient sodium current (I(NaT. Taken together, these results demonstrate for the first time that the I(NaP blocker riluzole selectively inhibits I(NaP and thereby blocks SMPOs and the ectopic spontaneous activity of injured A-type DRG neurons. This suggests that the I(NaP of DRG neurons is a potential target for treating neuropathic pain at the peripheral level.

  11. Blockade of persistent sodium currents contributes to the riluzole-induced inhibition of spontaneous activity and oscillations in injured DRG neurons.

    Science.gov (United States)

    Xie, Rou-Gang; Zheng, Da-Wei; Xing, Jun-Ling; Zhang, Xu-Jie; Song, Ying; Xie, Ya-Bin; Kuang, Fang; Dong, Hui; You, Si-Wei; Xu, Hui; Hu, San-Jue

    2011-04-25

    In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (I(NaP)). The I(NaP) is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG) is the gateway for ectopic impulses that originate in pathological pain signals from the periphery. However, the role of I(NaP) in DRG neurons remains unclear, particularly in neuropathic pain states. Using in vivo recordings from single medium- and large-diameter fibers isolated from the compressed DRG in Sprague-Dawley rats, we show that local application of riluzole, which blocks the I(NaP), also inhibits the spontaneous activity of A-type DRG neurons in a dose-dependent manner. Significantly, riluzole also abolished subthreshold membrane potential oscillations (SMPOs), although DRG neurons still responded to intracellular current injection with a single full-sized spike. In addition, the I(NaP) was enhanced in medium- and large-sized neurons of the compressed DRG, while bath-applied riluzole significantly inhibited the I(NaP) without affecting the transient sodium current (I(NaT)). Taken together, these results demonstrate for the first time that the I(NaP) blocker riluzole selectively inhibits I(NaP) and thereby blocks SMPOs and the ectopic spontaneous activity of injured A-type DRG neurons. This suggests that the I(NaP) of DRG neurons is a potential target for treating neuropathic pain at the peripheral level.

  12. Silk-Fibroin and Graphene Oxide Composites Promote Human Periodontal Ligament Stem Cell Spontaneous Differentiation into Osteo/Cementoblast-Like Cells.

    Science.gov (United States)

    Vera-Sánchez, Mar; Aznar-Cervantes, Salvador; Jover, Eva; García-Bernal, David; Oñate-Sánchez, Ricardo E; Hernández-Romero, Diana; Moraleda, Jose M; Collado-González, Mar; Rodríguez-Lozano, Francisco Javier; Cenis, Jose Luis

    2016-11-15

    Graphene represents one of the most interesting additions to the tissue engineering toolbox. Novel graphene-based composites are required to improve the beneficial graphene properties in terms of tridimensional polymeric structure, conferring a higher mechanical strength and favoring the differentiation of human mesenchymal stem cells. Here, we have demonstrated in a wide range of composite combinations, the successful use of graphene and silk-fibroin constructs for future bioengineering applications in the field of clinical regenerative dentistry using human periodontal ligament stem cells. Our results provide exciting new data for the development of suitable scaffolds that allow good cell engrafting, preservation of cell viability and proliferation, promotion of spontaneous osteoblastic differentiation, and importantly, stimulation of a higher cementum physiological synthesis than using other different available biomaterials.

  13. Isolation and characterization of a spontaneously immortalized bovine retinal pigmented epithelial cell line

    Directory of Open Access Journals (Sweden)

    Griffiths T Daniel

    2009-05-01

    Full Text Available Abstract Background The Retinal Pigmented Epithelium (RPE is juxtaposed with the photoreceptor outer segments of the eye. The proximity of the photoreceptor cells is a prerequisite for their survival, as they depend on the RPE to remove the outer segments and are also influenced by RPE cell paracrine factors. RPE cell death can cause a progressive loss of photoreceptor function, which can diminish vision and, over time, blindness ensues. Degeneration of the retina has been shown to induce a variety of retinopathies, such as Stargardt's disease, Cone-Rod Dystrophy (CRD, Retinitis Pigmentosa (RP, Fundus Flavimaculatus (FFM, Best's disease and Age-related Macular Degeneration (AMD. We have cultured primary bovine RPE cells to gain a further understanding of the mechanisms of RPE cell death. One of the cultures, named tRPE, surpassed senescence and was further characterized to determine its viability as a model for retinal diseases. Results The tRPE cell line has been passaged up to 150 population doublings and was shown to be morphologically similar to primary cells. They have been characterized to be of RPE origin by reverse transcriptase PCR and immunocytochemistry using the RPE-specific genes RPE65 and CRALBP and RPE-specific proteins RPE65 and Bestrophin. The tRPE cells are also immunoreactive to vimentin, cytokeratin and zonula occludens-1 antibodies. Chromosome analysis indicates a normal diploid number. The tRPE cells do not grow in suspension or in soft agar. After 3H thymidine incorporation, the cells do not appear to divide appreciably after confluency. Conclusion The tRPE cells are immortal, but still exhibit contact inhibition, serum dependence, monolayer growth and secrete an extra-cellular matrix. They retain the in-vivo morphology, gene expression and cell polarity. Additionally, the cells endocytose exogenous melanin, A2E and purified lipofuscin granules. This cell line may be a useful in-vitro research model for retinal

  14. Total pleurectomy as the surgical treatment for recurrent secondary spontaneous pneumothorax in a child with severe pulmonary Langerhans cells histiocytosis.

    Science.gov (United States)

    Abdul Aziz, Dayang Anita; Abdul Rahman, Nur Afdzillah; Tang, Swee Fong; Abdul Latif, Hasniah; Zaki, Faizah Mohd; Annuar, Zulfiqar Mohd; Alias, Hamidah; Abdul Latiff, Zarina

    2011-12-01

    Pulmonary Langerhans cell histiocytosis (LCH) in children is more extensive and is a rare cause of spontaneous secondary pneumothorax (SSP) which tends to be recurrent and refractory to conventional treatment. Its occurrence in paediatric patients posed great challenge to the choice of surgical management. Surgery in the form of pleurodesis is only considered if SSP does not improve after chemotherapy and after considering all relevant risk and benefits of surgery to patients. Chemical pleurodesis will not give the expected effect to eradicate SSP in this patient. Therefore mechanical pleurodesis is the treatment of choice. There are various techniques to perform mechanical pleurodesis; from pleural abrasion to pleurectomy. In the authors' experience, bilateral total pleurectomy provided the best outcome for this 9-year-old patient with persistent respiratory distress from SSP due to extensive pulmonary LCH.

  15. Spontaneous arylation of activated carbon from aminobenzene organic acids as source of diazonium ions in mild conditions

    International Nuclear Information System (INIS)

    Lebègue, Estelle; Brousse, Thierry; Gaubicher, Joël; Cougnon, Charles

    2013-01-01

    Activated carbon products modified with benzoic, benzenesulfonic and benzylphosphonic acid groups were prepared by spontaneous reduction of aryldiazonium ions in situ generated in water from the corresponding aminobenzene organic acids without addition of an external acid. Electrochemistry and NMR studies show that the advancement of the diazotization reaction depends both on the acidity and the electronic effect of the organic acid substituent, giving a mixture of diazonium, amine and triazene functionalities. Carbon products prepared by reaction of activated carbon Norit with 4-aminobenzenecarboxylic acid, 4-aminobenzenesulfonic acid and (4-aminobenzyl)phosphonic acid were analyzed by chemical elemental analysis and X-ray photoelectron spectroscopy experiments. Results show that this strategy is well suited for the chemical functionalization, giving a maximized grafting yield due to a chemical cooperation of amine and diazonium functionalities

  16. Localization of spontaneous bursting neuronal activity in the preterm human brain with simultaneous EEG-fMRI.

    Science.gov (United States)

    Arichi, Tomoki; Whitehead, Kimberley; Barone, Giovanni; Pressler, Ronit; Padormo, Francesco; Edwards, A David; Fabrizi, Lorenzo

    2017-09-12

    Electroencephalographic recordings from the developing human brain are characterized by spontaneous neuronal bursts, the most common of which is the delta brush. Although similar events in animal models are known to occur in areas of immature cortex and drive their development, their origin in humans has not yet been identified. Here, we use simultaneous EEG-fMRI to localise the source of delta brush events in 10 preterm infants aged 32-36 postmenstrual weeks. The most frequent patterns were left and right posterior-temporal delta brushes which were associated in the left hemisphere with ipsilateral BOLD activation in the insula only; and in the right hemisphere in both the insular and temporal cortices. This direct measure of neural and hemodynamic activity shows that the insula, one of the most densely connected hubs in the developing cortex, is a major source of the transient bursting events that are critical for brain maturation.

  17. Preclinical study of selective thermal neutron capture treatment of pigs having spontaneous melanoma using melanin productive activity

    International Nuclear Information System (INIS)

    Miyashita, Ichiro; Sawaya, Hiroshi; Nomura, Toyoichiro

    1980-01-01

    Four pigs having spontaneous melanoma were irradiated with 0.5 - 2 x 10 13 n/cm 2 of thermal neutron under remote anesthesia. Compounds of 10 B used in this experiment were 10 B 12 -chlorpromazine ( 10 B 12 -CPZ), 10 B-dopa, and 10 B 1 -para-boronophenylalanine ( 10 B 1 -BPA), and they were injected into melanoma or regions around melanoma. After irradiation of thermal neutron, melanoma tended to reduce in four pigs, and melanoma cells in white fur and hair bulb disappeared in 3 of 4 pigs. Hematological examinations and blood chemistry tests did not show any changes in blood findings both before and after the irradiation, and white blood cell counts were within a normal range. Dermatitis following the irradiation disappeared one week later. Histological changes one month after the irradiation indicated that many melanophages feeding melanosome replaced melanoma cells, which suggested disintegration of melanoma cells. Marked effectiveness of this treatment was recognized in each pig. 10 B-BPA.HCI was injected into one pig twice, and its accumulation in melanoma and normal regions around melanoma was expressed as boron concentrations. As a result, the accumulation in melanoma (6.6 μg/g wet tissue) was 3.1 times as much as that in normal regions around melanoma (2.1 μg/g wet tissue). (Tsunoda, M.)

  18. X-ray-induced bystander response reduce spontaneous mutations in V79 cells

    International Nuclear Information System (INIS)

    Maeda, Munetoshi; Kobayashi, Katsumi; Matsumoto, Hideki; Usami, Noriko; Tomiya, Masanori

    2013-01-01

    The potential for carcinogenic risks is increased by radiation-induced bystander responses; these responses are the biological effects in unirradiated cells that receive signals from the neighboring irradiated cells. Bystander responses have attracted attention in modern radiobiology because they are characterized by non-linear responses to low-dose radiation. We used a synchrotron X-ray microbeam irradiation system developed at the Photon Factory, High Energy Accelerator Research Organization, KEK, and showed that nitric oxide (NO)-mediated bystander cell death increased biphasically in a dose-dependent manner. Here, we irradiated five cell nuclei using 10 × 10 µm 2 5.35 keV X-ray beams and then measured the mutation frequency at the hypoxanthine-guanosine phosphoribosyl transferase (HPRT) locus in bystander cells. The mutation frequency with the null radiation dose was 2.6 × 10 -5 (background level), and the frequency decreased to 5.3 × 10 -6 with a dose of approximately 1 Gy (absorbed dose in the nucleus of irradiated cells). At high doses, the mutation frequency returned to the background level. A similar biphasic dose-response effect was observed for bystander cell death. Furthermore, we found that incubation with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), a specific scavenger of NO, suppressed not only the biphasic increase in bystander cell death but also the biphasic reduction in mutation frequency of bystander cells. These results indicate that the increase in bystander cell death involves mechanisms that suppress mutagenesis. This study has thus shown that radiation-induced bystander responses could affect processes that protect the cell against naturally occurring alterations such as mutations. (author)

  19. Novel Target for Ameliorating Pain and Other Problems after SCI: Spontaneous Activity in Nociceptors

    Science.gov (United States)

    2016-06-01

    BSCB will permit blood-borne mye- loid and lymphoid immune cells to enter the spinal cord parenchyma and exert direct inflammatory actions on central...primitive innate immune system is the first line of defense against pathogens and toxins; it is always present and it depends upon diverse cell types that...adaptive immune system, the innate immune system does not em- ploy antigen-specific humoral and cell -mediated immunity mecha- nisms. Two innate immune

  20. Influence of mianserin on the activity of some hypotensive drugs in spontaneously hypertensive rats.

    Science.gov (United States)

    Górska, Dorota; Andrzejczak, Dariusz

    2003-01-01

    Mianserin might be an alternative drug in patients with depression accompanied by hypertension because of its effectiveness and lack of side effects in the circulatory system. However, a few studies reported in literature show influence of the drug on blood pressure. We investigate interactions between mianserin and commonly used hypotensive drugs (propranolol, enalapril and prazosin) in spontaneously hypertensive rats (SHR). The experiments were performed in two experimental designs: a single administration of both mianserin and a hypotensive drug, and repeated administration of mianserin with a single administration of a hypotensive drug. Arterial blood pressure was measured by bloodless method with manometer made by LETICA. A single administration of mianserin caused a statistically significant decrease in systolic, diastolic and mean blood pressure in the 60th minute of observation and intensified hypotensive effect of prazosin. However, long-term administration of mianserin in SHR rats had no significant influence on arterial blood pressure. Chronic and single administration of mianserin with propranolol or enalapril did not influence the circulatory system. A long-term administration of mianserin intensified the hypotensive effect of prazosin. This interaction might suggest possibility of dangerous complications in the treatment of humans with this drug combination.

  1. Technique, pharmacokinetics, toxicity, and efficacy of intratumoral etanidazole and radiotherapy for treatment of spontaneous feline oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Evans, S.M.; LaCreta, F.; Helfand, S.; VanWinkle, T.; Curran, W.J. Jr.; Brown, D.Q.; Hanks, G.

    1991-01-01

    The histologic appearance, locoregional recurrence, and rate/site of metastases of spontaneous feline oral squamous cell carcinoma are similar to head and neck cancer in humans. A feasibility study of intratumoral Etanidazole, a hypoxic cell sensitizer, and radiation therapy were instituted in this model. Eleven cats with feline squamous cell carcinoma were treated with intratumoral Etanidazole and radiation therapy. Total Etanidazole doses were 1.5-24.0 gms/m2 (0.5-6.9 gms). The tumor partial response rate was 100% (11/11); the median volume regression was 70%. All cats have died as a result of tumor recurrence or tumor-related complications. Median survival was 116 days. Ten cats have been autopsied. Non-necrotic and necrotic tumor cells were identified at the treatment site in all cats. Pharmacokinetic studies were performed in six cats. Following intravenous infusion, the plasma elimination of the Etanidazole was biexponential. The systemic availability following intratumoral administration was 61.2 +/- 21.1%. Peak plasma Etanidazole levels were observed 14 minutes following intratumoral injection, after which elimination was biexponential. Thirty minutes following intratumoral Etanidazole administration, tumor Etanidazole levels were 62.8% of plasma levels. Feline squamous cell carcinoma appears to be a useful model of human head and neck cancer. Cats tolerate substantial doses of intratumoral and intravenous Etanidazole. Etanidazole and radiation therapy cause rapid regression, but not cure, of feline squamous cell carcinoma. There is a similarity between the intravenous kinetics of Etanidazole in humans and cats. Further studies in this model are planned

  2. Spontaneous CD8 T cell responses against the melanocyte differentiation antigen RAB38/NY-MEL-1 in melanoma patients.

    Science.gov (United States)

    Walton, Senta M; Gerlinger, Marco; de la Rosa, Olga; Nuber, Natko; Knights, Ashley; Gati, Asma; Laumer, Monika; Strauss, Laura; Exner, Carolin; Schäfer, Niklaus; Urosevic, Mirjana; Dummer, Reinhard; Tiercy, Jean-Marie; Mackensen, Andreas; Jaeger, Elke; Lévy, Frédéric; Knuth, Alexander; Jäger, Dirk; Zippelius, Alfred

    2006-12-01

    The melanocyte differentiation Ag RAB38/NY-MEL-1 was identified by serological expression cloning (SEREX) and is expressed in the vast majority of melanoma lesions. The immunogenicity of RAB38/NY-MEL-1 has been corroborated previously by the frequent occurrence of specific Ab responses in melanoma patients. To elucidate potential CD8 T cell responses, we applied in vitro sensitization with overlapping peptides spanning the RAB38/NY-MEL-1 protein sequence and the reverse immunology approach. The identified peptide RAB38/NY-MEL-1(50-58) exhibited a marked response in ELISPOT assays after in vitro sensitization of CD8 T cells from HLA-A *0201(+) melanoma patients. In vitro digestion assays using purified proteasomes provided evidence of natural processing of RAB38/NY-MEL-1(50-58) peptide. Accordingly, monoclonal RAB38/NY-MEL-1(50-58)-specific T cell populations were capable of specifically recognizing HLA-A2(+) melanoma cell lines expressing RAB38/NY-MEL-1. Applying fluorescent HLA-A2/RAB38/NY-MEL-1(50-58) multimeric constructs, we were able to document a spontaneously developed memory/effector CD8 T cell response against this peptide in a melanoma patient. To elucidate the Ag-processing pathway, we demonstrate that RAB38/NY-MEL-1(50-58) is produced efficiently by the standard proteasome and the immunoproteasome. In addition to the identification of a RAB38/NY-MEL-1-derived immunogenic CD8 T cell epitope, this study is instrumental for both the onset and monitoring of future RAB38/NY-MEL-1-based vaccination trials.

  3. Increased atrial natriuretic factor receptor density in cultured vascular smooth muscle cells of the spontaneously hypertensive rat

    International Nuclear Information System (INIS)

    Khalil, F.; Fine, B.; Kuriyama, S.; Hatori, N.; Nakamura, A.; Nakamura, M.; Aviv, A.

    1987-01-01

    To explore the role of the atrial natriuretic factor (ANF) system in the pathophysiology of hypertension we examined the binding kinetics of synthetic ANF to cultured vascular smooth muscle cells (VSMCs) derived from the spontaneously hypertensive rat (SHR) and two normotensive controls-the Wistar Kyoto (WKY) and American Wistar (W). The number of maximal binding sites (Bmax) per cell (mean +/- SEM; X10(3] were: SHR = 278.0 +/- 33.0, WKY = 28.3 +/- 7.1 and W = 26.6 +/- 4.2. The differences between the SHR and normotensive strains were significant at p less than 0.001. The equilibrium dissociation constant (Kd; X 10(-9)M) was higher in SHR VSMCs (0.94 +/- 0.14) than in WKY (0.22 +/- 0.09; p less than 0.01) and W (0.39 +/- 0.14; p less than 0.02) cells. The plasma levels of the immunoreactive ANF were higher in SHR than the normotensive controls. We suggest that the relatively greater ANF receptor density in cultured VSMCs of the SHR represents a response to the in vitro environment which is relatively more deficient in ANF for VSMCs of the SHR as compared with the normotensive rats. Thus, the capacity of the SHR VSMC to regulate ANF receptor density appears to be independent of the blood pressure level

  4. The role of the sympathetic nervous system in radiation-induced apoptosis in jejunal crypt cells of spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Matsuu, Mutsumi; Shichijo; Kazuko; Nakamura, Yasuko; Ikeda, Yuji; Naito, Shinji; Ito, Masahiro; Okaichi, Kumio; Sekine, Ichiro

    2000-01-01

    To evaluate the effect of the sympathetic nervous system on radiation-induced apoptosis in jejunal crypt cells, apoptosis levels were compared in spontaneously hypertensive rats (SHR), animals which are a genetic hyperfunction model of the sympathetic nervous system, and normotensive Wistar-Kyoto rats (WKY). SHR and WKY were exposed to whole body X-ray irradiation at doses from 0.5 to 2 Gy. The apoptotic index in jejunal crypt cells was significantly greater in SHR than in WKY at each time point after irradiation and at each dose. WKY and SHR were treated with reserpine to induce sympathetic dysfunction, and were subsequently exposed to irradiation. Reserpine administration to SHR or WKY resulted in a significant suppression of apoptosis. p53 accumulation was detected in the jejunum in both WKY and SHR after irradiation by Western blotting analysis. There were no significant differences in the levels of p53 accumulation in irradiated intestine between WKY and SHR. These findings suggested that hyperfunction of the sympathetic nervous system is involved in the mechanism of high susceptibility to radiation-induced apoptosis of the jejunal crypt cells. (author)

  5. Analysing the Influence of the Spontaneous Aneuploidy Frequency on the Cell Population System Cultivation

    Directory of Open Access Journals (Sweden)

    G. A. Nefedov

    2015-01-01

    Full Text Available The paper provides a qualitative analysis of M.S. Vinogradova's nonlinear model for dynamics of the cell population system. This system describes the stem cells cultivation in vitro under resource constraints. The system consists of two populations, namely: population of normal cells and population of abnormal cells. Resource constraints are considered as linear dependences of mitosis parameters on the normalized densities of each population.One of the key parameters that effects on the realization of the system evolution scenarios is a parameter that determines a share of the normal cells, which pass, when dividing, into population of the abnormal cells. The paper analyses both the existence conditions of the rest points and the changes of the evolution scenarios of population system with changing abovementioned parameter and other system parameters held fixed. It is shown that there is a saddle-node bifurcation in the system; the bifurcation value of the parameter is found. The paper shows the interval of parameter values in which the favorable scenarios of population system evolution are implemented. It also presents results of mathematical modeling.

  6. "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation.

    Science.gov (United States)

    Peet, Jeffrey; Heeger, Alan J; Bazan, Guillermo C

    2009-11-17

    As the global demand for low-cost renewable energy sources intensifies, interest in new routes for converting solar energy to electricity is rapidly increasing. Although photovoltaic cells have been commercially available for more than 50 years, only 0.1% of the total electricity generated in the United States comes directly from sunlight. The earliest commercial solar technology remains the basis for the most prevalent devices in current use, namely, highly-ordered crystalline, inorganic solar cells, commonly referred to as silicon cells. Another class of solar cells that has recently inspired significant academic and industrial excitement is the bulk heterojunction (BHJ) "plastic" solar cell. Research by a rapidly growing community of scientists across the globe is generating a steady stream of new insights into the fundamental physics, the materials design and synthesis, the film processing and morphology, and the device science and architecture of BHJ technology. Future progress in the fabrication of high-performance BHJ cells will depend on our ability to combine aspects of synthetic and physical chemistry, condensed matter physics, and materials science. In this Account, we use a combination of characterization tools to tie together recent advances in BHJ morphology characterization, device photophysics, and thin-film solution processing, illustrating how to identify the limiting factors in solar cell performance. We also highlight how new processing methods, which control both the BHJ phase separation and the internal order of the components, can be implemented to increase the power conversion efficiency (PCE). The failure of many innovative materials to achieve high performance in BHJ solar cell devices has been blamed on "poor morphology" without significant characterization of either the structure of the phase-separated morphology or the nature of the charge carrier recombination. We demonstrate how properly controlling the "nanomorphology", which is

  7. S100A4-neutralizing antibody suppresses spontaneous tumor progression, pre-metastatic niche formation and alters T-cell polarization balance

    DEFF Research Database (Denmark)

    Grum-Schwensen, Birgitte; Klingelhöfer, Jörg; Beck, Mette

    2015-01-01

    , decreased vessel density and inhibition of metastases. CONCLUSION: The S100A4 blocking antibody (6B12) reduces tumor growth and metastasis in a model of spontaneous breast cancer. The 6B12 antibody treatment inhibits T cell accumulation at the primary and pre-metastatic tumor sites. The 6B12 antibody acts...

  8. Kv1.1 knock-in ataxic mice exhibit spontaneous myokymic activity exacerbated by fatigue, ischemia and low temperature.

    Science.gov (United States)

    Brunetti, Orazio; Imbrici, Paola; Botti, Fabio Massimo; Pettorossi, Vito Enrico; D'Adamo, Maria Cristina; Valentino, Mario; Zammit, Christian; Mora, Marina; Gibertini, Sara; Di Giovanni, Giuseppe; Muscat, Richard; Pessia, Mauro

    2012-09-01

    Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder characterized by myokymia and attacks of ataxic gait often precipitated by stress. Several genetic mutations have been identified in the Shaker-like K(+) channel Kv1.1 (KCNA1) of EA1 individuals, including V408A, which result in remarkable channel dysfunction. By inserting the heterozygous V408A, mutation in one Kv1.1 allele, a mouse model of EA1 has been generated (Kv1.1(V408A/+)). Here, we investigated the neuromuscular transmission of Kv1.1(V408A/+) ataxic mice and their susceptibility to physiologically relevant stressors. By using in vivo preparations of lateral gastrocnemius (LG) nerve-muscle from Kv1.1(+/+) and Kv1.1(V408A/+) mice, we show that the mutant animals exhibit spontaneous myokymic discharges consisting of repeated singlets, duplets or multiplets, despite motor nerve axotomy. Two-photon laser scanning microscopy from the motor nerve, ex vivo, revealed spontaneous Ca(2+) signals that occurred abnormally only in preparations dissected from Kv1.1(V408A/+) mice. Spontaneous bursting activity, as well as that evoked by sciatic nerve stimulation, was exacerbated by muscle fatigue, ischemia and low temperatures. These stressors also increased the amplitude of compound muscle action potential. Such abnormal neuromuscular transmission did not alter fiber type composition, neuromuscular junction and vascularization of LG muscle, analyzed by light and electron microscopy. Taken together these findings provide direct evidence that identifies the motor nerve as an important generator of myokymic activity, that dysfunction of Kv1.1 channels alters Ca(2+) homeostasis in motor axons, and also strongly suggest that muscle fatigue contributes more than PNS fatigue to exacerbate the myokymia/neuromyotonia phenotype. More broadly, this study points out that juxtaparanodal K(+) channels composed of Kv1.1 subunits exert an important role in dampening the excitability of motor nerve axons during

  9. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity.

    Science.gov (United States)

    He, Guangli; Hu, Weihua; Li, Chang Ming

    2015-11-01

    We herein report the spontaneous interfacial reaction between copper foil with 0.01 M phosphate buffered saline (PBS) to form free-standing cupric phosphate (Cu3(PO4)2) nanoflowers at ambient temperature. The underlying chemistry was thoroughly investigated and it is found that the formation of nanoflower is synergistically caused by dissolved oxygen, chlorine ions and phosphate ions. Enzyme-Cu3(PO4)2 hybrid nanoflower was further prepared successfully by using an enzyme-dissolving PBS solution and the enzymes in the hybrid exhibit enhanced biological activity. This work provides a facile route for large-scale synthesis of hierarchical inorganic and functional protein-inorganic hybrid architectures via a simple one-step solution-immersion reaction without using either template or surfactant, thus offering great potential for biosensing application among others. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. An interactive activation and competition model of person knowledge, suggested by proactive interference by traits spontaneously inferred from behaviours.

    Science.gov (United States)

    Wang, Yuanbo E; Higgins, Nancy C; Uleman, James S; Michaux, Aaron; Vipond, Douglas

    2016-03-01

    People unconsciously and unintentionally make inferences about others' personality traits based on their behaviours. In this study, a classic memory phenomenon--proactive interference (PI)--is for the first time used to detect spontaneous trait inferences. PI should occur when lists of behaviour descriptions, all implying the same trait, are to be remembered. Switching to a new trait should produce 'release' from proactive interference (or RPI). Results from two experiments supported these predictions. PI and RPI effects are consistent with an interactive activation and competition model of person perception (e.g., McNeill & Burton, 2002, J. Exp. Psychol., 55A, 1141), which predicts categorical organization of social behaviours based on personality traits. Advantages of this model are discussed. © 2015 The British Psychological Society.

  11. Effect of ranitidine on postoperative suppression of natural killer cell activity and delayed hypersensitivity

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen; Pedersen, B K; Moesgaard, F

    1989-01-01

    hypersensitivity (DTH) antigens, and blood drawn immediately before and 24 hours after skin incision was analyzed for spontaneous and in vitro stimulated (IL-2, IFN-alpha or indomethacin) natural killer (NK) cell activity and PHA and PPD-stimulated lymphocyte proliferation. Lymphocyte subsets (helper......-cell activity (p less than 0.02). Postoperative decrease in helper/inducer-T cell numbers was not significantly lessened (p = 0.07), and ranitidine did not influence the levels of suppressor-T cells. PHA and PPD responses in peripheral blood mononuclear cells were unaltered. The results may suggest potential...

  12. Effects of an environmentally-relevant mixture of pyrethroid insecticides on spontaneous activity in primary cortical networks on microelectrode arrays.

    Science.gov (United States)

    Johnstone, Andrew F M; Strickland, Jenna D; Crofton, Kevin M; Gennings, Chris; Shafer, Timothy J

    2017-05-01

    Pyrethroid insecticides exert their insecticidal and toxicological effects primarily by disrupting voltage-gated sodium channel (VGSC) function, resulting in altered neuronal excitability. Numerous studies of individual pyrethroids have characterized effects on mammalian VGSC function and neuronal excitability, yet studies examining effects of complex pyrethroid mixtures in mammalian neurons, especially in environmentally relevant mixture ratios, are limited. In the present study, concentration-response functions were characterized for five pyrethroids (permethrin, deltamethrin, cypermethrin, β-cyfluthrin and esfenvalerate) in an in vitro preparation containing cortical neurons and glia. As a metric of neuronal network activity, spontaneous mean network firing rates (MFR) were measured using microelectorde arrays (MEAs). In addition, the effect of a complex and exposure relevant mixture of the five pyrethroids (containing 52% permethrin, 28.8% cypermethrin, 12.9% β-cyfluthrin, 3.4% deltamethrin and 2.7% esfenvalerate) was also measured. Data were modeled to determine whether effects of the pyrethroid mixture were predicted by dose-addition. At concentrations up to 10μM, all compounds except permethrin reduced MFR. Deltamethrin and β-cyfluthrin were the most potent and reduced MFR by as much as 60 and 50%, respectively, while cypermethrin and esfenvalerate were of approximately equal potency and reduced MFR by only ∼20% at the highest concentration. Permethrin caused small (∼24% maximum), concentration-dependent increases in MFR. Effects of the environmentally relevant mixture did not depart from the prediction of dose-addition. These data demonstrate that an environmentally relevant mixture caused dose-additive effects on spontaneous neuronal network activity in vitro, and is consistent with other in vitro and in vivo assessments of pyrethroid mixtures. Published by Elsevier B.V.

  13. Spontaneous appetence for wheel-running: a model of dependency on physical activity in rat.

    Science.gov (United States)

    Ferreira, Anthony; Lamarque, Stéphanie; Boyer, Patrice; Perez-Diaz, Fernando; Jouvent, Roland; Cohen-Salmon, Charles

    2006-12-01

    According to human observations of a syndrome of physical activity dependence and its consequences, we tried to examine if running activity in a free activity paradigm, where rats had a free access to activity wheel, may present a valuable animal model for physical activity dependence and most generally to behavioral dependence. The pertinence of reactivity to novelty, a well-known pharmacological dependence predictor was also tested. Given the close linkage observed in human between physical activity and drugs use and abuse, the influence of free activity in activity wheels on reactivity to amphetamine injection and reactivity to novelty were also assessed. It appeared that (1) free access to wheel may be used as a valuable model for physical activity addiction, (2) two populations differing in activity amount also differed in dependence to wheel-running. (3) Reactivity to novelty did not appeared as a predictive factor for physical activity dependence (4) activity modified novelty reactivity and (5) subjects who exhibited a high appetence to wheel-running, presented a strong reactivity to amphetamine. These results propose a model of dependency on physical activity without any pharmacological intervention, and demonstrate the existence of individual differences in the development of this addiction. In addition, these data highlight the development of a likely vulnerability to pharmacological addiction after intense and sustained physical activity, as also described in man. This model could therefore prove pertinent for studying behavioral dependencies and the underlying neurobiological mechanisms. These results may influence the way psychiatrists view behavioral dependencies and phenomena such as doping in sport or addiction to sport itself.

  14. Spontaneous regression of primary diffuse large B-cell lymphoma, leg type.

    Science.gov (United States)

    Alcántara-González, J; González-García, C; Fernández-Guarino, M; Jaén-Olasolo, P

    2014-01-01

    Primary cutaneous diffuse large B-cell lymphoma, leg type (PCLBCL LT) accounts for approximately 20% of all primary cutaneous B-cell lymphomas and tends to present as infiltrated nodules, tumors, and plaques on the legs in the elderly. Unlike other primary cutaneous large B-cell lymphomas, it has a poor prognosis and tends to require treatment with systemic chemotherapy. We present the case of an 82-year-old patient with a 1-year history of nodules and plaques on her right leg. Biopsy led to a diagnosis of PCLBCL LT and the lesions resolved without treatment within 1 month of the first visit. This is an atypical course of PCLBCL LT and we believe that it is the first such case to be reported in the literature. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  15. High-resolution molecular validation of self-renewal and spontaneous differentiation in adipose-tissue derived human mesenchymal stem cells cultured in human platelet lysate

    Science.gov (United States)

    Dudakovic, Amel Dudakovic; Camilleri, Emily; Riester, Scott M.; Lewallen, Eric A.; Kvasha, Sergiy; Chen, Xiaoyue; Radel, Darcie J.; Anderson, Jarett M.; Nair, Asha A.; Evans, Jared M.; Krych, Aaron J.; Smith, Jay; Deyle, David R.; Stein, Janet L.; Stein, Gary S.; Im, Hee-Jeong; Cool, Simon M.; Westendorf, Jennifer J.; Kakar, Sanjeev; Dietz, Allan B.; van Wijnen, Andre J.

    2014-01-01

    Improving the effectiveness of adipose-tissue derived human mesenchymal stromal/stem cells (AMSCs) for skeletal therapies requires a detailed characterization of mechanisms supporting cell proliferation and multi-potency. We investigated the molecular phenotype of AMSCs that were either actively proliferating in platelet lysate or in a basal non-proliferative state. Flow cytometry combined with high-throughput RNA sequencing (RNASeq) and RT-qPCR analyses validate that AMSCs express classic mesenchymal cell surface markers (e.g., CD44, CD73/NT5E, CD90/THY1 and CD105/ENG). Expression of CD90 is selectively elevated at confluence. Self-renewing AMSCs express a standard cell cycle program that successively mediates DNA replication, chromatin packaging, cyto-architectural enlargement and mitotic division. Confluent AMSCs preferentially express genes involved in extracellular matrix (ECM) formation and cellular communication. For example, cell cycle-related biomarkers (e.g., cyclins E2 and B2, transcription factor E2F1) and histone-related genes (e.g., H4, HINFP, NPAT) are elevated in proliferating AMSCs, while ECM genes are strongly upregulated (>10 fold) in quiescent AMSCs. AMSCs also express pluripotency genes (e.g., POU5F1, NANOG, KLF4) and early mesenchymal markers (e.g., NES, ACTA2) consistent with their multipotent phenotype. Strikingly, AMSCs modulate expression of WNT signaling components and switch production of WNT ligands (from WNT5A/WNT5B/WNT7B to WNT2/WNT2B), while up-regulating WNT-related genes (WISP2, SFRP2 and SFRP4). Furthermore, post-proliferative AMSCs spontaneously express fibroblastic, osteogenic, chondrogenic and adipogenic biomarkers when maintained in confluent cultures. Our findings validate the biological properties of self-renewing and multi-potent AMSCs by providing high-resolution quality control data that support their clinical versatility. PMID:24905804

  16. Ca2+ signaling in taste bud cells and spontaneous preference for fat: unresolved roles of CD36 and GPR120.

    Science.gov (United States)

    Abdoul-Azize, Souleymane; Selvakumar, Subramaniam; Sadou, Hassimi; Besnard, Philippe; Khan, Naim Akhtar

    2014-01-01

    Recent compelling evidences from rodent and human studies raise the possibility for an additional sixth taste modality devoted to oro-gustatory perception of dietary lipids. Understanding the mechanisms underlying oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. A number of studies have suggested that lingual CD36, a glycoprotein, highly expressed by circumvallate papillae of the tongue, is implicated in the perception of dietary fat taste. G protein-coupled receptors (GPCRs) are important signaling molecules for many aspects of cellular functions. It has been shown that these receptors, particularly GPR120, are also involved in lipid taste perception. We have shown that dietary long-chain fatty acids (LCFAs), in CD36-positive taste bud cells (TBC), induce increases in free intracellular Ca(2+) concentrations, [Ca(2+)]i, by recruiting Ca(2+) from endoplasmic reticulum (ER) pool via inositol 1,4,5-triphosphate production, followed by Ca(2+) influx via opening of store-operated Ca(2+) (SOC) channels. GPR120 is also coupled to increases in [Ca(2+)]i by dietary fatty acids. We observed that stromal interaction molecule 1 (STIM1), a sensor of Ca(2+) depletion in the ER, mediated fatty acid-induced Ca(2+) signaling and spontaneous preference for fat in the mouse. In this review article, we discuss the recent advances and unresolved roles of CD36 and GPR120 in lipid taste signaling in taste bud cells. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Two-dimensional electrophoretic analysis of transformation-sensitive polypeptides during chemically, spontaneously, and oncogene-induced transformation of rat liver epithelial cells

    DEFF Research Database (Denmark)

    Wirth, P J; Luo, L D; Fujimoto, Y

    1992-01-01

    ; AFB), spontaneously, and oncogene (v-Ha-ras, v-raf, and v-myc/v-raf)-induced transformation of RLE cells. Two-dimensional mapping of [35S]methionine-labeled whole cell lysate, cell-free in vitro translation products and [32P]orthophosphate-labeled polypeptides revealed subsets of polypeptides specific...... for each transformation modality. A search of the RLE protein database indicated the specific subcellular location for the majority of these transformation-sensitive proteins. Significant alterations in the expression of the extracellular matrix protein, fibronectin, as well as tropomyosin......- and intermediate filament-related polypeptides (vimentin, beta-tubulin, the cytokeratins, and actin) were observed among the various transformant cell lines. Immunoprecipitation and Western immunoblot analysis of tropomyosin expression in four individual AFB-, as well as four spontaneously induced, and each...

  18. Angiotensin I converting enzyme inhibitory activity and antihypertensive effect in spontaneously hypertensive rats of cobia (Rachycentron canadum) head papain hydrolysate.

    Science.gov (United States)

    Yang, Ping; Jiang, Yuchuan; Hong, Pengzhi; Cao, Wenhong

    2013-06-01

    Cobia head protein hydrolysate (CHPH) with angiotensin I converting enzyme (ACE) inhibitory activity was prepared with papain. The 3 kDa ultrafiltration filtrate CHPH-IV of the hydrolysate exerted a potent ACE inhibitory activity with IC50 being 0.24 mg/mL. The fractions with molecular weight located between 1749 Da and 173 Da represented up 66.96% of CHPH-IV, and those between 494 Da and 173 Da represented up 31.37% of CHPH-IV. It was found that the ACE inhibitory activity of CHPH-IV was intensified from IC50 0.24 mg/mL to 0.17 mg/mL after incubation with gastrointestinal proteases. The CHPH-IV significantly decreased the systolic blood pressure in a dose-dependent manner after oral administration to spontaneously hypertensive rats (SHR) at dose of 150 mg/kg, 600 mg/kg and 1200 mg/kg body weight. These results suggested that CHPH-IV from cobia head protein hydrolysate by papain could serve as a source of peptides with antihypertensive activity in functional food industry.

  19. Firing patterns of spontaneously active motor units in spinal cord-injured subjects

    NARCIS (Netherlands)

    Zijdewind, Inge; Thomas, Christine K.

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were

  20. Activation of postnatal neural stem cells requires nuclear receptor TLX.

    Science.gov (United States)

    Niu, Wenze; Zou, Yuhua; Shen, Chengcheng; Zhang, Chun-Li

    2011-09-28

    Neural stem cells (NSCs) continually produce new neurons in postnatal brains. However, the majority of these cells stay in a nondividing, inactive state. The molecular mechanism that is required for these cells to enter proliferation still remains largely unknown. Here, we show that nuclear receptor TLX (NR2E1) controls the activation status of postnatal NSCs in mice. Lineage tracing indicates that TLX-expressing cells give rise to both activated and inactive postnatal NSCs. Surprisingly, loss of TLX function does not result in spontaneous glial differentiation, but rather leads to a precipitous age-dependent increase of inactive cells with marker expression and radial morphology for NSCs. These inactive cells are mispositioned throughout the granular cell layer of the dentate gyrus during development and can proliferate again after reintroduction of ectopic TLX. RNA-seq analysis of sorted NSCs revealed a TLX-dependent global expression signature, which includes the p53 signaling pathway. TLX regulates p21 expression in a p53-dependent manner, and acute removal of p53 can rescue the proliferation defect of TLX-null NSCs in culture. Together, these findings suggest that TLX acts as an essential regulator that ensures the proliferative ability of postnatal NSCs by controlling their activation through genetic interaction with p53 and other signaling pathways.

  1. To Take the Stairs or Not to Take the Stairs? Employing the Reflective–Impulsive Model to Predict Spontaneous Physical Activity

    Directory of Open Access Journals (Sweden)

    Marcos Daou

    2017-09-01

    Full Text Available The reflective–impulsive model (RIM has been employed to explain various health behaviors. The present study used RIM to predict a spontaneous physical activity behavior. Specifically, 107 participants (75 females; Mage = 20.6 years, SD = 1.92 years completed measures of (1 reflections about spontaneous physical activity, as indexed by self-report questionnaire; (2 impulse toward physical activity, as indexed by the manikin task; and (3 (state self-control, as indexed by the Stroop task. The dependent variable was whether participants took the stairs or the elevator to the study laboratory. Results revealed reflections toward spontaneous physical activity positively predicted stair-taking. Further, a significant impulse toward physical activity × self-control interaction was observed. This interaction revealed that participants with high self-control who had a high impulse toward PA were more likely to take the stairs than their counterparts with a low impulse toward PA, whereas the opposite was the case for participants with low self-control. However, the impulse × self-control interaction was not significant when employing a self-report measure of trait self-control. Thus, RIM may be a good framework with which to consider spontaneous physical activity, but careful consideration must be given when examining variables within RIM (e.g., the boundary condition of self-control.

  2. Abnormal regional spontaneous neuronal activity associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder revealed by resting-state functional MRI.

    Science.gov (United States)

    Qiu, Linlin; Fu, Xiangshuai; Wang, Shuai; Tang, Qunfeng; Chen, Xingui; Cheng, Lin; Zhang, Fuquan; Zhou, Zhenhe; Tian, Lin

    2017-02-15

    A large number of neuroimaging studies have revealed the dysfunction of brain activities in obsessive-compulsive disorder (OCD) during various tasks. However, regional spontaneous activity abnormalities in OCD are gradually being revealed. In this current study, we aimed to investigate cerebral regions with abnormal spontaneous activity using resting-state functional magnetic resonance imaging (fMRI) and further explored the relationship between the spontaneous neuronal activity and symptom severity of patients with OCD. Thirty-one patients with OCD and 32 age-and sex-matched normal controls received the fMRI scans and fractional amplitude of low-frequency fluctuation (fALFF) approach was applied to identify the abnormal brain activity. We found that patients with OCD showed decreased fALFF not only in the cortical-striato-thalamo-cortical (CSTC) circuits like the thalamus, but also in other cerebral systems like the cerebellum, the parietal cortex and the temporal cortex. Additionally, OCD patients demonstrated significant associations between decreased fALFF and obsessive-compulsive symptom severity in the thalamus, the paracentral lobule and the cerebellum. Our results provide evidence for abnormal spontaneous neuronal activity in distributed cerebral areas and support the notion that brain areas outside the CSTC circuits may also play an important role in the pathophysiology of OCD. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Spontaneous deregulation

    NARCIS (Netherlands)

    Edelman, Benjamin; Geradin, Damien

    Platform businesses such as Airbnb and Uber have risen to success partly by sidestepping laws and regulations that encumber their traditional competitors. Such rule flouting is what the authors call “spontaneous private deregulation,” and it’s happening in a growing number of industries. The authors

  4. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise.

    Directory of Open Access Journals (Sweden)

    Elliott M McMillan

    Full Text Available Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY and spontaneously hypertensive rats (SHR were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG of hypertensive rats had higher (p<0.05 caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05 ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05 Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05 Beclin-1 and ATG7 protein, as well as decreased (p<0.05 caspase-3, calpain, and cathepsin activity. Left ventricle (LV of hypertensive rats had reduced (p<0.05 AMPKα and LC3II protein, as well as elevated (p<0.05 p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05 proteasome activity but reduced (p<0.05 caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats.

  5. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter

    Science.gov (United States)

    Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya

    2018-02-01

    Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.

  6. Abundant spontaneous VLFE activities in Cascadia during ETS and inter-ETS time periods

    Science.gov (United States)

    Ghosh, A.; Hutchison, A. A.; Hawthorne, J.

    2017-12-01

    Very low frequency earthquakes (VLFEs) are discrete seismic events associated with episodic tremor and slip (ETS) events. They are rich in 20-50s energy and depleted in higher frequencies compared to regular local earthquakes of similar magnitudes. VLFEs can be as large as Mw 4.0, and potentially release much more seismic moment than the tremor/LFE activities, making them a critical event determining stress evolution during slow earthquakes [Ghosh et al., 2015]. Their underlying physics and relationship with tremor/LFE, however, are still unclear. In Cascadia, the majority of the VLFEs found so far are clustered near the areas of high geodetic slip during ETS events [Ghosh et al., 2015; Hutchison and Ghosh, 2016]. Interestingly, we found VLFE activity has its own dynamics and can occur independent of tremor/LFE activity. For example, during the 2014 ETS event in northern Cascadia, VLFEs are found to be asynchronous with tremor activity, both in space and time [Hutchison and Ghosh, 2016]. We use a matched filter technique to detect thousands of VLFEs over an ETS-cycle, and perhaps more interestingly, even between ETS events. VLFE activities peak during ETS events, but significant VLFE activity is detected during the inter-ETS time period. Analyses of strainmeter data near the VLFE locations suggest statistically significant strain rate increases during VLFE time periods compared to the background. We suggest that VLFE is a distinct type of seismic radiation different from tremor/LFE, and can operate independently from tremor activities. This is in contrast to a model suggesting that VLFE signals may be a result of many LFE signals arriving at seismic stations in a short time period [Gomberg et al., 2016]. We are making a consistent catalog of VLFE in Cascadia for longer time period. Systematic study of VLFEs is going to provide new insights into the mechanism of slow earthquakes and its relationship with tremor/LFE and slow slip.

  7. Preictal activity of subicular, CA1, and dentate gyrus principal neurons in the dorsal hippocampus before spontaneous seizures in a rat model of temporal lobe epilepsy.

    Science.gov (United States)

    Fujita, Satoshi; Toyoda, Izumi; Thamattoor, Ajoy K; Buckmaster, Paul S

    2014-12-10

    Previous studies suggest that spontaneous seizures in patients with temporal lobe epilepsy might be preceded by increased action potential firing of hippocampal neurons. Preictal activity is potentially important because it might provide new opportunities for predicting when a seizure is about to occur and insight into how spontaneous seizures are generated. We evaluated local field potentials and unit activity of single, putative excitatory neurons in the subiculum, CA1, CA3, and dentate gyrus of the dorsal hippocampus in epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Average action potential firing rates of neurons in the subiculum, CA1, and dentate gyrus, but not CA3, increased significantly and progressively beginning 2-4 min before locally recorded spontaneous seizures. In the subiculum, CA1, and dentate gyrus, but not CA3, 41-57% of neurons displayed increased preictal activity with significant consistency across multiple seizures. Much of the increased preictal firing of neurons in the subiculum and CA1 correlated with preictal theta activity, whereas preictal firing of neurons in the dentate gyrus was independent of theta. In addition, some CA1 and dentate gyrus neurons displayed reduced firing rates preictally. These results reveal that different hippocampal subregions exhibit differences in the extent and potential underlying mechanisms of preictal activity. The finding of robust and significantly consistent preictal activity of subicular, CA1, and dentate neurons in the dorsal hippocampus, despite the likelihood that many seizures initiated in other brain regions, suggests the existence of a broader neuronal network whose activity changes minutes before spontaneous seizures initiate. Copyright © 2014 the authors 0270-6474/14/3416671-17$15.00/0.

  8. Effect of Imperatorin on the Spontaneous Motor Activity of Rat Isolated Jejunum Strips

    Directory of Open Access Journals (Sweden)

    Marta Mendel

    2015-01-01

    Full Text Available Imperatorin, a psoralen-type furanocoumarin, is a potent myorelaxant agent acting as a calcium antagonist on vascular smooth muscle. Its effects on other types of smooth muscle remain unknown. Therefore, the aim of this study was to investigate the hypothesized myorelaxant effect of imperatorin on gut motor activity and, possibly, to define the underlying mechanism of action. Imperatorin was made available for pharmacological studies from the fruits of the widely available Angelica officinalis through the application of high-performance countercurrent chromatography (HPCCC. Imperatorin generated reversible relaxation of jejunum strips dose-dependently (1–100 μM. At 25 and 50 μM, imperatorin caused relaxation comparable to the strength of the reaction induced by isoproterenol (Isop at 0.1 μM. The observed response resulted neither from the activation of soluble guanylate cyclase, nor from β-adrenoreceptor involvement, nor from Ca2+-activated potassium channels. Imperatorin relaxed intestine strips precontracted with high potassium concentration, attenuated the force and duration of K+-induced contractions, and modulated the response of jejunum strips to acetylcholine. The results suggest that imperatorin probably interacts with various Ca2+ influx pathways in intestine smooth muscle. The types of some calcium channels involved in the activity of imperatorin will be examined in a subsequent study.

  9. Spontaneous Remission of an Untreated, MYC and BCL2 Coexpressing, High-Grade B-Cell Lymphoma: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    D. Alan Potts

    2017-01-01

    Full Text Available Non-Hodgkin lymphomas (NHL are a heterogeneous group of hematologic malignancies typically treated with multiagent chemotherapy. Rarely, spontaneous remissions can be observed, particularly in more indolent subtypes. The prognosis of aggressive NHL can be predicted using clinical and histopathologic factors. In aggressive B-cell NHL, the importance of MYC and BCL2 proto-oncogene coexpression (as assessed by immunohistochemistry and high-grade histologic features are particularly noteworthy. We report a unique case of spontaneous remission in a patient with an aggressive B-cell NHL which harbored high-risk histopathologic features, including MYC protein expression at 70–80%, BCL2 protein expression, and morphologic features suggestive of high-grade B-cell lymphoma, NOS (formerly B-cell lymphoma unclassifiable with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma [BCLU]. After undergoing a biopsy to confirm this diagnosis, he opted to forego curative-intent chemotherapy. The single, yet relatively large area of involvement noted on 18F-fluorodeoxyglucose positron emission tomography-computed tomography steadily resolved on subsequent follow-up studies. He remained without evidence of recurrence one year later, having never received treatment. This case emphasizes the potential for spontaneous remission in NHL and demonstrates that this phenomenon can be observed despite contemporary high-risk histopathologic features.

  10. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study.

    Science.gov (United States)

    Pan, Wei; Gao, Xuemei; Shi, Shuo; Liu, Fuqu; Li, Chao

    2017-01-01

    A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) to quantify spontaneous brain activity. The results showed there is no significant difference in ALFF, or fALFF, between violent video game group and the control part, indicating that long time exposure to violent video games won't significantly influence spontaneous brain activity, especially the core brain regions such as execution control, moral judgment and short-term memory. This implies the adverse impact of violent video games is exaggerated.

  11. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study

    Directory of Open Access Journals (Sweden)

    Wei Pan

    2018-01-01

    Full Text Available A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI. We used the amplitude of low-frequency fluctuations (ALFF and fractional ALFF (fALFF to quantify spontaneous brain activity. The results showed there is no significant difference in ALFF, or fALFF, between violent video game group and the control part, indicating that long time exposure to violent video games won’t significantly influence spontaneous brain activity, especially the core brain regions such as execution control, moral judgment and short-term memory. This implies the adverse impact of violent video games is exaggerated.

  12. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study

    Science.gov (United States)

    Pan, Wei; Gao, Xuemei; Shi, Shuo; Liu, Fuqu; Li, Chao

    2018-01-01

    A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) to quantify spontaneous brain activity. The results showed there is no significant difference in ALFF, or fALFF, between violent video game group and the control part, indicating that long time exposure to violent video games won’t significantly influence spontaneous brain activity, especially the core brain regions such as execution control, moral judgment and short-term memory. This implies the adverse impact of violent video games is exaggerated. PMID:29375416

  13. Spontaneous Activity Associated with Delusions of Schizophrenia in the Left Medial Superior Frontal Gyrus: A Resting-State fMRI Study.

    Directory of Open Access Journals (Sweden)

    Bin Gao

    Full Text Available Delusions of schizophrenia have been found to be associated with alterations of some brain regions in structure and task-induced activation. However, the relationship between spontaneously occurring symptoms and spontaneous brain activity remains unclear. In the current study, 14 schizophrenic patients with delusions and 14 healthy controls underwent a resting-state functional magnetic resonance imaging (RS-fMRI scan. Patients with delusions of schizophrenia patients were rated with Positive and Negative Syndrome Scale (PANSS and Characteristics of Delusional Rating Scale (CDRS. Regional homogeneity (ReHo was calculated to measure the local synchronization of the spontaneous activity in a voxel-wise way. A two-sample t-test showed that ReHo of the right anterior cingulate gyrus and left medial superior frontal gyrus were higher in patients, and ReHo of the left superior occipital gyrus was lower, compared to healthy controls. Further, among patients, correlation analysis showed a significant difference between delusion scores of CRDS and ReHo of brain regions. ReHo of the left medial superior frontal gyrus was negatively correlated with patients' CDRS scores but not with delusional PANSS scores. These results suggested that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of delusion in schizophrenia.

  14. Altered spontaneous activity of posterior cingulate cortex and superior temporal gyrus are associated with a smoking cessation treatment outcome using varenicline revealed by regional homogeneity.

    Science.gov (United States)

    Wang, Chao; Shen, Zhujing; Huang, Peiyu; Qian, Wei; Yu, Xinfeng; Sun, Jianzhong; Yu, Hualiang; Yang, Yihong; Zhang, Minming

    2017-06-01

    Compared to nonsmokers, smokers exhibit a number of potentially important differences in regional brain function. However, little is known about the associations between the local spontaneous brain activity and smoking cessation treatment outcomes. In the present analysis, we aimed to evaluate whether the local features of spontaneous brain activity prior to the target quit date was associated with the smoking cessation outcomes. All the participants underwent magnetic resonance imaging scans and smoking-related behavioral assessments. After a 12-week treatment with varenicline, 23 smokers succeeded in quitting smoking and 32 failed. Smokers underwent functional magnetic resonance imaging (fMRI) scanning prior to an open label smoking cessation treatment trial. Regional homogeneity (ReHo) was used to measure spontaneous brain activity, and whole-brain voxel-wise comparisons of ReHo were performed to detect brain regions with altered spontaneous brain activity between relapser and quitter groups. After controlling for potentially confounding factors including years of education, years smoked, cigarettes smoked per day and FTND score as covariates, compared to quitters, relapsers displayed significantly decreased ReHo in bilateral posterior cingulate cortex (PCC), as well as increased ReHo in left superior temporal gyrus (STG). These preliminary results suggest that regional brain function variables may be promising predictors of smoking relapse. This study provided novel insights into the neurobiological mechanisms underlying smoking relapse. A deeper understanding of the neurobiological mechanisms associated with relapse may result in novel pharmacological and behavioral interventions.

  15. Spontaneous Activity Associated with Delusions of Schizophrenia in the Left Medial Superior Frontal Gyrus: A Resting-State fMRI Study.

    Science.gov (United States)

    Gao, Bin; Wang, Yiquan; Liu, Weibo; Chen, Zhiyu; Zhou, Heshan; Yang, Jinyu; Cohen, Zachary; Zhu, Yihong; Zang, Yufeng

    2015-01-01

    Delusions of schizophrenia have been found to be associated with alterations of some brain regions in structure and task-induced activation. However, the relationship between spontaneously occurring symptoms and spontaneous brain activity remains unclear. In the current study, 14 schizophrenic patients with delusions and 14 healthy controls underwent a resting-state functional magnetic resonance imaging (RS-fMRI) scan. Patients with delusions of schizophrenia patients were rated with Positive and Negative Syndrome Scale (PANSS) and Characteristics of Delusional Rating Scale (CDRS). Regional homogeneity (ReHo) was calculated to measure the local synchronization of the spontaneous activity in a voxel-wise way. A two-sample t-test showed that ReHo of the right anterior cingulate gyrus and left medial superior frontal gyrus were higher in patients, and ReHo of the left superior occipital gyrus was lower, compared to healthy controls. Further, among patients, correlation analysis showed a significant difference between delusion scores of CRDS and ReHo of brain regions. ReHo of the left medial superior frontal gyrus was negatively correlated with patients' CDRS scores but not with delusional PANSS scores. These results suggested that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of delusion in schizophrenia.

  16. Firing patterns of spontaneously active motor units in spinal cord-injured subjects.

    Science.gov (United States)

    Zijdewind, Inge; Thomas, Christine K

    2012-04-01

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were recorded for 30 min from thenar muscles of nine men with chronic cervical SCI. Motor units fired for sustained periods (>10 min) at regular (coefficient of variation ≤ 0.15, CV, n =19 units) or irregular intervals (CV>0.15, n =14). Regularly firing units started and stopped firing independently suggesting that intrinsic motoneurone properties were important for recruitment and derecruitment. Recruitment (3.6 Hz, SD 1.2), maximal (10.2 Hz, SD 2.3, range: 7.5-15.4 Hz) and derecruitment frequencies were low (3.3 Hz, SD 1.6), as were firing rate increases after recruitment (~20 intervals in 3 s). Once active, firing often covaried, promoting the idea that units received common inputs.Half of the regularly firing units showed a very slow decline (>40 s) in discharge before derecruitment and had interspike intervals longer than their estimated after hyperpolarisation potential (AHP) duration (estimated by death rate and breakpoint analyses). The other units were derecruited more abruptly and had shorter estimated AHP durations. Overall, regularly firing units had longer estimated AHP durations and were weaker than irregularly firing units, suggesting they were lower threshold units. Sustained firing of units at regular rates may reflect activation of persistent inward currents, visible here in the absence of voluntary drive, whereas irregularly firing units may only respond to synaptic noise.

  17. Synaptic input correlations leading to membrane potential decorrelation of spontaneous activity in cortex.

    Science.gov (United States)

    Graupner, Michael; Reyes, Alex D

    2013-09-18

    Correlations in the spiking activity of neurons have been found in many regions of the cortex under multiple experimental conditions and are postulated to have important consequences for neural population coding. While there is a large body of extracellular data reporting correlations of various strengths, the subthreshold events underlying the origin and magnitude of signal-independent correlations (called noise or spike count correlations) are unknown. Here we investigate, using intracellular recordings, how synaptic input correlations from shared presynaptic neurons translate into membrane potential and spike-output correlations. Using a pharmacologically activated thalamocortical slice preparation, we perform simultaneous recordings from pairs of layer IV neurons in the auditory cortex of mice and measure synaptic potentials/currents, membrane potentials, and spiking outputs. We calculate cross-correlations between excitatory and inhibitory inputs to investigate correlations emerging from the network. We furthermore evaluate membrane potential correlations near resting potential to study how excitation and inhibition combine and affect spike-output correlations. We demonstrate directly that excitation is correlated with inhibition thereby partially canceling each other and resulting in weak membrane potential and spiking correlations between neurons. Our data suggest that cortical networks are set up to partially cancel correlations emerging from the connections between neurons. This active decorrelation is achieved because excitation and inhibition closely track each other. Our results suggest that the numerous shared presynaptic inputs do not automatically lead to increased spiking correlations.

  18. Analysis of spontaneous MEG activity in mild cognitive impairment and Alzheimer's disease using spectral entropies and statistical complexity measures

    Science.gov (United States)

    Bruña, Ricardo; Poza, Jesús; Gómez, Carlos; García, María; Fernández, Alberto; Hornero, Roberto

    2012-06-01

    Alzheimer's disease (AD) is the most common cause of dementia. Over the last few years, a considerable effort has been devoted to exploring new biomarkers. Nevertheless, a better understanding of brain dynamics is still required to optimize therapeutic strategies. In this regard, the characterization of mild cognitive impairment (MCI) is crucial, due to the high conversion rate from MCI to AD. However, only a few studies have focused on the analysis of magnetoencephalographic (MEG) rhythms to characterize AD and MCI. In this study, we assess the ability of several parameters derived from information theory to describe spontaneous MEG activity from 36 AD patients, 18 MCI subjects and 26 controls. Three entropies (Shannon, Tsallis and Rényi entropies), one disequilibrium measure (based on Euclidean distance ED) and three statistical complexities (based on Lopez Ruiz-Mancini-Calbet complexity LMC) were used to estimate the irregularity and statistical complexity of MEG activity. Statistically significant differences between AD patients and controls were obtained with all parameters (p validation procedure was applied. The accuracies reached 83.9% and 65.9% to discriminate AD and MCI subjects from controls, respectively. Our findings suggest that MCI subjects exhibit an intermediate pattern of abnormalities between normal aging and AD. Furthermore, the proposed parameters provide a new description of brain dynamics in AD and MCI.

  19. [Amplitude Changes of Low Frequency Fluctuation in Brain Spontaneous Nervous Activities Induced by Needling at Hand Taiyin Lung Channel].

    Science.gov (United States)

    Zhou, You-long; Su, Cheng-guo; Liu, Shou-fang; Jin, Xiang-yu; Duan, Yan-li; Chen, Xiao-yan; Zhao, Shu-hua; Wang, Quan-liang; Dang, Chang-lin

    2016-05-01

    To observe amplitude changes of low frequency fluctuation in brain spontaneous nervous activities induced by needling at Hand Taiyin Lung Channel, and to preliminarily explore the possible brain function network of Hand Taiyin Lung Channel. By using functional magnetic resonance imaging (fMRI), 16 healthy volunteers underwent resting-state scanning (R1) and scanning with retained acupuncture at Hand Taiyin Lung Channel (acupuncture, AP). Data of fMRI collected were statistically calculated using amplitude of low frequency fluctuations (ALFF). Under R1 significantly enhanced ALFF occurred in right precuneus, left inferior parietal lobule, bilateral superior temporal gyrus, bilateral middle frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, left medial frontal gyrus. Under AP significantly enhanced ALFF occurred in right precuneus, bilateral superior frontal gyrus, cerebellum, bilateral middle frontal gyrus, right medial frontal gyrus, and so on. Compared with R1, needing at Hand Taiyin Lung Channel could significantly enhance ALFF in right gyrus subcallosum and right inferior frontal gyrus. Significant decreased ALFF appeared in right postcentral gyrus, left precuneus, left superior temporal gyrus, left middle temporal gyrus, and so on. Needing at Hand Taiyin Lung Channel could significantly change fixed activities of cerebral cortex, especially in right subcallosal gyrus, right inferior frontal gyrus, and so on.

  20. Dysregulation of mitotic machinery genes precedes genome instability during spontaneous pre-malignant transformation of mouse ovarian surface epithelial cells

    Directory of Open Access Journals (Sweden)

    Ulises Urzúa

    2016-10-01

    Full Text Available Abstract Background Based in epidemiological evidence, repetitive ovulation has been proposed to play a role in the origin of ovarian cancer by inducing an aberrant wound rupture-repair process of the ovarian surface epithelium (OSE. Accordingly, long term cultures of isolated OSE cells undergo in vitro spontaneous transformation thus developing tumorigenic capacity upon extensive subcultivation. In this work, C57BL/6 mouse OSE (MOSE cells were cultured up to passage 28 and their RNA and DNA copy number profiles obtained at passages 2, 5, 7, 10, 14, 18, 23, 25 and 28 by means of DNA microarrays. Gene ontology, pathway and network analyses were focused in passages earlier than 20, which is a hallmark of malignancy in this model. Results At passage 14, 101 genes were up-regulated in absence of significant DNA copy number changes. Among these, the top-3 enriched functions (>30 fold, adj p < 0.05 comprised 7 genes coding for centralspindlin, chromosome passenger and minichromosome maintenance protein complexes. The genes Ccnb1 (Cyclin B1, Birc5 (Survivin, Nusap1 and Kif23 were the most recurrent in over a dozen GO terms related to the mitotic process. On the other hand, Pten plus the large non-coding RNAs Malat1 and Neat1 were among the 80 down-regulated genes with mRNA processing, nuclear bodies, ER-stress response and tumor suppression as relevant terms. Interestingly, the earliest discrete segmental aneuploidies arose by passage 18 in chromosomes 7, 10, 11, 13, 15, 17 and 19. By passage 23, when MOSE cells express the malignant phenotype, the dysregulated gene expression repertoire expanded, DNA imbalances enlarged in size and covered additional loci. Conclusion Prior to early aneuploidies, overexpression of genes coding for the mitotic apparatus in passage-14 pre-malignant MOSE cells indicate an increased proliferation rate suggestive of replicative stress. Concomitant down-regulation of nuclear bodies and RNA processing related genes

  1. Use of scripts and script-fading procedures and activity schedules to develop spontaneous social interaction in a three-year-old girl with autism

    Directory of Open Access Journals (Sweden)

    Anna Budzińska

    2014-05-01

    Full Text Available Autism entails serious deficiencies in communication and social behaviors. Individuals with autism, even those who have received intensive language intervention, are often viewed as lacking spontaneous language. In addition, some children with autism lack the ability of spontaneously seeking to share enjoyment, interests, or achievements with other people (e.g., a lack of showing, bringing, or pointing out objects of interest to other people. The aim of the study was to use ABA teaching techniques such as script and script fading procedure and activity schedule to teach three-year-old girl with autism spontaneous social interaction and shape joint attention skills. The result shows that ABA techniques were very effective in teaching many verbal skills such as answering questions, making requests, initiating conversation and asking question. Comparison made after implemented teaching procedure shows her initiating of joint attention skill (IJA is at the appropriate level for her age.

  2. Clinical efficacy of omalizumab in chronic spontaneous urticaria is associated with a reduction of FcεRI-positive cells in the skin.

    Science.gov (United States)

    Metz, Martin; Staubach, Petra; Bauer, Andrea; Brehler, Randolf; Gericke, Janine; Kangas, Michael; Ashton-Chess, Joanna; Jarvis, Philip; Georgiou, Panayiotis; Canvin, Janice; Hillenbrand, Rainer; Erpenbeck, Veit J; Maurer, Marcus

    2017-01-01

    Background. Treatment with omalizumab, a humanized recombinant monoclonal anti-IgE antibody, results in clinical efficacy in patients with Chronic Spontaneous Urticaria (CSU). The mechanism of action of omalizumab in CSU has not been elucidated in detail. Objectives. To determine the effects of omalizumab on levels of high affinity IgE receptor-positive (FcεRI + ) and IgE-positive (IgE + ) dermal cells and blood basophils. Treatment efficacy and safety were also assessed. Study design. In a double-blind study, CSU patients aged 18‑75 years were randomized to receive 300 mg omalizumab (n=20) or placebo (n=10) subcutaneously every 4 weeks for 12 weeks. Changes in disease activity were assessed by use of the weekly Urticaria Activity Score (UAS7). Circulating IgE levels, basophil numbers and levels of expression of FcεRI + and IgE + cells in the skin and in blood basophils were determined. Results. Patients receiving omalizumab showed a significantly greater decrease in UAS7 compared with patients receiving placebo. At Week 12 the mean difference in UAS7 between treatment groups was -14.82 (p=0.0027), consistent with previous studies. Total IgE levels in serum were increased after omalizumab treatment and remained elevated up to Week 12. Free IgE levels decreased after omalizumab treatment. Mean levels of FcεRI + skin cells in patients treated with omalizumab 300 mg were decreased at Week 12 compared with baseline in the dermis of both non-lesional and lesional skin, reaching levels comparable with those seen in healthy volunteers (HVs). There were no statistically significant changes in mean FcɛRI + cell levels in the placebo group. Similar results were seen for changes in IgE + cells, although the changes were not statistically significant. The level of peripheral blood basophils increased immediately after treatment start and returned to Baseline values after the follow-up period. The levels of FcεRI and IgE expression on peripheral blood basophils were

  3. Are spontaneous conformational interconversions a molecular basis for long-period oscillations in enzyme activity?

    Science.gov (United States)

    Queiroz-Claret, C; Valon, C; Queiroz, O

    1988-01-01

    An unconventional hypothesis to the molecular basis of enzyme rhythms is that the intrinsic physical instability of the protein molecules which, in an aqueous medium, tend to move continuously from one conformational state to another could lead, in the population of enzyme molecules, to sizeable long-period oscillations in affinity for substrate and sensitivity to ligands and regulatory effects. To investigate this hypothesis, malate dehydrogenase was extracted and purified from leaves of the plant Kalanchoe blossfeldiana. The enzyme solutions were maintained under constant conditions and sampled at regular intervals for up to 40 or 70 h for measurements of activity as a function of substrate concentration, Km for oxaloacetic acid and sensitivity to the action of 2,3-butanedione, a modifier of active site arginyl residues. The results show that continuous slow oscillations in the catalytic capacity of the enzyme occur in all the extracts checked, together with fluctuations in Km. Apparent circadian periodicities were observed in accordance with previous data established during long run (100 h) experiments. The saturation curves for substrate showed multiple kinetic functions, with various pronounced intermediary plateaus and "bumps" depending on the time of sampling. Variation in the response to the effect of butanedione indicated fluctuation in the accessibility to the active site. Taken together, the results suggest that, under constant conditions, the enzyme in solution shifts continuously and reversibly between different configurations. This was confirmed by parallel studies on the proton-NMR spectrum of water aggregates in the enzyme solution and proton exchange rates.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Taurine and magnesium supplementation enhances the function of endothelial progenitor cells through antioxidation in healthy men and spontaneously hypertensive rats.

    Science.gov (United States)

    Katakawa, Mayumi; Fukuda, Noboru; Tsunemi, Akiko; Mori, Mari; Maruyama, Takashi; Matsumoto, Taro; Abe, Masanori; Yamori, Yukio

    2016-12-01

    Endothelial damage is repaired by endothelial progenitor cells (EPCs), which are pivotal in preventing cardiovascular diseases and prolonging lifespan. The WHO Cardiovascular Diseases and Alimentary Comparison Study demonstrated that dietary taurine and magnesium (Mg) intake suppresses cardiovascular diseases. We herein evaluate the effects of taurine and Mg supplementation on EPC function and oxidative stress in healthy men and spontaneously hypertensive rats (SHRs). Healthy men received taurine (3 g per day) or Mg (340 mg per day) for 2 weeks. SHRs and Wistar-Kyoto (WKY) rats were housed with high-salt drinking water (1% NaCl). The SHRs received 3% taurine solution and/or a high-Mg (600 mg per 100 g) diet for 4 weeks. Their peripheral blood mononuclear cells were separated to quantify EPC colony formation. Oxidative stress markers in their peripheral blood were evaluated using a free radical analytical system and a thiobarbituric acid reactive substance (TBARS) assay. Taurine and Mg supplementation significantly increased EPC colony numbers and significantly decreased free radical levels and TBARS scores in healthy men. Taurine and Mg supplementation significantly increased EPC colony numbers and significantly decreased TBARS scores and free radical levels in SHRs. Nicotinamide adenine dinucleotide phosphate oxidase component mRNA expression was significantly higher in the renal cortex of salt-loaded SHRs than in WKY rats, in which it was suppressed by taurine and Mg supplementation. Taurine and Mg supplementation increased EPC colony formation in healthy men and improved impaired EPC function in SHRs through antioxidation, indicating that the dietary intake of taurine and Mg may prolong lifespan by preventing the progression of cardiovascular diseases.

  5. Lyn kinase is activated following thrombopoietin stimulation of the megakaryocytic cell line B1647

    DEFF Research Database (Denmark)

    Santini, Valeria; Scappini, Barbara; Gozzini, Antonella

    2002-01-01

    BACKGROUND AND OBJECTIVES: B1647 is a cell line derived from bone marrow cells of a patient with acute myeloid leukemia (M2) with a complete erythro-megakaryocytic phenotype and bears both k and p isoforms of c-mpl. Interestingly, spontaneous B1647 cell proliferation is significantly potentiated...... by thrombopoietin (TPO). DESIGN AND METHODS: We aimed to evaluate the proliferative signal transduction events following the activation of c-mpl and we stimulated B1647 cells with TPO 40 ng/mL for 3, 7, 15 and 30 minutes; cells were then lysed and whole lysates were immunoprecipitated with anti...

  6. Effects of voluntary exercise on spontaneous physical activity and food consumption in mice: Results from an artificial selection experiment.

    Science.gov (United States)

    Copes, Lynn E; Schutz, Heidi; Dlugosz, Elizabeth M; Acosta, Wendy; Chappell, Mark A; Garland, Theodore

    2015-10-01

    We evaluated the effect of voluntary exercise on spontaneous physical activity (SPA) and food consumption in mice from 4 replicate lines bred for 57 generations for high voluntary wheel running (HR) and from 4 non-selected control (C) lines. Beginning at ~24 days of age, mice were housed in standard cages or in cages with attached wheels. Wheel activity and SPA were monitored in 1-min intervals. Data from the 8th week of the experiment were analyzed because mice were sexually mature and had plateaued in body mass, weekly wheel running distance, SPA, and food consumption. Body mass, length, and masses of the retroperitoneal fat pad, liver, and heart were recorded after the 13th week. SPA of both HR and C mice decreased with wheel access, due to reductions in both duration and average intensity of SPA. However, total activity duration (SPA+wheel running; min/day) was ~1/3 greater when mice were housed with wheels, and food consumption was significantly increased. Overall, food consumption in both HR and C mice was more strongly affected by wheel running than by SPA. Duration of wheel running had a stronger effect than average speed, but the opposite was true for SPA. With body mass as a covariate, chronic wheel access significantly reduced fat pad mass and increased heart mass in both HR and C mice. Given that both HR and C mice housed with wheels had increased food consumption, the energetic cost of wheel running was not fully compensated by concomitant reductions in SPA. The experiment demonstrates that both duration and intensity of both wheel running and SPA were significant predictors of food consumption. This sort of detailed analysis of the effects of different aspects of physical activity on food consumption has not previously been reported for a non-human animal, and it sets the stage for longitudinal examination of energy balance and its components in rodent models. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Abnormal Spontaneous Neural Activity in Obsessive-Compulsive Disorder: A Resting-State Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Ping, Li; Su-Fang, Li; Hai-Ying, Han; Zhang-Ye, Dong; Jia, Luo; Zhi-Hua, Guo; Hong-Fang, Xiong; Yu-Feng, Zang; Zhan-Jiang, Li

    2013-01-01

    Neuroimaging studies of obsessive-compulsive disorder have found abnormalities in orbitofronto-striato-thalamic circuitry, including the orbitofrontal cortex, anterior cingulate cortex, caudate, and thalamus, but few studies have explored abnormal intrinsic or spontaneous brain activity in the resting state. We investigated both intra- and inter-regional synchronized activity in twenty patients with obsessive-compulsive disorder and 20 healthy controls using resting-state functional magnetic resonance imaging. Regional homogeneity (ReHo) and functional connectivity methods were used to analyze the intra- and inter-regional synchronized activity, respectively. Compared with healthy controls, patients with obsessive-compulsive disorder showed significantly increased ReHo in the orbitofrontal cortex, cerebellum, and insula, and decreased ReHo in the ventral anterior cingulate cortex, caudate, and inferior occipital cortex. Based on ReHo results, we determined functional connectivity differences between the orbitofrontal cortex and other brain regions in both patients with obsessive-compulsive disorder and controls. We found abnormal functional connectivity between the orbitofrontal cortex and ventral anterior cingulate cortex in patients with obsessive-compulsive disorder compared with healthy controls. Moreover, ReHo in the orbitofrontal cortex was correlated with the duration of obsessive-compulsive disorder. These findings suggest that increased intra- and inter-regional synchronized activity in the orbitofrontal cortex may have a key role in the pathology of obsessive-compulsive disorder. In addition to orbitofronto-striato-thalamic circuitry, brain regions such as the insula and cerebellum may also be involved in the pathophysiology of obsessive-compulsive disorder.

  8. Aerobic exercise training improves oxidative stress and ubiquitin proteasome system activity in heart of spontaneously hypertensive rats.

    Science.gov (United States)

    de Andrade, Luiz Henrique Soares; de Moraes, Wilson Max Almeida Monteiro; Matsuo Junior, Eduardo Hiroshi; de Orleans Carvalho de Moura, Elizabeth; Antunes, Hanna Karen Moreira; Montemor, Jairo; Antonio, Ednei Luiz; Bocalini, Danilo Sales; Serra, Andrey Jorge; Tucci, Paulo José Ferreira; Brum, Patricia Chakur; Medeiros, Alessandra

    2015-04-01

    The activity of the ubiquitin proteasome system (UPS) and the level of oxidative stress contribute to the transition from compensated cardiac hypertrophy to heart failure in hypertension. Moreover, aerobic exercise training (AET) is an important therapy for the treatment of hypertension, but its effects on the UPS are not completely known. The aim of this study was to evaluate the effect of AET on UPS's activity and oxidative stress level in heart of spontaneously hypertensive rats (SHR). A total of 53 Wistar and SHR rats were randomly divided into sedentary and trained groups. The AET protocol was 5×/week in treadmill for 13 weeks. Exercise tolerance test, non-invasive blood pressure measurement, echocardiographic analyses, and left ventricle hemodynamics were performed during experimental period. The expression of ubiquitinated proteins, 4-hydroxynonenal (4-HNE), Akt, phospho-Akt(ser473), GSK3β, and phospho-GSK3β(ser9) were analyzed by western blotting. The evaluation of lipid hydroperoxide concentration was performed using the xylenol orange method, and the proteasomal chymotrypsin-like activity was measured by fluorimetric assay. Sedentary hypertensive group presented cardiac hypertrophy, unaltered expression of total Akt, phospho-Akt, total GSK3β and phospho-GSK3β, UPS hyperactivity, increased lipid hydroperoxidation as well as elevated expression of 4-HNE but normal cardiac function. In contrast, AET significantly increased exercise tolerance, decreased resting systolic blood pressure and heart rate in hypertensive animals. In addition, the AET increased phospho-Akt expression, decreased phospho-GSK3β, and did not alter the expression of total Akt, total GSK3β, and ubiquitinated proteins, however, significantly attenuated 4-HNE levels, lipid hydroperoxidation, and UPS's activity toward normotensive group levels. Our results provide evidence for the main effect of AET on attenuating cardiac ubiquitin proteasome hyperactivity and oxidative stress in SHR

  9. Suppressive effects of Lactobacillus casei cells, a bacterial immunostimulant, on the incidence of spontaneous thymic lymphoma in AKR mice.

    Science.gov (United States)

    Watanabe, T

    1996-06-01

    The mean survival age of female AKR/J mice was significantly prolonged, the enlargement of thymus was markedly suppressed, and the proliferation of ecotropic and recombinant murine leukemia viruses (MuLV) was markedly inhibited when 8-week-old female AKR/J mice were injected intraperitoneally (i.p.) with heat-killed Lactobacillus casei cells twice weekly for 8 weeks. In contrast, such actions of heat-killed L. casei cells were not seen in 20-week-old female AKR/J mice. The leukemogenic activity of the cell-free extract of thymus from adult female AKR/J mice in newborn female AKR/J mice was drastically reduced by i.p. treatment with heat-killed L. casei cells. The difference in adjuvant effectiveness of heat-killed L. casei cells on 8- and 20-week-old animals may be dependent on the difference in the enhancing activity of the cell-mediated immune systems between the groups induced by heat-killed L. casei cells, and, as a result, on the difference in the degree of proliferation of ecotropic and recombinant MuLV in thymus, which consequently causes thymic lymphoma.

  10. Inhibitor production by normal rat tracheal epithelial cells influences the frequency of spontaneous and X-ray-induced enhanced growth variants

    International Nuclear Information System (INIS)

    Terzaghi-Howe, M.

    1989-01-01

    A cell culture model was used to assay for the induction of cell populations with enhanced growth capacity in culture in irradiated normal rat tracheal epithelial cells (NTEC). Some growth conditions appear to favor the proliferation of both normal and carcinogen-exposed populations, while others appear to select for populations previously exposed to carcinogen. In the present report we focus on what growth conditions are critical for controlling the emergence of spontaneous and X-ray induced proliferating epithelial foci (PEF) and what factor(s) directly influences the relative frequency of PEF in irradiated and control NTEC cultures. (author)

  11. TRPM5 mediates acidic extracellular pH signaling and TRPM5 inhibition reduces spontaneous metastasis in mouse B16-BL6 melanoma cells.

    Science.gov (United States)

    Maeda, Toyonobu; Suzuki, Atsuko; Koga, Kaori; Miyamoto, Chihiro; Maehata, Yojiro; Ozawa, Shigeyuki; Hata, Ryu-Ichiro; Nagashima, Yoji; Nabeshima, Kazuki; Miyazaki, Kaoru; Kato, Yasumasa

    2017-10-03

    Extracellular acidity is a hallmark of solid tumors and is associated with metastasis in the tumor microenvironment. Acidic extracellular pH (pH e ) has been found to increase intracellular Ca 2+ and matrix metalloproteinase-9 (MMP-9) expression by activating NF-κB in the mouse B16 melanoma model. The present study assessed whether TRPM5, an intracellular Ca 2+ -dependent monovalent cation channel, is associated with acidic pH e signaling and induction of MMP-9 expression in this mouse melanoma model. Treatment of B16 cells with Trpm5 siRNA reduced acidic pH e -induced MMP-9 expression. Enforced expression of Trpm5 increased the rate of acidic pH e -induced MMP-9 expression, as well as increasing experimental lung metastasis. This genetic manipulation did not alter the pH e critical for MMP-9 induction but simply amplified the percentage of inducible MMP-9 at each pH e . Treatment of tumor bearing mice with triphenylphosphine oxide (TPPO), an inhibitor of TRPM5, significantly reduced spontaneous lung metastasis. In silico analysis of clinical samples showed that high TRPM5 mRNA expression correlated with poor overall survival rate in patients with melanoma and gastric cancer but not in patients with cancers of the ovary, lung, breast, and rectum. These results showed that TRPM5 amplifies acidic pH e signaling and may be a promising target for preventing metastasis of some types of tumor.

  12. The shape of uterine contractions and labor progress in the spontaneous active labor.

    Science.gov (United States)

    Ebrahimzadeh Zagami, Samira; Golmakani, Nahid; Saadatjoo, Seyyed Ali-Reza; Ghomian, Nayyereh; Baghbani, Behjat

    2015-03-01

    Dystocia is the most common indication of primary cesarean section. The most common cause of dystocia is uterine dysfunction. In prolonged labor, more attention is usually paid to the fetus and pelvis rather than to the role of uterine contractions in a delivery. Therefore, we decided to determine the relationship between the labor progress and uterine contractions shapes. In this cross-sectional study, 200 primiparous women participated having a single pregnancy and cephalic presentation. Uterus contractions were recorded using electronic fetal monitoring at the beginning of the active phase of labor (dilatation 3-5 cm) for 30 min. Fall to rise (F:R) ratio was calculated by determining the duration of returning from a contraction peak to its baseline (fall) and the duration of the rise time from baseline to peak (rise) in two groups. The data were analyzed using t-test and Chi-square test. In this study, 162 women had a normal delivery and 38 women had a cesarean (CS) delivery due to the lack of labor progress. The average F:R ratio was 1.13±0.193 seconds in the vaginal delivery group and 1.64±0.301 seconds in the CS group. This difference was statistically significant (PR ratio was higher in the group that lacked labor progress. Therefore, contraction shapes can be used to predict the labor progress.

  13. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...... includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been...... implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell...

  14. [Association of polymorphisms in signal transducer and activator of transcription 4 gene and the susceptibility to unexplained recurrent spontaneous abortions].

    Science.gov (United States)

    Li, Yin-Guang; You, Ze-Shan; Wu, Zai-Gui; Li, Zhu-Yu; Li, Jie; Zhang, Xiu-Ming; Fang, Li-Yuan; Jiang, Li

    2013-09-01

    To investigate the association between the polymorphisms of signal transducer and activator of transcription 4 (STAT4) gene and the susceptibility to unexplained recurrent spontaneous abortion(URSA). PCR-restriction fragment length polymorphism (PCR-RFLP) was used to detect genotype 3 loca (rs7574865 G/T, rs10181656 C/G and rs16833431 C/T) polymorphism of STAT4 in 246 URSA cases (URSA group) and 183 normal controls (control group) . (1)The frequencies of rs7574865 were genotype G/G of 36.2% (89/246) in URSA group and 46.4% (85/183) in control group, genotype G/T of 47.2% (116/246) in URSA group and 45.4% (83/183) in control group, and genotype T/T of 16.7% (41/246) in URSA group and 8.2% (15/183) in control group, which reached statistical difference (P rs7574865 T allele and rs10181656 G allele increased the risk of URSA (OR = 1.51, 1.44, all P rs7574865 G/T and rs10181656 C/G showed haplotype G-T conferring the susceptibility to URSA (OR = 1.49, P < 0.01), but haplotype C-G could provide protection on URSA (OR = 0.68, P < 0.01). Polymorphisms of STAT4 gene might confer the susceptibility to URSA by altering STAT4 function and (or) its expression.

  15. Omega-3 fatty acids from fish oil lower anxiety, improve cognitive functions and reduce spontaneous locomotor activity in a non-human primate.

    Directory of Open Access Journals (Sweden)

    Nina Vinot

    Full Text Available Omega-3 (ω3 polyunsaturated fatty acids (PUFA are major components of brain cells membranes. ω3 PUFA-deficient rodents exhibit severe cognitive impairments (learning, memory that have been linked to alteration of brain glucose utilization or to changes in neurotransmission processes. ω3 PUFA supplementation has been shown to lower anxiety and to improve several cognitive parameters in rodents, while very few data are available in primates. In humans, little is known about the association between anxiety and ω3 fatty acids supplementation and data are divergent about their impact on cognitive functions. Therefore, the development of nutritional studies in non-human primates is needed to disclose whether a long-term supplementation with long-chain ω3 PUFA has an impact on behavioural and cognitive parameters, differently or not from rodents. We address the hypothesis that ω3 PUFA supplementation could lower anxiety and improve cognitive performances of the Grey Mouse Lemur (Microcebus murinus, a nocturnal Malagasy prosimian primate. Adult male mouse lemurs were fed for 5 months on a control diet or on a diet supplemented with long-chain ω3 PUFA (n = 6 per group. Behavioural, cognitive and motor performances were measured using an open field test to evaluate anxiety, a circular platform test to evaluate reference spatial memory, a spontaneous locomotor activity monitoring and a sensory-motor test. ω3-supplemented animals exhibited lower anxiety level compared to control animals, what was accompanied by better performances in a reference spatial memory task (80% of successful trials vs 35% in controls, p<0.05, while the spontaneous locomotor activity was reduced by 31% in ω3-supplemented animals (p<0.001, a parameter that can be linked with lowered anxiety. The long-term dietary ω3 PUFA supplementation positively impacts on anxiety and cognitive performances in the adult mouse lemur. The supplementation of human food with ω3 fatty

  16. Study on spontaneous bursts of high voltage slow wave activities in electroencephalograms of the aged

    International Nuclear Information System (INIS)

    Yoshida, Ryoichi; Otomo, Eiichi

    1985-01-01

    100 EEGs with bursts of high voltage slow wave activities (bursts) were found in 1150 of aged subjects sixty years and over. In these cases computerized cranial tomography (CT) examinations were carried out within 60 days of EEG recordings and CT findings (bursts CTs) were compared with those of 100 cases without bursts (control CTs). Another 100 consecutive CTs of cases with matched the age and the disease were used as the control. The results were as follows: 1) In bursts CTs, the incidence of normal findings was only 7%, while it was 18% in control CTs. The difference was statistically significant (p<0.001). 2) Brain atrophy was remarkable in bursts CTs. In bursts CT, the incidence of brain atrophy showed more than minor degree was 89%, while it was 64% in control CTs. The difference was statistically significant (p<0.001). 3) The incidences of periventricular lucency (PVL), enlargement of the inferior and posterior horn of the lateral ventricle, basal ganglia calcification observed on CT were significantly higher (55%, 39%, 12%) in bursts CTs than in control CTs (p<0.01, p<0.01, p<0.05). 4) The incidence of focal lesions was lower in bursts CTs than in control CTs. In paticular, large lesions were recognized in only 3% of bursts CTs, whereas those were noted in 15% of control CTs. The difference was statistically significant (p<0.01). 5) Small lesions were recognized in 21% of neurological normal patients with bursts, while they were found in 5% of these of control CTs. 6) Frontal and thalamic lesions were found more frequently in bursts CTs (26%, 13%) than in control CTs (21%, 8%), but the difference was not statistically significant. 7) The correlation between the side showing high voltage of bursts and the side with lesions observed on CT was good. In this way, it may be conceivable that appearance of bursts is not due to only focal lesions but results from generalized brain disfunction, such as aging and others. (author)

  17. Viral Evasion of Natural Killer Cell Activation.

    Science.gov (United States)

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-04-12

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.

  18. Viral Evasion of Natural Killer Cell Activation

    Directory of Open Access Journals (Sweden)

    Yi Ma

    2016-04-01

    Full Text Available Natural killer (NK cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.

  19. Therapeutic actions of an insulin receptor activator and a novel peroxisome proliferator-activated receptor gamma agonist in the spontaneously hypertensive obese rat model of metabolic syndrome X.

    Science.gov (United States)

    Velliquette, Rodney A; Friedman, Jacob E; Shao, J; Zhang, Bei B; Ernsberger, Paul

    2005-07-01

    Insulin resistance clusters with hyperlipidemia, impaired glucose tolerance, and hypertension as metabolic syndrome X. We tested a low molecular weight insulin receptor activator, demethylasterriquinone B-1 (DMAQ-B1), and a novel indole peroxisome proliferator-activated receptor gamma agonist, 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (PPEIA), in spontaneously hypertensive obese rats (SHROB), a genetic model of syndrome X. Agents were given orally for 19 days. SHROB showed fasting normoglycemia but impaired glucose tolerance after an oral load, as shown by increased glucose area under the curve (AUC) [20,700 mg x min/ml versus 8100 in lean spontaneously hypertensive rats (SHR)]. Insulin resistance was indicated by 20-fold excess fasting insulin and increased insulin AUC (6300 ng x min/ml versus 990 in SHR). DMAQ-B1 did not affect glucose tolerance (glucose AUC = 21,300) but reduced fasting insulin 2-fold and insulin AUC (insulin AUC = 4300). PPEIA normalized glucose tolerance (glucose AUC = 9100) and reduced insulin AUC (to 3180) without affecting fasting insulin. PPEIA also increased food intake, fat mass, and body weight gain (81 +/- 12 versus 45 +/- 8 g in untreated controls), whereas DMAQ-B1 had no effect on body weight but reduced subscapular fat mass. PPEIA but not DMAQ-B1 reduced blood pressure. In skeletal muscle, insulin-stimulated phosphorylation of the insulin receptor and insulin receptor substrate protein 1-associated phosphatidylinositol 3-kinase activity were decreased by 40 to 55% in SHROB relative to lean SHR. PPEIA, but not DMAQ-B1, enhanced both insulin actions. SHROB also showed severe hypertriglyceridemia (355 +/- 42 mg/dl versus 65 +/- 3 in SHR) attenuated by both agents (DMAQ-B1, 228 +/- 18; PPEIA, 79 +/- 3). Both these novel antidiabetic agents attenuate insulin resistance and hypertriglyceridemia associated with metabolic syndrome but via distinct mechanisms.

  20. Effect of a non lethal whole-body gamma irradiation on the spontaneous and evoked electroencephalographic activities of the adult rabbit

    International Nuclear Information System (INIS)

    Court, L.

    1969-01-01

    The whole of the experimental methods described (animal preparation, achievement of a precise physiological technique, dosimetry, biological information processing) allowed us to follow the changes for 15 days in the spontaneous and evoked electroencephalogram activities of rabbits submitted to a non-lethal 400 rads whole-body gamma-irradiation. Behavioural troubles, changes in the arousal state and the spontaneous electrical activity of the neo-cortex and hippocampus were noticed constantly together with an enhanced cortical excitability, and the appearance of elements of the paroxystic series sometimes in contrast with a general decrease in amplitude. After a visual stimulus the general morphology of evoked activities at the level of the primary visual areas and hippocampus was unchanged, but enhanced latencies and delays, less systematic modifications in amplitudes seemed to show out a direct effect of radiations on the nervous system and sensorial activities; these troubles seemed to occur independently from the basic electrical activity. As a whole, the changes observed were usually transitory and varied with each individual. Finally an assumption is made to explain the mechanism of arousal troubles and the general evolution of spontaneous electrical activity in the brain. (author) [fr

  1. Immune cells in the normal ovary and spontaneous ovarian tumors in the laying hen (Gallus domesticus) model of human ovarian cancer.

    Science.gov (United States)

    Bradaric, Michael J; Penumatsa, Krishna; Barua, Animesh; Edassery, Seby L; Yu, Yi; Abramowicz, Jacques S; Bahr, Janice M; Luborsky, Judith L

    2013-01-01

    Spontaneous ovarian cancer in chickens resembles human tumors both histologically and biochemically. The goal was to determine if there are differences in lymphocyte content between normal ovaries and ovarian tumors in chickens as a basis for further studies to understand the role of immunity in human ovarian cancer progression. Hens were selected using grey scale and color Doppler ultrasound to determine if they had normal or tumor morphology. Cells were isolated from ovaries (n = 6 hens) and lymphocyte numbers were determined by flow cytometry using antibodies to avian CD4 and CD8 T and B (Bu1a) cells. Ovarian sections from another set of hens (n = 26) were assessed to verify tumor type and stage and to count CD4, CD8 and Bu1a immunostained cells by morphometric analysis. T and B cells were more numerous in ovarian tumors than in normal ovaries by flow cytometry and immunohistochemistry. There were less CD4+ cells than CD8+ and Bu1a+ cells in normal ovaries or ovarian tumors. CD8+ cells were the dominant T cell sub-type in both ovarian stroma and in ovarian follicles compared to CD4+ cells. Bu1a+ cells were consistently found in the stroma of normal ovaries and ovarian tumors but were not associated with follicles. The number of immune cells was highest in late stage serous tumors compared to endometrioid and mucinous tumors. The results suggest that similar to human ovarian cancer there are comparatively more immune cells in chicken ovarian tumors than in normal ovaries, and the highest immune cell content occurs in serous tumors. Thus, this study establishes a foundation for further study of tumor immune responses in a spontaneous model of ovarian cancer which will facilitate studies of the role of immunity in early ovarian cancer progression and use of the hen in pre-clinical vaccine trials.

  2. Spontaneous cell-mediated cytolysis by peripheral blood cells obtained from whole-body chronically irradiated beagle dogs

    International Nuclear Information System (INIS)

    Dyck, J.A.; Shifrine, M.; Klein, A.K.; Rosenblatt, L.S.; Kawakami, T.

    1986-01-01

    The level of natural killer (NK) activity of continuously gamma-irradiated (whole body) beagle dogs and their nonirradiated controls was studied. For analytical purposes, irradiated dogs were segregated into groups according to their clinical status: clinically normal, hypocellular, or with acute non-lymphocytic leukemia. Since unirradiated control animals exhibited a wide range of NK responses, the data from each irradiated animal were compared to its own age-matched or litter-matched unirradiated control. Of the eight clinically normal irradiated dogs (median = 146% activity of control) only one animal had a NK activity lower than that of its control. The hypocellular group (n = 5, median = 21.8% of control) and the leukemic group (n = 4, median = 52.5% of control) each contained one responder with higher activity than its control. The difference between the percentage of control of the clinically normal and clinically abnormal dogs was found to be significant (P less than 0.05). There is a negative correlation between the NK results obtained and the total accumulated dose of radiation at the time of sampling (correlation coefficient = -0.739, P less than 0.01), suggesting a radiation effect upon natural killer activity, which is evidence by enhancement at lower doses and depression at higher doses of irradiation

  3. Antitumor activity of the Korean mistletoe lectin is attributed to activation of macrophages and NK cells.

    Science.gov (United States)

    Yoon, Taek Joon; Yoo, Yung Choon; Kang, Tae Bong; Song, Seong Kyu; Lee, Kyung Bok; Her, Erk; Song, Kyung Sik; Kim, Jong Bae

    2003-10-01

    Inhibitory effect of the lectins (KML-C) isolated from Korean mistletoe (KM; Viscum album coloratum) on tumor metastases produced by murine tumor cells (B16-BL6 melanoma, colon 26-M3.1 carcinoma and L5178Y-ML25 lymphoma cells) was investigated in syngeneic mice. An intravenous (i.v.) administration of KML-C (20-50 ng/mouse) 2 days before tumor inoculation significantly inhibited lung metastases of both B16-BL6 and colon 26-M3.1 cells. The prophylactic effect of 50 ng/mouse of KML-C on lung metastasis was almost the same with that of 100 microg/mouse of KM. Treatment with KML-C 1 day after tumor inoculation induced a significant inhibition of not only the experimental lung metastasis induced by B16-BL6 and colon 26-M3.1 cells but also the liver and spleen metastasis of L5178Y-ML25 cells. Furthermore, multiple administration of KML-C given at 3 day-intervals after tumor inoculation led to a significant reduction of lung metastasis and suppression of the growth of B16-BL6 melanoma cells in a spontaneous metastasis model. In an assay for natural killer (NK) cell activity, i.v. administration of KML-C (50 ng/mouse) significantly augmented NK cytotoxicity against Yac-1 tumor cells 2 days after KML-C treatment. In addition, treatment with KML-C (50 ng/mouse) induced tumoricidal activity of peritoneal macrophages against B16-BL6 and 3LL cells. These results suggest that KML-C has an immunomodulating activity to enhance the host defense system against tumors, and that its prophylactic and therapeutic effect on tumor metastasis is associated with the activation of NK cells and macrophages.

  4. Neural network classifications and correlation analysis of EEG and MEG activity accompanying spontaneous reversals of the Necker cube.

    Science.gov (United States)

    Gaetz, M; Weinberg, H; Rzempoluck, E; Jantzen, K J

    1998-04-01

    It has recently been suggested that reentrant connections are essential in systems that process complex information [A. Damasio, H. Damasio, Cortical systems for the retrieval of concrete knowledge: the convergence zone framework, in: C. Koch, J.L. Davis (Eds.), Large Scale Neuronal Theories of the Brain, The MIT Press, Cambridge, 1995, pp. 61-74; G. Edelman, The Remembered Present, Basic Books, New York, 1989; M.I. Posner, M. Rothbart, Constructing neuronal theories of mind, in: C. Koch, J.L. Davis (Eds.), Large Scale Neuronal Theories of the Brain, The MIT Press, Cambridge, 1995, pp. 183-199; C. von der Malsburg, W. Schneider, A neuronal cocktail party processor, Biol. Cybem., 54 (1986) 29-40]. Reentry is not feedback, but parallel signalling in the time domain between spatially distributed maps, similar to a process of correlation between distributed systems. Accordingly, it was expected that during spontaneous reversals of the Necker cube, complex patterns of correlations between distributed systems would be present in the cortex. The present study included EEG (n=4) and MEG recordings (n=5). Two experimental questions were posed: (1) Can distributed cortical patterns present during perceptual reversals be classified differently using a generalised regression neural network (GRNN) compared to processing of a two-dimensional figure? (2) Does correlated cortical activity increase significantly during perception of a Necker cube reversal? One-second duration single trials of EEG and MEG data were analysed using the GRNN. Electrode/sensor pairings based on cortico-cortical connections were selected to assess correlated activity in each condition. The GRNN significantly classified single trials recorded during Necker cube reversals as different from single trials recorded during perception of a two-dimensional figure for both EEG and MEG. In addition, correlated cortical activity increased significantly in the Necker cube reversal condition for EEG and MEG compared

  5. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    Science.gov (United States)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  6. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization

    Science.gov (United States)

    Zhong, Guisheng; Shevtsova, Natalia A; Rybak, Ilya A; Harris-Warrick, Ronald M

    2012-01-01

    We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-resetting, with rhythmic activity resuming after an integer number of cycles. Flexor and extensor deletions showed marked asymmetry: flexor deletions were accompanied by sustained ipsilateral extensor activity, whereas rhythmic flexor bursting was not perturbed during extensor deletions. Rhythmic activity on one side of the cord was not perturbed during non-resetting spontaneous deletions on the other side, and these deletions could occur with no input from the other side of the cord. These results suggest that the locomotor CPG has a two-level organization with rhythm-generating (RG) and pattern-forming (PF) networks, in which only the flexor RG network is intrinsically rhythmic. To further explore the neuronal organization of the CPG, we monitored activity of motoneurons and selected identified interneurons during spontaneous non-resetting deletions. Motoneurons lost rhythmic synaptic drive during ipsilateral deletions. Flexor-related commissural interneurons continued to fire rhythmically during non-resetting ipsilateral flexor deletions. Deletion analysis revealed two classes of rhythmic V2a interneurons. Type I V2a interneurons retained rhythmic synaptic drive and firing during ipsilateral motor deletions, while type II V2a interneurons lost rhythmic synaptic input and fell silent during deletions. This suggests that the type I neurons are components of the RG, whereas the type II neurons are components of the PF network. We propose a computational model of the spinal locomotor CPG that reproduces our experimental results. The results may provide novel insights into the

  7. Self-monitoring of spontaneous physical activity and sedentary behavior to prevent weight regain in older adults.

    Science.gov (United States)

    Nicklas, Barbara J; Gaukstern, Jill E; Beavers, Kristen M; Newman, Jill C; Leng, Xiaoyan; Rejeski, W Jack

    2014-06-01

    The objective was to determine whether adding a self-regulatory intervention (SRI) focused on self-monitoring of spontaneous physical activity (SPA) and sedentary behavior to a standard weight loss intervention improved maintenance of lost weight. Older (65-79 years), obese (BMI = 30-40 kg/m(2) ) adults (n = 48) were randomized to a 5-month weight loss intervention involving a hypocaloric diet (DIET) and aerobic exercise (EX) with or without the SRI to promote SPA and decrease sedentary behavior (SRI + DIET + EX compared with DIET + EX). Following the weight loss phase, both groups transitioned to self-selected diet and exercise behavior during a 5-month follow-up. Throughout the 10-months, the SRI + DIET + EX group utilized real-time accelerometer feedback for self-monitoring. There was an overall group by time effect of the SRI (P DIET + EX lost less weight and regained more weight than SRI + DIET + EX. The average weight regain during follow-up was 1.3 kg less in the SRI + DIET + EX group. Individuals in this group maintained approximately 10% lower weight than baseline compared with those in the DIET + EX group whom maintained approximately 5% lower weight than baseline. Addition of a SRI, designed to increase SPA and decrease sedentary behavior, to a standard weight loss intervention enhanced successful maintenance of lost weight. Copyright © 2014 The Obesity Society.

  8. Effect of calorie restriction on spontaneous physical activity and body mass in mice divergently selected for basal metabolic rate (BMR).

    Science.gov (United States)

    Brzęk, Paweł; Gębczyński, Andrzej K; Książek, Aneta; Konarzewski, Marek

    2016-07-01

    Spontaneous physical activity (SPA) represents an important component of daily energy expenditures in animals and humans. Intra-specific variation in SPA may be related to the susceptibility to metabolic disease or obesity. In particular, reduced SPA under conditions of limited food availability may conserve energy and prevent loss of body and fat mass ('thrifty genotype hypothesis'). However, both SPA and its changes during food restriction show wide inter-individual variations. We studied the effect of 30% caloric restriction (CR) on SPA in laboratory mice divergently selected for high (H-BMR) and low (L-BMR) basal metabolic rate. Selection increased SPA in the H-BMR line but did not change it in the L-BMR mice. This effect reflected changes in SPA intensity but not SPA duration. CR increased SPA intensity more strongly in the L-BMR line than in the H-BMR line and significantly modified the temporal variation of SPA. However, the initial between-line differences in SPA were not affected by CR. Loss of body mass during CR did not differ between both lines. Our results show that the H-BMR mice can maintain their genetically determined high SPA under conditions of reduced food intake without sacrificing their body mass. We hypothesize that this pattern may reflect the higher flexibility in the energy budget in the H-BMR line, as we showed previously that mice from this line reduced their BMR during CR. These energy savings may allow for the maintenance of elevated SPA in spite of reduced food intake. We conclude that the effect of CR on SPA is in large part determined by the initial level of BMR, whose variation may account for the lack of universal pattern of behavioural responses to CR. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effects of ovariectomy and exercise training intensity on energy substrate and hepatic lipid metabolism, and spontaneous physical activity in mice.

    Science.gov (United States)

    Tuazon, Marc A; Campbell, Sara C; Klein, Dylan J; Shapses, Sue A; Anacker, Keith R; Anthony, Tracy G; Uzumcu, Mehmet; Henderson, Gregory C

    2018-06-01

    Menopause is associated with fatty liver, glucose dysregulation, increased body fat, and impaired bone quality. Previously, it was demonstrated that single sessions of high-intensity interval exercise (HIIE) are more effective than distance- and duration-matched continuous exercise (CE) on altering hepatic triglyceride (TG) metabolism and very-low density lipoprotein-TG (VLDL-TG) secretion. Six weeks training using these modalities was examined for effects on hepatic TG metabolism/secretion, glucose tolerance, body composition, and bone mineral density (BMD) in ovariectomized (OVX) and sham-operated (SHAM) mice. OVX and SHAM were assigned to distance- and duration-matched CE and HIIE, or sedentary control. Energy expenditure during exercise was confirmed to be identical between CE and HIIE and both similarly reduced post-exercise absolute carbohydrate oxidation and spontaneous physical activity (SPA). OVX vs. SHAM displayed impaired glucose tolerance and greater body fat despite lower hepatic TG, and these outcomes were not affected by training. Only HIIE increased hepatic AMPK in OVX and SHAM, but neither training type impacted VLDL-TG secretion. As expected, BMD was lower in OVX, and training did not affect long bones. The results reveal intensity-dependent effects on hepatic AMPK expression and general exercise effects on subsequent SPA and substrate oxidation that is independent of estrogen status. These findings support the notion that HIIE can impact aspects of liver physiology in females while the effects of exercise on whole body substrate selection appear to be independent of training intensity. However, neither exercise approach mitigated the impairment in glucose tolerance and elevated body fat occurring in OVX mice. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Functional Architecture of Noise Correlations in Human Early Visual Cortex and its Relationship with Coherent Spontaneous Activity

    Directory of Open Access Journals (Sweden)

    Jungwon Ryu

    2012-10-01

    Full Text Available Responses of single sensory neurons to stimuli are ‘noisy’, varying substantially across repeated trials of identical stimulation. Intriguingly, these individual ‘noise responses’ (NR—deviations from their means—are not isolated; rather they are highly correlated, referred to as ‘noise correlation’ (NC. From a computational viewpoint, the presence and nature of NC exert great impacts on the information processing capacity of neurons as they encode sensory events as a population, decode those encoded neural responses, and contribute to perceptual choices for action. Regarding the origin of NR, on the other hand, there has been growing evidence pointing to its tight linkage with ‘spontaneous responses’ (SR—fluctuations of neural activity in the absence of external input or tasks. To investigate the functional structure of NC and its relationship with ‘correlations in SR’ (SC, we defined population receptive fields (pRFs of unit volumes of gray matter (UV in human early visual cortex and computed NRs and SRs using fMRI. NC increased with an increasing degree of similarity in pRF tuning properties such as orientation, spatial frequency, and visuotopic position, particularly between UV pairs close in cortical distance. This ‘like-to-like’ structure of NC remained unaltered across scan runs with different stimuli, even among between-area UV pairs. SC was higher than NC, and its functional and temporal structures were quite similar to those of NC. Furthermore, the partial correlation analysis revealed that NC between a given pair of UVs was best predicted by their SC than by any other factors examined in the current study.

  11. Variations in T-helper 17 and Regulatory T Cells during The Menstrual Cycle in Peripheral Blood of Women with Recurrent Spontaneous Abortion

    Directory of Open Access Journals (Sweden)

    Nasrin Sereshki

    2014-03-01

    Full Text Available Background: Disorders in immune system regulation may result in pregnancy abnormalities such as recurrent spontaneous abortion (RSA. This study aims to determine the ratio of regulatory T (Treg and T helper (Th 17 cells in unexplained RSA (URSA women during proliferative and secretory phases of their menstrual cycles compared to healthy non-pregnant women. Materials and Methods: In this case control study, 25 women with URSA and 35 healthy, non-pregnant women were enrolled. The percentage of Th17 and Treg cells in participants peripheral blood were determined by flow cytometry. Results: The percentage of Th17 cells and their related cytokines in serum (IL-17A were higher in the proliferative and secretory phases of the menstrual cycles of URSA women compared to the control women. However, a lower percentage of Treg cells and their related cytokines in serum, transforming growth factor (TGF β1 and interleukin (IL-10 were detected in the proliferative but not the secretory phase of the URSA group. The ratio of Th17/CD4+ Treg was higher in the URSA group than the control group. We observed an increased ratio of Th17/CD4+ Treg during the proliferative and secretory phases in URSA women. Conclusion: The imbalance between Th17 and Treg cells during the proliferative phase of menstrual cycles in the URSA group may be considered a cause for spontaneous abortion.

  12. Adipokine CTRP6 improves PPARγ activation to alleviate angiotensin II-induced hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Chi, Liyi; Hu, Xiaojing; Zhang, Wentao; Bai, Tiao; Zhang, Linjing; Zeng, Hua; Guo, Ruirui; Zhang, Yanhai; Tian, Hongyan

    2017-01-01

    Angiotensin II (AngII) is the most important component of angiotensin, which has been regarded as a major contributor to the incidence of hypertension and vascular endothelial dysfunction. The adipocytokine C1q/TNF-related protein 6 (CTRP6) was recently reported to have multiple protective effects on cardiac and cardiovascular function. However, the exact role of CTRP6 in the progression of AngII induced hypertension and vascular endothelial function remains unclear. Here, we showed that serum CTRP6 content was significantly downregulated in SHRs, accompanied by a marked increase in arterial systolic pressure and serum AngII, CRP and ET-1 content. Then, pcDNA3.1-mediated CTRP6 delivery or CTRP6 siRNA was injected into SHRs. CTRP6 overexpression caused a significant decrease in AngII expression and AngII-mediated hypertension and vascular endothelial inflammation. In contrast, CTRP6 knockdown had the opposite effect to CTRP6 overexpression. Moreover, we found that CTRP6 positively regulated the activation of the ERK1/2 signaling pathway and the expression of peroxisome proliferator-activated receptor γ (PPARγ), a recently proven negative regulator of AngII, in the brain and vascular endothelium of SHRs. Finally, CTRP6 was overexpressed in endothelial cells, and caused a significant increase in PPARγ activation and suppression in AngII-mediated vascular endothelial dysfunction and apoptosis. The effect of that could be rescued by the ERK inhibitor PD98059. In contrast, silencing CTRP6 suppressed PPARγ activation and exacerbated AngII-mediated vascular endothelial dysfunction and apoptosis. In conclusion, CTRP6 improves PPARγ activation and alleviates AngII-induced hypertension and vascular endothelial dysfunction. - Highlights: • Serum CTRP6 was significantly decreased in spontaneously hypertensive rats (SHRs). • CTRP6 positively regulated the activation of the ERK1/2 signaling pathway. • CTRP6 negatively regulates PPARγ mediated Angiotensin II (Ang

  13. Supplementary Motor Area Activation in Disfluency Perception : An fMRI Study of Listener Neural Responses to Spontaneously Produced Unfilled and Filled Pauses

    OpenAIRE

    Eklund, Robert; Ingvar, Martin

    2016-01-01

    Spontaneously produced Unfilled Pauses (UPs) and Filled Pauses (FPs) were played to subjects in an fMRI experiment. For both stimuli increased activity was observed in the Primary Auditory Cortex (PAC). However, FPs, but not UPs, elicited modulation in the Supplementary Motor Area (SMA), Brodmann Area 6. Our results provide neurocognitive confirmation of the alleged difference between FPs and other kinds of speech disfluency and could also provide a partial explanation for the previously repo...

  14. Telomerase activity is spontaneously increased in lymphocytes from patients with atopic dermatitis and correlates with cellular proliferation

    DEFF Research Database (Denmark)

    Wu, Kehuai; Volke, Anne Rehné; Lund, Marianne

    1999-01-01

    blood mononuclear cells (PBMC) were isolated from 15 patients with AD and 13 healthy donors. Cells were stimulated with purified protein derivative (PPD) of tuberculin (10 microg/ml), interleukin 2 (IL-2) (100 U/ml), anti-CD3 monoclonal antibody (anti-CD3) (1 microg/ml), anti-CD3 plus IL-2......-thymidine incorporation. We found that telomerase activity in non-stimulated PBMC from patients with AD was significantly up-regulated without any stimulation during the 72 h of in vitro incubation. The most potent stimulator of telomerase activity was SEA, followed by anti-CD3 plus IL-2, anti-CD3 alone, and PPD. IL-2...

  15. Dentate gyrus progenitor cell proliferation after the onset of spontaneous seizures in the tetanus toxin model of temporal lobe epilepsy

    Czech Academy of Sciences Publication Activity Database

    Jiruška, Přemysl; Shtaya, A.B.Y.; Bodansky, D.M.S.; Chang, W.C.; Gray, W.P.; Jefferys, J. G. R.

    2013-01-01

    Roč. 54, Jun 2013 (2013), s. 492-498 ISSN 0969-9961 R&D Projects: GA ČR(CZ) GAP303/10/0999 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : spontaneous seizures * temporal lobe epilepsy * neurogenesis * tetanus toxin * apoptosis Subject RIV: FH - Neurology Impact factor: 5.202, year: 2013

  16. In utero exposure to a low concentration of diesel exhaust affects spontaneous locomotor activity and monoaminergic system in male mice

    Directory of Open Access Journals (Sweden)

    Odagiri Takashi

    2010-03-01

    Full Text Available Abstract Background Epidemiological studies have suggested that suspended particulate matter (SPM causes detrimental health effects such as respiratory and cardiovascular diseases, and that diesel exhaust particles from automobiles is a major contributor to SPM. It has been reported that neonatal and adult exposure to diesel exhaust damages the central nervous system (CNS and induces behavioral alteration. Recently, we have focused on the effects of prenatal exposure to diesel exhaust on the CNS. In this study, we examined the effects of prenatal exposure to low concentration of diesel exhaust on behaviour and the monoaminergic neuron system. Spontaneous locomotor activity (SLA and monoamine levels in the CNS were assessed. Methods Mice were exposed prenatally to a low concentration of diesel exhaust (171 μg DEP/m3 for 8 hours/day on gestational days 2-16. SLA was assessed for 3 days in 4-week-old mice by analysis of the release of temperature-associated infrared rays. At 5 weeks of age, the mice were sacrificed and the brains were used for analysis by high-performance liquid chromatography (HPLC. Results and Discussion Mice exposed to a low concentration of diesel exhaust showed decreased SLA in the first 60 minutes of exposure. Over the entire test period, the mice exposed prenatally to diesel exhaust showed decreased daily SLA compared to that in control mice, and the SLA in each 3 hour period was decreased when the lights were turned on. Neurotransmitter levels, including dopamine and noradrenaline, were increased in the prefrontal cortex (PFC in the exposure group compared to the control group. The metabolites of dopamine and noradrenaline also increased in the PFC. Neurotransmitter turnover, an index of neuronal activity, of dopamine and noradrenaline was decreased in various regions of the CNS, including the striatum, in the exposure group. The serum corticosterone level was not different between groups. The data suggest that decreased

  17. Spontaneous CD4+ and CD8+ T-cell responses directed against cancer testis antigens are present in the peripheral blood of testicular cancer patients.

    Science.gov (United States)

    Pearce, Hayden; Hutton, Paul; Chaudhri, Shalini; Porfiri, Emilio; Patel, Prashant; Viney, Richard; Moss, Paul

    2017-07-01

    Cancer/testis antigen (CTAg) expression is restricted to spermatogenic cells in an immune-privileged site within the testis. However, these proteins are expressed aberrantly by malignant cells and T-cell responses against CTAgs develop in many cancer patients. We investigated the prevalence, magnitude and phenotype of CTAg-specific T cells in the blood of patients with testicular germ cell tumors (TGCTs). CD8 + and CD4 + T-cell responses against MAGE-A family antigens were present in 44% (20/45) of patients' samples assayed by ex vivo IFN-γ ELISPOT. The presence of MAGE-specific CD8 + T cells was further determined following short-term in vitro expansion through the use of pMHC-I multimers containing known immunogenic peptides. Longitudinal analysis revealed that the frequency of MAGE-specific T cells decreased by 89% following orchidectomy suggesting that persistence of tumor antigen is required to sustain CTAg-specific T-cell immunity. Notably, this decrease correlated with a decline in the global effector/memory T-cell pool following treatment. Spontaneous T-cell immunity against CTAg proteins therefore develops in many patients with testicular cancer and may play an important role in the excellent clinical outcome of patients with this tumor subtype. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Spontaneous CD4+ and CD8+ T‐cell responses directed against cancer testis antigens are present in the peripheral blood of testicular cancer patients

    Science.gov (United States)

    Pearce, Hayden; Hutton, Paul; Chaudhri, Shalini; Porfiri, Emilio; Patel, Prashant; Viney, Richard

    2017-01-01

    Cancer/testis antigen (CTAg) expression is restricted to spermatogenic cells in an immune‐privileged site within the testis. However, these proteins are expressed aberrantly by malignant cells and T‐cell responses against CTAgs develop in many cancer patients. We investigated the prevalence, magnitude and phenotype of CTAg‐specific T cells in the blood of patients with testicular germ cell tumors (TGCTs). CD8+ and CD4+ T‐cell responses against MAGE‐A family antigens were present in 44% (20/45) of patients’ samples assayed by ex vivo IFN‐γ ELISPOT. The presence of MAGE‐specific CD8+ T cells was further determined following short‐term in vitro expansion through the use of pMHC‐I multimers containing known immunogenic peptides. Longitudinal analysis revealed that the frequency of MAGE‐specific T cells decreased by 89% following orchidectomy suggesting that persistence of tumor antigen is required to sustain CTAg‐specific T‐cell immunity. Notably, this decrease correlated with a decline in the global effector/memory T‐cell pool following treatment. Spontaneous T‐cell immunity against CTAg proteins therefore develops in many patients with testicular cancer and may play an important role in the excellent clinical outcome of patients with this tumor subtype. PMID:28555838

  19. The hydroxyflavone, fisetin, suppresses mast cell activation induced by interaction with activated T cell membranes

    Science.gov (United States)

    Nagai, K; Takahashi, Y; Mikami, I; Fukusima, T; Oike, H; Kobori, M

    2009-01-01

    Background and purpose: Cell-to-cell interactions between mast cells and activated T cells are increasingly recognized as a possible mechanism in the aetiology of allergic or non-allergic inflammatory disorders. To determine the anti-allergic effect of fisetin, we examined the ability of fisetin to suppress activation of the human mast cell line, HMC-1, induced by activated Jurkat T cell membranes. Experimental approach: HMC-1 cells were incubated with or without fisetin for 15 min and then co-cultured with Jurkat T cell membranes activated by phorbol-12-myristate 13-acetate for 16 h. We determined gene expression in activated HMC-1 cells by DNA microarray and quantitative reverse transcription (RT)-PCR analysis. We also examined activation of the transcription factor NF-κB and MAP kinases (MAPKs) in activated HMC-1 cells. Key results: Fisetin suppresses cell spreading and gene expression in HMC-1 cells stimulated by activated T cell membranes. Additionally, we show that these stimulated HMC-1 cells expressed granzyme B. The stimulatory interaction also induced activation of NF-κB and MAPKs; these activations were suppressed by fisetin. Fisetin also reduced the amount of cell surface antigen CD40 and intercellular adhesion molecule-1 (ICAM-1) on activated HMC-1 cells. Conclusions and implications: Fisetin suppressed activation of HMC-1 cells by activated T cell membranes by interfering with cell-to-cell interaction and inhibiting the activity of NF-κB and MAPKs and thereby suppressing gene expression. Fisetin may protect against the progression of inflammatory diseases by limiting interactions between mast cells and activated T cells. PMID:19702784

  20. Mast cell activators as novel immune regulators.

    Science.gov (United States)

    Johnson-Weaver, Brandi; Choi, Hae Woong; Abraham, Soman N; Staats, Herman F

    2018-05-26

    Mast cells are an important cell type of the innate immune system that when activated, play a crucial role in generating protective innate host responses after bacterial and viral infection. Additionally, activated mast cells influence lymph node composition to regulate the induction of adaptive immune responses. The recognition that mast cells play a beneficial role in host responses to microbial infection and induction of adaptive immunity has provided the rationale to evaluate mast cell activators for use as antimicrobials or vaccine adjuvants. This review summarizes the role of mast cell activators in antimicrobial responses while also discussing the use of different classes of mast cell activators as potent vaccine adjuvants that enhance the induction of protective immune responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Characterization of the subsets of human NKT-like cells and the expression of Th1/Th2 cytokines in patients with unexplained recurrent spontaneous abortion.

    Science.gov (United States)

    Yuan, Jing; Li, Jian; Huang, Shi-Yun; Sun, Xin

    2015-08-01

    The objective was to investigate the subsets of natural killer T (NKT)-like cells and the expression of Th1/Th2 cytokines in the peripheral blood (PB) and/or decidual tissue of patients with unexplained recurrent spontaneous abortion (URSA). The percentages of NKT-like cells in the PB and deciduas of URSA patients in early pregnancy and in the PB of nonpregnant women were analyzed by flow cytometry. The expression of interferon (IFN)-γ (Th1 cytokine) and Th2 cytokines, interleukin (IL)-4 and IL-10, in the PB and decidual tissue was measured by quantitative RT-PCR and enzyme-linked immunosorbent assay (ELISA). Most percentages of subsets of NKT-like cells (CD3(+)CD56(+), CD3(+)CD56(+)CD16(+)) in the PB and deciduas were significantly greater in URSA patients than in normal pregnant and nonpregnant women. A cut-off value of 3.75% for the increased percentage of CD3(+)CD56(+)CD16(+) NKT-like cells in the PB appeared to be predictive of pregnancy failure. Moreover, we found that in the decidua, IFN-γ expression was significantly higher, while IL-4 and IL-10 expression was significantly lower in URSA patients compared with those with a normal pregnancy. The ratio of decidual Th1/Th2 cytokines in URSA patients was significantly increased compared with that in normal pregnant women. Decidual IL-4 expression correlated negatively with the percentages of blood CD3(+)CD56(+)CD16(+) NKT-like cells and the decidual CD3(+)CD56(+) and CD3(+)CD56(+)CD16(+) NKT-like cells. NKT-like cells may play an important role in maintaining normal pregnancy. Measurement of CD3(+)CD56(+)CD16(+) NKT-like cells in the PB may provide a potential tool for assessing patients' risk of spontaneous abortion. Copyright © 2015. Published by Elsevier Ireland Ltd.

  2. [Spontaneous hypoglycemia].

    Science.gov (United States)

    Ellorhaoui, M; Schultze, W

    1977-01-15

    On the basis of a survey is attempted to describe mode of development, symptomatology, individual forms and the different possibilities of therapy of the spontaneous hypoglycaemias. A particularly broad range was devoted to the cerebral sequelae, since in these cases--according to our experience--on account of simulation of neurologico-psychiatric symptoms at the soonest wrong diagnoses are to be expected. Furthermore, it is attempted to classify the hypoglycemias according to their development, in which cases their incompleteness was evident from the very beginning. The individual forms of appearance are treated according their to significance. Out of the inducible hypoglycaemias a particular attention is devoted to the forms caused by insulin and oral antidiabetics, since these most frequently participate in the development. Finally the author inquires into diagnostic measures for recognition of special forms of hypoglycaemia. In this place the diagnostics of hyperinsulinism conditioned by adenomatosis or tumours of other kinds is of particular importance. Finally conservative and operative possibilities of the therapy of these tumours are discussed,whereby the only recently tested treatment with streptotocin is mentioned.

  3. Changes in Brain Activation Associated with Spontaneous Improvization and Figural Creativity After Design-Thinking-Based Training: A Longitudinal fMRI Study.

    Science.gov (United States)

    Saggar, Manish; Quintin, Eve-Marie; Bott, Nicholas T; Kienitz, Eliza; Chien, Yin-Hsuan; Hong, Daniel W-C; Liu, Ning; Royalty, Adam; Hawthorne, Grace; Reiss, Allan L

    2017-07-01

    Creativity is widely recognized as an essential skill for entrepreneurial success and adaptation to daily-life demands. However, we know little about the neural changes associated with creative capacity enhancement. For the first time, using a prospective, randomized control design, we examined longitudinal changes in brain activity associated with participating in a five-week design-thinking-based Creative Capacity Building Program (CCBP), when compared with Language Capacity Building Program (LCBP). Creativity, an elusive and multifaceted construct, is loosely defined as an ability to produce useful/appropriate and novel outcomes. Here, we focus on one of the facets of creative thinking-spontaneous improvization. Participants were assessed pre- and post-intervention for spontaneous improvization skills using a game-like figural Pictionary-based fMRI task. Whole-brain group-by-time interaction revealed reduced task-related activity in CCBP participants (compared with LCBP participants) after training in the right dorsolateral prefrontal cortex, anterior/paracingulate gyrus, supplementary motor area, and parietal regions. Further, greater cerebellar-cerebral connectivity was observed in CCBP participants at post-intervention when compared with LCBP participants. In sum, our results suggest that improvization-based creative capacity enhancement is associated with reduced engagement of executive functioning regions and increased involvement of spontaneous implicit processing. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Real-time relationship between PKA biochemical signal network dynamics and increased action potential firing rate in heart pacemaker cells: Kinetics of PKA activation in heart pacemaker cells.

    Science.gov (United States)

    Yaniv, Yael; Ganesan, Ambhighainath; Yang, Dongmei; Ziman, Bruce D; Lyashkov, Alexey E; Levchenko, Andre; Zhang, Jin; Lakatta, Edward G

    2015-09-01

    cAMP-PKA protein kinase is a key nodal signaling pathway that regulates a wide range of heart pacemaker cell functions. These functions are predicted to be involved in regulation of spontaneous action potential (AP) generation of these cells. Here we investigate if the kinetics and stoichiometry of increase in PKA activity match the increase in AP firing rate in response to β-adrenergic receptor (β-AR) stimulation or phosphodiesterase (PDE) inhibition, that alters the AP firing rate of heart sinoatrial pacemaker cells. In cultured adult rabbit pacemaker cells infected with an adenovirus expressing the FRET sensor AKAR3, the EC50 in response to graded increases in the intensity of β-AR stimulation (by Isoproterenol) the magnitude of the increases in PKA activity and the spontaneous AP firing rate were similar (0.4±0.1nM vs. 0.6±0.15nM, respectively). Moreover, the kinetics (t1/2) of the increases in PKA activity and spontaneous AP firing rate in response to β-AR stimulation or PDE inhibition were tightly linked. We characterized the system rate-limiting biochemical reactions by integrating these experimentally derived data into a mechanistic-computational model. Model simulations predicted that phospholamban phosphorylation is a potent target of the increase in PKA activity that links to increase in spontaneous AP firing rate. In summary, the kinetics and stoichiometry of increases in PKA activity in response to a physiological (β-AR stimulation) or pharmacological (PDE inhibitor) stimuli match those of changes in the AP firing rate. Thus Ca(2+)-cAMP/PKA-dependent phosphorylation limits the rate and magnitude of increase in spontaneous AP firing rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Lactobacilli Differentially Activate Natural Killer Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    bacteria on regulatory functions of NK-cells. Here, we have investigated how human gut flora-derived non-pathogenic lactobacilli affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human peripheral blood NK cells upon bacterial stimulation. CD3-CD56+ NK cells were isolated from...... having engulfed bacteria, stimulated the growth of the NK cells. In contrast, a Lactobacillus paracasei strain caused the NK cells to proliferate only in the presence of monocytes. These results demonstrate that various lactobacilli have the capacity to activate NK cells in vitro, in a monocyte dependent...

  6. Pectoral fin beat frequency predicts oxygen consumption during spontaneous activity in a labriform swimming fish (Embiotoca lateralis)

    DEFF Research Database (Denmark)

    Tudorache, Christian; Jordan, Anders D.; Svendsen, Jon Christian

    2009-01-01

    The objective of this study was to identify kinematic variables correlated with oxygen consumption during spontaneous labriform swimming. Kinematic variables (swimming speed, change of speed, turning angle, turning rate, turning radius and pectoral fin beat frequency) and oxygen consumption (MO2......) of spontaneous swimming in Embiotoca lateralis were measured in a circular arena using video tracking and respirometry, respectively. The main variable influencing MO2 was pectoral fin beat frequency (r (2) = 0.71). No significant relationship was found between swimming speed and pectoral fin beat frequency....... Complementary to other methods within biotelemetry such as EMG it is suggested that such correlations of pectoral fin beat frequency may be used to measure the energy requirements of labriform swimming fish such as E. lateralis in the field, but need to be taken with great caution since movement and oxygen...

  7. Role of FAT/CD36 in novel PKC isoform activation in heart of spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Klevstig, M. J.; Marková, I.; Burianová, J.; Kazdová, L.; Pravenec, Michal; Nováková, O.; Novák, F.

    2011-01-01

    Roč. 357, 1-2 (2011), s. 163-169 ISSN 0300-8177 R&D Projects: GA ČR(CZ) GD305/08/H037; GA MŠk(CZ) ME08006 Grant - others:Univerzita Karlova(CZ) SVV33779266 Institutional research plan: CEZ:AV0Z50110509 Keywords : CD36 * novel PKC * spontaneously hypertensive rat * insulin resistance Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 2.057, year: 2011

  8. miR-520 promotes DNA-damage-induced trophoblast cell apoptosis by targeting PARP1 in recurrent spontaneous abortion (RSA).

    Science.gov (United States)

    Dong, Xiujuan; Yang, Long; Wang, Hui

    2017-04-01

    The establishment and maintenance of successful pregnancy mainly depends on trophoblast cells. Their dysfunction has been implicated in recurrent spontaneous abortion (RSA), a major complication of pregnancy. However, the underlying mechanisms of trophoblasts dysfunction remain unclear. DNA-damage-induced cell apoptosis has been reported to play a vital role in cell death. In this study, we identified a novel microRNA (miR-520) in RSA progression via regulating trophoblast cell apoptosis. Microarray analysis showed that miR-520 was highly expressed in villus of RSA patients. By using flow cytometry analysis, we observed miR-520 expression was correlated with human trophoblast cell apoptosis in vitro, along with decreased poly (ADP-ribose) polymerase-1 (PARP1) expression. With the analysis of clinic samples, we observed that miR-520 level was negatively correlated with PARP1 level in RSA villus. In addition, overexpression of PARP1 restored the miR-520-induced trophoblast cell apoptosis in vitro. The status of chromosome in trophoblast implied that miR-520-promoted DNA-damage-induced cell apoptosis to regulate RSA progression. These results indicated that the level of miR-520 might associate with RSA by prompting trophoblast cell apoptosis via PARP1 dependent DNA-damage pathway.

  9. Activity deprivation induces neuronal cell death: mediation by tissue-type plasminogen activator.

    Directory of Open Access Journals (Sweden)

    Eldi Schonfeld-Dado

    Full Text Available Spontaneous activity is an essential attribute of neuronal networks and plays a critical role in their development and maintenance. Upon blockade of activity with tetrodotoxin (TTX, neurons degenerate slowly and die in a manner resembling neurodegenerative diseases-induced neuronal cell death. The molecular cascade leading to this type of slow cell death is not entirely clear. Primary post-natal cortical neurons were exposed to TTX for up to two weeks, followed by molecular, biochemical and immunefluorescence analysis. The expression of the neuronal marker, neuron specific enolase (NSE, was down-regulated, as expected, but surprisingly, there was a concomitant and striking elevation in expression of tissue-type plasminogen activator (tPA. Immunofluorescence analysis indicated that tPA was highly elevated inside affected neurons. Transfection of an endogenous tPA inhibitor, plasminogen activator inhibitor-1 (PAI-1, protected the TTX-exposed neurons from dying. These results indicate that tPA is a pivotal player in slowly progressing activity deprivation-induced neurodegeneration.

  10. Expression of progesterone receptor membrane component-2 within the immature rat ovary and its role in regulating mitosis and apoptosis of spontaneously immortalized granulosa cells.

    Science.gov (United States)

    Griffin, Daniel; Liu, Xiufang; Pru, Cindy; Pru, James K; Peluso, John J

    2014-08-01

    Progesterone receptor membrane component 2 (Pgrmc2) mRNA was detected in the immature rat ovary. By 48 h after eCG, Pgrmc2 mRNA levels decreased by 40% and were maintained at 48 h post-hCG. Immunohistochemical studies detected PGRMC2 in oocytes and ovarian surface epithelial, interstitial, thecal, granulosa, and luteal cells. PGRMC2 was also present in spontaneously immortalized granulosa cells, localizing to the cytoplasm of interphase cells and apparently to the mitotic spindle of cells in metaphase. Interestingly, PGRMC2 levels appeared to decrease during the G1 stage of the cell cycle. Moreover, overexpression of PGRMC2 suppressed entry into the cell cycle, possibly by binding the p58 form of cyclin dependent kinase 11b. Conversely, Pgrmc2 small interfering RNA (siRNA) treatment increased the percentage of cells in G1 and M stage but did not increase the number of cells, which was likely due to an increase in apoptosis. Depleting PGRMC2 did not inhibit cellular (3)H-progesterone binding, but attenuated the ability of progesterone to suppress mitosis and apoptosis. Taken together these studies suggest that PGRMC2 affects granulosa cell mitosis by acting at two specific stages of the cell cycle. First, PGRMC2 regulates the progression from the G0 into the G1 stage of the cell cycle. Second, PGRMC2 appears to localize to the mitotic spindle, where it likely promotes the final stages of mitosis. Finally, siRNA knockdown studies indicate that PGRMC2 is required for progesterone to slow the rate of granulosa cell mitosis and apoptosis. These findings support a role for PGRMC2 in ovarian follicle development. © 2014 by the Society for the Study of Reproduction, Inc.

  11. Predictions of the spontaneous symmetry-breaking theory for visual code completeness and spatial scaling in single-cell learning rules.

    Science.gov (United States)

    Webber, C J

    2001-05-01

    This article shows analytically that single-cell learning rules that give rise to oriented and localized receptive fields, when their synaptic weights are randomly and independently initialized according to a plausible assumption of zero prior information, will generate visual codes that are invariant under two-dimensional translations, rotations, and scale magnifications, provided that the statistics of their training images are sufficiently invariant under these transformations. Such codes span different image locations, orientations, and size scales with equal economy. Thus, single-cell rules could account for the spatial scaling property of the cortical simple-cell code. This prediction is tested computationally by training with natural scenes; it is demonstrated that a single-cell learning rule can give rise to simple-cell receptive fields spanning the full range of orientations, image locations, and spatial frequencies (except at the extreme high and low frequencies at which the scale invariance of the statistics of digitally sampled images must ultimately break down, because of the image boundary and the finite pixel resolution). Thus, no constraint on completeness, or any other coupling between cells, is necessary to induce the visual code to span wide ranges of locations, orientations, and size scales. This prediction is made using the theory of spontaneous symmetry breaking, which we have previously shown can also explain the data-driven self-organization of a wide variety of transformation invariances in neurons' responses, such as the translation invariance of complex cell response.

  12. Upregulated LINE-1 Activity in the Fanconi Anemia Cancer Susceptibility Syndrome Leads to Spontaneous Pro-inflammatory Cytokine Production.

    Science.gov (United States)

    Brégnard, Christelle; Guerra, Jessica; Déjardin, Stéphanie; Passalacqua, Frank; Benkirane, Monsef; Laguette, Nadine

    2016-06-01

    Fanconi Anemia (FA) is a genetic disorder characterized by elevated cancer susceptibility and pro-inflammatory cytokine production. Using SLX4(FANCP) deficiency as a working model, we questioned the trigger for chronic inflammation in FA. We found that absence of SLX4 caused cytoplasmic DNA accumulation, including sequences deriving from active Long INterspersed Element-1 (LINE-1), triggering the cGAS-STING pathway to elicit interferon (IFN) expression. In agreement, absence of SLX4 leads to upregulated LINE-1 retrotransposition. Importantly, similar results were obtained with the FANCD2 upstream activator of SLX4. Furthermore, treatment of FA cells with the Tenofovir reverse transcriptase inhibitor (RTi), that prevents endogenous retrotransposition, decreased both accumulation of cytoplasmic DNA and pro-inflammatory signaling. Collectively, our data suggest a contribution of endogenous RT activities to the generation of immunogenic cytoplasmic nucleic acids responsible for inflammation in FA. The additional observation that RTi decreased pro-inflammatory cytokine production induced by DNA replication stress-inducing drugs further demonstrates the contribution of endogenous RTs to sustaining chronic inflammation. Altogether, our data open perspectives in the prevention of adverse effects of chronic inflammation in tumorigenesis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Spontaneous Pneumothorax

    Directory of Open Access Journals (Sweden)

    John Costumbrado

    2017-09-01

    Full Text Available History of present illness: A 16-year-old male with asthma was brought to the emergency department by his parents for increasing right-sided chest pain associated with cough and mild dyspnea over the past week. Albuterol inhaler did not provide relief. He denied recent trauma, fever, sweats, and chills. The patient’s vitals and oxygen saturations were stable. Physical exam revealed a tall, slender body habitus with no signs of chest wall injuries. Bilateral breath sounds were present, but slightly diminished on the right. A chest radiograph was ordered to determine the etiology of the patient’s symptoms. Significant findings: Initial chest radiograph showed a 50% right-sided pneumothorax with no mediastinal shift, which can be identified by the sharp line representing the pleural lung edge (see arrows and lack of peripheral lung markings extending to the chest wall. While difficult to accurately estimate volume from a two-dimensional image, a 2 cm pneumothorax seen on chest radiograph correlates to approximately 50% volume.1 The patient underwent insertion of a pigtail pleural drain on the right and repeat chest radiograph showed resolution of previously seen pneumothorax. Ultimately the pigtail drain was removed and chest radiograph showed clear lung fields without evidence of residual pneumothorax or pleural effusion. Discussion: Pneumothorax is characterized by air between the lungs and the chest wall.2 Spontaneous pneumothorax (SP occurs when the pneumothorax is not due to trauma or any discernable etiology. 3 SP is multifactorial and may be associated with subpleural blebs, bullae, and other connective tissue changes that predispose the lungs to leak air into the pleural space.4 SP can be further subdivided into primary (no history of underlying lung disease or secondary (history of chronic obstructive pulmonary disease, tuberculosis, cystic fibrosis, lung malignancy, etc..2 It is estimated that the incidence of SP among US pediatric

  14. [Antimutagenic activity of plant extracts from Armoracia rusticana, Ficus carica and Zea mays and peroxidase in eukaryotic cells].

    Science.gov (United States)

    Agabeĭli, R A; Kasimova, T E; Alekperov, U K

    2004-01-01

    Antimutagene activity and high efficiency of antimutagene action of plant extracts from horseradish roots (Armoracia rusticana), fig brunches (Ficus carica) and mays seedlings (Zea mays) and their ability to decrease the frequency of spontaneous and induced by gamma-rays chromosome aberrations in meristematic cells of Vicia faba and marrow cells of mice have been shown. Comparative assessment of genoprotective properties of peroxidase and the studied extracts has revealed higher efficiency of antimutagene action of peroxidase.

  15. Muscarinic activation of Ca2+-activated Cl- current in interstitial cells of Cajal.

    Science.gov (United States)

    Zhu, Mei Hong; Sung, In Kyung; Zheng, Haifeng; Sung, Tae Sik; Britton, Fiona C; O'Driscoll, Kate; Koh, Sang Don; Sanders, Kenton M

    2011-09-15

    Interstitial cells of Cajal (ICC) provide pacemaker activity and functional bridges between enteric motor nerve terminals and gastrointestinal smooth muscle cells. The ionic conductance(s) in ICC that are activated by excitatory neural inputs are unknown. Transgenic mice (Kit(copGFP/+)) with constitutive expression of a bright green fluorescent protein were used to investigate cellular responses of ICC to cholinergic stimulation. ICC displayed spontaneous transient inward currents (STICs) under voltage clamp that corresponded to spontaneous transient depolarizations (STDs) under current clamp. STICs reversed at 0 mV when E(Cl) = 0 mV and at -40 mV when E(Cl) was -40 mV, suggesting the STICs were due to a chloride conductance. Carbachol (CCh, 100 nm and 1 μm) induced a sustained inward current (depolarization in current clamp) and increased the amplitude and frequency of STICs and STDs. CCh responses were blocked by atropine (10 μm) or 4-DAMP (100 nm), an M(3) receptor antagonist. STDs were blocked by niflumic acid and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (both 100 μm), and CCh had no effect in the presence of these drugs. The responses of intact circular muscles to CCh and stimulation of intrinsic excitatory nerves by electrical field stimulation (EFS) were also compared. CCh (1 μm) caused atropine-sensitive depolarization and increased the maximum depolarization of slow waves. Similar atropine-sensitive responses were elicited by stimulation of intrinsic excitatory neurons. Niflumic acid (100 μm) blocked responses to EFS but had minor effect on responses to exogenous CCh. These data suggest that different ionic conductances are responsible for electrical responses elicited by bath-applied CCh and cholinergic nerve stimulation.

  16. Muscarinic activation of Ca2+-activated Cl− current in interstitial cells of Cajal

    Science.gov (United States)

    Zhu, Mei Hong; Sung, In Kyung; Zheng, Haifeng; Sung, Tae Sik; Britton, Fiona C; O'Driscoll, Kate; Koh, Sang Don; Sanders, Kenton M

    2011-01-01

    Abstract Interstitial cells of Cajal (ICC) provide pacemaker activity and functional bridges between enteric motor nerve terminals and gastrointestinal smooth muscle cells. The ionic conductance(s) in ICC that are activated by excitatory neural inputs are unknown. Transgenic mice (KitcopGFP/+) with constitutive expression of a bright green fluorescent protein were used to investigate cellular responses of ICC to cholinergic stimulation. ICC displayed spontaneous transient inward currents (STICs) under voltage clamp that corresponded to spontaneous transient depolarizations (STDs) under current clamp. STICs reversed at 0 mV when ECl = 0 mV and at –40 mV when ECl was –40 mV, suggesting the STICs were due to a chloride conductance. Carbachol (CCh, 100 nm and 1 μm) induced a sustained inward current (depolarization in current clamp) and increased the amplitude and frequency of STICs and STDs. CCh responses were blocked by atropine (10 μm) or 4-DAMP (100 nm), an M3 receptor antagonist. STDs were blocked by niflumic acid and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (both 100 μm), and CCh had no effect in the presence of these drugs. The responses of intact circular muscles to CCh and stimulation of intrinsic excitatory nerves by electrical field stimulation (EFS) were also compared. CCh (1 μm) caused atropine-sensitive depolarization and increased the maximum depolarization of slow waves. Similar atropine-sensitive responses were elicited by stimulation of intrinsic excitatory neurons. Niflumic acid (100 μm) blocked responses to EFS but had minor effect on responses to exogenous CCh. These data suggest that different ionic conductances are responsible for electrical responses elicited by bath-applied CCh and cholinergic nerve stimulation. PMID:21768263

  17. Bi-directional activation between mesenchymal stem cells and CLL B-cells: implication for CLL disease progression.

    Science.gov (United States)

    Ding, Wei; Nowakowski, Grzegorz S; Knox, Traci R; Boysen, Justin C; Maas, Mary L; Schwager, Susan M; Wu, Wenting; Wellik, Linda E; Dietz, Allan B; Ghosh, Asish K; Secreto, Charla R; Medina, Kay L; Shanafelt, Tait D; Zent, Clive S; Call, Timothy G; Kay, Neil E

    2009-11-01

    It was hypothesized that contact between chronic lymphocytic leukaemia (CLL) B-cells and marrow stromal cells impact both cell types. To test this hypothesis, we utilized a long-term primary culture system from bone biopsies that reliably generates a mesenchymal stem cell (MSC). Co-culture of MSC with CLL B-cells protected the latter from both spontaneous apoptosis and drug-induced apoptosis. The CD38 expression in previously CD38 positive CLL B-cells was up-regulated with MSC co-culture. Upregulation of CD71, CD25, CD69 and CD70 in CLL B-cells was found in the co-culture. CD71 upregulation was more significantly associated with high-risk CLL, implicating CD71 regulation in the microenvironment predicting disease progression. In MSC, rapid ERK and AKT phosphorylation (within 30 min) were detected when CLL B-cells and MSC were separated by transwell; indicating that activation of MSC was mediated by soluble factors. These findings support a bi-directional activation between bone marrow stromal cells and CLL B-cells.

  18. Experimental investigation on spontaneously active hippocampal cultures recorded by means of high-density MEAs: analysis of the spatial resolution effects

    Directory of Open Access Journals (Sweden)

    Alessandro Maccione

    2010-05-01

    Full Text Available Based on experiments performed with high-resolution Active Pixel Sensor microelectrode arrays (APS-MEAs coupled with spontaneously active hippocampal cultures, this work investigates the spatial resolution effects of the neuroelectronic interface on the analysis of the recorded electrophysiological signals. The adopted methodology consists, first, in recording the spontaneous activity at the highest spatial resolution (inter-electrode separation of 21 µm from the whole array of 4096 microelectrodes. Then, the full resolution dataset is spatially down sampled in order to evaluate the effects on raster plot representation, array-wide spike rate (AWSR, mean firing rate (MFR and mean bursting rate (MBR. Furthermore, the effects of the array-to-network relative position are evaluated by shifting a subset of equally spaced electrodes on the entire recorded area. Results highlight that MFR and MBR are particularly influenced by the spatial resolution provided by the neuroelectronic interface. On high-resolution large MEAs, such analysis better represent the time-based parameterization of the network dynamics. Finally, this work suggest interesting capabilities of high-resolution MEAs for spatial-based analysis in dense and low-dense neuronal preparation for investigating signalling at both local and global neuronal circuitries.

  19. Activation of glioma cells generates immune tolerant NKT cells.

    Science.gov (United States)

    Tang, Bo; Wu, Wei; Wei, Xiaowei; Li, Yang; Ren, Gang; Fan, Wenhai

    2014-12-12

    Therapeutic outcomes of glioma are currently not encouraging. Tumor tolerance plays an important role in the pathogenesis of glioma. It is reported that micro RNAs (miR) are associated with tumor development. This study aims to investigate the role of miR-92a in the development of tolerant natural killer T (NKT) cells. In this study, U87 cells (a human glioma cell line) and primary glioma cells were prepared. The assessment of miR-92a was performed by real time RT-PCR. The expression of interleukin (IL)-10 and IL-6 in NKT cells was evaluated by flow cytometry. Results showed that abundant IL-6(+) IL-10(+) NKT cells were detected in glioma tissue. Cultures of glioma cells and NKT cells induced the expression of IL-6 and IL-10 in NKT cells. Glioma cells expressed miR-92a; the latter played a critical role in the induction of IL-6 and IL-10 expression in NKT cells. The expression of the antitumor molecules, including perforin, Fas ligand, and interferon-γ, was significantly attenuated compared with control NKT cells. The IL-6(+) IL-10(+) NKT cells showed less capability in the induction of apoptosis in glioma cells, but showed the immune suppressor functions on CD8(+) T cell activities. We conclude that glioma-derived miR-92a induces IL-6(+) IL-10(+) NKT cells; this fraction of NKT cells can suppress cytotoxic CD8(+) T cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Programmed cell death in the leaves of the Arabidopsis spontaneous necrotic spots (sns-D mutant correlates with increased expression of the eukaryotic translation initiation factor eIF4B2

    Directory of Open Access Journals (Sweden)

    Gwenael M.D.J.-M. Gaussand

    2011-04-01

    Full Text Available From a pool of transgenic Arabidopsis (Arabidopsis thaliana plants harboring an activator T-DNA construct, one mutant was identified that developed spontaneous necrotic spots (sns-D on the rosette leaves under aseptic conditions. The sns-D mutation is dominant and homozygous plants are embryo lethal. The mutant produced smaller rosettes with a different number of stomata than the wild-type. DNA fragmentation in the nuclei of cells in the necrotic spots and a significant increase of caspase-3 and caspase-6 like activities in sns-D leaf extracts indicated that the sns-D mutation caused programmed cell death (PCD. The integration of the activator T-DNA caused an increase of the expression level of At1g13020, which encodes the eukaryotic translation initiation factor eIF4B2. The expression level of eIF4B2 was positively correlated with the severity of sns-D mutant phenotype. Overexpression of the eIF4B2 cDNA mimicked phenotypic traits of the sns-D mutant indicating that the sns-D mutant phenotype is indeed caused by activation tagging of eIF4B2. Thus, incorrect regulation of translation initiation may result in PCD.

  1. Spontaneous Differentiation of Human Mesenchymal Stem Cells on Poly-Lactic-Co-Glycolic Acid Nano-Fiber Scaffold.

    Directory of Open Access Journals (Sweden)

    Koshiro Sonomoto

    Full Text Available Mesenchymal stem cells (MSCs have immunosuppressive activity and can differentiate into bone and cartilage; and thus seem ideal for treatment of rheumatoid arthritis (RA. Here, we investigated the osteogenesis and chondrogenesis potentials of MSCs seeded onto nano-fiber scaffolds (NFs in vitro and possible use for the repair of RA-affected joints.MSCs derived from healthy donors and patients with RA or osteoarthritis (OA were seeded on poly-lactic-glycolic acid (PLGA electrospun NFs and cultured in vitro.Healthy donor-derived MSCs seeded onto NFs stained positive with von Kossa at Day 14 post-stimulation for osteoblast differentiation. Similarly, MSCs stained positive with Safranin O at Day 14 post-stimulation for chondrocyte differentiation. Surprisingly, even cultured without any stimulation, MSCs expressed RUNX2 and SOX9 (master regulators of bone and cartilage differentiation at Day 7. Moreover, MSCs stained positive for osteocalcin, a bone marker, and simultaneously also with Safranin O at Day 14. On Day 28, the cell morphology changed from a spindle-like to an osteocyte-like appearance with processes, along with the expression of dentin matrix protein-1 (DMP-1 and matrix extracellular phosphoglycoprotein (MEPE, suggesting possible differentiation of MSCs into osteocytes. Calcification was observed on Day 56. Expression of osteoblast and chondrocyte differentiation markers was also noted in MSCs derived from RA or OA patients seeded on NFs. Lactic acid present in NFs potentially induced MSC differentiation into osteoblasts.Our PLGA scaffold NFs induced MSC differentiation into bone and cartilage. NFs induction process resembled the procedure of endochondral ossification. This finding indicates that the combination of MSCs and NFs is a promising therapeutic technique for the repair of RA or OA joints affected by bone and cartilage destruction.

  2. Dimethyl sulfoxide inhibits spontaneous diabetes and autoimmune recurrence in non-obese diabetic mice by inducing differentiation of regulatory T cells

    International Nuclear Information System (INIS)

    Lin, Gu-Jiun; Sytwu, Huey-Kang; Yu, Jyh-Cherng; Chen, Yuan-Wu; Kuo, Yu-Liang; Yu, Chiao-Chi; Chang, Hao-Ming; Chan, De-Chuan; Huang, Shing-Hwa

    2015-01-01

    Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO in the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. - Highlights: • We report a therapeutic potential of DMSO in autoimmune diabetes. • DMSO exhibits an immune modulatory effect. • DMSO treatment increases regulatory T cell differentiation. • The increase in STAT5 signaling pathway explains the effect of DMSO in Tregs

  3. Dimethyl sulfoxide inhibits spontaneous diabetes and autoimmune recurrence in non-obese diabetic mice by inducing differentiation of regulatory T cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Gu-Jiun [Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC (China); Sytwu, Huey-Kang [Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, ROC (China); Yu, Jyh-Cherng [Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China); Chen, Yuan-Wu [School of Dentistry, National Defense Medical Center, Taipei, Taiwan, ROC (China); Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China); Kuo, Yu-Liang [Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC (China); School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan, ROC (China); Yu, Chiao-Chi [Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC (China); Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China); Chang, Hao-Ming; Chan, De-Chuan [Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China); Huang, Shing-Hwa, E-mail: h610129@gmail.com [Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC (China); Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China)

    2015-01-15

    Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO in the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. - Highlights: • We report a therapeutic potential of DMSO in autoimmune diabetes. • DMSO exhibits an immune modulatory effect. • DMSO treatment increases regulatory T cell differentiation. • The increase in STAT5 signaling pathway explains the effect of DMSO in Tregs.

  4. [Effects of relic microorganism B. sp. on development, gaseous exchange, spontaneous motor activity, stress resistance and survival of Drosophila melanogaster].

    Science.gov (United States)

    Brushkov, A V; Bezrukov, V V; Griva, G I; Muradian, Kh K

    2011-01-01

    The effect of relic microorganism B. sp., living in severe environment of Siberian permafrost during thousands and millions of years, on development and stress resistance of Drosophila melanogaster has been studied. In manipulating with such objects with practically "eternal life span", molecular carriers of the unprecedented longevity potential and possibilities of their transmission to other biological objects should primarily be addressed. Here we discuss for the first time the influence of B. sp. application on development, survival, stress resistance and the gross physiological predictors of aging rate in D. melanogaster. To establish optimal and toxic doses, wide range of B. sp. concentrations were tested (1-500 million cells of B. sp. per 1 ml of the flies feeding medium). Surprisingly, no toxic effects of B. sp. could be registered even on such a "sensitive" model as the developing larvae. In fact, the rate of development, survival and body mass gradually increased with elevation of B. sp. concentration. The gain of higher body mass within shorter periods of development could indicate enhanced anabolic and/ or declined catabolic effects of B. sp. Higher motor activity and gaseous exchange rates were observed in imagoes developed on the mediums with B. sp. application. Survival of these flies at the heat shock (30 min at 38 degrees C) and ultraviolet irradiation (60 min, 50W UV lamp) was increased, indicating elevated stress resistance, apparently due to stimulation of DNA-repair and chaperone-mediated protection of macromolecules. Further research is clearly warranted to identify more efficient anti-stress and antiaging preparations and schemes of B. sp. application on models of laboratory mammals and human cell cultures.

  5. Syndecans: synergistic activators of cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1998-01-01

    Cell-surface proteoglycans participate in cell adhesion, growth-factor signalling, lipase activity and anticoagulation. Until recently, only the roles of the glycosaminoglycan chains were investigated. Now, with molecular characterization of several core proteins, the roles of each individual...... molecules modulating integrin-based adhesion....

  6. Incidence and outcomes of dystocia in the active phase of labor in term nulliparous women with spontaneous labor onset

    DEFF Research Database (Denmark)

    Kjaergaard, Hanne; Olsen, Jørn; Ottesen, Bent

    2009-01-01

    OBJECTIVE: To estimate the incidence of dystocia among nulliparous women without apparent co-morbidity and to examine maternal and fetal short-term outcomes after dystocia. DESIGN: A multi-center cohort study with prospectively collected data. SETTING: Nine obstetric departments with annual birth...... rates between 850 and 5,400. POPULATION: Low-risk nulliparous women in term spontaneous labor with a singleton fetus in cephalic presentation. METHODS: Follow-up of 2,810 nulliparas using self-administered questionnaires supplemented with clinical records. CRITERIA FOR DYSTOCIA: Cervical dilatation...... OUTCOME MEASURES: Incidences of dystocia, maternal, and fetal outcomes. RESULTS: The cumulative incidence of dystocia was 37% and of the diagnoses 61% were given in the second stage of labor. Women with dystocia treated by augmentation had more cesarean and ventouse deliveries, more often non...

  7. Effect of effective mass and spontaneous polarization on photocatalytic activity of wurtzite and zinc-blende ZnS

    International Nuclear Information System (INIS)

    Dong, Ming; Zhang, Jinfeng; Yu, Jiaguo

    2015-01-01

    Semiconductor zinc sulphide (ZnS) has two common phases: hexagonal wurtzite and cubic zinc-blende structures. The crystal structures, energy band structures, density of states (DOS), bond populations, and optical properties of wurtzite and zinc-blende ZnS were investigated by the density functional theory of first-principles. The similar band gaps and DOS of wurtzite and zinc-blende ZnS were found and implied the similarities in crystal structures. However, the distortion of ZnS 4 tetrahedron in wurtzite ZnS resulted in the production of spontaneous polarization and internal electric field, which was beneficial for the transfer and separation of photogenerated electrons and holes

  8. ARGINASE 2 DEFICIENCY RESULTS IN SPONTANEOUS STEATOHEPATITIS: A NOVEL LINK BETWEEN INNATE IMMUNE ACTIVATION AND HEPATIC DE NOVO LIPOGENESIS

    Science.gov (United States)

    Navarro, Laura A.; Wree, Alexander; Povero, Davide; Berk, Michael P.; Eguchi, Akiko; Ghosh, Sudakshina; Papouchado, Bettina G.; Erzurum, Serpil C.; Feldstein, Ariel E.

    2016-01-01

    BACKGROUND & AIMS Innate immune activation has been postulated as a central mechanism for disease progression from hepatic steatosis to steatohepatitis in obesity-related fatty liver disease. Arginase 2 competes with inducible nitric oxide synthase (iNOS) for its substrate and the balance between these two enzymes plays a crucial role in regulating immune responses and macrophage activation. Our aim was to test the hypothesis that arginase 2 deficiency in mice favors progression from isolated hepatic steatosis, induced by high fat feeding to steatohepatitis. METHODS Arginase 2-knockout (Arg2−/−) mice were studied for changes in liver histology and metabolic phenotype at baseline and after a short term course (7 week) feeding with a high fat (HFAT) diet. In additional experiments, Arg2−/− mice received tail vein injections of liposome-encapsulated clodronate (CLOD) over a three-week period to selectively deplete liver macrophages. RESULTS Unexpectedly, Arg2−/− mice showed profound changes in their livers at baseline characterized by significant steatosis as demonstrated with histological and biochemical analysis. These changes were independent of systemic metabolic parameters and associated with marked increase mRNA levels of genes involved in hepatic de novo lipogenesis. Liver injury and inflammation were present with elevated serum ALT, marked infiltration of F4/80 positive cells, and increased mRNA levels of inflammatory genes. HFAT feeding exacerbated these changes. Macrophage depletion after CLOD injection significantly attenuated lipid deposition and normalized lipogenic mRNA profile of livers from Arg2−/− mice. CONCLUSIONS This study identifies arginase 2 as novel link between innate immune responses, hepatic lipid deposition, and liver injury. PMID:25234945

  9. Diminished Frequency of Menstrual and Peripheral Blood NKT-Like Cells in Patients With Unexplained Recurrent Spontaneous Abortion and Infertile Women.

    Science.gov (United States)

    Hosseini, Samira; Shokri, Fazel; Pour, Soheila Ansari; Khoshnoodi, Jalal; Jeddi-Tehrani, Mahmood; Zarnani, Amir-Hassan

    2018-01-01

    Systemic monitoring of immune system may not precisely outline the local immune status in the uterus. This survey is a continuation of our previous studies on potential usefulness of menstrual blood (MB) immunophenotyping as a tool for investigation of immunological disturbances in pregnancy-related disorders. Peripheral blood (PB) and MB from healthy fertile (n = 15), unexplained recurrent spontaneous abortion (URSA; n = 15), and unexplained infertile women (n = 8) were collected simultaneously in the second day of their menstrual cycle and frequency of natural killer T (NKT)-like cell subpopulations were assessed by flow cytometry. Menstrual blood of all experimental groups contained higher percentage of TCRαβ + , CD45RO + , and CD16 - NKT-like cells compared to corresponding PB. Frequency of MB NKT-like cells in unexplained infertile participants was lower than fertile and URSA groups. Compared to normal participants, patients with URSA had lower frequency of PB TCRαβ + and higher CD16 + , while in infertile woman frequencies of PB CD45RO + , CD45RO - , CD16 - , IL17 + , and MB CD45RO + NKT-like cells were lower. Although, PB and MB seemingly have the same histological nature, our results showed that MB contained different composition of NKT-like subsets with different cytokine profiles and could be viewed as one potential biological sample for evaluation of patients with infertility and URSA.

  10. Spontaneous T-cell responses against peptides derived from the Taxol resistance-associated gene-3 (TRAG-3) protein in cancer patients

    DEFF Research Database (Denmark)

    Meier, Anders; Hadrup, Sine Reker; Svane, Inge Marie

    2005-01-01

    for immunotherapy of cancer. To identify HLA-A* 02.01 - restricted epitopes from TRAG-3, we screened cancer patients for spontaneous cytotoxic T-cell responses against TRAG-3 - derived peptides. The TRAG-3 protein sequence was screened for 9mer and 10mer peptides possessing HLA-A* 02.01 - binding motifs. Of 12......Expression of the cancer-testis antigen Taxol resistance - associated gene-3 (TRAG-3) protein is associated with acquired paclitaxel ( Taxol) resistance, and is expressed in various cancer types; e. g., breast cancer, leukemia, and melanoma. Thus, TRAG-3 represents an attractive target...... potential binders, 9 peptides were indeed capable of binding to the HLA-A* 02.01 molecule, with binding affinities ranging from strong to weak binders. Subsequently, lymphocytes from cancer patients ( 9 breast cancer patients, 12 melanoma patients, and 13 patients with hematopoietic malignancies) were...

  11. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Directory of Open Access Journals (Sweden)

    Tongfang Tang

    Full Text Available BACKGROUND: Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD through alternation of liver innate immune response. AIMS: The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. METHODS: Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. RESULTS: High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4 expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. CONCLUSION: High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  12. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Science.gov (United States)

    Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing

    2013-01-01

    Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  13. MiR-9 is overexpressed in spontaneous canine osteosarcoma and promotes a metastatic phenotype including invasion and migration in osteoblasts and osteosarcoma cell lines.

    Science.gov (United States)

    Fenger, Joelle M; Roberts, Ryan D; Iwenofu, O Hans; Bear, Misty D; Zhang, Xiaoli; Couto, Jason I; Modiano, Jaime F; Kisseberth, William C; London, Cheryl A

    2016-10-10

    MicroRNAs (miRNAs) regulate the expression of networks of genes and their dysregulation is well documented in human malignancies; however, limited information exists regarding the impact of miRNAs on the development and progression of osteosarcoma (OS). Canine OS exhibits clinical and molecular features that closely resemble the corresponding human disease and it is considered a well-established spontaneous animal model to study OS biology. The purpose of this study was to investigate miRNA dysregulation in canine OS. We evaluated miRNA expression in primary canine OS tumors and normal canine osteoblast cells using the nanoString nCounter system. Quantitative PCR was used to validate the nanoString findings and to assess miR-9 expression in canine OS tumors, OS cell lines, and normal osteoblasts. Canine osteoblasts and OS cell lines were stably transduced with pre-miR-9 or anti-miR-9 lentiviral constructs to determine the consequences of miR-9 on cell proliferation, apoptosis, invasion and migration. Proteomic and gene expression profiling of normal canine osteoblasts with enforced miR-9 expression was performed using 2D-DIGE/tandem mass spectrometry and RNA sequencing and changes in protein and mRNA expression were validated with Western blotting and quantitative PCR. OS cell lines were transduced with gelsolin (GSN) shRNAs to investigate the impact of GSN knockdown on OS cell invasion. We identified a unique miRNA signature associated with primary canine OS and identified miR-9 as being significantly overexpressed in canine OS tumors and cell lines compared to normal osteoblasts. Additionally, high miR-9 expression was demonstrated in tumor-specific tissue obtained from primary OS tumors. In normal osteoblasts and OS cell lines transduced with miR-9 lentivirus, enhanced invasion and migration were observed, but miR-9 did not affect cell proliferation or apoptosis. Proteomic and transcriptional profiling of normal canine osteoblasts overexpressing miR-9 identified

  14. Recombinant ArtinM activates mast cells.

    Science.gov (United States)

    Barbosa-Lorenzi, Valéria Cintra; Cecilio, Nerry Tatiana; de Almeida Buranello, Patricia Andressa; Pranchevicius, Maria Cristina; Goldman, Maria Helena S; Pereira-da-Silva, Gabriela; Roque-Barreira, Maria Cristina; Jamur, Maria Célia; Oliver, Constance

    2016-07-04

    Mast cells are hematopoietically derived cells that play a role in inflammatory processes such as allergy, as well as in the immune response against pathogens by the selective and rapid release of preformed and lipid mediators, and the delayed release of cytokines. The native homotetrameric lectin ArtinM, a D-mannose binding lectin purified from Artocarpus heterophyllus seeds, is one of several lectins that are able to activate mast cells. Besides activating mast cells, ArtinM has been shown to affect several biological responses, including immunomodulation and acceleration of wound healing. Because of the potential pharmacological application of ArtinM, a recombinant ArtinM (rArtinM) was produced in Escherichia coli. The current study evaluated the ability of rArtinM to induce mast cell degranulation and activation. The glycan binding specificity of rArtinM was similar to that of jArtinM. rArtinM, via its CRD, was able to degranulate, releasing β-hexosaminidase and TNF-α, and to promote morphological changes on the mast cell surface. Moreover, rArtinM induced the release of the newly-synthesized mediator, IL-4. rArtinM does not have a co-stimulatory effect on the FcεRI degranulation via. The IgE-dependent mast cell activation triggered by rArtinM seems to be dependent on NFkB activation. The lectin rArtinM has the ability to activate and degranulate mast cells via their CRDs. The present study indicates that rArtinM is a suitable substitute for the native form, jArtinM, and that rArtinM may serve as an important and reliable pharmacological agent.

  15. Circadian variations of interferon-induced enhancement of human natural killer (NK) cell activity.

    Science.gov (United States)

    Gatti, G; Cavallo, R; Sartori, M L; Carignola, R; Masera, R; Delponte, D; Salvadori, A; Angeli, A

    1988-01-01

    We searched for circadian changes in the enhancement of the NK activity after exposure to IFN-gamma of peripheral blood mononuclear (PBM) cells obtained serially throughout the 24-h cycle. In August-October 1986, blood was drawn from 7 healthy, diurnally active and nocturnally resting male volunteers (22-34 yr) at 4-h intervals for 24 h starting at 08:00. PBM cells were immediately separated and assayed for NK cell activity, using K 562 cultured cells as a target in a 4-h 51Cr release assay after prior incubation for 20 h with buffer or 300 IU rIFN-gamma. Circadian variations of the spontaneous NK cell cytotoxicity were apparent; the activity was at its maximum at the end of the night or in the early morning and then declined in the afternoon. The 24-h rhythmic pattern was validated with statistical significance by the Cosinor method (p less than 0.02; acrophase 04:22). Maximum enhancement by IFN-gamma was attained in the second part of the night or in the early morning, i.e. in phase with the peak of the spontaneous NK cell activity. A significant circadian rhythm of the percent increase above control levels was validated by the Cosinor method (p less than 0.01; acrophase 04:03). Our findings may be of relevance to a better understanding of the mechanisms of control of human NK activity and warrant consideration as an approach to improve the effectiveness of time-qualified immunotherapy.

  16. Liver transplantation nearly normalizes brain spontaneous activity and cognitive function at 1 month: a resting-state functional MRI study.

    Science.gov (United States)

    Cheng, Yue; Huang, Lixiang; Zhang, Xiaodong; Zhong, Jianhui; Ji, Qian; Xie, Shuangshuang; Chen, Lihua; Zuo, Panli; Zhang, Long Jiang; Shen, Wen

    2015-08-01

    To investigate the short-term brain activity changes in cirrhotic patients with Liver transplantation (LT) using resting-state functional MRI (fMRI) with regional homogeneity (ReHo) method. Twenty-six cirrhotic patients as transplant candidates and 26 healthy controls were included in this study. The assessment was repeated for a sub-group of 12 patients 1 month after LT. ReHo values were calculated to evaluate spontaneous brain activity and whole brain voxel-wise analysis was carried to detect differences between groups. Correlation analyses were performed to explore the relationship between the change of ReHo with the change of clinical indexes pre- and post-LT. Compared to pre-LT, ReHo values increased in the bilateral inferior frontal gyrus (IFG), right inferior parietal lobule (IPL), right supplementary motor area (SMA), right STG and left middle frontal gyrus (MFG) in patients post-LT. Compared to controls, ReHo values of post-LT patients decreased in the right precuneus, right SMA and increased in bilateral temporal pole, left caudate, left MFG, and right STG. The changes of ReHo in the right SMA, STG and IFG were correlated with change of digit symbol test (DST) scores (P brain activity of most brain regions with decreased ReHo in pre-LT was substantially improved and nearly normalized, while spontaneous brain activity of some brain regions with increased ReHo in pre-LT continuously increased. ReHo may provide information on the neural mechanisms of LT' effects on brain function.

  17. Spontaneous Tumor Lysis Syndrome

    Directory of Open Access Journals (Sweden)

    Alicia C. Weeks MD

    2015-08-01

    Full Text Available Tumor lysis syndrome (TLS is a known complication of malignancy and its treatment. The incidence varies on malignancy type, but is most common with hematologic neoplasms during cytotoxic treatment. Spontaneous TLS is thought to be rare. This case study is of a 62-year-old female admitted with multisystem organ failure, with subsequent diagnosis of aggressive B cell lymphoma. On admission, laboratory abnormalities included renal failure, elevated uric acid (20.7 mg/dL, and 3+ amorphous urates on urinalysis. Oliguric renal failure persisted despite aggressive hydration and diuretic use, requiring initiation of hemodialysis prior to chemotherapy. Antihyperuricemic therapy and hemodialysis were used to resolve hyperuricemia. However, due to multisystem organ dysfunction syndrome with extremely poor prognosis, the patient ultimately expired in the setting of a terminal ventilator wean. Although our patient did not meet current TLS criteria, she required hemodialysis due to uric acid nephropathy, a complication of TLS. This poses the clinical question of whether adequate diagnostic criteria exist for spontaneous TLS and if the lack of currently accepted guidelines has resulted in the underestimation of its incidence. Allopurinol and rasburicase are commonly used for prevention and treatment of TLS. Although both drugs decrease uric acid levels, allopurinol mechanistically prevents formation of the substrate rasburicase acts to solubilize. These drugs were administered together in our patient, although no established guidelines recommend combined use. This raises the clinical question of whether combined therapy is truly beneficial or, conversely, detrimental to patient outcomes.

  18. Metabolic activity is necessary for activation of T suppressor cells by B cells

    International Nuclear Information System (INIS)

    Elkins, K.L.; Stashak, P.W.; Baker, P.J.

    1990-01-01

    Ag-primed B cells must express cell-surface IgM, but not IgD or Ia Ag, and must remain metabolically active, in order to activate suppressor T cells (Ts) specific for type III pneumococcal polysaccharide. Ag-primed B cells that were gamma-irradiated with 1000r, or less, retained the ability to activate Ts; however, Ag-primed B cells exposed to UV light were not able to do so. gamma-Irradiated and UV-treated Ag-primed B cells both expressed comparable levels of cell-surface IgM, and both localized to the spleen after in vivo transfer; neither could proliferate in vitro in response to mitogens. By contrast, gamma-irradiated primed B cells were still able to synthesize proteins, whereas UV-treated primed B cells could not. These findings suggest that in order for Ag-primed B cells to activate Ts, they must (a) express cell-associated IgM (sIgM) antibody bearing the idiotypic determinants of antibody specific for type III pneumococcal polysaccharide, and (b) be able to synthesize protein for either the continued expression of sIgM after cell transfer, or for the elaboration of another protein molecule that is also required for the activation of Ts; this molecule does not appear to be Ia Ag

  19. Disturbed spontaneous brain activity pattern in patients with primary angle-closure glaucoma using amplitude of low-frequency fluctuation: a fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2015-07-01

    Full Text Available Xin Huang,1,* Yu-Lin Zhong,1,* Xian-Jun Zeng,2 Fuqing Zhou,2 Xin-Hua Liu,1 Pei-Hong Hu,1 Chong-Gang Pei,1 Yi Shao,1 Xi-Jian Dai21Department of Ophthalmology, 2Department of Radiology, The First Affiliated Hospital of Nanchang University, Nangchang, Jiangxi, People’s Republic of China*These authors contributed equally to this workObjective: The aim of this study is to use amplitude of low-frequency fluctuation (ALFF as a method to explore the local features of spontaneous brain activity in patients with primary angle -closure glaucoma (PACG and ALFFs relationship with the behavioral performances.Methods: A total of twenty one patients with PACG (eight males and 13 females, and twenty one healthy subjects (nine males and twelve females closely matched in age, sex, and education, each underwent a resting-state functional magnetic resonance imaging scan. The ALFF method was used to assess the local features of spontaneous brain activity. The correlation analysis was used to explore the relationships between the observed mean ALFF signal values of the different areas in PACG patients and the thickness of the retinal nerve fiber layer (RNFL. Results: Compared with the healthy subjects, patients with PACG had significant lower ALFF areas in the left precentral gyrus, bilateral middle frontal gyrus, bilateral superior frontal gyrus, right precuneus, and right angular gyrus, and higher areas in the right precentral gyrus. In the PACG group, there were significant negative correlations between the mean ALFF signal value of the right middle frontal gyrus and the left mean RNFL thickness (r=-0.487, P=0.033, and between the mean ALFF signal value of the left middle frontal gyrus and the right mean RNFL thickness (r=-0.504, P=0.020. Conclusion: PACG mainly involved in the dysfunction in the frontal lobe, which may reflect the underlying pathologic mechanism of PACG.Keywords: angle-closure glaucoma, amplitude of low-frequency fluctuation, functional

  20. Altered spontaneous brain activity pattern in patients with high myopia using amplitude of low-frequency fluctuation: a resting-state fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2016-11-01

    Full Text Available Xin Huang,1,2,* Fu-Qing Zhou,3,* Yu-Xiang Hu,1 Xiao-Xuan Xu,1 Xiong Zhou,4 Yu-Lin Zhong,1 Jun Wang,4 Xiao-Rong Wu1 1Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 2Department of Ophthalmology, The First People’s Hospital of Jiujiang City, Jiujiang, 3Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, 4Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, People’s Republic of China *These authors contributed equally to this work Objective: Many previous reports have demonstrated significant neural anatomy changes in the brain of high myopic (HM patients, whereas the spontaneous brain activity changes in the HM patients at rest are not well studied. Our objective was to use amplitude of low-frequency fluctuation (ALFF method to investigate the changes in spontaneous brain activity in HM patients and their relationships with clinical features. Methods: A total of 38 patients with HM (17 males and 21 females and 38 healthy controls (HCs (17 males and 21 females closely matched in age, sex, and education underwent resting-state functional magnetic resonance imaging scans. The ALFF method was used to assess local features of spontaneous brain activity. The relationship between the mean ALFF signal values in many brain regions and the clinical features in HM patients was calculated by correlation analysis. Results: Compared with HCs, the HM patients had significantly lower ALFF in the right inferior and middle temporal gyrus, left middle temporal gyrus, left inferior frontal gyrus/putamen, right inferior frontal gyrus/putamen/insula, right middle frontal gyrus, and right inferior parietal lobule and higher ALFF values in the bilateral midcingulate cortex, left postcentral gyrus, and left precuneus/inferior parietal lobule. However, no relationship was found between the mean ALFF

  1. Chemokines: a new dendritic cell signal for T cell activation

    Directory of Open Access Journals (Sweden)

    Christoph A Thaiss

    2011-08-01

    Full Text Available Dendritic cells (DCs are the main inducers and regulators of cytotoxic T lymphocyte (CTL responses against viruses and tumors. One checkpoint to avoid misguided CTL activation, which might damage healthy cells of the body, is the necessity for multiple activation signals, involving both antigenic as well as additional signals that reflect the presence of pathogens. DCs provide both signals when activated by ligands of pattern recognition receptors and licensed by helper lymphocytes. Recently, it has been established that such T cell licensing can be facilitated by CD4+ T helper cells (classical licensing or by NKT cells (alternative licensing. Licensing regulates the DC/CTL cross-talk at multiple layers. Direct recruitment of CTLs through chemokines released by licensed DCs has recently emerged as a common theme and has a crucial impact on the efficiency of CTL responses. Here, we discuss recent advances in our understanding of DC licensing for cross-priming and implications for the temporal and spatial regulation underlying this process. Future vaccination strategies will benefit from a deeper insight into the mechanisms that govern CTL activation.

  2. Activation of radiosensitizers by hypoxic cells

    International Nuclear Information System (INIS)

    Olive, P.L.; Durand, R.E.

    1978-01-01

    Hypoxic cells metabolize nitroheterocyclic compounds to produce toxic intermediates capable of affecting the survival of neighboring oxygenated cells. Mutagenesis experiments with E. coli WP-2 343 (deficient in nitro-reductase) indicated that reduction of nitroheterocyclics outside bacteria causes killing and mutations within bacteria, presumably due to the transfer of the 'active' specie(s). Using animal tissue slices to reduce nitrofurans, cultured L-929 cells incubated under aerobic conditions were far more sensitive to the toxic and DNA damaging effects of these drugs. Transfer of the active species also occurs in a tissue-like environment in multicell spheroids where the presence of a hypoxic central core served to convert the nitroheterocyclics to intermediates which also damaged the neighbouring oxygenated cells. (author)

  3. Activation of radiosensitizers by hypoxic cells

    Energy Technology Data Exchange (ETDEWEB)

    Olive, P L; Durand, R E [Wisconsin Clinical Cancer Center, Madison (USA). Dept. of Human Oncology

    1978-06-01

    Hypoxic cells metabolize nitroheterocyclic compounds to produce toxic intermediates capable of affecting the survival of neighboring oxygenated cells. Mutagenesis experiments with E. coli WP-2 343 (deficient in nitro-reductase) indicated that reduction of nitroheterocyclics outside bacteria causes killing and mutations within bacteria, presumably due to the transfer of the 'active' specie(s). Using animal tissue slices to reduce nitrofurans, cultured L-929 cells incubated under aerobic conditions were far more sensitive to the toxic and DNA damaging effects of these drugs. Transfer of the active species also occurs in a tissue-like environment in multicell spheroids where the presence of a hypoxic central core served to convert the nitroheterocyclics to intermediates which also damaged the neighbouring oxygenated cells.

  4. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen.

    Science.gov (United States)

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin

    2013-02-01

    Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O(2) tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca(2+) activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.

  5. The Nuclear Factor of Activated T Cells (Nfat) Transcription Factor Nfatp (Nfatc2) Is a Repressor of Chondrogenesis

    Science.gov (United States)

    Ranger, Ann M.; Gerstenfeld, Louis C.; Wang, Jinxi; Kon, Tamiyo; Bae, Hyunsu; Gravallese, Ellen M.; Glimcher, Melvin J.; Glimcher, Laurie H.

    2000-01-01

    Nuclear factor of activated T cells (NFAT) transcription factors regulate gene expression in lymphocytes and control cardiac valve formation. Here, we report that NFATp regulates chondrogenesis in the adult animal. In mice lacking NFATp, resident cells in the extraarticular connective tissues spontaneously differentiate to cartilage. These cartilage cells progressively differentiate and the tissue undergoes endochondral ossification, recapitulating the development of endochondral bone. Proliferation of already existing articular cartilage cells also occurs in some older animals. At both sites, neoplastic changes in the cartilage cells occur. Consistent with these data, NFATp expression is regulated in mesenchymal stem cells induced to differentiate along a chondrogenic pathway. Lack of NFATp in articular cartilage cells results in increased expression of cartilage markers, whereas overexpression of NFATp in cartilage cell lines extinguishes the cartilage phenotype. Thus, NFATp is a repressor of cartilage cell growth and differentiation and also has the properties of a tumor suppressor. PMID:10620601

  6. Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity.

    Science.gov (United States)

    Goudjal, Yacine; Toumatia, Omrane; Sabaou, Nasserdine; Barakate, Mustapha; Mathieu, Florence; Zitouni, Abdelghani

    2013-10-01

    Twenty-seven endophytic actinomycete strains were isolated from five spontaneous plants well adapted to the poor sandy soil and arid climatic conditions of the Algerian Sahara. Morphological and chemotaxonomical analysis indicated that twenty-two isolates belonged to the Streptomyces genus and the remaining five were non-Streptomyces. All endophytic strains were screened for their ability to produce indole-3-acetic acid (IAA) in vitro on a chemically defined medium. Eighteen strains were able to produce IAA and the maximum production occurred with the Streptomyces sp. PT2 strain. The IAA produced was further extracted, partially purified and confirmed by thin layer chromatography (TLC) analysis. The 16S rDNA sequence analysis and phylogenetic studies indicated that strain PT2 was closely related to Streptomyces enissocaecilis NRRL B 16365(T), Streptomyces rochei NBRC 12908(T) and Streptomyces plicatus NBRC 13071(T), with 99.52 % similarity. The production of IAA was affected by cultural conditions such as temperature, pH, incubation period and L-tryptophan concentration. The highest level of IAA production (127 μg/ml) was obtained by cultivating the Streptomyces sp. PT2 strain in yeast extract-tryptone broth supplemented with 5 mg L-tryptophan/ml at pH 7 and incubated on a rotary shaker (200 rpm) at 30 °C for 5 days. Twenty-four-hour treatment of tomato cv. Marmande seeds with the supernatant culture of Streptomyces sp. PT2 that contained the crude IAA showed the maximum effect in promoting seed germination and root elongation.

  7. Combination of the angiotensin-converting enzyme inhibitor perindopril and the diuretic indapamide activate postnatal vasculogenesis in spontaneously hypertensive rats

    NARCIS (Netherlands)

    D. You (Dong); C. Cochain (Clément); C. Loinard (Céline); J. Vilar (Jose Manuel); B.M.E. Mees (Barend); M. Duriez (Micheline); B.I. Levy (Bernard); J.S. Silvestre (Jean Sebastien)

    2008-01-01

    textabstractCardiovascular risk factors are associated with reduction in both the number and function of vascular progenitor cells. We hypothesized that 1) hypertension abrogates postnatal vasculogenesis, and 2) antihypertensive treatment based on the combination of perindopril

  8. EFFECTS OF THE ANTIMUTAGENS VANILLIN AND CINNAMALDEHYDE ON SPONTANEOUS MUTATION IN E. COLI LACL STRAINS AND ON GLOBAL GENE EXPRESSION IN SALMONELLA TA104 AND HUMAN HEPG2 CELLS

    Science.gov (United States)

    Effects of the Antimutagens Vanillin and Cinnamaldehyde on Spontaneous Mutation in E. coli lacI Strains and on Global Gene Epression in Salmonella TAlO4 and Human HepG2 Cells In previous work we have shown that vanillin (VAN) and cinnamaldehyde (CIN) are dietary antimutag...

  9. Environmental modulation of autoimmune arthritis involves the spontaneous microbial induction of T cell responses to regulatory determinants within heat shock protein 65.

    Science.gov (United States)

    Moudgil, K D; Kim, E; Yun, O J; Chi, H H; Brahn, E; Sercarz, E E

    2001-03-15

    Both genetic and environmental factors are believed to be involved in the induction of autoimmune diseases. Adjuvant arthritis (AA) is inducible in susceptible rat strains by injection of Mycobacterium tuberculosis, and arthritic rats raise T cell responses to the 65-kDa mycobacterial heat-shock protein (Bhsp65). We observed that Fischer 344 (F344) rats raised in a barrier facility (BF-F344) are susceptible to AA, whereas F344 rats maintained in a conventional facility (CV-F344) show significantly reduced incidence and severity of AA, despite responding well to the arthritogenic determinant within Bhsp65. The acquisition of protection from AA can be circumvented if rats are maintained on neomycin/acidified water. Strikingly, naive unimmunized CV-F344 rats but not BF-F344 rats raised T cell responses to Bhsp65 C-terminal determinants (BCTD) (we have previously shown that BCTD are involved in regulation of acute AA in the Lewis rat); however, T cells of naive CV-F344 and BF-F344 gave a comparable level of proliferative response to a mitogen, but no response at all to an irrelevant Ag. Furthermore, adoptive transfer into naive BF-F344 rats of splenic cells of naive CV-F344 rats (restimulated with BCTD in vitro) before induction of AA resulted in a considerably reduced severity of AA. These results suggest that spontaneous (inadvertent) priming of BCTD-reactive T cells, owing to determinant mimicry between Bhsp65 and its homologues in microbial agents in the conventional environment, is involved in modulating the severity of AA in CV-F344 rats. These results have important implications in broadening understanding of the host-microbe interaction in human autoimmune diseases.

  10. Comparison of the Number of Peripheral Blood CD4+CD25+ T Cells in Unexplained Recurrent Spontaneous Abortion Patients with Normal Pregnant Women

    Directory of Open Access Journals (Sweden)

    M Eslami

    2011-05-01

    Full Text Available Introduction: Undoubtedly, reproduction is a necessity for survival and successful pregnancy is an immunological paradox. In the present study, we investigated the proportional changes of CD4+CD25bright T cells, CD4+CD25dim T cells in peripheral blood in unexplained recurrent spontaneous abortions (URSA and compared it with normal pregnant women by antibody monoclonal method. Methods: The study group comprised of women with miscarriages of unexplained etiology who had normal karyotypes, anticardiolipin antibodies, prolactin levels and normal spousal spermograms. They did not have polycystic ovaries and also did not receive any drugs at the time of the study. PBLs lymphocytes were isolated, then FITC-conjugated and anti-CD4 and PE-conjugated anti-CD25 antibody levels were measured. Then results of the study and control group were analyzed and compared. Results: The absolute number of CD25 bright cells in the CD4‏+T cells in peripheral blood was statistically significantly lower in the study group as compared to the control group(P=0.000. The absolute number of CD4+CD25dimT cells in peripheral blood was statistically significantly higher in the study group as compared to the control group (P=0.000. Conclusion: As decrease in the number of CD4+CD25+Tcells or their functional deficiency may be linked with miscarriage, CD4+CD25+‏ Tells could serve as a novel biomarker for monitoring in URSA patients, but more studies are needed in this field.

  11. Anti-hypertensive and cardioprotective effects of a novel apitherapy formulation via upregulation of peroxisome proliferator-activated receptor-α and -γ in spontaneous hypertensive rats.

    Science.gov (United States)

    Sun, Yanru; Han, Mingfeng; Shen, Zhenhuang; Huang, Haibo; Miao, Xiaoqing

    2018-02-01

    Ventricular remodeling is associated with many heart diseases, and ventricular remodeling induced by hypertension can be fatal independent of hypertension. In this study, we prepared a novel apitherapy formulation, designated Bao-Yuan-Ling (BYL), which contained propolis, royal jelly, and bee venom, to treat spontaneous hypertensive rats (SHRs). We then evaluated the pharmacology of BYL and the potential mechanisms through which BYL affects hypertension and ventricular remodeling. We found that BYL treatment could reduce blood pressure in SHRs. Thereafter, we found that BYL treatment reduced serum levels of angiotensin II, endothelin 1, and transforming growth factor-β and improved the myocardial structure. Moreover, the results of quantitative real-time polymerase chain reaction indicated that BYL treatment could upregulate the mRNA expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ. Thus, we could conclude that BYL had hypotensive and cardioprotective effects in SHRs, potentially through improvement of myocardial energy metabolism.

  12. Anti-hypertensive and cardioprotective effects of a novel apitherapy formulation via upregulation of peroxisome proliferator-activated receptor-α and -γ in spontaneous hypertensive rats

    Directory of Open Access Journals (Sweden)

    Yanru Sun

    2018-02-01

    Full Text Available Ventricular remodeling is associated with many heart diseases, and ventricular remodeling induced by hypertension can be fatal independent of hypertension. In this study, we prepared a novel apitherapy formulation, designated Bao-Yuan-Ling (BYL, which contained propolis, royal jelly, and bee venom, to treat spontaneous hypertensive rats (SHRs. We then evaluated the pharmacology of BYL and the potential mechanisms through which BYL affects hypertension and ventricular remodeling. We found that BYL treatment could reduce blood pressure in SHRs. Thereafter, we found that BYL treatment reduced serum levels of angiotensin II, endothelin 1, and transforming growth factor-β and improved the myocardial structure. Moreover, the results of quantitative real-time polymerase chain reaction indicated that BYL treatment could upregulate the mRNA expression of peroxisome proliferator-activated receptor (PPAR-α and PPAR-γ. Thus, we could conclude that BYL had hypotensive and cardioprotective effects in SHRs, potentially through improvement of myocardial energy metabolism.

  13. Macrophage Reporter Cell Assay for Screening Immunopharmacological Activity of Cell Wall-Active Antifungals

    OpenAIRE

    Lewis, Russell E.; Liao, Guangling; Young, Katherine; Douglas, Cameron; Kontoyiannis, Dimitrios P.

    2014-01-01

    Antifungal exposure can elicit immunological effects that contribute to activity in vivo, but this activity is rarely screened in vitro in a fashion analogous to MIC testing. We used RAW 264.7 murine macrophages that express a secreted embryonic alkaline phosphatase (SEAP) gene induced by transcriptional activation of NF-κB and activator protein 1 (AP-1) to develop a screen for immunopharmacological activity of cell wall-active antifungal agents. Isolates of Candida albicans and Aspergillus f...

  14. Spontaneous neural activity in the right superior temporal gyrus and left middle temporal gyrus is associated with insight level in obsessive-compulsive disorder.

    Science.gov (United States)

    Fan, Jie; Zhong, Mingtian; Gan, Jun; Liu, Wanting; Niu, Chaoyang; Liao, Haiyan; Zhang, Hongchun; Tan, Changlian; Yi, Jinyao; Zhu, Xiongzhao

    2017-01-01

    Insight into illness is an important issue for psychiatry disorder. Although the existence of a poor insight subtype of obsessive-compulsive disorder (OCD) was recognized in the DSM-IV, and the insight level in OCD was specified further in DSM-V, the neural underpinnings of insight in OCD have been rarely explored. The present study was designed to bridge this research gap by using resting-state functional magnetic resonance imaging (fMRI). Spontaneous neural activity were examined in 19 OCD patients with good insight (OCD-GI), 18 OCD patients with poor insight (OCD-PI), and 25 healthy controls (HC) by analyzing the amplitude of low-frequency fluctuation (ALFF) in the resting state. Pearson correlation analysis was performed between regional ALFFs and insight levels among OCD patients. OCD-GI and OCD-PI demonstrated overlapping and distinct brain alterations. Notably, compared with OCD-GI, tOCD-PI had reduced ALFF in left middle temporal gyrus (MTG) and right superior temporal gyrus (STG), as well as increased ALFF in right middle occipital gyrus. Further analysis revealed that ALFF values for the left MTG and right STG were correlated negatively with insight level in patients with OCD. Relatively small sample size and not all patients were un-medicated are our major limitations. Spontaneous brain activity in left MTG and right STG may be neural underpinnings of insight in OCD. Our results suggest the great role of human temporal brain regions in understanding insight, and further underscore the importance of considering insight presentation in understanding the clinical heterogeneity of OCD. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A contribution to the study of spontaneous and evoked electrical activities of the adult rabbit hypothalamus and application of digital analysis

    International Nuclear Information System (INIS)

    Lasmoles, Francoise

    1974-01-01

    The spontaneous and evoked electrical activities of the hypothalamus were studied in 18 adult rabbits chronically implanted with electrodes. The graphic study of the EEG was completed by digital analyses of the signal considered as a random process and processed both by statistical analysis in order to know the distribution function of the signal amplitude and harmonic analysis allowing classification of power density spectra by the calculation of the autocorrelation function and its Fourier transform. Absolute values and percentage of energy distribution were obtained from 0 to 40 Hz for each frequency rate (0.25 Hz) and in various frequency bands (0-3, 3-6, 7-9, 9-15, 15-20, 20-30 and 30-40 Hz). The experimental methods (electrode implantation, data acquisition and processing) are described: 240 sequences corresponding to stable physiological states were analyzed after analogical-digital conversion (sampling rate: 10 ms, period of integration: 20 s). Whatever the state of vigilance, the hypothalamus had a fairly homogeneous function different from the spontaneous electrical activity of the cortex. The signal characteristics both in amplitude and frequency allowed to distinguish the hypothalamic areas studied (supra-optic area, mammillary body, postero-lateral hypothalamus). The results were reproducible and verified the information supplied by visual examination of the EEG. Following light stimulus, the evoked potentials were collected in the hypothalamus; there should therefore be convergence, yet since the answers are unstable and long latent, the neuronal paths followed by the impulse must not be direct. (author) [fr

  16. Different patterns of spontaneous brain activity between tremor-dominant and postural instability/gait difficulty subtypes of Parkinson's disease: a resting-state fMRI study.

    Science.gov (United States)

    Chen, Hui-Min; Wang, Zhi-Jiang; Fang, Jin-Ping; Gao, Li-Yan; Ma, Ling-Yan; Wu, Tao; Hou, Ya-Nan; Zhang, Jia-Rong; Feng, Tao

    2015-10-01

    Postural instability/gait difficulty (PIGD) and tremor-dominant (TD) subtypes of Parkinson's disease (PD) sh