WorldWideScience

Sample records for spontaneous steam explosion

  1. Steam explosion studies review

    International Nuclear Information System (INIS)

    Hwang, Moon Kyu; Kim, Hee Dong

    1999-03-01

    When a cold liquid is brought into contact with a molten material with a temperature significantly higher than the liquid boiling point, an explosive interaction due to sudden fragmentation of the melt and rapid evaporation of the liquid may take place. This phenomenon is referred to as a steam explosion or vapor explosion. Depending upon the amount of the melt and the liquid involved, the mechanical energy released during a vapor explosion can be large enough to cause serious destruction. In hypothetical severe accidents which involve fuel melt down, subsequent interactions between the molten fuel and coolant may cause steam explosion. This process has been studied by many investigators in an effort to assess the likelihood of containment failure which leads to large scale release of radioactive materials to the environment. In an effort to understand the phenomenology of steam explosion, extensive studies has been performed so far. The report presents both experimental and analytical studies on steam explosion. As for the experimental studies, both small scale tests which involve usually less than 20 g of high temperature melt and medium/large scale tests which more than 1 kg of melt is used are reviewed. For the modelling part of steam explosions, mechanistic modelling as well as thermodynamic modelling is reviewed. (author)

  2. Phenomenological modelling of steam explosions

    International Nuclear Information System (INIS)

    Corradini, M.L.; Drumheller, D.S.

    1980-01-01

    During a hypothetical core meltdown accident, an important safety issue to be addressed is the potential for steam explosions. This paper presents analysis and modelling of experimental results. There are four observations that can be drawn from the analysis: (1) vapor explosions are suppressed by noncondensible gases generated by fuel oxidation, by high ambient pressure, and by high water temperatures; (2) these effects appear to be trigger-related in that an explosion can again be induced in some cases by increasing the trigger magnitude; (3) direct fuel liquid-coolant liquid contact can explain small scale fuel fragmentation; (4) heat transfer during the expansion phase of the explosion can reduce the work potential

  3. Steam explosion - physical foundations and relation to nuclear reactor safety

    International Nuclear Information System (INIS)

    Schumann, U.

    1982-08-01

    'Steam explosion' means the sudden evaporation of a fluid by heat exchange with a hotter material. Other terms are 'vapour explosion', 'thermal explosion', and 'energetic fuel-coolant interaction (FCI)'. In such an event a large fraction of the thermal energy initially stored in the hot material may possibly be converted into mechanical work. For pressurized water reactors one discusses (e.g. in risk analysis studies) a core melt-down accident during which molten fuel comes into contact with water. In the analysis of the consequences one has to investigate steam explosions. In this report an overview over the state of the knowledge is given. The overview is based on an extensive literature review. The objective of the report is to provide the basic knowledge which is required for understanding of the most important theories on the process of steam explosions. Following topics are treated: overview on steam explosion incidents, work potential, spontaneous nucleation, concept of detonation, results of some typical experiments, hydrodynamic fragmentation of drops, bubbles and jets, coarse mixtures, film-boiling, scenario of a core melt-down accident with possible steam-explosion in a pressurized water reactor. (orig.) [de

  4. Simulation of steam explosion in stratified melt-coolant configuration

    International Nuclear Information System (INIS)

    Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja

    2016-01-01

    Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To

  5. Steam explosions in light water reactors

    International Nuclear Information System (INIS)

    1981-01-01

    The report deals with a postulated accident caused by molten fuel falling into the lower plenum of the containment of a reactor. The analysis which is presented in the report shows that the thermal energy released in the resulting steam explosion is not enough to destroy the pressure vessel or the containment. The report was prepared for the Swedish Governmental Committee on steam explosion in light water reactors. It includes statements issued by internationally well-known specialists. (G.B.)

  6. Steam explosions in sodium cooled breeder reactors

    International Nuclear Information System (INIS)

    Lundell, B.

    1982-01-01

    Steam explosion is considered a physical process which transport heat from molten fuel to liquid coolant so fast that the coolant starts boiling in an explosion-like manner. The arising pressure waves transform part of the thermal energy to mechanical energy. This can stress the reactor tank and threaten its hightness. The course of the explosion has not been theoretical explained. Experimental results indicate that the probability of steam explosions in a breeder reactor is small. The efficiency of the transformation of the heat of fusion into mechanical energy in substantially lower than the theoretical maximum value. The mechanical stress from the steam explosion on the reactor tank does not seem to jeopardize its tightness. (G.B.)

  7. Steam explosion triggering and efficiency studies

    International Nuclear Information System (INIS)

    Buxton, L.D.; Nelson, L.S.; Benedick, W.B.

    1979-01-01

    A program at Sandia Laboratories to provide relevant data on the interaction of molten LWR core materials with water is described. Two different subtasks were established. The first was the performance of laboratory-scale experiments to investigate the ability to trigger steam explosions for realistic LWR core melt simulants under a wide range of initial conditions. The second was the performance of field-scale experiments to investigate the efficiency of converting the thermal energy of the melt into mechanical work in much larger steam explosions

  8. Steam explosion triggering and efficiency studies

    International Nuclear Information System (INIS)

    Buxton, L.D.; Nelson, L.S.; Benedick, W.B.

    1979-01-01

    Laboratory experiments on the thermal interaction of simulated light water reactor (LWR) fuel melts and water are summarized. Their purpose was to investigate the possibility of steam explosions occurring for a range of hypothetical accident conditions. Pressure, temperature, hot liquid motion and cold liquid motion were monitored during the experiments

  9. Development of steam explosion simulation code JASMINE

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu; Kudo, Tamotsu; Sugimoto, Jun [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nagano, Katsuhiro; Araki, Kazuhiro

    1995-11-01

    A steam explosion is considered as a phenomenon which possibly threatens the integrity of the containment vessel of a nuclear power plant in a severe accident condition. A numerical calculation code JASMINE (JAeri Simulator for Multiphase INteraction and Explosion) purposed to simulate the whole process of steam explosions has been developed. The premixing model is based on a multiphase flow simulation code MISTRAL by Fuji Research Institute Co. In JASMINE code, the constitutive equations and the flow regime map are modified for the simulation of premixing related phenomena. The numerical solution method of the original code is succeeded, i.e. the basic equations are discretized semi-implicitly, BCGSTAB method is used for the matrix solver to improve the stability and convergence, also TVD scheme is applied to capture a steep phase distribution accurately. Test calculations have been performed for the conditions correspond to the experiments by Gilbertson et al. and Angelini et al. in which mixing of solid particles and water were observed in iso-thermal condition and with boiling, respectively. (author).

  10. Development of steam explosion simulation code JASMINE

    International Nuclear Information System (INIS)

    Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu; Kudo, Tamotsu; Sugimoto, Jun; Nagano, Katsuhiro; Araki, Kazuhiro.

    1995-11-01

    A steam explosion is considered as a phenomenon which possibly threatens the integrity of the containment vessel of a nuclear power plant in a severe accident condition. A numerical calculation code JASMINE (JAeri Simulator for Multiphase INteraction and Explosion) purposed to simulate the whole process of steam explosions has been developed. The premixing model is based on a multiphase flow simulation code MISTRAL by Fuji Research Institute Co. In JASMINE code, the constitutive equations and the flow regime map are modified for the simulation of premixing related phenomena. The numerical solution method of the original code is succeeded, i.e. the basic equations are discretized semi-implicitly, BCGSTAB method is used for the matrix solver to improve the stability and convergence, also TVD scheme is applied to capture a steep phase distribution accurately. Test calculations have been performed for the conditions correspond to the experiments by Gilbertson et al. and Angelini et al. in which mixing of solid particles and water were observed in iso-thermal condition and with boiling, respectively. (author)

  11. Dimensional analysis of small-scale steam explosion experiments

    International Nuclear Information System (INIS)

    Huh, K.; Corradini, M.L.

    1986-01-01

    Dimensional analysis applied to Nelson's small-scale steam explosion experiments to determine the qualitative effect of each relevant parameter for triggering a steam explosion. According to experimental results, the liquid entrapment model seems to be a consistent explanation for the steam explosion triggering mechanism. The three-dimensional oscillatory wave motion of the vapor/liquid interface is analyzed to determine the necessary conditions for local condensation and production of a coolant microjet to be entrapped in fuel. It is proposed that different contact modes between fuel and coolant may involve different initiation mechanisms of steam explosions

  12. Lower head integrity under steam explosion loads

    Energy Technology Data Exchange (ETDEWEB)

    Theofanous, T.G.; Yuen, W.W.; Angelini, S.; Freeman, K.; Chen, X.; Salmassi, T. [Center for Risk Studies and Safety, Univ. of California, Santa Barbara, CA (United States); Sienicki, J.J.

    1998-01-01

    Lower head integrity under steam explosion loads in an AP600-like reactor design is considered. The assessment is the second part of an evaluation of the in-vessel retention idea as a severe accident management concept, the first part (DOE/ID-10460) dealing with thermal loads. The assessment is conducted in terms of the Risk Oriented Accident Analysis Methodology (ROAAM), and includes the comprehensive evaluation of all relevant severe accident scenarios, melt conditions and timing of release from the core region, fully 3D mixing and explosion wave dynamics, and lower head fragility under local, dynamic loading. All of these factors and brought together in a ROAAM Probabilistic Framework to evaluate failure likelihood. The conclusion is that failure is `physically unreasonable`. (author)

  13. Five-component propagation model for steam explosion analysis

    International Nuclear Information System (INIS)

    Yang, Y.; Moriyama, Kiyofumi; Park, H.S.; Maruyama, Yu; Sugimoto, Jun

    1999-01-01

    A five-field simulation code JASMINE-pro has been developed at JAERI for the calculation of the propagation and explosion phase of steam explosions. The basic equations and the constitutive relationships specifically utilized in the propagation models in the code are introduced in this paper. Some calculations simulating the KROTOS 1D and 2D steam explosion experiments are also stated in the paper to show the present capability of the code. (author)

  14. Steam explosion simulation code JASMINE v.3 user's guide

    International Nuclear Information System (INIS)

    Moriyama, Kiyofumi; Maruyama, Yu; Nakamura, Hideo

    2008-07-01

    A steam explosion occurs when hot liquid contacts with cold volatile liquid. In this phenomenon, fine fragmentation of the hot liquid causes extremely rapid heat transfer from the hot liquid to the cold volatile liquid, and explosive vaporization, bringing shock waves and destructive forces. The steam explosion due to the contact of the molten core material and coolant water during severe accidents of light water reactors has been regarded as a potential threat to the integrity of the containment vessel. We developed a mechanistic steam explosion simulation code, JASMINE, that is applicable to plant scale assessment of the steam explosion loads. This document, as a manual for users of JASMINE code, describes the models, numerical solution methods, and also some verification and example calculations, as well as practical instructions for input preparation and usage of the code. (author)

  15. Mechanical efficiency of the energy release during a steam explosion

    International Nuclear Information System (INIS)

    Krieg, R.

    1997-01-01

    The mechanical processes during the expansion phase of a steam explosion with intimately fragmented liquid particles is investigated based on elementary principles and analytical solutions. During a short load pulse, the different densities of the water and the melted particles lead to different velocities. After the load pulse, viscosity effects lead to a slow down of the higher velocities and to a corresponding reconversion of the kinetic energy of the mixture into thermal energy. It is shown that both effects are proportional to each other. The ratio between the residual and the applied mechanical energy is defined as the mechanical efficiency of the steam explosion. Using data typical for a steam explosion in a pressurized water reactor, mechanical efficiencies of <50% are estimated. Considering that the thermodynamic efficiencies are quite limited, the very low conversion rates from thermal energy into mechanical energy observed during steam explosion experiments can be more easily understood

  16. Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility.

    Science.gov (United States)

    Pielhop, Thomas; Amgarten, Janick; von Rohr, Philipp Rudolf; Studer, Michael H

    2016-01-01

    Steam explosion pretreatment has been examined in many studies for enhancing the enzymatic digestibility of lignocellulosic biomass and is currently the most common pretreatment method in commercial biorefineries. The information available about the effect of the explosive decompression on the biochemical conversion is, however, very limited, and no studies prove that the latter is actually enhanced by the explosion. Hence, it is of great value to discern between the effect of the explosion on the one hand and the steaming on the other hand, to identify their particular influences on enzymatic digestibility. The effect of the explosive decompression in the steam explosion pretreatment of spruce wood chips on their enzymatic cellulose digestibility was studied systematically. The explosion had a high influence on digestibility, improving it by up to 90 % compared to a steam pretreatment without explosion. Two factors were identified to be essentially responsible for the effect of the explosion on enzymatic digestibility: pretreatment severity and pressure difference of the explosion. A higher pretreatment severity can soften up and weaken the lignocellulose structure more, so that the explosion can better break up the biomass and decrease its particle size, which enhances its digestibility. In particular, increasing the pressure difference of the explosion leads to more defibration, a smaller particle size and a better digestibility. Though differences were found in the micro- and nanostructure of exploded and non-exploded biomass, the only influence of the explosion on digestibility was found to be the macroscopic particle size reduction. Steam explosion treatments with a high severity and a high pressure difference of the explosion lead to a comparatively high cellulose digestibility of the-typically very recalcitrant-softwood biomass. This is the first study to show that explosion can enhance the enzymatic digestibility of lignocellulosic biomass. If the

  17. Steam explosions of single drops of pure and alloyed molten aluminum

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1995-01-01

    Studies of steam explosion phenomena have been performed related to the hypothetical meltdown of the core and other components of aluminum alloy-fueled production reactors. Our objectives were to characterise the triggers, if any, required to initiate these explosions and to determine the energetics and chemical processes associated with these events. Three basic studies have been carried out with 1-10 g single drops of molten aluminum or aluminum-based alloys: untriggered experiments in which drops of melt were released into water; triggered experiments in which thermal-type steam explosions occurred; and one triggered experiment in which an ignition-type steam explosion occurred. In untriggered experiments, spontaneous steam explosions never occurred during the free fall through water of single drops of pure Al or of the alloys studied here. Moreover, spontaneous explosions never occurred upon or during contact of the globules with several underwater surfaces. When Li was present in the alloy, H 2 was generated as a stream of bubbles as the globules fell through the water, and also as they froze on the bottom surface of the chamber. The triggered experiments were performed with pure Al and the 6061 alloy. Bare bridgewire discharges and those focused with cylindrical reflectors produced a small first bubble that collapsed and was followed by a larger second bubble. When the bridgewire was discharged at one focus of an ellipsoidal reflector, a melt drop at the other focus triggered only very mildly in spite of a 30-fold increase in peak pressure above that of the bridgewire discharge without the reflector. Experiments were also performed with globules of high purity Al in which the melt release temperature was progressively increased. Moderate thermal-type explosions were produced over the temperature range 1273-1673 K. At about 1773 K, however, one experiment produced a brilliant flash of light and bubble growth about an order of magnitude faster than normal; it

  18. Droplet solidification and the potential for steam explosions

    International Nuclear Information System (INIS)

    Epstein, M.; Fauske, H.K.; Luangdilok, W.

    2009-01-01

    It is well known that under certain circumstances a mixture of coarse-hot (molten) drops in water formed from pouring a hot melt into water explodes. This so-called 'steam explosion' is generally believed to involve steam-bubble-collapse-induced fine fragmentation of the melt drops and concomitant water vaporization on a timescale that is short compared with the steam pressure relief time. Motivated by the idea put forth by Okkonen and Sehgal that rapid solidification would render UO 2 -containing (Corium) melt drops stiff and resistant to the steam-bubble-collapse-induced fragmentation required to support an explosion, here we combine solidification theory with an available theory of the stability of thin, submerged crusts subject to acceleration to predict the 'cutoff time' beyond which melt-drop fragmentation is suppressed by crust cover rigidity. Illustration calculations show that the cutoff time for Corium melt drops in water is a fraction of a second and probably shorter than the time it takes to form the explosion-prerequisite-coarse-premixture configuration of melt drops in water, while the opposite is true for the molten aluminum oxide/water system for which the window of opportunity for an explosion is predicted to be several seconds. These theoretical findings are consistent with early experiments that revealed molten uranium oxide or Corium pours into water to be non-explosive and that produced steam explosions upon pouring molten aluminum oxide into water. Also in this paper, the recent TROI Corium/water interaction experiments are examined and it is concluded that they do not contravene the earlier experimental observations that the pouring of prototypical Corium mixtures into water does not result in steam explosions with destructive potential. (author)

  19. Material properties influence on steam explosion efficiency. Prototypic versus simulant melts, eutectic versus non-eutectic melts

    International Nuclear Information System (INIS)

    Leskovar, M.; Mavko, B.

    2006-01-01

    A steam explosion may occur during a severe nuclear reactor accident if the molten core comes into contact with the coolant water. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. Details of processes taking place prior and during the steam explosion have been experimentally studied for a number of years with adjunct efforts in modelling these processes to address the scaling of these experiments. Steam explosion experiments have shown that there are important differences of behaviour between simulant and prototypical melts, and that also at prototypical melts the fuel coolant interactions depend on the composition of the corium. In experiments with prototypic materials no spontaneous steam explosions occurred (except with an eutectic composition), whereas with simulant materials the steam explosions were triggered spontaneously. The energy conversion ratio of steam explosions with prototypic melts is at least one order of magnitude lower than the energy conversion ratio of steam explosions with simulant melts. Although the different behaviour of prototypic and simulant melts has been known for a number of years, there is no reliable explanation for these differences. Consequently it is not possible to reliably estimate whether corium would behave so non-explosive also in reactor conditions, where the mass of poured melt is nearly three orders of magnitude larger than in experimental conditions. An even more fascinating material effect was observed recently at corium experiments with eutectic and non-eutectic compositions. It turned out that eutectic corium always exploded spontaneously, whereas non-eutectic corium never exploded spontaneously. In the paper, a possible explanation of both material effects (prototypic/simulant melts, eutectic/non-eutectic corium) on the steam explosion is provided. A model for the calculation of the

  20. An investigation of steam-explosion loadings with SIMMER-2

    International Nuclear Information System (INIS)

    Bohl, W.R.

    1990-03-01

    The purpose of this work was to provide a reasonable estimate of the maximum loads that might be expected at the upper head of a pressurized water reactor following an in-vessel steam explosion. These loads were determined by parametric cases using a specially modified and calibrated version of the SIMMER-II computer code. Using the determined range of loads, the alpha-mode containment failure probability was to be estimated using engineering judgment. In this context, an alpha-mode failure is defined as resulting from a missile, produced by a steam explosion, and assuming core melt has occurred. 51 refs., 185 figs., 19 tabs

  1. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

    International Nuclear Information System (INIS)

    HOGELAND, STEVE R.; NELSON, LLOYD S.; ROTH, THOMAS CHRISTOPHER

    1999-01-01

    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives

  2. Analysis of the consequences of a steam explosion

    International Nuclear Information System (INIS)

    Hassmann, K.; Peehs, M.; Zeitner, W.; Reineke, H.

    1979-01-01

    Estimation of the maximum amount of melt that may possibly come into contact with water: determiantion of the maximum mechanical energy acting on the reactor pressure vessel; determination of the maximum load withstood by pressure vessels during steam explosions without macroscopic failure; elaboration of a statement on pressure vessel integrity by comparing the calculated maximum permissible load with the actual load. (orig.) [de

  3. Simulation of first SERENA KROTOS steam explosion experiment

    International Nuclear Information System (INIS)

    Leskovar, Matjaz; Ursic, Mitja

    2009-01-01

    A steam explosion may occur when, during a severe reactor accident, the molten core comes into contact with the coolant water. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. To resolve the open issues in steam explosion understanding and modeling, the OECD program SERENA Phase 2 was launched at the end of year 2007, focusing on nuclear applications. SERENA comprises an experimental program, which is being carried out in the complementary KROTOS and TROI corium facilities, accompanied by a comprehensive analytical program, where also pre- and post-test calculations are foreseen. In the paper the sensitivity post-test calculations of the first SERENA KROTOS experiment KS-1, which were performed with the code MC3D, are presented and discussed. Since the results of the SERENA tests are restricted to SERENA members, only the various calculation results are given, not comparing them to experimental measurements. Various premixing and explosion simulations were performed on a coarse and a fine numerical mesh, applying two different jet breakup models (global, local) and varying the minimum bubble diameter in the explosion simulations (0.5 mm, 5 mm). The simulations revealed that all varied parameters have a significant influence on the calculation results, as was expected since the fuel coolant interaction process is a highly complex phenomenon. The results of the various calculations are presented in comparison and the observed differences are discussed and explained. (author)

  4. Study on premixing phase of steam explosion at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Norihiro; Moriyama, Kiyofumi; Maruyama, Yu; Park, H.; Yang, Y.; Sugimoto, Jun [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-01-01

    Melt jet breakup (MJB) and fragmentation has been studied in the frame of ALPHA program. In the first two experiments of MJB series, jet of molten lead-bismuth eutectic alloy was released into a deep pool of saturated water. Steam generation rate was measured and correlated with the jet behavior observed by a high-speed camera. The jet breakup length and debris size distribution were also evaluated. In parallel with the experimental study, JASMINE code has been developed for the simulation of steam explosion. The melt jet breakup model and the particle breakup model in the code were tested by analyzing FARO-L14 and ALPHA MJB experiments. (author)

  5. An effect of corium composition variations on occurrence of a steam explosion in the TROI experiments

    International Nuclear Information System (INIS)

    Kim, J. W.; Park, I. K.; Hong, S. W.; Min, B. T.; Shin, Y. S.; Song, J. H.; Kim, H. D.

    2003-01-01

    Recently series of steam explosion experiments have been performed in the TROI facility using corium melts of various compositions. The compositions (UO 2 : ZrO 2 ) of the corium were 0 : 100, 50 : 50, 70 : 30, 80 : 20 and 87 : 13 in weight percent and the mass of the corium was about 10kg. An experiment using 0 : 100 corium (pure zirconia) caused a steam explosion. An experiment using 50 : 50 corium did not cause a steam explosion while a steam spike occurred in an experiment using 70 : 30 corium which was the eutectic point of corium. A steam spike is considered to be the fact that a triggering of a steam explosion occurred but a propagation process does not occur so as to cause a weak interaction. However, the possibility of a steam explosion with this composition can not be ruled out since many steam explosions occurred in the previous experiments. In the two experiments using 80 : 20 corium, a steam spike occurred in one experiment but no steam explosion occurred in the other experiment. However, the triggerability of a steam explosion with this composition is not clear since few steam explosions occurred in the previous experiments. And no steam explosion occurred in an experiment using 87 : 13 corium of which urania content was the greatest among the experiments performed in the TROI facility. From this, the possibility of a steam explosion or a steam spike is appeared to be high in the non-mush zone. It is considered that an explosive interaction could easily occur with the eutectic composition. Since the solidification temperature around the eutectic point is low, the melt is likely to maintain its liquid state at the time of triggering so as to cause an explosive phenomenon

  6. Steam Explosions in Slurry-fed Ceramic Melters

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.T.

    2001-03-28

    This report assesses the potential and consequences of a steam explosion in Slurry Feed Ceramic Melters (SFCM). The principles that determine if an interaction is realistically probable within a SFCM are established. Also considered are the mitigating effects due to dissolved, non-condensable gas(es) and suspended solids within the slurry feed, radiation, high glass viscosity, and the existence of a cold cap. The report finds that, even if any explosion were to occur, however, it would not be large enough to compromise vessel integrity.

  7. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se; Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Konovalenko, Alexander, E-mail: kono@kth.se; Karbojian, Aram, E-mail: karbojan@kth.se

    2017-04-01

    Highlights: • Steam explosion in stratified melt-coolant configuration is studied experimentally. • Different binary oxidic melt simulant materials were used. • Five spontaneous steam explosions were observed. • Instability of melt-coolant interface and formation of premixing layer was observed. • Explosion strength is influenced by melt superheat and water subcooling. - Abstract: Steam explosion phenomena in stratified melt-coolant configuration are considered in this paper. Liquid corium layer covered by water on top can be formed in severe accident scenarios with (i) vessel failure and release of corium melt into a relatively shallow water pool; (ii) with top flooding of corium melt layer. In previous assessments of potential energetics in stratified melt-coolant configuration, it was assumed that melt and coolant are separated by a stable vapor film and there is no premixing prior to the shock wave propagation. This assumption was instrumental for concluding that the amount of energy that can be released in such configuration is not of safety importance. However, several recent experiments carried out in Pouring and Under-water Liquid Melt Spreading (PULiMS) facility with up to 78 kg of binary oxidic corium simulants mixtures have resulted in spontaneous explosions with relatively high conversion ratios (order of one percent). The instability of the melt-coolant interface, melt splashes and formation of premixing layer were observed in the tests. In this work, we present results of experiments carried out more recently in steam explosion in stratified melt-coolant configuration (SES) facility in order to shed some light on the premixing phenomena and assess the influence of the test conditions on the steam explosion energetics.

  8. An experimental study of steam explosions involving CORIUM melts

    International Nuclear Information System (INIS)

    Millington, R.A.

    1984-05-01

    An experimental programme to investigate molten fuel coolant interactions involving 0.5 kg thermite-generated CORIUM melts and water has been carried out. System pressures and initial coolant subcoolings were chosen to enhance the probability of steam explosions. Yields and efficiencies of the interactions were found to be very close to those obtained from similar experiments using molten UO 2 generated from a Uranium/Molybdenum Trioxide thermite. (author)

  9. Load histories from steam explosions during core melt accidents

    International Nuclear Information System (INIS)

    Jacobs, H.; Kolev, N.I.

    1992-01-01

    For the analysis of steam explosions a multicomponent multiphase thermohydraulic code is required which describes at least the motions of melt, water, and steam by separate velocity fields. One example of these very rare codes is the IVA3 code the development of which was brought to an interim close in 1991. As an example of a typical application of this code, precalculations of the FARO LWR Scoping Test 2 performed at Ispra are discussed. Unfortunately, the calculation results cannot be compared directly to the test results because of important differences between planned and achieved test parameters. Above all, only about one third of the planned melt mass actually entered the water. The test was performed in a closed vessel at an initial pressure of 50 bar. The water was saturated at this temperature and its level was at 1 m height. The simulation starts with the release of 50 kg of simulated corium from an intermediate catcher at about 3.2 m height. The calculation predicts a gradual pressure rise without fast transients worth mentioning from 50 to about 76 bar within roughly one second and stabilizes slightly below the maximum. Also described are the material distributions predicted during the process and the 'mixed' masses according to two different criteria. The former indicate that the melt jet penetrates the water without desintegrating while being surrounded by a thick vapor layer. Subsequently the melt collects at the level bottom and much of the liquid water is blown upwards by the steam being produced. The amounts of mass being 'mixed' with liquid water (and thus are thought to potentially participate in a steam explosion) remain below 10% for the known Theofanous criterion and below 30% for a more conservative criterion. It is however more important that the calculation demonstrates that further mixing could be the result of the onset of a steam explosion. This may strongly limit the usefulness of local mixing criteria. (orig./DG)

  10. In-vessel coolability and steam explosion in Nordic BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ma, W.; Li, L.; Hansson, R.; Villanueva, W.; Kudinov, P.; Manickam, L.; Tran, C.-T. (Royal Institute of Technology (KTH) (Sweden))

    2011-05-15

    The objective of this research is to reduce the uncertainty in quantification of steam explosion risk and in-vessel coolability in the Nordic BWR plants which employ cavity flooding as severe accident management (SAM) strategy. To quantify the coolability of debris bed packed with irregular particles, the friction laws of fluid flow in particulate beds packed with non-spherical particles were investigated on the POMECO-FL test facility, and the experimental data suggest that the Ergun equation is applicable if the effective particle diameter of the particles is represented by the equivalent diameter of the particles, which is the product of Sauter mean diameter and shape factor of the particles. One-way coupling analysis between PECM model for melt pool heat transfer and ANSYS thermo-structural mechanics was performed to analyze the vessel creep, and the results revealed two different modes of vessel failure: a 'ballooning' of the vessel bottom and a 'localized creep' concentrated within the vicinity of the top surface of the melt pool. Single-droplet steam explosion experiments were carried out by using oxidic mixture of WO{sub 3}-CaO, and the results show an apparent difference in steam explosion energetics between the eutectic and non-eutectic melts at low melt superheat (100 deg. C). (Author)

  11. Assessment of steam explosion impact on KNGR plant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Moon Kyu; Park, Soo Yong; Park, Ik Kyu

    1999-03-01

    In present day light water reactors, if complete and prolonged failure of normal and emergency coolant flow occurs, fission product decay heat could cause melting of the reactor fuel. If the molten fuel mass accumulates it may relocate into reactor lower plenum and if the lower head fails it may eventually be brought into the reactor cavity. In such course of core melt relocation, the opportunity for fuel-coolant interactions (FCI) arises as the core melt relocates into water pool in reactor vessel as well as in reactor cavity and also, as a consequence of implementing accident management strategies involving water addition to a degraded or molten core. This report presents the methodologies and their results for assessment of steam explosion impact on KNGR plant integrity. Both in-vessel and ex-vessel phenomena are addressed. For in-vessel steam explosion, TRACER-II code is used for assessment of pressure load, while bounding calculations are applied for ex-vessel analysis. Analysis shows that the integrity of reactor pressure vessel lower head is preserved during the in-vessel event and the probability that the containment integrity is challenged is very low, even when ex-vessel steam explosion is allowed due to reactor vessel failure. (Author). 15 refs., 2 tabs., 4 figs.

  12. Assessment of steam explosion impact on KNGR plant

    International Nuclear Information System (INIS)

    Hwang, Moon Kyu; Park, Soo Yong; Park, Ik Kyu

    1999-03-01

    In present day light water reactors, if complete and prolonged failure of normal and emergency coolant flow occurs, fission product decay heat could cause melting of the reactor fuel. If the molten fuel mass accumulates it may relocate into reactor lower plenum and if the lower head fails it may eventually be brought into the reactor cavity. In such course of core melt relocation, the opportunity for fuel-coolant interactions (FCI) arises as the core melt relocates into water pool in reactor vessel as well as in reactor cavity and also, as a consequence of implementing accident management strategies involving water addition to a degraded or molten core. This report presents the methodologies and their results for assessment of steam explosion impact on KNGR plant integrity. Both in-vessel and ex-vessel phenomena are addressed. For in-vessel steam explosion, TRACER-II code is used for assessment of pressure load, while bounding calculations are applied for ex-vessel analysis. Analysis shows that the integrity of reactor pressure vessel lower head is preserved during the in-vessel event and the probability that the containment integrity is challenged is very low, even when ex-vessel steam explosion is allowed due to reactor vessel failure. (Author). 15 refs., 2 tabs., 4 figs

  13. In-vessel coolability and steam explosion in Nordic BWRs

    International Nuclear Information System (INIS)

    Ma, W.; Li, L.; Hansson, R.; Villanueva, W.; Kudinov, P.; Manickam, L.; Tran, C.-T.

    2011-05-01

    The objective of this research is to reduce the uncertainty in quantification of steam explosion risk and in-vessel coolability in the Nordic BWR plants which employ cavity flooding as severe accident management (SAM) strategy. To quantify the coolability of debris bed packed with irregular particles, the friction laws of fluid flow in particulate beds packed with non-spherical particles were investigated on the POMECO-FL test facility, and the experimental data suggest that the Ergun equation is applicable if the effective particle diameter of the particles is represented by the equivalent diameter of the particles, which is the product of Sauter mean diameter and shape factor of the particles. One-way coupling analysis between PECM model for melt pool heat transfer and ANSYS thermo-structural mechanics was performed to analyze the vessel creep, and the results revealed two different modes of vessel failure: a 'ballooning' of the vessel bottom and a 'localized creep' concentrated within the vicinity of the top surface of the melt pool. Single-droplet steam explosion experiments were carried out by using oxidic mixture of WO 3 -CaO, and the results show an apparent difference in steam explosion energetics between the eutectic and non-eutectic melts at low melt superheat (100 deg. C). (Author)

  14. Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization.

    Science.gov (United States)

    Zhao, Shengguo; Li, Guodong; Zheng, Nan; Wang, Jiaqi; Yu, Zhongtang

    2018-04-01

    The purpose of this study was to evaluate steam explosion as a pretreatment to enhance degradation of corn stover by ruminal microbiome. The steam explosion conditions were first optimized, and then the efficacy of steam explosion was evaluated both in vitro and in vivo. Steam explosion altered the physical and chemical structure of corn stover as revealed by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, respectively, and increased its cellulose content while decreasing hemicellulose content. Steam-exploded corn stover also increased release of reducing sugars, rate of fermentation, and production of volatile fatty acids (VFAs) in vitro. The steam explosion treatment increased microbial colonization and in situ degradation of cellulose and hemicellulose of corn stover in the rumen of dairy cows. Steam explosion may be a useful pretreatment of corn stover to improve its nutritional value as forage for cattle, or as feedstock for biofuel production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A current perspective on the risk significance of steam explosions

    International Nuclear Information System (INIS)

    Snyder, A.W.

    1982-01-01

    The view currently held in the Sandia National Laboratory is that, in the case of a meltdown in the reactor core, the probability of a steam explosion is greater than was estimated in WASH-1400, but that the extent and effect of an explosion will be very much smaller than assumed in WASH-1400. This results in a far smaller total risk with regard to containment. In WASH-1400, a nominal conditional probability of 1% was assumed for a containment rupture in a PWR-type reactor, should a large part of the reactor fuel be subject to meltdown during the course of the accident. The German risk analysis study 'Deutsche Risikostudie Kernkraftwerke' dated 1979 considers an explosion of a size sufficient to represent a threat to containment to be considerably more improbable than was assumed in WASH-1400. (orig./DG) [de

  16. In-vessel coolability and steam explosion in Nordic BWRs

    International Nuclear Information System (INIS)

    Ma, W.; Hansson, R.; Li, L.; Kudinov, P.; Cadinu, F.; Tran, C-.T.

    2010-05-01

    The INCOSE project is to reduce the uncertainty in quantification of steam explosion risk and in-vessel coolability in Nordic BWR plants with the cavity flooding as a severe accident management (SAM) measure. During 2009 substantial advances and new insights into physical mechanisms were gained for studies of: (i) in-vessel corium coolability - development of the methodologies to assess the efficiency of the control rod guide tube (CRGT) cooling as a potential SAM measure; (ii) debris bed coolability - characterization of the effective particle diameter of multi-size particles and qualification of friction law for two-phase flow in the beds packed with multi-size particles; and (iii) steam explosion - investigation of the effect of binary oxides mixtures properties on steam explosion. An approach for coupling of ECM/PECM models with RELAP5 was developed to enhance predictive fidelity for melt pool heat transfer. MELCOR was employed to examine the CRGT cooling efficiency by considering an entire accident scenario, and the simulation results show that the nominal flowrate (∼10kg/s) of CRGT cooling is sufficient to maintain the integrity of the vessel in a BWR of 3900 MWth, if the water injection is activated no later than 1 hour after scram. The POMECO-FL experimental data suggest that for a particulate bed packed with multi-size particles, the effective particle diameter can be represented by the area mean diameter of the particles, while at high velocity (Re>7) the effective particle diameter is closer to the length mean diameter. The pressure drop of two-phase flow through the particulate bed can be predicted by Reed's model. The steam explosion experiments performed at high melt superheat (>200oC) using oxidic mixture of WO3-CaO didn't detect an apparent difference in steam explosion energetics and preconditioning between the eutectic and noneutectic melts. This points out that the next step of MISTEE experiment will be conducted at lower superheat. (author)

  17. Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment.

    Science.gov (United States)

    Martin-Sampedro, Raquel; Revilla, Esteban; Villar, Juan C; Eugenio, Maria E

    2014-09-01

    Steam explosion and steam pre-treatment have proved capable of enhancing enzymatic saccharification of lignocellulosic materials. However, until now, these methods had not been compared under the same operational conditions and using the same raw material. Both pre-treatments lead to increased yields in the saccharification of Eucalyptus globulus; but results have been better with steam pre-treatments, despite the more accessible surface of exploded samples. The reason for this finding could be enzymatic inhibition: steam explosion causes a more extensive extraction of hemicelluloses and releases a greater amount of degradation products which can inhibit enzymatic action. Enzymatic inhibition is also dependent on the amount and chemical structure of lignin, which was also a contributing factor to the lower enzymatic yields obtained with the most severe pre-treatment. Thus, the highest yields (46.7% glucose and 73.4% xylose yields) were obtained after two cycle of steam treatment, of 5 and 3 min, at 183°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The preliminary results of steam explosion experiments in TROI

    International Nuclear Information System (INIS)

    Song, J.H.; Park, I.K.; Chang, Y.J.; Min, B.T.; Hong, S.W.; Kim, H.D.

    2001-01-01

    Korea Atomic Energy Research Institute (KAERI) launched an intermediate scale steam explosion experiment named 'Test for Real corium Interaction with water (TROI)' using reactor material to investigate the effect of material composition, multi-dimensional melt-water interaction, and hydrogen generation. The melt-water interaction is confined in a pressure vessel with the multi-dimensional fuel and water pool geometry. The cold crucible technology, where the mixture of oxide powder in a water-cooled cage is heated by high frequency induction, is employed. It minimizes unwanted inclusion of impurities during the melting process. The data acquisition system and instrumentations which measure the static and dynamic pressure, temperatures of melt and water are set up. In the first series of tests using several kg of ZrO 2 , melt water interaction is made in a heated water pool at 95 Celsius degrees without triggering. A steam spike pressure at about 10 bar is observed. The morphology of debris shows that there was a mild local steam explosion. The melt water interaction was monitored by video cameras. The UO 2 tests are scheduled around March of 2001, in parallel with the improvements of the design of test facility. (authors)

  19. Theory of the spontaneous condensation of steam during expansion

    International Nuclear Information System (INIS)

    Kleitz, Alain

    1978-01-01

    When steam expands in a nozzle or turbine, it cools and, at a certain pressure level, the saturation limit is exceeded. The appearance of moisture does not comply with the simple laws of thermodynamic balance. The liquid phase appears only as from a certain sub-cooling of the steam, at which stage it forms suddenly as a finely dispersed mist. On the basis of the kinetic theory of gases and the critical radius concept, Oswatitch produced a theory on spontaneous condensation which was checked by tests in nozzles. On the other hand, this theory does not fully explain that which is observed in turbines or manifolds fed with fluids other than steam. Modifications have been made to the conventional theory in an endeavour to corroborate the experimental results [fr

  20. Structural response to a steam explosion in a PWR

    International Nuclear Information System (INIS)

    Woodfin, R.L.; Voelker, L.E.

    1980-01-01

    Beginning with the assumption that a hypothetical steam-explosion occurs in the pressure vessel of a pressurized water reactor, the structural consequences are investigated. A simplified model of an individual installation is used for the investigation. Finite element and finite difference analyses of water-head impact conditions are described. Analysis of the possibility of ejection of a control rod drive assembly as a missile is investigated. Conclusions indicate that the only containment threatening consequence is the possible but unlikely generation and flight of such a missile and that large, i.e., whole head sized missiles, appear precluded

  1. A strategy for the application of steam explosion codes to reactor analysis

    International Nuclear Information System (INIS)

    Moriyama, Kiyofumi; Nakamura, Hideo

    2006-01-01

    A technical view on the strategy for the application of steam explosion codes for plant scale analysis is described. It includes assumption of triggering at the time of peak premixed melt mass, tuning of the explosion model on typical alumina steam explosion data, consideration of void and solidification effects as primary mechanism to limit the premixed mass and explosion energetics, choice of simple heat partition models affecting evaporation. The view was developed through experiences in development, verification and application of a steam explosion simulation code, JASMINE, at Japan Atomic Energy Agency (JAEA), as well as participation in OECD SERENA Phase-1 program. (author)

  2. The steam explosion potential for an unseated SRS reactor septifoil

    International Nuclear Information System (INIS)

    Allison, D.K.; Hyder, M.L.; Yau, W.W.F.; Smith, D.C.

    1992-01-01

    Control rods in the Savannah River Site's K Reactor are contained within housings composed of seven channels (''septifoils''). Each septifoil is suspended from the top of the reactor and is normally seated on an upflow pin that channels coolant to the septifoil. Forced flow to the septifoil would be eliminated in the unlikely event of a septifoil unseated upon installation, i.e., if the septifoil is not aligned with its upflow pin. If this event were not detected, control rod melting and the interaction of molten metal with water might occur. This paper describes a methodology used to address the issue of steam explosions that might arise by this mechanism. The probability of occurrence of a damaging steam explosion given an unseated septifoil was found to be extremely low. The primary reasons are: (1) the high probability that melting will not occur, (2) the possibility of material holdup by contact with the outer septifoil housing, (3) the relative shallowness of the pool 'Of water into which molten material might fall, (4) the probable absence of a trigger, and (5) the relatively large energy release required to damage a nearby fuel assembly. The methodology is based upon the specification of conditions prevailing within the septifoil at the time molten material is expected to contact water, and upon information derived from the available experimental data base, supplemented by recent prototypic experiments

  3. Simulation of TROI steam explosion behaviour using the COMETA code

    International Nuclear Information System (INIS)

    Arun Kumar Nayak; Hyun Sun Park; Bal Raj Sehgal; Alessandro Annunziato

    2005-01-01

    Full text of publication follows: During a severe accident in a nuclear reactor, the core can melt and the molten corium while interacting with water may cause an energetic fuel coolant interaction which is known as steam explosion. Such phenomena can occur inside the reactor vessel during flooding of a degraded core or when molten corium falls into the lower head filled with water. Similar phenomena may occur outside the reactor vessel when molten corium is ejected into a flooded reactor cavity or into the flooded containment after the vessel failure. The interaction of molten corium with water is one of the most complex thermal hydraulic and chemical phenomena. Recently in the TROI test series carried out at KAERI (Korean Atomic Energy Research Institute) in Korea, steam explosions were observed. In those tests, the UO 2 /ZrO 2 compositions were close to that of prototypic case. In this paper, we have numerically simulated the melt coolant interaction of TROI tests using the computer code, COMETA (Core MElt Thermalhydraulic Analysis) developed by JRC (Joint Research Center), at Ispra in Italy. The COMETA code was primarily developed to analyse, with sufficient detail, both the thermal-hydraulics and the fuel fragmentation phenomena during the melt quenching tests as conducted in the FARO facility. The code solves the conservation equations of mass, momentum and energy for the fluid using a conventional two-fluid model. Fuel fragmentation model considers the molten jet, its break up in drops and accumulation as fused-debris on the bottom. An explicit coupling between the thermal hydraulics and fuel fragmentation for the energy transfer is considered. The code has been extensively validated in the past for melt quenching in a series of experiments in the FARO facility. In this work, we first simulated the pre-mix and triggering phases of the TROI-13 tests for which the test data were available. The melt jet trajectory, void fraction and pressure profile were

  4. Theoretical work on melt-coolant interactions (steam explosions)

    International Nuclear Information System (INIS)

    Arnecke, G.; Jacobs, H.; Stehle, B.; Thurnay, K.; Vaeth, L.; Lummer, M.

    1995-01-01

    The code IVA3 is used for modelling the physical processes related to steam explosions, i.e. the premixing phase preceding the explosion as well as the explosion itself. This code has been replaced by the updated version IVA-KA in May 1994, which encompasses all model and code improvements performed till the beginning of 1994. The following further work on and with IVA-KA has been performed: 1. Inclusion of friction at inner and outer walls, improvement on the drag model, improvement of boundary conditions for outgoing flow, optional inclusion of improved water material data, improvement of the numerical procedure, correction of coding errors. 2. Three FARO-experiments (investigating the behaviour of molten material falling into water) were recalculated with IVA-KA. The time dependent pressure increase is reproduced very well for one experiment, but is not quite satisfactory for a second one. The third one cannot be simulated satisfactorily because of the presence of metallic zirconium in the melt, which is not being modelled by IVA-KA at present. 3. One PREMIX-experiment (similar to FARO, but at 1 bar ambient pressure and with smaller amounts of melt) is also being analyzed with IVA-KA. First results show a good representation of the material distribution during the penetration of the melt into the water. 4. One of the first two QUEOS-experiments performed at KfK has been simulated with IVA-KA. Some results are well reproduced by IVA-KA, but there may be a deficiency of the drag laws. (orig./HP)

  5. Production of D-lactic acid from sugarcane bagasse using steam-explosion

    Science.gov (United States)

    Sasaki, Chizuru; Okumura, Ryosuke; Asakawa, Ai; Asada, Chikako; Nakamura, Yoshitoshi

    2012-03-01

    This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

  6. Production of D-lactic acid from sugarcane bagasse using steam-explosion

    International Nuclear Information System (INIS)

    Sasaki, Chizuru; Okumura, Ryosuke; Asakawa, Ai; Asada, Chikako; Nakamura, Yoshitoshi

    2012-01-01

    This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

  7. Analysis of ex-vessel steam explosion with MC3D

    International Nuclear Information System (INIS)

    Leskovar, M.; Mavko, B.

    2007-01-01

    An ex-vessel steam explosion may occur when, during a severe reactor accident, the reactor vessel fails and the molten core pours into the water in the reactor cavity. A steam explosion is a fuel coolant interaction process where the heat transfer from the melt to water is so intense and rapid that the timescale for heat transfer is shorter than the timescale for pressure relief. This can lead to the formation of shock waves and production of missiles that may endanger surrounding structures. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. In the paper, different scenarios of ex-vessel steam explosions in a typical pressurized water reactor cavity are analyzed with the code MC3D, which was developed for the simulation of fuel-coolant interactions. A comprehensive parametric study was performed varying the location of the melt release (central, left and right side melt pour), the cavity water subcooling, the primary system overpressure at vessel failure and the triggering time for explosion calculations. The main purpose of the study was to determine the most challenging ex-vessel steam explosion cases in a typical pressurized water reactor and to estimate the expected pressure loadings on the cavity walls. The performed analysis shows that for some ex-vessel steam explosion scenarios significantly higher pressure loads are predicted than obtained in the OECD programme SERENA Phase 1. (author)

  8. Ex-Vessel Steam Explosion Analysis of Central Melt Pour Scenario

    International Nuclear Information System (INIS)

    Ursic, M.; Leskovar, M.

    2008-01-01

    An ex-vessel steam explosion may develop during a severe reactor accident when the reactor vessel fails and the molten core interacts with the coolant in the reactor cavity. At this process part of the corium energy is intensively transferred to water in a very short time scale. The water vaporizes at high pressure and expands, doing work on its surrounding. Although the steam explosion has probably a low probability of occurrence, it is an important nuclear safety issue in case of a severe reactor accident. Namely, the formed very high pressure region induces dynamic loadings on the surrounding structures that may potentially lead to an early release of the radioactive material into the environment. Although the steam explosion events have being studied for several years, the level of the process and consequences understanding is still not adequate. To increase the level of confidence the OECD programme SERENA (Steam Explosion REsolution for Nuclear Applications) was established in 2002. The objectives of the program were to evaluate capabilities of the current generation of the FCI (Fuel-Coolant Interaction) computer codes in predicting the steam explosion induced loads, identifying key FCI phenomena and associated uncertainties impacting the predictability of the steam explosion energetics in the reactor situations and proposing confirmatory research to reduce the uncertainties to acceptable levels for the steam explosion risk assessment. To get a better insight into the most challenging ex-vessel steam explosions, analyses for different locations of the melt release, the cavity water sub-cooling, the primary system pressure overpressure and the triggering time were preformed for a typical pressurized water reactor cavity. The results of some scenarios revealed that significantly higher pressure loads are predicted than obtained in the OECD programme SERENA Phase 1. Among the performed analyses for the central melt pour scenarios, the maximum pressure loads were

  9. Intensification of steam explosion and structural intricacies impacting sugar recovery.

    Science.gov (United States)

    Gaur, Ruchi; Semwal, Surbhi; Raj, Tirath; Yadav Lamba, Bhawna; Ramu, E; Gupta, Ravi P; Kumar, Ravindra; Puri, Suresh K

    2017-10-01

    Dilute acid (DA) pretreatment at pilot level failed for cotton stalk (CS) due to the technical issues posed by its inherent nature. Reasonable glucan conversion has been reported via two-stage pretreatment but adds on to the process cost. Proposed herewith is a single-stage steam explosion (SE) process preceded by water extraction resulting in high sugar recovery from CS. Raising the extraction temperature to 80°C increased the glucan conversion from 37.9 to 52.4%. Further improvement up to 68.4% was achieved when DA was incorporated during the room temperature extraction. LC-MS revealed the formation of xylo-oligomers limiting the glucan conversion in proportion to the length of xylo-oligomers. Varying extraction conditions induced structural alterations in biomass after SE evident by compositional analysis, Infrared Spectroscopy, X-Ray Diffraction and Scanning Electron Microscopy. Overall glucose recovery, i.e. 75.8-76.7% with and without DA extraction respectively was achieved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Set-up for steam generator tube bundle washing after explosion expanding the tubes

    International Nuclear Information System (INIS)

    Osipov, S.I.; Kal'nin, A.Ya.; Mazanenko, M.F.

    1985-01-01

    Set-up for steam generator tube bundle washing after the explosion expanding of tubes is described. Washing is accomplished by distillate. Steam is added to distillate for heating, and compersed air for preventing hydraulic shock. The set-up is equiped by control equipment. Set-up performances are presented. Time for one steam generator washing constitutes 8-12 h. High economic efficiency is realized due to the set-up introduction

  11. Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse

    DEFF Research Database (Denmark)

    Medina, Carlos Martín; Marcet, M.; Thomsen, Anne Belinda

    2008-01-01

    , and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one third. Wet oxidation formed more aliphatic acids and phenolics, and less furan aldehydes in the liquid......Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin...... fraction than steam explosion did. A better enzymatic convertibility of cellulose was achieved for the wet-oxidised material (57.4 %) than for the steam-exploded material (48.9 %). Cellulose convertibility was lower for the whole slurry than for the washed solids in both pretreatments, but more...

  12. Development of axial tomography technique for the study of steam explosion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Young; Seo, S. W.; You, S. [Handong Golbal Univ., Pohang (Korea, Republic of)

    2006-05-15

    In this report, axial tomography applying to steam explosion is implemented. When steam explosion experiment is performed, we have seen the difficulty with physical modeling due to the complex phenomena of generated steam, propagation of shock wave and bubble breakup and coalescence. Hence, the uncertainty due to these phenomena is occurred. The fast and global measurement of the steam distribution is imperative to understand the complex phenomena performed during the steam explosion, KAERI have developed the fast and global measuring instrument to monitor such phenomena of axial steam distribution. Generally, X-ray is used as measuring method, but this method is very expensive and has limited measurement area. So we need new method that can substitute X-ray method and in this research, ECT method is replaced. The research is performed dividing within two parts: Software and Hardware. In the software part, the electric field analysis code and algorithm for inverse projection were developed. And, in the hardware part, capacitance measurement circuit is developed to measure up to fF level. Operable axial tomography was analyzed with concept design of axial tomography appropriate to steam explosion accident and analysis code for axial electric field analysis and inverse algorithm were developed, moreover, designing signal analysis system for axial tomography was performed.

  13. Analysis of steam explosions in plate-type, uranium-aluminum fuel test reactors

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1989-01-01

    The concern over steam explosions in nuclear reactors can be traced to prompt critical nuclear excursions in aluminum-clad/fueled test reactors, as well as to explosive events in aluminum, pulp, and paper industries. The Reactor Safety Study prompted an extensive analytical and experimental effort for over a decade. This has led to significant improvements in their understanding of the steam explosion issue for commercial light water reactors. However, little progress has been made toward applying the lessons learned from this effort to the understanding and modeling of steam explosion phenomena in aluminum-clad/fueled research and test reactors. The purposes of this paper are to (a) provide a preliminary analysis of the destructive events in test reactors, based on current understandings of steam explosions; (b) provide a proposed approach for determining the likelihood of a steam explosion event under scenarios in which molten U-Al fuel drops into a water-filled cavity; and (c) present a benchmarking study conducted to estimate peak pressure pulse magnitudes

  14. Hydrothermal pretreatment of wood by mild steam explosion and hot water extraction.

    Science.gov (United States)

    Wojtasz-Mucha, Joanna; Hasani, Merima; Theliander, Hans

    2017-10-01

    The aim of this work was to compare the two most common hydrothermal pre-treatments for wood - mild steam explosion and hot water extraction - both with the prospect of enabling extraction of hemicelluloses and facilitating further processing. Although both involve autohydrolysis of the lignocellulosic tissue, they are performed under different conditions: the most prominent difference is the rapid, disintegrating, discharge employed in the steam explosion opening up the structure. In this comparative study, the emphasis was placed on local composition of the pre-treated wood chips (of industrially relevant size). The results show that short hot water extraction treatments lead to significant variations in the local composition within the wood chips, while steam explosion accomplishes a comparably more even removal of hemicelluloses due to the advective mass transport during the explosion step. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Steam explosions of molten iron oxide drops: easier initiation at small pressurizations

    International Nuclear Information System (INIS)

    Nelson, L.S.; Duda, P.M.

    1982-01-01

    Steam explosions caused by hot molten materials contacting liquid water following a possible light water nuclear reactor core overheat have been investigated by releasing single drops of a core melt simulant, molten iron oxide, into liquid water. Small steam explosions were triggered shortly afterwards by applying a pressure pulse to the water. The threshold peak pulse level above which an explosion always occurs was studied at ambient pressures between 0.083 and 1.12 MPa. It was found that the threshold decreased to a minimum in the range 0.2 - 0.8 MPa and then increased again. The effect of easier initiation as ambient pressure increases may have an important role in the triggering and propagation of a large scale steam explosion through a coarsely premixed dispersion of melt in water. (U.K.)

  16. Review of the current understanding of the potential for containment failure from in-vessel steam explosions

    International Nuclear Information System (INIS)

    1985-06-01

    A group of experts was convened to review the current understanding of the potential for containment failure from in-vessel steam explosions during core meltdown accidents in LWRs. The Steam Explosion Review Group (SERG) was requested to provide assessments of: (1) the conditional probability of containment failure due to a steam explosion, (2) a Sandia National Laboratory (SNL) report entitled ''An Uncertainty Study of PWR Steam Explosions,'' NUREG/CR-3369, (3) a SNL proposed steam explosion research program. This report summarizes the results of the deliberations of the review group. It also presents the detailed response of each individual member to each of the issues. The consensus of the SERG is that the occurrence of a steam explosion of sufficient energetics which could lead to alpha-mode containment failure has a low probability. The SERG members disagreed with the methodology used in NUREG/CR-3369 for the purpose of establishing the uncertainty in the probability of containment failure by a steam explosion. A consensus was reached among SERG members on the need for a continuing steam explosion research program which would improve our understanding of certain aspects of steam explosion phenomenology

  17. Development of compressible density-based steam explosion simulation code ESE-2

    International Nuclear Information System (INIS)

    Leskovar, M.

    2004-01-01

    A steam explosion is a fuel coolant interaction process by which the energy of the corium is transferred to water in a time-scale smaller than the time-scale for system pressure relief and induces dynamic loading of surrounding structures. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. To help finding answers on open questions regarding steam explosion understanding and modelling, the steam explosion simulation code ESE-2 is being developed. In contrast to the developed simulation code ESE-1, where the multiphase flow equations are solved with pressure-based numerical methods (best suited for incompressible flow), in ESE-2 densitybased numerical methods (best suited for compressible flow) are used. Therefore ESE-2 will enable an accurate treatment of the whole steam explosion process, which consists of the premixing, triggering, propagation and expansion phase. In the paper the basic characteristics of the mathematical model and the numerical solution procedure in ESE-2 are described. The essence of the numerical treatment is that the convective terms in the multiphase flow equations are calculated with the AUSM+ scheme, which is very time efficient since no field-by-field wave decomposition is needed, using second order accurate discretization. (author)

  18. Comparison of gamma irradiation and steam explosion pretreatment for ethanol production from agricultural residues

    International Nuclear Information System (INIS)

    Wang, Ke-qin; Xiong, Xing-yao; Chen, Jing-ping; Chen, Liang; Su, Xiaojun; Liu, Yun

    2012-01-01

    It was evaluated the influence of gamma irradiation and steam explosion pretreatment on the components and the water-soluble sugars of rice straw. Compared with the steam explosion pretreated rice straw, cellucose, hemicellucose and lignin for irradiation pretreated rice sample were much more greatly degraded and the relative content of glucose was significantly enhanced from 6.58% to 47.44%. Interestingly, no glucuronide acid was detected in irradiation pretreated rice straw, while glucuronide acid with the content from 8.5 mg/g to 9.2 mg/g was obtained in steam explosion pretreated sample. Followed by enzymatic hydrolysis, higher concentration of reducing sugars (including glucose and xylose) of irradiation pretreated rice sample (90.3 mg/g) was obtained, which was approximately 2.4- and 1.1- fold higher of the unpretreated (37.2 mg/g) and of steam explosion pretreated sample (85.4 mg/g). To further verify the effectiveness of irradiation pretreatment, characterizations of rice straw, corn stalk and bagasse by an integrated process of dilute acid/enzymatic hydrolysis and irradiation pretreatment were also investigated. -- Highlights: ► We compare irradiation and steam explosion pretreatments for bioethanol production. ► We examine changes in compositions of the components and the water-soluble sugars. ► No glucuronide acid was detected in gamma irradiation pretreated rice straw. ► We evaluate an integrated method of acid/enzyme-hydrolyzed irradiation pretreatment.

  19. Correlations between the disintegration of melt and the measured impulses in steam explosions

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, G.; Linca, A.; Schindler, M. [Univ. of Stuttgart (Germany)

    1995-09-01

    To find our correlations in steam explosions (melt water interactions) between the measured impulses and the disintegration of the melt, experiments were performed in three configurations i.e. stratified, entrapment and jet experiments. Linear correlations were detected between the impulse and the total surface of the fragments. Theoretical considerations point out that a linear correlation assumes superheating of a water layer around the fragments of a constant thickness during the fragmentation process to a constant temperature (here the homogeneous nucleation temperature of water was assumed) and a constant expansion velocity of the steam in the main expansion time. The correlation constant does not depend on melt temperature and trigger pressure, but it depends on the configuration of the experiment or of a scenario of an accident. Further research is required concerning the correlation constant. For analysing steam explosion accidents the explosivity is introduced. The explosivity is a mass specific impulse. The explosivity is linear correlated with the degree of fragmentation. Knowing the degree of fragmentation with proper correlation constant the explosivity can be calculated and from the explosivity combined with the total mass of fragments the impulse is obtained which can be used to an estimation of the maximum force.

  20. Study on loading coefficient in steam explosion process of corn stalk.

    Science.gov (United States)

    Sui, Wenjie; Chen, Hongzhang

    2015-03-01

    The object of this work was to evaluate the effect of loading coefficient on steam explosion process and efficacy of corn stalk. Loading coefficient's relation with loading pattern and material property was first revealed, then its effect on transfer process and pretreatment efficacy of steam explosion was assessed by established models and enzymatic hydrolysis tests, respectively, in order to propose its optimization strategy for improving the process economy. Results showed that loading coefficient was mainly determined by loading pattern, moisture content and chip size. Both compact loading pattern and low moisture content improved the energy efficiency of steam explosion pretreatment and overall sugar yield of pretreated materials, indicating that they are desirable to improve the process economy. Pretreatment of small chip size showed opposite effects in pretreatment energy efficiency and enzymatic hydrolysis performance, thus its optimization should be balanced in investigated aspects according to further techno-economical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Steam explosion pretreatment for enhancing biogas production of late harvested hay.

    Science.gov (United States)

    Bauer, Alexander; Lizasoain, Javier; Theuretzbacher, Franz; Agger, Jane W; Rincón, María; Menardo, Simona; Saylor, Molly K; Enguídanos, Ramón; Nielsen, Paal J; Potthast, Antje; Zweckmair, Thomas; Gronauer, Andreas; Horn, Svein J

    2014-08-01

    Grasslands are often abandoned due to lack of profitability. Extensively cultivating grassland for utilization in a biogas-based biorefinery concept could mend this problem. Efficient bioconversion of this lignocellulosic biomass requires a pretreatment step. In this study the effect of different steam explosion conditions on hay digestibility have been investigated. Increasing severity in the pretreatment induced degradation of the hemicellulose, which at the same time led to the production of inhibitors and formation of pseudo-lignin. Enzymatic hydrolysis showed that the maximum glucose yields were obtained under pretreatment at 220 °C for 15 min, while higher xylose yields were obtained at 175 °C for 10 min. Pretreatment of hay by steam explosion enhanced 15.9% the methane yield in comparison to the untreated hay. Results indicate that hay can be effectively converted to methane after steam explosion pretreatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Suppression of steam explosions in tin and Fe-Al2O3 melts by increasing the viscosity of the coolant

    International Nuclear Information System (INIS)

    Nelson, L.S.; Guay, K.P.

    1986-01-01

    Steam explosions, energetic interactions that sometimes occur when a melt and water come together, can be suppressed by increasing the viscosity of the aqueous phase. This has been demonstrated both in the laboratory with drops of molten tin released into aqueous glycerol or cellulose gum solutions, and in one field-scale experiment where 50 kg of molten Fe-Al 2 O 3 was released into a cellulose gum solution; vigorous spontaneous explosions occurred in both situations when the cold liquid was water alone. There is a threshold solution viscosity near 0.015 Pa s, above which spontaneous tin drop explosions no longer occur. Increase of coolant viscosity might prevent injury to workers and damage to equipment in industrial processes where melts are normally handled near cooling water. (author)

  3. Cavity structural integrity evaluation of steam explosion using LS-DYNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Young; Park, Chang-Hwan [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Kim, Kap-sun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    For investigating the mechanical response of the newly-designed NPP against an steam explosion, the cavity structural integrity evaluation was performed, in which the mechanical load resulted from a steam explosion in the reactor cavity was calculated. In the evaluation, two kinds of approach were considered, one of which is a deterministic manner and the other is a probabilistic one. In this report, the procedure and the results of the deterministic analysis are presented When entering the severe accident, the core is relocated to the lower head. In this case, an Ex-Vessel Steam Explosion(EVSE) can occur. It can threaten the structural integrity of the cavity due to the load applied to the walls or slabs of the cavity. The large amount of the energy transmitted from interaction between the molten corium and the water causes a dynamic loading onto the concrete walls resulting not only to affect the survivability of the various equipment but also to threaten the integrity of the containment. In this report, the response of the cavity wall structure is analyzed using the nonlinear finite element analysis (FEA) code. The resulting stress and strain of the structure were evaluated by the criteria in NEI07-13. Until now, deterministic analysis was performed via finite element analysis for the dynamic load generated by the steam explosion to investigate the effect on the cavity structure. A deterministic method was used in this study using the specific values of material properties and clearly defined steam explosion pressure curve. The results showed that the rebar and the liner are kept intact even at the high pressure pulse given by the steam explosion. The liner integrity is more critical to judge the preservation of the lean-tightness. In the meantime, there were found cracks in concrete media.

  4. Preliminary Analysis of Ex-Vessel Steam Explosion using TEXAS-V code for APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Chu; Lee, Jung Jae; Cho, Yong Jin; Hwang, Taesuk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    The purpose of this study is to explore input development and the audit calculation using TEXAS-V code for ex-vessel steam explosion for a flooded reactor cavity of APR1400. TEXAS computational models are one of the simplified tools for simulations of fuel-coolant interaction during mixing, triggering and explosion phase. The models of TEXAS code were validated by performing the fundamental experimental investigation in the KROTOS facility at JRC, Ispra. The experiments such as KROTOS and FARO experiment are aimed at providing benchmark data to examine the effect of fuel-coolant initial conditions and mixing on explosion energetics with alumina and prototypical core material. TEXAS-V code used in this study was to analyze and predict the ex-vessel steam explosion for a reactor scale. The input deck to simulate the flooded reactor cavity of APR1400 is developed and base case calculation is performed. This study will provide a base for further study. The code will be of use for the evaluation and sensitivity study of ex-vessel steam explosion for ERVC strategy in the future studies. Analysis result of this study is similar to the result of other study. Through this study, it is found that TEXAS-V could be the used as a tool for predicting the steam explosion load on a reactor scale, as fast running computer code. In addition, TEXAS-V code could be to evaluate the impact of various uncertainties, which are not clearly understood yet, to provide a conservative envelope for the steam explosion.

  5. Preliminary Analysis of Ex-Vessel Steam Explosion using TEXAS-V code for APR1400

    International Nuclear Information System (INIS)

    Song, Sung Chu; Lee, Jung Jae; Cho, Yong Jin; Hwang, Taesuk

    2013-01-01

    The purpose of this study is to explore input development and the audit calculation using TEXAS-V code for ex-vessel steam explosion for a flooded reactor cavity of APR1400. TEXAS computational models are one of the simplified tools for simulations of fuel-coolant interaction during mixing, triggering and explosion phase. The models of TEXAS code were validated by performing the fundamental experimental investigation in the KROTOS facility at JRC, Ispra. The experiments such as KROTOS and FARO experiment are aimed at providing benchmark data to examine the effect of fuel-coolant initial conditions and mixing on explosion energetics with alumina and prototypical core material. TEXAS-V code used in this study was to analyze and predict the ex-vessel steam explosion for a reactor scale. The input deck to simulate the flooded reactor cavity of APR1400 is developed and base case calculation is performed. This study will provide a base for further study. The code will be of use for the evaluation and sensitivity study of ex-vessel steam explosion for ERVC strategy in the future studies. Analysis result of this study is similar to the result of other study. Through this study, it is found that TEXAS-V could be the used as a tool for predicting the steam explosion load on a reactor scale, as fast running computer code. In addition, TEXAS-V code could be to evaluate the impact of various uncertainties, which are not clearly understood yet, to provide a conservative envelope for the steam explosion

  6. How to evaluate steam explosions in the light of recent knowledge - possibility, course and effect

    International Nuclear Information System (INIS)

    Mayinger, F.

    Experimental and theoretical investigations performed in the last years and concerning the phenomenology and the effect of steam explosions allow a much more realistic estimation, whether and how the pressure vessel and the containment could be endangered by such an accident than this was possible at the time when the Rasmussen-study and the Deutsche Risikostudie - Phase A - were published. The status of knowledge and some simple physical deliberations with respect to the mechanical effect of a steam explosion are presented. (orig.) [de

  7. Chemical and physical modification of hemp fibres by steam explosion technology

    International Nuclear Information System (INIS)

    Sutka, Anna; Kukle, Silvija; Gravitis, Janis; Berzins, Agris

    2013-01-01

    In current research attempt has been made to analyse hemp fibres treated with steam explosion (SE) technology. Disintegration of hemp fibres separated from non-retted, dew-retted and dried stems of hemp ('Purini')[1] by alkali treatment and steam explosion (SE) were investigated. An average intensive SE in combination with the hydro-thermal and alkali after-treatment allows decreasing the diameter of hemp fibres and reduce the concentration of non-celluloses components, among them hemicelluloses, lignin, pectin, waxes and water [1;2

  8. The probability of containment failure by steam explosion in a PWR

    International Nuclear Information System (INIS)

    Briggs, A.J.

    1983-12-01

    The study of the risk associated with operation of a PWR includes assessment of severe accidents in which a combination of faults results in melting of the core. Probabilistic methods are used in such assessment, hence it is necessary to estimate the probability of key events. One such event is the occurrence of a large steam explosion when molten core debris slumps into the base of the reactor vessel. This report considers recent information, and recommends an upper limit to the range of probability values for containment failure by steam explosion for risk assessment for a plant such as the proposed Sizewell B station. (U.K.)

  9. Explosively free-formed pass partition plate for a nuclear steam generator

    International Nuclear Information System (INIS)

    Schroeder, J.W.

    1980-01-01

    A large flow-separating dished plate of a complex shape was manufactured by near-contact explosive forming in which only an edge die was used. The shape of the part, for service in a large, nuclear steam generator, was obtained by careful sizing and placement of the explosive charge. The development of the technique and the manufacture of the plate are described. 4 refs

  10. A study on ex-vessel steam explosion for a flooded reactor cavity of reactor scale - 15216

    International Nuclear Information System (INIS)

    Song, S.; Yoon, E.; Kim, Y.; Cho, Y.

    2015-01-01

    A steam explosion can occur when a molten corium is mixed with a coolant, more volatile liquid. In severe accidents, corium can come into contact with coolant either when it flows to the bottom of the reactor vessel and encounters the reactor coolant, or when it breaches the reactor vessel and flows into the reactor containment. A steam explosion could then threaten the containment structures, such as the reactor vessel or the concrete walls/penetrations of the containment building. This study is to understand the shortcomings of the existing analysis code (TEXAS-V) and to estimate the steam explosion loads on reactor scale and assess the effect of variables, then we compared results and physical phenomena. Sensitivity study of major parameters for initial condition is performed. Variables related to melt corium such as corium temperature, falling velocity and diameter of melt are more important to the ex-vessel steam explosion load and the steam explosion loads are proportional to these variables related to melt corium. Coolant temperature on reactor cavity has a specific area to increase the steam explosion loads. These results will be used to evaluate the steam explosion loads using ROAAM (Risk Oriented Accident Analysis Methodology) and to develop the evaluation methodology of ex-vessel steam explosion. (authors)

  11. An experimental study of steam explosions involving chemically reactive metal

    International Nuclear Information System (INIS)

    Cho, D.H.; Armstrong, D.R.; Gunther, W.H.; Basu, S.

    1997-01-01

    An experimental study of molten zirconium-water explosions was conducted. A 1-kg mass of zirconium melt was dropped into a column of water. Explosions took place only when an external trigger was used. In the triggered tests, the extent of oxidation of the zirconium melt was very extensive. However, the explosion energetics estimated were found to be very small compared to the potential chemical energy available from the oxidation reaction. Zirconium is of particular interest, since it is a component of the core materials of the current nuclear power reactors. This paper describes the test apparatus and summarizes the results of four tests conducted using pure zirconium melt

  12. Analysis of KROTOS KS-2 and KS-4 steam explosion experiments with TEXAS-VI

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ronghua, E-mail: rhchen@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Jun [Nuclear Engineering and Engineering Physics, College of Engineering, University of Wisconsin Madison, WI 53706 (United States); Su, G.H.; Qiu, Suizheng [State Key Laboratory of Multiphase Flow in Power Engineering, School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Corradini, M.L., E-mail: Corradini@engr.wisc.edu [Nuclear Engineering and Engineering Physics, College of Engineering, University of Wisconsin Madison, WI 53706 (United States)

    2016-12-01

    Highlights: • The KS-2 and KS-4 steam explosion experiments were analyzed by TEXAS-VI. • The coarse mixing status up to the explosion triggering time was well predicted by TEXAS-VI. • The predicted dynamic explosion pressure was in good agreement with the experimental results. - Abstract: TEXAS-VI is a transient, three-field, one-dimensional mechanistic model for the steam explosion phenomena. A fuel solidification model and associated fragmentation criteria of the solidifying particle for both the mixing phase and explosion phase were developed and incorporated into TEXAS-VI to account for solidification. In the present study, TEXAS-VI was used to analyze the KS-2 and KS-4 steam explosion experiments, which were performed in the KROTOS facility as part of the OECD-SERENA-2 program. In the simulation, the KROTOS experimental facility was modeled as Eulerian control volumes based on the facility geometry. The molten corium jet was divided up into a series of LaGrangian master particles equal to the initial jet diameter. Both the mixing phase and the explosion phase of the experiments were simulated by TEXAS-VI. Comparison to test data indicates that the fuel jet kinematics and the vapor volume during the mixing phase were well predicted by TEXAS-VI. The TEXAS-VI prediction of the dynamic explosion pressure at different axial locations in the test was also in good agreement with the experimental results. The maximum pressure of KS-2 and KS-4 predicted by TEXAS-VI were 16.7 MPa and 41.9 MPa, respectively. The KS-4 maximum steam explosion pressure predicted by TEXAS-VI was higher than that of KS-2, which was consistent with experiment observation. The observed differences of the dynamic explosion pressure between the KS-2 and KS-4 experiments were also successfully simulated by TEXAS-VI. This suggests that TEXAS-VI is able to analyze the effect of prototypic melt compositions on the steam explosion phenomena. Additional benchmarking and evaluations are ongoing.

  13. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    Science.gov (United States)

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of steam explosion pre-treatment on molecular structure of ...

    African Journals Online (AJOL)

    Purpose: To examine the effect of steam-explosion (SE) strength on the molecular ... pressure-holding time on the molecular structure of the sweet potato starch were ... overheated liquid and then their pores are filled ... expands and exerts pressure on the cell walls, ... oscillation using distilled water as the dispersing agent.

  15. Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Brownell, H.H.; Yu, E.K.C.; Saddler, J.N.

    1986-06-01

    Material balances for pentosan, lignin, and hexosan, during steam-explosion pretreatment of aspenwood, showed almost quantitative recovery of cellulose in the water-insoluble fraction. Dilute acid impregnation resulted in more selective hydrolysis of pentosan relative to undesirable pyrolysis, and gave a more accessible substrate for enzymatic hydrolysis. Thermocouple probes, located inside simulated aspenwood chips heated in 240 degrees C-saturated steam, showed rapid heating of air-dry wood, whereas green or impregnated wood heated slowly. Small chips, 3.2 mm in the fiber direction, whether green or air dry gave approximately equal rates of pentosan destruction and solubilization, and similar yields of glucose and of total reducing sugars on enzmatic hydrolysis with Trichoderma harzianum. Partial pyrolysis, destroying one-third of the pentosan of aspenwood at atmospheric pressure by dry steam at 276 degrees C, gave little increase in yield of reducing sugars on enzymatic hydrolysis. Treatment with saturated steam at 240 degrees C gave essentially the same yields of butanediol and ethanol on fermentation with Klebsiella pneumoniae, whether or not 80% of the steam was bled off before explosion and even if the chips remained intact, showing that explosion was unnecessary. 17 references.

  16. Simultaneous production of α-cellulose and furfural from bagasse by steam explosion pretreatment

    Directory of Open Access Journals (Sweden)

    Vittaya Punsuvon

    2008-02-01

    Full Text Available Sugar cane bagasse was pretreated by steam explosion for the simultaneous production of furfural and α-cellulose pulp. The components of bagasse were fractionated after steam explosion. The details of the process are as follows. Bagasse was soaked in water for one night and steamed at temperatures varying between 206 and 223 C for 4 minutes. The steam exploded pulp was strained and washed with hot water to yield a liquor rich in hemicellulose-derived mono- and oligosaccharides. The remaining pulp was delignified by alkali for 120 minutes at 170C using, separately, NaOH load of 15, 20 and 25% of weight of the pulp. The delignified pulp was further bleached twice with 4% H2O2 charge of weight of the pulp to produce high α-cellulose pulp. The water liquor was evaporated and further hydrolysed and dehydrated with diluted H2SO4 in a stainless steel reactor to produce furfural. The result shows that the optimal pretreatment of steam explosion for 4 min at 218C leads to the yield of α-cellulose pulp at 193-201 g∙kg-1 of the original bagasse, and that furfural can be produced from xylose present in the liquor with a maximum conversion factor of 0.16.

  17. Steam-explosion mitigation with polymer and surfactant additives

    International Nuclear Information System (INIS)

    Pineau, D.; Ranval, W.

    1996-02-01

    Vapor explosion (or MFCI for Molten Fuel-Coolant Interaction) is a phenomenon in which a hot liquid rapidly transfers its internal energy into a surrounding colder and more volatile liquid (the coolant) which vaporization is violent. One of the simplest coolant is water. However it was noticed that some particular additives in water could have a mitigative effect on this phenomenon. This paper deals with the description of polymeric and/or surfactant solutions and their ability to suppress vapor explosion. (authors). 24 refs., 5 figs

  18. Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Negro, M.J.; Manzanares, P.; Oliva, J.M.; Ballesteros, I.; Ballesteros, M. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain). Departamento de Energias Renovables

    2003-09-01

    Steam-explosion process can be satisfactorily used as a pretreatment in ethanol production from lignocellulosic biomass. Traditionally, pretreatment effectiveness is evaluated in terms of hemicellulose solubilization, enzymatic convertibility of cellulosic fraction, and recovery of both polysaccharides. In this study some parameters different from composition (main components) have been evaluated as an alternative tool to characterise the effect of steaming pretreatment on lignocellulosic materials. The effect of the most important variables in steam explosion pretreatment (temperature, residence time and chip size) on various physical/chemical parameters of pine biomass were investigated. Changes in O/C and H/C atomic ratios, colour analysis, elementary composition, water drop penetration time, organic soluble content, cellulose crystallinity index, and thermogravimetric analysis after the pretreatment were evaluated. Furthermore the influence of operational pretreatment variables on all such parameters and their interactions were examined with the Yates' algorithm. (author)

  19. Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment

    International Nuclear Information System (INIS)

    Negro, M.J.; Manzanares, P.; Oliva, J.M.; Ballesteros, I.; Ballesteros, M.

    2003-01-01

    Steam-explosion process can be satisfactorily used as a pretreatment in ethanol production from lignocellulosic biomass. Traditionally, pretreatment effectiveness is evaluated in terms of hemicellulose solubilization, enzymatic convertibility of cellulose fraction, and recovery of both polysaccharides. In this study some parameters different from composition (main components) have been evaluated as an alternative tool to characterise the effect of steaming pretreatment on lignocellulosic materials. The effect of the most important variables in steam explosion pretreatment (temperature, residence time and chip size) on various physical/chemical parameters of pine biomass were investigated. Changes in O/C and H/C atomic ratios, colour analysis, elementary composition, water drop penetration time, organic soluble content, cellulose cristallinity index, and thermogravimetric analysis after the pretreatment were evaluated. Furthermore the influence of operational pretreatment variables on all such parameters and their interactions were examined with the Yates' algorithm

  20. ALPHA visual data collection. STX005-025: melt drop steam explosion experiments

    International Nuclear Information System (INIS)

    Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu; Kudo, Tamotsu; Sugimoto, Jun

    1999-03-01

    Steam explosion is a phenomenon in which a high temperature liquid gives its internal energy to a low temperature volatile liquid extremely quickly causing rapid evaporation and shock wave generation. In the field of nuclear reactor safety research regarding severe accidents in LWRs, steam explosions involving molten fuel and coolant has been recognized as a potential threat to the integrity of the reactor containment vessel. In the ALPHA (Assessment of Loads and Performance of Containment in Hypothetical Accident) program, experiments were performed to investigate the phenomenology of vapor explosions using iron-alumina thermite melt as a simulant of molten core. This report collects the experimental results especially emphasizing the visual observations by high speed photography. (author)

  1. Steam explosion studies with single drops of molten refractory materials

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1980-01-01

    Laser heating, levitation melting, and metal combustion were used to prepare individual drops of molten refractory materials which simulate LWR fuel melt products. Drop temperatures ranged from approx. = 1500 to > 3000K. These drops, several millimeters in diameter, were injected into water and subjected to pressure transients (approx. = 1MPa peak pressures) generated by a submerged exploding bridgewire. Molten oxides of Fe, Al and Zr could be induced to explode with bridgewire initiation. High speed films showed the explosions with exceptional clarity, and pressure transducer records could be correlated with individual frames in the films. Pressure spikes one or two MPa high were generated whenever an explosion occurred. Debris particles were mostly spheroidal, with diameters in the range 10 to 1000 μm

  2. Structural Changes of Lignin from Wheat Straw by Steam Explosion and Ethanol Pretreatments

    Directory of Open Access Journals (Sweden)

    Cheng Pan

    2016-06-01

    Full Text Available Effects of the pretreatment of wheat straw by steam explosion and ethanol were evaluated relative to the structural changes of lignin from the pretreated pulp. The lignin from steam explosion pulp (LS, lignin from steam blasting residual liquid (LL, lignin from ethanol pretreatment pulp (LE, lignin from black liquor (LB, and lignin from wheat straw (LW were separated, and the structural characteristics of the lignin fractions were compared based on analyses of Fourier transform-infrared, ultraviolet, thermogravimetric, and 1H and 13C nuclear magnetic resonance spectra. The proportions of the three structural units in all lignin fractions clearly changed during the pretreatment process because of inter-conversion reactions. The conjugated structure of lignin was destroyed in the pretreatment process and was also affected by the alkali extraction process. The alcoholic hydroxyl links on the aliphatic side chain were partly transformed into carbonyl groups during ethanol pretreatment. Demethoxylation occurred in all lignin fractions during the ethanol pretreatment and steam explosion process. The thermal stability of the LB fraction was relatively high because of the condensation reaction.

  3. The study of steam explosions in nuclear systems. Advanced Reactor Severe Accident Program

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Yuen, W.W.; Angelini, S.; Chen, X.

    1995-01-01

    This report presents an overview of the steam explosion issue in nuclear reactor safety and our approach to assessing it. Key physics, models, and computational tools are described, and illustrative results are presented for ex-vessel steam explosions in an open pool geometry. An extensive set of appendices facilitate access to previously reported work that is an integral part of this effort. These appendices include key developments in our approach, key advances in our understanding from physical and numerical experiments, and details of the most advanced computational results presented in this report. Of major significance are the following features: A consistent two-dimensional treatment for both premixing and propagation which in practical settings are ostensibly at least two-dimensional phenomena; experimental demonstration of voiding and microinteractions which represent key behaviors in premixing and propagation respectively; demonstration of the explosion venting phenomena in open pool geometries which, therefore, can be counted on as a very important mitigative feature; and introduction of the idea of penetration cutoff as a key mechanism prohibiting large-scale premixing in usual ex-vessel situations involving high pour velocities and subcooled pools. This report is intended as an overview and is to be followed by code manuals for PM-ALPHA and ESPROSE.m, respective verification reports, and application documents for reactor-specific applications. The applications will employ the Risk Oriented Accident Analysis Methodology (ROAAM) to address the safety importance of potential steam explosions phenomena in evaluated severe accidents for passive Advanced Light Water Reactors (ALWRs)

  4. Sensitivity study of steam explosion characteristics to uncertain input parameters using TEXAS-V code

    International Nuclear Information System (INIS)

    Grishchenko, Dmitry; Basso, Simone; Kudinov, Pavel; Bechta, Sevostian

    2014-01-01

    Release of core melt from failed reactor vessel into a pool of water is adopted in several existing designs of light water reactors (LWRs) as an element of severe accident mitigation strategy. Corium melt is expected to fragment, solidify and form a debris bed coolable by natural circulation. However, steam explosion can occur upon melt release threatening containment integrity and potentially leading to large early release of radioactive products to the environment. There are many factors and parameters that could be considered for prediction of the fuel-coolant interaction (FCI) energetics, but it is not clear which of them are the most influential and should be addressed in risk analysis. The goal of this work is to assess importance of different uncertain input parameters used in FCI code TEXAS-V for prediction of the steam explosion energetics. Both aleatory uncertainty in characteristics of melt release scenarios and water pool conditions, and epistemic uncertainty in modeling are considered. Ranges of the uncertain parameters are selected based on the available information about prototypic severe accident conditions in a reference design of a Nordic BWR. Sensitivity analysis with Morris method is implemented using coupled TEXAS-V and DAKOTA codes. In total 12 input parameters were studied and 2 melt release scenarios were considered. Each scenario is based on 60,000 of TEXAS-V runs. Sensitivity study identified the most influential input parameters, and those which have no statistically significant effect on the explosion energetics. Details of approach to robust usage of TEXAS-V input, statistical enveloping of TEXAS-V output and interpretation of the results are discussed in the paper. We also provide probability density function (PDF) of steam explosion impulse estimated using TEXAS-V for reference Nordic BWR. It can be used for assessment of the uncertainty ranges of steam explosion loads for given ranges of input parameters. (author)

  5. A simple evaluation of containment integrity against ex-vessel steam explosion

    International Nuclear Information System (INIS)

    Nishiura, Hiroshi

    2000-01-01

    The guideline for consideration to severe accidents on containment design for next-generation LWR was published in 1999. In order to verify the validity of future containment designs, we have developed a method of assessing for the containment integrity against ex-vessel steam explosion. First, we conducted a simple evaluation on an Advanced PWR. The strength of the reactor cavity wall was assumed to be equivalent to the total strain energy which would accumulate by the time one reinforcing bar element would first reach the failure strain in FEM analyses. As a result, the strength was evaluated to be about 72 MJ. The explosion energy was assumed to be a function of the mass of the dropping melted core and the conversion ratio. Assuming the conversion ratio of 1%, it was estimated that the explosion energy would amount to about 1 MJ if the melt mass corresponds to the break of one instrumentation guide tube penetration, and about 40 MJ if the mass corresponds to the simultaneous break of all penetrations. Therefore, it is expected that the explosion energy would be less than the wall strength; thus, the containment integrity would be maintained even if an ex-vessel steam explosion were to occur. (author)

  6. K-FIX(GT): A computer program for modeling the expansion phase of steam explosions within complex three dimensional cavities

    International Nuclear Information System (INIS)

    Hyder, M.L.; Farawila, Y.M.; Abdel-Khalik, S.I.; Halvorson, P.J.

    1992-05-01

    In the development of the Severe Accident Analysis Program for the Savannah River production reactors, it was recognized that certain accidents have the potential for causing damaging steam explosions. The massive SRS reactor buildings are likely to withstand any imaginable steam explosion. However, reactor components and building structures including hatches, ventilation ducts, etc., could be at risk if such an explosion occurred. No tools were available to estimate the effects of such explosions on actual structures. To meet this need, the Savannah River Laboratory contracted with the Georgia Institute of Technology Research Institute for development of a computer-based calculational tool for estimating the effects of steam explosions. The goal for this study was to develop a computer code that could be used parametrically to predict the effects of various steam explosions on their surroundings. This would be able to predict whether a steam explosion of a given magnitude would be likely to fail a particular structure. This would require, of course, that the magnitude of the explosion be specified through some combination of judgment and calculation. The requested code, identified as the K-FIX(GT) code, was developed and delivered by the contractor, along with extensive documentation. The several individual reports that constitute the documentation are each being issued as a separate WSRC report. Documentation includes several model calculations, and representation of these in graphic form. This report gives detailed instructions for the use of the code, including identification of all input parameters required

  7. Simulation of a flow spontaneously condensed moist steam in Laval nozzles

    International Nuclear Information System (INIS)

    Avetisyan, A.R.; Alipchenkov, V.M.; Zajchik, L.I.

    2002-01-01

    The method for simulating the evolution of the drops distribution by size in the course of commonly proceeding processes of nucleation (spontaneous condensation), heterogeneous condensation) evaporation and coagulation is proposed. The results of the analysis of the initial moisture effect on the steam spontaneous condensation in the transonic nozzles are presented. The availability of the minima in the output moisture dependences on the drops initial moisture and size is the most interesting result of the initial moisture effect on the spontaneous condensation in the Laval nozzles [ru

  8. Effect of steam explosion on in vitro gas production kinetics and rumen fermentation profiles of three common straws

    Directory of Open Access Journals (Sweden)

    Li Wen He

    2015-12-01

    Full Text Available To investigate the effect of steam explosion on in vitro gas production (GP and rumen fermentation profiles of common straws, in vitro cultivation was conducted for 96 h with the rumen fluid collected from steers. Different types of straw had various chemical compositions, which were affected by steam explosion (P<0.01. Steam explosion increased (P<0.01 the rate and volume of GP, lag time disappeared and asymptotic GP decreased, which were also affected (P<0.01 by the type of straw. The type of straw influenced (P<0.05 the final pH, while steam explosion exerted an effect (P<0.01 on the ammonia-nitrogen concentration. The proportions of individual volatile fatty acid (VFA, except acetate (A, differed (P<0.05 among the feeds. Steam explosion increased total VFA production and the proportion of propionate (P, while decreased the proportions of A, isobutyrate and valerate as well as the ratio A/P (P<0.01. The type of straw had an effect (P<0.05 on the activities of avicelase and carboxymethyl cellulase (CMCase, while steam explosion increased (P<0.01 the activities of avicelase, CMCase, β-glucanase and xylanase. The available energy concentrations and digestibilities differed (P<0.01 in the feeds and were increased (P<0.05 with steam explosion processing. The interaction straw type×treatments was significant (P<0.05 for most monitored parameters. These results suggest that steam explosion could improve rumen fermentability and energy utilisation of straw, being an effective pre-treatment method in feed industry.

  9. The use of steam explosion to increase the nutrition available from rice straw.

    Science.gov (United States)

    Li, Bin; Chen, Kunjie; Gao, Xiang; Zhao, Chao; Shao, Qianjun; Sun, Qian; Li, Hua

    2015-01-01

    In the present study, rice straw was pretreated using steam-explosion (ST) technique to improve the enzymatic hydrolysis of potential reducing sugars for feed utilization. The response surface methodology based on central composite design was used to optimize the effects of steam pressure, pressure retention time, and straw moisture content on the yield of reducing sugar. All the investigated variables had significant effects (P steam pressure, 1.54 MPa; pressure retention time, 140.5 Sec; and straw moisture content, 41.6%. The yield after thermal treatment under the same conditions was approximately 16%. Infrared (IR) radiation analysis showed a decrease in the cellulose IR crystallization index. ST noticeably increases reducing sugars in rice straw, and this technique may also be applicable to other cellulose/lignin sources of biomass. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  10. Application of high-frame-rate neutron radiography to steam explosion research

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Hibiki, T.; Yamamoto, A.; Sugimoto, J.; Moriyama, K.

    1999-01-01

    To understand the behavior of dispersed molten metal particles dropped into water during the premixing process of steam explosion, experiments were performed by using heated stainless-steel particles simulating dispersed molten metal particles. High-frame-rate neutron radiography was successfully employed for visualization and void fraction measurement. Visualization was conducted by dropping heated stainless-steel particle into heavy water filled in a rectangular tank with the particle diameter (6, 9, and 12 mm) and temperature (600 deg. C, 700 deg. C, 800 deg. C, and 1000 deg. C) as parameters. Steam generation due to direct contact of heated particle and heavy water was successfully visualized by the high-frame-rate neutron radiography at the recording speed of 500 frames/s. From void fraction measurement it was revealed that the amount of generated steam was in proportion to the particle size and temperature. It is suggested that the ambient liquid might be superheated by the particle-liquid contact

  11. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R. [Royal Institute of Technology (KTH), (Sweden)

    2008-03-15

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to

  12. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    International Nuclear Information System (INIS)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R.

    2008-03-01

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to the

  13. A propulsion injury following a spontaneous electronic cigarette explosion

    Directory of Open Access Journals (Sweden)

    Cherrie Chan Yiru

    2017-05-01

    Full Text Available Electronic cigarettes (e-cigarettes have become increasingly popular at an alarming rate. This coincides with the public perception that they are a safer mean of nicotine consumption. Unregulated devices carry unrecognized safety risks that have led to numerous cases of burns, associating with spontaneous combustions of e-cigarettes.

  14. Steam explosion and new production processes for pulping industry: technical and economical feasibility; Steam explosion e nuovi processi di produzione cartaria: fattibilita` tecnico-economica

    Energy Technology Data Exchange (ETDEWEB)

    Viggiano, D [ENEA, Centro Ricerche Trisaia, Rotondella, Matera (Italy). Dipt. Energia; Bramanti, O [ENEA, Centro Ricerche Trisaia, Rotondella, Matera (Italy). Dipt. Innovazione

    1998-05-01

    Pulping and paper industry traditionally uses wood as the main raw material for its production processes. Thus, the global increasing of paper and pulp yield has causes so a depletion work of natural wood resources that the environment balances are weakened. About conversion technologies, the most important developments are carried out by the Companies from Sweden, Finland, Norway and Canada, where industrial management has chosen production processes anti pollution (soda-sulphate) in the place of those more dangerous (bi-sulphate). The international research and development activities are focused, at the same time, on new conversion processes and renewable resources in the last time shows to meet three different needs: 1. anti pollution laws; 2. public opinion for the environment policy; 3. market competitors. The present work offers a technical and economical assessment of industrial application of steam-explosion process and non-wood biomass (C{sub 4}, C{sub 5}). Then, the authors propose the introduction of the steam-explosion technology in pulping industry in order to obtain technical and economical advantages. [Italiano] Il comparto industriale cartario impiega per tradizione secolare il legno come principale materia prima all`interno dei cicli tecnologici di produzione. Cio` ha determinato un incremento produttivo di paste e di carta a cui si e` accompagnata una crescente opera di deforestazione ed una serie di conseguenti squilibri ecologici. A fronte di tali interventi di distruzione `programmata`, dal punto di vista delle tecnologie di trasformazione, va rilevato che i processi produttivi hanno subito una reale evoluzione nei Paesi maggiormente sensibili ai problemi ambientali come Svezia, Finlandia, Norvegia e Canada, ove gli imprenditori del setttore hanno abbandonato i processi a maggior impatto ambientale, come quelli al bisolfito, per adottarne alcuni meno inquinanti, come quello alla soda-solfato. Negli ultimi anni gli sforzi della ricerca

  15. Phenols recovery after steam explosion of Olive Mill Solid Waste and its influence on a subsequent biomethanization process.

    Science.gov (United States)

    Serrano, Antonio; Fermoso, Fernando G; Alonso-Fariñas, Bernabé; Rodríguez-Gutierrez, Guillermo; Fernandez-Bolaños, Juan; Borja, Rafael

    2017-11-01

    A promising source of high added value compounds is the Olive Mill Solid Waste (OMSW). The aim of this research was to evaluate the viability of a biorefinery approach to valorize OMSW through the combination of steam explosion, phenols extraction, and anaerobic digestion. Steam explosion treatment increased the total phenol content in the steam exploited OMSW, which was twice than that the total phenol content in raw OMSW, although some undesirable compounds were also formed. Phenol extraction allowed the recovery of 2098mg hydroxytyrosol per kg of OMSW. Anaerobic digestion allowed the partial stabilization of the different substrates, although it was not improved by the steam explosion treatment. The economic suitability of the proposed biorefinery approach is favorable up to a phenol extract price 90.7% lower than the referenced actual price of 520€/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The challenge of modeling fuel–coolant interaction: Part II – Steam explosion

    Energy Technology Data Exchange (ETDEWEB)

    Meignen, Renaud, E-mail: renaud.meignen@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES/SAG, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France); Raverdy, Bruno [Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES/SAG, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France); Picchi, Stephane; Lamome, Julien [Communication and Systèmes, 22 avenue Galilée, 92350 Le Plessis Robinson (France)

    2014-12-15

    Highlights: • We present the status modeling of steam explosion in the computer code MC3D (a first paper is devoted to premixing stage of FCI). • We also propose a general state of the art, highlighting recent improvements in understanding and modeling, remaining difficulties, controversies and needs. • We highlight the need for improving the understanding of the melt fragmentation and oxidation. • The verification basis is presented. - Abstract: In the course of a severe accident in a nuclear power plant cooled or moderated by water, the core might melt and flow down into the water. Under certain circumstances, a steam explosion might develop during the mixing of the melt and the water. Such an explosion, if occurring in the reactor pit of a PWR or BWR, might challenge the containment integrity and is thus an important issue for nuclear safety. This paper aims at presenting both a status of research and understanding of the phenomenon and the main characteristics of the models developed in the 3-dimensional computer code MC3D. We make a particular emphasis on the underlying difficulties, uncertainties and needs for further improvements. We discuss more particularly the two major phenomena that are the fine fragmentation and the pressurization process. We also give insights on the impact of melt solidification on the fragmentation and on the issue of oxidation. The verification basis of the models is discussed and finally, an example of 3D calculation is presented to highlight the current code capabilities.

  17. A Parametric Study to Improve Steam Explosion Models by Using a TROI Test

    International Nuclear Information System (INIS)

    Park, I. K.; Kim, J. H.; Min, B. T.; Hong, S. W.

    2009-01-01

    The overall objective of the OECD programme SERENA (Steam Explosion Resolution for Nuclear Applications) is to consolidate the understanding on FCI phenomenology and assess a method for reliable estimation of the magnitude of loadings for realistic reactor conditions, in order to bring about an understanding and predictability of FCI energetic to desirable levels for a risk management. Main conclusion of phase 1 is that in the absence of pre-existing loads, an in-vessel steam explosion would not challenge the integrity of the vessel, and damage to the cavity is to be expected for an ex-vessel explosion because the level of the loads cannot be predicted due to a large scattering of the results. One major uncertainty that does not allow for a convergence towards consistent predictions is that there is no data on the component distribution in a premixture at the time of the explosion, especially the level of a void. Global void fraction is only available from level-swell measurements. The other major uncertainty is the explosion behavior of corium melts. SERENA phase 2 project which has been conducted since 1st Oct. 2007 is aimed a resolution of the uncertainties on the void fraction and the melt composition effect by performing a limited number of well-designed tests with advanced instrumentations to clarify the nature of a prototypic material with mild steam explosion characteristics and to provide innovative experimental data for a computer code validation. An analytical working group (AWG) is established with the aim of increasing the capabilities the FCI models/codes for use in reactor analyses by complementing the work performed in Phase-1. The main tasks of the group are: performing pre-, posttest calculations, improving the common understanding of those key phenomena such as breakup, void fraction, and fragmentation, addressing the scaling effect and application to the reactor case, In this paper, the pre- and post-test calculation for the first TROI test

  18. Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: A biorefinery approach.

    Science.gov (United States)

    Medina, Jesus David Coral; Woiciechowski, Adenise; Filho, Arion Zandona; Nigam, Poonam Singh; Ramos, Luiz Pereira; Soccol, Carlos Ricardo

    2016-01-01

    The oil palm empty fruit bunches (EFB) are an attractive source of carbon for the production of biochemical products, therefore, the aim of this work is to analyze the effect of the steam explosion (SE) pretreatment under autocatalytic conditions on EFB using a full experimental design. Temperature and reaction time were the operational variables studied. The EFB treated at 195°C for 6 min showed an increase of 34.69% in glycan (mostly cellulose), and a reduction of 68.12% in hemicelluloses, with increased enzymatic digestibility to 33% producing 4.2 g L(-1) of glucose. Scanning electron micrographs of the steam treated EFB exhibited surface erosion and an increased fiber porosity. Fourier transform infrared spectroscopy showed the solubilization of hemicellulose and modification of cellulose in treated EFB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Recriticality calculation with GENFLO code for the BWR core after steam explosion in the lower head

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, J. [VTT Processes (Finland)

    2002-12-01

    Recriticality of the partially degraded BWR core has been studied by assuming a severe accident phase during which the fuel rods are still intact but the control rods have experienced extensive damage. Previous NKS and EU projects have studied the same case assuming reflooding by the ECCS system In the present study it was assumed that coolant enters the core due to melt-coolant interaction in the lower plenum. In the first case specified the relocation and fragmentation of the molten control rod metal causes the level swell in the core but no steam explosion. In the second case a steam explosion in the lower head was assumed. I n the first case a prompt recriticality peak can occur, but after the peak no semistable power generation remains. In the second case the consequence of the slug entrance into the core is so violent that the fuel disintegration and melting during the first power peak may occur. After the large power peak water is rapidly pushed back from the core and no semistable power generation maintains. The fuel disintegration studies have been based on a coarse assumption that the acceptable local energy addition into the fresh fuel may be 170 cal/g, but with increasing burn-up it can be as low as 60-70 cal/g. In the level swell variations the maximum energy addition was between these limits, but in most of the steam explosion variations much above these limits. Additional variation of the assumptions related to the neutronics demonstrated that for the converged analysis result some interactions would be useful with respect to the boundary conditions and neutronic options.

  20. JASMINE-pro: A computer code for the analysis of propagation process in steam explosions. User's manual

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanhua; Nilsuwankosit, Sunchai; Moriyama, Kiyofumi; Maruyama, Yu; Nakamura, Hideo; Hashimoto, Kazuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-12-01

    A steam explosion is a phenomenon where a high temperature liquid gives its internal energy very rapidly to another low temperature volatile liquid, causing very strong pressure build up due to rapid vaporization of the latter. In the field of light water reactor safety research, steam explosions caused by the contact of molten core and coolant has been recognized as a potential threat which could cause failure of the pressure vessel or the containment vessel during a severe accident. A numerical simulation code JASMINE was developed at Japan Atomic Energy Research Institute (JAERI) to evaluate the impact of steam explosions on the integrity of reactor boundaries. JASMINE code consists of two parts, JASMINE-pre and -pro, which handle the premixing and propagation phases in steam explosions, respectively. JASMINE-pro code simulates the thermo-hydrodynamics in the propagation phase of a steam explosion on the basis of the multi-fluid model for multiphase flow. This report, 'User's Manual', gives the usage of JASMINE-pro code as well as the information on the code structures which should be useful for users to understand how the code works. (author)

  1. Analysis and modeling of flow blockage-induced steam explosion events in the High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Lestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.; Kirkpatrick, J.

    1993-01-01

    This paper provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor during flow blockage events. The overall workscope included modeling and analysis of core melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several miliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. Therefore, it is judged that the HFIR vessel and top head structure will be able to withstand loads generated from thermally driven steam explosions initiated by any credible flow blockage event. A substantial margin to safety was demonstrated

  2. JASMINE-pro: A computer code for the analysis of propagation process in steam explosions. User's manual

    International Nuclear Information System (INIS)

    Yang, Yanhua; Nilsuwankosit, Sunchai; Moriyama, Kiyofumi; Maruyama, Yu; Nakamura, Hideo; Hashimoto, Kazuichiro

    2000-12-01

    A steam explosion is a phenomenon where a high temperature liquid gives its internal energy very rapidly to another low temperature volatile liquid, causing very strong pressure build up due to rapid vaporization of the latter. In the field of light water reactor safety research, steam explosions caused by the contact of molten core and coolant has been recognized as a potential threat which could cause failure of the pressure vessel or the containment vessel during a severe accident. A numerical simulation code JASMINE was developed at Japan Atomic Energy Research Institute (JAERI) to evaluate the impact of steam explosions on the integrity of reactor boundaries. JASMINE code consists of two parts, JASMINE-pre and -pro, which handle the premixing and propagation phases in steam explosions, respectively. JASMINE-pro code simulates the thermo-hydrodynamics in the propagation phase of a steam explosion on the basis of the multi-fluid model for multiphase flow. This report, 'User's Manual', gives the usage of JASMINE-pro code as well as the information on the code structures which should be useful for users to understand how the code works. (author)

  3. The strength of the reactor cavity of VVER-1000 NPP against steam explosion

    International Nuclear Information System (INIS)

    Varpasuo, P.

    1995-01-01

    The reactor cavity of VVER-1000 NPP is a thick-walled, cylindrical reinforced concrete structure. In case of molten core-water reaction during the severe accident the load carrying capacity of the cavity structure is of interest against the short impulse type loading caused by the steam explosion phenomenon. The assumed size of the impulse was 20 kPa-s and the duration was 10 ms. The static analysis of the structure used the ABAQUS/STANDARD and ANSYS codes. The material properties in both runs were specified to be elasto-plastic, and the cracking of concrete was taken into account. (author). 2 refs., 5 figs

  4. OECD/NEA SERENA Project for a Resolution of Ex-vessel Steam Explosion Risks

    International Nuclear Information System (INIS)

    Hong, S. W.; Kim, J. H.; Min, B. T.; Park, I. K.; Ha, K. S.; Hong, S. H.; Song, J. H.; Lee, J. Y.; Kim, H. D.

    2008-01-01

    Korea Atomic Energy Research Institute (KAERI) has conducted the TROI (Test for Real cOrium Interaction with water) program for a study on a fuel coolant interaction (FCI) since 2001. More than 50 experiments using several prototypic materials have been carried out so far. SERENA phase 2 project which has been conducting since 1st Oct. 2007 is aimed a the resolution of the uncertainties on the void fraction and the melt composition effect by performing a limited number of well-designed tests with advanced instrumentations to clarify the nature of a prototypic material with mild steam explosion characteristics and to provide innovative experimental data for a computer code validation

  5. Utilization of steam- and explosion-decompressed aspen wood by some anaerobes

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A W; Asther, M; Giuliano, C

    1984-01-01

    Tests made to study the suitability of using steam- and explosion-decompressed aspen wood as a substrate in anaerobic fermentations indicated that after washing with dilute NaOH it becomes less than 80% accessible to both mesophilic and thermophilic cellulolytic anaerobes and cellulases, compared with delignified, ball-milled pulp. After washing, this material was also suitable for the single-step conversion of cellulose to EtOH using cocultures consisting of cellulolytic and EtOH-producing saccharolytic anaerobes; and without and after washing by the use of cellulolytic enzymes and ethanologenic anaerobes.

  6. Significance of fluid-structure interaction phenomena for containment response to ex-vessel steam explosions

    Energy Technology Data Exchange (ETDEWEB)

    Almstroem, H.; Sundel, T. [National Defence Research Establishment, Stockholm (Sweden); Frid, W.; Engelbrektson, A.

    1998-01-01

    When studying the structural response of a containment building to ex-vessel steam explosion loads, a two-step procedure is often used. In the first step of this procedure the structures are treated as rigid and the pressure-time history generated by the explosion at the rigid wall is calculated. In the second step the calculated pressure is applied to the structures. The obvious weakness of the two-step procedure is that it does not correspond to the real dynamic behaviour of the fluid-structure system. The purpose of this paper is to identify and evaluate the relevant fluid-structure interaction phenomena. This is achieved through direct treatment of the explosion process and the structural response. The predictions of a direct and two-step treatment are compared for a BWR Mark II containment design, consisting of two concentric walls interacting with water masses in the central and annular pools. It is shown that the two-step approach leads to unrealistic energy transfer in the containment system studied, and to significant overestimation of the deflection of the containment wall. As regards the pedestal wall, the direct method analysis shows that the flexibility of this wall affects the pressure-time history considerably. Three load types have been identified for this wall namely shock load, water blow as a result of water cavitation, and hydrodynamic load. Reloading impulse due to cavitation phenomena plays an important role as it amounts to about 40% of the total impulse load. Investigation of the generality of the cavitation phenomena in the context of ex-vessel steam explosion loads was outside the scope of this work. (author)

  7. Significance of fluid-structure interaction phenomena for containment response to ex-vessel steam explosions

    Energy Technology Data Exchange (ETDEWEB)

    Almstroem, H.; Sundel, T. (Nat. Defence Res. Establ., Tumba (Sweden)); Frid, W. (Swedish Nuclear Power Inspectorate, SE-10658, Stockholm (Sweden)); Engelbrektson, A. (VBB/SWECO, Box 34044, SE-10026, Stockholm (Sweden))

    1999-05-01

    When studying the structural response of a containment building to ex-vessel steam explosion loads, a two-step procedure is often used. In the first step of this procedure the structures are treated as rigid and the pressure-time history generated by the explosion, at the rigid wall, is calculated. In the second step the calculated pressure is applied to the structures. The obvious weakness of the two-step procedure is that it does not correspond to the real dynamic behaviour of the fluid-structure system. The purpose of this paper is to identify and evaluate the relevant fluid-structure interaction phenomena. This is achieved through direct treatment of the explosion process and the structural response. The predictions of a direct and two-step treatment are compared for a BWR Mark II containment design, consisting of two concentric walls interacting with water masses in the central and annular pools. It is shown that the two-step approach leads to unrealistic energy transfer in the containment system studied and to significant overestimation of the deflection of the containment wall. As regards the pedestal wall, the direct method analysis shows that the flexibility of this wall affects the pressure-time history considerably. Three load types have been identified for this wall namely shock load, water blow as a result of water cavitation, and hydrodynamic load. Reloading impulse due to cavitation phenomena plays an important role as it amounts to [approx]40% of the total impulse load. Investigation of the generality of the cavitation phenomena in the context of ex-vessel steam explosion loads was outside the scope of this work. (orig.) 5 refs.

  8. Significance of fluid-structure interaction phenomena for containment response to ex-vessel steam explosions

    International Nuclear Information System (INIS)

    Almstroem, H.; Sundel, T.; Frid, W.; Engelbrektson, A.

    1999-01-01

    When studying the structural response of a containment building to ex-vessel steam explosion loads, a two-step procedure is often used. In the first step of this procedure the structures are treated as rigid and the pressure-time history generated by the explosion, at the rigid wall, is calculated. In the second step the calculated pressure is applied to the structures. The obvious weakness of the two-step procedure is that it does not correspond to the real dynamic behaviour of the fluid-structure system. The purpose of this paper is to identify and evaluate the relevant fluid-structure interaction phenomena. This is achieved through direct treatment of the explosion process and the structural response. The predictions of a direct and two-step treatment are compared for a BWR Mark II containment design, consisting of two concentric walls interacting with water masses in the central and annular pools. It is shown that the two-step approach leads to unrealistic energy transfer in the containment system studied and to significant overestimation of the deflection of the containment wall. As regards the pedestal wall, the direct method analysis shows that the flexibility of this wall affects the pressure-time history considerably. Three load types have been identified for this wall namely shock load, water blow as a result of water cavitation, and hydrodynamic load. Reloading impulse due to cavitation phenomena plays an important role as it amounts to ∼40% of the total impulse load. Investigation of the generality of the cavitation phenomena in the context of ex-vessel steam explosion loads was outside the scope of this work. (orig.)

  9. Evaluation of a steam generator tube repair process using an explosive expansion techniuqe at TMI-1

    International Nuclear Information System (INIS)

    Rajan, J.; Shook, T.A.; Leonard, L.

    1983-01-01

    After a planned shutdown of Unit No. 1 at Three Mile Island, cracks were discovered in the primary side of steam generator tubes in the vicinity of the upper surface of the upper tubesheet. The nature of these cracks was later characterized as intergranular stress corrosion. The licensee, General Public Utilities Nuclear (GPUN), proposed to form a new tube-to-tubesheet seal below the cracks using a repair process wherein a detonating cord and polyethylene cartridge assembly inserted into the tube explosively expand the tube against the tubesheet. The explosive expansion process has had numerous applications over the years in the initial fabrication of heat exchanger tube-to-tubesheet assemblies and in repair processes using sleeving. However, this is the first use of this process in a steam generator to expand a previously rolled tube and to form a new seal between it and the tubesheet below a defective region in the tube. The seal obtained between the tube and tubesheet depends on the magnitude of explosive energy released in the detonating process. In this application, it is desired to obtain a mechanical bond rather than a metallurgical welding of the tube and tubesheet. A number of critical variables must be taken into account in order to obtain a successful mechanical seal. These include the explosive power of the detonating cord, the number of expansion shots used, the length of tube which is expanded, cartridge and tube diameters, the diameter of the tubesheet hole, the materials of the tube and tubesheet, and the condition of the surfaces at the time of repair. (orig./GL)

  10. Investigation on energetics of ex-vessel vapor explosion based on spontaneous nucleation fragmentation

    International Nuclear Information System (INIS)

    Liu, Jie; Koshizuka, Seiichi; Oka, Yoshiaki

    2002-01-01

    A computer code PROVER-I is developed for propagation phase of vapor explosion. A new thermal fragmentation model is proposed with three kinds of time scale for modeling instant fragmentation, spontaneous nucleation fragmentation and normal boiling fragmentation. The energetics of ex-vessel vapor explosion is investigated based on different fragmentation models. A higher pressure peak and a larger mechanical energy conversion ratio are obtained by spontaneous nucleation fragmentation. A smaller energy conversion ratio results from normal boiling fragmentation. When the delay time in thermal fragmentation model is near 0.0 ms, the pressure propagation behavior tends to be analogous with that in hydrodynamic fragmentation. If the delay time is longer, pressure attenuation occurs at the shock front. The high energy conversion ratio (>4%) is obtained in a small vapor volume fraction together with spontaneous nucleation fragmentation. These results are consistent with fuel-coolant interaction experiments with alumina melt. However, in larger vapor volume fraction conditions (α υ >0.3), the vapor explosion is weak. For corium melt, a coarse mixture with void fraction of more than 30% can be generated in the pre-mixing process because of its physical properties. In the mixture with such a high void fraction the energetic vapor explosion hardly takes place. (author)

  11. A review of steam explosions with special emphasis on the Swedish and Finnish BWRs. APRI 4, Phase 2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Haraldsson, H.O.; Yang, Z.L. [Sehgal Konsult, Stockholm (Sweden)

    2002-04-01

    The objective of the present study is to perform a critical review of ex-vessel steam explosion in Swedish and Finnish reactor containments in a hypothetical severe accident. The review performed is related to a broader program funded by APRI whose focus is related to severe accidents. A critical review of the current knowledge base on the subject is performed, including those results obtained from other studies and assessments conducted earlier under auspice of APRI. Several limiting mechanisms which may significantly impact the assessment of steam explosion loads are identified, taking into account specific reactor-design features and accident progression scenarios. In addition, generic discussion is provided on the effect of melt physical properties on the steam explosion energetics. Thermal hydraulic conditions of pre-mixture and its explosivity are evaluated using models and methods developed by the researchers at Royal Institute of Technology (RIT). The report includes a wealth of information on details with respect to quantification of vessel melt sources for ex-vessel FCIs; and with respect to the models of steam explosion premixing, triggerability and explosivity employed in the present assessment. These and other models e.g. on vessel failure, melt jet fragmentation etc. are products of the continuing research conducted at the Division of Nuclear Power Safety at RIT. The general conclusion of the present study can be summarized as: Though substantial progress have been made in premixing research verifying the mixing limit concept, there is still a need to improve jet breakup models and validate the existing models against melt jet experiments. The understanding of the triggering mechanisms is still very pool. Though various analytical models have been developed based on the thermal detonation concepts, the need still exists in both experimental and analytical research to understand better the droplet fragmentation during the explosion or propagation phase

  12. A review of steam explosions with special emphasis on the Swedish and Finnish BWRs. APRI 4, Phase 2 Report

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Haraldsson, H.O.; Yang, Z.L.

    2002-04-01

    The objective of the present study is to perform a critical review of ex-vessel steam explosion in Swedish and Finnish reactor containments in a hypothetical severe accident. The review performed is related to a broader program funded by APRI whose focus is related to severe accidents. A critical review of the current knowledge base on the subject is performed, including those results obtained from other studies and assessments conducted earlier under auspice of APRI. Several limiting mechanisms which may significantly impact the assessment of steam explosion loads are identified, taking into account specific reactor-design features and accident progression scenarios. In addition, generic discussion is provided on the effect of melt physical properties on the steam explosion energetics. Thermal hydraulic conditions of pre-mixture and its explosivity are evaluated using models and methods developed by the researchers at Royal Institute of Technology (RIT). The report includes a wealth of information on details with respect to quantification of vessel melt sources for ex-vessel FCIs; and with respect to the models of steam explosion premixing, triggerability and explosivity employed in the present assessment. These and other models e.g. on vessel failure, melt jet fragmentation etc. are products of the continuing research conducted at the Division of Nuclear Power Safety at RIT. The general conclusion of the present study can be summarized as: Though substantial progress have been made in premixing research verifying the mixing limit concept, there is still a need to improve jet breakup models and validate the existing models against melt jet experiments. The understanding of the triggering mechanisms is still very pool. Though various analytical models have been developed based on the thermal detonation concepts, the need still exists in both experimental and analytical research to understand better the droplet fragmentation during the explosion or propagation phase

  13. Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob.

    Science.gov (United States)

    Fan, Xiaoguang; Cheng, Gang; Zhang, Hongjia; Li, Menghua; Wang, Shizeng; Yuan, Qipeng

    2014-12-19

    Corncob residue is a cellulose-rich byproduct obtained from industrial xylose production via dilute acid hydrolysis processes. Enzymatic hydrolysis of cellulose in acid hydrolysis residue of corncob (AHRC) is often less efficient without further pretreatment. In this work, the process characteristics of acid impregnated steam explosion were studied in conjunction with a dilute acid process, and their effects on physiochemical changes and enzymatic saccharification of corncob residue were compared. With the acid impregnated steam explosion process, both higher xylose recovery and higher cellulose conversion were obtained. The maximum conversion of cellulose in acid impregnated steam explosion residue of corncob (ASERC) reached 85.3%, which was 1.6 times higher than that of AHRC. Biomass compositional analysis showed similar cellulose and lignin content in ASERC and AHRC. XRD analysis demonstrated comparable crystallinity of ASERC and AHRC. The improved enzymatic hydrolysis efficiency was attributed to higher porosity in ASERC, measured by mercury porosimetry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Improve the Anaerobic Biodegradability by Copretreatment of Thermal Alkali and Steam Explosion of Lignocellulosic Waste

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Hanan Siddhu

    2016-01-01

    Full Text Available Effective alteration of the recalcitrance properties like crystallization of cellulose, lignin shield, and interlinking of lignocellulosic biomass is an ideal way to utilize the full-scale potential for biofuel production. This study exhibited three different pretreatment effects to enhance the digestibility of corn stover (CS for methane production. In this context, steam explosion (SE and thermal potassium hydroxide (KOH-60°C treated CS produced the maximal methane yield of 217.5 and 243.1 mL/gvs, which were 40.0% and 56.4% more than untreated CS (155.4 mL/gvs, respectively. Copretreatment of thermal potassium hydroxide and steam explosion (CPTPS treated CS was highly significant among all treatments and improved 88.46% (292.9 mL/gvs methane yield compared with untreated CS. Besides, CPTPS also achieved the highest biodegradability up to 68.90%. Three kinetic models very well simulated dynamics of methane production yield. Moreover, scanning electron microscopy (SEM, Fourier transform infrared (FTIR, and X-ray diffraction (XRD analyses declared the most effective changes in physicochemical properties after CPTPS pretreatment. Thus, CPTPS might be a promising approach to deconstructing the recalcitrance of lignocellulosic structure to improve the biodegradability for AD.

  15. Techno-economical study of biogas production improved by steam explosion pretreatment.

    Science.gov (United States)

    Shafiei, Marzieh; Kabir, Maryam M; Zilouei, Hamid; Sárvári Horváth, Ilona; Karimi, Keikhosro

    2013-11-01

    Economic feasibility of steam explosion pretreatment for improvement of biogas production from wheat straw and paper tube residuals was investigated. The process was simulated by Aspen plus ®, and the economical feasibility of five different plant capacities was studied by Aspen Process Economic Analyzer. Total project investment of a plant using paper tube residuals or wheat straw was 63.9 or 61.8 million Euros, respectively. The manufacturing cost of raw biogas for these two feedstocks was calculated to 0.36 or 0.48 €/m(3) of methane, respectively. Applying steam explosion pretreatment resulted in 13% higher total capital investment while significantly improved the economy of the biogas plant and decreased the manufacturing cost of methane by 36%. The sensitivity analysis showed that 5% improvement in the methane yield and 20% decrease in the raw material price resulted in 5.5% and 8% decrease in the manufacturing cost of methane, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effect of the steam explosion pretreatment on enzymatic hydrolysis of eucalyptus wood and sweet sorghum baggages

    International Nuclear Information System (INIS)

    Negro, M. J.; Martinez, J. M.; Manero, J.; Saez, F.; Martin, C.

    1991-01-01

    The effect of steam explosion treatment on the enzymatic hydrolysis yield of two different lignocellulosic substrates is studied. Raw materials have been pretreated in a pilot plant designed to work in batch and equipped with a reactor vessel of 2 1 working volume where biomass was heated at the desired temperature and then exploded and recovered in a cyclone. Temperatures from 190 to 230 degree celsius and reaction times from 2 to 8 min. have been assayed. The efficiency of the steam explosion treatment has been evaluated on the composition of the lignocellulosic materials as well as on their enzymatic hydrolysis yield using a cellulolytic complex from T. reesel. Results show a high solubilization rate of hemicelluloses and variable losses of cellulose and lignin depending on the conditions tested. Enzymatic hydrolysis yields of both substrates experimented remarkable increments, corresponding the highest values obtained to 210 degree celsius; 2 min. and 21O degree celsius; 4 min. for sorghum bagasse and eucalyptus wood respectively. (Author) 13 refs

  17. Effect of the steam explosion pretreatment on enzymatic hydrolysis of eucalyptus wood and sweet sorghum bagasse

    International Nuclear Information System (INIS)

    Negro, M.J.; Martinez, J.M.; Manero, J.; Saez, F.; Martin, C.

    1990-01-01

    The effect of steam explosion treatment on the enzymatic hydrolysis yield of two different lignocellulosic substrates is studied. Raw materials have been pretreated in a pilot plant designed to work in batch and equiped with a reactor vessel of 2 1 working volume where biomass was heated at the desired temperature and then exploded and recovered in a cyclone. Temperatures from 190 to 230 o C and reaction times from 2 to 8 min. have been assayed. The efficiency of the steam explosion treatment has been evaluated on the composition of the lignocellulosic materials as well as on their enzymatic hydrolysis yield using a cellulolytic complex from T. reesei. Results show a high solubilization rate of hemicelluloses ands variable losses of cellulose and lignin depending on the conditions tested. Enzymatic hydrolysis yields of both substrates experimented remarkable increments, correspondig the highest values obtained to 210 o C; 2 min. and 210 o C; 4 min. for sorghum bagasse and eucaliptus wood respectivelly. (Author). 13 refs

  18. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion.

    Science.gov (United States)

    Fernandes, Maria C; Ferro, Miguel D; Paulino, Ana F C; Mendes, Joana A S; Gravitis, Janis; Evtuguin, Dmitry V; Xavier, Ana M R B

    2015-06-01

    The correct choice of the specific lignocellulosic biomass pretreatment allows obtaining high biomass conversions for biorefinery implementations and cellulosic bioethanol production from renewable resources. Cynara cardunculus (cardoon) pretreated by steam explosion (SE) was involved in second-generation bioethanol production using separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF) processes. Steam explosion pretreatment led to partial solubilisation of hemicelluloses and increased the accessibility of residual polysaccharides towards enzymatic hydrolysis revealing 64% of sugars yield against 11% from untreated plant material. Alkaline extraction after SE pretreatment of cardoon (CSEOH) promoted partial removal of degraded lignin, tannins, extractives and hemicelluloses thus allowing to double glucose concentration upon saccharification step. Bioethanol fermentation in SSF mode was faster than SHF process providing the best results: ethanol concentration 18.7 g L(-1), fermentation efficiency of 66.6% and a yield of 26.6g ethanol/100 g CSEOH or 10.1 g ethanol/100 g untreated cardoon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Korea-France collaboration for the preparation of joint proposal for the OECD project on the steam explosion experiments

    International Nuclear Information System (INIS)

    Song, Jin Ho; Kim, H. D.; Kim, J. H.; Hong, S. W.; Min, B. T.; Park, I. K.

    2004-07-01

    There are some difficulties in design of the new reactor containment and in establishment of accident management strategy for operating reactors, since there exist a few phenomenological uncertainties in a steam explosion which occurs at the time of the interaction between the corium melt and coolant. So, the OECD/NEA recommended a research which could finalize the unsolved issues in a steam explosion and then an international collaborative research involving US, France, Germany, Japan and Korea, so called the SERENA (Steam Explosion Resolution for Nuclear Application) started in 2002. The first phase of this collaborative research is an analytical research and the second phase is planned to be an experimental research which will start in 2005. Korea and France agreed that both countries would cooperate in the second phase of the SERENA program at the specialist meetings and collaborative committee between the KAERI (Korea Atomic Energy Research Institute) and the CEA (Commissariat a l'Energie Atomique). This preparation research is performed in order to carry out the agreement between Korea and France and propose a collaborative research to the SERENA second phase. The contents of this research is to perform a collaborative research between Korea and France to propose an international collaborative research on a steam explosion research to the OECD. The scope includes the technical exchange for the construction of an international collaborative research and the preparation of a proposal for an international collaborative research for the OECD steam explosion program. Two steam explosion specialist meetings were held to discuss the technical issues in the TROI and KROTOS experiments. A formal accession and amendment agreement for the collaboration was contracted between the KAERI/KINS/CEA/IRSN. And the KAERI's capability to perform an international collaborative research was proved by advertizing the TROI test results to the USNRC/CSARP and JAERI. Also, the English

  20. [Phenolic foam prepared by lignin from a steam-explosion derived biorefinery of corn stalk].

    Science.gov (United States)

    Wang, Guanhua; Chen, Hongzhang

    2014-06-01

    To increase the integral economic effectiveness, biorefineries of lignocellulosic materials should not only utilize carbohydrates hydrolyzed from cellulose and hemicellulose but also use lignin. We used steam-exploded corn stalk as raw materials and optimized the temperature and alkali concentration in the lignin extraction process to obtain lignin liquor with higher yield and purity. Then the concentrated lignin liquor was used directly to substitute phenol for phenolic foam preparation and the performances of phenolic foam were characterized by microscopic structure analysis, FTIR, compression strength and thermal conductivity detection. The results indicated that, when steam-exploded corn stalk was extracted at 120 degrees C for 2 h by 1% NaOH with a solid to liquid ratio of 1:10, the extraction yield of lignin was 79.67%. The phenolic foam prepared from the concentrated lignin liquor showed higher apparent density and compression strength with the increasing substitution rate of lignin liquor. However, there were not significant differences of thermal conductivity and flame retardant properties by the addition of lignin, which meant that the phenolic foam substituted by lignin liquor was approved for commercial application. This study, which uses alkali-extracted lignin liquor directly for phenolic foam preparation, provides a relatively simple way for utilization of lignin and finally increases the overall commercial operability ofa lignocellulosic biorefinery derived by steam explosion.

  1. Development of a surrogate model for analysis of ex-vessel steam explosion in Nordic type BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Basso, Simone, E-mail: simoneb@kth.se; Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se

    2016-12-15

    Highlights: • Severe accident. • Steam explosion. • Surrogate model. • Sensitivity study. • Artificial neural networks. - Abstract: Severe accident mitigation strategy adopted in Nordic type Boiling Water Reactors (BWRs) employs ex-vessel core melt cooling in a deep pool of water below reactor vessel. Energetic fuel–coolant interaction (steam explosion) can occur during molten core release into water. Dynamic loads can threaten containment integrity increasing the risk of fission products release to the environment. Comprehensive uncertainty analysis is necessary in order to assess the risks. Computational costs of the existing fuel–coolant interaction (FCI) codes is often prohibitive for addressing the uncertainties, including the effect of stochastic triggering time. This paper discusses development of a computationally efficient surrogate model (SM) for prediction of statistical characteristics of steam explosion impulses in Nordic BWRs. The TEXAS-V code was used as the Full Model (FM) for the calculation of explosion impulses. The surrogate model was developed using artificial neural networks (ANNs) and the database of FM solutions. Statistical analysis was employed in order to treat chaotic response of steam explosion impulse to variations in the triggering time. Details of the FM and SM implementation and their verification are discussed in the paper.

  2. A GASFLOW analysis of a steam explosion accident in a typical light-water reactor confinement building

    International Nuclear Information System (INIS)

    Travis, J.R.; Wilson, T.L.; Spore, J.W.; Lam, K.L.; Rao, D.V.

    1994-01-01

    Steam over-pressurization resulting from ex-vessel steam explosion (fuel-coolant interaction) may pose a serious challenge to the integrity of a typical light-water reactor confinement building. If the steam generation rate exceeds the removal capacity of the Airborne Activity Confinement System, confinement overpressurization occurs. Thus, there is a large potential for an uncontrolled and unfiltered release of fission products from the confinement atmosphere to the environment at the time of the steam explosion. The GASFLOW computer code was used to analyze the effects of a hypothetical steam explosion and the transport of steam and hydrogen throughout a typical light-water reactor confinement building. The effects of rapid pressurization and the resulting forces on the internal structures and the heat exchanger service bay hatch covers were calculated. Pressurization of the ventilation system and the potential damage to the ventilation fans and high-efficiency particulate air filters were assessed. Because of buoyancy forces and the calculated confinement velocity field, the hydrogen diffuses and mixes in the confinement atmosphere but tends to be transported to its upper region. (author). 2 refs., 14 figs

  3. A GASFLOW analysis of a steam explosion accident in a typical light-water reactor confinement building

    International Nuclear Information System (INIS)

    Travis, J.R.; Wilson, T.L.; Spore, J.W.; Lam, K.L.; Rao, D.V.

    1994-01-01

    Steam over-pressurization resulting from ex-vessel steam explosion (fuel-coolant interaction) may pose a serious challenge to the integrity of a typical light-water reactor confinement building. If the steam generation rate exceeds the removal capacity of the Airborne Activity Confinement System, confinement over pressurization occurs. Thus, there is a large potential for an uncontrolled and unfiltered release of fission products from the confinement atmosphere to the environment at the time of the steam explosion. The GASFLOW computer code was used to analyze the effects of a hypothetical steam explosion and the transport of steam and hydrogen throughout a typical light-water reactor confinement building. The effects of rapid pressurization and the resulting forces on the internal structures and the heat exchanger service bay hatch covers were calculated. Pressurization of the ventilation system and the potential damage to the ventilation fans and high-efficiency particulate air filters were assessed. Because of buoyancy forces and the calculated confinement velocity field, the hydrogen diffuses and mixes in the confinement atmosphere but tends to be transported to its upper region

  4. Study of ex-vessel steam explosion risk of Reactor Pit Flooding System and structural response of containment for CPR1000"+ Unit

    International Nuclear Information System (INIS)

    Zhang Juanhua; Chen Peng

    2015-01-01

    Reactor Pit Flooding System is one of the special mitigation measures for severe accident for CPR1000"+ Unit. If the In-Vessel Relocation function of Reactor Pit Flooding System is failed, there is the steam explosion risk in reactor cavity. This paper firstly adopts MC3D code to build steam explosion model in order to calculate the pressure load and impulses of steam explosion that are as the input data of containment structural response analysis. The next step is to model the containment structure and analyze the structural response by ABAQUS code. The analysis results show that the integral damage induced by steam explosion to the external containment wall is shallow, and the containment structural integrity can be maintained. The risk and damage to the containment integrity reduced by steam explosion of RPF is small, and it does not influence the design and implementation of RPF. (author)

  5. Steam Explosion and Vibrating Membrane Filtration to Improve the Processing Cost of Microalgae Cell Disruption and Fractionation

    Directory of Open Access Journals (Sweden)

    Esther Lorente

    2018-03-01

    Full Text Available The aim of this study is to explore an innovative downstream route for microalgae processing to reduce cost production. Experiments have been carried out on cell disruption and fractionation stages to recover lipids, sugars, and proteins. Steam explosion and dynamic membrane filtration were used as unit operations. The species tested were Nannochloropsis gaditana, Chlorella sorokiniana, and Dunaliella tertiolecta with different cell wall characteristics. Acid-catalysed steam explosion permitted cell disruption, as well as the hydrolysis of carbohydrates and partial hydrolysis of proteins. This permitted a better access to non-polar solvents for lipid extraction. Dynamic filtration was used to moderate the impact of fouling. Filtration enabled two streams: A permeate containing water and monosaccharides and a low-volume retentate containing the lipids and proteins. The necessary volume of solvent to extract the lipids is thus much lower. An estimation of operational costs of both steam explosion and membrane filtration was performed. The results show that the steam explosion operation cost varies between 0.005 $/kg and 0.014 $/kg of microalgae dry sample, depending on the cost of fuel. Membrane filtration cost in fractionation was estimated at 0.12 $/kg of microalgae dry sample.

  6. Analysis and modeling of flow-blockage-induced steam explosion events in the high-flux isotope reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Nestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.

    1994-01-01

    This article provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor (HFIR) during flow blockage events. The overall work scope included modeling and analysis of core-melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and, finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several milliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. 19 refs., 11 figs

  7. Effect of steam explosion and microbial fermentation on cellulose and lignin degradation of corn stover.

    Science.gov (United States)

    Chang, Juan; Cheng, Wei; Yin, Qingqiang; Zuo, Ruiyu; Song, Andong; Zheng, Qiuhong; Wang, Ping; Wang, Xiao; Liu, Junxi

    2012-01-01

    In order to increase nutrient values of corn stover, effects of steam explosion (2.5 MPa, 200 s) and Aspergillus oryzae (A. oryzae) fermentation on cellulose and lignin degradation were studied. The results showed the contents of cellulose, hemicellulose and lignin in the exploded corn stover were 8.47%, 50.45% and 36.65% lower than that in the untreated one, respectively (Pcellulose and hemicellulose in the exploded and fermented corn stover (EFCS) were decreased by 24.36% and 69.90%, compared with the untreated one (Pcorn stover. The activities of enzymes in EFCS were increased. The metabolic experiment showed that about 8% EFCS could be used to replace corn meal in broiler diets, which made EFCS become animal feedstuff possible. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. ECO steam explosion experiments on the conversion of thermal into mechanical energy

    International Nuclear Information System (INIS)

    Cherdron, W.; Kaiser, A.; Schuetz, W.; Will, H.

    2001-01-01

    In case of a steam explosion, e.g. as a consequence of a severe reactor accident, part of the thermal energy of the melt is transferred into mechanical energy. At Forschungszentrum Karlsruhe, so-called ECO experiments, are being directed to measure the conversion factor under well-defined conditions. In ECO, alumina from a thermite reaction is used as a simulating material instead of corium. Dimensions of the test facility as well as major test conditions, e.g. temperature and release mode of the melt, water inventory and test procedure, are based on the former PREMIX experimental series. In the paper, results of the first test, ECO 01, are given. (orig.)

  9. On the constitutive description of the microinteractions concept in steam explosions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Yuen, W.W.; Theofanous, T.G. [Univ. of California, Santa Barbara, CA (United States)

    1995-09-01

    This paper elaborates on the constitutive description of the {open_quotes}microinteraction{close_quotes} model used by the computer code ESPROSE.m to simulate the propagation phase of steam explosions. The approach is based on a series of experiments, in the SIGMA-2000 facility, involving molten drops of tin made to explode under sustained pressure fields; an environment similar to that of a fully-developed large-scale detonation. The experimental ranges cover shock pressures of up to 204 bar, melt temperatures of up to 1800{degrees}C, and series of isothermal runs, using gallium drops, are also included. The results indicate that, to a first approximation, the basic form of the constitutive laws hypothesized in the original formulation of ESPROSE.m is appropriate. Moreover, through detailed comparison of data with numerical experiments, certain parameters appearing in these laws could be identified quantitatively.

  10. Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration.

    Science.gov (United States)

    Lorente, E; Hapońska, M; Clavero, E; Torras, C; Salvadó, J

    2017-08-01

    In this study, the microalga Nannochloropsis gaditana was subjected to acid catalysed steam explosion treatment and the resulting exploded material was subsequently fractionated to separate the different fractions (lipids, sugars and solids). Conventional and vibrational membrane setups were used with several polymeric commercial membranes. Two different routes were followed: 1) filtration+lipid solvent extraction and 2) lipid solvent extraction+filtration. Route 1 revealed to be much better since the used membrane for filtration was able to permeate the sugar aqueous phase and retained the fraction containing lipids; after this, an extraction required a much lower amount of solvent and a better recovering yield. Filtration allowed complete lipid rejection. Dynamic filtration improved permeability compared to the tangential cross-flow filtration. Best membrane performance was achieved using a 5000Da membrane with the dynamic system, obtaining a permeability of 6L/h/m 2 /bar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Isolation of Nanofibre Cellulose from Oil Palm Empty Fruit Bunch Via Steam Explosion and Hydrolysis with HCl 10%

    Science.gov (United States)

    Gea, S.; Zulfahmi, Z.; Yunus, D.; Andriayani, A.; Hutapea, Y. A.

    2018-03-01

    Cellulose nanofibrils were obtained from oil palm empty fruit bunch using steam explosion and hydrolized with 10% solution of HCl. Steam explosion coupled with acid hydrolysis pretreatment on the oil palm empty fruit bunch was very effective in the depolymerization and defibrillation process of the fibre to produce fibers in nanodimension. Structural analysis of steam exploded fibers was determined by Fourier Transform Infrared (FT-IR) spectroscopy. Thermal stability of cellulose measured using image analysis software image J. Characterization of the fibers by TEM and SEM displayed that fiber diameter decreases with mechanical-chemical treatment and final nanofibril size was 20-30 nm. FT-IR and TGA data confirmed the removal of hemicellulose and lignin during the chemical treatment process.

  12. Thermal-hydraulics of wave propagation and pressure distribution under hypothetical steam explosion conditions in the ANS reactor

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, R.P.; Georgevich, V.; N-Valenit, S.; Kim, S.H. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    This paper describes salient aspects of the modeling and analysis framework for evaluation of dynamic loads, wave propagation, and pressure distributions (under hypothetical steam explosion conditions) around key structural boundaries of the Advanced Neutron Source (ANS) reactor core region. A staged approach was followed, using simple thermodynamic models for bounding loads and the CTH code for evaluating realistic estimates in a staged multidimensional framework. Effects of nodalization, melt dispersal into coolant during explosion, single versus multidirectional dissipation, energy level of melt, and rate of energy deposition into coolant were studied. The importance of capturing multidimensional effects that simultaneously account for fluid-structural interactions was demonstrated. As opposed to using bounding loads from thermodynamic evaluations, it was revealed that the ANS reactor system will not be vulnerable to vertically generated missiles that threaten containment if realistic estimates of energetics are used (from CTH calculations for thermally generated steam explosions without significant aluminum ignition).

  13. Steam explosion triggering phenomena: stainless steel and corium-E simulants studied with a floodable arc melting apparatus

    International Nuclear Information System (INIS)

    Nelson, L.S.; Buxton, L.D.

    1978-05-01

    Laboratory-scale experiments on the thermal interaction of light water reactor core materials with water have been performed. Samples (10--35 g) of Type 304 stainless steel and Corium-E simulants were each flooded with approximately 1.5 litres of water to determine whether steam explosions would occur naturally. Many of the experiments also employed artificially induced pressure transients in an attempt to initiate steam explosions. Vigorous interactions were not observed when the triggering pulse was not applied, and for stainless steel the triggering pulse initiated only coarse fragmentation. Two-stage, pressure-producing interactions were triggered for an ''oxidic'' Corium-E simulant. An impulse-initiated gas release theory has been simulated to explain the initial sample fragmentation. Although the delayed second stage of the event is not fully understood, it does not appear to be readily explained with classical vapor explosion theory. Rather, some form of metastability of the melt seems to be involved

  14. Influence of steaming explosion time on the physic-chemical properties of cellulose from Lespedeza stalks (Lespedeza crytobotrya).

    Science.gov (United States)

    Wang, Kun; Jiang, Jian-Xin; Xu, Feng; Sun, Run-Cang

    2009-11-01

    The synergistic effect of steam explosion pretreatment and sodium hydroxide post-treatment of Lespedeza stalks (Lespedeza crytobotrya) has been investigated in this study. In this case, Lespedeza stalks were firstly exploded at a fixed steam pressure (22.5 kg/m(2)) for 2-10 min. Then the steam-exploded Lespedeza stalks was extracted with 1 M NaOH at 50 degrees C for 3 h with a shrub to water ratio of 1:20 (g/ml), which yielded 57.3%, 53.1%, 55.4%, 52.8%, 53.2%, and 56.4% (% dry weight) cellulose rich fractions, comparing to 68.0% from non-steam-exploded material. The content of glucose in cellulose rich residues increased with increment of the steaming time and reached to 94.10% at the most severity. The similar increasing trend occurred during the dissolution of hemicelluloses. It is evident that at shorter steam explosion time, autohydrolysis mainly occurred on the hemicelluloses and the amorphous area of cellulose. The crystalline region of cellulose was depolymerized under a prolonged incubation time. The characteristics of the cellulose rich fractions in terms of FT-IR and CP/MAS (13)C NMR spectroscopy and thermal analysis were discussed, and the surface structure was also investigated by SEM.

  15. Production of fuel ethanol from steam-explosion pretreated olive tree pruning

    Energy Technology Data Exchange (ETDEWEB)

    Cristobal Cara; Encarnacion Ruiz; Mercedes Ballesteros; Paloma Manzanares; Ma Jose Negro; Eulogio Castro [University of Jaen, Jaen (Spain). Department of Chemical, Environmental and Materials Engineering

    2008-05-15

    This work deals with the production of fuel ethanol from olive tree pruning. This raw material is a renewable, low cost, largely available, and lacking of economic alternatives agricultural residue. Olive tree pruning was submitted to steam explosion pre-treatment in the temperature range 190-240{sup o}C, with or without previous impregnation by water or sulphuric acid solutions. The influence of both pre-treatment temperature and impregnation conditions on sugar and ethanol yields was investigated by enzymatic hydrolysis and simultaneous saccharification and fermentation on the pretreated solids. Results show that the maximum ethanol yield (7.2 g ethanol/100 g raw material) is obtained from water impregnated, steam pretreated residue at 240{sup o}C. Nevertheless if all sugars solubilized during pre-treatment are taken into account, up to 15.9 g ethanol/100 g raw material may be obtained (pre-treatment conditions: 230{sup o}C and impregnation with 1% w/w sulphuric acid concentration), assuming theoretical conversion of these sugars to ethanol. 29 refs., 2 figs., 5 tabs.

  16. Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover.

    Science.gov (United States)

    Katsimpouras, Constantinos; Zacharopoulou, Maria; Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul; Topakas, Evangelos

    2017-11-01

    The present work investigates the suitability of pretreated corn stover (CS) to serve as feedstock for high gravity (HG) ethanol production at solids-content of 24wt%. Steam explosion, with and without the addition of H 2 SO 4 , and organosolv pretreated CS samples underwent a liquefaction/saccharification step followed by simultaneous saccharification and fermentation (SSF). Maximum ethanol concentration of ca. 76g/L (78.3% ethanol yield) was obtained from steam exploded CS (SECS) with 0.2% H 2 SO 4 . Organosolv pretreated CS (OCS) also resulted in high ethanol concentration of ca. 65g/L (62.3% ethanol yield). Moreover, methane production through anaerobic digestion (AD) was conducted from fermentation residues and resulted in maximum methane yields of ca. 120 and 69mL/g volatile solids (VS) for SECS and OCS samples, respectively. The results indicated that the implementation of a liquefaction/saccharification step before SSF employing a liquefaction reactor seemed to handle HG conditions adequately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effects of Continuous Steam Explosion on the Microstructure and Properties of Eucalyptus Fibers

    Directory of Open Access Journals (Sweden)

    Pengtao Ma

    2015-12-01

    Full Text Available Laboratory-designed continuous steam explosion (CSE equipment was used to prepare continuous steam-exploded eucalyptus fibers (CSEEFs. The pretreatment intensity was varied by changing treatment time, and effects of CSE on the composition, microstructure, surface composition, thermal properties, and crystallinity of CSEEFs were investigated. Composition analysis showed that CSE had a significant impact on lignin and hemicellulose, but little on cellulose. Scanning electron microscopy indicated that the middle lamella, primary wall, and outer secondary wall were progressively stripped as the CSE time increased. X-ray photoelectron spectroscopy demonstrated that concentrations of extractives and lignin were higher on the surface of eucalyptus wood than CSEEFs’, and the exposed carbohydrate fraction increased with increasing CSE time. Differential scanning calorimetry showed that eucalyptus wood has one glass transition (193.5 °C, whereas two glass transitions at 56.7 and 138.5 °C were observed for CSEEF-5. X-ray diffraction results suggested that crystallinity of samples decreased with increasing CSE time. Thermogravimetric analysis showed the pyrolysis peak temperature of samples first increased and then decreased slightly as CSE time increased. These data will be useful for the optimization and application of CSE technology.

  18. Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production.

    Science.gov (United States)

    López-Linares, Juan C; Ballesteros, Ignacio; Tourán, Josefina; Cara, Cristóbal; Castro, Eulogio; Ballesteros, Mercedes; Romero, Inmaculada

    2015-08-01

    Rapeseed straw constitutes an agricultural residue with great potential as feedstock for ethanol production. In this work, uncatalyzed steam explosion was carried out as a pretreatment to increase the enzymatic digestibility of rapeseed straw. Experimental statistical design and response surface methodology were used to evaluate the influence of the temperature (185-215°C) and the process time (2.5-7.5min). According to the rotatable central composite design applied, 215°C and 7.5min were confirmed to be the optimal conditions, considering the maximization of enzymatic hydrolysis yield as optimization criterion. These conditions led to a maximum yield of 72.3%, equivalent to 81% of potential glucose in pretreated solid. Different configurations for bioethanol production from steam exploded rapeseed straw were investigated using the pretreated solid obtained under optimal conditions as a substrate. As a relevant result, concentrations of ethanol as high as 43.6g/L (5.5% by volume) were obtained as a consequence of using 20% (w/v) solid loading, equivalent to 12.4g ethanol/100g biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Study and modelling of the escalation phase of a steam explosion

    International Nuclear Information System (INIS)

    Leclerc, Eric

    2000-01-01

    In Severe Accident studies for PWR, large amount of molten corium may be poured into water. There is then a risk of Steam Explosion. After the premixing sequence in which the melt is more or less dispersed into water, a fine fragmentation process may start which can lead to an escalation. Such an event is generally triggered by the destabilization of the vapour film surrounding the hot melt droplets. In this thesis, an attempt to describe all the successive processes leading to this fine fragmentation is presented. First a critical analysis of previous models is performed, allowing to propose a new sequence of events. As in the previous models, the film destabilization leads to the growth of cold liquids peaks induced by Rayleigh Taylor instability. As these peaks have a smaller density than the drop, they do not penetrate into the hot drop. At the cold liquid-hot liquid contacts, transient heat transfer leads to the explosive boiling of a small amount of coolant. The generated local pressurization deform the hot melt interface. This can produce fine fragments from the filaments issued from the melt. Some of them may reach the vapour-coolant interface where intense and rapid vaporization occurs. A large bubble then develops and a new fragmentation sequence may again appear at the bubble collapse. The present model is support by experimental results. (author) [fr

  20. Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment.

    Science.gov (United States)

    Martin-Sampedro, Raquel; Eugenio, Maria E; Moreno, Jassir A; Revilla, Esteban; Villar, Juan C

    2014-02-01

    Growing interest in alternative and renewable energy sources has brought increasing attention to the integration of a pulp mill into a forest biorefinery, where other products could be produced in addition to pulp. To achieve this goal, hemicelluloses were extracted, either by steam explosion or by steam treatment, from Eucalyptus globulus wood prior to pulping. The effects of both pre-treatments in the subsequent kraft pulping and paper strength were evaluated. Results showed a similar degree of hemicelluloses extraction with both options (32-67% of pentosans), which increased with the severity of the conditions applied. Although both pre-treatments increased delignification during pulping, steam explosion was significantly better: 12.9 kappa number vs 22.6 for similar steam unexploded pulps and 40.7 for control pulp. Finally, similar reductions in paper strength were found regardless of the type of treatment and conditions assayed, which is attributed to the increase of curled and kinked fibers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. An assessment of structural response of condensation pool columns in a BWR/MARK II containment to loads resulting from steam explosions

    International Nuclear Information System (INIS)

    Frid, W.

    1989-01-01

    The objective is to estimate the amount of molten core debris participating in a postulated propagating large-scale steam explosion that could threaten the integrity of the condensation pool columns in a BWR/MARK II containment. This objective was achieved by examination of the structural response of the columns to shock wave loadings and comparison, on the shock wave energy basis, of a propagating steam explosion to a detonation of TNT. In this connection the fraction of the steam explosion energy which appears in the form of a pressure shock wave was estimated. (orig.)

  2. Ex-vessel coolability and energetics of steam explosions in nordic light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.S.; Dinh, T.N. [Royal Institute of Technology (Sweden)

    2007-04-15

    The report summarizes activities conducted at the Division of Nuclear Power Safety, Royal Institute of Technology-Sweden (KTH-NPS) within the ExCoolSe project during the year 2005, which is a transition year for the KTH-NPS program. The ExCoolSe project supported by NKS contributes to the severe accident research at KTH-NPS concurrently supported by APRI, HSK and EU SARNET. The main objective in ExCoolSe project is to scrutinize research on risk-significant safety issues related to severe accident management (SAM) strategy adopted for Nordic BWR plants, namely the Ex-vessel Coolability and Energetic Steam explosion. The work aims to pave way toward building a tangible research framework to tackle these long-standing safety issues. Chapter 1 describes the project objectives and work description. Chapter 2 provides a critical assessment of research results obtained from several past programs at KTH. This includes review of key data, insights and implications from POMECO (Porous Media Coolability) program, COMECO (Corium Melt Coolability) program, SIMECO (Study of In-Vessel Melt Coolability) program, and MISTEE (Micro-Interactions in Steam Explosion Experiments) program. Chapter 3 discusses the rationale of the new research program focusing on the SAM issue resolution. The program emphasizes identification and qualification of physics-based limiting mechanisms for both in-vessel phenomena (melt progression and debris coolability in the lower head, vessel failure), and ex-vessel phenomena. Chapter 4 introduces research results from the newly established DEFOR (Debris Formation) program and the ongoing MISTEE program. The focus of DEFOR is fulfill an apparent gap in the contemporary knowledge of severe accidents, namely mechanisms which govern the debris bed formation and bed characteristics. The later control the debris bed coolability. In the MISTEE program, methods for image synchronization and data processing were developed and tested, which enable processing of

  3. Ex-vessel coolability and energetics of steam explosions in nordic light water reactors

    International Nuclear Information System (INIS)

    Park, H.S.; Dinh, T.N.

    2007-04-01

    The report summarizes activities conducted at the Division of Nuclear Power Safety, Royal Institute of Technology-Sweden (KTH-NPS) within the ExCoolSe project during the year 2005, which is a transition year for the KTH-NPS program. The ExCoolSe project supported by NKS contributes to the severe accident research at KTH-NPS concurrently supported by APRI, HSK and EU SARNET. The main objective in ExCoolSe project is to scrutinize research on risk-significant safety issues related to severe accident management (SAM) strategy adopted for Nordic BWR plants, namely the Ex-vessel Coolability and Energetic Steam explosion. The work aims to pave way toward building a tangible research framework to tackle these long-standing safety issues. Chapter 1 describes the project objectives and work description. Chapter 2 provides a critical assessment of research results obtained from several past programs at KTH. This includes review of key data, insights and implications from POMECO (Porous Media Coolability) program, COMECO (Corium Melt Coolability) program, SIMECO (Study of In-Vessel Melt Coolability) program, and MISTEE (Micro-Interactions in Steam Explosion Experiments) program. Chapter 3 discusses the rationale of the new research program focusing on the SAM issue resolution. The program emphasizes identification and qualification of physics-based limiting mechanisms for both in-vessel phenomena (melt progression and debris coolability in the lower head, vessel failure), and ex-vessel phenomena. Chapter 4 introduces research results from the newly established DEFOR (Debris Formation) program and the ongoing MISTEE program. The focus of DEFOR is fulfill an apparent gap in the contemporary knowledge of severe accidents, namely mechanisms which govern the debris bed formation and bed characteristics. The later control the debris bed coolability. In the MISTEE program, methods for image synchronization and data processing were developed and tested, which enable processing of

  4. Effect of steam explosion on waste copier paper alone and in a mixed lignocellulosic substrate on saccharification and fermentation

    Science.gov (United States)

    Elliston, Adam; Wilson, David R.; Wellner, Nikolaus; Collins, Samuel R.A.; Roberts, Ian N.; Waldron, Keith W.

    2015-01-01

    This study evaluated steam (SE) explosion on the saccharification and simultaneous saccharification and fermentation (SSF) of waste copier paper. SE resulted in a colouration, a reduction in fibre thickness and increased water absorption. Changes in chemical composition were evident at severities greater than 4.24 resulting in a loss of xylose and the production of breakdown products known to inhibit fermentation (particularly formic acid and acetic acid). SE did not improve final yields of glucose or ethanol, and at severities 4.53 and 4.83 reduced yields probably due to the effect of breakdown products and fermentation inhibitors. However, at moderate severities of 3.6 and 3.9 there was an increase in initial rates of hydrolysis which may provide a basis for reducing processing times. Co-steam explosion of waste copier paper and wheat straw attenuated the production of breakdown products, and may also provide a basis for improving SSF of lignocellulose. PMID:25846183

  5. Ethanol production from sugars obtained during enzymatic hydrolysis of elephant grass (Pennisetum purpureum, Schum.) pretreated by steam explosion.

    Science.gov (United States)

    Scholl, Angélica Luisi; Menegol, Daiane; Pitarelo, Ana Paula; Fontana, Roselei Claudete; Zandoná Filho, Arion; Ramos, Luiz Pereira; Dillon, Aldo José Pinheiro; Camassola, Marli

    2015-09-01

    In this work, steam explosion was used a pretreatment method to improve the conversion of elephant grass (Pennisetum purpureum) to cellulosic ethanol. This way, enzymatic hydrolysis of vaccum-drained and water-washed steam-treated substrates was carried out with Penicillium echinulatum enzymes while Saccharomyces cerevisiae CAT-1 was used for fermentation. After 48 h of hydrolysis, the highest yield of reducing sugars was obtained from vaccum-drained steam-treated substrates that were produced after 10 min at 200 °C (863.42 ± 62.52 mg/g). However, the highest glucose yield was derived from water-washed steam-treated substrates that were produced after 10 min at 190 °C (248.34 ± 6.27 mg/g) and 200 °C (246.00 ± 9.60 mg/g). Nevertheless, the highest ethanol production was obtained from water-washed steam-treated substrates that were produced after 6 min at 200 °C. These data revealed that water washing is a critical step for ethanol production from steam-treated elephant grass and that pretreatment generates a great deal of water soluble inhibitory compounds for hydrolysis and fermentation, which were partly characterized as part of this study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Comparison of the Effects of Thermal Pretreatment, Steam Explosion and Ultrasonic Disintegration on Digestibility of Corn Stover

    OpenAIRE

    Andras Dallos; Gyula Dörgő; Dániel Capári

    2016-01-01

    The energy demand of the corn-based bioethanol production could be reduced using the agricultural byproducts as bioenergy feedstock for biogas digesters. The release of lignocellulosic material and therefore the acceleration of degradation processes can be achieved using thermal and mechanical pretreatments, which assist to hydrolyze the cell walls and speed the solubilization of biopolymers in biogas feedstock. This study is focused on liquid hot water, steam explosion and ultrasonic pretrea...

  7. A novel steam explosion sterilization improving solid-state fermentation performance.

    Science.gov (United States)

    Zhao, Zhi-Min; Wang, Lan; Chen, Hong-Zhang

    2015-09-01

    Traditional sterilization of solid medium (SM) requires lengthy time, degrades nutrients, and even sterilizes inadequately compared with that of liquid medium due to its low thermal conductivity. A novel sterilization strategy, high-temperature and short-time steam explosion (SE), was exploited for SM sterilization in this study. Results showed that SE conditions for complete sterilization were 172 °C for 2 min and 128 °C for 5 min. Glucose and xylose contents in medium after SE sterilization increased by 157% and 93% respectively compared with those after conventional sterilization (121 °C, 20 min) while fermentation inhibitors were not detected. FTIR spectra revealed that the mild SE conditions helped to release monosaccharides from the polysaccharides. Bacillus subtilis fermentation productivity on medium after SE sterilization was 3.83 times of that after conventional sterilization. Therefore, SE shortened sterilization time and improved SM nutrition, which facilitated fermentability of SM and should promote economy of solid-state fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    Science.gov (United States)

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.

  9. Comparison of the Effects of Thermal Pretreatment, Steam Explosion and Ultrasonic Disintegration on Digestibility of Corn Stover

    Directory of Open Access Journals (Sweden)

    Andras Dallos

    2016-06-01

    Full Text Available The energy demand of the corn-based bioethanol production could be reduced using the agricultural byproducts as bioenergy feedstock for biogas digesters. The release of lignocellulosic material and therefore the acceleration of degradation processes can be achieved using thermal and mechanical pretreatments, which assist to hydrolyze the cell walls and speed the solubilization of biopolymers in biogas feedstock. This study is focused on liquid hot water, steam explosion and ultrasonic pretreatments of corn stover. The scientific contribution of this paper is a comprehensive comparison of the performance of the pretreatments by fast analytical, biochemical, anaerobic digestibility and biomethane potential tests, extended by energy consumptions and energy balance calculations.The effectiveness of pretreatments was evaluated by means of soluble chemical oxygen demand, biochemical oxygen demand and by the biogas and methane productivities. The results have shown that the thermal pretreatment, steam explosion and ultrasonic irradiation of biogas feedstock disintegrated the lignocellulosic structure, increased and accelerated the methane production and increased the cumulative biogas and methane productivity of corn stover in reference to the control during mesophilic anaerobic digestion.The energy balance demonstrated that there is an economical basis of the application of the liquid hot-compressed water pretreatments in a biogas plant. However, the steam explosion and ultrasonication are energetically not profitable for corn stover pretreatment.

  10. Steam explosion treatment for ethanol production from branches pruned from pear trees by simultaneous saccharification and fermentation.

    Science.gov (United States)

    Sasaki, Chizuru; Okumura, Ryosuke; Asada, Chikako; Nakamura, Yoshitoshi

    2014-01-01

    This study investigated the production of ethanol from unutilized branches pruned from pear trees by steam explosion pretreatment. Steam pressures of 25, 35, and 45 atm were applied for 5 min, followed by enzymatic saccharification of the extracted residues with cellulase (Cellic CTec2). High glucose recoveries, of 93.3, 99.7, and 87.1%, of the total sugar derived from the cellulose were obtained from water- and methanol-extracted residues after steam explosion at 25, 35, and 45 tm, respectively. These values corresponded to 34.9, 34.3, and 27.1 g of glucose per 100 g of dry steam-exploded branches. Simultaneous saccharification and fermentation experiments were done on water-extracted residues and water- and methanol-extracted residues by Kluyveromyces marxianus NBRC 1777. An overall highest theoretical ethanol yield of 76% of the total sugar derived from cellulose was achieved when 100 g/L of water- and methanol-washed residues from 35 atm-exploded pear branches was used as substrate.

  11. Material effect in the fuel-coolant interaction: structural characterization of the steam explosion debris and solidification mechanism

    International Nuclear Information System (INIS)

    Tyrpekl, V.

    2012-01-01

    This work has been performed under joint supervision between Charles University in Prague (Czech Republic) and Strasbourg University (France). It also profited from the background and cooperation of Institute of Inorganic Chemistry Academy of Science of the Czech Republic and French Commission for Atomic and Alternative energies (CEA Cadarache). Results of the work contribute to the OECD/NEA project Serena 2 (Program on Steam Explosion Resolution for Nuclear Applications). Presented thesis can be classed in the scientific field of nuclear safety and material science. It is aimed on the so-called 'molten nuclear Fuel - Coolant Interaction' (FCI) that belongs among the recent issues of the nuclear reactor severe accident R and D. During the nuclear reactor melt down accident the melted reactor load can interact with the coolant (light water). This interaction can be located inside the vessel or outside in the case of vessel break-up. These two scenarios are commonly called in- and ex-vessel FCI and they differ in the conditions such as initial pressure of the system, water sub-cooling etc. The Molten fuel - coolant interaction can progress into thermal detonation called 'steam explosion' that can challenge the reactor or containment integrity. Recent experiments have shown that the melt composition has a major effect on the occurrence and yield of such explosion. In particular, different behaviors have been observed between simulant material (alumina), which has important explosion efficiency, and some prototypic corium compositions (80 w. % UO 2 , 20% w. % ZrO 2 . This 'material effect' has launched a new interest in the post-test analyses of FCI debris in order to estimate the processes occurring during these extremely rapid phenomena. The thesis is organized in nine chapters. The chapter 1 gives the general introduction and context of the nuclear reactor accident. Major nuclear accidents (Three Miles Island 1979, Chernobyl 1986 and Fukushima 2011) are briefly

  12. Utilization of steam- and explosion-decompressed aspen wood by some anaerobes. [Acetivibrio cellulolyticus, Clostridium saccharolyticum, Zymomonas anaerobia

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A W; Asther, M; Giuliano, C

    1984-01-01

    Tests made to study the suitability of using steam- and explosion-decompressed aspen wood as substrate in anaerobic fermentations indicated that after washing with dilute NaOH it becomes over 80% accessible to both mesophilic and thermophilic cellulolytic anaerobes and cellulases, compared with delignified, ball-milled pulp. After washing, this material was also found to be suitable for the single-step conversion of cellulose to ethanol using cocultures consisting of cellylolytic and ethanol-producing saccharolytic anaerobes; and without and after washing by the use of cellulolytic enzymes and ethanologenic anaerobes. 16 references, 3 tables.

  13. Enhancing methane production of corn stover through a novel way: sequent pretreatment of potassium hydroxide and steam explosion.

    Science.gov (United States)

    Li, Jianghao; Zhang, Ruihong; Siddhu, Muhammad Abdul Hanan; He, Yanfeng; Wang, Wen; Li, Yeqing; Chen, Chang; Liu, Guangqing

    2015-04-01

    Getting over recalcitrance of lignocellulose is effective way to fuel production from lignocellulosic biomass. In current work, different pretreatments were applied to enhance the digestibility of corn stover (CS). Results showed that steam explosion (SE)-treated CS produced maximal methane yield (223.2 mL/gvs) at 1.2 MPa for 10 min, which was 55.2% more than untreated (143.8 mL/gvs). Whereas 1.5% KOH-treated CS produced maximum methane yield of 208.6 mL/gvs, and significantly (αpotassium hydroxide and steam explosion (SPPE) (1.5% KOH-1.2 MPa, 10 min) achieved a very significant (α<0.01) improvement (80.0%) of methane yield (258.8 mL/gvs) compared with untreated CS. Methane production could be well explained by the first-order and modified Gompertz models. Besides, SEM, FTIR, and XRD analyses validated structural changes of CS after SPPE. SPPE might be a promising method to pretreat CS in the future AD industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effect of acid, steam explosion, and size reduction pretreatments on bio-oil production from sweetgum, switchgrass, and corn stover.

    Science.gov (United States)

    Wang, Hui; Srinivasan, Radhakrishnan; Yu, Fei; Steele, Philip; Li, Qi; Mitchell, Brian; Samala, Aditya

    2012-05-01

    Bio-oil produced from biomass by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. In a recent work on pinewood, we found that pretreatment alters the structure and chemical composition of biomass, which influence fast pyrolysis. In this study, we evaluated dilute acid, steam explosion, and size reduction pretreatments on sweetgum, switchgrass, and corn stover feedstocks. Bio-oils were produced from untreated and pretreated feedstocks in an auger reactor at 450 °C. The bio-oil's physical properties of pH, water content, acid value, density, and viscosity were measured. The chemical characteristics of the bio-oils were determined by gas chromatography-mass spectrometry. The results showed that bio-oil yield and composition were influenced by the pretreatment method and feedstock type. Bio-oil yields of 52, 33, and 35 wt% were obtained from medium-sized (0.68-1.532 mm) untreated sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from other sizes. Bio-oil yields of 56, 46, and 51 wt% were obtained from 1% H(2)SO(4)-treated medium-sized sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from untreated and steam explosion treatments.

  15. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis

    Science.gov (United States)

    Jijiao Zeng; Zhaohui Tong; Letian Wang; J.Y. Zhu; Lonnie Ingram

    2014-01-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation...

  16. Pilot-scale steam explosion for xylose production from oil palm empty fruit bunches and the use of xylose for ethanol production.

    Science.gov (United States)

    Duangwang, Sairudee; Ruengpeerakul, Taweesak; Cheirsilp, Benjamas; Yamsaengsung, Ram; Sangwichien, Chayanoot

    2016-03-01

    Pilot-scale steam explosion equipments were designed and constructed, to experimentally solubilize xylose from oil palm empty fruit bunches (OPEFB) and also to enhance an enzyme accessibility of the residual cellulose pulp. The OPEFB was chemically pretreated prior to steam explosion at saturated steam (SS) and superheated steam (SHS) conditions. The acid pretreated OPEFB gave the highest xylose recovery of 87.58 ± 0.21 g/kg dried OPEFB in the liquid fraction after explosion at SHS condition. These conditions also gave the residual cellulose pulp with high enzymatic accessibility of 73.54 ± 0.41%, which is approximately threefold that of untreated OPEFB. This study has shown that the acid pretreatment prior to SHS explosion is an effective method to enhance both xylose extraction and enzyme accessibility of the exploded OPEFB. Moreover, the xylose solution obtained in this manner could directly be fermented by Candida shehatae TISTR 5843 giving high ethanol yield of 0.30 ± 0.08 g/g xylose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Theoretical work on melt-coolant interactions (steam explosions); Theoretische Arbeiten zu Schmelze-Kuehlmittel-Wechselwirkungen (Dampfexplosionen)

    Energy Technology Data Exchange (ETDEWEB)

    Arnecke, G.; Jacobs, H.; Stehle, B.; Thurnay, K.; Vaeth, L.; Lummer, M.

    1995-08-01

    The code IVA3 is used for modelling the physical processes related to steam explosions, i.e. the premixing phase preceding the explosion as well as the explosion itself. This code has been replaced by the updated version IVA-KA in May 1994, which encompasses all model and code improvements performed till the beginning of 1994. The following further work on and with IVA-KA has been performed: 1. Inclusion of friction at inner and outer walls, improvement on the drag model, improvement of boundary conditions for outgoing flow, optional inclusion of improved water material data, improvement of the numerical procedure, correction of coding errors. 2. Three FARO-experiments (investigating the behaviour of molten material falling into water) were recalculated with IVA-KA. The time dependent pressure increase is reproduced very well for one experiment, but is not quite satisfactory for a second one. The third one cannot be simulated satisfactorily because of the presence of metallic zirconium in the melt, which is not being modelled by IVA-KA at present. 3. One PREMIX-experiment (similar to FARO, but at 1 bar ambient pressure and with smaller amounts of melt) is also being analyzed with IVA-KA. First results show a good representation of the material distribution during the penetration of the melt into the water. 4. One of the first two QUEOS-experiments performed at KfK has been simulated with IVA-KA. Some results are well reproduced by IVA-KA, but there may be a deficiency of the drag laws. (orig./HP)

  18. Corn stover for biogas production: Effect of steam explosion pretreatment on the gas yields and on the biodegradation kinetics of the primary structural compounds.

    Science.gov (United States)

    Lizasoain, Javier; Trulea, Adrian; Gittinger, Johannes; Kral, Iris; Piringer, Gerhard; Schedl, Andreas; Nilsen, Paal J; Potthast, Antje; Gronauer, Andreas; Bauer, Alexander

    2017-11-01

    This study evaluated the effect of steam explosion on the chemical composition and biomethane potential of corn stover using temperatures ranging between 140 and 220°C and pretreatment times ranging between 2 and 15min. Biodegradation kinetics during the anaerobic digestion of untreated and corn stover, pretreated at two different intensities, 140°C for 5min and 180°C for 5min, were studied in tandem. Results showed that pretreatment at 160°C for 2min improved the methane yield by 22%. Harsher pretreatment conditions led to lower hemicellulose contents and methane yields, as well as higher lignin contents, which may be due to the formation of pseudo-lignin. The biodegradation kinetics trial demonstrated that steam explosion enhances the degradation of structural carbohydrates and acid insoluble lignin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Impact of co-pretreatment of calcium hydroxide and steam explosion on anaerobic digestion efficiency with corn stover.

    Science.gov (United States)

    Ji, Jinli; Zhang, Jiyu; Yang, Liutianyi; He, Yanfeng; Zhang, Ruihong; Liu, Guangqing; Chen, Chang

    2017-06-01

    Anaerobic digestion (AD) is an effective way to utilize the abundant resource of corn stover (CS). In this light, Ca(OH) 2 pretreatment alone, steam explosion (SE) pretreatment alone, and co-pretreatment of Ca(OH) 2 and SE were applied to improve the digestion efficiency of CS. Results showed that AD of co-pretreated CS with 1.0% Ca(OH) 2 and SE at 1.5 MPa achieved the highest cumulative methane yield of [Formula: see text], which was 61.54% significantly higher (p < .01) than untreated CS. The biodegradability value of CS after co-pretreatment enhanced from 43.03% to 69.52%. Methane yield could be well fitted by the first-order model and the modified Gompertz model. In addition, composition and structural changes of CS after pretreatment were analyzed by a fiber analyzer, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The validated results indicated that co-pretreatment of Ca(OH) 2 and SE was efficient to improve the digestion performance of CS and might be a suitable method for agricultural waste pretreatment in the future AD industry.

  20. Ex-vessel coolability and energetics of steam explosions in nordic light water reactors - EXCOOLSE project report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.S.; Nayak, A.K.; Hansson, R.C.; Sehgal, B.R. [Royal Inst. of Technology, Div. of Nuclear Power Safety (Sweden)

    2005-10-01

    Beyond-the-design-basis accidents, i.e. severe accidents, involve melting of the nuclear reactor core and release of radioactivity. Intensive research has been performed for years to evaluate the consequence of the postulated severe accidents. Severe accidents posed, to the reactor researchers, a most interesting and most difficult set of phenomena to understand, and to predict the consequences, for the various scenarios that could be contemplated. The complexity of the interactions, occurring at such high temperatures ({approx} 2500 deg. C), between different materials, which are changing phases and undergoing chemical reactions, is simply indescribable with the accuracy that one may desire. Thus, it is a wise approach to pursue research on SA phenomena until the remaining uncertainty in the predicted consequence, or the residual risk, can be tolerated. In the PRE-DELI-MELT project at NKS, several critical issues on the core melt loadings in the BWR and PWR reactor containments were identified. Many of Nordic nuclear power plants, particularly in boiling water reactors, adopted the Severe Accident Management Strategy (SAMS) which employed the deep subcooled water pool in lower dry-well. The success of this SAMS largely depends on the issues of steam explosions and formation of debris bed and its coolability. From the suggestions of the PRE-DELI-MELT project, a series of research plan was proposed to investigate the remaining issues specifically on the ex-vessel coolability of corium during severe accidents; (a) ex-vessel coolability of the melt or particulate debris, and (b) energetics and debris characteristics of fuel-coolant interactions endangering the integrity of the reactor containments. (au)

  1. Ex-vessel coolability and energetics of steam explosions in nordic light water reactors - EXCOOLSE project report 2004

    International Nuclear Information System (INIS)

    Park, H.S.; Nayak, A.K.; Hansson, R.C.; Sehgal, B.R.

    2005-10-01

    Beyond-the-design-basis accidents, i.e. severe accidents, involve melting of the nuclear reactor core and release of radioactivity. Intensive research has been performed for years to evaluate the consequence of the postulated severe accidents. Severe accidents posed, to the reactor researchers, a most interesting and most difficult set of phenomena to understand, and to predict the consequences, for the various scenarios that could be contemplated. The complexity of the interactions, occurring at such high temperatures (∼ 2500 deg. C), between different materials, which are changing phases and undergoing chemical reactions, is simply indescribable with the accuracy that one may desire. Thus, it is a wise approach to pursue research on SA phenomena until the remaining uncertainty in the predicted consequence, or the residual risk, can be tolerated. In the PRE-DELI-MELT project at NKS, several critical issues on the core melt loadings in the BWR and PWR reactor containments were identified. Many of Nordic nuclear power plants, particularly in boiling water reactors, adopted the Severe Accident Management Strategy (SAMS) which employed the deep subcooled water pool in lower dry-well. The success of this SAMS largely depends on the issues of steam explosions and formation of debris bed and its coolability. From the suggestions of the PRE-DELI-MELT project, a series of research plan was proposed to investigate the remaining issues specifically on the ex-vessel coolability of corium during severe accidents; (a) ex-vessel coolability of the melt or particulate debris, and (b) energetics and debris characteristics of fuel-coolant interactions endangering the integrity of the reactor containments. (au)

  2. Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum.

    Science.gov (United States)

    Huang, Yu; Wei, Xiaoyang; Zhou, Shiguang; Liu, Mingyong; Tu, Yuanyuan; Li, Ao; Chen, Peng; Wang, Yanting; Zhang, Xuewen; Tai, Hongzhong; Peng, Liangcai; Xia, Tao

    2015-04-01

    In this study, steam explosion pretreatment was performed in cotton stalks, leading to 5-6 folds enhancements on biomass enzymatic saccharification distinctive in Gossypium barbadense and Gossypium hirsutum species. Sequential 1% H2SO4 pretreatment could further increase biomass digestibility of the steam-exploded stalks, and also cause the highest sugar-ethanol conversion rates probably by releasing less inhibitor to yeast fermentation. By comparison, extremely high concentration alkali (16% NaOH) pretreatment with raw stalks resulted in the highest hexoses yields, but it had the lowest sugar-ethanol conversion rates. Characterization of wall polymer features indicated that biomass saccharification was enhanced with steam explosion by largely reducing cellulose DP and extracting hemicelluloses. It also showed that cellulose crystallinity and arabinose substitution degree of xylans were the major factors on biomass digestibility in cotton stalks. Hence, this study has provided the insights into cell wall modification and biomass process technology in cotton stalks and beyond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of the steam explosion pretreatment on enzymatic hydrolysis of eucalyptus wood and sweet sorghum baggages; Efecto del pretratamiento con explosion por vapor en la hidrolisis enzimatica de madera de eucalipto y bagazo de sorgo

    Energy Technology Data Exchange (ETDEWEB)

    Negro, M J; Martinez, J M; Manero, J; Saez, F; Martin, C

    1991-07-01

    The effect of steam explosion treatment on the enzymatic hydrolysis yield of two different lignocellulosic substrates is studied. Raw materials have been pretreated in a pilot plant designed to work in batch and equipped with a reactor vessel of 2 1 working volume where biomass was heated at the desired temperature and then exploded and recovered in a cyclone. Temperatures from 190 to 230 degree celsius and reaction times from 2 to 8 min. have been assayed. The efficiency of the steam explosion treatment has been evaluated on the composition of the lignocellulosic materials as well as on their enzymatic hydrolysis yield using a cellulolytic complex from T. reesel. Results show a high solubilization rate of hemicelluloses and variable losses of cellulose and lignin depending on the conditions tested. Enzymatic hydrolysis yields of both substrates experimented remarkable increments, corresponding the highest values obtained to 210 degree celsius; 2 min. and 21O degree celsius; 4 min. for sorghum bagasse and eucalyptus wood respectively. (Author) 13 refs.

  4. Ethanol from lignocellulosic biomasses; Etanolo da biomasse lignocellulosiche. Produzione di etanolo da paglia di grano mediante pretrattamento di steam explosion, idrolisi enzimatica e fermentazione

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, E.; Viola, E.; Zimbardi, F.; Braccio, G. [ENEA, Divisione Fonti Rinnovabili di Energia, Centro Ricerche Trisaia, Policoro, Matera (Italy); Cuna, D. [Faucitano Srl, Milan (Italy)

    2001-07-01

    In this report are presented results achieved on the process optimisation of bioethanol production from wheat straw, carried out within the ENEA's project of biomass exploitation for renewable energy. The process consists of three main steps: 1) biomass pretreatment by means of steam explosion; 2) enzymatic hydrolysis of the cellulose fraction; 3) fermentation of glucose. To perform the hydrolysis step, two commercial enzymatic mixtures have been employed, mainly composed by {beta}-glucosidase (cellobiase), endo-glucanase and exo-glucanase. The ethanologenic yeast Saccharomyces cerevisiae has been used to ferment the glucose in he hydrolyzates. Hydrolysis yield of 97% has been obtained with steam exploded wheat straw treated at 220{sup 0}C for 3 minutes and an enzyme to substrate ratio of 4%. It has been pointed out the necessity of washing with water the pretreated what straw, in order to remove the biomass degradation products, which have shown an inhibition effect on the yeast. At the best process conditions, a fermentation yield of 95% has been achieved. In the Simultaneous Saccharification and Fermentation process, a global conversion of 92% has been obtained, which corresponds to the production of about 170 grams of ethanol per kilogram of exploded straw. [Italian] Si riportano i risultati di un'attivita' di ricerca finalizzata all'ottimizzazione del processo di produzione di etanolo da paglia di grano. Il processo esaminato consta di un pretrattamento mediante steam explosion della paglia, seguito da idrolisi enzimatica della cellulosa e fermentazione del glucosio ottenuto. Per effettuare l'idrolisi sono stati utilizzati due preparati enzimatici disponibili commercialmente, costituiti da {beta}-glucosidasi, endo-glucanasi ed eso-glucanasi. Per la fermentazione del glucosio negli idrolizzati e' stato impiegato il lievito Saccharomyces cerevisae. E' stata raggiunta un'efficienza massima di idrolisi del 97% utilizzando

  5. Steam-explosion mitigation with polymer and surfactant additives; Mitigation de l`explosion-vapeur par ajout de polymeres et d`agents tensio-actifs

    Energy Technology Data Exchange (ETDEWEB)

    Pineau, D.; Ranval, W.

    1996-02-01

    Vapor explosion (or MFCI for Molten Fuel-Coolant Interaction) is a phenomenon in which a hot liquid rapidly transfers its internal energy into a surrounding colder and more volatile liquid (the coolant) which vaporization is violent. One of the simplest coolant is water. However it was noticed that some particular additives in water could have a mitigative effect on this phenomenon. This paper deals with the description of polymeric and/or surfactant solutions and their ability to suppress vapor explosion. (authors). 24 refs., 5 figs.

  6. Development of settling tube method to measure the particle size distribution for the steam explosion accident in the nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Jae Young; Ahan, Kyung Mo; Ahan, Hyung Guyn; Kim, Man Woong

    2004-01-01

    The possibility of steam explosion due to energetic and prompt interaction between the molten corium and the water in the nuclear power plant has been widely concerned to quantify its magnitude and to find the way to mitigate the phenomena. Due to the complication and rapid nature of the phenomena, experimental works still need more accurate measurement methods. Especially, the real time observation of the corium-water interaction, instability, steam generation, powdering corium debris needs advanced Tomography methods. As Song et al. pointed based on their experimental observation, the explosive phenomena highly depend on the production of the fine size debris of the molten corium. Instability and local generation of shock waves may be the major causes of the production of the fine debris, which increase the interaction surface area dramatically and the reaction time maybe depend on the penetration time proportional to square root of the particle size. The resultant debris from the explosive reaction can be the most solid fact in the experiment, their size distribution and amount need to be figured by the theoretical model. Pressure and Temperature change can be treated by the global mass and energy balance. Also, the fast propagation of the pressure information through the medium may be reasonably predicted. But to make to more solid understanding the steam explosion phenomena, the transport equation for debris interfacial area concentration need to be developed which should consider the various time scale form the rapid shock attacking, intermediate scale of instability, slow buoyancy rising. Therefore, the measurement of the size distribution of the fine debris is of importance. However, it is not easy process to classify the particle size and measure their surface area. The present work is mainly focused to develop a convenient way to measure the particle size and its distribution. We employ the force balance between the gravity force and Drag force acting on

  7. Impulsive shock induced single drop steam explosion visualized by high-speed x-ray radiography and photography - metallic melt

    International Nuclear Information System (INIS)

    Park, H. S.; Hansson, R. C.; Sehgal, B. R.

    2003-01-01

    Experimental investigation of fine fragmentation process during vapor explosion was conducted in a small-scale single drop system employing continuous high-speed X-ray radiography and photography. A molten tin drop of about 0.7 g at approximately 1000 .deg. C was dropped into a water pool, at temperatures ranging from 20 to 90 .deg. C, and the explosion was triggered by an external shock pulse of about 1 MPa. X-ray radiographs show that finely fragmented melt particles accelerates to the vapor bubble boundary and forms a particle shell during the period of vapor bubble expansion due to vapor explosions. From the photographs, it was possible to observe a number of counter-jets on the vapor boundary. For tests with highly subcooled coolant, local explosion due to external impulsive shock trigger initiates the stratified mode of explosion along the entire melt surface. For tests with lower subcooled coolant local explosions were initiated by an external impulsive shock trigger and by collapse of vapor/gas pocket attached on the top of the melt drop. Transient spatial distribution map of melt fragments during vapor explosion was obtained by a series of image processing and calibration tests

  8. Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares, Paloma; Ballesteros, Ignacio; Negro, Maria Jose; Oliva, Jose Miguel; Gonzalez, Alberto; Ballesteros, Mercedes [Renewable Energy Department-CIEMAT, Biofuels Unit, Madrid (Spain)

    2012-06-15

    In this work, forage sorghum biomass was studied as feedstock for ethanol production by a biological conversion process comprising the steps of hydrothermal steam explosion pretreatment, enzymatic hydrolysis with commercial enzymes, and fermentation with the yeast Saccharomyces cerevisiae. Steam explosion conditions were optimized using a response surface methodology considering temperature (180-230 C) and time (2-10 min). Sugar recovery in the pretreatment and the enzymatic digestibility of the pretreated solid were used to determine the optimum conditions, i.e., 220 C and 7 min. At these conditions, saccharification efficiency attained 89 % of the theoretical and the recovery of xylose in the prehydrolyzate accounted for 35 % of the amount of xylose present in raw material. Then, a simultaneous hydrolysis and fermentation (SSF) process was tested at laboratory scale on the solid fraction of forage sorghum pretreated at optimum condition, in order to evaluate ethanol production. The effect of the enzyme dose and the supplementation with xylanase enzyme of the cellulolytic enzyme cocktail was studied at increasing solid concentration up to 18 % (w/w) in SSF media. Results show good performance of SSF in all consistencies tested with a significant effect of increasing enzyme load in SSF yield and final ethanol concentration. Xylanase supplementation allows increasing solid concentration up to 18 % (w/w) with good SSF performance and final ethanol content of 55 g/l after 4-5 days. Based on this result, about 190 l of ethanol could be obtained from 1 t of untreated forage sorghum, which means a transformation yield of 85 % of the glucose contained in the feedstock. (orig.)

  9. Vapor explosion studies for nuclear and non-nuclear industries

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, Rusi P. [Arden L. Bement, Jr. Professor Nuclear Engineering, School of Nuclear Engineering, 1290 Nuclear Engineering Building, Room 108C, Purdue University, West Lafayette, IN 47905 (United States)]. E-mail: rusi@purdue.edu

    2005-05-01

    Energetic melt-water explosions are a well-established contributor to risk for nuclear reactors, and even more so for the metal casting industry. In-depth studies were undertaken in an industry-national laboratory collaborative effort to understand the root causes of explosion triggering and to evaluate methods for prevention. The steam explosion triggering studies (SETS) facility was devised and implemented for deriving key insights into explosion prevention. Data obtained indicated that onset of base surface-entrapment induced explosive boiling-caused trigger shocks is a result of complex combination of surface wettability, type of coating (organic versus inorganic), degree of coating wearoff, existence of bypass pathways for pressure relief, charring and non-condensable gas (NCG) release potential. Of these parameters NCGs were found to play a preeminent role on explosion prevention by stabilizing the melt-water steam interface and acting as a shock absorber. The role of NCGs was experimentally confirmed using SETS for their effect on stable film boiling using a downward facing heated body through which gases were injected. The presence of NCGs in the steam film layer caused a significant delay in the transitioning of film-to-nucleate boiling. The role of NCGs on explosion prevention was thereafter demonstrated more directly by introducing molten metal drops into water pools with and without NCG bubbling. Whereas spontaneous and energetic explosions took place without NCG injection, only benign quenching occurred in the presence of NCGs. Gravimetric analyses of organic coatings which are known to prevent explosion onset were also found to release significant NCGs during thermal attack by melt in the presence of water. These findings offer a novel, simple, cost-effective technique for deriving fundamental insights into melt-water explosions as well as for explosion prevention under most conditions of interest to metal casting, and possibly for nuclear reactor

  10. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Qin, Lei; Liu, Li; Li, Wen-Chao; Zhu, Jia-Qing; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-06-01

    This study is aimed to examine the inhibition of soluble fraction (SF) and enzymatic residual fraction (ERF) in dry dilute acid (DDA), ethylenediamine (EDA) and steam explosion (SE) pretreated corn stover (CS) on the enzymatic digestibility of cellulose. SF of DDA, EDA and SE pretreated CS has high xylose, soluble lignin and xylo-oligomer content, respectively. SF of EDA pretreated CS leads to the highest inhibition, followed by SE and DDA pretreated CS. Inhibition of ERF of DDA and SE pretreated CS is higher than that of EDA pretreated CS. The inhibition degree (A0/A) of SF is 1.76 and 1.21 times to that of ERF for EDA and SE pretreated CS, respectively. The inhibition degree of ERF is 1.05 times to that of SF in DDA pretreated CS. The quantitative analysis shows that SF of EDA pretreated CS, SF and ERF of SE pretreated CS cause significant inhibition during enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products.

    Science.gov (United States)

    Oliveira, Fernando M V; Pinheiro, Irapuan O; Souto-Maior, Ana M; Martin, Carlos; Gonçalves, Adilson R; Rocha, George J M

    2013-02-01

    Steam explosion at 180, 190 and 200°C for 15min was applied to sugarcane straw in an industrial sugar/ethanol reactor (2.5m(3)). The pretreated straw was delignificated by sodium hydroxide and hydrolyzed with cellulases, or submitted directly to enzymatic hydrolysis after the pretreatment. The pretreatments led to remarkable hemicellulose solubilization, with the maximum (92.7%) for pretreatment performed at 200°C. Alkaline treatment of the pretreated materials led to lignin solubilization of 86.7% at 180°C, and only to 81.3% in the material pretreated at 200°C. All pretreatment conditions led to high hydrolysis conversion of cellulose, with the maximum (80.0%) achieved at 200°C. Delignification increase the enzymatic conversion (from 58.8% in the cellulignin to 85.1% in the delignificated pulp) of the material pretreated at 180°C, but for the material pretreated at 190°C, the improvement was less remarkable, while for the pretreated at 200°C the hydrolysis conversion decreased after the alkaline treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Valorisation of Vietnamese Rice Straw Waste: Catalytic Aqueous Phase Reforming of Hydrolysate from Steam Explosion to Platform Chemicals

    Directory of Open Access Journals (Sweden)

    Cao Huong Giang

    2014-12-01

    Full Text Available A family of tungstated zirconia solid acid catalysts were synthesised via wet impregnation and subsequent thermochemical processing for the transformation of glucose to 5-hydroxymethylfurfural (HMF. Acid strength increased with tungsten loading and calcination temperature, associated with stabilisation of tetragonal zirconia. High tungsten dispersions of between 2 and 7 W atoms·nm−2 were obtained in all cases, equating to sub-monolayer coverages. Glucose isomerisation and subsequent dehydration via fructose to HMF increased with W loading and calcination temperature up to 600 °C, indicating that glucose conversion to fructose was favoured over weak Lewis acid and/or base sites associated with the zirconia support, while fructose dehydration and HMF formation was favoured over Brönsted acidic WOx clusters. Aqueous phase reforming of steam exploded rice straw hydrolysate and condensate was explored heterogeneously for the first time over a 10 wt% WZ catalyst, resulting in excellent HMF yields as high as 15% under mild reaction conditions.

  13. Numerical analysis of fragmentation mechanisms in vapor explosions

    Energy Technology Data Exchange (ETDEWEB)

    Koshizuka, Seiichi; Ikeda, Hirokazu; Oka, Yoshiaki [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1998-01-01

    Fragmentation of molten metal is the key process in vapor explosions. However this process is so rapid that the mechanisms have not been clarified yet in the experimental studies. Besides, numerical simulation is difficult because we have to analyze water, steam and molten metal simultaneously with evaporation and fragmentation. The authors have been developing a new numerical method, the Moving Particle Semi-implicit (MPS) method, based on moving particles and their interactions. Grids are not necessary. Incompressible flows with fragmentation on free surfaces have been calculated successfully using the MPS method. In the present study numerical simulation of the fragmentation processes using the MPS method is carried out to investigate the mechanisms. A numerical model to calculate evaporation from water to steam is developed. In this model, new particles are generated on water-steam interfaces. Effect of evaporation is also investigated. Growth of the filament is not accelerated when the normal evaporation is considered. This is because the normal evaporation needs a longer time than the moment of the jet impingement, though the filament growth is decided in this moment. Next, rapid evaporation based on spontaneous nucleation is considered. The filament growth is markedly accelerated. This result is consistent with the experimental fact that the spontaneous nucleation temperature is a necessary condition of small-scale vapor explosions. (J.P.N.)

  14. Steam generator tube failures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  15. Spontaneous Synthesis of Highly Crystalline TiO2 Compact/Mesoporous Stacked Films by a Low-Temperature Steam-Annealing Method for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Sanehira, Yoshitaka; Numata, Youhei; Ikegami, Masashi; Miyasaka, Tsutomu

    2018-05-23

    Highly crystalline TiO 2 nanostructured films were synthesized by a simple steam treatment of a TiCl 4 precursor film under a saturated water vapor atmosphere at 125 °C, here referred to as the steam-annealing method. In a single TiO 2 film preparation step, a bilayer structure comprising a compact bottom layer and a mesoporous surface layer was formed. The mesoporous layer was occupied by bipyramidal nanoparticles, with a composite phase of anatase and brookite crystals. Despite the low-temperature treatment process, the crystallinity of the TiO 2 film was high, comparable with that of the TiO 2 film sintered at 500 °C. The compact double-layered TiO 2 film was applied to perovskite solar cells (PSCs) as an electron-collecting layer. The PSC exhibited a maximum power conversion efficiency (PCE) of 18.9% with an open-circuit voltage ( V OC ) of 1.15 V. The PCE and V OC were higher than those of PSCs using a TiO 2 film formed by 500 °C sintering.

  16. Identification of relevant conditions and experiments for fuel-coolant interactions in nuclear power plants - SERENA Co-ordinated Programme (Steam Explosion Resolution for Nuclear Applications) Phase 1, Task 1 - Final report

    International Nuclear Information System (INIS)

    Magallon, D.; Scott de Martinville, E.; Chaumont, B.; Filippi, M.; Meignen, R.; Berthoud, G.; Ratel, G.; Melikhov, O.I.; Melikhov, V.I.; Jacobs, H.; Buerger, Manfred; Buck, Michael; Moriyama, K.; Nakamura, H.; Hirano, M.; Muramatsu, K.; Ishikawa, J.; Song, Jinho; Bang, Kwanghyun; Suh, Namduk; Sairanen, Risto; Lindholm, Ilona

    2004-01-01

    SERENA (Steam Explosion Resolution for Nuclear Applications) is an international OECD programme for the resolution of FCI remaining issues. The programme has origin the concerns expressed by the Senior Group Experts on Nuclear Safety Research and Programme (SESAR/FAP) about de-emphasis of FCI research all over the world, while uncertainties still exist on some aspects of FCI. After an evaluation of remaining needs by FCI experts in a meeting October 2000, a proposal was matured during 2001 following CSNI recommendations that existing knowledge should be carefully assessed before carrying out new experiments, and reactor application should be the focus of any new action. The work programme was approved by CSNI December 2001. The programme started January 2002. The overall objective of SERENA is to obtain convergence on the understanding of FCI processes and energetics, as well as on method(s) for reliable estimate of the magnitude of loadings for realistic reactor conditions, in order to bring understanding and predictability of FCI energetics to desirable levels for risk management. The work is performed in two phases: - Phase 1 analyses and evaluates knowledge and data on FCI by using available tools with the aim to identify areas where large uncertainties/ discrepancies still subsist and are important for predicting loads in reactors with a sufficient level of confidence, and work to be done, if any, to reduce these uncertainties/discrepancies. - Phase 2 will implement analytical and experimental actions to resolve these uncertainties/ discrepancies, if required. The objective of Phase 1 is reached through comparative calculations by available tools of existing experiments and reactor cases. It is divided into five tasks: 1. Identification of relevant conditions for FCI in reactor, 2. Comparison of various approaches for calculating jet break-up and pre-mixing, 3. Comparison of various approaches for calculating the explosion phase, 4. Reactor applications, 5

  17. Primary explosives

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Robert; Pachman, Jiri [Pardubice Univ. (Czech Republic). Faculty of Chemical Technology

    2013-06-01

    The first chapter provides background such as the basics of initiation and differences between requirements on primary explosives used in detonators and igniters. The authors then clarify the influence of physical characteristics on explosive properties, focusing on those properties required for primary explosives. Furthermore, the issue of sensitivity is discussed. All the chapters on particular groups of primary explosives are structured in the same way, including introduction, physical and chemical properties, explosive properties, preparation and documented use.

  18. Steam drums

    International Nuclear Information System (INIS)

    Crowder, R.

    1978-01-01

    Steam drums are described that are suitable for use in steam generating heavy water reactor power stations. They receive a steam/water mixture via riser headers from the reactor core and provide by means of separators and driers steam with typically 0.5% moisture content for driving turbines. The drums are constructed as prestressed concrete pressure vessels in which the failure of one or a few of the prestressing elements does not significantly affect the overall strength of the structure. The concrete also acts as a radiation shield. (U.K.)

  19. Steam 80 steam generator instrumentation

    International Nuclear Information System (INIS)

    Carson, W.H.; Harris, H.H.

    1980-01-01

    This paper describes two special instrumentation packages in an integral economizer (preheater) steam generator of one of the first System 80 plants scheduled to go into commercial operation. The purpose of the instrumentation is to obtain accurate operating information from regions of the secondary side of the steam generator inaccessible to normal plant instrumentation. In addition to verification of the System 80 steam generator design predictions, the data obtained will assist in verification of steam generator thermal/hydraulic computer codes developed for generic use in the industry

  20. Selling steam

    International Nuclear Information System (INIS)

    Zimmer, M.J.; Goodwin, L.M.

    1991-01-01

    This article addresses the importance of steam sales contract is in financing cogeneration facilities. The topics of the article include the Public Utility Regulatory Policies Act provisions and how they affect the marketing of steam from qualifying facilities, the independent power producers market shift, and qualifying facility's benefits

  1. Steam generator

    International Nuclear Information System (INIS)

    Fenet, J.-C.

    1980-01-01

    Steam generator particularly intended for use in the coolant system of a pressurized water reactor for vaporizing a secondary liquid, generally water, by the primary cooling liquid of the reactor and comprising special arrangements for drying the steam before it leaves the generator [fr

  2. Steam condenser

    International Nuclear Information System (INIS)

    Masuda, Fujio

    1980-01-01

    Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)

  3. Liquid explosives

    CERN Document Server

    Liu, Jiping

    2015-01-01

    The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.

  4. Stellar explosion

    International Nuclear Information System (INIS)

    Suraud, E.

    1987-01-01

    What is the energy source and which physical processes are powerful enough to generate this explosion which scatters the star. The knowledge progress of very dense matter allows the scenario reconstitution. An instability in the star core which is developing during milliseconds is the cause of this explosion [fr

  5. Steam generators

    International Nuclear Information System (INIS)

    Hayden, R.L.J.

    1979-01-01

    Steam generators for nuclear reactors are designed so that deposition of solids on the surface of the inlet side of the tubesheet or the inlet header with the consequent danger of corrosion and eventual tube failure is obviated or substantially reduced. (U.K.)

  6. Steam turbine cycle

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1994-01-01

    In a steam turbine cycle, steams exhausted from the turbine are extracted, and they are connected to a steam sucking pipe of a steam injector, and a discharge pipe of the steam injector is connected to an inlet of a water turbine. High pressure discharge water is obtained from low pressure steams by utilizing a pressurizing performance of the steam injector and the water turbine is rotated by the high pressure water to generate electric power. This recover and reutilize discharged heat of the steam turbine effectively, thereby enabling to improve heat efficiency of the steam turbine cycle. (T.M.)

  7. Steaming ahead

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    An example of the development of geothermal power in Indonesia is described. Wells are being drilled into the Salak volcano on Java, about 60km south of Jakarta. These let out high pressure hot water trapped 1 to 3km below the surface which can be flashed into steam for driving turbines. The hot water field has already produced 110MW of power since 1994 and is currently being expanded to 330MW. Some details of the drilling and civil engineering are given. Since Indonesia sits on the edge of giant tectonic boundary known as the ''Pacific ring of fire'', the potential for further development is enormous. Ultimately volcanic activity could release an estimated 27,000MW capacity. More realistically, 2,000MW of crustal power by 2020 is spoken of. (UK)

  8. Steam Digest 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-11-01

    Steam Digest 2002 is a collection of articles published in the last year on steam system efficiency. DOE directly or indirectly facilitated the publication of the articles through it's BestPractices Steam effort. Steam Digest 2002 provides a variety of operational, design, marketing, and program and program assessment observations. Plant managers, engineers, and other plant operations personnel can refer to the information to improve industrial steam system management, efficiency, and performance.

  9. A reassessment of the potential for an alpha-mode containment failure and a review of the current understanding of broader fuel-coolant interaction issues. Second steam explosion review group workshop

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S. [Nuclear Regulatory Commission, Washington, DC (United States); Ginsberg, T. [Brookhaven National Lab., Upton, NY (United States)

    1996-08-01

    This report summarizes the review and evaluation by experts of the current understanding of the molten fuel-coolant interaction (FCI) issues covering the complete spectrum of interactions, i.e., from mild quenching to very energetic interactions including those that could lead to the alpha-mode containment failure. Of the eleven experts polled, all but two concluded that the alpha-mode failure issue was resolved from a risk perspective, meaning that this mode of failure is of very low probability, that it is of little or no significance to the overall risk from a nuclear power plant, and that any further reduction in residual uncertainties is not likely to change the probability in an appreciable manner. To a lesser degree, discussions also took place on the broader FCI issues such as mild quenching of core melt during non-explosive FCI, and shock loading of lower head and ex-vessel support structures arising from explosive localized FCIs. These latter issues are relevant with regard to determining the efficacy of certain accident management strategies for operating reactors as well as for advanced light water reactors. The experts reviewed the status of understanding of the FCI phenomena in the context of these broader issues, identified residual uncertainties in the understanding, and recommended future research (both experimental and analytical) to reduce the uncertainties.

  10. A reassessment of the potential for an alpha-mode containment failure and a review of the current understanding of broader fuel-coolant interaction issues. Second steam explosion review group workshop

    International Nuclear Information System (INIS)

    Basu, S.; Ginsberg, T.

    1996-08-01

    This report summarizes the review and evaluation by experts of the current understanding of the molten fuel-coolant interaction (FCI) issues covering the complete spectrum of interactions, i.e., from mild quenching to very energetic interactions including those that could lead to the alpha-mode containment failure. Of the eleven experts polled, all but two concluded that the alpha-mode failure issue was resolved from a risk perspective, meaning that this mode of failure is of very low probability, that it is of little or no significance to the overall risk from a nuclear power plant, and that any further reduction in residual uncertainties is not likely to change the probability in an appreciable manner. To a lesser degree, discussions also took place on the broader FCI issues such as mild quenching of core melt during non-explosive FCI, and shock loading of lower head and ex-vessel support structures arising from explosive localized FCIs. These latter issues are relevant with regard to determining the efficacy of certain accident management strategies for operating reactors as well as for advanced light water reactors. The experts reviewed the status of understanding of the FCI phenomena in the context of these broader issues, identified residual uncertainties in the understanding, and recommended future research (both experimental and analytical) to reduce the uncertainties

  11. Preliminary investigation of aluminum combustion in air and steam.

    OpenAIRE

    Hallenbeck, Amos Edward.

    1983-01-01

    Approved for public release; distribution in unlimited. The goal of the experiment is to understand the role of metal-steam combustion in the explosion of underwater shaped cnarges. An apparatus was constructed to investigate combustion of aluminum in stes.m. For background information, aluminum wires (1 mm diameter, 50 mm length) were ignited in air by high current (480 amperes) . Tests in air and steam were photographed using 35 mm color slides and 16 mm movies (4300 fr...

  12. Explosive simulants for testing explosive detection systems

    Science.gov (United States)

    Kury, John W.; Anderson, Brian L.

    1999-09-28

    Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

  13. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  14. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  15. Steam turbine installations

    International Nuclear Information System (INIS)

    Bainbridge, A.

    1976-01-01

    The object of the arrangement described is to enable raising steam for driving steam turbines in a way suited to operating with liquid metals, such as Na, as heat transfer medium. A preheated water feed, in heat transfer relationship with the liquid metals, is passed through evaporator and superheater stages, and the superheated steam is supplied to the highest pressure stage of the steam turbine arrangement. Steam extracted intermediate the evaporator and superheater stages is employed to provide reheat for the lower pressure stage of the steam turbine. Only a major portion of the preheated water feed may be evaporated and this portion separated and supplied to the superheater stage. The feature of 'steam to steam' reheat avoids a second liquid metal heat transfer and hence represents a simplification. It also reduces the hazard associated with possible steam-liquid metal contact. (U.K.)

  16. Explosive Pleuritis

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2012-01-01

    Full Text Available Pleural effusions associated with pneumonia (parapneumonic effusions are one of the most common causes of exudative pleural effusions in the world. Approximately 20 to 40% of patients hospitalized with pneumonia will have an accompanying pleural effusion. The term 'Explosive pleuritis' was originally described by Braman and Donat in 1986 as pleural effusions developing within hours of admission. We report a 38 years old male patient with minimal pleural effusion which progressed rapidly within one day to involve almost whole of the hemithorax. There were multiple loculations on ultrasonography of thorax. Pleural fluid was sero-sanguinous and revealed gram positive diplococcic. The patient improved with antibiotics and pigtail catheter drainage.

  17. Chernobyl: Anatomy of the explosion

    International Nuclear Information System (INIS)

    Lvov, G.

    1992-01-01

    On Friday, 26 April 1986, it was planned to shut down the fourth unit of the Chernobyl Atomic Power Station, U.S.S.R., for periodic maintenance. The procedure supplied the opportunity to perform a further experiment; operation of the turbine in free rotation regime, which occurs when the steam is cut down while the turbine is still running. It so happened that carrying out this experiment turned out to be the worst accident in the history of nuclear power industry. The first part of the article proceeds to a second by second detailed analysis of the causes of the catastrophe. The analysis uses official data and reports. The author covers the sequence of events, which led up to two explosions in the second hour of that tragic morning. In the second part of the article, the author provides hints and suggestions, so that 'the tragedy of Chernobyl does not become a useless lesson'. With regard to what, so far, has been published, the novelty of the article may be a diagram showing the excessive changes that affected the main parameters (power, water flow through circulating pumps, steam pressure in separators, and length of the immersed part of control rods) in the fourth unit during the last seconds before the explosion. If may be noteworthy to mention that the curves supplied here are based on data stored in the computer 'SCALA'. 2 figs

  18. Steam generator with perfected dryers

    International Nuclear Information System (INIS)

    Fenet, J.C.

    1987-01-01

    This steam generator has vertically superposed array of steam dryers. These dryers return the steam flow of 180 0 . The return of the water is made by draining channels to the steam production zone [fr

  19. HTGR steam generator development

    International Nuclear Information System (INIS)

    Schuetzenduebel, W.G.; Hunt, P.S.; Weber, M.

    1976-01-01

    More than 40 gas-cooled reactor plants have produced in excess of 400 reactor years of operating experience which have proved a reasonably high rate of gas-cooled reactor steam generator availability. The steam generators used in these reactors include single U-tube and straight-tube steam generators as well as meander type and helically wound or involute tube steam generators. It appears that modern reactors are being equipped with helically wound steam generators of the once-through type as the end product of steam generator evolution in gas-cooled reactor plants. This paper provides a general overview of gas-cooled reactor steam generator evolution and operating experience and shows how design criteria and constraints, research and development, and experience data are factored into the design/development of modern helically wound tube steam generators for the present generation of gas-cooled reactors

  20. Steam Digest 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-01-01

    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  1. Steam generator tube extraction

    International Nuclear Information System (INIS)

    Delorme, H.

    1985-05-01

    To enable tube examination on steam generators in service, Framatome has now developed a process for removing sections of steam generator tubes. Tube sections can be removed without being damaged for treating the tube section expanded in the tube sheet

  2. Steam sterilization does not require saturated steam

    NARCIS (Netherlands)

    van Doornmalen Gomez Hoyos, J. P.C.M.; Paunovic, A.; Kopinga, K.

    2017-01-01

    The most commonly applied method to sterilize re-usable medical devices in hospitals is steam sterilization. The essential conditions for steam sterilization are derived from sterilization in water. Microbiological experiments in aqueous solutions have been used to calculate various time–temperature

  3. Explosive compositions

    Energy Technology Data Exchange (ETDEWEB)

    1971-04-01

    An explosive composition containing ammonium nitrate consists of (1) from 40 to 75 Pt. by wt of particulate ammonium nitrate, (2) from 20 to 35 Pt. by wt of a solution selected from the group consisting of aqueous magnesium nitrate, aqueous ammonium nitrate and aqueous ammoniacal ammonium nitrate; and (3) at least 2 Pt. by wt of a setting agent selected from the group consisting of alkaline earth metal oxides, zinc oxide, lead monoxide, calcined dolomitic limestone, anhydrous calcium sulfate, anhydrous magnesium sulfate, anhydrous sodium tetrapyrophosphate and anhydrous sodium thiosulfate. The setting agent is further characterized in setting the composition to a solid material which contains solvent used in the liquid phase. (Abstract only - original article not available from T.U.)

  4. Explosive composition

    Energy Technology Data Exchange (ETDEWEB)

    Slykhouse, T E

    1968-05-09

    An ammonium nitrate explosive composition is characterized in that it contains from 40 to 75 parts by wt of particulate ammonium nitrate, from 20 to 35 parts by wt of a solution selected from the group consisting of aqueous magnesium nitrate, aqueous ammonium nitrate, and aqueous ammoniacal ammonium nitrate. It also contains at least 2 parts by wt of a setting agent selected from the group consisting of alkaline earth metal oxides, zinc oxide, lead monoxide, calcined dolomitic limestone, substantially anhydrous calcium sulfate, substantially anhydrous magnesium sulfate, substantially anhydrous sodium tetrapyrophosphate and substantially anhydrous sodium thiosulfate. The setting agent is further characterized in that it sets the composition to a solid material which contains solvent used in the liquid phase. (12 claims)

  5. Slurry explosives

    Energy Technology Data Exchange (ETDEWEB)

    1973-08-23

    A slurry explosive is comprised of (1) a composition consisting of ammonium nitrate or a mixture of ammonium nitrate and an alkali metal nitrate; or an alkaline earth metal nitrate; or an alkali metal nitrate and an alkaline earth metal nitrate; at least one member selected from the group consisting of 2,4,6-trinitrotoluene, aluminum, smokeless powder and fuels; and water; (2) 0.1 to 2.0% of guar gum; (3) between 0% and 0.3% of a sodium, potassium, calcium or magnesium borate; and greater than 0% but not more than 20% of hexamethylene tetramine; and (4) 0.02 to 2.0% of antimony potassium tartarate, antimony trioxide, antimony trisulfide or a mixture of these antimony compounds, % by wt.

  6. The Invisibility of Steam

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2014-01-01

    Almost everyone "knows" that steam is visible. After all, one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality, steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature…

  7. Strategies for steam

    International Nuclear Information System (INIS)

    Hennagir, T.

    1996-01-01

    This article is a review of worldwide developments in the steam turbine and heat recovery steam generator markets. The Far East is driving the market in HRSGs, while China is driving the market in orders placed for steam turbine prime movers. The efforts of several major suppliers are discussed, with brief technical details being provided for several projects

  8. Steam Digest: Volume IV

    Energy Technology Data Exchange (ETDEWEB)

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  9. Steam Digest Volume IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  10. Spontaneous deregulation

    NARCIS (Netherlands)

    Edelman, Benjamin; Geradin, Damien

    Platform businesses such as Airbnb and Uber have risen to success partly by sidestepping laws and regulations that encumber their traditional competitors. Such rule flouting is what the authors call “spontaneous private deregulation,” and it’s happening in a growing number of industries. The authors

  11. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Science.gov (United States)

    2013-10-28

    ..., including non-cap sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. [[Page 64247

  12. Electronic cigarette explosions involving the oral cavity.

    Science.gov (United States)

    Harrison, Rebecca; Hicklin, David

    2016-11-01

    The use of electronic cigarettes (e-cigarettes) is a rapidly growing trend throughout the United States. E-cigarettes have been linked to the risk of causing explosion and fire. Data are limited on the associated health hazards of e-cigarette use, particularly long-term effects, and available information often presents conflicting conclusions. In addition, an e-cigarette explosion and fire can pose a unique treatment challenge to the dental care provider because the oral cavity may be affected heavily. In this particular case, the patient's injuries included intraoral burns, luxation injuries, and alveolar fractures. This case report aims to help clinicians gain an increased knowledge about e-cigarette design, use, and risks; discuss the risk of spontaneous failure and explosion of e-cigarettes with patients; and understand the treatment challenges posed by an e-cigarette explosion. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  13. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  14. A review of vapor explosion information pertinent to the SRS reactors

    International Nuclear Information System (INIS)

    Hyder, M.L.; Allison, D.K.

    1992-04-01

    Vapor explosions are explosive events resulting from the mixing of two liquids, one of which is heated to a temperature well above the boiling point of the second. Under some circumstances mixing of the liquids can boil part of the lower boiling liquid so quickly that the expanding vapor generates a strong pressure wave and explosion. If the lower boiling liquid is water, as is frequently the case, the event is called a ''steam explosion''. Analyses in support of the K-Reactor Probabilistic Risk Assessment have shown that steam explosions generated by the interaction of molten reactor fuel with water contribute significantly to the risk of reactor operation at the SRS. This calculated risk incorporates a conservative treatment of the uncertainties associated with such explosions. Study of steam explosions involving molten reactor materials has been included in the Severe Accident Analysis Program (SAAP) in order to obtain a better evaluation of their importance, and, if possible, to find ways to avoid them. This paper presents a brief review and summary of steam explosion experience from literature accounts, along with the results of experimental studies from the SAAP. It concludes with an evaluation of current knowledge, and suggestions for future development. 71 refs

  15. Utilization of steam treated agricultural by -product as ruminant feed

    International Nuclear Information System (INIS)

    Naeem, M.; Rajput, N.; Lili, Z.; Su, Z.; Rui, Y.; Tian, W.

    2014-01-01

    Shortage of animal food is a burning issue of the recent time, whereas the agricultural by -products are readily available to be used as ruminants feed. However, the low protein and digestibility are the hindrances in utilization of these low quality crop residues as a feed. In order to utilize rice straw as animal feed this study was conducted to investigate the influence of steam explosion treatment on its composition and in vitro degradability. The samples, I (untreated rice straw), II (rice straw exposed to 15.5 kgf/cm/ sub2/ steam pressure for 90 sec) and III (rice straw exposed to 15.5 kgf/cm/sup 2/steam pressure for 120 sec) were prepared. The results revealed that the crude protein (CP), ether extract (EE) and acid detergent lignin (ADL) contents of rice straw were improved after treatment with steam explosion in time dependent manner (P<0.05). The neutral detergent fiber (NDF), acid detergent fiber (ADF) and organic matter (OM) were higher, while dry matter (DM) and ash contents were lower (P<0.05) in II as compared to group I and III; however, after increasing the time at same pressure these parameters decreased. Furthermore, group III showed higher concentration of propionate, acetate, butyrate, and total VFA (P<0.05). While, group I exhibited higher concentration of iso-butyrate and iso-valerate (P<0.05). The concentration of valeric acid and acetate to propionate ratio were not affected by steam explosion treatment. Moreover, group III showed the higher in vitro DM degradability, OM degradability, DNDF and gas production (P<0.05); while, lower DADF and pH (P<0.05) compared with groups I and II. These findings suggest that the steam explosion treatment at 15.5 kgf/cm/sup 2/ pressure for 120 sec, may be used to enhance the nutritive value and digestibility of rice straw. (author)

  16. Numerical simulation on the explosive boiling phenomena on the surface of molten metal

    International Nuclear Information System (INIS)

    Chen Deqi; Peng Cheng; Wang Qinghua; Pan Liangming

    2014-01-01

    In this paper, numerical simulation was carried out to investigate the explosive boiling phenomenon on high temperature surface also the influence of vapor growth rate during explosive boiling, vapor condensation in sub-cooled water and the subsequent effect on flowing and heat transfer. The simulation result indicates that the steam on the molten metal surface grows with very high speed, and it pushes away the sub-cooled water around and causes severe flowing. The steam clusters which block the sub-cooled water to rewet the molten metal surface are appearing at the same time. During the growth, lifting off as well as condensation of the steam clusters, the sub-cooled water around is strongly disturbed, and obvious vortexes appear. Conversely, the vortex will influence the steam cluster detachment and cub-cooled water rewetting the metal surface. This simulation visually displays the complex explosive boiling phenomena on the molten metal surface with high temperature. (authors)

  17. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R. [VTT Energy, Espoo (Finland). Energy Systems

    1997-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  18. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R [VTT Energy, Espoo (Finland). Energy Systems

    1998-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  19. Condensation of steam

    International Nuclear Information System (INIS)

    Prisyazhniuk, V.A.

    2002-01-01

    An equation for nucleation kinetics in steam condensation has been derived, the equation taking into account the concurrent and independent functioning of two nucleation mechanisms: the homogeneous one and the heterogeneous one. The equation is a most general-purpose one and includes all the previously known condensation models as special cases. It is shown how the equation can be used in analyzing the process of steam condensation in the condenser of an industrial steam-turbine plant, and in working out new ways of raising the efficiency of the condenser, as well as of the steam-turbine plant as a whole. (orig.)

  20. EPRI steam generator programs

    International Nuclear Information System (INIS)

    Martel, L.J.; Passell, T.O.; Bryant, P.E.C.; Rentler, R.M.

    1977-01-01

    The paper describes the current overall EPRI steam generator program plan and some of the ongoing projects. Because of the recent occurrence of a corrosion phenomenon called ''denting,'' which has affected a number of operating utilities, an expanded program plan is being developed which addresses the broad and urgent needs required to achieve improved steam generator reliability. The goal of improved steam generator reliability will require advances in various technologies and also a management philosophy that encourages conscientious efforts to apply the improved technologies to the design, procurement, and operation of plant systems and components that affect the full life reliability of steam generators

  1. Fragmentation of low-melting metals by collapsing steam bubbles

    International Nuclear Information System (INIS)

    Benz, R.

    1979-08-01

    When a hot melt meets a vaporable liquid of lower temperature, explosive vaporisation of the cooler liquid may be the result. This is called a steam explosion if a substantial amount of thermal energy is converted into mechanical energy. One important step in understanding about steam explosions is to explain the surface increase of the hot melt. There are several competing fragmentation hypotheses, but so far there has been no model to describe fragmentation criteria as well as the time curve of surface increase on the basis of physical processes. An overall model is now given for one of the possible fragmentation mechanisms, i.e. the division of the melt by collapsing steam bubbles. The model estimates the surface increase of the melt on the basis of heavy supercooled boiling, the heat transfer connected with it, the transfer of mechanical energy during steam bubble collapse, and the solidification of the melt. The results of the calculations have shown that basic experimental observations, e.g. time and extent of fragmentation, are well presented in the model with regard to their order of magnitude. The model presents a qualitatively correct description of the effects of important influencing factors, e.g. supercooling of the coolant or initial temperature of the melt. (orig.) [de

  2. STEAM by Design

    Science.gov (United States)

    Keane, Linda; Keane, Mark

    2016-01-01

    We live in a designed world. STEAM by Design presents a transdisciplinary approach to learning that challenges young minds with the task of making a better world. Learning today, like life, is dynamic, connected and engaging. STEAM (Science, Technology, Environment, Engineering, Art, and Math) teaching and learning integrates information in…

  3. Steampunk: Full Steam Ahead

    Science.gov (United States)

    Campbell, Heather M.

    2010-01-01

    Steam-powered machines, anachronistic technology, clockwork automatons, gas-filled airships, tentacled monsters, fob watches, and top hats--these are all elements of steampunk. Steampunk is both speculative fiction that imagines technology evolved from steam-powered cogs and gears--instead of from electricity and computers--and a movement that…

  4. Safety Picks up "STEAM"

    Science.gov (United States)

    Roy, Ken

    2016-01-01

    This column shares safety information for the classroom. STEAM subjects--science, technology, engineering, art, and mathematics--are essential for fostering students' 21st-century skills. STEAM promotes critical-thinking skills, including analysis, assessment, categorization, classification, interpretation, justification, and prediction, and are…

  5. Steam-water separator

    International Nuclear Information System (INIS)

    Modrak, T.M.; Curtis, R.W.

    1978-01-01

    A two-stage steam-water separating device is introduced, where the second stage is made as a cyclone separator. The water separated here is collected in the first stage of the inner tube and is returned to the steam raising unit. (TK) [de

  6. Steam power plant

    International Nuclear Information System (INIS)

    Campbell, J.W.E.

    1981-01-01

    This invention relates to power plant forced flow boilers operating with water letdown. The letdown water is arranged to deliver heat to partly expanded steam passing through a steam reheater connected between two stages of the prime mover. (U.K.)

  7. An Isothermal Steam Expander for an Industrial Steam Supplying System

    Directory of Open Access Journals (Sweden)

    Chen-Kuang Lin

    2015-01-01

    Full Text Available Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator is replaced by a steam expander. With this steam expander, the pressure will be transformed into mechanical energy and extracted during the expansion process. A new type of isothermal steam expander for an industrial steam supplying system will be presented in the paper. The isothermal steam expander will improve the energy efficiency of a traditional steam expander by replacing the isentropic process with an isothermal expansion process. With this, steam condensation will decrease, energy will increase, and steam quality will be improved. Moreover, the mathematical model of the isothermal steam expander will be established by using the Schmidt theory, the same principle used to analyze Stirling engines. Consequently, by verifying the correctness of the theoretical model for the isothermal steam expander using experimental data, a prototype of 100 c.c. isothermal steam expander is constructed.

  8. Explosive double salts and preparation

    Science.gov (United States)

    Cady, Howard H.; Lee, Kien-yin

    1984-01-01

    Applicants have discovered a new composition of matter which is an explosive addition compound of ammonium nitrate (AN) and diethylenetriamine trinitrate (DETN) in a 50:50 molar ratio. The compound is stable over extended periods of time only at temperatures higher than 46.degree. C., decomposing to a fine-grained eutectic mixture (which is also believed to be new) of AN and DETN at temperatures lower than 46.degree. C. The compound of the invention has an x-ray density of 1.61 g/cm.sup.3, explodes to form essentially only gaseous products, has higher detonation properties (i.e., detonation velocity and pressure) than those of any mechanical mixture having the same density and composition as the compound of the invention, is a quite insensitive explosive material, can be cast at temperatures attainable by high pressure steam, and is prepared from inexpensive ingredients. Methods of preparing the compound of the invention and the fine-grained eutectic composition of the invention are given.

  9. Steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermal hydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. This report shows how recent advances in cleaning technology are integrated into a life management strategy, discusses downcomer flow measurement as a means of monitoring steam generator condition, and describes recent advances in hideout return as a life management tool. The research and development program, as well as operating experience, has identified

  10. Steam turbines for nuclear power plants

    International Nuclear Information System (INIS)

    Stastny, M.

    1983-01-01

    A three-cylinder 220 MW saturated steam turbine was developed for WWER reactors by the Skoda concern. Twenty four of these turbines are currently in operation, in production or have been ordered. A 1000 MW four-cylinder turbine is being developed. The disign of the turbines has had to overcome difficulties connected with the unfavourable effects of wet steam at extreme power values. Great attention had to be devoted to the aerodynamics of control valves and to the prevention of flow separation areas. The problem of corrosion-erosion in guide wheels and the high pressure section was resolved by the use of ferritic stainless steels. For the low pressure section it was necessary to separate the moisture and to reheat the steam in the separator-reheater. Difficulties caused by the generation of wet steam in the low pressure section by spontaneous condensation were removed. Also limited was the erosion caused by droplets resulting from the disintegration of water films on the trailing edges. (A.K.)

  11. [Spontaneous hypoglycemia].

    Science.gov (United States)

    Ellorhaoui, M; Schultze, W

    1977-01-15

    On the basis of a survey is attempted to describe mode of development, symptomatology, individual forms and the different possibilities of therapy of the spontaneous hypoglycaemias. A particularly broad range was devoted to the cerebral sequelae, since in these cases--according to our experience--on account of simulation of neurologico-psychiatric symptoms at the soonest wrong diagnoses are to be expected. Furthermore, it is attempted to classify the hypoglycemias according to their development, in which cases their incompleteness was evident from the very beginning. The individual forms of appearance are treated according their to significance. Out of the inducible hypoglycaemias a particular attention is devoted to the forms caused by insulin and oral antidiabetics, since these most frequently participate in the development. Finally the author inquires into diagnostic measures for recognition of special forms of hypoglycaemia. In this place the diagnostics of hyperinsulinism conditioned by adenomatosis or tumours of other kinds is of particular importance. Finally conservative and operative possibilities of the therapy of these tumours are discussed,whereby the only recently tested treatment with streptotocin is mentioned.

  12. The gas chimney formation during the steam explosion premixing phase

    International Nuclear Information System (INIS)

    Leskovar, M.

    2001-01-01

    The crucial part in isothermal premixing experiment simulation is the correct prediction of the gas chimney, which forms when the spheres penetrate into water. The first simulation results with the developed original combined multiphase model showed that the gas chimney starts to close at the wrong place at the top of the chimney and not in the middle, like it was observed in the experiments. To find the physical explanation for this identified weakness of our numerical model a comprehensive parametric analysis (mesh size, initial water-air surface thickness, water density, momentum coupling starting position) has been performed. It was established that the reason for the unphysical gas chimney closing at the top could be the gradual air-water density transition in the experiment model, since there is due to the finite differences description always a transition layer with intermediate phases density over the pure water phase. It was shown that this difference between our numerical model and the experiment can be somewhat compensated if the spheres interfacial drag coefficient at the upmost mesh plane of the unphysical air-water transition layer is artificially risen. On this way a more correct gas chimney formation can be obtained.(author)

  13. Preparation of resistant sweet potato starch by steam explosion ...

    African Journals Online (AJOL)

    resistant sweet potato starch was identified by Fourier transform infrared ... can potentially be used in food or medicine for diabetic patients. ... were suspended in water (1:3.5, w/v), and ..... No conflict of interest associated with this work.

  14. Development of Axial Tomography for Steam Explosion Study

    International Nuclear Information System (INIS)

    Lee, Jae Young; Seo, Shi Won; Song, Jin Ho

    2006-01-01

    Visual understanding of complicated system leads us often to the intuitive enlightenment of the invisible causes of the effect. When it is formulated based on the rigorous mathematics, the produced formula or correlation will be very useful in design and analysis of the engineering system. In this point of view, the tomography technology can be a tool to meet such a purpose. However, the traditional hard ray tomography using high energy radiation cannot meet the case due to heavy shielding structure which obstructs access of the sensing unit to the very complicated and limited space. Therefore, the recent development of the electric tomography is noteworthy in the application to the industrial process monitoring. It has the merit not only of low cost but also of easier access to the limited space than the hard ray tomography

  15. Incineration process fire and explosion protection

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1975-01-01

    Two incinerators will be installed in the plutonium recovery facility under construction at the Rocky Flats Plant. The fire and explosion protection features designed into the incineration facility are discussed as well as the nuclear safety and radioactive material containment features. Even though the incinerator system will be tied into an emergency power generation system, a potential hazard is associated with a 60-second delay in obtaining emergency power from a gas turbine driven generator. This hazard is eliminated by the use of steam jet ejectors to provide normal gas flow through the incinerator system during the 60 s power interruption. (U.S.)

  16. Relationship between fiber porosity and cellulose digestibility in steam-exploded Pinus radiata

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K.K.Y.; Deverell, K.F.; Mackie, K.L.; Clark, T.A.; Donaldson, L.A.

    1988-04-05

    The use of lignocellulosic materials in bioconversion processes may be improved if the critical factors limiting conversion are better understood. Steam explosion after sulfur dioxide impregnation of wood chips is an effective method for improving the enzymatic digestibility of cellulose in the softwood Pinus radiata. Digestibility of pretreated fiber was progressively increased by altering the conditions of steam explosion. With increasing digestibility, there was an observed increase in fiber porosity as measured by the solute exclusion technique. Accessible pore volume and accessible surface area to a 5-nm dextran probe positively correlated with both 2- and 24-h digestion yields from pretreated fiber. The increase in accessibility was probably the result of hemicellulose extraction and lignin redistribution. A subsequent loss in accessibility, brought about by structural collapse or further lignin redistribution, resulted in a corresponding loss in digestibility. It appears that steam explosion increases cellulose digestibility in P. radiata by increasing fiber porosity.

  17. MC3D modelling of stratified explosion

    International Nuclear Information System (INIS)

    Picchi, S.; Berthoud, G.

    1999-01-01

    It is known that a steam explosion can occur in a stratified geometry and that the observed yields are lower than in the case of explosion in a premixture configuration. However, very few models are available to quantify the amount of melt which can be involved and the pressure peak that can be developed. In the stratified application of the MC3D code, mixing and fragmentation of the melt are explained by the growth of Kelvin Helmholtz instabilities due to the shear flow of the two phase coolant above the melt. Such a model is then used to recalculate the Frost-Ciccarelli tin-water experiment. Pressure peak, speed of propagation, bubble shape and erosion height are well reproduced as well as the influence of the inertial constraint (height of the water pool). (author)

  18. MC3D modelling of stratified explosion

    Energy Technology Data Exchange (ETDEWEB)

    Picchi, S.; Berthoud, G. [DTP/SMTH/LM2, CEA, 38 - Grenoble (France)

    1999-07-01

    It is known that a steam explosion can occur in a stratified geometry and that the observed yields are lower than in the case of explosion in a premixture configuration. However, very few models are available to quantify the amount of melt which can be involved and the pressure peak that can be developed. In the stratified application of the MC3D code, mixing and fragmentation of the melt are explained by the growth of Kelvin Helmholtz instabilities due to the shear flow of the two phase coolant above the melt. Such a model is then used to recalculate the Frost-Ciccarelli tin-water experiment. Pressure peak, speed of propagation, bubble shape and erosion height are well reproduced as well as the influence of the inertial constraint (height of the water pool). (author)

  19. French steam generator

    International Nuclear Information System (INIS)

    Remond, A.

    1986-01-01

    After recalling the potential damage mode of tubes of steam generator, the author recalls the safety criteria used in France. The improvements and the process of damage prejudice and reparation for tubular bundle are presented [fr

  20. Steam purity in PWRs

    International Nuclear Information System (INIS)

    Hopkinson, J.

    1982-01-01

    Impurities enter the secondary loop of the PWR through both makeup water from lake or well and cooling-water leaks in the condenser. These impurities can be carried to the steam generator, where they cause corrosion deposits to form. Corrosion products in steam are swept further through the system and become concentrated at the point in the low-pressure turbine where steam begins to condense. Several plants have effectively reduced impurities, and therefore corrosion, by installing a demineralizer for the makeup water, a resin-bed system to clean condensed steam from the condenser, and a deaerator to remove oxygen from the water and so lower the risk of system metal oxidation. 5 references, 1 figure

  1. Liquid metal steam generator

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1975-01-01

    A liquid metal heated steam generator is described which in the event of a tube failure quickly exhausts out of the steam generator the products of the reaction between the water and the liquid metal. The steam is generated in a plurality of bayonet tubes which are heated by liquid metal flowing over them between an inner cylinder and an outer cylinder. The inner cylinder extends above the level of liquid metal but below the main tube sheet. A central pipe extends down into the inner cylinder with a centrifugal separator between it and the inner cylinder at its lower end and an involute deflector plate above the separator so that the products of a reaction between the liquid metal and the water will be deflected downwardly by the deflector plate and through the separator so that the liquid metal will flow outwardly and away from the central pipe through which the steam and gaseous reaction products are exhausted. (U.S.)

  2. Steam cleaning device

    International Nuclear Information System (INIS)

    Karaki, Mikio; Muraoka, Shoichi.

    1985-01-01

    Purpose: To clean complicated and long objects to be cleaned having a structure like that of nuclear reactor fuel assembly. Constitution: Steams are blown from the bottom of a fuel assembly and soon condensated initially at the bottom of a vertical water tank due to water filled therein. Then, since water in the tank is warmed nearly to the saturation temperature, purified water is supplied from a injection device below to the injection device above the water tank on every device. In this way, since purified water is sprayed successively from below to above and steams are condensated in each of the places, the entire fuel assembly elongated in the vertical direction can be cleaned completely. Water in the reservoir goes upward like the steam flow and is drained together with the eliminated contaminations through an overflow pipe. After the cleaning has been completed, a main steam valve is closed and the drain valve is opened to drain water. (Kawakami, Y.)

  3. Steam generator water lancing

    International Nuclear Information System (INIS)

    Kamler, F.; Schneider, W.

    1992-01-01

    The tubesheet and tube support plate deposits in CANDU steam generators are notable for their hardness. Also notable is the wide variety of steam generator access situations. Because of the sludge hardness and the difficulty of the access, traditional water lancing processes which directed jets from the central tube free lane or from the periphery of the bundle have proven unsuitable. This has led to the need for some very unique inter tube water lancing devices which could direct powerful water jets directly onto the deposits. This type of process was applied to the upper broached plates of the Bruce A steam generators, which had become severely blocked. It has since been applied to various other steam generator situations. This paper describes the flexlance equipment development, qualification, and performance in the various CANDU applications. 4 refs., 2 tabs., 7 figs

  4. New Mix Explosives for Explosive Welding

    Science.gov (United States)

    Andreevskikh, Leonid

    2011-06-01

    Suggested and tested were some mix explosives--powder mixtures of a brisant high explosive (HE = RDX, PETN) and an inert diluent (baking soda)--for use in explosive welding. RDX and PETN were selected in view of their high throwing ability and low critical diameter. Since the decomposition of baking soda yields a huge amount of gaseous products, its presence ensures (even at a low HE percentage) a throwing speed that is sufficient for realization of explosive welding, at a reduced brisant action of charge. Mix chargers containing 30-70 wt % HE (the rest baking soda) have been tested experimentally and optimized. For study of possibility to reduce critical diameter of HE mixture, the mixture was prepared where HE crystal sizes did not exceed 10 μm. The tests, which were performed with this HE, revealed that the mixture detonated stably with the velocity D ~ 2 km/s, if the layer thickness was d = 2 mm. The above explosives afford to markedly diminish deformations within the oblique impact zone and thus to carry out explosive welding of hollow items and thin metallic foils.

  5. Steam-water separator

    International Nuclear Information System (INIS)

    Modrak, T.M.; Curtis, R.W.

    1978-01-01

    The steam-water separator connected downstream of a steam generator consists of a vertical centrifugal separator with swirl blades between two concentric pipes and a cyclone separator located above. The water separated in the cyclone separator is collected in the inner tube of the centrifugal separator which is closed at the bottom. This design allows the overall height of the separator to be reduced. (DG) [de

  6. X-ray transmission movies of spontaneous dynamic events

    International Nuclear Information System (INIS)

    Smilowitz, L.; Henson, B. F.; Holmes, M.; Novak, A.; Oschwald, D.; Dolgonos, P.; Qualls, B.

    2014-01-01

    We describe a new x-ray radiographic imaging system which allows for continuous x-ray transmission imaging of spontaneous dynamic events. We demonstrate this method on thermal explosions in three plastic bonded formulations of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. We describe the x-ray imaging system and triggering developed to enable the continuous imaging of a thermal explosion

  7. Design of Monju steam generator - with regard to maintenance and repair

    International Nuclear Information System (INIS)

    Takahashi, T.; Yamagishi, Y.; Mukaibo, R.

    2002-01-01

    The steam generator design of 'Monju' started in 1968 and since then, extensive research and design work has been done. 'Monju' steam generator consists of one evaporator and one superheater to each of the three independent cooling systems. Ultrasonic and eddy current tubing inspection devices have been developed for maintenance. And for failed tubes, welding or explosive plugging is applied. Following the completed safety review and the coming design and construction licensing, 'Monju' is expected to reach criticality in fiscal year 1990. (author)

  8. Vapor Explosions with Subcooled Freon

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.; McUmber, L.M.

    1976-01-01

    Explosive vapor formation accompanied by destructive shock waves, can be produced when two liquids, at much different temperatures, are brought into intimate contact. A proposed analytical model states that the interface temperature upon contact between the two liquid systems, gust be greater than or equal to the spontaneous nucleation temperature of that liquid-liquid system and that the thermal boundary layer must be sufficiently developed to support a critical size cavity. For time scales greater than 10-12 sec, the interface temperature upon contact of two semi-infinite masses, with constant thermal properties, can be related to the initial liquid temperatures. The spontaneous nucleation behavior at the interface can either be heterogeneous or homogeneous in nature. In either case, the critical size cavities, which initiate the vaporization process, are produced by local density fluctuations within the cold liquid. For homogeneous conditions, the two liquids present a well-wetted system and the vapor embryos are produced entirely within the cold liquid. For heterogeneous conditions, which result from poor, or imperfect wetting, at the liquid-liquid interface, the critical sized cavities are created at the interface at somewhat lower temperatures. A sequence of experiments, using Freon-22 and water, Freon-22 and mineral oil, and Freon-12 and mineral oil have been performed to test this spontaneous nucleation premise. For Freon-22 at its normal boiling point, the interface temperature of the water must be at least 77 deg. C before the interface temperature equals or exceeds the minimum homogeneous nucleation value of 54 deg. C and 84 deg. C before the interface temperature equals 60 deg. C where the homogeneous nucleation rate becomes truly explosive. The Freon-water test demonstrated explosive interactions for water temperatures considerably lower than this value and this was attributed to the heterogeneous nucleation characteristics of that particular system

  9. Free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  10. Nuclear explosives and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P

    1971-10-01

    A nuclear explosive 12 in. in diam and producing very little tritium is feasible in France. Such a device would be well adapted for contained nuclear explosions set off for the purpose of hydrocarbon storage or stimulation. The different aspects of setting off the explosive are reviewed. In the particular case of gas storage in a nuclear cavity in granite, it is demonstrated that the dose of irradiation received is extremely small. (18 refs.)

  11. Chernobyl explosion bombshell

    International Nuclear Information System (INIS)

    Martin, S.; Arnott, D.

    1988-01-01

    It is suggested that the explosion at the Chernobyl-4 reactor in April 1986 was a nuclear explosion. The evidence for this is examined. The sequence of events at Chernobyl is looked at to see if the effects were like those from a nuclear explosion. The question of whether a United Kingdom reactor could go prompt critical is discussed. It is concluded that prompt criticality excursions are possible, but the specific Chernobyl sequence is impossible. (UK)

  12. A mathematical model of steam-drum dynamics

    International Nuclear Information System (INIS)

    Moeck, E.O.; Hinds, H.W.

    1976-12-01

    Mathematical equations describing the dynamic behaviour of pressure, water mass, etc. in a steam drum are derived from basic principles. The resultant model includes such effects as steam superheating and water subcooling as well as spontaneous flashing of liquid and condensation of vapour. Experimental data from a pressurizer are adequately predicted by the model. The pressure rise following a turbine trip can be predicted by the isentropic-compression model but not by the thermodynamic-equilibrium model. The equations are individually linearized and implemented on an analog computer in such a way that their non-linear behaviour is retained for small-perturbation studies. (author)

  13. Explosive Technology Group

    Data.gov (United States)

    Federal Laboratory Consortium — The Explosive Technology Group (ETG) provides diverse technical expertise and an agile, integrated approach to solve complex challenges for all classes of energetic...

  14. Spontaneous Pneumothorax

    Directory of Open Access Journals (Sweden)

    John Costumbrado

    2017-09-01

    Full Text Available History of present illness: A 16-year-old male with asthma was brought to the emergency department by his parents for increasing right-sided chest pain associated with cough and mild dyspnea over the past week. Albuterol inhaler did not provide relief. He denied recent trauma, fever, sweats, and chills. The patient’s vitals and oxygen saturations were stable. Physical exam revealed a tall, slender body habitus with no signs of chest wall injuries. Bilateral breath sounds were present, but slightly diminished on the right. A chest radiograph was ordered to determine the etiology of the patient’s symptoms. Significant findings: Initial chest radiograph showed a 50% right-sided pneumothorax with no mediastinal shift, which can be identified by the sharp line representing the pleural lung edge (see arrows and lack of peripheral lung markings extending to the chest wall. While difficult to accurately estimate volume from a two-dimensional image, a 2 cm pneumothorax seen on chest radiograph correlates to approximately 50% volume.1 The patient underwent insertion of a pigtail pleural drain on the right and repeat chest radiograph showed resolution of previously seen pneumothorax. Ultimately the pigtail drain was removed and chest radiograph showed clear lung fields without evidence of residual pneumothorax or pleural effusion. Discussion: Pneumothorax is characterized by air between the lungs and the chest wall.2 Spontaneous pneumothorax (SP occurs when the pneumothorax is not due to trauma or any discernable etiology. 3 SP is multifactorial and may be associated with subpleural blebs, bullae, and other connective tissue changes that predispose the lungs to leak air into the pleural space.4 SP can be further subdivided into primary (no history of underlying lung disease or secondary (history of chronic obstructive pulmonary disease, tuberculosis, cystic fibrosis, lung malignancy, etc..2 It is estimated that the incidence of SP among US pediatric

  15. Bubble nucleation in an explosive micro-bubble actuator

    NARCIS (Netherlands)

    van den Broek, D.M.; Elwenspoek, Michael Curt

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure

  16. ISOLATION AND CHARACTERIZATION OF CELLULOSE AND LIGNIN FROM STEAM-EXPLODED LIGNOCELLULOSIC BIOMASS

    OpenAIRE

    Maha M. Ibrahim; Foster A. Agblevor; Waleed K. El-Zawawy

    2010-01-01

    The isolation of cellulose from different lignocellulosic biomass sources such as corn cob, banana plant, cotton stalk, and cotton gin waste, was studied using a steam explosion technology as a pre-treatment process for different times followed by alkaline peroxide bleaching. The agricultural residues were steam-exploded at 220 ºC for 1-4 min for the corn cob, 2 and 4 min for the banana plant, 3-5 min for the cotton gin waste, and for 5 min for the cotton stalk. The steamed fibers were water ...

  17. The resistance to PWSCC of explosively expanded Alloy 600 tube-to-tubesheet joints

    International Nuclear Information System (INIS)

    Gold, R.E.; Pement, F.W.; Tarabek, S.A.; Economy, G.

    1992-01-01

    Experimental evaluations were performed to determine the approximate magnitude of the residual stresses associated with explosively expanded steam generator tubing, and to assess the resistance to primary water stress corrosion cracking (PWSCC) of these expansions. Indexing of residual stresses was performed by means of magnesium chloride exposures of surrogate stainless steel mockups. The PWSCC resistance was evaluated by the testing of pressurized mockups of explosively expanded mill annealed Alloy 600 tubing in a highly accelerated Alloy 600 tubing in a highly accelerated steam test environment. Shot peening of the inside tube surfaces was demonstrated to be effective in modifying the residual stresses, providing additional resistance to PWSCC

  18. Explosion metal welding

    International Nuclear Information System (INIS)

    Popoff, A.A.

    1976-01-01

    Process parameters pertaining to welding similar and dissimilar metals using explosives are reviewed. The discussion centers on the interrelationship of physical parameters which play a part in achieving desirable metallurgical results. Present activities in explosion metal welding at LASL are presented and shown how they related to the interests of the ERDA community

  19. Explosions and static electricity

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1995-01-01

    The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...

  20. Cell phone explosion.

    Science.gov (United States)

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj

    2016-03-01

    Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging. © The Author(s) 2015.

  1. Underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Gary H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  2. Underground nuclear explosions

    International Nuclear Information System (INIS)

    Higgins, Gary H.

    1970-01-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  3. Steam generator arrangement

    International Nuclear Information System (INIS)

    Ssinegurski, E.

    1981-01-01

    A steam flow path arrangement for covering the walls of the rear gas pass of a steam generator is disclosed. The entire flow passes down the sidewalls with a minor portion then passing up through the rear wall to a superheater inlet header at an intermediate elevation. The major portion of the flow passes up the front wall and through hanger tubes to a roof header. From there the major portion passes across the roof and down the rear wall to the superheater inlet header at the intermediate elevation

  4. Steam generator sludge removal apparatus

    International Nuclear Information System (INIS)

    Schafer, B.W.; Werner, C.E.; Klahn, F.C.

    1992-01-01

    The present invention relates to equipment for cleaning steam generators and in particular to a high pressure fluid lance for cleaning sludge off the steam generator tubes away from an open tube lane. 6 figs

  5. Research topics in explosives - a look at explosives behaviors

    International Nuclear Information System (INIS)

    Maienschein, J L

    2014-01-01

    The behaviors of explosives under many conditions - e.g., sensitivity to inadvertent reactions, explosion, detonation - are controlled by the chemical and physical properties of the explosive materials. Several properties are considered for a range of improvised and conventional explosives. Here I compare these properties across a wide range of explosives to develop an understanding of explosive behaviors. For improvised explosives, which are generally heterogeneous mixtures of ingredients, a range of studies is identified as needed to more fully understand their behavior and properties. For conventional explosives, which are generally comprised of crystalline explosive molecules held together with a binder, I identify key material properties that determine overall sensitivity, including the extremely safe behavior of Insensitive High Explosives, and discuss an approach to predicting the sensitivity or insensitivity of an explosive.

  6. Steam generators - problems and prognosis

    International Nuclear Information System (INIS)

    Tapping, R.L.

    1997-05-01

    Steam-generator problems, largely a consequence of corrosion and fouling, have resulted in increased inspection requirements and more regulatory attention to steam-generator integrity. In addition, utilities have had to develop steam-generator life-management strategies, including cleaning and replacement, to achieve design life. This paper summarizes the pertinent data to 1993/1994, and presents an overview of current steam-generator management practices. (author)

  7. A single sphere film boiling model for trigger ability and explosion potential

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Kim, Jong Hwan; Hong, Seong Ho; Hong, Seong Wan

    2012-01-01

    The main causes for the controversy about the corium explosiveness are the hydrogen effect, large voided mixture, material property, poor triggering event (wrong position, weak triggering, wrong time), and low superheat due to a high melting temperature. It has been suggested that a steam explosion of the corium/water system must be suppressed due to the physical properties of corium such as high temperature, high density, multicomponent oxide melt, and low thermal conductivity. It was also claimed that the magnitude of the effect on the FCI results of corium/water systems is on the order of higher density, higher temperature, and non eutectic composition. This concept of a material effect is supported to some degree by parametric experimental results. However, the parametric results between the steam explosion pressure and the material compositions do not directly provide an understanding of the mechanism for the material difference affecting a steam explosion process, even though the sensitivity results can reveal the trends of some parameters affecting the FCI results. This concept of a material effect is supported to some degree by parametric experimental results. The parametric tests themselves also provide us with information on the effect of each initial parameter on a steam explosion. However, sensitivity studies between the steam explosion pressure and the initial value of a parameter do not directly provide an understanding of the steam explosion process. Handling the explosion res sure and initial condition without a mixing could not contribute to a code development process. We need a certain parameter for representing mixing, but we cannot measure it during the FCI tests. The particle size distribution collected after the FCI tests can be a good indicator for explaining a mixing process. In this paper, TROI tests were analyzed in view of a particle size response for various types of fuel coolant explosions. The heat losses and remnants were calculated

  8. Nucleation Characteristics in Physical Experiments/explosions

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.

    1976-01-01

    Large-scale vapor explosion experiments have shown that intimate contact between hot and cold liquids, and a temperature upon contact that is greater than the spontaneous nucleation temperature of the system, are two necessary conditions for the onset of large scale vapor explosions. A model, based on spontaneous nucleation of the homogeneous type, has been proposed to describe the relevant processes and the resulting energetics for explosive boiling systems. The model considers that spontaneous nucleation cannot occur either during the relief time for constant volume heating or until the thermal boundary layer is sufficiently thick to support a vapor cavity of the critical size. After nucleation, bubble growth does not occur until an acoustic wave establishes a pressure gradient in the cold liquid. These considerations lead to the prediction that, for a given temperature, drops greater than a critical size will remain in film boiling due to coalescence of vapor nuclei and drops smaller than this value will wet and be captured by the hot liquid surface. These results are compared to small drop data for well-wetted systems and excellent agreement is obtained between the observed behavior and the model predictions. In conclusion: A model, based on spontaneous nucleation, has been proposed to describe vaporization potential and behavior upon contact in a liquid/liquid system. This behavior is determined by the size of the liquid mass, single-phase pressurization and acoustic relief, nucleation frequency due to random density fluctuations, the initiation of unstable growth and acoustic relief, and the development of the thermal boundary layer in the cold liquid. The proposed model predicts that the stability of a given size drop upon intimate contact with another liquid is extremely dependent upon the interface temperature. For low interface temperatures, large masses will be captured by the hot liquid and the resulting vaporization rates will be extremely low because

  9. Steam reforming of ethanol

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition...

  10. Consolidated nuclear steam generator

    International Nuclear Information System (INIS)

    Jabsen, F.S.; Schluderberg, D.C.; Paulson, A.E.

    1978-01-01

    An improved system of providing power has a unique generating means for nuclear reactors with a number of steam generators in the form of replaceable modular units of the expendable type to attain the optimum in effective and efficient vaporization of fluid during the generating power. The system is most adaptable to undrground power plants and marine usage

  11. Steam generators and furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Swoboda, E

    1978-04-01

    The documents published in 1977 in the field of steam generators for conventional thermal power plants are classified according to the following subjects: power industry and number of power plants, planning and operation, design and construction, furnaces, environmental effects, dirt accumulation and corrosion, conservation and scouring, control and automation, fundamental research, and materials.

  12. Watt steam governor stability

    Science.gov (United States)

    Denny, Mark

    2002-05-01

    The physics of the fly-ball governor, introduced to regulate the speed of steam engines, is here analysed anew. The original analysis is generalized to arbitrary governor geometry. The well-known stability criterion for the linearized system breaks down for large excursions from equilibrium; we show approximately how this criterion changes.

  13. Steam purity in PWRs

    International Nuclear Information System (INIS)

    Hopkinson, J.; Passell, T.

    1982-01-01

    Reports that 2 EPRI studies of PWRs prove that impure steam triggers decay of turbine metals. Reveals that EPRI is attempting to improve steam monitoring and analysis, which are key steps on the way to deciding the most cost-effective degree of steam purity, and to upgrade demineralizing systems, which can then reliably maintain that degree of purity. Points out that 90% of all cracks in turbine disks have occurred at the dry-to-wet transition zone, dubbed the Wilson line. Explains that because even very clean water contains traces of chemical impurities with concentrations in the parts-per-billion range, Crystal River-3's secondary loop was designed with even more purification capability; a deaerator to remove oxygen and prevent oxidation of system metals, and full-flow resin beds to demineralize 100% of the secondary-loop water from the condenser. Concludes that focusing attention on steam and water chemistry can ward off cracking and sludge problems caused by corrosion

  14. Explosives 92. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Farnfield, R.A. (ed.)

    1992-01-01

    17 papers are presented. Topics covered include: the POG system - a new concept in the use of ANFO; demolition of a motorway bridge; presplit and smooth blasting; VIBReX - a predictive code for assessing the effect of blast design on ground vibration; ground vibrations from blasting; digital seismographs; human response to blasting and the effects on planning conditions; landform construction by restoration blasting; use of small diameter explosives; efficient priming; safety management in the explosives industry; and the law on packaging of explosives. Two papers have been abstracted separately.

  15. The control and prevention of dust explosions

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Papers presented discussed: explosion characteristics and hybrid mixtures explosion characteristics and influencing factors, propagation of dust explosions in ducts, prevention of dust explosions, desensitization, explosion-proof type of construction, explosion pressure relief, optical flame barriers, slide-valves for explosion protection, Ventex explosion barrier valves, grinding and mixing plants, spray driers, dust explosions in silos, and explosion-proof bucket elevators. One paper has been abstracted separately.

  16. Thermal explosion models

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Tso Chin [Malaya Univ., Kuala Lumpur (Malaysia)

    1984-12-01

    The phenomenon of thermal explosion arises in several important safety problems, yet scientists are still baffled by its origin. This article reviews some of the models that have been proposed to explain the phenomenon.

  17. Thermal explosion models

    International Nuclear Information System (INIS)

    Tso Chin Ping

    1984-01-01

    The phenomenon of thermal explosion arises in several important safety problems, yet scientists are still baffled by its origin. This article reviews some of the models that have been proposed to explain the phenomenon. (author)

  18. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  19. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  20. Nuclear explosive driven experiments

    International Nuclear Information System (INIS)

    Ragan, C.E.

    1981-01-01

    Ultrahigh pressures are generated in the vicinity of a nuclear explosion. We have developed diagnostic techniques to obtain precise high pressures equation-of-state data in this exotic but hostile environment

  1. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  2. Intermittent Explosive Disorder

    Science.gov (United States)

    ... explosive disorder involves repeated, sudden episodes of impulsive, aggressive, violent behavior or angry verbal outbursts in which you react grossly out of proportion to the situation. Road rage, domestic abuse, throwing or breaking objects, or other temper tantrums ...

  3. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  4. Idaho Explosives Detection System

    International Nuclear Information System (INIS)

    Reber, Edward L.; Blackwood, Larry G.; Edwards, Andrew J.; Jewell, J. Keith; Rohde, Kenneth W.; Seabury, Edward H.; Klinger, Jeffery B.

    2005-01-01

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004

  5. Idaho Explosives Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Reber, Edward L. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States)]. E-mail: reber@inel.gov; Blackwood, Larry G. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Edwards, Andrew J. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Jewell, J. Keith [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Rohde, Kenneth W. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Seabury, Edward H. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Klinger, Jeffery B. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States)

    2005-12-15

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.

  6. Intermittent Explosive Disorder

    Directory of Open Access Journals (Sweden)

    Lut Tamam

    2011-09-01

    Full Text Available Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etiological studies displayed the role of both psychosocial factors like childhood traumas and biological factors like dysfunctional neurotransmitter systems and genetics. In differential diagnosis of the disorder, disorders involving agression as a symptom such as alcohol and drug intoxication, antisocial and borderline personality disorders, personality changes due to general medical conditions and behavioral disorder should be considered. A combination of pharmacological and psychotherapeutic approaches are suggested in the treatment of the disorder. This article briefly reviews the historical background, diagnostic criteria, epidemiology, etiology and treatment of intermittent explosive disorder.

  7. Consideration on hydrogen explosion scenario in APR 1400 containment building during small breakup loss of coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kweonha, E-mail: khpark@kmou.ac.kr [Division of Mechanical & Energy Systems Engineering, Korea Maritime University, Dongsam-dong, Yeongdo-gu, Busan 606-791 (Korea, Republic of); Khor, Chong Lee, E-mail: itachi_829@hotmail.com [Department of Mechanical Engineering, Korea Maritime University, Dongsam-dong, Yeongdo-gu, Busan 606-791 (Korea, Republic of)

    2015-11-15

    Highlights: • Hydrogen behavior in the containment building of APR1400 nuclear plant up to 15 h after the failure happened. • The risk of hydrogen explosion largely depends on the combination of air, hydrogen and steam in the containment. • Hydrogen explosion risk at different locations in the containment was analyzed. - Abstract: This paper describes the analytical result of the potential risk of hydrogen gas up to 15 h after the failure takes place. The major cause of the disaster occurred in Fukushima Daiichi nuclear reactor was the detonation of accumulated hydrogen in the containment by highly increased reactor core temperatures after the failure of the emergency cooling system. The hydrogen risk should be considered in severe accident strategies in current and future NPPs. A hydrogen explosion scenario is proposed. Hydrogen is accumulated on top of the dome during the hydrogen release period. At this point, there are no risk of explosion due to the steam that resides in upper part of the dome. As the hydrogen concentration increase, substantial amount of steams are released. Subsequently, hydrogen is forced into the lower part of the building with high air density—small explosion and dormant steam condensation phase are possible. The light hydrogen rises up slowly with air, gathering on top of the building with high air density. Massive hydrogen explosion is anticipated upon ignition at this stage.

  8. Sensitivities of ionic explosives

    Science.gov (United States)

    Politzer, Peter; Lane, Pat; Murray, Jane S.

    2017-03-01

    We have investigated the relevance for ionic explosive sensitivity of three factors that have been demonstrated to be related to the sensitivities of molecular explosives. These are (1) the maximum available heat of detonation, (2) the amount of free space per molecule (or per formula unit) in the crystal lattice and (3) specific features of the electrostatic potential on the molecular or ionic surface. We find that for ionic explosives, just as for molecular ones, there is an overall tendency for impact sensitivity to increase as the maximum detonation heat release is greater. This means that the usual emphasis upon designing explosives with large heats of detonation needs to be tempered somewhat. We also show that a moderate detonation heat release does not preclude a high level of detonation performance for ionic explosives, as was already demonstrated for molecular ones. Relating the free space per formula unit to sensitivity may require a modified procedure for ionic explosives; this will continue to be investigated. Finally, an encouraging start has been made in linking impact sensitivities to the electrostatic potentials on ionic surfaces, although limited so far to ammonium salts.

  9. Heavy-oil recovery in naturally fractured reservoirs with varying wettability by steam solvent co-injection

    Energy Technology Data Exchange (ETDEWEB)

    Al Bahlani, A. [Alberta Univ., Edmonton, AB (Canada); Babadagli, T. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    Steam injection may not be an efficient oil recovery process in certain circumstances, such as in deep reservoirs, where steam injection may be ineffective because of hot-water flooding due to excessive heat loss. Steam injection may also be ineffective in oil-wet fractured carbonates, where steam channels through fracture zones without effectively sweeping the matrix oil. Steam flooding is one of the many solutions for heavy oil recovery in unconsolidated sandstones that is in commercial production. However, heavy-oil fractured carbonates are more challenging, where the recovery is generally limited only to matrix oil drainage gravity due to unfavorable wettability or thermal expansion if heat is introduced during the process. This paper proposed a new approach to improve steam/hot-water injection and efficiency for heavy-oil fractured carbonate reservoirs. The paper provided background information on oil recovery from fractured carbonates and provided a statement of the problem. Three phases were described, including steam/hot-waterflooding phase (spontaneous imbibition); miscible flooding phase (diffusion); and steam/hot-waterflooding phase (spontaneous imbibition or solvent retention). The paper also discussed core preparation and saturation procedures. It was concluded that efficient oil recovery is possible using alternate injection of steam/hot water and solvent. 43 refs., 1 tab., 13 figs.

  10. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  11. Steam generators in PWR's

    International Nuclear Information System (INIS)

    Michel, R.

    1974-01-01

    The steam generator of the PWR operates according to the principle of natural circulation. It consists of a U-shaped tube bundle whose free ends are welded to a bottom plate. The tube bundle is surrounded by a cylinder jacket which has slots closely above the bottom or tube plate. The feed water mixed with boiling water enters the tube bundle through these slots. Because of its buoyancy, the steam-water mixture flows upwards. Below the tube plate there are chambers for distributing and collecting pressurized water separated by means of a partition wall. By omitting some tubes, a free alloy is created so that the tubes in the center get sufficient water, too. By asymmetrical arrangement of the partition wall it is further possible to limit the tube alloy only to the inlet side for pressurized water. The flow over the tube plate is thus improved on the inlet side. (DG) [de

  12. Vertical steam generator

    International Nuclear Information System (INIS)

    Cuda, F.; Kondr, M.; Kresta, M.; Kusak, V.; Manek, O.; Turon, S.

    1982-01-01

    A vertical steam generator for nuclear power plants and dual purpose power plants consists of a cylindrical vessel in which are placed heating tubes in the form upside-down U. The heating tubes lead to the jacket of the cylindrical collector placed in the lower part of the steam generator perpendicularly to its vertical axis. The cylindrical collector is divided by a longitudinal partition into the inlet and outlet primary water sections of the heating tubes. One ends of the heating tube leads to the jacket of the collector for primary water feeding and the second ends of the heating tubes into the jacket of the collector which feeds and offtakes primary water from the heating tubes. (B.S.)

  13. Steam generator life management

    International Nuclear Information System (INIS)

    King, P.; McGillivray, R.; Reinhardt, W.; Millman, J.; King, B.; Schneider, W.

    2003-01-01

    'Full-Text:' Steam Generator Life Management responsibility embodies doing whatever is necessary to maintain the steam generation equipment of a nuclear plant in effective, reliable service. All comes together in that most critical deliverable, namely the submission of the documentation which wins approval for return to service after an outage program. Life management must address all aspects of SG reliability over the life of the plant. Nevertheless, the life management activities leading up to return to service approval is where all of it converges. Steam Generator Life Management activities entail four types of work, all equally important in supporting the objective of successful operation. These activities are i) engineering functions; including identification of inspection and maintenance requirements, outage planning and scope definition plus engineering assessment, design and analysis as necessary to support equipment operation, ii) fitness of service work; including the expert evaluation of degradation mechanisms, disposition of defects for return to service or not, and the fitness for service analysis as required to justify ongoing operation with acceptable defects, iii) inspection work; including large scale eddy current inspection of tubing, the definition of defect size and character, code inspections of pressure vessel integrity and visual inspections for integrity and iv) maintenance work; including repairs, retrofits, cleaning and modifications, all as necessary to implement the measures defined during activities i) through iii). The paper discusses the approach and execution of the program for the achievement of the above objectives and particularly of items i) and ii). (author)

  14. What is geothermal steam worth?

    International Nuclear Information System (INIS)

    Thorhallsson, S.; Ragnarsson, A.

    1992-01-01

    Geothermal steam is obtained from high-temperature boreholes, either directly from the reservoir or by flashing. The value of geothermal steam is similar to that of steam produced in boilers and lies in its ability to do work in heat engines such as turbines and to supply heat for a wide range of uses. In isolated cases the steam can be used as a source of chemicals, for example the production of carbon dioxide. Once the saturated steam has been separated from the water, it can be transported without further treatment to the end user. There are several constraints on its use set by the temperature of the reservoir and the chemical composition of the reservoir fluid. These constraints are described (temperature of steam, scaling in water phase, gas content of steam, well output) as are the methods that have been adopted to utilize this source of energy successfully. Steam can only be transported over relatively short distances (a few km) and thus has to be used close to the source. Examples are given of the pressure drop and sizing of steam mains for pipelines. The path of the steam from the reservoir to the end user is traced and typical cost figures given for each part of the system. The production cost of geothermal steam is estimated and its sensitivity to site-specific conditions discussed. Optimum energy recovery and efficiency is important as is optimizing costs. The paper will treat the steam supply system as a whole, from the reservoir to the end user, and give examples of how the site-specific conditions and system design have an influence on what geothermal steam is worth from the technical and economic points of view

  15. Wet steam wetness measurement in a 10 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  16. Hydrologic processes and radionuclide distribution in a cavity and chimney produced by the Cannikin nuclear explosion, Amchitka Island, Alaska

    International Nuclear Information System (INIS)

    Claassen, H.C.

    1978-01-01

    An analysis of hydraulic, chemical, and radiochemical data obtained in the vicinity of the site of a nuclear explosion (code-named Cannikin, 1971), on Amchitka Island, Alaska, was undertaken to describe the hydrologic processes associated with the saturation of subsurface void space produced by the explosion. Immediately after detonation of the explosive, a subsurface cavity was created surrounding the explosion point. This cavity soon was partly filled by collapse of overburden, producing void volume in a rubble chimney extending to land surface and forming a surface-collapse sink. Surface and groundwater immediately began filling the chimney but was excluded for a time from the cavity by the presence of steam. When the steam condensed, the accumulated water in the chimney flowed into the cavity region, picking up and depositing radioactive materials along its path. Refilling of the chimney voids then resumed and was nearly complete about 260 days after the explosion. The hydraulic properties of identified aquifers intersecting the chimney were used with estimates of surface-water inflow, chimney dimensions, and the measured water-level rise in the chimney to estimate the distribution of explosion-created porosity in the chimney, which ranged from about 10 percent near the bottom to 4 percent near the top. Chemical and radiochemical analyses of water from the cavity resulted in identification of three aqueous phases: groundwater, surface water, and condensed steam. Although most water samples represented mixtures of these phases, they contained radioactivity representative of all radioactivity produced by the explosion

  17. Steam generators, turbines, and condensers. Volume six

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make?), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries)

  18. Steam turbines for the future

    International Nuclear Information System (INIS)

    Trassl, W.

    1988-01-01

    Approximately 75% of the electrical energy produced in the world is generated in power plants with steam turbines (fossil and nuclear). Although gas turbines are increasingly applied in combined cycle power plants, not much will change in this matter in the future. As far as the steam parameters and the maximum unit output are concerned, a certain consolidation was noted during the past decades. The standard of development and mathematical penetration of the various steam turbine components is very high today and is applied in the entire field: For saturated steam turbines in nuclear power plants and for steam turbines without reheat, with reheat and with double reheat in fossil-fired power plants and for steam turbines with and without reheat in combined cycle power plants. (orig.) [de

  19. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  20. Kids Inspire Kids for STEAM

    OpenAIRE

    Fenyvesi, Kristof; Houghton, Tony; Diego-Mantecón, José Manuel; Crilly, Elizabeth; Oldknow, Adrian; Lavicza, Zsolt; Blanco, Teresa F.

    2017-01-01

    Abstract The goal of the Kids Inspiring Kids in STEAM (KIKS) project was to raise students' awareness towards the multi- and transdisciplinary connections between the STEAM subjects (Science, Technology, Engineering, Arts & Mathematics), and make the learning about topics and phenomena from these fields more enjoyable. In order to achieve these goals, KIKS project has popularized the STEAM-concept by projects based on the students inspiring other students-approach and by utilizing new tec...

  1. Spontaneous external gallbladder perforation

    International Nuclear Information System (INIS)

    Noeldge, G.; Wimmer, B.; Kirchner, R.

    1981-01-01

    Spontaneous perforation of the gallbladder is one complication of cholelithiasis. There is a greater occurence of free perforation in the peritoneal cavity with bilary pertonitis, followed by the perforation into the stomach, small intestine and colon. A single case of the nowadays rare spontaneous perforation in and through the abdominal wall will be reported. Spontaneous gallbladder perforation appears nearly asymptomatic in its clinical course because of absent biliary peritonitis. (orig.) [de

  2. Novel high explosive compositions

    Science.gov (United States)

    Perry, D.D.; Fein, M.M.; Schoenfelder, C.W.

    1968-04-16

    This is a technique of preparing explosive compositions by the in-situ reaction of polynitroaliphatic compounds with one or more carboranes or carborane derivatives. One or more polynitroaliphatic reactants are combined with one or more carborane reactants in a suitable container and mixed to a homogeneous reaction mixture using a stream of inert gas or conventional mixing means. Ordinarily the container is a fissure, crack, or crevice in which the explosive is to be implanted. The ratio of reactants will determine not only the stoichiometry of the system, but will effect the quality and quantity of combustion products, the explosive force obtained as well as the impact sensitivity. The test values can shift with even relatively slight changes or modifications in the reaction conditions. Eighteen illustrative examples accompany the disclosure. (46 claims)

  3. Study of the initiation and the escalade phases of a vapour explosion; Etude de la phase d'initiation et d'escalade d'une explosion de vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Lamome, J

    2007-09-15

    The steam explosion triggering issue is discussed here by studying at the thermal fragmentation (small pressure perturbation) of a hot water droplet surrounded by a stable steam film. Fragmentation seems to be the consequence of local contacts between the droplet and the coolant. However, the exact mechanism altering the droplet following the above mentioned contacts is uncertain. After a study of the proportions in place, we realized a contact can fragment the droplet in a very short period of time. Therefore, we adopted an approach considering the contact as the explosion criteria. In order to validate this approach, we researched the explosion levels of the experimental variations based on the surrounding pressure and on the coolant's temperature. The model found again the experimental variations, the levels were found again with some uncertainty. The contact is obtained by 2 mechanisms inducing liquid's proximity: a steam film global compression due to the disturbance and the amplification of the interface defaults between the coolant and the steam. It appears it is the mechanism of global compression that explains mostly the experimental variations. Following these results, we conducted model's extrapolations in order to come as close as possible of the conditions in which steam explosion can occur on an industrial scale (i.e. in the water pressured nuclear reactors). (author)

  4. Peritonitis - spontaneous bacterial

    Science.gov (United States)

    Spontaneous bacterial peritonitis (SBP); Ascites - peritonitis; Cirrhosis - peritonitis ... who are on peritoneal dialysis for kidney failure. Peritonitis may have other causes . These include infection from ...

  5. Physical explosion analysis in heat exchanger network design

    Science.gov (United States)

    Pasha, M.; Zaini, D.; Shariff, A. M.

    2016-06-01

    The failure of shell and tube heat exchangers is being extensively experienced by the chemical process industries. This failure can create a loss of production for long time duration. Moreover, loss of containment through heat exchanger could potentially lead to a credible event such as fire, explosion and toxic release. There is a need to analyse the possible worst case effect originated from the loss of containment of the heat exchanger at the early design stage. Physical explosion analysis during the heat exchanger network design is presented in this work. Baker and Prugh explosion models are deployed for assessing the explosion effect. Microsoft Excel integrated with process design simulator through object linking and embedded (OLE) automation for this analysis. Aspen HYSYS V (8.0) used as a simulation platform in this work. A typical heat exchanger network of steam reforming and shift conversion process was presented as a case study. It is investigated from this analysis that overpressure generated from the physical explosion of each heat exchanger can be estimated in a more precise manner by using Prugh model. The present work could potentially assist the design engineer to identify the critical heat exchanger in the network at the preliminary design stage.

  6. High-nitrogen explosives

    Energy Technology Data Exchange (ETDEWEB)

    Naud, D. (Darren); Hiskey, M. A. (Michael A.); Kramer, J. F. (John F.); Bishop, R. L. (Robert L.); Harry, H. H. (Herbert H.); Son, S. F. (Steven F.); Sullivan, G. K. (Gregg K.)

    2002-01-01

    The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAz

  7. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1984-10-01

    A review of the performance of steam generator tubes in 116 water-cooled nuclear power reactors showed that tubes were plugged at 54 (46 percent) of the reactors. The number of tubes removed from service decreased from 4 692 (0.30 percent) in 1981 to 3 222 (0.20 percent) in 1982. The leading causes of tube failures were stress corrosion cracking from the primary side, stress corrosion cracking (or intergranular attack) from the secondary side and pitting corrosion. The lowest incidence of corrosion-induced defects from the secondary side occurred in reactors that have used only volatile treatment, with or without condensate demineralization

  8. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Tapping, R.L.; Stipan, L.

    1992-03-01

    A survey of steam generator operating experience for 1986 has been carried out for 184 pressurized water and pressurized heavy-water reactors, and 1 water-cooled, graphite-moderated reactor. Tubes were plugged at 75 of the reactors (40.5%). In 1986, 3737 tubes were plugged (0.14% of those in service) and 3148 tubes were repaired by sleeving. A small number of reactors accounted for the bulk of the plugged tubes, a phenomenon consistent with previous years. For 1986, the available tubesheet sludge data for 38 reactors has been compiled into tabular form, and sludge/deposit data will be incorporated into all future surveys

  9. Steam generator auxiliary systems

    International Nuclear Information System (INIS)

    Heinz, A.

    1982-01-01

    The author deals with damage and defect types obtaining in auxiliary systems of power plants. These concern water/steam auxiliary systems (feed-water tank, injection-control valves, slide valves) and air/fluegas auxiliary systems (blowers, air preheaters, etc.). Operating errors and associated damage are not dealt with; by contrast, weak spots are pointed out which result from planning and design. Damage types and events are collected in statistics in order to facilitate damage evaluation for arriving at improved design solutions. (HAG) [de

  10. DEMONSTRATION BULLETIN STEAM ENHANCED REMEDIATION STEAM TECH ENVIRONMENTAL SERVICES, INC.

    Science.gov (United States)

    Steam Enhanced Remediation is a process in which steam is injected into the subsurface to recover volatile and semivolatile organic contaminants. It has been applied successfully to recover contaminants from soil and aquifers and at a fractured granite site. This SITE demonstra...

  11. Steam generators: critical components in nuclear steam supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Stevens-Guille, P D

    1974-02-28

    Steam generators are critical components in power reactors. Even small internal leaks result in costly shutdowns for repair. Surveys show that leaks have affected one half of all water-cooled reactors in the world with steam generators. CANDU reactors have demonstrated the highest reliability. However, AECL is actively evolving new technology in design, manufacture, inspection and operation to maintain reliability. (auth)

  12. Explosive material treatment in particular the explosive compaction of powders

    International Nuclear Information System (INIS)

    Pruemmer, R.

    1985-01-01

    The constructive use of explosives in the last decades has led to new procedures in manufacturing techniques. The most important of these are explosive forming and cladding, the latter especially for the production of compound materials. The method of explosive compaction has the highest potential for further innovation. Almost theoretical densities are achievable in the green compacts as the pressure released by detonating explosives are very high. Also, the production of new conditions of materials (metastable high pressure phases) is possible. (orig.) [de

  13. Steam-Generator Integrity Program/Steam-Generator Group Project

    International Nuclear Information System (INIS)

    1982-10-01

    The Steam Generator Integrity Program (SGIP) is a comprehensive effort addressing issues of nondestructive test (NDT) reliability, inservice inspection (ISI) requirements, and tube plugging criteria for PWR steam generators. In addition, the program has interactive research tasks relating primary side decontamination, secondary side cleaning, and proposed repair techniques to nondestructive inspectability and primary system integrity. The program has acquired a service degraded PWR steam generator for research purposes. This past year a research facility, the Steam Generator Examination Facility (SGEF), specifically designed for nondestructive and destructive examination tasks of the SGIP was completed. The Surry generator previously transported to the Hanford Reservation was then inserted into the SGEF. Nondestructive characterization of the generator from both primary and secondary sides has been initiated. Decontamination of the channelhead cold leg side was conducted. Radioactive field maps were established in the steam generator, at the generator surface and in the SGEF

  14. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment

    DEFF Research Database (Denmark)

    Sørensen, Annette; Teller, Philip Johan; Hilstrøm, Troels

    2008-01-01

    xylose prior to wet explosion. The acid presoaking extracted 63.2% xylose and 5.2% glucose. Direct enzymatic hydrolysis of the presoaked biomass was found to give only low sugar yields of 24-26% glucose. Wet explosion is a pre-treatment method that combines wet-oxidation and steam explosion. The effect...... of wet explosion on non-presoaked and presoaked Miscanthus was investigated using both atmospheric air and hydrogen peroxide as the oxidizing agent. All wet explosion pre-treatments showed to have a disrupting effect on the lignocellulosic biomass, making the sugars accessible for enzymatic hydrolysis......Miscanthus is a high yielding bioenergy crop. In this study we used acid presoaking, wet explosion, and enzymatic hydrolysis to evaluate the combination of the different pre-treatment methods for bioethanol production with Miscanthus. Acid presoaking is primarily carried out in order to remove...

  15. 75 FR 1085 - Commerce in Explosives; List of Explosive Materials (2009R-18T)

    Science.gov (United States)

    2010-01-08

    ... sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. Fulminate of mercury. Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating...

  16. 75 FR 70291 - Commerce in Explosives; List of Explosive Materials (2010R-27T)

    Science.gov (United States)

    2010-11-17

    ..., including non-cap sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. Fulminate of mercury. Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating...

  17. A Local Propagation for Vapor Explosions

    International Nuclear Information System (INIS)

    Ochiai, M.; Bankoff, S.G.

    1976-01-01

    Explosive boiling, defined as energy transfer leading to formation of vapor rapidly enough to produce large shock waves, has been widely studied in a number of contexts. Depending upon the nature and temperatures of the liquids and mode of contacting, large-scale mixing and explosive vaporization may occur, or alternatively, only relatively non-energetic, film-type boiling may exist. The key difference is whether a mechanism is operative for increasing the liquid-liquid interfacial area in a time scale consistent with the formation of a detonation wave. Small drops of a cold volatile liquid were dropped onto a free surface of a hot, non-volatile liquid. The critical Weber number for coalescence is obtained from the envelope of the film boiling region. Markedly different behavior for the two hot liquids is observed. A 'splash' theory for local propagation of vapor explosions in spontaneously nucleating liquid-liquid systems is now formulated. After a random contact is made, explosive growth and coalescence of the vapor bubbles occurs as soon as the surrounding pressure is relieved, resulting in a high-pressure vapor layer at the liquid-liquid contact area. This amounts to an impact pressure applied to the free surface, with a resulting velocity distribution obtained from potential flow theory. The peak pressure predictions are. consistent with data for Freon-oil mixing, but further evaluation will await additional experimental data. Nevertheless, the current inference is that a UO 2 -Na vapor explosion in a reactor environment cannot be visualized. In conclusion: The propagation model presented here differs in some details from that of Henry and Fauske, although both are consistent with some peak pressure data obtained by Henry, et al. Clearly, additional experimental information is needed for further evaluation of these theories. Nevertheless, it should be emphasized that even at this time a number of important observations concerning the requirements for a vapor

  18. Electricity from geothermal steam

    Energy Technology Data Exchange (ETDEWEB)

    Wheatcroft, E L.E.

    1959-01-01

    The development of the power station at Wairakei geothermal field is described. Wairakei is located at the center of New Zealand's volcanic belt, which lies within a major graben which is still undergoing some degree of downfaulting. A considerable number of wells, some exceeding 610 m, have been drilled. Steam and hot water are produced from both deep and shallow wells, which produce at gauge pressures of 1.5 MPa and 0.6 MPa, respectively. The turbines are fed by low, intermediate, and high pressure mains. The intermediate pressure turbine bank was installed as a replacement for a heavy water production facility which had originally been planned for the development. Stage 1 includes a 69 MW plant, and stage 2 will bring the capacity to 150 MW. A third stage, which would bring the output up to 250 MW had been proposed. The second stage involves the installation of more high pressure steam turbines, while the third stage would be powered primarily by hot water flashing. Generation is at 11 kV fed to a two-section 500 MVA board. Each section of the board feeds through a 40 MVA transformer to a pair of 220 V transmission lines which splice into the North Island grid. Other transformers feed 400 V auxiliaries and provide local supply.

  19. Steam generator materials

    International Nuclear Information System (INIS)

    Kim, Joung Soo; Han, J. H.; Kim, H. P.; Lim, Y. S.; Lee, D. H.; Suh, J. H.; Hwang, S. S.; Hur, D. H.; Kim, D. J.; Kim, Y. H.

    2002-05-01

    In order to keep the nuclear power plant(NPP)s safe and increase their operating efficiency, axial stress corrosion cracking(SCC)(IGA/IGSCC, PWSCC, PbSCC) test techniques were developed and SCC property data of the archive steam generator tubing materials having been used in nuclear power plants operating in Korea were produced. The data obtained in this study were data-based, which will be used to clarify the damage mechanisms, to operate the plants safely, and to increase the lifetime of the tubing. In addition, the basic technologies for the improvement of the SCC property of the tubing materials, for new SCC inhibition, for damaged tube repair, and for manufacturing processes of the tubing were developed. In the 1 phase of this long term research, basic SCC test data obtained from the archive steam generator tubing materials used in NPPs operating in Korea were established. These basic technologies developed in the 1 phase will be used in developing process optimization during the 2 phase in order to develop application technologies to the field nuclear power plants

  20. Explosive composition containing water

    Energy Technology Data Exchange (ETDEWEB)

    Cattermole, G.R.; Lyerly, W.M.; Cummings, A.M.

    1971-11-26

    This addition to Fr. 1,583,223, issued 31 May 1968, describes an explosive composition containing a water in oil emulsion. The composition contains an oxidizing mineral salt, a nitrate base salt as sensitizer, water, an organic fuel, a lipophilic emulsifier, and incorporates gas bubbles. The composition has a performance which is improved over and above the original patent.

  1. 75 FR 5545 - Explosives

    Science.gov (United States)

    2010-02-03

    ... the Storage of Ammonium Nitrate. OSHA subsequently made several minor revisions to the standard (37 FR... explosives; storing ammonium nitrate; and storing small arms ammunition, small arms primers, and small arms..., which is extremely widespread, causes lung disease, silicosis and lung cancer. Terminating the...

  2. New slurry explosives

    Energy Technology Data Exchange (ETDEWEB)

    Kale, D.C.

    1982-12-01

    Mining engineers will soon have an additional 2 or 3 types of explosives which increase rock yield without increasing cost. A new variety of Ammonium Nitrate and Fuel Oil (ANFO), which is much heavier and more powerful, is being introduced in the US. New types of NCN (nitrocarbonitrate) blasting agents have also been developed.

  3. Spontaneous intracranial hypotension.

    LENUS (Irish Health Repository)

    Fullam, L

    2012-01-31

    INTRODUCTION: Spontaneous\\/primary intracranial hypotension is characterised by orthostatic headache and is associated with characteristic magnetic resonance imaging findings. CASE REPORT: We present a case report of a patient with typical symptoms and classical radiological images. DISCUSSION: Spontaneous intracranial hypotension is an under-recognised cause of headache and can be diagnosed by history of typical orthostatic headache and findings on MRI brain.

  4. Steam hydrocarbon cracking and reforming

    NARCIS (Netherlands)

    Golombok, M.

    2004-01-01

    Many industrial chemical processes are taught as distinct contrasting reactions when in fact the unifying comparisons are greater than the contrasts. We examine steam hydrocarbon reforming and steam hydrocarbon cracking as an example of two processes that operate under different chemical reactivity

  5. Lignin Sulfonation and SO2 Addition Enhance the Hydrolyzability of Deacetylated and Then Steam-Pretreated Poplar with Reduced Inhibitor Formation.

    Science.gov (United States)

    Tang, Yong; Dou, Xiaoli; Hu, Jinguang; Jiang, Jianxin; Saddler, Jack N

    2018-01-01

    The merit of deacetylation of corn stover prior to pretreatment is decreasing the formation of inhibitors and improving enzyme hydrolysis, proved in dilute acid pretreatment. However, few studies are done on how deacetylation would affect bioconversion process containing steam explosion. In this study, the effect of deacetylation on steam explosion was conducted using poplar as substrate. About 57 to 90% of acetyl group in poplar, depending on alkaline types and concentration, was removed by dilute alkaline deacetylation in 6 h. Deacetylation eliminated over 85% of inhibitor formation during downstream steam explosion. However, deacetylation prior to steam explosion decreased the dissolution of hemicellulose, thus reducing the cellulose accessibility of pretreated poplar, finally resulting in 5-20% decrease in glucose yield and 20-35% decrease in xylose yield. The addition of 5% SO 2 during steam explosion significantly improved the hydrolysis of deacetylated and pretreated poplar without significantly increasing the concentration of inhibitors. Incorporating 45 mmol/kg sulfoacid group in lignin fraction of deacetylated and then pretreated poplar dramatically improved the xylose yield to about 100% and increased the glucose yield by 30%.

  6. Steam generator reliability improvement project

    International Nuclear Information System (INIS)

    Blomgren, J.C.; Green, S.J.

    1987-01-01

    Upon successful completion of its research and development technology transfer program, the Electric Power Research Institute's Steam Generator Owners Group (SGOG II) will disband in December 1986 and be replaced in January 1987 by a successor project, the Steam Generator Reliability Project (SGRP). The new project, funded in the EPRI base program, will continue the emphasis on reliability and life extension that was carried forward by SGOG II. The objectives of SGOG II have been met. Causes and remedies have been identified for tubing corrosion problems, such as stress corrosion cracking and pitting, and steam generator technology has been improved in areas such as tube wear prediction and nondestructive evaluation (NDE). These actions have led to improved reliability of steam generators. Now the owners want to continue with a centrally managed program that builds on what has been learned. The goal is to continue to improve steam generator reliability and solve small problems before they become large problems

  7. Steam generator reliability improvement project

    International Nuclear Information System (INIS)

    Blomgren, J.C.; Green, S.J.

    1987-01-01

    Upon successful completion of its research and development technology transfer program, the Electric Power Research Institute's (EPRI's) Steam Generator Owners Group (SGOG II) will disband in December 1986, and be replaced in January 1987, by a successor project, the Steam Generator Reliability Project (SGRP). The new project, funded in the EPRI base program, will continue to emphasize reliability and life extension, which were carried forward by SGOG II. The objectives of SGOG II have been met. Causes and remedies have been identified for tubing corrosion problems such as stress corrosion cracking and pitting, and steam generator technology has been improved in areas such as tube wear prediction and nondestructive evaluation. These actions have led to improved reliability of steam generators. Now the owners want to continue with a centrally managed program that builds on what has been learned. The goal is to continue to improve steam generator reliability and to solve small problems before they become large problems

  8. Steam generator tube integrity program

    International Nuclear Information System (INIS)

    Dierks, D.R.; Shack, W.J.; Muscara, J.

    1996-01-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given

  9. An Improved Steam Injection Model with the Consideration of Steam Override

    OpenAIRE

    He , Congge; Mu , Longxin; Fan , Zifei; Xu , Anzhu; Zeng , Baoquan; Ji , Zhongyuan; Han , Haishui

    2017-01-01

    International audience; The great difference in density between steam and liquid during wet steam injection always results in steam override, that is, steam gathers on the top of the pay zone. In this article, the equation for steam override coefficient was firstly established based on van Lookeren’s steam override theory and then radius of steam zone and hot fluid zone were derived according to a more realistic temperature distribution and an energy balance in the pay zone. On this basis, th...

  10. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    Science.gov (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  11. Steam-generator tube failures: world experience in water-cooled nuclear power reactors during 1972

    International Nuclear Information System (INIS)

    Stevens-Guille, P.D.

    1975-01-01

    During 1972, approximately one in three operating reactors with steam generators incurred tube failures, predominantly near the tube sheet and in the bend region. Various forms of corrosion were the most frequent cause of failure. Eddy-current inspection was the preferred method for locating and investigating the cause of failure. Extensive use was made of both mechanical and explosive plugs for repair. As a class, steam generators with Monel 400 tubes had the lowest failure rates, and those with Inconel 600 tubes had the highest. (U.S.)

  12. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1982-04-01

    The performance of steam generator tubes in water-cooled nuclear power reactors has been reviewed for 1980. Tube defects occurred at 38% of the 97 reactors surveyed. This is a marginal improvement over 1979 when defects occurred at 41% of the reactors. The number of failed tubes was also lower, 0.14% of the tubes in service in 1980 compared with 0.20% of those in service in 1979. Analysis of the causes of these failures indicates that stress corrosion cracking was the leading failure mechanism. Reactors that used all-volatile treatment of secondary water, with or without full-flow condensate demineralization since start-up showed the lowest incidence of corrosion-related defects

  13. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1983-08-01

    A review of the performance of steam generator tubes in 110 water-cooled nuclear power reactors showed that tubes were plugged at 46 (42 percent) of the reactors. The number of tubes removed from service increased from 1900 (0.14 percent) in 1980 to 4692 (0.30 percent) in 1981. The leading causes of tube failures were stress corrosion cracking from the primary side, stress corrosion cracking (or intergranular attack) from the secondary side and pitting corrosion. The lowest incidence of corrosion-induced defects from the secondary side occurred in reactors that used all-volatile treatment since start-up. At one reactor a large number of degraded tubes were repaired by sleeving which is expected to become an important method of tube repair in the future

  14. Erosion corrosion in wet steam

    International Nuclear Information System (INIS)

    Tavast, J.

    1988-03-01

    The effect of different remedies against erosion corrosion in wet steam has been studied in Barsebaeck 1. Accessible steam systems were inspected in 1984, 1985 and 1986. The effect of hydrogen peroxide injection of the transport of corrosion products in the condensate and feed water systems has also been followed through chemical analyses. The most important results of the project are: - Low alloy chromium steels with a chromium content of 1-2% have shown excellent resistance to erosion corrosion in wet steam. - A thermally sprayed coating has shown good resistance to erosion corrosion in wet steam. In a few areas with restricted accessibility minor attacks have been found. A thermally sprayed aluminium oxide coating has given poor results. - Large areas in the moisture separator/reheater and in steam extraction no. 3 have been passivated by injection of 20 ppb hydrogen peroxide to the high pressure steam. In other inspected systems no significant effect was found. Measurements of the wall thickness in steam extraction no. 3 showed a reduced rate of attack. - The injection of 20 ppb hydrogen peroxide has not resulted in any significant reduction of the iron level result is contrary to that of earlier tests. An increase to 40 ppb resulted in a slight decrease of the iron level. - None of the feared disadvantages with hydrogen peroxide injection has been observed. The chromium and cobalt levels did not increase during the injection. Neither did the lifetime of the precoat condensate filters decrease. (author)

  15. CANDU steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermalhydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. The research and development program, as well as operating experience, has identified where improvements in operating practices and/or designs can be made in order to ensure steam generator design life at an acceptable capacity factory. (author)

  16. Services Textbook of Explosives

    Science.gov (United States)

    1972-03-01

    the propagation in such systems of the detonation wave which had been observed in 1881 by Berthelot and Vieille and by Mallard and le Chatelier . In...detonation, Berthelot and Le Chatelier , Dautrich 4 - 63: Calorometric value 4 -- 66, Power of explosive, lead block, Trauzl 4 - 67- Ballistic pendulum 4...the principles of electric ignition were applied to this system also. 75. In 1890-91 Curtius first prepared lead, silver and mercury azides. The

  17. Numerical computation of underwater explosions due to fuel-coolant interactions

    International Nuclear Information System (INIS)

    Lee, J.H.S.; Frost, D.L.; Knystautas, R.; Teodorczyk, A.; Ciccarelli, G.; Thibault, P.; Penrose, J.

    1989-03-01

    If coarse molten material is released into a coolant the possibility exists for a violent steam explosion. A detailed quantitative description of the processes involved in steam explosions is currently beyond the capabilities of the scientific community. However, a conservative estimate of the pressure transients resulting from a steam explosion can be obtained by studying the dynamics of the shock associated with the expansion of a high-pressure vapour bubble. In this study, the hydrodynamic equations governing the shock propagation of an expanding bubble were integrated numerically using the Flux Corrected Transport code. Simpler acoustic models based on experience with underwater explosions were also developed and used to estimate pressure transients and to calculate the peak pressures for benchmark cases. The results were found to be an order of magnitude higher than the corresponding pressures obtained using a complex model developed by Henry. A simplified version of the Henry model was developed by neglecting the complex description of the two-phase flow inside the ruptured tube and the arbitrarily assumed heat transfer and condensation rates. Results from the simplified model were found to be generally similar to, but had higher peak pressures than those obtained using the Henry model. It is concluded that the results produced by simple acoustic models, or by a simplified Henry model, are more conservative than the corresponding results obtained with the original Henry model

  18. Advanced technologies on steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kaoru; Nakamura, Yuuki [Mitsubishi Heavy Industry Co., Takasago (Japan); Nakamori, Nobuo; Mizutani, Toshiyuki; Uwagawa, Seiichi; Saito, Itaru [Mitsubishi Heavy Industry Co., Kobe (Japan); Matsuoka, Tsuyoshi [Mitsubishi Heavy Industry Co., Yokohama (Japan)

    1997-12-31

    The thermal-hydraulic tests for a horizontal steam generator of a next-generation PWR (New PWR-21) were performed. The purpose of these tests is to understand the thermal-hydraulic behavior in the secondary side of horizontal steam generator during the plant normal operation. A test was carried out with cross section slice model simulated the straight tube region. In this paper, the results of the test is reported, and the effect of the horizontal steam generator internals on the thermalhydraulic behavior of the secondary side and the circulation characteristics of the secondary side are discussed. (orig.). 3 refs.

  19. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  20. Advanced technologies on steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kaoru; Nakamura, Yuuki [Mitsubishi Heavy Industry Co., Takasago (Japan); Nakamori, Nobuo; Mizutani, Toshiyuki; Uwagawa, Seiichi; Saito, Itaru [Mitsubishi Heavy Industry Co., Kobe (Japan); Matsuoka, Tsuyoshi [Mitsubishi Heavy Industry Co., Yokohama (Japan)

    1998-12-31

    The thermal-hydraulic tests for a horizontal steam generator of a next-generation PWR (New PWR-21) were performed. The purpose of these tests is to understand the thermal-hydraulic behavior in the secondary side of horizontal steam generator during the plant normal operation. A test was carried out with cross section slice model simulated the straight tube region. In this paper, the results of the test is reported, and the effect of the horizontal steam generator internals on the thermalhydraulic behavior of the secondary side and the circulation characteristics of the secondary side are discussed. (orig.). 3 refs.

  1. Explosive Leidenfrost droplets

    Science.gov (United States)

    Colinet, Pierre; Moreau, Florian; Dorbolo, Stéphane

    2017-11-01

    We show that Leidenfrost droplets made of an aqueous solution of surfactant undergo a violent explosion in a wide range of initial volumes and concentrations. This unexpected behavior turns out to be triggered by the formation of a gel-like shell, followed by a sharp temperature increase. Comparing a simple model of the radial surfactant distribution inside a spherical droplet with experiments allows highlighting the existence of a critical surface concentration for the shell to form. The temperature rise (attributed to boiling point elevation with surface concentration) is a key feature leading to the explosion, instead of the implosion (buckling) scenario reported by other authors. Indeed, under some conditions, this temperature increase is shown to be sufficient to trigger nucleation and growth of vapor bubbles in the highly superheated liquid bulk, stretching the surrounding elastic shell up to its rupture limit. The successive timescales characterizing this explosion sequence are also discussed. Funding sources: F.R.S. - FNRS (ODILE and DITRASOL projects, RD and SRA positions of P. Colinet and S. Dorbolo), BELSPO (IAP 7/38 MicroMAST project).

  2. Wet-steam erosion of steam turbine disks and shafts

    International Nuclear Information System (INIS)

    Averkina, N. V.; Zheleznyak, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.; Shishkin, V. I.

    2011-01-01

    A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

  3. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    OpenAIRE

    Qingjie Jiao; Qiushi Wang; Jianxin Nie; Xueyong Guo; Wei Zhang; Wenqi Fan

    2018-01-01

    To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-...

  4. Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA

    International Nuclear Information System (INIS)

    Hastings, P.J.; Quah, S.-K.; Borstel, R.C. von

    1976-01-01

    It is stated that strains of yeast carrying mutations in many of the steps in pathways repairing radiation-induced damage to DNA have enhanced spontaneous mutation rates. Most strains isolated because they have enhanced spontaneous mutation carry mutations in DNA repair systems. This suggests that much spontaneous mutation arises by mutagenic repair of spontaneous lesions. (author)

  5. Regulation of ageing steam generators

    International Nuclear Information System (INIS)

    Jarman, B.L.; Grant, I.M.; Garg, R.

    1998-01-01

    Recent years have seen leaks and shutdowns of Canadian CANDU plants due to steam generator tube degradation by mechanisms including stress corrosion cracking, fretting and pitting. Failure of a single steam generator tube, or even a few tubes, would not be a serious safety related event in a CANDU reactor. The leakage from a ruptured tube is within the makeup capacity of the primary heat transport system, so that as long as the operator takes the correct actions, the off-site consequences will be negligible. However, assurance that no tubes deteriorate to the point where their integrity could be seriously breached as result of potential accidents, and that any leakage caused by such an accident will be small enough to be inconsequential, can only be obtained through detailed monitoring and management of steam generator condition. This paper presents the AECB's current approach and future regulatory directions regarding ageing steam generators. (author)

  6. Model of reverse steam generator

    International Nuclear Information System (INIS)

    Malasek, V.; Manek, O.; Masek, V.; Riman, J.

    1987-01-01

    The claim of Czechoslovak discovery no. 239272 is a model designed for the verification of the properties of a reverse steam generator during the penetration of water, steam-water mixture or steam into liquid metal flowing inside the heat exchange tubes. The design may primarily be used for steam generators with a built-in inter-tube structure. The model is provided with several injection devices configured in different heat exchange tubes, spaced at different distances along the model axis. The design consists in that between the pressure and the circumferential casings there are transverse partitions and that in one chamber consisting of the circumferential casings, pressure casing and two adjoining partitions there is only one passage of the injection device through the inter-tube space. (Z.M.). 1 fig

  7. Steam generator thermal-hydraulics

    International Nuclear Information System (INIS)

    Inch, W.W.; Scott, D.A.; Carver, M.B.

    1980-01-01

    This paper discusses a code for detailed numerical modelling of steam generator thermal-hydraulics, and describes related experimental programs designed to promote in-depth understanding of three-dimensional two-phase flow. (auth)

  8. French steam generator design developments

    International Nuclear Information System (INIS)

    Ginier, R.; Campan, J.L.; Pontier, M.; Leridon, A.; Remond, A.; Castello, G.; Holcblat, A.; Paurobally, H.

    1986-01-01

    From the outset of the French nuclear power program, a significant R and D effort has been invested in improvement of the design and operation of Pressurized Water Reactors including a special committment to improving steam generators. The steam generator enhancement program has spawned a wide variety of specific R and D resources, e.g., low temperature hydraulic models for investigation of areas with single-phase flow, and freon-filled models for simulation of areas of steam generators experiencing two-phase flow (tube bundles and moisture separators). For the moisture separators, a large scale research program using freon-filled models and highly sophisticated instrumentation was used. Tests at reactor sites during startup of both 900 MWe and 1300 MWe have been used to validate the assumptions made on the basis of loop tests. These tests also demonstrated the validity of using freon to simulate two-phase flow conditions. The wealth of knowledge accumulated by the steam generator R and D program has been used to develop a new design of steam generators for the N4 plants. The current R and D effort is aimed at qualifying the N4 steam generator model and developing more comprehensive models. One prong of the R and D effort is the Megeve program. Megeve is a 25 MW steam generator which simulates operating conditions of the N4 model. The other prong is Clotaire, a freon-filled steam generator model which will be used to qualify thermal/hydraulic design codes used for multidimensional calculations for design of tube bundles

  9. Research program plan: steam generators

    International Nuclear Information System (INIS)

    Muscara, J.; Serpan, C.Z. Jr.

    1985-07-01

    This document presents a plan for research in Steam Generators to be performed by the Materials Engineering Branch, MEBR, Division of Engineering Technology, (EDET), Office of Nuclear Regulatory Research. It is one of four plans describing the ongoing research in the corresponding areas of MEBR activity. In order to answer the questions posed, the Steam Generator Program has been organized with the three elements of non-destructive examination; mechanical integrity testing; and corrosion, cleaning and decontamination

  10. Options for Steam Generator Decommissioning

    International Nuclear Information System (INIS)

    Krause, Gregor; Amcoff, Bjoern; Robinson, Joe

    2016-01-01

    Selecting the best option for decommissioning steam generators is a key consideration in preparing for decommissioning PWR nuclear power plants. Steam Generators represent a discrete waste stream of large, complex items that can lend themselves to a variety of options for handling, treatment, recycling and disposal. Studsvik has significant experience in processing full size Steam Generators at its metal recycling facility in Sweden, and this paper will introduce the Studsvik steam generator treatment concept and the results achieved to date across a number of projects. The paper will outline the important parameters needed at an early stage to assess options and to help consider the balance between off-site and on-site treatment solutions, and the role of prior decontamination techniques. The paper also outlines the use of feasibility studies and demonstration projects that have been used to help customers prepare for decommissioning. The paper discusses physical, radiological and operational history data, Pro and Contra factors for on- and off-site treatment, the role of chemical decontamination prior to treatment, planning for off-site shipments as well as Studsvik experience This paper has an original focus upon the coming challenges of steam generator decommissioning and potential external treatment capacity constraints in the medium term. It also focuses on the potential during operations or initial shut-down to develop robust plans for steam generator management. (authors)

  11. Computational fluid dynamics validation study of steam condensation on the containment walls

    International Nuclear Information System (INIS)

    Gera, B.; Sharma, P.K.; Singh, R.K.; Vaze, K.K.

    2012-01-01

    In water cooled power reactors, significant quantities of hydrogen could be produced following a severe accident (loss-of-coolant-accident along with non availability of emergency core cooling system). A sound understanding of dispersion, stratification and diffusion of released hydrogen during severe accidents is, therefore, of practical importance and use to better understand the possibility of ignition, combustion and explosion of such releases within the context of containment safety. The presence of air and steam in the containment atmosphere also affects the hydrogen distribution as steam condensation takes place at containment walls in presence of non condensable and bulk of the mixture diffuses towards wall. The application of general purpose CFD codes for the analysis of the hydrogen behaviour within NPP containments during severe accidents has been increasing over past few years. The commercial CFD codes generally do not have built-in steam condensations models. In the present work, the adaptation of a commercial multipurpose code to this kind of problem is explained, i.e. by the implementation of models for steam condensation onto walls in presence of non-condensable gases. Steam condensation was modeled using the Uchida correlation, which was originally developed to be used for 'lumped' (volume-averaged) modeling of steam condensation in the presence of non-condensable gases. The Uchida correlation is based on experiments on natural convection from relatively small vertical plates. The present methodology has been validated against experimental data from the TOSQAN and COPAIN experimental facilities. (orig.)

  12. Definition of spontaneous reconnection

    International Nuclear Information System (INIS)

    Schindler, K.

    1984-01-01

    The author discusses his view of driven versus spontaneous. There is a close link between ''spontaneous'' and ''instability.'' One of the prominent examples for instability is the thermal convection instability. Just to remind you, if you heat a fluid layer from below, it takes a certain Rayleigh number to make it unstable. Beyond the onset point you find qualitatively new features. That is called ''spontaneous,'' and this is a bit more than semantics. It's a new qualitative property that appears and it is spontaneous although we have an energy flux through the system. It's a misconception, to call this ''driven'' pointing at the energy flux through it. Of course, the convection would not exist without this energy flux. But what makes it ''spontaneous'' is that without any particular external signal, a new qualitative feature appears. And this is what is called an ''instability'' and ''spontaneous.'' From these considerations the author got a little reassured of what distinction should be made in the field of the magnetosphere. If we have a smooth energy transport into the magnetosphere and suddenly we have this qualitatively new feature (change of B-topology) coming up; then, using this terminology we don't have a choice other than calling this spontaneous or unstable, if you like. If we ''tell'' the system where it should make its neutral line and where it should make its plasmoids, then, it is driven. And this provides a very clear-cut observational distinction. The author emphasizes the difference he sees is a qualitative difference, not only a quantitative one

  13. The structure of horizontal hydrogen-steam diffusion flames

    International Nuclear Information System (INIS)

    Chan, C.K.; Guerrero, A.

    1997-01-01

    This paper summarizes a systematic study on the stability, peak temperature and flame length of various horizontal hydrogen-steam diffusion flames in air. Results from this study are discussed in terms of their impact on hydrogen management in a nuclear containment building after a nuclear reactor accident. They show that, for a certain range of emerging hydrogen-steam compositions, a stable diffusion flame can anchor itself at the break in the primary heat transport system. The length of this flame can be up to 100 times the break diameter. This implies that creation of a stable diffusion flame at the break is a possible outcome of the deliberate ignition mitigation scheme. The high temperature and heat flux from a diffusion flame can threaten nearby equipment. However, due to the presence of steam and turbulent mixing with surrounding air, the peak temperatures of these diffusion flames are much lower than the adiabatic constant pressure combustion temperature of a stoichiometric hydrogen-air mixture. These results suggest that the threat of a diffusion flame anchored at the break may be less severe than conservative analysis would indicate. Furthermore, such a flame can remove hydrogen at the source and minimize the possibility of a global gas explosion. (author)

  14. Emergent explosive synchronization in adaptive complex networks

    Science.gov (United States)

    Avalos-Gaytán, Vanesa; Almendral, Juan A.; Leyva, I.; Battiston, F.; Nicosia, V.; Latora, V.; Boccaletti, S.

    2018-04-01

    Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.

  15. Modeling steam pressure under martian lava flows

    Science.gov (United States)

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2013-01-01

    Rootless cones on Mars are a valuable indicator of past interactions between lava and water. However, the details of the lava–water interactions are not fully understood, limiting the ability to use these features to infer new information about past water on Mars. We have developed a model for the pressurization of a dry layer of porous regolith by melting and boiling ground ice in the shallow subsurface. This model builds on previous models of lava cooling and melting of subsurface ice. We find that for reasonable regolith properties and ice depths of decimeters, explosive pressures can be reached. However, the energy stored within such lags is insufficient to excavate thick flows unless they draw steam from a broader region than the local eruption site. These results indicate that lag pressurization can drive rootless cone formation under favorable circumstances, but in other instances molten fuel–coolant interactions are probably required. We use the model results to consider a range of scenarios for rootless cone formation in Athabasca Valles. Pressure buildup by melting and boiling ice under a desiccated lag is possible in some locations, consistent with the expected distribution of ice implanted from atmospheric water vapor. However, it is uncertain whether such ice has existed in the vicinity of Athabasca Valles in recent history. Plausible alternative sources include surface snow or an aqueous flood shortly before the emplacement of the lava flow.

  16. Recent Advances in Understanding Large Scale Vapour Explosions

    International Nuclear Information System (INIS)

    Board, S.J.; Hall, R.W.

    1976-01-01

    description of efficient large scale explosions it will be necessary to consider three stages: a) the setting up of a quasi-stable initial configuration; b) the triggering of this configuration; c) the propagation of the explosion. In this paper we consider each stage in turn, reviewing the relevant experimental information and theory to see to what extent the requirements for energetic explosions, and the physical processes that can satisfy these requirements, are understood. We pay particular attention to an attractively simple criterion for explosiveness, suggested by Fauske, that the contact temperature should exceed the temperature for spontaneous nucleation of the coolant, because on this criterion, sodium and UO 2 in particular are not explosive

  17. Explosive processes in nucleosynthesis

    International Nuclear Information System (INIS)

    Boyd, R.N.

    2002-01-01

    There are many explosive processes in nucleosynthesis: big bang nucleosynthesis, the rp-process, the γ-process, the ν-process, and the r-process. However, I will discuss just the rp-process and the r-process in detail, primarily because both seem to have been very active research areas of late, and because they have great potential for studies with radioactive nuclear beams. I will also discuss briefly the γ-process because of its inevitability in conjunction with the rp-process. (orig.)

  18. SLIFER measurement for explosive yield

    International Nuclear Information System (INIS)

    Bass, R.C.; Benjamin, B.C.; Miller, H.M.; Breding, D.R.

    1976-04-01

    This report describes the shorted location indicator by frequency of electrical resonance (SLIFER) system used at Sandia Laboratories for determination of explosive yield of under ground nuclear tests

  19. Zirconium hydride containing explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1981-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  20. Case of spontaneous ventriculocisternostomy

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Kanji; Yoshimoto, Hisanori; Harada, Kiyoshi; Uozumi, Tohru [Hiroshima Univ. (Japan). School of Medicine; Kuwabara, Satoshi

    1983-05-01

    The authors experienced a case of spontaneous ventriculocisternostomy diagnosed by CT scan with metrizamide and Conray. Patient was 23-year-old male who had been in good health until one month before admission, when he began to have headache and tinnitus. He noticed bilateral visual acuity was decreased about one week before admission and vomiting appeared two days before admission. He was admitted to our hospital because of bilateral papilledema and remarkable hydrocephalus diagnosed by CT scan. On admission, no abnormal neurological signs except for bilateral papilledema were noted. Immediately, right ventricular drainage was performed. Pressure of the ventricle was over 300mmH/sub 2/O and CSF was clear. PVG and PEG disclosed an another cavity behind the third ventricle, which was communicated with the third ventricle, and occlusion of aqueduct of Sylvius. Metrizamide CT scan and Conray CT scan showed a communication between this cavity and quadrigeminal and supracerebellar cisterns. On these neuroradiological findings, the diagnosis of obstructive hydrocephalus due to benign aqueduct stenosis accompanied with spontaneous ventriculocisternostomy was obtained. Spontaneous ventriculocisternostomy was noticed to produce arrest of hydrocephalus, but with our case, spontaneous regression of such symptoms did not appeared. By surgical ventriculocisternostomy (method by Torkildsen, Dandy, or Scarff), arrest of hydrocephalus was seen in about 50 to 70 per cent, which was the same results as those of spontaneous ventriculocisternostomy. It is concluded that VP shunt or VA shunt is thought to be better treatment of obstructive hydrocephalus than the various kinds of surgical ventriculocisternostomy.

  1. 76 FR 64974 - Commerce in Explosives; List of Explosive Materials (2011R-18T)

    Science.gov (United States)

    2011-10-19

    ... slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Esters of nitro-substituted alcohols. Ethyl-tetryl. Explosive conitrates. Explosive gelatins. Explosive... silver. Fulminating gold. Fulminating mercury. Fulminating platinum. Fulminating silver. G Gelatinized...

  2. 77 FR 58410 - Commerce in Explosives; List of Explosive Materials (2012R-10T)

    Science.gov (United States)

    2012-09-20

    ... sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Esters of nitro-substituted alcohols. Ethyl-tetryl. Explosive conitrates. Explosive gelatins. Explosive.... Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating platinum. Fulminating silver. G...

  3. Vibration Analysis for Steam Dryer of APR1400 Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sung-heum; Ko, Doyoung [KHNP CRI, Daejeon (Korea, Republic of); Cho, Minki [Doosan Heavy Industry, Changwon (Korea, Republic of)

    2016-10-15

    This paper is related to comprehensive vibration assessment program for APR1400 steam generator internals. According to U.S. Nuclear Regulatory Commission, Regulatory Guide 1.20 (Rev.3, March 2007), we conducted vibration analysis for a steam dryer as the second steam separator of steam generator internals. The vibration analysis was performed at the 100 % power operating condition as the normal operation condition. The random hydraulic loads were calculated by the computational fluid dynamics and the structural responses were predicted by power spectral density analysis for the probabilistic method. In order to meet the recently revised U.S. NRC RG 1.20 Rev.3, the CVAP against the potential adverse flow effects in APR1400 SG internals should be performed. This study conducted the vibration response analysis for the SG steam dryer as the second moisture separator at the 100% power condition, and evaluated the structural integrity. The predicted alternating stress intensities were evaluated to have more than 17.78 times fatigue margin compared to the endurance limit.

  4. Design of SMART steam generator cassette

    International Nuclear Information System (INIS)

    Kim, Y. W.; Kim, J. I.; Jang, M. H.

    2001-01-01

    Basic design development for the steam generator to be installed in the integral reactor SMART has been performed. Optimization of the steam generator shape, determination of the basic dimension and confirmation of the structural strength have been carried out. Individual steam generator cassette can be replaced in the optimized design concept of steam generator. Shape design of the steam generator cassette has been done on the computer based on 3-D CAE strategy. The structural integrity of the developed steam generator was investigated by performing the dynamic analysis for the steam generator cassette, flow induced vibration analysis for the tube bundle, and the thermo-mechanical analysis for the module header and tube. As for the manufacturing of steam generator, the numerical and the experimental simulation have been carried to control the amount of spring back and to eliminate residual stress. SMART steam generator cassette was developed by a sequential research of the aforementioned activities

  5. Cavity pressure history of contained nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, C E [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Knowledge of pressure in cavities created by contained nuclear explosions is useful for estimating the possibility of venting radioactive debris to the atmosphere. Measurements of cavity pressure, or temperature, would be helpful in evaluating the correctness of present code predictions of underground explosions. In instrumenting and interpreting such measurements it is necessary to have good theoretical estimates of cavity pressures. In this paper cavity pressure is estimated at the time when cavity growth is complete. Its subsequent decrease due to heat loss from the cavity to the surrounding media is also predicted. The starting pressure (the pressure at the end of cavity growth) is obtained by adiabatic expansion to the final cavity size of the vaporized rock gas sphere created by the explosion. Estimates of cavity size can be obtained by stress propagation computer codes, such as SOC and TENSOR. However, such estimates require considerable time and effort. In this paper, cavity size is estimated using a scheme involving simple hand calculations. The prediction is complicated by uncertainties in the knowledge of silica water system chemistry and a lack of information concerning possible blowoff of wall material during cavity growth. If wall material blows off, it can significantly change the water content in the cavity, compared to the water content in the ambient media. After cavity growth is complete, the pressure will change because of heat loss to the surrounding media. Heat transfer by convection, radiation and conduction is considered, and its effect on the pressure is calculated. Analysis of cavity heat transfer is made difficult by the complex nature of processes which occur at the wall where melting, vaporization and condensation of the gaseous rock can all occur. Furthermore, the melted wall material could be removed by flowing or dripping to the cavity floor. It could also be removed by expansion of the steam contained in the melt (blowoff) and by

  6. Peaceful nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-07-01

    Article V of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) specifies that the potential benefits of peaceful applications of nuclear explosions be made available to non-nuclear weapon states party to the Treaty 'under appropriate international observation and through appropriate international procedures'. The International Atomic Energy Agency's responsibility and technical competence in this respect have been recognized by its Board of Governors, the Agency's General Conference and the United Nations' General Assembly. Since 1968 when the United Nations Conference of Non-Nuclear Weapon States also recommended that the Agency initiate the necessary studies in the peaceful nuclear explosions (PNE) field, the Agency has taken the following steps: 1. The exchange of scientific and technical information has been facilitated by circulating information on the status of the technology and through the Agency's International Nuclear Information System. A bibliography of PNE-related literature was published in 1970. 2. In 1972, guidelines for 'the international observation of PNE under the provisions of NPT and analogous provisions in other international agreements' were developed and approved by the Board of Governors. These guidelines defined the basic purpose of international observation as being to verify that in the course of conducting a PNE project the intent and letter of Articles I and II of the NPT are not violated. 3. In 1974, an advisory group developed 'Procedures for the Agency to Use in Responding to Requests for PNE-Related Services'. These procedures have also been approved by the Board of Governors. 4. The Agency has convened a series of technical meetings which reviewed the 'state-of-the- art'. These meetings were convened in 1970, 1971, 1972 and in January 1975. The Fourth Technical Committee was held in Vienna from 20-24 January 1975 under the chairmanship of Dr. Allen Wilson of Australia with Experts from: Australia, France, Federal

  7. A Study on the Profile Change Measurement of Steam Generator Tubes with Tube Expansion Methods

    International Nuclear Information System (INIS)

    Kim, Young Kyu; Song Myung Ho; Choi, Myung Sik

    2011-01-01

    Steam generator tubes for nuclear power plants contain the local shape transitions on their inner or outer surface such as dent, bulge, over-expansion, eccentricity, deflection, and so on by the application of physical force during the tube manufacturing and steam generator assembling and by the sludge (that is, corrosion products) produced during the plant operation. The structural integrity of tubes will be degraded by generating the corrosive crack at that location. The profilometry using the traditional bobbin probes which are currently applied for measuring the profile change of tubes gives us basic information such as axial locations and average magnitudes of deformations. However, the three-dimensional quantitative evaluation on circumferential locations, distributional angle, and size of deformations will have to be conducted to understand the effects of residual stresses increased by local deformations on corrosive cracking of tubes. Steam generator tubes of Korean standard nuclear power plants expanded within their tube-sheets by the explosive expansion method and suffered from corrosive cracks in the early stage of power operation. Thus, local deformations of steam generator tubes at the top of tube-sheet were measured with an advanced rotating probe and a laser profiling system for the two cases where the tubes expanded by the explosive expansion method and hydraulic expansion. Also, the trends of eccentricity, deflection, and over-expansion of tubes were evaluated. The advanced eddy current profilometry was confirmed to provide accurate information of local deformations compared with laser profilometry

  8. Aspects regarding explosion risk assessment

    Directory of Open Access Journals (Sweden)

    Părăian Mihaela

    2017-01-01

    Full Text Available Explosive risk occurs in all activities involving flammable substances in the form of gases, vapors, mists or dusts which, in mixture with air, can generate an explosive atmosphere. As explosions can cause human losses and huge material damage, the assessment of the explosion risk and the establishment of appropriate measures to reduce it to acceptable levels according to the standards and standards in force is of particular importance for the safety and health of people and goods.There is no yet a recognized method of assessing the explosion risk, but regardless of the applied method, the likelihood of an explosive atmosphere occurrence has to be determined, together with the occurrence of an efficient ignition source and the magnitude of foreseeable consequences. In assessment processes, consequences analysis has a secondary importance since it’s likely that explosions would always involve considerable damage, starting from important material damages and up to human damages that could lead to death.The purpose of the work is to highlight the important principles and elements to be taken into account for a specific risk assessment. An essential element in assessing the risk of explosion in workplaces where explosive atmospheres may occur is technical installations and personal protective equipment (PPE that must be designed, manufactured, installed and maintained so that they cannot generate a source of ignition. Explosion prevention and protection requirements are governed by specific norms and standards, and a main part of the explosion risk assessment is related to the assessment of the compliance of the equipment / installation with these requirements.

  9. Spontaneous tension haemopneumothorax.

    Science.gov (United States)

    Patterson, Benjamin Oliver; Itam, Sarah; Probst, Fey

    2008-10-31

    We present a patient with sudden onset progressive shortness of breath and no history of trauma, who rapidly became haemodynamically compromised with a pneumothorax and pleural effusion seen on chest radiograph. He was treated for spontaneous tension pneumothorax but this was soon revealed to be a tension haemopneumothorax. He underwent urgent thoracotomy after persistent bleeding to explore an apical vascular abnormality seen on CT scanning. To our knowledge this is the first such case reported.Aetiology and current approach to spontaneous haemothorax are discussed briefly.

  10. Spontaneous Atraumatic Mediastinal Hemorrhage

    Directory of Open Access Journals (Sweden)

    Morkos Iskander BSc, BMBS, MRCS, PGCertMedEd

    2013-04-01

    Full Text Available Spontaneous atraumatic mediastinal hematomas are rare. We present a case of a previously fit and well middle-aged lady who presented with acute breathlessness and an increasing neck swelling and spontaneous neck bruising. On plain chest radiograph, widening of the mediastinum was noted. The bruising was later confirmed to be secondary to mediastinal hematoma. This life-threatening diagnostic conundrum was managed conservatively with a multidisciplinary team approach involving upper gastrointestinal and thoracic surgeons, gastroenterologists, radiologists, intensivists, and hematologists along with a variety of diagnostic modalities. A review of literature is also presented to help surgeons manage such challenging and complicated cases.

  11. Spontaneous tension haemopneumothorax

    Directory of Open Access Journals (Sweden)

    Itam Sarah

    2008-10-01

    Full Text Available Abstract We present a patient with sudden onset progressive shortness of breath and no history of trauma, who rapidly became haemodynamically compromised with a pneumothorax and pleural effusion seen on chest radiograph. He was treated for spontaneous tension pneumothorax but this was soon revealed to be a tension haemopneumothorax. He underwent urgent thoracotomy after persistent bleeding to explore an apical vascular abnormality seen on CT scanning. To our knowledge this is the first such case reported. Aetiology and current approach to spontaneous haemothorax are discussed briefly.

  12. Introduction to High Explosives Science

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, Cary Bradford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    These are a set of slides for educational outreach to children on high explosives science. It gives an introduction to the elements involved in this science: carbon, hydrogen, nitrogen, and oxygen. Combined, these form the molecule HMX. Many pictures are also included to illustrate explosions.

  13. Kaliski's explosive driven fusion experiments

    International Nuclear Information System (INIS)

    Marshall, J.

    1979-01-01

    An experiment performed by a group in Poland on the production of DD fusion neutrons by purely explosive means is discussed. A method for multiplying shock velocities ordinarily available from high explosives by a factor of ten is described, and its application to DD fusion experiments is discussed

  14. Study of film boiling collapse behavior during vapor explosion

    International Nuclear Information System (INIS)

    Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi.

    1996-06-01

    Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)

  15. Nuclear explosions and their effects

    Energy Technology Data Exchange (ETDEWEB)

    1958-01-01

    A brief historical background is given of the development of the atomic bomb. Also included is an account of the Hiroshima-Nagasaki bombing, plus some information on the testing and production of nuclear weapons by the United States, United Kingdom, and Russia. More detailed consideration is given to the following: the scientific principles of fission and fusion explosions; the energy released in fission and the radioactivity of fission products; blast, thermal, and radiologicalal effects of nuclear explosions; long-term radiological hazards from fall-out; and genetic effects of nuclear explosions. A brief account is given of the fission chain process, the concept of critical size, and the principles of implosion as applied to nuclear explosions. Limited information is presented on the controlled release of thermonuclear energy and catalyzed fusion reaction. Discussions are included on dose rates from radiation sources inside and outside the body, the effect of nuclear explosions on the weather, and the contamination of fish and marine organisms.

  16. Spontaneous rib fractures.

    Science.gov (United States)

    Katrancioglu, Ozgur; Akkas, Yucel; Arslan, Sulhattin; Sahin, Ekber

    2015-07-01

    Other than trauma, rib fracture can occur spontaneously due to a severe cough or sneeze. In this study, patients with spontaneous rib fractures were analyzed according to age, sex, underlying pathology, treatment, and complications. Twelve patients who presented between February 2009 and February 2011 with spontaneous rib fracture were reviewed retrospectively. The patients' data were evaluated according to anamnesis, physical examination, and chest radiographs. The ages of the patients ranged from 34 to 77 years (mean 55.91 ± 12.20 years), and 7 (58.4%) were male. All patients had severe cough and chest pain. The fractures were most frequently between 4th and 9th ribs; multiple rib fractures were detected in 5 (41.7%) patients. Eight (66.7%) patients had chronic obstructive pulmonary disease, 2 (16.7%) had bronchial asthma, and 2 (16.7%) had osteoporosis. Bone densitometry revealed a high risk of bone fracture in all patients. Patients with chronic obstructive pulmonary disease or bronchial asthma had been treated with high-dose steroids for over a year. Spontaneous rib fracture due to severe cough may occur in patients with osteoporosis, chronic obstructive pulmonary disease, or bronchial asthma, receiving long-term steroid therapy. If these patients have severe chest pain, chest radiography should be performed to check for bone lesions. © The Author(s) 2015.

  17. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Velkey, Bálint; Vitális, Eszter; Vitális, Zsuzsanna

    2017-01-01

    Spontaneous bacterial peritonitis occurs most commonly in cirrhotic patients with ascites. Pathogens get into the circulation by intestinal translocation and colonize in peritoneal fluid. Diagnosis of spontaneous bacterial peritonitis is based on elevated polymorphonuclear leukocyte count in the ascites (>0,25 G/L). Ascites culture is often negative but aids to get information about antibiotic sensitivity in positive cases. Treatment in stable patient can be intravenous then orally administrated ciprofloxacin or amoxicillin/clavulanic acid, while in severe cases intravenous III. generation cephalosporin. Nosocomial spontaneous bacterial peritonitis often caused by Gram-positive bacteria and multi-resistant pathogens can also be expected thus carbapenem should be the choice of the empiric treatment. Antibiotic prophylaxis should be considered. Norfloxacin is used most commonly, but changes are expected due to increase in quinolone resistance. As a primary prophylaxis, a short-term antibiotic treatment is recommended after gastrointestinal bleeding for 5 days, while long-term prophylaxis is for patients with low ascites protein, and advanced disease (400 mg/day). Secondary prophylaxis is recommended for all patients recovered from spontaneous bacterial peritonitis. Due to increasing antibiotic use of antibiotics prophylaxis is debated to some degree. Orv. Hetil., 2017, 158(2), 50-57.

  18. Maintaining steam/condensate lines

    International Nuclear Information System (INIS)

    Russum, S.A.

    1992-01-01

    Steam and condensate systems must be maintained with the same diligence as the boiler itself. Unfortunately, they often are not. The water treatment program, critical to keeping the boiler at peak efficiency and optimizing operating life, should not stop with the boiler. The program must encompass the steam and condensate system as well. A properly maintained condensate system maximizes condensate recovery, which is a cost-free energy source. The fuel needed to turn the boiler feedwater into steam has already been provided. Returning the condensate allows a significant portion of that fuel cost to be recouped. Condensate has a high heat content. Condensate is a readily available, economical feedwater source. Properly treated, it is very pure. Condensate improves feedwater quality and reduces makeup water demand and pretreatment costs. Higher quality feedwater means more reliable boiler operation

  19. Steam generator operation and maintenance

    International Nuclear Information System (INIS)

    Lee, C.K.

    2004-01-01

    Corrosion of steam generator tube has resulted in the need for extensive repair and replacement of steam generators. Over the past two decades, steam generator problems in the United States were viewed to be one of the most significant contributor to lost generation in operating PWR plants. When the SGOG-I (Steam Generator Owners Groups) was formed in early 1977, denting was responsible for almost 90% of the tube plugging. By the end of 1982, this figure was reduced to less than 2%. During the existence of SGOG-II (from 1982 to 1986), IGA/SCC (lntergranular Attack/Stress Corrosion Cracking) in the tube sheet, primary side SCC, pitting, and fretting surfaced as the primary causes of tube degradation. Although significant process has been made with wastage and denting, the utilities experience shows that the percentage of reactors plugging tubes and the percentage of tubes being plugged each year has remained relatively constant. The diversity of the damage mechanisms means that no one solution is likely to resolve all problems. The task of maintaining steam generator integrity continues to be formidable and challenging. As the older problems were brought under control, many new problems emerged. SGOG-II (Steam Generator Owners Group program from 1982 to 1986) has focused on these problem areas such as tube stress corrosion cracking (SCC) and intergranular attack (IGA) in the open tube sheet crevice, primary side tube cracking, pitting in the lower span, and tube fretting in preheated section and anti-vibration bar (AVB) locations. Primary Water Stress Corrosion Cracking (PWSCC) in the tube to tubesheet roll transition has been a wide spread problem in the Recirculation Steam Generators (RSG) during this period. Although significant progress has been made in resolving this problem, considerable work still remains. One typical problem in the Once Through Steam Generator (OTSG) was the tube support plate broached hole fouling which affects the OTSG steam generating

  20. Water box for steam generator

    International Nuclear Information System (INIS)

    Lecomte, Robert; Viaud, Michel.

    1975-01-01

    This invention relates to a water box for connecting an assembly composed of a vertical steam generator and a vertical pump to the vessel of the nuclear reactor, the assembly forming the primary cooling system of a pressurised water reactor. This invention makes it easy to dismantle the pump on the water box without significant loss of water in the primary cooling system of the reactor and particularly without it being necessary to drain the water contained in the steam generator beforehand. It makes it possible to shorten the time required for dismantling the primary pump in order to service or repair it and makes dismantling safer in that the dismantling does not involve draining the steam generator and therefore the critical storage of a large amount of cooling water that has been in contact with the fuel assemblies of the nuclear reactor core [fr

  1. Nucleosynthesis in stellar explosions

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.

    1983-01-01

    The final evolution and explosion of stars from 10 M/sub solar/ to 10/sup 6/ M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints.

  2. Nucleosynthesis in stellar explosions

    International Nuclear Information System (INIS)

    Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.

    1983-01-01

    The final evolution and explosion of stars from 10 M/sub solar/ to 10 6 M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints

  3. Predicting steam generator crevice chemistry

    International Nuclear Information System (INIS)

    Burton, G.; Strati, G.

    2006-01-01

    'Full text:' Corrosion of steam cycle components produces insoluble material, mostly iron oxides, that are transported to the steam generator (SG) via the feedwater and deposited on internal surfaces such as the tubes, tube support plates and the tubesheet. The build up of these corrosion products over time can lead to regions of restricted flow with water chemistry that may be significantly different, and potentially more corrosive to SG tube material, than the bulk steam generator water chemistry. The aim of the present work is to predict SG crevice chemistry using experimentation and modelling as part of AECL's overall strategy for steam generator life management. Hideout-return experiments are performed under CANDU steam generator conditions to assess the accumulation of impurities in hideout, and return from, model crevices. The results are used to validate the ChemSolv model that predicts steam generator crevice impurity concentrations, and high temperature pH, based on process parameters (e.g., heat flux, primary side temperature) and blowdown water chemistry. The model has been incorporated into ChemAND, AECL's system health monitoring software for chemistry monitoring, analysis and diagnostics that has been installed at two domestic and one international CANDU station. ChemAND provides the station chemists with the only method to predict SG crevice chemistry. In one recent application, the software has been used to evaluate the crevice chemistry based on the elevated, but balanced, SG bulk water impurity concentrations present during reactor startup, in order to reduce hold times. The present paper will describe recent hideout-return experiments that are used for the validation of the ChemSolv model, station experience using the software, and improvements to predict the crevice electrochemical potential that will permit station staff to ensure that the SG tubes are in the 'safe operating zone' predicted by Lu (AECL). (author)

  4. Nuclear reactor steam depressurization valve

    International Nuclear Information System (INIS)

    Moore, G.L.

    1991-01-01

    This patent describes improvement in a nuclear reactor plant, an improved steam depressurization valve positioned intermediate along a steam discharge pipe for controlling the venting of steam pressure from the reactor through the pipe. The improvement comprises: a housing including a domed cover forming a chamber and having a partition plate dividing the chamber into a fluid pressure activation compartment and a steam flow control compartment, the valve housing being provided with an inlet connection and an outlet connection in the steam flow control compartment, and a fluid duct in communication with a source of fluid pressure for operating the valve; a valve set mounted within the fluid flow control compartment comprising a cylindrical section surrounding the inlet connection with one end adjoining the connection and having a radially projecting flange at the other end with a contoured extended valve sealing flange provided with an annular valve sealing member, and a valve cylinder traversing the partition plate and reciprocally movable within an opening in the partition plate with one terminal and extending into the fluid pressure activation compartment and the other terminal end extending into the steam flow control compartment coaxially aligned with the valve seat surrounding the inlet connection, the valve cylinder being surrounded by two bellow fluid seals and provided with guides to inhibit lateral movement, an end of the valve cylinder extending into the fluid flow control compartment having a radially projecting flange substantially conterminous with the valve seat flange and having a contoured surface facing and complimentary to the contoured valve seating surface whereby the two contoured valve surfaces can meet in matching relationship, thus providing a pressure actuated reciprocatable valve member for making closing contact with the valve seat and withdrawing therefrom for opening fluid flow through the valve

  5. Thermochemistry of mixed explosives

    International Nuclear Information System (INIS)

    Janney, J.L.; Rogers, R.N.

    1982-01-01

    In order to predict thermal hazards of high-energy materials, accurate kinetics constants must be determined. Predictions of thermal hazards for mixtures of high-energy materials require measurements on the mixtures, because interactions among components are common. A differential-scanning calorimeter (DSC) can be used to observe rate processes directly, and isothermal methods enable detection of mechanism changes. Rate-controlling processes will change as components of a mixture are depleted, and the correct depletion function must be identified for each specific stage of a complex process. A method for kinetics measurements on mixed explosives can be demonstrated with Composition B is an approximately 60/40 mixture of RDX and TNT, and is an important military explosive. Kinetics results indicate that the mator process is the decomposition of RDX in solution in TNT with a perturbation caused by interaction between the two components. It is concluded that a combination of chemical kinetics and experimental self-heating procedures provides a good approach to the production of predictive models for thermal hazards of high-energy materials. Systems involving more than one energy-contributing component can be studied. Invalid and dangerous predictive models can be detected by a failure of agreement between prediction and experiment at a specific size, shape, and density. Rates of thermal decomposition for Composition B appear to be modeled adequately for critical-temperature predictions with the following kinetics constants: E = 180.2 kJ mole -1 and Z = 4.62 X 10 16 s -1

  6. Nuclear steam generator tubesheet shield

    International Nuclear Information System (INIS)

    Nickerson, J.H.D.; Ruhe, A.

    1982-01-01

    The invention involves improvements to a nuclear steam generator of the type in which a plurality of U-shaped tubes are connected at opposite ends to a tubesheet and extend between inlet and outlet chambers, with the steam generator including an integral preheater zone adjacent to the downflow legs of the U-shaped tubes. The improvement is a thermal shield disposed adjacent to an upper face of the tubesheet within the preheater zone, the shield including ductile cladding material applied directly to the upper face of the tubesheet, with the downflow legs of the U-shaped tubes extending through the cladding into the tubesheet

  7. Steam turbines for PWR stations

    International Nuclear Information System (INIS)

    Muscroft, J.

    1989-01-01

    The thermodynamic cycle requirements and mechanical design features applying to modern GEC 3000 rev/min steam turbines for pressurised water reactor power stations are reviewed. The most recent developments include machines of 630 MW and 985 MW output which are currently under construction. The importance of service experience with nuclear wet steam turbines associated with a variety of types of water cooled reactor and its relevance to the design of modern 3000 rev/min turbines for pressurised water reactor applications is emphasised. (author)

  8. Double wall steam generator tubing

    International Nuclear Information System (INIS)

    Padden, T.R.; Uber, C.F.

    1983-01-01

    Double-walled steam generator tubing for the steam generators of a liquid metal cooled fast breeder reactor prevents sliding between the surfaces due to a mechanical interlock. Forces resulting from differential thermal expansion between the outer tube and the inner tube are insufficient in magnitude to cause shearing of base metal. The interlock is formed by jointly drawing the tubing, with the inside wall of the outer tube being already formed with grooves. The drawing causes the outer wall of the inner tube to form corrugations locking with the grooves. (author)

  9. Steam reforming of light oxygenates

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Resasco, Daniel E; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of ethanol, acetic acid, acetone, acetol, 1-propanol, and propanal has been investigated over Ni/MgAl2O4 at temperatures between 400 and 700 degrees C and at a steam-to-carbon-ratio (S/C) of 6. The yield of H-2 and conversion increased with temperature, while the yield of by-...... of CH4. Significant deactivation of the catalyst was observed for all of the compounds and was mainly due to carbon formation. The carbon formation was highest for alcohols due to a high formation of olefins, which are potent coke precursors....

  10. Steam Digest 2001: Office of Industrial Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-01-01

    Steam Digest 2001 chronicles Best Practices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  11. Optical detection of explosives: spectral signatures for the explosive bouquet

    Science.gov (United States)

    Osborn, Tabetha; Kaimal, Sindhu; Causey, Jason; Burns, William; Reeve, Scott

    2009-05-01

    Research with canines suggests that sniffer dogs alert not on the odor from a pure explosive, but rather on a set of far more volatile species present in an explosive as impurities. Following the explosive trained canine example, we have begun examining the vapor signatures for many of these volatile impurities utilizing high resolution spectroscopic techniques in several molecular fingerprint regions. Here we will describe some of these high resolution measurements and discuss strategies for selecting useful spectral signature regions for individual molecular markers of interest.

  12. Vapor generator steam drum spray heat

    International Nuclear Information System (INIS)

    Fasnacht, F.A. Jr.

    1978-01-01

    A typical embodiment of the invention provides a combination feedwater and cooldown water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure

  13. Steam turbines for nuclear power plants

    International Nuclear Information System (INIS)

    Kosyak, Yu.F.

    1978-01-01

    Considered are the peculiarities of the design and operation of steam turbines, condensers and supplementary equipment of steam turbines for nuclear power plants; described are the processes of steam flow in humid-steam turbines, calculation and selection principles of main parameters of heat lines. Designs of the turbines installed at the Charkov turbine plant are described in detail as well as of those developed by leading foreign turbobuilding firms

  14. Passive system with steam-water injector for emergency supply of NPP steam generators

    International Nuclear Information System (INIS)

    Il'chenko, A.G.; Strakhov, A.N.; Magnitskij, D.N.

    2009-01-01

    The calculation results of reliability indicators of emergency power supply system and emergency feed-water supply system of serial WWER-1000 unit are presented. To ensure safe water supply to steam generators during station blackout it was suggested using additional passive emergency feed-water system with a steam-water injector working on steam generators dump steam. Calculated analysis of steam-water injector operating capacity was conducted at variable parameters of steam at the entrance to injector, corresponding to various moments of time from the beginning of steam-and-water damping [ru

  15. Numerical Simulation of Non-Equilibrium Two-Phase Wet Steam Flow through an Asymmetric Nozzle

    Directory of Open Access Journals (Sweden)

    Miah Md Ashraful Alam

    2017-11-01

    Full Text Available The present study reported of the numerical investigation of a high-speed wet steam flow through an asymmetric nozzle. The spontaneous non-equilibrium homogeneous condensation of wet steam was numerically modeled based on the classical nucleation theory and droplet growth rate equation combined with the field conservations within the computational fluid dynamics (CFD code of ANSYS Fluent 13.0. The equations describing droplet formations and interphase change were solved sequentially after solving the main flow conservation equations. The calculations were carried out assuming the flow two-dimensional, compressible, turbulent, and viscous. The SST k-ω model was used for modeling the turbulence within an unstructured mesh solver. The validation of numerical model was accomplished, and the results showed a good agreement between the numerical simulation and experimental data. The effect of spontaneous non-equilibrium condensation on the jet and shock structures was revealed, and the condensation shown a great influence on the jet structure.

  16. Parametric study for horizontal steam generator modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ovtcharova, I. [Energoproekt, Sofia (Bulgaria)

    1995-12-31

    In the presentation some of the calculated results of horizontal steam generator PGV - 440 modelling with RELAP5/Mod3 are described. Two nodalization schemes have been used with different components in the steam dome. A study of parameters variation on the steam generator work and calculated results is made in cases with separator and branch.

  17. STEAM DALAM PEMBUATAN PAKAN UNTUK KOMODITAS AKUAKULTUR

    Directory of Open Access Journals (Sweden)

    Sukarman Sukarman

    2010-12-01

    Full Text Available Kualitas fisik pakan (pelet untuk hewan akuakultur sangat penting, karena akan dimasukkan ke dalam air dan diharapkan tidak banyak mencemari lingkungan. Salah satu faktor yang berpengaruh dalam menjaga kualitas fisik pakan adalah penambahan dan pengaturan steam pada saat proses pembuatan pelet. Steam adalah aliran gas yang dihasilkan oleh air pada saat mendidih. Steam dibagi menjadi 3 jenis yaitu steam basah, saturated steam, dan superheated steam. Steam yang digunakan dalam proses pembuatan pelet adalah saturated steam. Pengaruh penambahan steam pada kualitas pelet bisa mencapai 20%. Penambahan steam dengan jumlah dan kualitas yang tepat akan menghasilkan pelet berkualitas. Sedangkan jika pengaturan dan penambahannya tidak tepat, maka kualitas fisik pelet akan rendah dan kemungkinan bisa merusak kandungan nutrisi seperti vitamin dan protein. Penambahan steam yang benar bisa dilakukan di dalam kondisioner dengan mengatur retention time, sudut kemiringan paddle conditioner, kecepatan putaran bearing dan menjaga kualitas steam dari mesin boiler sampai dengan kondisioner.

  18. Parametric study for horizontal steam generator modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ovtcharova, I [Energoproekt, Sofia (Bulgaria)

    1996-12-31

    In the presentation some of the calculated results of horizontal steam generator PGV - 440 modelling with RELAP5/Mod3 are described. Two nodalization schemes have been used with different components in the steam dome. A study of parameters variation on the steam generator work and calculated results is made in cases with separator and branch.

  19. Hybrid preheat/recirculating steam generator

    International Nuclear Information System (INIS)

    Lilly, G.P.

    1985-01-01

    The patent describes a hybrid preheat/recirculating steam generator for nuclear power plants. The steam generator utilizes recirculated liquid to preheat incoming liquid. In addition, the steam generator incorporates a divider so as to limit the amount of recirculating water mixed with the feedwater. (U.K.)

  20. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  1. Fire and explosion hazards to flora and fauna from explosives.

    Science.gov (United States)

    Merrifield, R

    2000-06-30

    Deliberate or accidental initiation of explosives can produce a range of potentially damaging fire and explosion effects. Quantification of the consequences of such effects upon the surroundings, particularly on people and structures, has always been of paramount importance. Information on the effects on flora and fauna, however, is limited, with probably the weakest area lying with fragmentation of buildings and their effects on different small mammals. Information has been used here to gain an appreciation of the likely magnitude of the potential fire and explosion effects on flora and fauna. This is based on a number of broad assumptions and a variety of data sources including World War II bomb damage, experiments performed with animals 30-40 years ago, and more recent field trials on building break-up under explosive loading.

  2. Using MAAP 4.0 to determine risks from steam generator tube leaks or ruptures

    International Nuclear Information System (INIS)

    Fuller, E.L.; Kenton, M.A.

    1996-01-01

    As part of the Electric Power Research Institute (EPRI) program on steam generator degradation specific management (SGDSM), the nuclear industry is investigating the effects on plant risk of severe accidents involving steam generator tube leaks or ruptures. Such accidents fall into three classes: those caused by spontaneous, steam generator tube ruptures (SGTRs) that subsequently result in core damage; those caused by design-basis accidents that lead to induced tube ruptures and subsequent core damage; and those that progress to core damage, such as a station blackout (SBO), with subsequent induced tube leakage or rupture. In each case, the potential exists for a significant fraction of the fission products released from a damaged core to reach the environment through the leaking or ruptured tubes

  3. Peaceful applications of nuclear explosions

    International Nuclear Information System (INIS)

    Wallin, L.B.

    1975-12-01

    The intension of this report is to give a survey of the field of peaceful applications of nuclear explosions. As an introduction some examples of possibilities of application are given together with a simple description of nuclear explosions under ground. After a summary of what has been done and will be done in this field nationally and internationally, a short discussion of advantages and problems with peaceful application of nuclear explosions follows. The risks of spreading nuclear weapons due to this applications are also touched before the report is finished with an attempt to judge the future development in this field. (M.S.)

  4. Donor free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E. [15 Way Points Rd., Danville, CA 94526; Wasley, Richard J. [4290 Colgate Way, Livermore, CA 94550

    1980-04-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising an organic compound or mixture of organic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and which is not an explosive, or an inorganic compound or mixture of inorganic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and selected from ammonium or alkali metal persulfates.

  5. Explosive coalescence of Magnetic Islands

    International Nuclear Information System (INIS)

    Tajima, T.; Sakai, J.I.

    1985-04-01

    An explosive reconnection process associated with nonlinear evolution of the coalescence instability is found through studies of particle and magnetohydrodynamic simulations. The explosive coalescence is a self-similar process of magnetic collapse, in which the magnetic and electrostatic energies and temperatures explode toward the explosion time t 0 as (t 0 -t)/sup 8/3/,(t 0 -t) -4 , and (t 0 -t)/sup -8/3/, respectively. Ensuing amplitude oscillations in these quantities are identified by deriving an equation of motion for the scale factor in the Sagdeev potential

  6. Failures of fine tubes of steam generators and the essential defects

    International Nuclear Information System (INIS)

    Kawano, Shinji; Ebisawa, Toru; Sato, Susumu.

    1976-01-01

    Light water reactors were sold to Japan as their economy and safety have been established, but the average availability of 11 reactors in Japan during 7 year operation is only 53%, and it is being proved that there are questions in the safety and economy. In this report, the failures of fine tubes of steam generators are discussed from the standpoint of the corrosion of materials. First, the functions and construction of the fine tubes of steam generators in PWRs are explained. The failures of the fine tubes of steam generators became frequent since the beginning of 1970s as large capacity nuclear power stations have started the operation. When the fine tubes are pierced with holes during operation and the radioactivity in primary coolant leaks into secondary coolant, it is detected with radioactivity monitors. In order to find out the broken tubes, eddy current flaw detectors are used, and the tubes on which flaws were detected we plugged by explosion welding. In these works, many manual operations are included, and the radiation exposure of workers and the difficulties in the operations are the problems. The cases of the tube failures in Japan and foreign countries, the causes and the countermeasures are described. Chemical corrosion, thermal stress cycle, shaving off due to eddy flow, and stress corrosion are the probable causes. The safety of steam generators is essentially in extremely poor state. The seriousness of the tube failures in steam generators is emphasized. (Kako, I.)

  7. Materials Performance in USC Steam

    Energy Technology Data Exchange (ETDEWEB)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  8. The STEAM behind the Scenes

    Science.gov (United States)

    Smith, Carmen Petrick; King, Barbara; González, Diana

    2015-01-01

    There is a growing need for STEAM-based (Science, Technology, Engineering, Arts, and Mathematics) knowledge and skills across a wide range of professions (Brazell 2013). Yet students often fail to see the usefulness of mathematics beyond the classroom (Kloosterman, Raymond, and Emenaker 1996), and they do not regularly make connections between…

  9. Technical diagnostics of steam turbines

    International Nuclear Information System (INIS)

    Vlckova, B.; Drahy, J.

    1987-01-01

    This paper deals with practical experience in application of technical diagnostics methods to steam turbines, in particular using pedestal and shaft vibration measurements as well as estimation of bearing metal temperature and ultrasound emission signals. An estimation of effectiveness of the diagnostics methods used is given on the basis of experimental investigations made on a 30-MW turbine. (author)

  10. Severity parameters for steam cracking

    NARCIS (Netherlands)

    Golombok, M.; Bijl, J.L.M.; Kornegoor, M.

    2001-01-01

    There are several ways to measure severity in steam cracking which are all a function of residence time, temperature, and pressure. Many measures of severity are not practicable for experimental purposes. Our experimental study shows that methane make is the best measure of severity because it is an

  11. Nuclear process steam for industry

    International Nuclear Information System (INIS)

    Seddon, W.A.

    1981-11-01

    A joint industrial survey funded by the Bruce County Council, the Ontario Energy Corporation and Atomic Energy of Canada Limited was carried out with the cooperation of Ontario Hydro and the Ontario Ministry of Industry and Tourism. Its objective was to identify and assess the future needs and interest of energy-intensive industries in an Industrial Energy Park adjacent to the Bruce Nuclear Power Development. The Energy Park would capitalize on the infrastructure of the existing CANDU reactors and Ontario Hydro's proven and unique capability to produce steam, as well as electricity, at a cost currently about half that from a comparable coal-fired station. Four industries with an integrated steam demand of some 1 x 10 6 lb/h were found to be prepared to consider seriously the use of nuclear steam. Their combined plants would involve a capital investment of over $200 million and provide jobs for 350-400 people. The high costs of transportation and the lack of docking facilities were considered to be the major drawbacks of the Bruce location. An indication of steam prices would be required for an over-all economic assessment

  12. Steam initiated hydrotalcite conversion coatings

    DEFF Research Database (Denmark)

    Zhou, Lingli; Friis, Henrik; Roefzaad, Melanie

    2018-01-01

    A facile process of exploiting high-temperature steam to deposit nvironmentally friendly hydrotalcite (HT) coatings on Al alloy 6060 was developed in a spray system. Scanning electron microscopy showed the formationf a continuous and conformal coating comprised of a compact mass of crystallites. ...

  13. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  14. Spontaneous tension haemopneumothorax

    OpenAIRE

    Patterson, Benjamin Oliver; Itam, Sarah; Probst, Fey

    2008-01-01

    Abstract We present a patient with sudden onset progressive shortness of breath and no history of trauma, who rapidly became haemodynamically compromised with a pneumothorax and pleural effusion seen on chest radiograph. He was treated for spontaneous tension pneumothorax but this was soon revealed to be a tension haemopneumothorax. He underwent urgent thoracotomy after persistent bleeding to explore an apical vascular abnormality seen on CT scanning. To our knowledge this is the first such c...

  15. Spontaneous spinal epidural abscess.

    LENUS (Irish Health Repository)

    Ellanti, P

    2011-10-01

    Spinal epidural abscess is an uncommon entity, the frequency of which is increasing. They occur spontaneously or as a complication of intervention. The classical triad of fever, back pain and neurological symptoms are not always present. High index of suspicion is key to diagnosis. Any delay in diagnosis and treatment can have significant neurological consequences. We present the case of a previously well man with a one month history of back pain resulting from an epidural abscess.

  16. Spontaneous polyploidization in cucumber.

    Science.gov (United States)

    Ramírez-Madera, Axel O; Miller, Nathan D; Spalding, Edgar P; Weng, Yiqun; Havey, Michael J

    2017-07-01

    This is the first quantitative estimation of spontaneous polyploidy in cucumber and we detected 2.2% polyploids in a greenhouse study. We provide evidence that polyploidization is consistent with endoreduplication and is an on-going process during plant growth. Cucumber occasionally produces polyploid plants, which are problematic for growers because these plants produce misshaped fruits with non-viable seeds. In this study, we undertook the first quantitative study to estimate the relative frequency of spontaneous polyploids in cucumber. Seeds of recombinant inbred lines were produced in different environments, plants were grown in the field and greenhouse, and flow cytometry was used to establish ploidies. From 1422 greenhouse-grown plants, the overall relative frequency of spontaneous polyploidy was 2.2%. Plants possessed nuclei of different ploidies in the same leaves (mosaic) and on different parts of the same plant (chimeric). Our results provide evidence of endoreduplication and polysomaty in cucumber, and that it is an on-going and dynamic process. There was a significant effect (p = 0.018) of seed production environment on the occurrence of polyploid plants. Seed and seedling traits were not accurate predictors of eventual polyploids, and we recommend that cucumber producers rogue plants based on stature and leaf serration to remove potential polyploids.

  17. Pigeonholing pyroclasts: Insights from the 19 March 2008 explosive eruption of Kīlauea volcano

    Science.gov (United States)

    Houghton, Bruce F.; Swanson, D.A.; Carey, R.J.; Rausch, J.; Sutton, A.J.

    2011-01-01

    We think, conventionally, of volcanic explosive eruptions as being triggered in one of two ways: by release and expansion of volatiles dissolved in the ejected magma (magmatic explosions) or by transfer of heat from magma into an external source of water (phreatic or phreatomagmatic explosions). We document here an event where neither magma nor an external water source was involved in explosive activity at K??lauea. Instead, the eruption was powered by the expansion of decoupled magmatic volatiles released from deeper magma, which was not ejected by the eruption, and the trigger was a collapse of near-surface wall rocks that then momentarily blocked that volatile flux. Mapping of the advected fall deposit a day after this eruption has highlighted the difficulty of constraining deposit edges from unobserved or prehistoric eruptions of all magnitudes. Our results suggest that the dispersal area of advected fall deposits could be miscalculated by up to 30% of the total, raising issues for accurate hazard zoning and assessment. Eruptions of this type challenge existing classification schemes for pyroclastic deposits and explosive eruptions and, in the past, have probably been interpreted as phreatic explosions, where the eruptive mechanism has been assumed to involve flashing of groundwater to steam. ?? 2011 Geological Society of America.

  18. New ANFO explosives made of ammonium nitrate of increased porosity and naphtha

    Energy Technology Data Exchange (ETDEWEB)

    Kutsarov, B.; Mavrodieva, R.; Ivanov, I.; Stoyanov, V.; Georgiev, N.; Krumov, I.; Katsarski, I.; Vakliev, I.

    1990-01-01

    Discusses results achieved by the KNIIPPI Niproruda Research Institute and the Osogovo enterprise in improving the quality of ANFO explosives. Ammonium nitrate with increased porosity was treated by water steam and wetting agents and then thermally treated. Naphtha in a quantity of up to 8% was then added to the ammonium nitrate to produce a powerful and stable explosive. The quality of explosive cartridges was tested first in the laboratory using the Schaffler apparatus. Test results were very satisfactory (better porosity, higher detonation velocity (2200-3600 m/s), better stability). Industrial experiments carried out in several underground mines also produced satisfactory results (better output in roadway drivage at lower operating cost and better safety). 8 refs.

  19. Explosive actuated valve

    International Nuclear Information System (INIS)

    Byrne, K.G.

    1983-01-01

    1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means

  20. Furball Explosive Breakout Test

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Joshua David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-05

    For more than 30 years the Onionskin test has been the primary way to study the surface breakout of a detonation wave. Currently the Onionskin test allows for only a small, one dimensional, slice of the explosive in question to be observed. Asymmetrical features are not observable with the Onionskin test and its one dimensional view. As a result, in 2011, preliminary designs for the Hairball and Furball were developed then tested. The Hairball used shorting pins connected to an oscilloscope to determine the arrival time at 24 discrete points. This limited number of data points, caused by the limited number of oscilloscope channels, ultimately led to the Hairball’s demise. Following this, the Furball was developed to increase the number of data points collected. Instead of shorting pins the Furball uses fiber optics imaged by a streak camera to determine the detonation wave arrival time for each point. The original design was able to capture the detonation wave’s arrival time at 205 discrete points with the ability to increase the number of data points if necessary.

  1. Steam jet ejectors are examined automatically

    International Nuclear Information System (INIS)

    Lardiere, C.

    2013-01-01

    Steam jet ejectors are used in the nuclear industry particularly for the transfer of radioactive fluids. Their working is based on the Venturi effect and the conservation of energy. A steam ejector can be considered as a thermodynamical pump without mobile parts. The Descote enterprise manufactures a broad range of steam jet ejectors and the characterization and testing of the steam ejectors was made manually and empirically so far. A new test bench has been designed, the tests are led automatically and allow a more accurate characterization and optimization of the steam jet ejectors. (A.C.)

  2. Facility to separate water and steam

    International Nuclear Information System (INIS)

    Loesel, G.

    1977-01-01

    The water/steam mixture from the pressure vessel e.g. of a BWR is separated by means of centrifugal separators untilizing the natural separation of steam. The steam is supplied to a steam drying vessel and the water to a water collecting tank. These vessels may be combined to a common vessel or connected through additional pipes. From the water collecting tank, arranged below the steam dryer, a feedwater pipe runs back to the pressure vessel. By construction out of individual components cleaning, decontamination, and operating control are essentially simplified. (RW) 891 RW [de

  3. Cycle improvement for nuclear steam power plant

    International Nuclear Information System (INIS)

    Silvestri, G.J. Jr.

    1976-01-01

    A pressure-increasig ejector element is disposed in an extraction line intermediate to a high pressure turbine element and a feedwater heater. The ejector utilizes high pressure fluid from a reheater drain as the motive fluid to increase the pressure at which the extraction steam is introduced into the feedwater heater. The increase in pressure of the extraction steam entering the feedwater heater due to the steam passage through the ejector increases the heat exchange capability of the extraction steam thus increasing the overall steam power plant efficiency

  4. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  5. Water-bearing explosive compositions

    Energy Technology Data Exchange (ETDEWEB)

    Gay, G M

    1970-12-21

    An explosive water-bearing composition, with high detonation velocity, comprises a mixture of (1) an inorganic oxidizer salt; (2) nitroglycerine; (3) nitrocellulose; (4) water; and (5) a water thickening agent. (11 claims)

  6. 30 CFR 77.1301 - Explosives; magazines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives; magazines. 77.1301 Section 77.1301... and Blasting § 77.1301 Explosives; magazines. (a) Detonators and explosives other than blasting agents shall be stored in magazines. (b) Detonators shall not be stored in the same magazine with explosives...

  7. Explosives mimic for testing, training, and monitoring

    Science.gov (United States)

    Reynolds, John G.; Durban, Matthew M.; Gash, Alexander E.; Grapes, Michael D.; Kelley, Ryan S.; Sullivan, Kyle T.

    2018-02-13

    Additive Manufacturing (AM) is used to make mimics for explosives. The process uses mixtures of explosives and matrices commonly used in AM. The explosives are formulated into a mixture with the matrix and printed using AM techniques and equipment. The explosive concentrations are kept less than 10% by wt. of the mixture to conform to requirements of shipping and handling.

  8. 8. Peaceful uses of nuclear explosions

    International Nuclear Information System (INIS)

    Musilek, L.

    1992-01-01

    The chapter deals with peaceful uses of nuclear explosions. Described are the development of the underground nuclear explosion, properties of radionuclides formed during the explosion, their distribution, the release of radioactive products of underground nuclear explosions into the air, their propagation in the atmosphere, and fallout in the landscape. (Z.S.). 1 tab., 8 figs., 19 refs

  9. Computer simulation of explosion crater in dams with different buried depths of explosive

    Science.gov (United States)

    Zhang, Zhichao; Ye, Longzhen

    2018-04-01

    Based on multi-material ALE method, this paper conducted a computer simulation on the explosion crater in dams with different buried depths of explosive using LS-DYNA program. The results turn out that the crater size increases with the increase of buried depth of explosive at first, but closed explosion cavity rather than a visible crater is formed when the buried depth of explosive increases to some extent. The soil in the explosion cavity is taken away by the explosion products and the soil under the explosion cavity is compressed with its density increased. The research can provide some reference for the anti-explosion design of dams in the future.

  10. The role of fragmentation mechanism in large-scale vapor explosions

    International Nuclear Information System (INIS)

    Liu, Jie

    2003-01-01

    A non-equilibrium, multi-phase, multi-component code PROVER-I is developed for propagation phase of vapor explosion. Two fragmentation models are used. The hydrodynamic fragmentation model is the same as Fletcher's one. A new thermal fragmentation model is proposed with three kinds of time scale for modeling instant fragmentation, spontaneous nucleation fragmentation and normal boiling fragmentation. The role of fragmentation mechanisms is investigated by the simulations of the pressure wave propagation and energy conversion ratio of ex-vessel vapor explosion. The spontaneous nucleation fragmentation results in a much higher pressure peak and a larger energy conversion ratio than hydrodynamic fragmentation. The instant fragmentation gives a slightly larger energy conversion ratio than spontaneous nucleation fragmentation, and the normal boiling fragmentation results in a smaller energy conversion ratio. The detailed analysis of the structure of pressure wave makes it clear that thermal detonation exists only under the thermal fragmentation circumstance. The high energy conversion ratio is obtained in a small vapor volume fraction. However, in larger vapor volume fraction conditions, the vapor explosion is weak. In a large-scale vapor explosion, the hydrodynamic fragmentation is essential when the pressure wave becomes strong, so a small energy conversion ratio is expected. (author)

  11. Horizontal steam generator thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [SKODA Praha Company, Prague (Czechoslovakia); Doubek, M. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. The 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.

  12. Hydrocarbon production with nuclear explosives

    International Nuclear Information System (INIS)

    Wade Watkins, J.

    1970-01-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  13. Hydrocarbon production with nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Wade Watkins, J [Petroleum Research, Bureau of Mines, U.S. Department of the Interior, Washington, DC (United States)

    1970-05-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  14. Safety engineering experiments of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Noboru

    1987-07-24

    The outline of large scale experiments carried out every year since 1969 to obtain fundamental data and then establish the safety engineering standards concerning the manufacturing, storage and transportation, etc. of all explosives was described. Because it becomes recently difficult to ensure the safety distance in powder magazines and powder plants, the sandwich structure with sand is thought to be suitable as the neighboring barrier walls. The special vertical structure for embankments to provide against a emergency explosion is effective to absorb the blast. Explosion behaviors such as initiating sensitivity, detonation, sympathetic detonation, and shock occurence of the ANFO explosives in place of dynamite and the slurry explosives were studied. The safety engineering standards for the manufacturing and application of explosives were studied to establish because accidents by tabacco fire are not still distinguished. Much data concerning early stage fire fighting, a large quantity of flooding and shock occurence from a assumption of ignition during machining in the propellants manufacturing plant, could be obtained. Basic studies were made to prevent pollution in blasting sites. Collected data are utilized for the safety administration after sufficient discussion. (4 figs, 2 tabs, 3 photos, 17 refs)

  15. Explosive Characteristics of Carbonaceous Nanoparticles

    Science.gov (United States)

    Turkevich, Leonid; Fernback, Joseph; Dastidar, Ashok

    2013-03-01

    Explosion testing has been performed on 20 codes of carbonaceous particles. These include SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes), CNFs (carbon nanofibers), graphene, diamond, fullerene, carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226-10 protocol), at a (dilute) concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples exhibited overpressures of 5-7 bar, and deflagration index KSt = V1/3 (dp/pt)max ~ 10 - 80 bar-m/s, which places these materials in European Dust Explosion Class St-1 (similar to cotton and wood dust). There was minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with particle size (BET specific surface area). Additional tests were performed on selected materials to identify minimum explosive concentration [MEC]. These materials exhibit MEC ~ 101 -102 g/m3 (lower than the MEC for coals). The concentration scans confirm that the earlier screening was performed under fuel-rich conditions (i.e. the maximum over-pressure and deflagration index exceed the screening values); e.g. the true fullerene KSt ~ 200 bar-m/s, placing it borderline St-1/St-2. Work supported through the NIOSH Nanotechnology Research Center (NTRC)

  16. Trace explosives sensor testbed (TESTbed)

    Science.gov (United States)

    Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.

    2017-03-01

    A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.

  17. Unsteady coupling effects of wet steam in steam turbines flows

    International Nuclear Information System (INIS)

    Blondel, Frederic

    2014-01-01

    In addition to conventional turbomachinery problems, both the behavior and performances of steam turbines are highly dependent on the vapour thermodynamic state and the presence of a liquid phase. EDF, the main French electricity producer, is interested in further developing its' modelling capabilities and expertise in this area to allow for operational studies and long-term planning. This PhD thesis explores the modelling of wetness formation and growth in a steam turbine and an analysis of the coupling between the liquid phase and the main flow unsteadiness. To this end, the work in this thesis took the following approach. Wetness was accounted for using a homogeneous model coupled with transport equations to take into account the effects of non-equilibrium phenomena, such as the growth of the liquid phase and nucleation. The real gas attributes of the problem demanded adapted numerical methods. Before their implementation in the 3D elsA solver, the accuracy of the chosen models was tested using a developed one-dimensional nozzle code. In this manner, various condensation models were considered, including both poly-dispersed and monodispersed behaviours of the steam. Finally, unsteady coupling effects were observed from several perspectives (1D, 1D - 3D, 3D), demonstrating the ability of the method of moments to sustain unsteady phenomena which were not apparent in a simple monodispersed model. (author)

  18. Stress analysis of steam generator row-1 tubes

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Lee, Ho Jin; Kim, Sung Chung

    2000-01-01

    Residual stresses induced in U-bending and tube-to-tubesheet joining processes of PWR's steam generator row-1 tube were measured by X-ray method and Hole-Drilling Method(HDM). The stresses resulting from the internal pressure and the temperature gradient in the steam generator were also estimated theoretically. In U-bent regions, the residual stresses at extrados were induced with compressive stress(-), and its maximum value reached -319 Mpa in axial direction at ψ=0 .deg. in position. Maximum tensile residual stress of 170 MPa was found to be at the flank side at position of ψ=90 deg., i.e., at apex region. In tube-to-tubesheet joining methods, the residual stresses induced by the explosive joint method were found to be lower than that by the mechanical roll method. The gradient of residual stress along the expanded tube was highest at the transition region, and the residual stress in circumferential direction was found to be higher than the residual stress in axial direction. Hoop stress due to an internal pressure between primary and secondary side was analyzed to be 76 MPa and thermal stress was 45 MPa

  19. Spontaneously broken mass

    International Nuclear Information System (INIS)

    Endlich, Solomon; Nicolis, Alberto; Penco, Riccardo

    2015-01-01

    The Galilei group involves mass as a central charge. We show that the associated superselection rule is incompatible with the observed phenomenology of superfluid helium 4: this is recovered only under the assumption that mass is spontaneously broken. This remark is somewhat immaterial for the real world, where the correct space-time symmetries are encoded by the Poincaré group, which has no central charge. Yet it provides an explicit example of how superselection rules can be experimentally tested. We elaborate on what conditions must be met for our ideas to be generalizable to the relativistic case of the integer/half-integer angular momentum superselection rule.

  20. Explosive coalescence of magnetic islands and explosive particle acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Sakai, J.I.

    1985-07-01

    An explosive reconnection process associated with the nonlinear evolution of the coalescence instability is found through studies of the electromagnetic particle simulation and the magnetohydrodynamic particle simulation. The explosive coalescence is a process of magnetic collapse, in which we find the magnetic and electrostatic field energies and temperatures (ion temperature in the coalescing direction, in particular) explode toward the explosion time t 0 as (t 0 - t)/sup -8/3/, (t 0 - t) -4 , and (t 0 - t)/sup -8/3/, respectively for a canonical case. Single-peak, double-peak, and triple-peak structures of magnetic energy, temperature, and electrostatic energy, respectively, are observed on the simulation as overshoot amplitude oscillations and are theoretically explained. The heuristic model of Brunel and Tajima is extended to this explosive coalescence in order to extract the basic process. Since the explosive coalescence exhibits self-similarity, a temporal universality, we theoretically search for a self-similar solution to the two-fluid plasma equations

  1. Changing the simualtor's steam generator

    International Nuclear Information System (INIS)

    Ruiz Martin, J.A.; Ortega Pascual, F.

    2006-01-01

    Two Spanish nuclear power plants (two PWR units each one) have planned to change their Westinghouse D-3 steam generators (SGo henceforth) for a new model, 61W/D3 from Siemens/KWU (SGn henceforth), during 1995/1997. This is the reason why TECNATOM has developed during 1994's last term, a new software for the full scope simulator that incorporates the modifications related to the steam generator substiution programme. This allows an anticipated training on the procedures, not only for normal, but for emergency procedures. As it is a component which has not yet been included in these plants, there are not real references or operative experience data. Therefore, the design of the validation strategy was one of the key points in this work. (author)

  2. Steam coal mines of tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    McCloskey, G

    1986-07-01

    A comprehensive review of new steam coal mines being planned or developed worldwide. It shows that at least 20 major mines with a combined annual output of 110 million tonnes per annum, could add their coal to world markets in the next 10 years. The review highlights: substantial activity in Australia with at least four major mines at advanced planning stages; a strengthening of the South American export industry with 4 major mines operating in 10 years compared with just one today; no major export mines being developed in the traditional US mining areas; and the emergence of Indonesia as a major steam coal producer/exporter. The review also shows a reduction in cost/output ratios, and also the proximity of the new mines to existing infrastructure (e.g. export terminals, rail links).

  3. Organic evaporator steam valve failure

    International Nuclear Information System (INIS)

    Jacobs, R.A.

    1992-01-01

    Defense Waste Processing Facility (DWPF) Technical has requested an analysis of the capacity of the Organic Evaporator (OE) condenser (OEC) be performed to determine its capability in the case where the OE steam flow control valve fails open. Calculations of the OE boilup and the OEC heat transfer coefficient indicate the OEC will have more than enough capacity to remove the heat at maximum OE boilup. In fact, the Salt Cell Vent Condenser (SCVC) should also have sufficient capacity to handle the maximum OE boilup. Therefore, it would require simultaneous loss of OEC and/or SCVC condensing capacity for the steam valve failure to cause high benzene in the Process Vessel Vent System (PVVS)

  4. Closed loop steam cooled airfoil

    Science.gov (United States)

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  5. Steam generator waterlancing at DNGS

    International Nuclear Information System (INIS)

    Seppala, D.; Malaugh, J.

    1995-01-01

    Darlington Nuclear Generating Station (DNGS) is a four 900 MW Unit nuclear station forming part of the Ontario Hydro East System. There are four identical steam generators(SGs) per reactor unit. The Darlington SGs are vertical heat exchangers with an inverted U-tube bundle in a cylindrical shell. The DNGS Nuclear Plant Life Assurance Group , a department of DNGS Engineering Services have taken a Proactive Approach to ensure long term SG integrity. Instead of waiting until the tubesheets are covered by a substantial and established hard deposit; DNGS plan to clean each steam generator's tubesheet, first half lattice tube support assembly and bottom of the thermal plate every four years. The ten year business plan provides for cleaning and inspection to be conducted on all four SGs in each unit during maintenance outages (currently scheduled for every four years)

  6. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    Directory of Open Access Journals (Sweden)

    Qingjie Jiao

    2018-03-01

    Full Text Available To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20 based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm grows gradually; shock wave energy (Es continues increasing, bubble energy (Eb increases then decreases peaking at 15% for both formulas, and the total energy (E and energy release rate (η peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.

  7. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    Science.gov (United States)

    Jiao, Qingjie; Wang, Qiushi; Nie, Jianxin; Guo, Xueyong; Zhang, Wei; Fan, Wenqi

    2018-03-01

    To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX) based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm) grows gradually; shock wave energy (Es) continues increasing, bubble energy (Eb) increases then decreases peaking at 15% for both formulas, and the total energy (E) and energy release rate (η) peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.

  8. Corrosion of PWR steam generators

    International Nuclear Information System (INIS)

    Garnsey, R.

    1979-01-01

    Some designs of pressurized water reactor (PWR) steam generators have experienced a variety of corrosion problems which include stress corrosion cracking, tube thinning, pitting, fatigue, erosion-corrosion and support plate corrosion resulting in 'denting'. Large international research programmes have been mounted to investigate the phenomena. The operational experience is reviewed and mechanisms which have been proposed to explain the corrosion damage are presented. The implications for design development and for boiler and feedwater control are discussed. (author)

  9. Molecular Outflows: Explosive versus Protostellar

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina; Loinard, Laurent [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Schmid-Burgk, Johannes [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn (Germany)

    2017-02-10

    With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion–ejection process in star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al., and using {sup 12}CO( J = 2-1) archival data from the Submillimeter Array, we contrast two well-known explosive objects, Orion KL and DR21, to HH 211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment, there are only two well-established cases of explosive outflows, but with the full availability of ALMA we expect that more examples will be found in the near future. The main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the redshifted with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very-well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum, and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position (i.e., the place where its “exciting source” was located), contrary to the bulk of the molecular material within the protostellar outflows.

  10. Large nuclear steam turbine plants

    International Nuclear Information System (INIS)

    Urushidani, Haruo; Moriya, Shin-ichi; Tsuji, Kunio; Fujita, Isao; Ebata, Sakae; Nagai, Yoji.

    1986-01-01

    The technical development of the large capacity steam turbines for ABWR plants was partially completed, and that in progress is expected to be completed soon. In this report, the outline of those new technologies is described. As the technologies for increasing the capacity and heightening the efficiency, 52 in long blades and moisture separating heaters are explained. Besides, in the large bore butterfly valves developed for making the layout compact, the effect of thermal efficiency rise due to the reduction of pressure loss can be expected. As the new technology on the system side, the simplification of the turbine system and the effect of heightening the thermal efficiency by high pressure and low pressure drain pumping-up method based on the recent improvement of feed water quality are discussed. As for nuclear steam turbines, the actual records of performance of 1100 MW class, the largest output at present, have been obtained, and as a next large capacity machine, the development of a steam turbine of 1300 MWe class for an ABWR plant is in progress. It can be expected that by the introduction of those new technologies, the plants having high economical efficiency are realized. (Kako, I.)

  11. Optimal design of marine steam turbine

    International Nuclear Information System (INIS)

    Liu Chengyang; Yan Changqi; Wang Jianjun

    2012-01-01

    The marine steam turbine is one of the key equipment in marine power plant, and it tends to using high power steam turbine, which makes the steam turbine to be heavier and larger, it causes difficulties to the design and arrangement of the steam turbine, and the marine maneuverability is seriously influenced. Therefore, it is necessary to apply optimization techniques to the design of the steam turbine in order to achieve the minimum weight or volume by means of finding the optimum combination of design parameters. The math model of the marine steam turbine design calculation was established. The sensitivities of condenser pressure, power ratio of HP turbine with LP turbine, and the ratio of diameter with height at the end stage of LP turbine, which influence the weight of the marine steam turbine, were analyzed. The optimal design of the marine steam turbine, aiming at the weight minimization while satisfying the structure and performance constraints, was carried out with the hybrid particle swarm optimization algorithm. The results show that, steam turbine weight is reduced by 3.13% with the optimization scheme. Finally, the optimization results were analyzed, and the steam turbine optimization design direction was indicated. (authors)

  12. Alkali-explosion pretreatment of straw and bagasse for enzymic hydrolysis.

    Science.gov (United States)

    Puri, V P; Pearce, G R

    1986-04-01

    Sugarcane bagasse and wheat straw were subjected to alkali treatment at 200 degrees C for 5 min and at 3.45 MPa gas pressure (steam and nitrogen), followed by an explosive discharge through a defibrating nozzle, in an attempt to improve the rate and extent of digestibility. The treatment resulted in the solubilization of 40-45% of the components and in the production of a pulp that gave saccharification yields of 80 and 65% in 8 h for bagasse and wheat straw, respectively. By comparison, alkali steaming at 200 degrees C (1.72 MPa) for 5 min gave saccharification yields of only 58 and 52% in 48 h. The increase in temperature from 140 to 200 degrees C resulted in a gradual increase in in vitro organic matter digestibility (IVOMD) for both the substrates. Also, the extent of alkalinity during pretreatment appears to effect the reactivity of the final product towards enzymes. Pretreatment times ranging from 5 to 60 caused a progressive decline in the IVOMD of bagasse and wheat straw by the alkali explosion method and this was accompanied by a progressive decrease in pH values after explosion. In the alkali-steaming method, pretreatment time had no apparent effect with either substrate. An analysis of the alkali-exploded products showed that substantial amounts of hemicellulose and a small proportion of the lignin were solubilized. The percentage crystallinity of the cellulose did not alter in either substrate but there was a substantial reduction in the degree of polymerization. The superiority of the alkali-explosion pretreatment is attributed to the efficacy of fiber separation and disintegration; this increases the surface area and reduces the degree of polymerization.

  13. Spontaneous Tumor Lysis Syndrome

    Directory of Open Access Journals (Sweden)

    Alicia C. Weeks MD

    2015-08-01

    Full Text Available Tumor lysis syndrome (TLS is a known complication of malignancy and its treatment. The incidence varies on malignancy type, but is most common with hematologic neoplasms during cytotoxic treatment. Spontaneous TLS is thought to be rare. This case study is of a 62-year-old female admitted with multisystem organ failure, with subsequent diagnosis of aggressive B cell lymphoma. On admission, laboratory abnormalities included renal failure, elevated uric acid (20.7 mg/dL, and 3+ amorphous urates on urinalysis. Oliguric renal failure persisted despite aggressive hydration and diuretic use, requiring initiation of hemodialysis prior to chemotherapy. Antihyperuricemic therapy and hemodialysis were used to resolve hyperuricemia. However, due to multisystem organ dysfunction syndrome with extremely poor prognosis, the patient ultimately expired in the setting of a terminal ventilator wean. Although our patient did not meet current TLS criteria, she required hemodialysis due to uric acid nephropathy, a complication of TLS. This poses the clinical question of whether adequate diagnostic criteria exist for spontaneous TLS and if the lack of currently accepted guidelines has resulted in the underestimation of its incidence. Allopurinol and rasburicase are commonly used for prevention and treatment of TLS. Although both drugs decrease uric acid levels, allopurinol mechanistically prevents formation of the substrate rasburicase acts to solubilize. These drugs were administered together in our patient, although no established guidelines recommend combined use. This raises the clinical question of whether combined therapy is truly beneficial or, conversely, detrimental to patient outcomes.

  14. Spontaneous intracranial hypotension

    International Nuclear Information System (INIS)

    Cardwell, C.; Cox, I.; Baldey, A.

    2002-01-01

    Full text: A 49-year old female presented with severe postural headache with no history of trauma. A Computed Tomography (CT) study of the brain demonstrated abnormal meningeal enhancement raising the possibility of leptomeningeal metastases. The patient was then referred to Magnetic Resonance Imaging (MRI) which demonstrated diffuse smooth dural enhancement with ancillary findings characteristic of spontaneous intracranial hypotension. The patient was then referred to Nuclear Medicine to confirm the diagnosis and localise the presumed leak 400MBq of 99mTc DTPA was injected via lumbar puncture into the L3-L4 subarachnoid space Posterior images of the spine were taken with a GE XRT single head gamma camera at 1 and 4 hours post administration of radionuclide. Images demonstrated abnormal early arrival of radionuclide in the kidneys and bladder at 1 hour and abnormal leak of tracer was demonstrate at the level of the first thoracic vertebra on the right side at 4 hours. This confirmed CSF leak at this level. Consequently the patient underwent a blood patch and her symptoms resolved. Spontaneous Intracranial Hypotension is a syndrome often unrecognised presenting with symptoms including severe postural headache neck stiffness nausea vomiting tinnitus and vertigo. The diagnosis is frequently suspected from findings on MRI, but Nuclear Medicine CSF imaging provides a readily available and cost effective method for confirming the diagnosis, and for making the diagnosis in patients who are unsuitable for or do not have access to MRI. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  15. Spontaneous intracranial hypotension

    Energy Technology Data Exchange (ETDEWEB)

    Cardwell, C; Cox, I; Baldey, A [St. F.X. Cabrini Hospital, VIC (Australia). Departments of Nuclear Medicine and Magnetic Resonance Imaging

    2002-07-01

    Full text: A 49-year old female presented with severe postural headache with no history of trauma. A Computed Tomography (CT) study of the brain demonstrated abnormal meningeal enhancement raising the possibility of leptomeningeal metastases. The patient was then referred to Magnetic Resonance Imaging (MRI) which demonstrated diffuse smooth dural enhancement with ancillary findings characteristic of spontaneous intracranial hypotension. The patient was then referred to Nuclear Medicine to confirm the diagnosis and localise the presumed leak 400MBq of 99mTc DTPA was injected via lumbar puncture into the L3-L4 subarachnoid space Posterior images of the spine were taken with a GE XRT single head gamma camera at 1 and 4 hours post administration of radionuclide. Images demonstrated abnormal early arrival of radionuclide in the kidneys and bladder at 1 hour and abnormal leak of tracer was demonstrate at the level of the first thoracic vertebra on the right side at 4 hours. This confirmed CSF leak at this level. Consequently the patient underwent a blood patch and her symptoms resolved. Spontaneous Intracranial Hypotension is a syndrome often unrecognised presenting with symptoms including severe postural headache neck stiffness nausea vomiting tinnitus and vertigo. The diagnosis is frequently suspected from findings on MRI, but Nuclear Medicine CSF imaging provides a readily available and cost effective method for confirming the diagnosis, and for making the diagnosis in patients who are unsuitable for or do not have access to MRI. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc.

  16. General phenomenology of underground nuclear explosions

    International Nuclear Information System (INIS)

    Derlich, S.; Supiot, F.

    1969-01-01

    An essentially qualitatively description is given of the phenomena related to underground nuclear explosions (explosion of a single unit, of several units in line, and simultaneous explosions). In the first chapter are described the phenomena which are common to contained explosions and to explosions forming craters (formation and propagation of a shock-wave causing the vaporization, the fusion and the fracturing of the medium). The second chapter describes the phenomena related to contained explosions (formation of a cavity with a chimney). The third chapter is devoted to the phenomenology of test explosions which form a crater; it describes in particular the mechanism of formation and the different types of craters as a function of the depth of the explosion and of the nature of the ground. The aerial phenomena connected with explosions which form a crater: shock wave in the air and focussing at a large distance, and dust clouds, are also dealt with. (authors) [fr

  17. Electromagnetic field effects in explosives

    Science.gov (United States)

    Tasker, Douglas

    2009-06-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.

  18. Inhomogeneous wire explosion in water

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Kong, H.J.; Lee, S.S.

    1980-01-01

    Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)

  19. Seismic coupling of nuclear explosions

    International Nuclear Information System (INIS)

    Larson, D.B.

    1989-01-01

    The new Giant Magnet Experimental Facility employing digital recording of explosion induced motion has been constructed and successfully tested. Particle velocity and piezoresistance gage responses can be measured simultaneously thus providing the capability for determining the multi-component stress-strain history in the test material. This capability provides the information necessary for validation of computer models used in simulation of nuclear underground testing, chemical explosion testing, dynamic structural response, earth penetration response, and etc. This report discusses fully coupled and cavity decoupled explosions of the same energy (0.622 kJ) were carried out as experiments to study wave propagation and attenuation in polymethylmethacrylate (PMMA). These experiments produced particle velocity time histories at strains from 2 x 10 -3 to as low as 5.8 x 10 -6 . Other experiments in PMMA, reported recently by Stout and Larson 8 provide additional particle velocity data to strains of 10 -1

  20. Optimal dynamic detection of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David Steven [Los Alamos National Laboratory; Mcgrane, Shawn D [Los Alamos National Laboratory; Greenfield, Margo T [Los Alamos National Laboratory; Scharff, R J [Los Alamos National Laboratory; Rabitz, Herschel A [PRINCETON UNIV; Roslund, J [PRINCETON UNIV

    2009-01-01

    The detection of explosives is a notoriously difficult problem, especially at stand-off distances, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring optimal dynamic detection to exploit the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity of explosives signatures while reducing the influence of noise and the signals from background interferents in the field (increase selectivity). These goals are being addressed by operating in an optimal nonlinear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses. With sufficient bandwidth, the technique is capable of intrinsically providing orthogonal broad spectral information for data fusion, all from a single optimal pulse.

  1. Calculating overpressure from BLEVE explosions

    Energy Technology Data Exchange (ETDEWEB)

    Planas-Cuchi, E.; Casal, J. [Universitat Politecnica de Catalunya, Barcelona (Spain). Department of Chemical Engineering, Centre for Technological Risk Studies; Salla, J.M. [Universitat Politecnica de Catalunya, Barcelona (Spain). Department of Heat Engines

    2004-11-01

    Although a certain number of authors have analyzed the prediction of boiling liquid expanding vapour explosion (BLEVE) and fireball effects, only very few of them have proposed methodologies for predicting the overpressure from such explosions. In this paper, the methods previously published are discussed and shown to introduce a significant overestimation due to erroneous thermodynamic assumptions - ideal gas behaviour and isentropic vapour expansion - on which they are based (in fact, they give the maximum value of overpressure which can be caused by a BLEVE). A new approach is proposed, based on the - more realistic - assumption of an adiabatic and irreversible expansion process; the real properties of the substance involved in the explosion are used. The two methods are compared through the application to a given case. (author)

  2. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  3. Evidence for nearby supernova explosions

    International Nuclear Information System (INIS)

    Benitez, Narciso; Maiz-Apellaniz, Jesus; Canelles, Matilde

    2002-01-01

    Supernova (SN) explosions are one of the most energetic--and potentially lethal--phenomena in the Universe. We show that the Scorpius-Centaurus OB association, a group of young stars currently located at ∼130 pc from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. The deposition on Earth of 60 Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that ∼2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction

  4. Thermal-hydraulics in recirculating steam generators

    International Nuclear Information System (INIS)

    Carver, M.B.; Carlucci, L.N.; Inch, W.W.R.

    1981-04-01

    This manual describes the THIRST code and its use in computing three-dimensional two-phase flow and heat transfer in a steam generator under steady state operation. The manual is intended primarily to facilitate the application of the code to the analysis of steam generators typical of CANDU nuclear stations. Application to other steam generator designs is also discussed. Details of the assumptions used to formulate the model and to implement the numerical solution are also included

  5. Exergy Steam Drying and Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Prem; Muenter, Claes (Exergy Engineering and Consulting, SE-417 55 Goeteborg (Sweden)). e-mail: verma@exergyse.com

    2008-10-15

    Exergy Steam Drying technology has existed for past 28 years and many new applications have been developed during this period. But during past few years the real benefits have been exploited in connection with bio-fuel production and energy integration. The steam dryer consists of a closed loop system, where the product is conveyed by superheated and pressurised carrier steam. The carrier steam is generated by the water vapours from the product being dried, and is indirectly superheated by another higher temperature energy source such as steam, flue gas, thermal oil etc. Besides the superior heat transfer advantages of using pressurised steam as a drying medium, the energy recovery is efficient and simple as the recovered energy (80-90%) is available in the form of steam. In some applications the product quality is significantly improved. Examples presented in this paper: Bio-Combine for pellets production: Through integration of the Exergy Steam Dryer for wood with a combined heat and power (CHP) plant, together with HP steam turbine, the excess carrier steam can be utilised for district heating and/or electrical power production in a condensing turbine. Bio-ethanol production: Both for first and second generation of ethanol can the Exergy process be integrated for treatment of raw material and by-products. Exergy Steam Dryer can dry the distillers dark grains and solubles (DDGS), wood, bagasse and lignin. Bio-diesel production: Oil containing seeds and fruits can be treated in order to improve both the quality of oil and animal feed protein, thus minimizing further oil processing costs and increasing the sales revenues. Sewage sludge as bio-mass: Municipal sewage sludge can be considered as a renewable bio-fuel. By drying and incineration, the combustion heat value of the sludge is sufficient for the drying process, generation of electrical energy and production of district heat. Keywords; Exergy, bio-fuel, bio-mass, pellets, bio-ethanol, biodiesel, bio

  6. Analysis of performance for centrifugal steam compressor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seung Hwan; Ryu, Chang Kook; Ko, Han Seo [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-12-15

    In this study, mean streamline and Computational fluid dynamics (CFD) analyses were performed to investigate the performance of a small centrifugal steam compressor using a latent heat recovery technology. The results from both analysis methods showed good agreement. The compression ratio and efficiency of steam were found to be related with those of air by comparing the compression performances of both gases. Thus, the compression performance of steam could be predicted by the compression performance of air using the developed dimensionless parameters.

  7. Analysis of performance for centrifugal steam compressor

    International Nuclear Information System (INIS)

    Kang, Seung Hwan; Ryu, Chang Kook; Ko, Han Seo

    2016-01-01

    In this study, mean streamline and Computational fluid dynamics (CFD) analyses were performed to investigate the performance of a small centrifugal steam compressor using a latent heat recovery technology. The results from both analysis methods showed good agreement. The compression ratio and efficiency of steam were found to be related with those of air by comparing the compression performances of both gases. Thus, the compression performance of steam could be predicted by the compression performance of air using the developed dimensionless parameters

  8. Steam plant for pressurized water reactors

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This book discusses the research and development organisations and users to highlight those aspects of the steam turbine and associated plant which are particularly related to the PWR system. The contents include: Characteristics of the steam system (including feed train, dump system and safety aspects); overall design aspects of high and half speed turbines; design aspects of the steam generator and seismic considerations; moisture separators and reheaters; feed pumps and their drives; water treatment; safety related valves; operational experience; availability and performance

  9. Spontaneous Intracranial Hypotension

    International Nuclear Information System (INIS)

    Joash, Dr.

    2015-01-01

    Epidemiology is not only rare but an important cause of new daily persistent headaches among young & middle age individuals. The Etiology & Pathogenesis is generally caused by spinal CSF leak. Precise cause remains largely unknown, underlying structural weakness of spinal meninges is suspected. There are several MR Signs of Intracranial Hypotension that include:- diffuse pachymeningeal (dural) enhancement; bilateral subdural, effusion/hematomas; Downward displacement of brain; enlargement of pituitary gland; Engorgement of dural venous sinuses; prominence of spinal epidural venous plexus and Venous sinus thrombosis & isolated cortical vein thrombosis. The sum of volumes of intracranial blood, CSF & cerebral tissue must remain constant in an intact cranium. Treatment in Many cases can be resolved spontaneously or by use Conservative approach that include bed rest, oral hydration, caffeine intake and use of abdominal binder. Imaging Modalities for Detection of CSF leakage include CT myelography, Radioisotope cisternography, MR myelography, MR imaging and Intrathecal Gd-enhanced MR

  10. Spontaneous soft tissue hematomas.

    Science.gov (United States)

    Dohan, A; Darnige, L; Sapoval, M; Pellerin, O

    2015-01-01

    Spontaneous muscle hematomas are a common and serious complication of anticoagulant treatment. The incidence of this event has increased along with the rise in the number of patients receiving anticoagulants. Radiological management is both diagnostic and interventional. Computed tomography angiography (CTA) is the main tool for the detection of hemorrhage to obtain a positive, topographic diagnosis and determine the severity. Detection of an active leak of contrast material during the arterial or venous phase is an indication for the use of arterial embolization. In addition, the interventional radiological procedure can be planned with CTA. Arterial embolization of the pedicles that are the source of the bleeding is an effective technique. The rate of technical and clinical success is 90% and 86%, respectively. Copyright © 2015 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  11. Spontaneous wave packet reduction

    International Nuclear Information System (INIS)

    Ghirardi, G.C.

    1994-06-01

    There are taken into account the main conceptual difficulties met by standard quantum mechanics in dealing with physical processes involving macroscopic system. It is stressed how J.A.Wheeler's remarks and lucid analysis have been relevant to pinpoint and to bring to its extreme consequences the puzzling aspects of quantum phenomena. It is shown how the recently proposed models of spontaneous dynamical reduction represent a consistent way to overcome the conceptual difficulties of the standard theory. Obviously, many nontrivial problems remain open, the first and more relevant one being that of generalizing the model theories considered to the relativistic case. This is the challenge of the dynamical reduction program. 43 refs, 2 figs

  12. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  13. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    International Nuclear Information System (INIS)

    Mendler, O.J.; Takeuchi, K.; Young, M.Y.

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results

  14. Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol.

    Science.gov (United States)

    Keshav, Praveen K; Naseeruddin, Shaik; Rao, L Venkateswar

    2016-08-01

    Cotton stalk, a widely available and cheap agricultural residue lacking economic alternatives, was subjected to steam explosion in the range 170-200°C for 5min. Steam explosion at 200°C and 5min led to significant hemicellulose solubilization (71.90±0.10%). Alkaline extraction of steam exploded cotton stalk (SECOH) using 3% NaOH at room temperature for 6h led to 85.07±1.43% lignin removal with complete hemicellulose solubilization. Besides, this combined pretreatment allowed a high recovery of the cellulosic fraction from the biomass. Enzymatic saccharification was studied between steam exploded cotton stalk (SECS) and SECOH using different cellulase loadings. SECOH gave a maximum of 785.30±8.28mg/g reducing sugars with saccharification efficiency of 82.13±0.72%. Subsequently, fermentation of SECOH hydrolysate containing sugars (68.20±1.16g/L) with Saccharomyces cerevisiae produced 23.17±0.84g/L ethanol with 0.44g/g yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. ICPP custom dissolver explosion recovery

    International Nuclear Information System (INIS)

    Demmer, R.; Hawk, R.

    1992-01-01

    This report discusses the recovery from the February 9, 1991 small scale explosion in a custom processing dissolver at the Idaho Chemical Processing Plant. Custom processing is a small scale dissolution facility which processes nuclear material in an economical fashion. The material dissolved in this facility was uranium metal, uranium oxides, and uranium/fissium alloy in nitric acid. The paper explained the release of fission material, and the decontamination and recovery of the fuel material. The safety and protection procedures were also discussed. Also described was the chemical analysis which was used to speculate the most probable cause of the explosion. (MB)

  16. Explosions in Landau Vlasov dynamics

    International Nuclear Information System (INIS)

    Suraud, E.; Cussol, D.; Gregoire, C.; Boilley, D.; Pi, M.; Schuck, P.; Remaud, B.; Sebille, F.

    1988-01-01

    A microscopic study of the quasi-fusion/explosion transition is presented in the framework of Landau-Vlasov simulations of intermediate energy heavy-ion collisions (bombarding energies between 10 and 100 MeV/A). A detailed analysis in terms of the Equation of State of the system is performed. In agreement with schematic models we find that the composite nuclear system formed in the collision does explode when it stays long enough in the mechanically unstable region (spinodal region). Quantitative estimates of the explosion threshold are given for central symmetric reactions (Ca+Ca and Ar+Ti). The effect of the nuclear matter compressibility modulus is discussed

  17. System for detecting nuclear explosions

    International Nuclear Information System (INIS)

    Rawls, L.E.

    1978-01-01

    Apparatus for detecting underground nuclear explosions is described that is comprised of an antenna located in the dielectric substance of a deep waveguide in the earth and adapted to detect low frequency electromagnetic waves generated by a nuclear explosion, the deep waveguide comprising the high conductivity upper sedimentary layers of the earth, the dielectric basement rock, and a high conductivity layer of basement rock due to the increased temperature thereof at great depths, and means for receiving the electromagnetic waves detected by said antenna means

  18. Biological consequences of atomic explosions

    International Nuclear Information System (INIS)

    Messerschmidt, O.

    1984-01-01

    After an introductory chapter of the development and properties of nuclear weapons and the events of Hiroshima and Nagasaki, this books shows the effects of atomic explosions for man: effects of the pressure wave, thermal radiation, initial nuclear radiation alone or in conjunction and possible medical help. In addition the less massive damage caused by induced radioactivity and fallout, their prevention resp. treatment and the malignant/nonmalignant late effects are discussed. A further chapter deals with the psychological and epidemiological effects of atomic explosions, the consequences for food and water supply, and the construction of shetters. The last chapter is concerned with the problem of organising medical help. (MG) [de

  19. CAREM-25 Steam Generator Stability Analysis

    International Nuclear Information System (INIS)

    Rabiti, A.; Delmastro, D.

    2003-01-01

    In this work the stability of a once-through CAREM-25 steam generator is analyzed.A fix nodes numerical model, that allows the modelling of the liquid, two-phase and superheated steam zones, is implemented.This model was checked against a mobile finite elements model under saturated steam conditions at the channel exit and a good agreement was obtained.Finally the stability of a CAREM steam generator is studied and the range of in let restrictions that a assure the system stability is analyzed

  20. Amazing & extraordinary facts the steam age

    CERN Document Server

    Holland, Julian

    2012-01-01

    Respected transport author Julian Holland delves into the intriguing world of steam in his latest book, which is full of absorbing facts and figures on subjects ranging from Cornish beam engines, steam railway locomotives, road vehicles and ships through to traction engines, steam rollers and electricity generating stations and the people who designed and built them. Helped along the way by the inventive minds of James Watt, Richard Trevithick and George Stephenson, steam became the powerhouse that drove the Industrial Revolution in Britain in the late 18th and 19th centuries.

  1. Method to detect steam generator tube leakage

    International Nuclear Information System (INIS)

    Watabe, Kiyomi

    1994-01-01

    It is important for plant operation to detect minor leakages from the steam generator tube at an early stage, thus, leakage detection has been performed using a condenser air ejector gas monitor and a steam generator blow down monitor, etc. In this study highly-sensitive main steam line monitors have been developed in order to identify leakages in the steam generator more quickly and accurately. The performance of the monitors was verified and the demonstration test at the actual plant was conducted for their intended application to the plants. (author)

  2. Spontaneous compactification to homogeneous spaces

    International Nuclear Information System (INIS)

    Mourao, J.M.

    1988-01-01

    The spontaneous compactification of extra dimensions to compact homogeneous spaces is studied. The methods developed within the framework of coset space dimensional reduction scheme and the most general form of invariant metrics are used to find solutions of spontaneous compactification equations

  3. Screening for spontaneous preterm birth

    NARCIS (Netherlands)

    van Os, M.A.; van Dam, A.J.E.M.

    2015-01-01

    Preterm birth is the most important cause of perinatal morbidity and mortality worldwide. In this thesis studies on spontaneous preterm birth are presented. The main objective was to investigate the predictive capacity of mid-trimester cervical length measurement for spontaneous preterm birth in a

  4. Steam microturbines in distributed cogeneration

    CERN Document Server

    Kicinski, Jan

    2014-01-01

    This book presents the most recent trends and concepts in power engineering, especially with regard to prosumer and civic energy generation. In so doing, it draws widely on his experience gained during the development of steam microturbines for use in small combined heat and power stations based on the organic Rankine cycle (CHP-ORC). Major issues concerning the dynamic properties of mechanical systems, in particular rotating systems, are discussed, and the results obtained when using unconventional bearing systems, presented. Modeling and analysis of radial-flow and axial-flow microturbines a

  5. Lifetime of superheated steam components

    International Nuclear Information System (INIS)

    Stoklossa, K.H.; Oude-Hengel, H.H.; Kraechter, H.J.

    1974-01-01

    The current evaluation schemes in use for judging the lifetime expectations of superheated steam components are compared with each other. The influence of pressure and temperature fluctuations, the differences in the strength of the wall, and the spread band of constant-strainrates are critically investigated. The distribution of these contributory effects are demonstrated in the hight of numerous measuring results. As an important supplement to these evaluation schemes a newly developed technique is introduced which is designed to calculate failure probabilities. (orig./RW) [de

  6. Strategic management of steam generators

    International Nuclear Information System (INIS)

    Hernalsteen, P.; Berthe, J.

    1991-01-01

    This paper addresses the general approach followed in Belgium for managing any kind of generic defect affecting a Steam Generator tubebundle. This involves the successive steps of: problem detection, dedicated sample monitoring, implementation of preventive methods, development of specific plugging criteria, dedicated 100% inspection, implementation of repair methods, adjusted sample monitoring and repair versus replacement strategy. These steps are illustrated by the particular case of Primary Water Stress Corrosion Cracking in tube roll transitions, which is presently the main problem for two Belgian units Doele-3 and Tihange-2. (author)

  7. Steam generator for nuclear reactors

    International Nuclear Information System (INIS)

    Byerley, W.M.; Bennett, R.R.

    1978-01-01

    In the steam generator, the primary medium is led through a U-shaped tube bundle heating up a secondary medium (feedwater) which flows around the tube bundle via a preheating chamber. In order to optimize heat transfer inside the preheating chamber, the feedwater is separated into a counterflow and a parallel flow with regard to the primary medium by means of partitioning walls and deflectors. The ratio is 70/30%. This way, boiling in the preheater is avoided, i.e. the high LMTD (logaritmic mean temperature difference) is fully utilized. (DG) [de

  8. Spontaneous Pneumomediastinum: Hamman Syndrome

    Directory of Open Access Journals (Sweden)

    Tushank Chadha, BS

    2018-04-01

    significant fat stranding. The image also showed an intraluminal stent traversing the gastric antrum and gastric pylorus with no indication of obstruction. Circumferential mural thickening of the gastric antrum and body were consistent with the patient’s history of gastric adenocarcinoma. The shotty perigastric lymph nodes with associated fat stranding, along the greater curvature of the distal gastric body suggested local regional nodal metastases and possible peritoneal carcinomatosis. The thoracic CT scans showed extensive pneumomediastinum that tracked into the soft tissues of the neck, which given the history of vomiting also raised concern for esophageal perforation. There was still no evidence of mediastinal abscess or fat stranding. Additionally, a left subclavian vein port catheter, which terminates with tip at the cavoatrial junction of the superior vena cava can also be seen on the image. Discussion: Spontaneous Pneumomediastinum, also known as Hamman syndrome, is defined by the uncommon incidence of free air in the mediastinum due to the bursting of alveoli, as a result of extended spells of shouting, coughing, or vomiting.1,2 The condition is diagnosed when a clear cause (aerodigestive rupture, barotrauma, infection secondary to gas-forming organisms3 for pneumomediastinum cannot be clearly identified on diagnostic studies. Macklin and Macklin were the first to note the pathogenesis of the syndrome and explained that the common denominator to spontaneous pneumomediastinum was that increased alveolar pressure leads to alveolar rupture.3 Common clinical findings for spontaneous pneumomediastinum include: chest pain, dyspnea, cough, and emesis.4 The condition is not always readily recognized on initial presentation in part for its rare incidence, estimated to be approximately 1 in every 44,500 ED patients3and also because of the non-specific presenting symptoms. For this patient, there was no clear singular cause, and therefore she received care for spontaneous

  9. Thermal performances of molten salt steam generator

    International Nuclear Information System (INIS)

    Yuan, Yibo; He, Canming; Lu, Jianfeng; Ding, Jing

    2016-01-01

    Highlights: • Thermal performances of molten salt steam generator were experimentally studied. • Overall heat transfer coefficient reached maximum with optimal molten salt flow rate. • Energy efficiency first rose and then decreased with salt flow rate and temperature. • Optimal molten salt flow rate and temperature existed for good thermal performance. • High inlet water temperature benefited steam generating rate and energy efficiency. - Abstract: Molten salt steam generator is the key technology for thermal energy conversion from high temperature molten salt to steam, and it is used in solar thermal power station and molten salt reactor. A shell and tube type molten salt steam generator was set up, and its thermal performance and heat transfer mechanism were studied. As a coupling heat transfer process, molten salt steam generation is mainly affected by molten salt convective heat transfer and boiling heat transfer, while its energy efficiency is also affected by the heat loss. As molten salt temperature increased, the energy efficiency first rose with the increase of heat flow absorbed by water/steam, and then slightly decreased for large heat loss as the absorbed heat flow still rising. At very high molten salt temperature, the absorbed heat flow decreased as boiling heat transfer coefficient dropping, and then the energy efficiency quickly dropped. As the inlet water temperature increased, the boiling region in the steam generator remarkably expanded, and then the steam generation rate and energy efficiency both rose with the overall heat transfer coefficient increasing. As the molten salt flow rate increased, the wall temperature rose and the boiling heat transfer coefficient first increased and then decreased according to the boiling curve, so the overall heat transfer coefficient first increased and then decreased, and then the steam generation rate and energy efficiency of steam generator both had maxima.

  10. Excavation research with chemical explosives

    International Nuclear Information System (INIS)

    Vandenberg, William E.; Day, Walter C.

    1970-01-01

    The US Army Engineer Nuclear Cratering Group (NCG) is located at the Lawrence Radiation Laboratory in Livermore, California. NCG was established in 1962 and assigned responsibility for technical program direction of the Corps of Engineers Nuclear Excavation Research Program. The major part of the experimental program has been the execution of chemical explosive excavation experiments. In the past these experiments were preliminary to planned nuclear excavation experiments. The experience gained and technology developed in accomplishing these experiments has led to an expansion of NCG's research mission. The overall research and development mission now includes the development of chemical explosive excavation technology to enable the Corps of Engineers to more economically accomplish Civil Works Construction projects of intermediate size. The current and future chemical explosive excavation experiments conducted by NCG will be planned so as to provide data that can be used in the development of both chemical and nuclear excavation technology. In addition, whenever possible, the experiments will be conducted at the specific sites of authorized Civil Works Construction Projects and will be designed to provide a useful portion of the engineering structures planned in that project. Currently, the emphasis in the chemical explosive excavation program is on the development of design techniques for producing specific crater geometries in a variety of media. Preliminary results of two such experiments are described in this paper; Project Pre-GONDOLA III, Phase III, Reservoir Connection Experiment; and a Safety Calibration Series for Project TUGBOAT, a small boat harbor excavation experiment

  11. Excavation research with chemical explosives

    Energy Technology Data Exchange (ETDEWEB)

    Vandenberg, William E; Day, Walter C [U.S. Army Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, CA (United States)

    1970-05-01

    The US Army Engineer Nuclear Cratering Group (NCG) is located at the Lawrence Radiation Laboratory in Livermore, California. NCG was established in 1962 and assigned responsibility for technical program direction of the Corps of Engineers Nuclear Excavation Research Program. The major part of the experimental program has been the execution of chemical explosive excavation experiments. In the past these experiments were preliminary to planned nuclear excavation experiments. The experience gained and technology developed in accomplishing these experiments has led to an expansion of NCG's research mission. The overall research and development mission now includes the development of chemical explosive excavation technology to enable the Corps of Engineers to more economically accomplish Civil Works Construction projects of intermediate size. The current and future chemical explosive excavation experiments conducted by NCG will be planned so as to provide data that can be used in the development of both chemical and nuclear excavation technology. In addition, whenever possible, the experiments will be conducted at the specific sites of authorized Civil Works Construction Projects and will be designed to provide a useful portion of the engineering structures planned in that project. Currently, the emphasis in the chemical explosive excavation program is on the development of design techniques for producing specific crater geometries in a variety of media. Preliminary results of two such experiments are described in this paper; Project Pre-GONDOLA III, Phase III, Reservoir Connection Experiment; and a Safety Calibration Series for Project TUGBOAT, a small boat harbor excavation experiment.

  12. Experimental approach to explosive nucleosynthesis

    International Nuclear Information System (INIS)

    Kubono, S.

    1991-07-01

    Recent development of experimental studies on explosive nucleosynthesis, especially the rapid proton process and the primordial nucleosynthesis were discussed with a stress on unstable nuclei. New development in the experimental methods for the nuclear astrophysics is also discussed which use unstable nuclear beams. (author)

  13. Lead-free primary explosives

    Science.gov (United States)

    Huynh, My Hang V.

    2010-06-22

    Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  14. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    van den Broek, D.M.; Elwenspoek, Michael Curt

    2007-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a very high temperature in a very short time. At these temperatures homogeneous nucleation takes place. The nucleated bubbles almost instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse and

  15. The behavior limestone under explosive load

    Science.gov (United States)

    Orlov, M. Yu; Orlova, Yu N.; Bogomolov, G. N.

    2016-11-01

    Limestone behavior under explosive loading was investigated. The behavior of the limestone by the action of the three types of explosives, including granular, ammonite and emulsion explosives was studied in detail. The shape and diameter of the explosion craters were obtained. The observed fragments after the blast have been classified as large, medium and small fragments. Three full-scale experiments were carried out. The research results can be used as a qualitative test for the approbation of numerical methods.

  16. The testing of a steam-water separating device used for vertical steam generators

    International Nuclear Information System (INIS)

    Ding Xunshen; Cui Baoyuan; Xue Yunkui; Liu Shixun

    1989-01-01

    The air-water screening tests of a steam-water separating device used for vertical steam generators at low pressure are introduced. The article puts emphasis on the qualification test of the steam-water separating device at hot conditions in a high temperature and pressure water test rig. The performance of the comprehensive test of the steam-water separating device indicates that the humidity of the steam at the drier exit is much less than the specified amount of 0.25%

  17. Procedure for generating steam and steam generator for operating said procedure

    International Nuclear Information System (INIS)

    Chlique, Bernard.

    1975-01-01

    This invention concerns the generation of steam by bringing the water to be vaporised into indirect thermal exchange relation with the heating steam which condenses when passing in series, along alternate routes, through bundles of tubes immersed in a vaporising chamber. A number of steam generators working on this principle already exist. The purpose of the invention is to modify the operating method of these steam generators by means of a special disposition making it possible to build a compact unit including an additional bundle of tubes heated by the condensates collected at the outlet of each bundle through which the heating steam passes [fr

  18. Behavior of explosion debris clouds

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    In the normal course of events the behavior of debris clouds created by explosions will be of little concern to the atomic energy industry. However, two situations, one of them actual and one postulated, exist where the rise and spread of explosion clouds can affect site operations. The actual occurrence would be the detonation of nuclear weapons and the resultant release and transport of radioactive debris across the various atomic energy installations. Although the activity of the diffusing cloud is not of biological concern, it may still be sufficiently above background to play havoc with the normal readings of sensitive monitoring instruments. If it were not known that these anomalous readings resulted from explosion debris, considerable time and expense might be required for on-site testing and tracing. Fortunately it is usually possible, with the use of meteorological data and forecasts, to predict when individual sites are affected by nuclear weapon debris effects. The formation rise, and diffusion of weapon clouds will be discussed. The explosion of an atomic reactor is the postulated situation. It is common practice in reactor hazard analysis to assume a combination of circumstances which might result in a nuclear incident with a release of material to the atmosphere. It is not within the scope of this report to examine the manifold plausibilities that might lead to an explosion or the possible methods of release of gaseous and/or particulates from such an occurrence. However, if the information of a cloud is assumed and some idea of its energy content is obtainable, estimates of the cloud behavior in the atmosphere can be made

  19. Steam generator tubing NDE performance

    International Nuclear Information System (INIS)

    Henry, G.; Welty, C.S. Jr.

    1997-01-01

    Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, and data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed

  20. Control device for steam turbine

    International Nuclear Information System (INIS)

    Hoshi, Hiroyuki.

    1993-01-01

    A power load imbalance detection circuit detects a power load imbalance when a load variation coefficient is large and output-load deviation is great. Then, it self-holds and causes a timer to start counting up and releases the self-holding after the elapse of a certain period of time. Upon load separation caused by system accidents, the power load imbalance detection circuit operates along with the increase of turbine rpm, to operate the control valve abrupt closing circuit and a bypassing value abrupt opening circuit. Then, self-holding of the power load imbalance detection circuit is released and, subsequently, a steam control value and a bypass valve are controlled by a control valve flow rate demand signal and a bypass flow rate demand signal determined by an entire main steam flow rate signal and a speed/load control signal. Accordingly, the turbine rpm is settled to about a rated rpm. This enables to avoid reactor shutdown upon occurrence of load interruption. (I.N.)