WorldWideScience

Sample records for spontaneous phasic activity

  1. Impairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition

    Directory of Open Access Journals (Sweden)

    Daniel Simon Razik

    2013-09-01

    Full Text Available In the central nervous system, GABA transporters (GATs very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be quite sensitive to minute alterations of GAT function. Here, we explored the effects of a gradual impairment of GAT-1 and GAT-2/3 on spontaneous recurrent network activity – termed network bursts and silent periods – in organotypic slice cultures of rat neocortex. The GAT-1 specific antagonist NO-711 depressed activity already at nanomolar concentrations (IC50 for depression of spontaneous multiunit firing rate of 42 nM, reaching a level of 80% at 500-1000 nM. By contrast, the GAT-2/3 preferring antagonist SNAP-5114 had weaker and less consistent effects. Several lines of evidence pointed towards an enhancement of phasic GABAergic inhibition as the dominant activity-depressing mechanism: network bursts were drastically shortened, phasic GABAergic currents decayed slower, and neuronal excitability during ongoing activity was diminished. In silent periods, NO-711 had little effect on neuronal excitability or membrane resistance, quite in contrast to the effects of muscimol, a GABA mimetic which activates GABAA receptors tonically. Our results suggest that an enhancement of phasic GABAergic inhibition efficiently curtails cortical recurrent activity and may mediate antiepileptic effects of therapeutically relevant concentrations of GAT-1 antagonists.

  2. Influence of phasic and tonic dopamine release on receptor activation

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kristoffer Kisbye; Herrik, Kjartan F; Berg, Rune W

    2010-01-01

    Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we...... develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation...

  3. Phasic Electrodermal Activity During the Standardized Assessment of Concussion (SAC).

    Science.gov (United States)

    Raikes, Adam C; Schaefer, Sydney Y

    2016-07-01

    The long-term effects of concussion on brain function during cognitive tasks are not fully understood and neuroimaging findings are equivocal. Some images show hyperactivation of prefrontal brain regions in previously concussed individuals relative to controls, suggesting increased cognitive resource allocation. Others show prefrontal hypoactivation and hyperactivation in other regions as a presumed compensatory mechanism. Given the relationship between sympathetic arousal and neural activation, physiologic measures of arousal, such as electrodermal activity, may provide additional insight into the brain's functional changes in those with a history of concussion. To quantify differences in electrodermal activity during a commonly used standardized neurocognitive assessment between individuals with or without a history of concussion. Descriptive laboratory study. Research laboratory. Seven asymptomatic individuals with a self-reported history of physician-diagnosed, sport-related concussion (number of previous concussions = 1.43 ± 0.53; time since most recent concussion = 0.75 to 6 years, median = 3 years) and 10 individuals without a history of concussion participated in this study. All participants wore bilateral wrist electrodermal activity sensors during the Standardized Assessment of Concussion. We measured normalized phasic (reactive) electrodermal activity during each test element (orientation, immediate recall, concentration, delayed recall). A significant group-by-test element interaction was present (P = .003). Individuals with a history of concussion had greater phasic activity during delayed recall (P concussed individuals relative to healthy control participants, supporting previous neuroimaging findings of increased prefrontal cortex activity during memory tasks after concussion. Given similar task performance and arousal patterns across the test, our results suggest that previously concussed individuals incur additional cognitive demands in a short

  4. Brainstem circuitry regulating phasic activation of trigeminal motoneurons during REM sleep.

    Directory of Open Access Journals (Sweden)

    Christelle Anaclet

    2010-01-01

    Full Text Available Rapid eye movement sleep (REMS is characterized by activation of the cortical and hippocampal electroencephalogram (EEG and atonia of non-respiratory muscles with superimposed phasic activity or twitching, particularly of cranial muscles such as those of the eye, tongue, face and jaw. While phasic activity is a characteristic feature of REMS, the neural substrates driving this activity remain unresolved. Here we investigated the neural circuits underlying masseter (jaw phasic activity during REMS. The trigeminal motor nucleus (Mo5, which controls masseter motor function, receives glutamatergic inputs mainly from the parvocellular reticular formation (PCRt, but also from the adjacent paramedian reticular area (PMnR. On the other hand, the Mo5 and PCRt do not receive direct input from the sublaterodorsal (SLD nucleus, a brainstem region critical for REMS atonia of postural muscles. We hypothesized that the PCRt-PMnR, but not the SLD, regulates masseter phasic activity during REMS.To test our hypothesis, we measured masseter electromyogram (EMG, neck muscle EMG, electrooculogram (EOG and EEG in rats with cell-body specific lesions of the SLD, PMnR, and PCRt. Bilateral lesions of the PMnR and rostral PCRt (rPCRt, but not the caudal PCRt or SLD, reduced and eliminated REMS phasic activity of the masseter, respectively. Lesions of the PMnR and rPCRt did not, however, alter the neck EMG or EOG. To determine if rPCRt neurons use glutamate to control masseter phasic movements, we selectively blocked glutamate release by rPCRt neurons using a Cre-lox mouse system. Genetic disruption of glutamate neurotransmission by rPCRt neurons blocked masseter phasic activity during REMS.These results indicate that (1 premotor glutamatergic neurons in the medullary rPCRt and PMnR are involved in generating phasic activity in the masseter muscles, but not phasic eye movements, during REMS; and (2 separate brainstem neural circuits control postural and cranial muscle

  5. Phasic Motor Activity of Respiratory and Non-Respiratory Muscles in REM Sleep

    Science.gov (United States)

    Fraigne, Jimmy J.; Orem, John M.

    2011-01-01

    Objectives: In this study, we quantified the profiles of phasic activity in respiratory muscles (diaphragm, genioglossus and external intercostal) and non-respiratory muscles (neck and extensor digitorum) across REM sleep. We hypothesized that if there is a unique pontine structure that controls all REM sleep phasic events, the profiles of the phasic twitches of different muscle groups should be identical. Furthermore, we described how respiratory parameters (e.g., frequency, amplitude, and effort) vary across REM sleep to determine if phasic processes affect breathing. Methods: Electrodes were implanted in Wistar rats to record brain activity and muscle activity of neck, extensor digitorum, diaphragm, external intercostal, and genioglossal muscles. Ten rats were studied to obtain 313 REM periods over 73 recording days. Data were analyzed offline and REM sleep activity profiles were built for each muscle. In 6 animals, respiratory frequency, effort, amplitude, and inspiratory peak were also analyzed during 192 REM sleep periods. Results: Respiratory muscle phasic activity increased in the second part of the REM period. For example, genioglossal activity increased in the second part of the REM period by 63.8% compared to the average level during NREM sleep. This profile was consistent between animals and REM periods (η2 = 0.58). This increased activity seen in respiratory muscles appeared as irregular bursts and trains of activity that could affect rythmo-genesis. Indeed, the increased integrated activity seen in the second part of the REM period in the diaphragm was associated with an increase in the number (28.3%) and amplitude (30%) of breaths. Non-respiratory muscle phasic activity in REM sleep did not have a profile like the phasic activity of respiratory muscles. Time in REM sleep did not have an effect on nuchal activity (P = 0.59). Conclusion: We conclude that the concept of a common pontine center controlling all REM phasic events is not supported by our

  6. Phasic motor activity of respiratory and non-respiratory muscles in REM sleep.

    Science.gov (United States)

    Fraigne, Jimmy J; Orem, John M

    2011-04-01

    In this study, we quantified the profiles of phasic activity in respiratory muscles (diaphragm, genioglossus and external intercostal) and non-respiratory muscles (neck and extensor digitorum) across REM sleep. We hypothesized that if there is a unique pontine structure that controls all REM sleep phasic events, the profiles of the phasic twitches of different muscle groups should be identical. Furthermore, we described how respiratory parameters (e.g., frequency, amplitude, and effort) vary across REM sleep to determine if phasic processes affect breathing. Electrodes were implanted in Wistar rats to record brain activity and muscle activity of neck, extensor digitorum, diaphragm, external intercostal, and genioglossal muscles. Ten rats were studied to obtain 313 REM periods over 73 recording days. Data were analyzed offline and REM sleep activity profiles were built for each muscle. In 6 animals, respiratory frequency, effort, amplitude, and inspiratory peak were also analyzed during 192 REM sleep periods. Respiratory muscle phasic activity increased in the second part of the REM period. For example, genioglossal activity increased in the second part of the REM period by 63.8% compared to the average level during NREM sleep. This profile was consistent between animals and REM periods (η(2)=0.58). This increased activity seen in respiratory muscles appeared as irregular bursts and trains of activity that could affect rythmo-genesis. Indeed, the increased integrated activity seen in the second part of the REM period in the diaphragm was associated with an increase in the number (28.3%) and amplitude (30%) of breaths. Non-respiratory muscle phasic activity in REM sleep did not have a profile like the phasic activity of respiratory muscles. Time in REM sleep did not have an effect on nuchal activity (P=0.59). We conclude that the concept of a common pontine center controlling all REM phasic events is not supported by our data. There is a drive in REM sleep that

  7. NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels

    Science.gov (United States)

    Parajuli, Shankar P; Hristov, Kiril L; Soder, Rupal P; Kellett, Whitney F; Petkov, Georgi V

    2013-01-01

    Background and Purpose Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca2+-activated K+ (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function. Experimental Approach We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function. Key Results We detected SK3 but not SK1, SK2 or IK channels expression at both mRNA and protein levels by RT-PCR and immunocytochemistry in DSM single cells. NS309 (10 μM) significantly increased the whole cell SK currents and hyperpolarized DSM cell resting membrane potential. The NS309 hyperpolarizing effect was blocked by apamin, a selective SK channel inhibitor. NS309 inhibited the spontaneous phasic contraction amplitude, force, frequency, duration and tone of isolated DSM strips in a concentration-dependent manner. The inhibitory effect of NS309 on spontaneous phasic contractions was blocked by apamin but not by TRAM-34, indicating no functional role of the IK channels in rat DSM. NS309 also significantly inhibited the pharmacologically and electrical field stimulation-induced DSM contractions. Conclusions and Implications Our data reveal that SK3 channel is the main SK/IK subtype in rat DSM. Pharmacological activation of SK3 channels with NS309 decreases rat DSM cell excitability and contractility, suggesting that SK3 channels might be potential therapeutic targets to control OAB associated with detrusor overactivity. PMID:23145946

  8. Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements.

    Science.gov (United States)

    Barow, Ewgenia; Neumann, Wolf-Julian; Brücke, Christof; Huebl, Julius; Horn, Andreas; Brown, Peter; Krauss, Joachim K; Schneider, Gerd-Helge; Kühn, Andrea A

    2014-11-01

    Deep brain stimulation of the globus pallidus internus alleviates involuntary movements in patients with dystonia. However, the mechanism is still not entirely understood. One hypothesis is that deep brain stimulation suppresses abnormally enhanced synchronized oscillatory activity within the motor cortico-basal ganglia network. Here, we explore deep brain stimulation-induced modulation of pathological low frequency (4-12 Hz) pallidal activity that has been described in local field potential recordings in patients with dystonia. Therefore, local field potentials were recorded from 16 hemispheres in 12 patients undergoing deep brain stimulation for severe dystonia using a specially designed amplifier allowing simultaneous high frequency stimulation at therapeutic parameter settings and local field potential recordings. For coherence analysis electroencephalographic activity (EEG) over motor areas and electromyographic activity (EMG) from affected neck muscles were recorded before and immediately after cessation of high frequency stimulation. High frequency stimulation led to a significant reduction of mean power in the 4-12 Hz band by 24.8 ± 7.0% in patients with predominantly phasic dystonia. A significant decrease of coherence between cortical EEG and pallidal local field potential activity in the 4-12 Hz range was revealed for the time period of 30 s after switching off high frequency stimulation. Coherence between EMG activity and pallidal activity was mainly found in patients with phasic dystonic movements where it was suppressed after high frequency stimulation. Our findings suggest that high frequency stimulation may suppress pathologically enhanced low frequency activity in patients with phasic dystonia. These dystonic features are the quickest to respond to high frequency stimulation and may thus directly relate to modulation of pathological basal ganglia activity, whereas improvement in tonic features may depend on long-term plastic changes within the

  9. Wavelet analysis for detection of phasic electromyographic activity in sleep: influence of mother wavelet and dimensionality reduction.

    Science.gov (United States)

    Fairley, Jacqueline A; Georgoulas, George; Smart, Otis L; Dimakopoulos, George; Karvelis, Petros; Stylios, Chrysostomos D; Rye, David B; Bliwise, Donald L

    2014-05-01

    Phasic electromyographic (EMG) activity during sleep is characterized by brief muscle twitches (duration 100-500ms, amplitude four times background activity). High rates of such activity may have clinical relevance. This paper presents wavelet (WT) analyses to detect phasic EMG, examining both Symlet and Daubechies approaches. Feature extraction included 1s epoch processing with 24 WT-based features and dimensionality reduction involved comparing two techniques: principal component analysis and a feature/variable selection algorithm. Classification was conducted using a linear classifier. Valid automated detection was obtained in comparison to expert human judgment with high (>90%) classification performance for 11/12 datasets. Published by Elsevier Ltd.

  10. Phasic firing in vasopressin cells: understanding its functional significance through computational models.

    Directory of Open Access Journals (Sweden)

    Duncan J MacGregor

    Full Text Available Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response

  11. Diagnostic thresholds for quantitative REM sleep phasic burst duration, phasic and tonic muscle activity, and REM atonia index in REM sleep behavior disorder with and without comorbid obstructive sleep apnea.

    Science.gov (United States)

    McCarter, Stuart J; St Louis, Erik K; Duwell, Ethan J; Timm, Paul C; Sandness, David J; Boeve, Bradley F; Silber, Michael H

    2014-10-01

    We aimed to determine whether phasic burst duration and conventional REM sleep without atonia (RSWA) methods could accurately diagnose REM sleep behavior disorder (RBD) patients with comorbid OSA. We visually analyzed RSWA phasic burst durations, phasic, "any," and tonic muscle activity by 3-s mini-epochs, phasic activity by 30-s (AASM rules) epochs, and conducted automated REM atonia index (RAI) analysis. Group RSWA metrics were analyzed and regression models fit, with receiver operating characteristic (ROC) curves determining the best diagnostic cutoff thresholds for RBD. Both split-night and full-night polysomnographic studies were analyzed. N/A. Parkinson disease (PD)-RBD (n = 20) and matched controls with (n = 20) and without (n = 20) OSA. N/A. All mean RSWA phasic burst durations and muscle activities were higher in PD-RBD patients than controls (P sleep without atonia diagnostic thresholds applicable in Parkinson disease-REM sleep behavior disorder (PD-RBD) patient populations with comorbid OSA that may be useful toward distinguishing PD-RBD in typical outpatient populations. © 2014 Associated Professional Sleep Societies, LLC.

  12. Activity changes of the cat paraventricular hypothalamus during phasic respiratory events

    DEFF Research Database (Denmark)

    Kristensen, Morten Pilgaard; Poe, G R; Rector, D M

    1997-01-01

    We monitored the spatiotemporal organization of cellular activity in the medial paraventricular hypothalamus during spontaneously-occurring periods of increased inspiratory effort followed by prolonged respiratory pauses (sigh/apnea) in the freely-behaving cat. Paraventricular hypothalamic activity...

  13. Phasic dopamine release drives rapid activation of striatal D2-receptors

    Science.gov (United States)

    Marcott, Pamela F; Mamaligas, Aphroditi A; Ford, Christopher P

    2014-01-01

    Summary Striatal dopamine transmission underlies numerous goal-directed behaviors. Medium spiny neurons (MSNs) are a major target of dopamine in the striatum. However, as dopamine does not directly evoke a synaptic event in MSNs, the time course of dopamine signaling in these cells remains unclear. To examine how dopamine release activates D2-receptors on MSNs, G-protein activated inwardly rectifying potassium (GIRK2; Kir 3.2) channels were virally overexpressed in the striatum and the resulting outward currents were used as a sensor of D2-receptor activation. Electrical and optogenetic stimulation of dopamine terminals evoked robust D2-receptor inhibitory post-synaptic currents (IPSCs) in GIRK2-expressing MSNs that occurred in under a second. Evoked D2-IPSCs could be driven by repetitive stimulation and were not occluded by background dopamine tone. Together, the results indicate that D2-receptors on MSNs exhibit functional low affinity and suggest that striatal D2-receptors can encode both tonic and phasic dopamine signals. PMID:25242218

  14. Modulatory effect of intestinal polyamines and trace amines on the spontaneous phasic contractions of the isolated ileum and colon rings of mice.

    Science.gov (United States)

    Sánchez, Manuel; Suárez, Lorena; Andrés, María Teresa; Flórez, Blanca Henar; Bordallo, Javier; Riestra, Sabino; Cantabrana, Begoña

    2017-01-01

    Background : Gastrointestinal motility modulatory factors include substances of the intestinal content, such as polyamines and trace amines (TAs), the focus of this study. Methods : The amines of food, intestinal content and from faecal bacteria of Swiss mice were determined by HPLC and functionally characterised in isolated distal ileum and medial colon rings. Results : Mouse food and intestinal content contain polyamines (spermidine>putrescine>spermine) and TAs (isoamylamine>cadaverine). Intestinal bacteria mainly produce putrescine and cadaverine. The amines inhibited the spontaneous motility of the ileum (0.1-3 mM) and colon rings (0.01-3 mM, with lower IC 50 ), with: spermine~isoamylamine~spermidine. Spermine inhibition was tetrodotoxin (TTX)-insensitive, while isoamylamine was TTX-sensitive, suggesting neural control. Mainly in the ileum, isoamylamine (3 mM) elicited acute effects modified by TTX, atropine and propranolol, and suppressed by spermine (3 mM), not being localized at the smooth muscle level. The amines assayed (3 mM), except putrescine and cadaverine in the ileum and isoamylamine in the colon, antagonised acetylcholine (ACh, 0.1 mM)-elicited phasic contractions. Isoamylamine and spermine in colon relaxed KCl (100 mM)-elicited tonic contractions, suggesting an effect on smooth muscle, but did not justify the suppression of motility caused by spermine and isoamylamine. Conclusions : Polyamines and TAs of the intestinal content might act on chemosensors and modulate intestinal peristalsis.

  15. Behavioral Modulation by Spontaneous Activity of Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    Toshiharu Ichinose

    2017-12-01

    Full Text Available Dopamine modulates a variety of animal behaviors that range from sleep and learning to courtship and aggression. Besides its well-known phasic firing to natural reward, a substantial number of dopamine neurons (DANs are known to exhibit ongoing intrinsic activity in the absence of an external stimulus. While accumulating evidence points at functional implications for these intrinsic “spontaneous activities” of DANs in cognitive processes, a causal link to behavior and its underlying mechanisms has yet to be elucidated. Recent physiological studies in the model organism Drosophila melanogaster have uncovered that DANs in the fly brain are also spontaneously active, and that this activity reflects the behavioral/internal states of the animal. Strikingly, genetic manipulation of basal DAN activity resulted in behavioral alterations in the fly, providing critical evidence that links spontaneous DAN activity to behavioral states. Furthermore, circuit-level analyses have started to reveal cellular and molecular mechanisms that mediate or regulate spontaneous DAN activity. Through reviewing recent findings in different animals with the major focus on flies, we will discuss potential roles of this physiological phenomenon in directing animal behaviors.

  16. Gravitational and Dynamic Components of Muscle Torque Underlie Tonic and Phasic Muscle Activity during Goal-Directed Reaching

    Directory of Open Access Journals (Sweden)

    Erienne V. Olesh

    2017-09-01

    Full Text Available Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques.

  17. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core.

    Science.gov (United States)

    Fortin, Samantha M; Roitman, Mitchell F

    2017-07-01

    Drugs of abuse increase the frequency and magnitude of brief (1-3s), high concentration (phasic) dopamine release events in terminal regions. These are thought to be a critical part of drug reinforcement and ultimately the development of addiction. Recently, metabolic regulatory peptides, including the satiety signal glucagon-like peptide-1 (GLP-1), have been shown to modulate cocaine reward-driven behavior and sustained dopamine levels after cocaine administration. Here, we use fast-scan cyclic voltammetry (FSCV) to explore GLP-1 receptor (GLP-1R) modulation of dynamic dopamine release in the nucleus accumbens (NAc) during cocaine administration. We analyzed dopamine release events in both the NAc shell and core, as these two subregions are differentially affected by cocaine and uniquely contribute to motivated behavior. We found that central delivery of the GLP-1R agonist Exendin-4 suppressed the induction of phasic dopamine release events by intravenous cocaine. This effect was selective for dopamine signaling in the NAc core. Suppression of phasic signaling in the core by Exendin-4 could not be attributed to interference with cocaine binding to one of its major substrates, the dopamine transporter, as cocaine-induced increases in reuptake were unaffected. The results suggest that GLP-1R activation, instead, exerts its suppressive effects by altering dopamine release - possibly by suppressing the excitability of dopamine neurons. Given the role of NAc core dopamine in the generation of conditioned responses based on associative learning, suppression of cocaine-induced dopamine signaling in this subregion by GLP-1R agonism may decrease the reinforcing properties of cocaine. Thus, GLP-1Rs remain viable targets for the treatment and prevention of cocaine seeking, taking and relapse. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

    Science.gov (United States)

    Daberkow, DP; Brown, HD; Bunner, KD; Kraniotis, SA; Doellman, MA; Ragozzino, ME; Garris, PA; Roitman, MF

    2013-01-01

    Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  19. Long-range alpha/beta and short-range gamma EEG synchronization distinguishes phasic and tonic REM periods.

    Science.gov (United States)

    Simor, Péter; Gombos, Ferenc; Blaskovich, Borbála; Bódizs, Róbert

    2017-12-23

    Rapid Eye Movement (REM) sleep is characterized by the alternation of two markedly different microstates, phasic and tonic REM. These periods differ in awakening and arousal thresholds, sensory processing, and spontaneous cortical oscillations. Previous studies indicate that whereas in phasic REM, cortical activity is independent of the external environment, attentional functions and sensory processing are partially maintained during tonic periods. Large-scale synchronization of oscillatory activity, especially in the alpha and beta frequency ranges can accurately distinguish different states of vigilance and cognitive processes of enhanced alertness and attention. Therefore, we examined long-range inter-and intrahemispheric, as well as short-range EEG synchronization during phasic and tonic REM periods quantified by the weighted phase lag index. Based on the nocturnal polysomnographic data of 19 healthy, adult participants we showed that long-range inter-and intrahemispheric alpha and beta synchrony were enhanced in tonic REM states in contrast to phasic ones, and resembled alpha and beta synchronization of resting wakefulness. On the other hand, short-range synchronization within the gamma frequency range was higher in phasic as compared to tonic periods. Increased short-range synchrony might reflect local, and inwardly driven sensorimotor activity during phasic REM periods, whereas enhanced long-range synchrony might index frontoparietal activity that reinstates environmental alertness after phasic REM periods. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  20. Phasic-to-tonic shift in trunk muscle activity relative to walking during low-impact weight bearing exercise

    Science.gov (United States)

    Caplan, Nick; Gibbon, Karl; Hibbs, Angela; Evetts, Simon; Debuse, Dorothée

    2014-11-01

    The aim of this study was to investigate the influence of an exercise device, designed to improve the function of lumbopelvic muscles via low-impact weight-bearing exercise, on electromyographic (EMG) activity of lumbopelvic, including abdominal muscles. Surface EMG activity was collected from lumbar multifidus (LM), erector spinae (ES), internal oblique (IO), external oblique (EO) and rectus abdominis (RA) during overground walking (OW) and exercise device (EX) conditions. During walking, most muscles showed peaks in activity which were not seen during EX. Spinal extensors (LM, ES) were more active in EX. Internal oblique and RA were less active in EX. In EX, LM and ES were active for longer than during OW. Conversely, EO and RA were active for a shorter duration in EX than OW. The exercise device showed a phasic-to-tonic shift in activation of both local and global lumbopelvic muscles and promoted increased activation of spinal extensors in relation to walking. These features could make the exercise device a useful rehabilitative tool for populations with lumbopelvic muscle atrophy and dysfunction, including those recovering from deconditioning due to long-term bed rest and microgravity in astronauts.

  1. Selective Activation of Cholinergic Interneurons Enhances Accumbal Phasic Dopamine Release: Setting the Tone for Reward Processing

    Directory of Open Access Journals (Sweden)

    Roger Cachope

    2012-07-01

    Full Text Available Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.

  2. Activity changes of the cat paraventricular hypothalamus during phasic respiratory events

    DEFF Research Database (Denmark)

    Kristensen, Morten Pilgaard; Poe, G R; Rector, D M

    1997-01-01

    was assayed by video images of light captured with a stereotaxically-placed fibre optic probe. Respiratory activity was measured through electromyographic wire electrodes placed in the diaphragm. Sigh/apnea events appeared in all behavioural states, and especially during quiet sleep. Overall paraventricular...

  3. Novel anionic steroid inhibitors of phasically and tonically activated NMDA receptors

    Czech Academy of Sciences Publication Activity Database

    Kudová, Eva; Chodounská, Hana; Slavíková, Barbora; Vyklický, Vojtěch; Borovská, Jiřina; Krausová, Barbora; Vyklický ml., Ladislav

    2012-01-01

    Roč. 106, - (2012), s778-s778 ISSN 0009-2770. [EuCheMS Chemistry Congress /4./. 26.08.2012-30.08.2012, Prague] Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50110509 Keywords : steroids * receptors * lipophilicity * structure-activity relationships Subject RIV: CC - Organic Chemistry

  4. Spontaneous Plasticity of Multineuronal Activity Patterns in Activated Hippocampal Networks

    Directory of Open Access Journals (Sweden)

    Atsushi Usami

    2008-01-01

    Full Text Available Using functional multineuron imaging with single-cell resolution, we examined how hippocampal networks by themselves change the spatiotemporal patterns of spontaneous activity during the course of emitting spontaneous activity. When extracellular ionic concentrations were changed to those that mimicked in vivo conditions, spontaneous activity was increased in active cell number and activity frequency. When ionic compositions were restored to the control conditions, the activity level returned to baseline, but the weighted spatial dispersion of active cells, as assessed by entropy-based metrics, did not. Thus, the networks can modify themselves by altering the internal structure of their correlated activity, even though they as a whole maintained the same level of activity in space and time.

  5. Spontaneous activity in peripheral diaphragmatic lymphatic loops.

    Science.gov (United States)

    Moriondo, Andrea; Solari, Eleonora; Marcozzi, Cristiana; Negrini, Daniela

    2013-10-01

    The spontaneous contractility of FITC-dextran-filled lymphatics at the periphery of the pleural diaphragm was documented for the first time "in vivo" in anesthetized Wistar rats. We found that lymphatic segments could be divided into four phenotypes: 1) active, displaying rhythmic spontaneous contractions (51.8% of 197 analyzed sites); 2) stretch-activated, whose contraction was triggered by passive distension of the vessel lumen (4.1%); 3) passive, which displayed a completely passive distension (4.5%); and 4) inert, whose diameter never changed over time (39.6%). Smooth muscle actin was detected by immunofluorescence and confocal microscopy in the vessel walls of active but also of inert sites, albeit with a very different structure within the vessel wall. Indeed, while in active segments, actin was arranged in a dense mesh completely surrounding the lumen, in inert segments actin decorated the vessels wall in sparse longitudinal strips. When located nearby along the same lymphatic loop, active, stretch-activated, and passive sites were always recruited in temporal sequence starting from the active contraction. The time delay was ∼0.35 s between active and stretch-activated and 0.54 s between stretch-activated and passive segments, promoting a uniform lymph flux of ∼150/200 pl/min. We conclude that, unlike more central diaphragmatic lymphatic vessels, loops located at the extreme diaphragmatic periphery do require an intrinsic pumping mechanism to propel lymph centripetally, and that such an active lymph propulsion is attained by means of a complex interplay among sites whose properties differ but are indeed able to organize lymph flux in an ordered fashion.

  6. Effects of imatinib mesylate on the spontaneous activity generated by the guinea-pig prostate.

    Science.gov (United States)

    Lam, Michelle; Dey, Anupa; Lang, Richard J; Exintaris, Betty

    2013-08-01

    What's known on the subject? and what does the study add?: Several studies have examined the functional role of tyrosine kinase receptors in the generation of spontaneous activity in various segments of the gastrointestinal and urogenital tracts through the application of its inhibitor, imatinib mesylate (Glivec®), but results are fairly inconsistent. This is the first study detailing the effects of imatinib mesylate on the spontaneous activity in the young and ageing prostate gland. As spontaneous electrical activity underlies the spontaneous rhythmic prostatic contractions that occur at rest, elucidating the mechanisms involved in the regulation of the spontaneous electrical activity and the resultant phasic contractions could conceivably lead to the identification of better targets and the development of more specific therapeutic agents to treat prostate conditions. To investigate the effect of imatinib mesylate, a tyrosine kinase receptor inhibitor, in the generation of spontaneous electrical and contractile activity in the young and ageing guinea-pig prostate. Standard tension and intracellular recording were used to measure spontaneous contractions and slow waves, respectively from the guinea-pig prostate at varying concentrations of imatinib mesylate (1-50 μm). Imatinib mesylate (1-10 μm), did not significantly affect slow waves recorded in the prostate of both age groups but at 50 μm, the amplitude of slow waves from the ageing guinea-pig prostate was significantly reduced (P imatinib mesylate attenuated the amplitude and slowed the frequency of contractions in ageing guinea-pigs to 5.15% and 3.3% at 1 μm (n = 6); 21.1% and 20.8% at 5 μm (n = 8); 58.4% and 8.8% at 10 μm (n = 11); 72.7% and 60% at 50 μm (n = 5). A significant reduction in contractions but persistence of slow waves suggests imatinib mesylate may affect the smooth muscle contractile mechanism. Imatinib mesylate also significantly reduced contractions in the prostates of younger guinea

  7. Spontaneous Activity Drives Local Synaptic Plasticity In Vivo

    NARCIS (Netherlands)

    Winnubst, Johan; Cheyne, Juliette E; Niculescu, Dragos; Lohmann, C.

    2015-01-01

    Spontaneous activity fine-tunes neuronal connections in the developing brain. To explore the underlying synaptic plasticity mechanisms, we monitored naturally occurring changes in spontaneous activity at individual synapses with whole-cell patch-clamp recordings and simultaneous calcium imaging in

  8. Phasic-to-tonic shift in trunk muscle activity relative to walking during low-impact weight bearing exercise

    OpenAIRE

    Caplan, N.; Gibbon, K.C.; Hibbs, A.; Evetts, S.; Debuse, D.

    2014-01-01

    The aim of this study was to investigate the influence of an exercise device, designed to improve the function of lumbopelvic muscles via low-impact weight-bearing exercise, on electromyographic (EMG) activity of lumbopelvic, including abdominal muscles. Surface EMG activity was collected from lumbar multifidus (LM), erector spinae (ES), internal oblique (IO), external oblique (EO) and rectus abdominis (RA) during overground walking (OW) and exercise device (EX) conditions. During walking, mo...

  9. Design and Synthesis of Mono- and Bi-phasic Nano hybrids for Simultaneous Release of Two Active Agents

    International Nuclear Information System (INIS)

    Mohd Zobir Hussein; Abdul Rahman, N.S.S.; Siti Halimah Sarijo

    2011-01-01

    Organic-Inorganic nano hybrid materials, especially of host-guest types exhibit an excellent opportunity for a wide range of organic active agents for the formation of organic-inorganic nano hybrids which may find potential uses with tailor made application. A number of groups have studied the agrochemical intercalates of LDHs as potential reservoir and controlled release system. Agrochemicals, in particular herbicides such as 4-(2,4-dichlorophenoxy)butyrate (DPBA) and 2-(3- chlorophenoxy)propionate (CPPA) are commonly used in agriculture sector. Simultaneous incorporation of both phenoxy herbicides anions into Zn-Al-LDH (ZAL) have been successfully prepared by direct co-precipitation method, labeled as NCDD. Both anions were intercalated simultaneously into the inorganic ZAL interlayers and X-ray diffraction data reveal that the basal spacing increased from 8.9 to 25.1 Angstrom upon the intercalation. PXRD patterns of single anion intercalation using CPPA and DPBA labeled as NC and ND nano hybrid, respectively was simulated and found that the PXRD patterns composed of 90 % ND and 10 % NC and this show relatively similar PXRD features to that of NCDD nano hybrid. This indicates that NCDD is possibly composed of mixed phases of each of NC and ND. UV-VIS spectroscopy study shows the percentage loading of CPPA and DPBA is 2.5 % (w/w) and 41.4 % (w/w), respectively. These values are equivalent to about 5.7 % and 94.3 % contribution of CPPA and DPBA, which agree nicely with the values obtained from simulated PXRD patterns. The simultaneous release of the two herbicides from its nano hybrid exhibit different release kinetics, where DPBA shows higher percentage release than CPPA. The release process was found to be controlled by pseudo-second order kinetic. The results presented show that the intercalation and release of the dual herbicides are influenced by the anion size. The abundance of DPBA anion between the ZAL interlayer is due to its higher affinity towards LDH

  10. EEG spectral power in phasic and tonic REM sleep: different patterns in young adults and children.

    Science.gov (United States)

    Simor, Péter; Gombos, Ferenc; Szakadát, Sára; Sándor, Piroska; Bódizs, Róbert

    2016-06-01

    Rapid eye movement sleep is composed of phasic and tonic periods, two distinguishable microstates in terms of arousal thresholds and sensory processing. Background electroencephalogram oscillations are also different between periods with (phasic state) and periods without (tonic state) eye movements. In Study 1, previous findings analysing electroencephalogram spectral power in phasic and tonic rapid eye movement sleep were replicated, and analyses extended to the high gamma range (52-90 Hz). In Study 2, phasic and tonic spectral power differences within a group of 4-8-year-old children were examined. Based on the polysomnographic data of 20 young adults, the phasic state yielded increased delta and theta power in anterior sites, as well as generally decreased high alpha and beta power in comparison to the tonic state. Moreover, phasic periods exhibited greater spectral power in the lower and the higher gamma band. Interestingly, children (n = 18) exhibited a different pattern, showing increased activity in the low alpha range during phasic periods. Moreover, during phasic in contrast to tonic rapid eye movement sleep, increased low and high gamma and enhanced low gamma band power emerged in anterior and posterior regions, respectively. The current findings show that spectral activity within the high gamma range substantially contributes to the differences between phasic and tonic rapid eye movement sleep, especially in adults. Moreover, the current data underscore the heterogeneity of rapid eye movement sleep, and point to marked differences between young adults and children regarding phasic/tonic electroencephalogram spectral power. These results suggest that the differentiation between phasic and tonic rapid eye movement periods undergoes maturation. © 2016 European Sleep Research Society.

  11. Learning sculpts the spontaneous activity of the resting human brain

    OpenAIRE

    Lewis, Christopher M.; Baldassarre, Antonello; Committeri, Giorgia; Romani, Gian Luca; Corbetta, Maurizio

    2009-01-01

    The brain is not a passive sensory-motor analyzer driven by environmental stimuli, but actively maintains ongoing representations that may be involved in the coding of expected sensory stimuli, prospective motor responses, and prior experience. Spontaneous cortical activity has been proposed to play an important part in maintaining these ongoing, internal representations, although its functional role is not well understood. One spontaneous signal being intensely investigated in the human brai...

  12. Voluntary breath holding affects spontaneous brain activity measured by magnetoencephalography

    NARCIS (Netherlands)

    Schellart, N. A.; Reits, D.

    1999-01-01

    Spontaneous brain activity was measured by multichannel magnetoencephalography (MEG) during voluntary breath holds. Significant changes in the activity are limited to the alpha rhythm: 0.25 Hz frequency increase and narrowing of the peak. The area of alpha activity shifts slightly toward (fronto-)

  13. Spontaneous Electrical Activity in the Nervous System and its ...

    African Journals Online (AJOL)

    The present study was carried out to examine the effects of biogenic amines on the spontaneous electrical activity of the nervous system in the silkworm Bombyx mori. The activity recorded from different segments of the ventral nerve cord differed in the frequency and number of spike categories firing. The activity was highest ...

  14. Mesoscale Architecture Shapes Initiation and Richness of Spontaneous Network Activity.

    Science.gov (United States)

    Okujeni, Samora; Kandler, Steffen; Egert, Ulrich

    2017-04-05

    Spontaneous activity in the absence of external input, including propagating waves of activity, is a robust feature of neuronal networks in vivo and in vitro The neurophysiological and anatomical requirements for initiation and persistence of such activity, however, are poorly understood, as is their role in the function of neuronal networks. Computational network studies indicate that clustered connectivity may foster the generation, maintenance, and richness of spontaneous activity. Since this mesoscale architecture cannot be systematically modified in intact tissue, testing these predictions is impracticable in vivo Here, we investigate how the mesoscale structure shapes spontaneous activity in generic networks of rat cortical neurons in vitro In these networks, neurons spontaneously arrange into local clusters with high neurite density and form fasciculating long-range axons. We modified this structure by modulation of protein kinase C, an enzyme regulating neurite growth and cell migration. Inhibition of protein kinase C reduced neuronal aggregation and fasciculation of axons, i.e., promoted uniform architecture. Conversely, activation of protein kinase C promoted aggregation of neurons into clusters, local connectivity, and bundling of long-range axons. Supporting predictions from theory, clustered networks were more spontaneously active and generated diverse activity patterns. Neurons within clusters received stronger synaptic inputs and displayed increased membrane potential fluctuations. Intensified clustering promoted the initiation of synchronous bursting events but entailed incomplete network recruitment. Moderately clustered networks appear optimal for initiation and propagation of diverse patterns of activity. Our findings support a crucial role of the mesoscale architectures in the regulation of spontaneous activity dynamics. SIGNIFICANCE STATEMENT Computational studies predict richer and persisting spatiotemporal patterns of spontaneous activity in

  15. Spatial diversity of spontaneous activity in the cortex

    Directory of Open Access Journals (Sweden)

    Andrew Yong-Yi Tan

    2015-09-01

    Full Text Available The neocortex is a layered sheet across which a basic organization is thought to widely apply. The variety of spontaneous activity patterns is similar throughout the cortex, consistent with the notion of a basic cortical organization. However, the basic organization is only an outline which needs adjustments and additions to account for the structural and functional diversity across cortical layers and areas. Such diversity suggests that spontaneous activity is spatially diverse in any particular behavioral state. Accordingly, this review summarizes the laminar and areal diversity in cortical activity during fixation and slow oscillations, and the effects of attention, anesthesia and plasticity on the cortical distribution of spontaneous activity. Among questions that remain open, characterizing the spatial diversity in spontaneous membrane potential may help elucidate how differences in circuitry among cortical regions supports their varied functions. More work is also needed to understand whether cortical spontaneous activity not only reflects cortical circuitry, but also contributes to determining the outcome of plasticity, so that it is itself a factor shaping the functional diversity of the cortex.

  16. Uncovering intrinsic modular organization of spontaneous brain activity in humans.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available The characterization of topological architecture of complex brain networks is one of the most challenging issues in neuroscience. Slow (<0.1 Hz, spontaneous fluctuations of the blood oxygen level dependent (BOLD signal in functional magnetic resonance imaging are thought to be potentially important for the reflection of spontaneous neuronal activity. Many studies have shown that these fluctuations are highly coherent within anatomically or functionally linked areas of the brain. However, the underlying topological mechanisms responsible for these coherent intrinsic or spontaneous fluctuations are still poorly understood. Here, we apply modern network analysis techniques to investigate how spontaneous neuronal activities in the human brain derived from the resting-state BOLD signals are topologically organized at both the temporal and spatial scales. We first show that the spontaneous brain functional networks have an intrinsically cohesive modular structure in which the connections between regions are much denser within modules than between them. These identified modules are found to be closely associated with several well known functionally interconnected subsystems such as the somatosensory/motor, auditory, attention, visual, subcortical, and the "default" system. Specifically, we demonstrate that the module-specific topological features can not be captured by means of computing the corresponding global network parameters, suggesting a unique organization within each module. Finally, we identify several pivotal network connectors and paths (predominantly associated with the association and limbic/paralimbic cortex regions that are vital for the global coordination of information flow over the whole network, and we find that their lesions (deletions critically affect the stability and robustness of the brain functional system. Together, our results demonstrate the highly organized modular architecture and associated topological properties in

  17. Vasopressin regularizes the phasic firing pattern of rat hypothalamic magnocellular vasopressin neurons.

    Science.gov (United States)

    Gouzènes, L; Desarménien, M G; Hussy, N; Richard, P; Moos, F C

    1998-03-01

    Vasopressin (AVP) magnocellular neurons of hypothalamic nuclei express specific phasic firing (successive periods of activity and silence), which conditions the mode of neurohypophyseal vasopression release. In situations favoring plasmatic secretion of AVP, the hormone is also released at the somatodendritic level, at which it is believed to modulate the activity of AVP neurons. We investigated the nature of this autocontrol by testing the effects of juxtamembrane applications of AVP on the extracellular activity of presumed AVP neurons in paraventricular and supraoptic nuclei of anesthetized rats. AVP had three effects depending on the initial firing pattern: (1) excitation of faintly active neurons (periods of activity of <10 sec), which acquired or reinforced their phasic pattern; (2) inhibition of quasi-continuously active neurons (periods of silences of <10 sec), which became clearly phasic; and (3) no effect on neurons already showing an intermediate phasic pattern (active and silent periods of 10-30 sec). Consequently, AVP application resulted in a narrower range of activity patterns of the population of AVP neurons, with a Gaussian distribution centered around a mode of 57% of time in activity, indicating a homogenization of the firing pattern. The resulting phasic pattern had characteristics close to those established previously for optimal release of AVP from neurohypophyseal endings. These results suggest a new role for AVP as an optimizing factor that would foster the population of AVP neurons to discharge with a phasic pattern known to be most efficient for hormone release.

  18. Patterns of Spontaneous Magnetoencephalographic Activity in Schizophrenic Patients

    OpenAIRE

    Siekmeier, Peter J.; Stufflebeam, Steven M.

    2010-01-01

    Magnetoencephalography (MEG) non-invasively measures the magnetic fields produced by the brain. Pertinent research articles from 1993 to 2009 that measured spontaneous, whole-head MEG activity in schizophrenic patients were reviewed. Data on localization of oscillatory activity and correlation of these findings with psychotic symptoms are summarized. While the variety of measures used by different research groups makes a quantitative meta-analysis difficult, it appears that MEG activity in pa...

  19. Modulating spontaneous brain activity using repetitive transcranial magnetic stimulation

    NARCIS (Netherlands)

    van der Werf, Y.D.; Sanz-Arigita, E.J.; Menning, S.; van den Heuvel, O.A.

    2010-01-01

    Background: When no specific stimulus or task is presented, spontaneous fluctuations in brain activity occur. Brain regions showing such coherent fluctuations are thought to form organized networks known as 'resting-state' networks, a main representation of which is the default mode network.

  20. Presynaptic Spontaneous Activity Enhances the Accuracy of Latency Coding

    Czech Academy of Sciences Publication Activity Database

    Leváková, Marie; Tamborrino, M.; Košťál, Lubomír; Lánský, Petr

    2016-01-01

    Roč. 28, č. 10 (2016), s. 2162-2180 ISSN 0899-7667 R&D Projects: GA MŠk 7AMB15AT010; GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : neural coding * first-spike latency * spontaneous activity Subject RIV: FH - Neurology Impact factor: 1.938, year: 2016

  1. Spontaneous neutrophil activation in HTLV-1 infected patients

    Directory of Open Access Journals (Sweden)

    Jaqueline B. Guerreiro

    Full Text Available Human T cell lymphotropic Virus type-1 (HTLV-1 induces lymphocyte activation and proliferation, but little is known about the innate immune response due to HTLV-1 infection. We evaluated the percentage of neutrophils that metabolize Nitroblue tetrazolium (NBT to formazan in HTLV-1 infected subjects and the association between neutrophil activation and IFN-gamma and TNF-alpha levels. Blood was collected from 35 HTLV-1 carriers, from 8 patients with HAM/TSP (HTLV-1- associated myelopathy; 22 healthy individuals were evaluated for spontaneous and lipopolysaccharide (LPS-stimulated neutrophil activity (reduction of NBT to formazan. The production of IFN-gamma and TNF-alpha by unstimulated mononuclear cells was determined by ELISA. Spontaneous NBT levels, as well as spontaneous IFN-gamma and TNF-alpha production, were significantly higher (p<0.001 in HTLV-1 infected subjects than in healthy individuals. A trend towards a positive correlation was noted, with increasing percentage of NBT positive neutrophils and levels of IFN-gamma. The high IFN-gamma producing HTLV-1 patient group had significantly greater NBT than healthy controls, 43±24% and 17±4.8% respectively (p< 0.001, while no significant difference was observed between healthy controls and the low IFN-gamma-producing HTLV-1 patient group (30±20%. Spontaneous neutrophil activation is another marker of immune perturbation resulting from HTLV-1 infection. In vivo activation of neutrophils observed in HTLV-1 infected subjects is likely to be the same process that causes spontaneous IFN-gamma production, or it may partially result from direct IFN-gamma stimulation.

  2. SPIDER OR NO SPIDER? NEURAL CORRELATES OF SUSTAINED AND PHASIC FEAR IN SPIDER PHOBIA.

    Science.gov (United States)

    Münsterkötter, Anna Luisa; Notzon, Swantje; Redlich, Ronny; Grotegerd, Dominik; Dohm, Katharina; Arolt, Volker; Kugel, Harald; Zwanzger, Peter; Dannlowski, Udo

    2015-09-01

    Processes of phasic fear responses to threatening stimuli are thought to be distinct from sustained, anticipatory anxiety toward an unpredicted, potential threat. There is evidence for dissociable neural correlates of phasic fear and sustained anxiety. Whereas increased amygdala activity has been associated with phasic fear, sustained anxiety has been linked with activation of the bed nucleus of stria terminalis (BNST), anterior cingulate cortex (ACC), and the insula. So far, only a few studies have focused on the dissociation of neural processes related to both phasic and sustained fear in specific phobia. We suggested that first, conditions of phasic and sustained fear would involve different neural networks and, second, that overall neural activity would be enhanced in a sample of phobic compared to nonphobic participants. Pictures of spiders and neutral stimuli under conditions of either predicted (phasic) or unpredicted (sustained) fear were presented to 28 subjects with spider phobia and 28 nonphobic control subjects during functional magnetic resonance imaging (fMRI) scanning. Phobic patients revealed significantly higher amygdala activation than controls under conditions of phasic fear. Sustained fear processing was significantly related to activation in the insula and ACC, and phobic patients showed a stronger activation than controls of the BNST and the right ACC under conditions of sustained fear. Functional connectivity analysis revealed enhanced connectivity of the BNST and the amygdala in phobic subjects. Our findings support the idea of distinct neural correlates of phasic and sustained fear processes. Increased neural activity and functional connectivity in these networks might be crucial for the development and maintenance of anxiety disorders. © 2015 Wiley Periodicals, Inc.

  3. Spontaneous physical activity protects against fat mass gain

    OpenAIRE

    Teske, Jennifer A.; Billington, Charles J.; Kuskowski, Michael A.; Kotz, Catherine M.

    2011-01-01

    It is unclear whether elevated spontaneous physical activity (SPA, very low-intensity physical activity) positively influences body composition long-term. Objective We determined whether SPA and caloric intake were differentially related to the growth curve trajectories of body weight, FM and FFM between obesity resistant and Sprague-Dawley rats at specific age intervals. Design and Subjects Body composition, SPA and caloric intake were measured in selectively-bred obesity resistant and out-b...

  4. Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target

    Science.gov (United States)

    Paz, Jeanne T.; Wang, Eric Hou Jen; Badgely, Corrine; Olson, Andrew; Micheva, Kristina D.; Wang, Gordon; Lemmens, Robin; Tran, Kevin V.; Nishiyama, Yasuhiro; Liang, Xibin; Hamilton, Scott A.; O’Rourke, Nancy; Smith, Stephen J.; Huguenard, John R.; Bliss, Tonya M.

    2016-01-01

    Abstract Ischaemic stroke is the leading cause of severe long-term disability yet lacks drug therapies that promote the repair phase of recovery. This repair phase of stroke occurs days to months after stroke onset and involves brain remapping and plasticity within the peri-infarct zone. Elucidating mechanisms that promote this plasticity is critical for the development of new therapeutics with a broad treatment window. Inhibiting tonic (extrasynaptic) GABA signalling during the repair phase was reported to enhance functional recovery in mice suggesting that GABA plays an important function in modulating brain repair. While tonic GABA appears to suppress brain repair after stroke, less is known about the role of phasic (synaptic) GABA during the repair phase. We observed an increase in postsynaptic phasic GABA signalling in mice within the peri-infarct cortex specific to layer 5; we found increased numbers of α1 receptor subunit-containing GABAergic synapses detected using array tomography, and an associated increased efficacy of spontaneous and miniature inhibitory postsynaptic currents in pyramidal neurons. Furthermore, we demonstrate that enhancing phasic GABA signalling using zolpidem, a Food and Drug Administration (FDA)-approved GABA-positive allosteric modulator, during the repair phase improved behavioural recovery. These data identify potentiation of phasic GABA signalling as a novel therapeutic strategy, indicate zolpidem’s potential to improve recovery, and underscore the necessity to distinguish the role of tonic and phasic GABA signalling in stroke recovery. PMID:26685158

  5. Ensemble spontaneous activity alterations detected by CISA approach.

    Science.gov (United States)

    Boudaoud, Sofiane; Rix, Hervé; Meste, Olivier; Cazals, Yves

    2007-01-01

    In this paper, we propose a method for detecting alterations in the Ensemble Spontaneous Activity (ESA), a random signal representing the composite spontaneous contribution of the auditory nerve recorded on the round window. The proposed method is based on shape analysis of the ESA amplitude histogram. For this task, we use a recent approach, the Corrected Integral Shape Averaging (CISA). Using this approach, a shape clustering algorithm is proposed to classify healthy and pathological ESA signals generated by a recent ESA model. This model allows a precise simulation of neural mechanisms occurring in the auditory nerve. The obtained results demonstrate that this shape analysis is very sensitive for detecting a small number of fibers with correlated firing, supposed to occur during a particular type of tinnitus. In comparison, the classical spectral index fails in this detection.

  6. Spontaneous cortical activity is transiently poised close to criticality.

    Directory of Open Access Journals (Sweden)

    Gerald Hahn

    2017-05-01

    Full Text Available Brain activity displays a large repertoire of dynamics across the sleep-wake cycle and even during anesthesia. It was suggested that criticality could serve as a unifying principle underlying the diversity of dynamics. This view has been supported by the observation of spontaneous bursts of cortical activity with scale-invariant sizes and durations, known as neuronal avalanches, in recordings of mesoscopic cortical signals. However, the existence of neuronal avalanches in spiking activity has been equivocal with studies reporting both its presence and absence. Here, we show that signs of criticality in spiking activity can change between synchronized and desynchronized cortical states. We analyzed the spontaneous activity in the primary visual cortex of the anesthetized cat and the awake monkey, and found that neuronal avalanches and thermodynamic indicators of criticality strongly depend on collective synchrony among neurons, LFP fluctuations, and behavioral state. We found that synchronized states are associated to criticality, large dynamical repertoire and prolonged epochs of eye closure, while desynchronized states are associated to sub-criticality, reduced dynamical repertoire, and eyes open conditions. Our results show that criticality in cortical dynamics is not stationary, but fluctuates during anesthesia and between different vigilance states.

  7. Spontaneous activity in the statoacoustic ganglion of the chicken embryo.

    Science.gov (United States)

    Jones, T A; Jones, S M

    2000-03-01

    Statoacoustic ganglion cells in the mature bird include neurons that are responsive to sound (auditory) and those that are not (nonauditory). Those that are nonauditory have been shown to innervate an otolith organ, the macula lagena, whereas auditory neurons innervate the basilar papilla. In the present study, single-unit recordings of statoacoustic ganglion cells were made in embryonic (E19, mean = 19.2 days of incubation) and hatchling (P6-P14, mean = 8.6 days posthatch) chickens. Spontaneous activity from the two age groups was compared with developmental changes. Activity was evaluated for 47 auditory, 11 nonauditory, and 6 undefined eighth nerve neurons in embryos and 29 auditory, 26 nonauditory, and 1 undefined neurons in hatchlings. For auditory neurons, spontaneous activity displayed an irregular pattern [discharge interval coefficient of variation (CV) was >0.5, mean CV for embryos was 1.46 +/- 0.58 and for hatchlings was 1.02 +/- 0.25; means +/- SD]. Embryonic discharge rates ranged from 0.05 to 97.6 spikes per second (sp/s) for all neurons (mean 18.6 +/- 16.9 sp/s). Hatchling spontaneous rates ranged from 1.2 to 185.2 sp/s (mean 66.5 +/- 39.6 sp/s). Discharge rates were significantly higher for hatchlings (P embryonic auditory neurons displayed long silent periods between irregular bursts of neural activity, a feature not seen posthatch. All regular bursting discharge patterns were correlated with heart rate in both embryos and hatchlings. Preferred intervals were visible in the time interval histograms (TIHs) of only one embryonic neuron in contrast to 55% of the neurons in posthatch animals. Generally, the embryonic auditory TIH displayed a modified quasi-Poisson distribution. Nonauditory units generally displayed regular (CV 0.5) activity and Gaussian and modified-Gaussian TIHs. Long silent periods or bursting patterns were not a characteristic of embryonic nonauditory neurons. CV varied systematically as a function of discharge rate in nonauditory

  8. Recruitment of Perisomatic Inhibition during Spontaneous Hippocampal Activity In Vitro.

    Directory of Open Access Journals (Sweden)

    Anna Beyeler

    Full Text Available It was recently shown that perisomatic GABAergic inhibitory postsynaptic potentials (IPSPs originating from basket and chandelier cells can be recorded as population IPSPs from the hippocampal pyramidal layer using extracellular electrodes (eIPSPs. Taking advantage of this approach, we have investigated the recruitment of perisomatic inhibition during spontaneous hippocampal activity in vitro. Combining intracellular and extracellular recordings from pyramidal cells and interneurons, we confirm that inhibitory signals generated by basket cells can be recorded extracellularly, but our results suggest that, during spontaneous activity, eIPSPs are mostly confined to the CA3 rather than CA1 region. CA3 eIPSPs produced the powerful time-locked inhibition of multi-unit activity expected from perisomatic inhibition. Analysis of the temporal dynamics of spike discharges relative to eIPSPs suggests significant but moderate recruitment of excitatory and inhibitory neurons within the CA3 network on a 10 ms time scale, within which neurons recruit each other through recurrent collaterals and trigger powerful feedback inhibition. Such quantified parameters of neuronal interactions in the hippocampal network may serve as a basis for future characterisation of pathological conditions potentially affecting the interactions between excitation and inhibition in this circuit.

  9. Copper is an endogenous modulator of neural circuit spontaneous activity.

    Science.gov (United States)

    Dodani, Sheel C; Firl, Alana; Chan, Jefferson; Nam, Christine I; Aron, Allegra T; Onak, Carl S; Ramos-Torres, Karla M; Paek, Jaeho; Webster, Corey M; Feller, Marla B; Chang, Christopher J

    2014-11-18

    For reasons that remain insufficiently understood, the brain requires among the highest levels of metals in the body for normal function. The traditional paradigm for this organ and others is that fluxes of alkali and alkaline earth metals are required for signaling, but transition metals are maintained in static, tightly bound reservoirs for metabolism and protection against oxidative stress. Here we show that copper is an endogenous modulator of spontaneous activity, a property of functional neural circuitry. Using Copper Fluor-3 (CF3), a new fluorescent Cu(+) sensor for one- and two-photon imaging, we show that neurons and neural tissue maintain basal stores of loosely bound copper that can be attenuated by chelation, which define a labile copper pool. Targeted disruption of these labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the spatiotemporal properties of spontaneous activity in developing hippocampal and retinal circuits. The data identify an essential role for copper neuronal function and suggest broader contributions of this transition metal to cell signaling.

  10. Patterns of spontaneous magnetoencephalographic activity in patients with schizophrenia.

    Science.gov (United States)

    Siekmeier, Peter J; Stufflebeam, Steven M

    2010-06-01

    Magnetoencephalography noninvasively measures the magnetic fields produced by the brain. Pertinent research articles from 1993 to 2009 that measured spontaneous, whole-head magnetoencephalography activity in patients with schizophrenia were reviewed. Data on localization of oscillatory activity and correlation of these findings with psychotic symptoms are summarized. Although the variety of measures used by different research groups makes a quantitative meta-analysis difficult, it appears that magnetoencephalography activity in patients may exhibit identifiable patterns, defined by topographic organization and frequency band. Specifically, 11 of the 12 studies showed increased theta (4-8 Hz) and delta (1-4 Hz) band oscillations in the temporal lobes of patients; of the 10 studies that examined the relationship between oscillatory activity and symptomatology, 8 found a positive correlation between temporal lobe theta activity and positive schizophrenic symptoms. Abnormally high frontal delta activity was not seen. These findings are analyzed in comparison with the electroencephalogram literature on schizophrenics, and possible confounds (e.g., medication effects) are discussed. In the future, magnetoencephalography might be used to assist in diagnosis or might be fruitfully used in conjunction with new neuroscience research approaches such as computational modeling, which may be able to link oscillatory activity and cellular-level pathology.

  11. BaCl2- and 4-aminopyridine-evoked phasic contractions in the rat vas deferens.

    OpenAIRE

    Huang, Y.

    1995-01-01

    1. The actions of BaCl2 and 4-aminopyridine, blockers of K+ channels, on the mechanical activity of the epididymal half of the rat vas deferens were investigated. 2. Both BaCl2 and 4-aminopyridine dose-dependently evoked phasic contractions. High extracellular potassium (35-40 mM) caused a tonic contraction but abolished the BaCl2- and 4-aminopyridine-induced phasic activity and reduced the BaCl2-induced sustained component of contraction, but increased the 4-aminopyridine-induced tonic contr...

  12. Spontaneous recombinase activity of Cre-ERT2 in vivo.

    Science.gov (United States)

    Kristianto, Jasmin; Johnson, Michael G; Zastrow, Ryley K; Radcliff, Abigail B; Blank, Robert D

    2017-06-01

    Inducible Cre-ERT recombinase technology is widely used for gene targeting studies. The second generation of inducible Cre-ERT recombinase, hemizygous B6.129S-Tg(UBC-cre/ERT2)1Ejb/J (hereafter abbreviated as Cre-ERT2), a fusion of a mutated estrogen receptor and Cre recombinase, was engineered to be more efficient and specific than the original Cre-ERT. The putative mechanism of selective Cre-mediated recombination is Cre sequestration in the cytoplasm in the basal state with translocation to the nucleus only in the presence of tamoxifen. We utilized both a reporter mouse (B6.129 (Cg)-Gt(ROSA)26Sor tm4(ACTB-tdTomato,-EGFP)Luo /J) and endothelin converting enzyme-1 floxed transgenic mouse line to evaluate Cre-ERT2 activity. We observed spontaneous Cre activity in both settings. Unintended Cre activity is a confounding factor that has a potentially large impact on data interpretation. Thus, it is important to consider background Cre activity in experimental design.

  13. Morning nutrition and executive function processes in preadolescents: gender variations in phasic modulation of frontal eeg theta activity during a go/ no-go task

    Science.gov (United States)

    Frontal EEG theta activity has been related to executive functions (i.e., goal-directed behavior such as inhibition and flexibility of action). We studied the effects of morning nutritional status on frontal theta-executive function relationships using stimulus-locked responses [event-related increa...

  14. Primary food reward and reward-predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum.

    Science.gov (United States)

    Brown, Holden D; McCutcheon, James E; Cone, Jackson J; Ragozzino, Michael E; Roitman, Mitchell F

    2011-12-01

    Phasic changes in dopamine activity play a critical role in learning and goal-directed behavior. Unpredicted reward and reward-predictive cues evoke phasic increases in the firing rate of the majority of midbrain dopamine neurons--results that predict uniformly broadcast increases in dopamine concentration throughout the striatum. However, measurement of dopamine concentration changes during reward has cast doubt on this prediction. We systematically measured phasic changes in dopamine in four striatal subregions [nucleus accumbens shell and core (Core), dorsomedial (DMS) and dorsolateral striatum] in response to stimuli known to activate a majority of dopamine neurons. We used fast-scan cyclic voltammetry in awake and behaving rats, which measures changes in dopamine on a similar timescale to the electrophysiological recordings that established a relationship between phasic dopamine activity and reward. Unlike the responses of midbrain dopamine neurons, unpredicted food reward and reward-predictive cues evoked a phasic increase in dopamine that was subregion specific. In rats with limited experience, unpredicted food reward evoked an increase exclusively in the Core. In rats trained on a discriminative stimulus paradigm, both unpredicted reward and reward-predictive cues evoked robust phasic dopamine in the Core and DMS. Thus, phasic dopamine release in select target structures is dynamic and dependent on context and experience. Because the four subregions assayed receive different inputs and have differential projection targets, the regional selectivity of phasic changes in dopamine has important implications for information flow through the striatum and plasticity that underlies learning and goal-directed behavior. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  15. New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter

    Science.gov (United States)

    Tozzi, Arturo; Zare, Marzieh; Benasich, April A.

    2016-01-01

    Spontaneous brain activity has received increasing attention as demonstrated by the exponential rise in the number of published article on this topic over the last 30 years. Such “intrinsic” brain activity, generated in the absence of an explicit task, is frequently associated with resting-state or default-mode networks (DMN)s. The focus on characterizing spontaneous brain activity promises to shed new light on questions concerning the structural and functional architecture of the brain and how they are related to “mind”. However, many critical questions have yet to be addressed. In this review, we focus on a scarcely explored area, specifically the energetic requirements and constraints of spontaneous activity, taking into account both thermodynamical and informational perspectives. We argue that the “classical” definitions of spontaneous activity do not take into account an important feature, that is, the critical thermodynamic energetic differences between spontaneous and evoked brain activity. Spontaneous brain activity is associated with slower oscillations compared with evoked, task-related activity, hence it exhibits lower levels of enthalpy and “free-energy” (i.e., the energy that can be converted to do work), thus supporting noteworthy thermodynamic energetic differences between spontaneous and evoked brain activity. Increased spike frequency during evoked activity has a significant metabolic cost, consequently, brain functions traditionally associated with spontaneous activity, such as mind wandering, require less energy that other nervous activities. We also review recent empirical observations in neuroscience, in order to capture how spontaneous brain dynamics and mental function can be embedded in a non-linear dynamical framework, which considers nervous activity in terms of phase spaces, particle trajectories, random walks, attractors and/or paths at the edge of the chaos. This takes us from the thermodynamic free-energy, to the realm

  16. Functional structure of spontaneous sleep slow oscillation activity in humans.

    Directory of Open Access Journals (Sweden)

    Danilo Menicucci

    Full Text Available BACKGROUND: During non-rapid eye movement (NREM sleep synchronous neural oscillations between neural silence (down state and neural activity (up state occur. Sleep Slow Oscillations (SSOs events are their EEG correlates. Each event has an origin site and propagates sweeping the scalp. While recent findings suggest a SSO key role in memory consolidation processes, the structure and the propagation of individual SSO events, as well as their modulation by sleep stages and cortical areas have not been well characterized so far. METHODOLOGY/PRINCIPAL FINDINGS: We detected SSO events in EEG recordings and we defined and measured a set of features corresponding to both wave shapes and event propagations. We found that a typical SSO shape has a transition to down state, which is steeper than the following transition from down to up state. We show that during SWS SSOs are larger and more locally synchronized, but less likely to propagate across the cortex, compared to NREM stage 2. Also, the detection number of SSOs as well as their amplitudes and slopes, are greatest in the frontal regions. Although derived from a small sample, this characterization provides a preliminary reference about SSO activity in healthy subjects for 32-channel sleep recordings. CONCLUSIONS/SIGNIFICANCE: This work gives a quantitative picture of spontaneous SSO activity during NREM sleep: we unveil how SSO features are modulated by sleep stage, site of origin and detection location of the waves. Our measures on SSOs shape indicate that, as in animal models, onsets of silent states are more synchronized than those of neural firing. The differences between sleep stages could be related to the reduction of arousal system activity and to the breakdown of functional connectivity. The frontal SSO prevalence could be related to a greater homeostatic need of the heteromodal association cortices.

  17. Phasic Dopaminergic Signaling and the Presymptomatic Phase of Parkinson's Disease

    National Research Council Canada - National Science Library

    Garris, Paul A; Schallert, Tim; Heldenreich, Byron A

    2005-01-01

    .... The overall hypothesis is that, in rats with partial dopamine lesions mimicking the preclinical phase of Parkinson's disease, deficits in phasic dopaminergic signaling are associated with behavioral deficits...

  18. Tamsulosin modulates, but does not abolish the spontaneous activity in the guinea pig prostate gland.

    Science.gov (United States)

    Chakrabarty, Basu; Dey, Anupa; Lam, Michelle; Ventura, Sabatino; Exintaris, Betty

    2015-06-01

    To examine the effects of the α1A -adrenoceptor antagonist, tamsulosin, on spontaneous contractile and electrical activity in the guinea-pig prostate gland. The effects of tamsulosin (0.1 and 0.3 nM) were investigated in adult and ageing male guinea pig prostate glands using conventional tension recording and electrophysiological intracellular microelectrode recording techniques. Tamsulosin reduced spontaneous activity, and had different age-dependent effects on adult and ageing guinea pigs at different concentrations. 0.1 nM tamsulosin caused a significantly greater reduction of spontaneous contractile and electrical activity in ageing guinea pigs in comparison to adult guinea pigs. In contrast, 0.3 nM tamsulosin had a significantly greater reduction of spontaneous contractile and electrical activity in adult guinea pigs in comparison to ageing guinea pigs. This study demonstrates that tamsulosin can modulate spontaneous myogenic stromal contractility and the underlying spontaneous electrical activity; tamsulosin does not block spontaneous activity. This reduction in spontaneous activity suggests that downstream cellular mechanisms underlying smooth muscle tone are being targeted, and these may represent novel therapeutic targets to better treat benign prostatic hyperplasia. © 2014 Wiley Periodicals, Inc.

  19. Spontaneous physical activity protects against fat mass gain.

    Science.gov (United States)

    Teske, J A; Billington, C J; Kuskowski, M A; Kotz, C M

    2012-04-01

    It is unclear whether elevated spontaneous physical activity (SPA, very low-intensity physical activity) positively influences body composition long term. We determined whether SPA and caloric intake were differentially related to the growth curve trajectories of body weight, fat mass (FM) and fat-free mass (FFM) between obesity resistant and Sprague-Dawley rats at specific age intervals. Body composition, SPA and caloric intake were measured in selectively-bred obesity-resistant and out-bred Sprague-Dawley rats from 1 to 18 months. Data from development throughout maturation were analyzed by longitudinal growth curve modeling to determine the rate and acceleration of body weight, FM- and FFM-gain. Obesity-resistant rats had a lower rate of FM gain overall, a lower acceleration in body weight early in life, significantly greater SPA and lower cumulative caloric intake. Greater SPA in obesity-resistant rats was significantly associated with a lower rate of FM gain overall and lower acceleration in body weight early in life. Obesity resistant rats lost less FFM compared with Sprague-Dawley rats despite that obesity-resistant rats had a lower acceleration in FFM gain early in life. Obesity-resistant rats gained less FM and more FFM per gram body weight and were less energy efficient than Sprague-Dawley rats. Caloric intake was significantly and positively related to body weight, FM and FFM gain in both groups. Circadian patterns of caloric intake were group and age-dependent. Our data demonstrate that elevated and sustained SPA during development and over the lifespan are related to the reduced the rate of FM gain and may preserve FFM. These data support the idea that SPA level is a reproducible marker that reliably predicts propensity for obesity in rats, and that elevated levels of SPA maintained during the lifespan promote a lean phenotype.

  20. Noise-induced effects on multicellular biopacemaker spontaneous activity: Differences between weak and strong pacemaker cells

    Science.gov (United States)

    Aghighi, Alireza; Comtois, Philippe

    2017-09-01

    Self-organization of spontaneous activity of a network of active elements is important to the general theory of reaction-diffusion systems as well as for pacemaking activity to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes, consisting of resting and pacemaker cells, exhibit spontaneous activation of their electrical activity. Similarly, one proposed approach to the development of biopacemakers as an alternative to electronic pacemakers for cardiac therapy is based on heterogeneous cardiac cells with resting and spontaneously beating phenotypes. However, the combined effect of pacemaker characteristics, density, and spatial distribution of the pacemaker cells on spontaneous activity is unknown. Using a simple stochastic pattern formation algorithm, we previously showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of pacemaker cells. In this study, we show that this behavior is dependent on the pacemaker cell characteristics, with weaker pacemaker cells requiring higher density and larger clusters to sustain multicellular activity. These multicellular structures also demonstrated an increased sensitivity to voltage noise that favored spontaneous activity at lower density while increasing temporal variation in the period of activity. This information will help researchers overcome the current limitations of biopacemakers.

  1. Tri-phasic fever in dengue fever.

    Science.gov (United States)

    D, Pradeepa H; Rao, Sathish B; B, Ganaraj; Bhat, Gopalakrishna; M, Chakrapani

    2018-01-01

    Dengue fever is an acute febrile illness with a duration of 2-12 days. Our observational study observed the 24-h continuous tympanic temperature pattern of 15 patients with dengue fever and compared this with 26 others with fever due to a non-dengue aetiology. A tri-phasic fever pattern was seen among two-thirds of dengue fever patients, but in only one with an inflammatory disease. One-third of dengue fever patients exhibited a single peak temperature. Continuous temperature monitoring and temperature pattern analysis in clinical settings can aid in the early differentiation of dengue fever from non-dengue aetiology.

  2. Spontaneous sigh rates during sedentary activity: watching television vs reading.

    Science.gov (United States)

    Hark, William T; Thompson, William M; McLaughlin, Timothy E; Wheatley, Lisa M; Platts-Mills, Thomas A E

    2005-02-01

    Spontaneous sighs are thought to play an important role in preventing atelectasis and in regulating airway tone. Recent studies have provided a mechanism by which expansion of the lungs could cause relaxation of smooth muscle. To investigate breathing patterns during 2 forms of sedentary behavior: reading and watching television. Breathing patterns were monitored for 1 to 2 hours to document respiratory rates and sigh rates. Each participant was monitored while reading and while watching a movie on videotape. During the first experiment (17 controls), metabolic rates were also measured. In the second experiment (18 controls and 9 patients with mild-to-moderate asthma), only breathing patterns were monitored. There were no significant differences in respiratory or metabolic rates between the 2 activities. In contrast, in the first experiment, 13 of 17 controls had lower sigh rates while watching a videotape than while reading (P < .01). In the second experiment, the sigh rate was significantly lower overall while watching a videotape (mean, 13.7 sighs per hour; range, 1.8-26.0 sighs per hour) than while reading (mean, 19.3 sighs per hour; range, 7.7-30.0 sighs per hour) (P < .001). A similar decrease was observed in patients with asthma (P < .01). Given that many children and adults watch television for 5 or more hours per day, breathing patterns during this time may be relevant to lung function. Our results demonstrate that prolonged periods of watching a videotape are associated with lower sigh rates than while reading. Further research is needed to determine whether these changes are relevant to increased bronchial reactivity.

  3. Investigation of the activation of the temporalis and masseter muscles in voluntary and spontaneous smile production.

    Science.gov (United States)

    Steele, Jessica E; Woodcock, Ian R; Murphy, Adrian D; Ryan, Monique M; Penington, Tony J; Coombs, Christopher J

    2018-03-06

    Masticatory muscles or their nerve supply are options for facial reanimation surgery, but their ability to create spontaneous smile has been questioned. This study assessed the percentage of healthy adults who activate the temporalis and masseter muscles during voluntary and spontaneous smile. Healthy volunteer adults underwent electromyography (EMG) studies of the temporalis and masseter muscles during voluntary and spontaneous smile. Responses were repeated three times and recorded as negative, weakly positive, or strongly positive according to the activity observed. The best response was used for analysis. Thirty healthy adults (median age: 34 years, range: 25-69 years) participated. Overall, 92% of the masseter muscles were activated during voluntary smile (22% strong, 70% weak). Seventy-seven percent of the masseter muscles were activated in spontaneous smile (12% strong, 65% weak). The temporalis muscle was activated in 62% of responses in voluntary smile (15% strong, 47% weak) and in 45% of responses in spontaneous smile (13% strong, 32% weak). No significant difference was found for males vs females or closed vs open mouth smiles. There was no significant difference in responses between voluntary and spontaneous smiles for the temporalis and masseter muscles, and their use in voluntary smile did not predict activity in spontaneous smile. Our study has shown that masseter and temporalis are active in a high proportion of healthy adults during voluntary and spontaneous smiles. Further work is required to determine the relationship between preoperative donor muscle activation and postoperative spontaneous smile, and whether masticatory muscle activity can be upregulated with appropriate training. Copyright © 2018. Published by Elsevier Ltd.

  4. Spontaneous activity in the developing mammalian retina: Form and function

    Science.gov (United States)

    Butts, Daniel Allison

    Spontaneous neuronal activity is present in the immature mammalian retina during the initial stages of visual system development, before the retina is responsive to light. This activity consists of bursts of action potentials fired by retinal ganglion cells, and propagates in a wavelike manner across the inner plexiform layer of the retina. Unlike waves in other neural systems, retinal waves have large variability in both their rate and direction of propagation, and individual waves only propagate across small regions of the retina. The unique properties of retinal activity arise from dynamic processes within the developing retina, and produce characteristic spatiotemporal properties. These spatiotemporal properties are of particular interest, since they are believed to play a role in visual system development. This dissertation addresses the complex spatiotemporal patterning of the retinal waves from two different perspectives. First, it proposes how the immature circuitry of the developing retina generates these patterns of activity. In order to reproduce the distinct spatiotemporal properties observed in experiments, a model of the immature retinal circuitry must meet certain requirements, which are satisfied by a coarse-grained model of the developing retina that we propose. Second, this dissertation addresses how the particular spatiotemporal patterning of the retinal waves provides information to the rest of the visual system and, as a result, can be used to guide visual system development. By measuring the properties of this information, we place constraints on the developmental mechanisms that use this activity, and show how the particular spatiotemporal properties of the retinal waves provide this information. Together, this dissertation demonstrates how the apparent complexity of retinal wave patterning can be understood both through the immature circuitry that generates it, and through the developmental mechanisms that may use it. The first three

  5. DELTAMETHRIN AND PERMETHRIN DECREASE SPONTANEOUS ACTIVITY IN NEURONAL NETWORKS IN VITRO.

    Science.gov (United States)

    Effects of pyrethroid insecticides on spontaneous electrical activity were investigated in primary cultures of cortical or spinal cord neurons grown on microelectrode arrays. Bicuculline (40 ¿M) was utilized to block fast GABAergic transmission, and concentration-dependent effect...

  6. The Neural Association between Tendency to Forgive and Spontaneous Brain Activity in Healthy Young Adults

    OpenAIRE

    Haijiang Li; Jiamei Lu

    2017-01-01

    The tendency to forgive (TTF) refers to one’s global dispositional level of forgiveness across situations and relationships. Previous brain imaging studies examined activation patterns underlying forgiving process, yet the association between individual differences in the TTF and spontaneous brain activity at resting-state remains unknown. In this study, resting-state functional magnetic resonance imaging (fMRI) was used to investigate the correlation between the TTF and spontaneous brain act...

  7. Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes)

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, M.L. [Facultad de Ciencias Exactas, Fisicas y Naturales, Catedra Diversidad Animal II, Universidad Nacional de Cordoba, Av. Velez Sarsfield 299, 5000 Cordoba (Argentina); Durando, P.E. [Facultad de Ciencias Exactas, Fisicas y Naturales, Departamento de Biologia, Catedra de Fisiologia Animal, Universidad Nacional de San Juan, Complejo ' Islas Malvinas' , Av. Jose I. de la Roza y Meglioli, Rivadavia, San Juan (Argentina); Nores, M.L. [Facultad de Ciencias Medicas, Universidad Nacional de Cordoba-CONICET, Ciudad Universitaria, Cordoba (Argentina); Diaz, M.P. [Facultad de Ciencias Medicas, Catedra de Estadistica y Bioestadistica, Escuela de Nutricion, Universidad Nacional de Cordoba, Pabellon Chile, Ciudad Universitaria, 5000 Cordoba (Argentina); Bistoni, M.A., E-mail: mbistoni@com.uncor.ed [Facultad de Ciencias Exactas, Fisicas y Naturales, Catedra Diversidad Animal II, Universidad Nacional de Cordoba, Av. Velez Sarsfield 299, 5000 Cordoba (Argentina); Wunderlin, D.A. [Facultad de Ciencias Quimicas, Dto. Bioquimica Clinica-CIBICI, Universidad Nacional de Cordoba-CONICET, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2009-05-15

    We assessed changes in spontaneous swimming activity and acetylcholinesterase (AchE) activity of Jenynsia multidentata exposed to Endosulfan (EDS). Females of J. multidentata were exposed to 0.072 and 1.4 mug L{sup -1} EDS. Average speed and movement percentage were recorded during 48 h. We also exposed females to EDS at five concentrations between 0.072 and 1.4 mug L{sup -1} during 24 h, and measured the AchE activity in brain and muscle. At 0.072 mug L{sup -1} EDS swimming motility decreased relative to the control group after 45 h, while at 1.4 mug L{sup -1} EDS swimming motility decreased after 24 h. AchE activity significantly decreased in muscle when J. multidentata were exposed to EDS above 0.072 mug L{sup -1}, while no significant changes were observed in brain. Thus, changes in swimming activity and AchE activity in muscle are good biomarkers of exposure to EDS in J. multidentata. - This work reports changes observed in spontaneous swimming activity and AchE activity of Jenynsia multidentata exposed to sublethal concentrations of Endosulfan.

  8. Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes)

    International Nuclear Information System (INIS)

    Ballesteros, M.L.; Durando, P.E.; Nores, M.L.; Diaz, M.P.; Bistoni, M.A.; Wunderlin, D.A.

    2009-01-01

    We assessed changes in spontaneous swimming activity and acetylcholinesterase (AchE) activity of Jenynsia multidentata exposed to Endosulfan (EDS). Females of J. multidentata were exposed to 0.072 and 1.4 μg L -1 EDS. Average speed and movement percentage were recorded during 48 h. We also exposed females to EDS at five concentrations between 0.072 and 1.4 μg L -1 during 24 h, and measured the AchE activity in brain and muscle. At 0.072 μg L -1 EDS swimming motility decreased relative to the control group after 45 h, while at 1.4 μg L -1 EDS swimming motility decreased after 24 h. AchE activity significantly decreased in muscle when J. multidentata were exposed to EDS above 0.072 μg L -1 , while no significant changes were observed in brain. Thus, changes in swimming activity and AchE activity in muscle are good biomarkers of exposure to EDS in J. multidentata. - This work reports changes observed in spontaneous swimming activity and AchE activity of Jenynsia multidentata exposed to sublethal concentrations of Endosulfan.

  9. Patchwork-Type Spontaneous Activity in Neonatal Barrel Cortex Layer 4 Transmitted via Thalamocortical Projections

    Directory of Open Access Journals (Sweden)

    Hidenobu Mizuno

    2018-01-01

    Full Text Available Summary: Establishment of precise neuronal connectivity in the neocortex relies on activity-dependent circuit reorganization during postnatal development; however, the nature of cortical activity during this period remains largely unknown. Using two-photon calcium imaging of the barrel cortex in vivo during the first postnatal week, we reveal that layer 4 (L4 neurons within the same barrel fire synchronously in the absence of peripheral stimulation, creating a “patchwork” pattern of spontaneous activity corresponding to the barrel map. By generating transgenic mice expressing GCaMP6s in thalamocortical axons, we show that thalamocortical axons also demonstrate the spontaneous patchwork activity pattern. Patchwork activity is diminished by peripheral anesthesia but is mostly independent of self-generated whisker movements. The patchwork activity pattern largely disappeared during postnatal week 2, as even L4 neurons within the same barrel tended to fire asynchronously. This spontaneous L4 activity pattern has features suitable for thalamocortical (TC circuit refinement in the neonatal barrel cortex. : By two-photon calcium imaging of layer 4 neurons and thalamocortical axon terminals in neonatal mouse barrel cortex, Mizuno et al. find a patchwork-like spontaneous activity pattern corresponding to the barrel map, which may be important for thalamocortical circuit maturation. Keywords: activity-dependent development, spontaneous activity, synchronized activity, barrel cortex, thalamocortical axons, neonates, in vivo calcium imaging, awake, single-cell labeling, whisker monitoring

  10. Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness.

    Directory of Open Access Journals (Sweden)

    Stanislas Dehaene

    2005-05-01

    Full Text Available Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden "ignition" of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of "inattentional blindness," in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness.

  11. Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness.

    Science.gov (United States)

    Dehaene, Stanislas; Changeux, Jean-Pierre

    2005-05-01

    Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden "ignition" of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of "inattentional blindness," in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness.

  12. Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions.

    Science.gov (United States)

    Luhmann, Heiko J; Sinning, Anne; Yang, Jenq-Wei; Reyes-Puerta, Vicente; Stüttgen, Maik C; Kirischuk, Sergei; Kilb, Werner

    2016-01-01

    Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity patterns become more complex, involve larger networks and propagate over several neocortical areas. The developmental shift from local to large-scale network activity is accompanied by a gradual shift from electrical to chemical synaptic transmission with an initial excitatory action of chloride-gated channels activated by GABA, glycine and taurine. Transient neuronal populations in the subplate (SP) support temporary circuits that play an important role in tuning early neocortical activity and the formation of mature neuronal networks. Thus, early spontaneous activity patterns control the formation of developing networks in sensory cortices, and disturbances of these activity patterns may lead to long-lasting neuronal deficits.

  13. Effects of Amoxicillin and Clavulanic Acid on the Spontaneous Mechanical Activity of Juvenile Rat Duodenum.

    Science.gov (United States)

    Ciciora, Steven L; Williams, Kent C; Gariepy, Cheryl E

    2015-09-01

    There are a limited number of medications for the treatment of foregut dysmotility. Enteral amoxicillin/clavulanic acid induces phase III duodenal contractions in a fasting pediatric patient. The mechanism by which this occurs is unknown. We examined the individual contributions of amoxicillin and clavulanic acid on the spontaneous mechanical activity of juvenile rat duodenum to better understand this phenomenon. Duodenal segments from juvenile rats were longitudinally attached to force transducers in organ baths. Samples were cumulatively exposed to amoxicillin or clavulanic acid. Separate samples were exposed to carbachol alone to assess response in both the presence and absence of amoxicillin or clavulanic acid. Basal tone, frequency, and amplitude of contractions were digitized and recorded. The amplitude of the spontaneous contractions increased with amoxicillin. Inhibition of neuronal activity prevented this effect. Clavulanic acid did not affect the spontaneous contractions. Basal tone and the rate of contractions did not differ with either drug. Stimulation with carbachol in the presence of amoxicillin caused a statistically significant increase in the contractility compared with carbachol alone. Amoxicillin alters the spontaneous longitudinal mechanical activity of juvenile rat duodenum. Our results suggest that amoxicillin modulates the spontaneous pattern of cyclic mechanical activity of duodenal smooth muscle through noncholinergic, neurally mediated mechanisms. Our work provides an initial physiologic basis for the therapeutic use of amoxicillin in patients with gastrointestinal dysmotility.

  14. The effects of tricyclic and 'atypical' antidepressants on spontaneous locomotor activity in rodents.

    Science.gov (United States)

    Tucker, J C; File, S E

    1986-01-01

    With the exception of amineptin, buproprion and nomifensine all tricyclic and 'atypical' antidepressants have been reported to reduce spontaneous motor activity in rodents, after both acute and chronic administration. However, with the diversity of chemical actions of these drugs it is unlikely that a single neurochemical mechanism is underlying this one behavioral effect. These widespread sedative effects have implications for interpreting behavioral changes in other test situations, since sedation generally occurs at doses that fall within the dose-range effective in other tests. We also review the effects on spontaneous motor activity of withdrawal from chronic antidepressant treatment.

  15. Changes of spontaneous parthenogenetic activation and development potential of golden hamster oocytes during the aging process.

    Science.gov (United States)

    Jiang, Han; Wang, Ce; Guan, Jiyu; Wang, Lingyan; Li, Ziyi

    2015-01-01

    The golden hamster is an excellent animal experimental model for oocyte research. The hamster oocytes are very useful in clinical examination of human spermatozoan activity. Non-fertile oocytes can lead to time-dependent processes of aging, which will affect the results of human spermatozoa examination. As a consequence there is a need to investigate the aging and anti-aging processes of golden hamster oocytes. In order to study the aging processes and parthenogenetic activation of golden hamster oocytes, in vivo oocytes, oocytes cultured with or without cumulus cells, and oocytes treated with Trichostatin A (TSA) or caffeine were collected and investigated. We found that: (1) spontaneous parthenogenetic activation, developmental potential (cleavage rate), and zona pellucida (ZP) hardening undergo age-dependent changes in in vivo, in vitro, and after TSA or caffeine treatment; (2) in vivo, oocytes became spontaneously parthenogenetic 25 h post-hCG treatment; (3) in vitro, cumulus cells did not significantly increase the parthenogenetic activation rate of cultured hamster oocytes; and (4) TSA or caffeine could delay spontaneous oocyte parthenogenetic activation and the aging processes by at least 5h, but also accelerated the hardening of the ZP. These results define the conditions for the aging and anti-aging processes in golden hamster oocytes. TSA and caffeine play roles in controlling spontaneous activation, which could facilitate the storage and use of golden hamster oocytes for studying processes relevant to human reproduction. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks.

    Science.gov (United States)

    Lonardoni, Davide; Amin, Hayder; Di Marco, Stefano; Maccione, Alessandro; Berdondini, Luca; Nieus, Thierry

    2017-07-01

    Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs), interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities) that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity.

  17. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks.

    Directory of Open Access Journals (Sweden)

    Davide Lonardoni

    2017-07-01

    Full Text Available Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs, interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity.

  18. A data repository and analysis framework for spontaneous neural activity recordings in developing retina.

    Science.gov (United States)

    Eglen, Stephen John; Weeks, Michael; Jessop, Mark; Simonotto, Jennifer; Jackson, Tom; Sernagor, Evelyne

    2014-03-26

    During early development, neural circuits fire spontaneously, generating activity episodes with complex spatiotemporal patterns. Recordings of spontaneous activity have been made in many parts of the nervous system over the last 25 years, reporting developmental changes in activity patterns and the effects of various genetic perturbations. We present a curated repository of multielectrode array recordings of spontaneous activity in developing mouse and ferret retina. The data have been annotated with minimal metadata and converted into HDF5. This paper describes the structure of the data, along with examples of reproducible research using these data files. We also demonstrate how these data can be analysed in the CARMEN workflow system. This article is written as a literate programming document; all programs and data described here are freely available. 1. We hope this repository will lead to novel analysis of spontaneous activity recorded in different laboratories. 2. We encourage published data to be added to the repository. 3. This repository serves as an example of how multielectrode array recordings can be stored for long-term reuse.

  19. The Role of Cellular Coupling in the Spontaneous Generation of Electrical Activity in Uterine Tissue

    Science.gov (United States)

    Xu, Jinshan; Menon, Shakti N.; Singh, Rajeev; Garnier, Nicolas B.; Sinha, Sitabhra; Pumir, Alain

    2015-01-01

    The spontaneous emergence of contraction-inducing electrical activity in the uterus at the beginning of labor remains poorly understood, partly due to the seemingly contradictory observation that isolated uterine cells are not spontaneously active. It is known, however, that the expression of gap junctions increases dramatically in the approach to parturition, by more than one order of magnitude, which results in a significant increase in inter-cellular electrical coupling. In this paper, we build upon previous studies of the activity of electrically excitable smooth muscle cells (myocytes) and investigate the mechanism through which the coupling of these cells to electrically passive cells results in the generation of spontaneous activity in the uterus. Using a recently developed, realistic model of uterine muscle cell dynamics, we investigate a system consisting of a myocyte coupled to passive cells. We then extend our analysis to a simple two-dimensional lattice model of the tissue, with each myocyte being coupled to its neighbors, as well as to a random number of passive cells. We observe that different dynamical regimes can be observed over a range of gap junction conductances: at low coupling strength, corresponding to values measured long before delivery, the activity is confined to cell clusters, while the activity for high coupling, compatible with values measured shortly before delivery, may spread across the entire tissue. Additionally, we find that the system supports the spontaneous generation of spiral wave activity. Our results are both qualitatively and quantitatively consistent with observations from in vitro experiments. In particular, we demonstrate that the increase in inter-cellular electrical coupling observed experimentally strongly facilitates the appearance of spontaneous action potentials that may eventually lead to parturition. PMID:25793276

  20. Putative role of border cells in generating spontaneous morphological activity within Kölliker's organ.

    Science.gov (United States)

    Dayaratne, M W Nishani; Vlajkovic, Srdjan M; Lipski, Janusz; Thorne, Peter R

    2015-12-01

    Kölliker's organ is a transient epithelial structure, comprising a major part of the organ of Corti during pre-hearing stages of development. The auditory system is spontaneously active during development, which serves to retain and refine neural connections. Kölliker's organ is considered a key candidate for generating such spontaneous activity, most likely through purinergic (P2 receptor) signalling and inner hair cell (IHC) activation. Associated with the spontaneous neural activity, ATP released locally by epithelial cells induces rhythmic morphological changes within Kölliker's organ, the purpose of which is not understood. These changes are accompanied by a shift in cellular refractive index, allowing optical detection of this activity in real-time. Using this principle, we investigated the origin of spontaneous morphological activity within Kölliker's organ. Apical turns of Wistar rat cochleae (P9-11) were dissected, and the purinergic involvement was studied following acute tissue exposure to a P2 receptor agonist (ATPγS) and antagonist (suramin). ATPγS induced a sustained darkening throughout Kölliker's organ, reversed by suramin. This effect was most pronounced in the region closest to the inner hair cells, which also displayed the highest frequency of intrinsic morphological events. Additionally, suramin alone induced swelling of this region, suggesting a tight regulation of cell volume by ATP-mediated mechanisms. Histological analysis of cochlear tissues demonstrates the most profound volume changes in the border cell region immediately adjacent to the IHCs. Together, these results underline the role of purinergic signalling in initiating morphological events within Kölliker's organ, and suggest a key involvement of border cells surrounding IHCs in regulating this spontaneous activity. Copyright © 2015. Published by Elsevier B.V.

  1. Effects of language processing on spontaneous muscle activity

    NARCIS (Netherlands)

    Stins, J.F.; Beek, P.J.

    2013-01-01

    There is evidence of the crucial involvement of the motor system in language understanding and production. We tested whether reading verbs that symbolized various actions would lead to an effector-specific modulation in subliminal muscle activity. Participants were lying in a relaxed position, and

  2. Changes of spontaneous oscillatory activity to tonic heat pain.

    Directory of Open Access Journals (Sweden)

    Weiwei Peng

    Full Text Available Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A resting condition; (B innoxious-distracted condition; (C noxious-distracted condition; (D noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes.

  3. Effects of Organophosphorus Flame Retardants on Spontaneous Activity in Neuronal Networks Grown on Microelectrode Arrays

    Science.gov (United States)

    EFFECTS OF ORGANOPHOSPHORUS FLAME RETARDANTS ON SPONTANEOUS ACTIVITY IN NEURONAL NETWORKS GROWN ON MICROELECTRODE ARRAYS TJ Shafer1, K Wallace1, WR Mundy1, M Behl2,. 1Integrated Systems Toxicology Division, NHEERL, USEPA, RTP, NC, USA, 2National Toxicology Program, NIEHS, RTP, NC...

  4. DELTAMETHRIN AND ESFENVALERATE INHIBIT SPONTANEOUS NETWORK ACTIVITY IN RAT CORTICAL NEURONS IN VITRO.

    Science.gov (United States)

    Understanding pyrethroid actions on neuronal networks will help to establish a mode of action for these compounds, which is needed for cumulative risk decisions under the Food Quality Protection Act of 1996. However, pyrethroid effects on spontaneous activity in networks of inter...

  5. Slow-light enhancement of spontaneous emission in active photonic crystal waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Chen, Yaohui; Semenova, Elizaveta

    2012-01-01

    Photonic crystal defect waveguides with embedded active layers containing single or multiple quantum wells or quantum dots have been fabricated. Spontaneous emission spectra are enhanced close to the bandedge, consistently with the enhancement of gain by slow light effects. These are promising...

  6. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available BACKGROUND: The neurophysiological mechanisms underlying tinnitus perception are not well understood. Surprisingly, there have been no group studies comparing abnormalities in ongoing, spontaneous neuronal activity in individuals with and without tinnitus perception. METHODS AND FINDINGS: Here, we show that the spontaneous neuronal activity of a group of individuals with tinnitus (n = 17 is characterised by a marked reduction in alpha (8-12 Hz power together with an enhancement in delta (1.5-4 Hz as compared to a normal hearing control group (n = 16. This pattern was especially pronounced for temporal regions. Moreover, correlations with tinnitus-related distress revealed strong associations with this abnormal spontaneous activity pattern, particularly in right temporal and left frontal areas. Overall, effects were stronger for the alpha than for the delta frequency band. A data stream of 5 min, recorded with a whole-head neuromagnetometer under a resting condition, was sufficient to extract the marked differences. CONCLUSIONS: Despite some limitations, there are arguments that the regional pattern of abnormal spontaneous activity we found could reflect a tinnitus-related cortical network. This finding, which suggests that a neurofeedback approach could reduce the adverse effects of this disturbing condition, could have important implications for the treatment of tinnitus.

  7. Altered Spontaneous Activity in Anisometropic Amblyopia Subjects: Revealed by Resting-State fMRI

    Science.gov (United States)

    Lin, Xiaoming; Ding, Kun; Liu, Yong; Yan, Xiaohe; Song, Shaojie; Jiang, Tianzi

    2012-01-01

    Amblyopia, also known as lazy eye, usually occurs during early childhood and results in poor or blurred vision. Recent neuroimaging studies have found cortical structural/functional abnormalities in amblyopia. However, until now, it was still not known whether the spontaneous activity of the brain changes in amblyopia subjects. In the present study, regional homogeneity (ReHo), a measure of the homogeneity of functional magnetic resonance imaging signals, was used for the first time to investigate changes in resting-state local spontaneous brain activity in individuals with anisometropic amblyopia. Compared with age- and gender-matched subjects with normal vision, the anisometropic amblyopia subjects showed decreased ReHo of spontaneous brain activity in the right precuneus, the left medial prefrontal cortex, the left inferior frontal gyrus, and the left cerebellum, and increased ReHo of spontaneous brain activity was found in the bilateral conjunction area of the postcentral and precentral gyri, the left paracentral lobule, the left superior temporal gyrus, the left fusiform gyrus, the conjunction area of the right insula, putamen and the right middle occipital gyrus. The observed decreases in ReHo may reflect decreased visuo-motor processing ability, and the increases in ReHo in the somatosensory cortices, the motor areas and the auditory area may indicate compensatory plasticity in amblyopia. PMID:22937041

  8. General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Tromborg, Bjarne

    2001-01-01

    A model for spontaneous emission in active dielectric microstructures is given in terms of the classical electric field Green's tensor and the quantum-mechanical operators for the generating currents. A formalism is given for calculating the Green's tensor, which does not rely on the existence...

  9. Spontaneous Physical Activity Downregulates Pax7 in Cancer Cachexia

    Directory of Open Access Journals (Sweden)

    Dario Coletti

    2016-01-01

    Full Text Available Emerging evidence suggests that the muscle microenvironment plays a prominent role in cancer cachexia. We recently showed that NF-kB-induced Pax7 overexpression impairs the myogenic potential of muscle precursors in cachectic mice, suggesting that lowering Pax7 expression may be beneficial in cancer cachexia. We evaluated the muscle regenerative potential after acute injury in C26 colon carcinoma tumor-bearing mice and healthy controls. Our analyses confirmed that the delayed muscle regeneration observed in muscles form tumor-bearing mice was associated with a persistent local inflammation and Pax7 overexpression. Physical activity is known to exert positive effects on cachectic muscles. However, the mechanism by which a moderate voluntary exercise ameliorates muscle wasting is not fully elucidated. To verify if physical activity affects Pax7 expression, we hosted control and C26-bearing mice in wheel-equipped cages and we found that voluntary wheel running downregulated Pax7 expression in muscles from tumor-bearing mice. As expected, downregulation of Pax7 expression was associated with a rescue of muscle mass and fiber size. Our findings shed light on the molecular basis of the beneficial effect exerted by a moderate physical exercise on muscle stem cells in cancer cachexia. Furthermore, we propose voluntary exercise as a physiological tool to counteract the overexpression of Pax7 observed in cancer cachexia.

  10. The effect of four-phasic versus three-phasic contrast media injection protocols on extravasation rate in coronary CT angiography. A randomized controlled trial

    Energy Technology Data Exchange (ETDEWEB)

    Karady, Julia; Panajotu, Alexisz; Kolossvary, Marton; Szilveszter, Balint; Jermendy, Adam L.; Bartykowszki, Andrea; Karolyi, Mihaly; Celeng, Csilla; Merkely, Bela; Maurovich-Horvat, Pal [Semmelweis University, MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Budapest (Hungary)

    2017-11-15

    Contrast media (CM) extravasation is a well-known complication of CT angiography (CTA). Our prospective randomized control study aimed to assess whether a four-phasic CM administration protocol reduces the risk of extravasation compared to the routinely used three-phasic protocol in coronary CTA. Patients referred to coronary CTA due to suspected coronary artery disease were included in the study. All patients received 400 mg/ml iomeprol CM injected with dual-syringe automated injector. Patients were randomized into a three-phasic injection-protocol group, with a CM bolus of 85 ml followed by 40 ml of 75%:25% saline/CM mixture and 30 ml saline chaser bolus; and a four-phasic injection-protocol group, with a saline pacer bolus of 10 ml injected at a lower flow rate before the three-phasic protocol. 2,445 consecutive patients were enrolled (mean age 60.6 ± 12.1 years; females 43.6%). Overall rate of extravasation was 0.9% (23/2,445): 1.4% (17/1,229) in the three-phasic group and 0.5% (6/1,216) in the four-phasic group (p = 0.034). Four-phasic CM administration protocol is easy to implement in the clinical routine at no extra cost. The extravasation rate is reduced by 65% with the application of the four-phasic protocol compared to the three-phasic protocol in coronary CTA. (orig.)

  11. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chen

    2018-03-01

    Full Text Available Purpose: Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI approach.Methods: Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF and regional homogeneity (ReHo of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis.Results: Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG, parahippocampal gyrus (PHG, precuneus and inferior parietal lobule (IPL as well as increased neural activity in the middle frontal gyrus (MFG, cuneus and postcentral gyrus (PoCG. A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B scores, indicative of impaired cognitive function involving the frontal lobe.Conclusions: Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the

  12. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI.

    Science.gov (United States)

    Chen, Yu-Chen; Chen, Huiyou; Jiang, Liang; Bo, Fan; Xu, Jin-Jing; Mao, Cun-Nan; Salvi, Richard; Yin, Xindao; Lu, Guangming; Gu, Jian-Ping

    2018-01-01

    Purpose : Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI) approach. Methods : Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis. Results : Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG), parahippocampal gyrus (PHG), precuneus and inferior parietal lobule (IPL) as well as increased neural activity in the middle frontal gyrus (MFG), cuneus and postcentral gyrus (PoCG). A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B) scores, indicative of impaired cognitive function involving the frontal lobe. Conclusions : Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the

  13. A gravimetric method for the measurement of total spontaneous activity in rats.

    Science.gov (United States)

    Biesiadecki, B J; Brand, P H; Koch, L G; Britton, S L

    1999-10-01

    Currently available methods for the measurement of spontaneous activity of laboratory animals require expensive, specialized equipment and may not be suitable for use in low light conditions with nocturnal species. We developed a gravimetric method that uses common laboratory equipment to quantify the total spontaneous activity of rats and is suitable for use in the dark. The rat in its home cage is placed on a top-loading electronic balance interfaced to a computer. Movements are recorded by the balance as changes in weight and transmitted to the computer at 10 Hz. Data are analyzed on-line to derive the absolute value of the difference in weight between consecutive samples, and the one-second average of the absolute values is calculated. The averages are written to file for off-line analysis and summed over the desired observation period to provide a measure of total spontaneous activity. The results of in vitro experiments demonstrated that: 1) recorded weight changes were not influenced by position of the weight on the bottom of the cage, 2) values recorded from a series of weight changes were not significantly different from the calculated values, 3) the constantly decreasing force exerted by a swinging pendulum placed on the balance was accurately recorded, 4) the measurement of activity was not influenced by the evaporation of a fluid such as urine, and 5) the method can detect differences in the activity of sleeping and waking rats over a 10-min period, as well as during 4-hr intervals recorded during active (night-time) and inactive (daytime) periods. These results demonstrate that this method provides an inexpensive, accurate, and noninvasive method to quantitate the spontaneous activity of small animals.

  14. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro.

    Science.gov (United States)

    Heikkilä, Teemu J; Ylä-Outinen, Laura; Tanskanen, Jarno M A; Lappalainen, Riikka S; Skottman, Heli; Suuronen, Riitta; Mikkonen, Jarno E; Hyttinen, Jari A K; Narkilahti, Susanna

    2009-07-01

    The production of functional human embryonic stem cell (hESC)-derived neuronal cells is critical for the application of hESCs in treating neurodegenerative disorders. To study the potential functionality of hESC-derived neurons, we cultured and monitored the development of hESC-derived neuronal networks on microelectrode arrays. Immunocytochemical studies revealed that these networks were positive for the neuronal marker proteins beta-tubulin(III) and microtubule-associated protein 2 (MAP-2). The hESC-derived neuronal networks were spontaneously active and exhibited a multitude of electrical impulse firing patterns. Synchronous bursts of electrical activity similar to those reported for hippocampal neurons and rodent embryonic stem cell-derived neuronal networks were recorded from the differentiated cultures until up to 4 months. The dependence of the observed neuronal network activity on sodium ion channels was examined using tetrodotoxin (TTX). Antagonists for the glutamate receptors NMDA [D(-)-2-amino-5-phosphonopentanoic acid] and AMPA/kainate [6-cyano-7-nitroquinoxaline-2,3-dione], and for GABAA receptors [(-)-bicuculline methiodide] modulated the spontaneous electrical activity, indicating that pharmacologically susceptible neuronal networks with functional synapses had been generated. The findings indicate that hESC-derived neuronal cells can generate spontaneously active networks with synchronous communication in vitro, and are therefore suitable for use in developmental and drug screening studies, as well as for regenerative medicine.

  15. Sub-threshold spinal cord stimulation facilitates spontaneous motor activity in spinal rats

    Science.gov (United States)

    2013-01-01

    Background Epidural stimulation of the spinal cord can be used to enable stepping on a treadmill (electrical enabling motor control, eEmc) after a complete mid-thoracic spinal cord transection in adult rats. Herein we have studied the effects of eEmc using a sub-threshold intensity of stimulation combined with spontaneous load-bearing proprioception to facilitate hindlimb stepping and standing during daily cage activity in paralyzed rats. Methods We hypothesized that eEmc combined with spontaneous cage activity would greatly increase the frequency and level of activation of the locomotor circuits in paralyzed rats. Spontaneous cage activity was recorded using a specially designed swivel connector to record EMG signals and an IR based camcorder to record video. Results and conclusion The spinal rats initially were very lethargic in their cages showing little movement. Without eEmc, the rats remained rather inactive with the torso rarely being elevated from the cage floor. When the rats used their forelimbs to move, the hindlimbs were extended and dragged behind with little or no flexion. In contrast, with eEmc the rats were highly active and the hindlimbs showed robust alternating flexion and extension resulting in step-like movements during forelimb-facilitated locomotion and often would stand using the sides of the cages as support. The mean and summed integrated EMG levels in both a hindlimb flexor and extensor muscle were higher with than without eEmc. These data suggest that eEmc, in combination with the associated proprioceptive input, can modulate the spinal networks to significantly amplify the amount and robustness of spontaneous motor activity in paralyzed rats. PMID:24156340

  16. Computational Account of Spontaneous Activity as a Signature of Predictive Coding.

    Directory of Open Access Journals (Sweden)

    Veronika Koren

    2017-01-01

    Full Text Available Spontaneous activity is commonly observed in a variety of cortical states. Experimental evidence suggested that neural assemblies undergo slow oscillations with Up ad Down states even when the network is isolated from the rest of the brain. Here we show that these spontaneous events can be generated by the recurrent connections within the network and understood as signatures of neural circuits that are correcting their internal representation. A noiseless spiking neural network can represent its input signals most accurately when excitatory and inhibitory currents are as strong and as tightly balanced as possible. However, in the presence of realistic neural noise and synaptic delays, this may result in prohibitively large spike counts. An optimal working regime can be found by considering terms that control firing rates in the objective function from which the network is derived and then minimizing simultaneously the coding error and the cost of neural activity. In biological terms, this is equivalent to tuning neural thresholds and after-spike hyperpolarization. In suboptimal working regimes, we observe spontaneous activity even in the absence of feed-forward inputs. In an all-to-all randomly connected network, the entire population is involved in Up states. In spatially organized networks with local connectivity, Up states spread through local connections between neurons of similar selectivity and take the form of a traveling wave. Up states are observed for a wide range of parameters and have similar statistical properties in both active and quiescent state. In the optimal working regime, Up states are vanishing, leaving place to asynchronous activity, suggesting that this working regime is a signature of maximally efficient coding. Although they result in a massive increase in the firing activity, the read-out of spontaneous Up states is in fact orthogonal to the stimulus representation, therefore interfering minimally with the network

  17. The wiring of developing sensory circuits - from patterned spontaneous activity to mechanisms of synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Alexandra Helen Leighton

    2016-09-01

    Full Text Available In order to accurately process incoming sensory stimuli, neurons must be organized into functional networks, with both genetic and environmental factors influencing the precise arrangement of connections between cells. Teasing apart the relative contributions of molecular guidance cues, spontaneous activity and visual experience during this maturation is on-going. During development of the sensory system, the first, rough organization of connections is created by molecular factors. These connections are then modulated by the intrinsically generated activity of neurons, even before the senses have become operational. Spontaneous waves of depolarisations sweep across the nervous system, placing them in a prime position to strengthen correct connections and weaken others, shaping synapses into a useful network. A large body of work now supports the idea that, rather than being a mere side-effect of the system, spontaneous activity actually contains information which readies the nervous system so that, as soon as the senses become active, sensory information can be utilized by the animal. An example is the neonatal mouse. As soon as the eyelids first open, neurons in the cortex respond to visual information without the animal having previously encountered structured sensory input (Cang et al., 2005a; Ko et al., 2013; Rochefort et al., 2011; Zhang et al., 2012. In vivo imaging techniques have advanced considerably, allowing observation of the natural activity in the brain of living animals down to the level of the individual synapse. New (optogenetic methods make it possible to subtly modulate the spatio-temporal properties of activity, aiding our understanding of how these characteristics relate to the function of spontaneous activity. Such experiments have had a huge impact on our knowledge by permitting direct testing of ideas about the plasticity mechanisms at play in the intact system, opening up a provocative range of fresh questions. Here, we

  18. Spontaneous nitroblue-tetrazolium (NBT) reduction related to granulocyte priming and activation.

    Science.gov (United States)

    Wikström, T; Braide, M; Bagge, U; Risberg, B

    1996-06-01

    The aim of the present study was to explore the relationship between the increasing level of spontaneous NBT-reduction and the tendency for PMNs to marginate during experimental hemorrhagic shock in rats. Rat PMNs, isolated on Percoll density gradients or suspended in blood, were examined by chemiluminescence (CL), NBT-test and by their CD-18 expression and F-actin formation. The NBT-test generally produced higher numbers of activated PMNs when the cells were suspended in buffer than in whole blood, probably due to the scavenging properties of blood. The level of spontaneous NBT-reduction of PMNs in blood correlated with the magnitude of the NBT-response to f-MLP stimulation in blood and buffer. On the contrary, there were no significant correlations between spontaneous NBT reduction, CD18 expression and F-actin content. Thus, high levels of spontaneous NBT reduction in blood were associated with priming of the separated PMNs rather than increased rigidity (F-actin) or adhesiveness (CD18).

  19. Spatiotemporal stability of neonatal rat cardiomyocyte monolayers spontaneous activity is dependent on the culture substrate.

    Directory of Open Access Journals (Sweden)

    Jonathan Boudreau-Béland

    Full Text Available In native conditions, cardiac cells must continuously comply with diverse stimuli necessitating a perpetual adaptation. Polydimethylsiloxane (PDMS is commonly used in cell culture to study cellular response to changes in the mechanical environment. The aim of this study was to evaluate the impact of using PDMS substrates on the properties of spontaneous activity of cardiomyocyte monolayer cultures. We compared PDMS to the gold standard normally used in culture: a glass substrate. Although mean frequency of spontaneous activity remained unaltered, incidence of reentrant activity was significantly higher in samples cultured on glass compared to PDMS substrates. Higher spatial and temporal instability of the spontaneous rate activation was found when cardiomyocytes were cultured on PDMS, and correlated with decreased connexin-43 and increased CaV3.1 and HCN2 mRNA levels. Compared to cultures on glass, cultures on PDMS were associated with the strongest response to isoproterenol and acetylcholine. These results reveal the importance of carefully selecting the culture substrate for studies involving mechanical stimulation, especially for tissue engineering or pharmacological high-throughput screening of cardiac tissue analog.

  20. The Neural Association between Tendency to Forgive and Spontaneous Brain Activity in Healthy Young Adults.

    Science.gov (United States)

    Li, Haijiang; Lu, Jiamei

    2017-01-01

    The tendency to forgive (TTF) refers to one's global dispositional level of forgiveness across situations and relationships. Previous brain imaging studies examined activation patterns underlying forgiving process, yet the association between individual differences in the TTF and spontaneous brain activity at resting-state remains unknown. In this study, resting-state functional magnetic resonance imaging (fMRI) was used to investigate the correlation between the TTF and spontaneous brain activity in a young adult sample. Participants were 178 young students (55 men) who completed the TTF scale and underwent a resting-state fMRI scan. Multiple regression analysis was conducted to assess the association between the regional amplitude of low-frequency fluctuations (ALFF) and TTF scores corrected for age and sex. Results showed that the ALFF value in the right dorsomedial prefrontal cortex (dmPFC), precuneus and inferior parietal lobule (IPL) were negatively associated with TTF scores. These findings suggest that the spontaneous brain activity of brain regions like the dmPFC, precuneus and IPL which are implicated in mentalizing and empathic response are associated with individual differences in the TTF.

  1. Changes in Mice Brain Spontaneous Electrical Activity during Cortical Spreading Depression due to Mobile Phone Radiation.

    Science.gov (United States)

    Sallam, Samera M; Mohamed, Ehab I; Dawood, Abdel-Fattah B

    2008-06-01

    The objective of the present study was to investigate changes in spontaneous EEG activity during cortical spreading depression (CSD) in mice brain. The cortical region of anaesthetized mice were exposed to the electromagnetic fields (EMFs) emitted from a mobile phone (MP, 935.2-960.2 MHz, 41.8 mW/cm(2)). The effect of EMFs on EEG was investigated before and after exposure to different stimuli (MP, 2% KCl, and MP & 2% KCl). The records of brain spontaneous EEG activity, slow potential changes (SPC), and spindle shaped firings were obtained through an interfaced computer. The results showed increases in the amplitude of evoked spindles by about 87%, 17%, and 226% for MP, 2% KCl, and MP & 2% KCl; respectively, as compared to values for the control group. These results showed that the evoked spindle is a more sensitive indicator of the effect of exposure to EMFs from MP.

  2. Endo- and exocytic rate constants for spontaneous and protein kinase C-activated T cell receptor cycling

    DEFF Research Database (Denmark)

    Menné, Charlotte; Møller Sørensen, Tine; Siersma, Volkert

    2002-01-01

    To determine the rate constants of spontaneous and activated TCR cycling, we examined TCR endo- and exocytosis in the human T cell line Jurkat by three different methods. Using a simple kinetic model for TCR cycling and non-linear regression analyses, we found that the spontaneous endocytic rate...

  3. Spontaneous and Evoked Activity from Murine Ventral Horn Cultures on Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Bryan J. Black

    2017-09-01

    Full Text Available Motor neurons are the site of action for several neurological disorders and paralytic toxins, with cell bodies located in the ventral horn (VH of the spinal cord along with interneurons and support cells. Microelectrode arrays (MEAs have emerged as a high content assay platform for mechanistic studies and drug discovery. Here, we explored the spontaneous and evoked electrical activity of VH cultures derived from embryonic mouse spinal cord on multi-well plates of MEAs. Primary VH cultures from embryonic day 15–16 mice were characterized by expression of choline acetyltransferase (ChAT by immunocytochemistry. Well resolved, all-or-nothing spontaneous spikes with profiles consistent with extracellular action potentials were observed after 3 days in vitro, persisting with consistent firing rates until at least day in vitro 19. The majority of the spontaneous activity consisted of tonic firing interspersed with coordinated bursting across the network. After 5 days in vitro, spike activity was readily evoked by voltage pulses where a minimum amplitude and duration required for excitation was 300 mV and 100 μs/phase, respectively. We characterized the sensitivity of spontaneous and evoked activity to a host of pharmacological agents including AP5, CNQX, strychnine, ω-agatoxin IVA, and botulinum neurotoxin serotype A (BoNT/A. These experiments revealed sensitivity of the cultured VH to both agonist and antagonist compounds in a manner consistent with mature tissue derived from slices. In the case of BoNT/A, we also demonstrated intoxication persistence over an 18-day period, followed by partial intoxication recovery induced by N- and P/Q-type calcium channel agonist GV-58. In total, our findings suggest that VH cultures on multi-well MEA plates may represent a moderate throughput, high content assay for performing mechanistic studies and for screening potential therapeutics pertaining to paralytic toxins and neurological disorders.

  4. Myofascial trigger points: spontaneous electrical activity and its consequences for pain induction and propagation

    OpenAIRE

    Ge, Hong-You; Fernández-de-las-Peñas, César; Yue, Shou-Wei

    2011-01-01

    Abstract Active myofascial trigger points are one of the major peripheral pain generators for regional and generalized musculoskeletal pain conditions. Myofascial trigger points are also the targets for acupuncture and/or dry needling therapies. Recent evidence in the understanding of the pathophysiology of myofascial trigger points supports The Integrated Hypothesis for the trigger point formation; however unanswered questions remain. Current evidence shows that spontaneous electrical activi...

  5. Rhythmic Spontaneous Activity Mediates the Age-Related Decline in Somatosensory Function.

    Science.gov (United States)

    Spooner, Rachel K; Wiesman, Alex I; Proskovec, Amy L; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2018-01-12

    Sensory gating is a neurophysiological process whereby the response to a second stimulus in a pair of identical stimuli is attenuated, and it is thought to reflect the capacity of the CNS to preserve neural resources for behaviorally relevant stimuli. Such gating is observed across multiple sensory modalities and is modulated by age, but the mechanisms involved are not understood. In this study, we examined somatosensory gating in 68 healthy adults using magnetoencephalography (MEG) and advanced oscillatory and time-domain analysis methods. MEG data underwent source reconstruction and peak voxel time series data were extracted to evaluate the dynamics of somatosensory gating, and the impact of spontaneous neural activity immediately preceding the stimulation. We found that gating declined with increasing age and that older adults had significantly reduced gating relative to younger adults, suggesting impaired local inhibitory function. Most importantly, older adults had significantly elevated spontaneous activity preceding the stimulation, and this effect fully mediated the impact of aging on sensory gating. In conclusion, gating in the somatosensory system declines with advancing age and this effect is directly tied to increased spontaneous neural activity in the primary somatosensory cortices, which is likely secondary to age-related declines in local GABA inhibitory function. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Reproduction of overall spontaneous pain pattern by manual stimulation of active myofascial trigger points in fibromyalgia patients

    DEFF Research Database (Denmark)

    Ge, Hong-You; Wang, Ying; Fernández-de-las-Peñas, César

    2011-01-01

    It has previously been reported that local and referred pain from active myofascial trigger points (MTPs) in the neck and shoulder region contribute to fibromyalgia (FM) pain and that the pain pattern induced from active MTPs can reproduce parts of the spontaneous clinical FM pain pattern....... The current study investigated whether the overall spontaneous FM pain pattern can be reproduced by local and referred pain from active MTPs located in different muscles....

  7. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Margarida Carrolo

    Full Text Available Streptococcus pneumoniae (pneumococcus is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.

  8. ATP enhances spontaneous calcium activity in cultured suburothelial myofibroblasts of the human bladder.

    Directory of Open Access Journals (Sweden)

    Sheng Cheng

    Full Text Available BACKGROUND: Suburothelial myofibroblasts (sMF are located underneath the urothelium in close proximity to afferent nerves. They express purinergic receptors and show calcium transients in response to ATP. Therefore they are supposed to be involved in afferent signaling of the bladder fullness. Since ATP concentration is likely to be very low during the initial filling phase, we hypothesized that sMF Ca(2+ activity is affected even at very low ATP concentrations. We investigated ATP induced modulation of spontaneous activity, intracellular calcium response and purinergic signaling in cultured sMF. METHODOLOGY/PRINCIPAL FINDINGS: Myofibroblast cultures, established from cystectomies, were challenged by exogenous ATP in presence or absence of purinergic antagonist. Fura-2 calcium imaging was used to monitor ATP (10(-16 to 10(-4 mol/l induced alterations of calcium activity. Purinergic receptors (P2X1, P2X2, P2X3 were analysed by confocal immunofluorescence. We found spontaneous calcium activity in 55.18% ± 1.65 of the sMF (N = 48 experiments. ATP significantly increased calcium activity even at 10(-16 mol/l. The calcium transients were partially attenuated by subtype selective antagonist (TNP-ATP, 1 µM; A-317491, 1 µM, and were mimicked by the P2X1, P2X3 selective agonist α,β-methylene ATP. The expression of purinergic receptor subtypes in sMF was confirmed by immunofluorescence. CONCLUSIONS/SIGNIFICANCE: Our experiments demonstrate for the first time that ATP can modulate spontaneous activity and induce intracellular Ca(2+ response in cultured sMF at very low concentrations, most likely involving P2X receptors. These findings support the notion that sMF are able to register bladder fullness very sensitively, which predestines them for the modulation of the afferent bladder signaling in normal and pathological conditions.

  9. SPONTANEOUS IMMUNOGLOBULIN-SYNTHESIZING ACTIVITY OF B LYMPHOCYTES IN INFLAMMATORY RHEUMATIC DISEASES

    Directory of Open Access Journals (Sweden)

    A.T. T. Mamasaidov

    2007-01-01

    Full Text Available Abstract. The aim of present work was to evaluate clinical significance of B-lymphocytes spontaneous antibody-synthesizing activity by B-lymphocytes (LASA in patients with rheumatic inflammatory diseases (RD, i.e., reactive arthritis (ReA, ankylosing spondylitis (AS, rheumatoid arthritis (RA, and systemic lupus erythematosus (SLE. Significantly higher LASA levels were revealed in the patients with ReA, AS, RA, and SLE, as compared with healthy persons and patients with osteoarthrosis. Clinical significance of LASA indexes and their changes may reflect manifestation and degree of immunological activities in ReA, AS, RA, and SLE.

  10. Phasic characteristics of inspiratory crackles of bacterial and atypical pneumonia.

    Science.gov (United States)

    Norisue, Y; Tokuda, Y; Koizumi, M; Kishaba, T; Miyagi, S

    2008-08-01

    No known physical findings are available to differentiate between bacterial pneumonia (BP) and atypical pneumonia (AP) in patients with community-acquired pneumonia (CAP). To evaluate the possible differences in phasic characteristics of inspiratory crackles between BP and AP in patients with CAP. Retrospective chart reviews were conducted to obtain phasic characteristics of inspiratory crackles (early, early-to-mid, late and pan-inspiratory crackles) in AP and BP groups in a community teaching hospital in Japan (n = 183). 100 patients with BP and 83 patients with AP were evaluated. Patients with BP were significantly more likely to present with pan-inspiratory crackles (49 (49.0) vs 5 (6.0); ppneumonia patients with audible crackles, the sensitivity and specificity of pan-inspiratory crackles for BP were 83.1% and 85.7%, respectively, and the sensitivity and specificity of late inspiratory crackles for AP were 80.0% and 84.7%, respectively. In patients with CAP and audible crackles, phasic characteristics of inspiratory crackles may be used to distinguish AP from BP. Prospective studies are needed to confirm these findings.

  11. Myofascial trigger points: spontaneous electrical activity and its consequences for pain induction and propagation

    Science.gov (United States)

    2011-01-01

    Active myofascial trigger points are one of the major peripheral pain generators for regional and generalized musculoskeletal pain conditions. Myofascial trigger points are also the targets for acupuncture and/or dry needling therapies. Recent evidence in the understanding of the pathophysiology of myofascial trigger points supports The Integrated Hypothesis for the trigger point formation; however unanswered questions remain. Current evidence shows that spontaneous electrical activity at myofascial trigger point originates from the extrafusal motor endplate. The spontaneous electrical activity represents focal muscle fiber contraction and/or muscle cramp potentials depending on trigger point sensitivity. Local pain and tenderness at myofascial trigger points are largely due to nociceptor sensitization with a lesser contribution from non-nociceptor sensitization. Nociceptor and non-nociceptor sensitization at myofascial trigger points may be part of the process of muscle ischemia associated with sustained focal muscle contraction and/or muscle cramps. Referred pain is dependent on the sensitivity of myofascial trigger points. Active myofascial trigger points may play an important role in the transition from localized pain to generalized pain conditions via the enhanced central sensitization, decreased descending inhibition and dysfunctional motor control strategy. PMID:21439050

  12. Myofascial trigger points: spontaneous electrical activity and its consequences for pain induction and propagation.

    Science.gov (United States)

    Ge, Hong-You; Fernández-de-Las-Peñas, César; Yue, Shou-Wei

    2011-03-25

    Active myofascial trigger points are one of the major peripheral pain generators for regional and generalized musculoskeletal pain conditions. Myofascial trigger points are also the targets for acupuncture and/or dry needling therapies. Recent evidence in the understanding of the pathophysiology of myofascial trigger points supports The Integrated Hypothesis for the trigger point formation; however unanswered questions remain. Current evidence shows that spontaneous electrical activity at myofascial trigger point originates from the extrafusal motor endplate. The spontaneous electrical activity represents focal muscle fiber contraction and/or muscle cramp potentials depending on trigger point sensitivity. Local pain and tenderness at myofascial trigger points are largely due to nociceptor sensitization with a lesser contribution from non-nociceptor sensitization. Nociceptor and non-nociceptor sensitization at myofascial trigger points may be part of the process of muscle ischemia associated with sustained focal muscle contraction and/or muscle cramps. Referred pain is dependent on the sensitivity of myofascial trigger points. Active myofascial trigger points may play an important role in the transition from localized pain to generalized pain conditions via the enhanced central sensitization, decreased descending inhibition and dysfunctional motor control strategy.

  13. Myofascial trigger points: spontaneous electrical activity and its consequences for pain induction and propagation

    Directory of Open Access Journals (Sweden)

    Fernández-de-las-Peñas César

    2011-03-01

    Full Text Available Abstract Active myofascial trigger points are one of the major peripheral pain generators for regional and generalized musculoskeletal pain conditions. Myofascial trigger points are also the targets for acupuncture and/or dry needling therapies. Recent evidence in the understanding of the pathophysiology of myofascial trigger points supports The Integrated Hypothesis for the trigger point formation; however unanswered questions remain. Current evidence shows that spontaneous electrical activity at myofascial trigger point originates from the extrafusal motor endplate. The spontaneous electrical activity represents focal muscle fiber contraction and/or muscle cramp potentials depending on trigger point sensitivity. Local pain and tenderness at myofascial trigger points are largely due to nociceptor sensitization with a lesser contribution from non-nociceptor sensitization. Nociceptor and non-nociceptor sensitization at myofascial trigger points may be part of the process of muscle ischemia associated with sustained focal muscle contraction and/or muscle cramps. Referred pain is dependent on the sensitivity of myofascial trigger points. Active myofascial trigger points may play an important role in the transition from localized pain to generalized pain conditions via the enhanced central sensitization, decreased descending inhibition and dysfunctional motor control strategy.

  14. Fractal analysis reveals subclasses of neurons and suggests an explanation of their spontaneous activity.

    Science.gov (United States)

    Favela, Luis H; Coey, Charles A; Griff, Edwin R; Richardson, Michael J

    2016-07-28

    The present work used fractal time series analysis (detrended fluctuation analysis; DFA) to examine the spontaneous activity of single neurons in an anesthetized animal model, specifically, the mitral cells in the rat main olfactory bulb. DFA bolstered previous research in suggesting two subclasses of mitral cells. Although there was no difference in the fractal scaling of the interspike interval series at the shorter timescales, there was a significant difference at longer timescales. Neurons in Group B exhibited fractal, power-law scaled interspike intervals, whereas neurons in Group A exhibited random variation. These results raise questions about the role of these different cells within the olfactory bulb and potential explanations of their dynamics. Specifically, self-organized criticality has been proposed as an explanation of fractal scaling in many natural systems, including neural systems. However, this theory is based on certain assumptions that do not clearly hold in the case of spontaneous neural activity, which likely reflects intrinsic cell dynamics rather than activity driven by external stimulation. Moreover, it is unclear how self-organized criticality might account for the random dynamics observed in Group A, and how these random dynamics might serve some functional role when embedded in the typical activity of the olfactory bulb. These theoretical considerations provide direction for additional experimental work. Published by Elsevier Ireland Ltd.

  15. Accuracy of rate coding: When shorter time window and higher spontaneous activity help

    Czech Academy of Sciences Publication Activity Database

    Leváková, Marie; Tamborrino, M.; Košťál, Lubomír; Lánský, Petr

    2017-01-01

    Roč. 95, č. 2 (2017), č. článku 022310. ISSN 2470-0045 R&D Projects: GA ČR(CZ) GA15-08066S; GA MŠk(CZ) 7AMB17AT048 Institutional support: RVO:67985823 Keywords : rate coding * observation window * spontaneous activity * Fisher information * perfect integrate- and -fire model * Wiener process Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 2.366, year: 2016

  16. Phasic availability of terminal electron acceptor on oxygen reduction reaction in microbial fuel cell.

    Science.gov (United States)

    Shanthi Sravan, J; Butti, Sai Kishore; Verma, Anil; Venkata Mohan, S

    2017-10-01

    Oxygen-reduction reactions (ORR) plays a pivotal role in determining microbial fuel cells (MFC) performance. In this study, an attempt to determine the influence of the phasic availability of terminal electron acceptor (TEA) on ORR was made. Two MFCs operated with dissolved oxygen (MFC-DC) and air (MFC-SC) as TEA were constructed and analyzed in continuous mode under open and closed circuit conditions. The bio-electrochemical analysis showed a marked influence of dissolved oxygen resulting in a maximum power density with MFC-DC (769mW/m 2 ) compared to MFC-SC (684mW/m 2 ). The availability of O 2 in dissolved phase has lowered the activation losses during the MFC operation as a result of effective ORR. The cyclic voltammetry analysis revealed the TEA dependent biocatalyst activity of NADH and cytochrome complex which enabled electron transfer kinetics and improved substrate utilization. Finally, the study evidenced the critical role of TEA phasic availability to regulate the bio-electrogenic and substrate degradation potential in MFC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Spontaneous membrane formation and self-encapsulation of active rods in an inhomogeneous motility field

    Science.gov (United States)

    Grauer, Jens; Löwen, Hartmut; Janssen, Liesbeth M. C.

    2018-02-01

    We study the collective dynamics of self-propelled rods in an inhomogeneous motility field. At the interface between two regions of constant but different motility, a smectic rod layer is spontaneously created through aligning interactions between the active rods, reminiscent of an artificial, semipermeable membrane. This "active membrane" engulfes rods which are locally trapped in low-motility regions and thereby further enhances the trapping efficiency by self-organization, an effect which we call "self-encapsulation." Our results are gained by computer simulations of self-propelled rod models confined on a two-dimensional planar or spherical surface with a stepwise constant motility field, but the phenomenon should be observable in any geometry with sufficiently large spatial inhomogeneity. We also discuss possibilities to verify our predictions of active-membrane formation in experiments of self-propelled colloidal rods and vibrated granular matter.

  18. Alpha-Band Activity Reveals Spontaneous Representations of Spatial Position in Visual Working Memory.

    Science.gov (United States)

    Foster, Joshua J; Bsales, Emma M; Jaffe, Russell J; Awh, Edward

    2017-10-23

    An emerging view suggests that spatial position is an integral component of working memory (WM), such that non-spatial features are bound to locations regardless of whether space is relevant [1, 2]. For instance, past work has shown that stimulus position is spontaneously remembered when non-spatial features are stored. Item recognition is enhanced when memoranda appear at the same location where they were encoded [3-5], and accessing non-spatial information elicits shifts of spatial attention to the original position of the stimulus [6, 7]. However, these findings do not establish that a persistent, active representation of stimulus position is maintained in WM because similar effects have also been documented following storage in long-term memory [8, 9]. Here we show that the spatial position of the memorandum is actively coded by persistent neural activity during a non-spatial WM task. We used a spatial encoding model in conjunction with electroencephalogram (EEG) measurements of oscillatory alpha-band (8-12 Hz) activity to track active representations of spatial position. The position of the stimulus varied trial to trial but was wholly irrelevant to the tasks. We nevertheless observed active neural representations of the original stimulus position that persisted throughout the retention interval. Further experiments established that these spatial representations are dependent on the volitional storage of non-spatial features rather than being a lingering effect of sensory energy or initial encoding demands. These findings provide strong evidence that online spatial representations are spontaneously maintained in WM-regardless of task relevance-during the storage of non-spatial features. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. MRI-constrained spectral imaging of benzodiazepine modulation of spontaneous neuromagnetic activity in human cortex.

    Science.gov (United States)

    Ahveninen, Jyrki; Lin, Fa-Hsuan; Kivisaari, Reetta; Autti, Taina; Hämäläinen, Matti; Stufflebeam, Steven; Belliveau, John W; Kähkönen, Seppo

    2007-04-01

    Spontaneous electromagnetic brain rhythms have been widely used in human neuropharmacology, but their applicability is complicated by the difficulties to localize their origins in the human cortex. Here, we used a novel multi-modal non-invasive imaging approach to localize lorazepam (30 microg/kg i.v.) modulation of cortical generators of spontaneous brain rhythms. Eight healthy subjects were measured with 306-channel magnetoencephalography (MEG) in a double-blind, randomized, placebo-controlled (saline), crossover design. For anatomically realistic source modeling, wavelet-transformed MEG data were combined with high-resolution MRI to constrain the current locations to the cortical mantle, after which individual data were co-registered to surface-based coordinate system for the calculation of group statistical parametric maps of drug effects. The distributed MRI-constrained MEG source estimates demonstrated decreased alpha (10 Hz) activity in and around the parieto-occipital sulcus and in the calcarine sulcus of the occipital lobe, following from increased GABA(A)-inhibition by lorazepam. Anatomically constrained spectral imaging displays the cortical loci of drug effects on oscillatory brain activity, providing a novel tool for human pharmacological neuroimaging.

  20. Triclosan causes spontaneous abortion accompanied by decline of estrogen sulfotransferase activity in humans and mice.

    Science.gov (United States)

    Wang, Xiaoli; Chen, Xiaojiao; Feng, Xuejiao; Chang, Fei; Chen, Minjian; Xia, Yankai; Chen, Ling

    2015-12-15

    Triclosan (TCS), an antibacterial agent, is identified in serum and urine of humans. Here, we show that the level of urinary TCS in 28.3% patients who had spontaneous abortion in mid-gestation were increased by 11.3-fold (high-TCS) compared with normal pregnancies. Oral administration of TCS (10 mg/kg/day) in mice (TCS mice) caused an equivalent urinary TCS level as those in the high-TCS abortion patients. The TCS-exposure from gestation day (GD) 5.5 caused dose-dependently fetal death during GD12.5-16.5 with decline of live fetal weight. GD15.5 TCS mice appeared placental thrombus and tissue necrosis with enhancement of platelet aggregation. The levels of placenta and plasma estrogen sulfotransferase (EST) mRNA and protein in TCS mice or high-TCS abortion patients were not altered, but their EST activities were significantly reduced compared to controls. Although the levels of serum estrogen (E2) in TCS mice and high-TCS abortion patients had no difference from controls, their ratio of sulfo-conjugated E2 and unconjugated E2 was reduced. The estrogen receptor antagonist ICI-182,780 prevented the enhanced platelet aggregation and placental thrombosis and attenuated the fetal death in TCS mice. The findings indicate that TCS-exposure might cause spontaneous abortion probably through inhibition of EST activity to produce placental thrombosis.

  1. Dopamine Attenuates Ketamine-Induced Neuronal Apoptosis in the Developing Rat Retina Independent of Early Synchronized Spontaneous Network Activity.

    Science.gov (United States)

    Dong, Jing; Gao, Lingqi; Han, Junde; Zhang, Junjie; Zheng, Jijian

    2017-07-01

    Deprivation of spontaneous rhythmic electrical activity in early development by anesthesia administration, among other interventions, induces neuronal apoptosis. However, it is unclear whether enhancement of neuronal electrical activity attenuates neuronal apoptosis in either normal development or after anesthesia exposure. The present study investigated the effects of dopamine, an enhancer of spontaneous rhythmic electrical activity, on ketamine-induced neuronal apoptosis in the developing rat retina. TUNEL and immunohistochemical assays indicated that ketamine time- and dose-dependently aggravated physiological and ketamine-induced apoptosis and inhibited early-synchronized spontaneous network activity. Dopamine administration reversed ketamine-induced neuronal apoptosis, but did not reverse the inhibitory effects of ketamine on early synchronized spontaneous network activity despite enhancing it in controls. Blockade of D1, D2, and A2A receptors and inhibition of cAMP/PKA signaling partially antagonized the protective effect of dopamine against ketamine-induced apoptosis. Together, these data indicate that dopamine attenuates ketamine-induced neuronal apoptosis in the developing rat retina by activating the D1, D2, and A2A receptors, and upregulating cAMP/PKA signaling, rather than through modulation of early synchronized spontaneous network activity.

  2. Left atrial phasic function and mechanics in women with subclinical hypothyroidism: the effects of levothyroxine therapy.

    Science.gov (United States)

    Tadic, Marijana; Ilic, Sanja; Ivanovic, Branislava; Celic, Vera

    2014-11-01

    Left atrial (LA) mechanics has been poorly investigated in women with subclinical hypothyroidism (SHT), and the effect of levothyroxine therapy on LA deformation and function is unknown. To investigate LA phasic function and mechanics assessed by two-dimensional echocardiography (2DE) and speckle tracking in women with SHT, and to estimate the influence of levothyroxine therapy on LA remodeling. We included 48 untreated women with SHT and 38 healthy control women of the same age. All the SHT patients received levothyroxine therapy and were followed for 1 year after euthyroid status was achieved. All the participants underwent laboratory analyses and complete 2DE examination. Left atrial total emptying fraction was significantly lower in the SHT patients at the baseline in comparison with the controls. LA passive emptying fraction gradually decreased from the controls, throughout the treated SHT patients, to the untreated SHT patients. LA active emptying fraction was lower in the controls than in the untreated and the treated SHT participants. 2DE LA longitudinal strain and systolic strain rate gradually decreased from the controls to the untreated SHT patients, whereas LA early diastolic strain rate significantly increased in the same direction. Late diastolic LA strain was lower in the controls than in the untreated and the treated SHT patients. Subclinical hypothyroidism significantly affects LA mechanics. Reservoir, conduit, and booster pump LA functions are all impacted by SHT. A 1-year levothyroxine therapy significantly improves, but does not completely restore LA phasic function and mechanics in the SHT patients. © 2014, Wiley Periodicals, Inc.

  3. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms

    Directory of Open Access Journals (Sweden)

    Anne ePetzold

    2015-10-01

    Full Text Available Cholinergic neurons of the pedunculopontine nucleus (PPN are most active during the waking state. Their activation is deemed to cause a switch in the global brain activity from sleep to wakefulness, while their sustained discharge may contribute to upholding the waking state and enhancing arousal. Similarly, non-cholinergic PPN neurons are responsive to brain state transitions and their activation may influence some of the same targets of cholinergic neurons, suggesting that they operate in coordination. Yet, it is not clear how the discharge of distinct classes of PPN neurons organize during brain states. Here we monitored the in vivo network activity of PPN neurons in the anesthetized rat across two distinct levels of cortical dynamics and their transitions. We identified a highly structured configuration in PPN network activity during slow-wave activity that was replaced by decorrelated activity during the activated state. During the transition, neurons were predominantly excited (phasically or tonically, but some were inhibited. Identified cholinergic neurons displayed phasic and short latency responses to sensory stimulation, whereas the majority of non-cholinergic showed tonic responses and remained at high discharge rates beyond the state transition. In vitro recordings demonstrate that cholinergic neurons exhibit fast adaptation that prevents them from discharging at high rates over prolonged time periods. Our data shows that PPN neurons have distinct but complementary roles during brain state transitions, where cholinergic neurons provide a fast and transient response to sensory events that drive state transitions, whereas non-cholinergic neurons maintain an elevated firing rate during global activation.

  4. Distinct Temporal Coordination of Spontaneous Population Activity between Basal Forebrain and Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Josue G. Yague

    2017-09-01

    Full Text Available The basal forebrain (BF has long been implicated in attention, learning and memory, and recent studies have established a causal relationship between artificial BF activation and arousal. However, neural ensemble dynamics in the BF still remains unclear. Here, recording neural population activity in the BF and comparing it with simultaneously recorded cortical population under both anesthetized and unanesthetized conditions, we investigate the difference in the structure of spontaneous population activity between the BF and the auditory cortex (AC in mice. The AC neuronal population show a skewed spike rate distribution, a higher proportion of short (≤80 ms inter-spike intervals (ISIs and a rich repertoire of rhythmic firing across frequencies. Although the distribution of spontaneous firing rate in the BF is also skewed, a proportion of short ISIs can be explained by a Poisson model at short time scales (≤20 ms and spike count correlations are lower compared to AC cells, with optogenetically identified cholinergic cell pairs showing exceptionally higher correlations. Furthermore, a smaller fraction of BF neurons shows spike-field entrainment across frequencies: a subset of BF neurons fire rhythmically at slow (≤6 Hz frequencies, with varied phase preferences to ongoing field potentials, in contrast to a consistent phase preference of AC populations. Firing of these slow rhythmic BF cells is correlated to a greater degree than other rhythmic BF cell pairs. Overall, the fundamental difference in the structure of population activity between the AC and BF is their temporal coordination, in particular their operational timescales. These results suggest that BF neurons slowly modulate downstream populations whereas cortical circuits transmit signals on multiple timescales. Thus, the characterization of the neural ensemble dynamics in the BF provides further insight into the neural mechanisms, by which brain states are regulated.

  5. Sex differences in endogenous cortical network activity: spontaneously recurring Up/Down states.

    Science.gov (United States)

    Sigalas, Charalambos; Konsolaki, Eleni; Skaliora, Irini

    2017-01-01

    Several molecular and cellular processes in the vertebrate brain exhibit differences between males and females, leading to sexual dimorphism in the formation of neural circuits and brain organization. While studies on large-scale brain networks provide ample evidence for both structural and functional sex differences, smaller-scale local networks have remained largely unexplored. In the current study, we investigate sexual dimorphism in cortical dynamics by means of spontaneous Up/Down states, a type of network activity that is exhibited during slow-wave sleep, quiet wakefulness, and anesthesia and is thought to represent the default activity of the cortex. Up state activity was monitored by local field potential recordings in coronal brain slices of male and female mice across three ages with distinct secretion profiles of sex hormones: (i) pre-puberty (17-21 days old), (ii) 3-9 adult (months old), and (iii) old (19-24 months old). Female mice of all ages exhibited longer and more frequent Up states compared to aged-matched male mice. Power spectrum analysis revealed sex differences in the relative power of Up state events, with female mice showing reduced power in the delta range (1-4 Hz) and increased power in the theta range (4-8 Hz) compared to male mice. No sex differences were found in the characteristics of Up state peak voltage and latency. The present study revealed for the first time sex differences in intracortical network activity, using an ex vivo paradigm of spontaneously occurring Up/Down states. We report significant sex differences in Up state properties that are already present in pre-puberty animals and are maintained through adulthood and old age.

  6. Research on spontaneous activity in adult anisometropic amblyopia with regional homogeneity

    Science.gov (United States)

    Huang, Yufeng; Zhou, Yifeng

    2017-06-01

    Amblyopia usually occurs in early childhood and results in monocular visual impairment. The functional magnetic resonance imaging (fMRI) studies have reflected functional anomaly in amblyopia. In resting-state fMRI study, spontaneous activity changes abnormally in anisometropic amblyopia could be revealed by the regional homogeneity (ReHo). Twenty two adult anisometropic amblyopes and Twenty one normal controls participated in this fMRI study. Two sample T test was carried out to analysis ReHo within the whole brain for the inter groups. Compare with normal group, our study found that the amblyopia’s ReHo mainly increased in the left frontal lobe, while decreased in the left cerebellum, the temporal lobe (left and right), and the left parietal lobe. And the ReHo values in middle and inferior temporal lobe, the prefrontal lobe, frontal lobe (positive) and parietal lobe and medial frontal gyrus (negative) could be correlated with the acuity deficit of amblyopia. The results increased in ReHo may indicate compensatory plasticity in higher vision information process, while the decreased in ReHo may reflect decreased ability in eye movement, spatial sense and visuo-motor coordination. The correlation revealed that the vision deficit may correspond to the spontaneous in certain brain area.

  7. Outcomes of Nulliparous Women with Spontaneous Labor Onset Admitted to Hospitals in Pre-active versus Active Labor

    Science.gov (United States)

    NEAL, Jeremy L.; LAMP, Jane M.; BUCK, Jacalyn S.; LOWE, Nancy K.; GILLESPIE, Shannon L.; RYAN, Sharon L.

    2014-01-01

    Introduction The timing of when a woman is admitted to the hospital for labor care following spontaneous contraction onset may be among the most important decisions that labor attendants make as it can influence care patterns and birth outcomes. The aims of this study were to estimate the percentage of low-risk, nulliparous women at term who are admitted to labor units prior to active labor and to evaluate the effects of the timing of admission (i.e., pre-active versus active labor) on labor interventions and mode of birth. Methods Obstetrics data from low-risk, nulliparous women with spontaneous labor onset at term gestation (N = 216) were merged from two prospective studies conducted at three large, Midwestern hospitals. Baseline characteristics, labor interventions, and outcomes were compared between groups using Fisher’s exact and Mann-Whitney U tests, as appropriate. Likelihoods for oxytocin augmentation, amniotomy, and cesarean delivery were assessed by logistic regression. Results Of the sample of 216 low-risk nulliparous women, 114 (52.8%) were admitted in pre-active labor and 102 (47.2%) were admitted in active labor. Women admitted in pre-active labor were more likely to undergo oxytocin augmentation (84.2% and 45.1%, respectively; odds ratio (OR) 6.5, 95% confidence interval (CI) 3.43–12.27) but not amniotomy (55.3% and 61.8%, respectively; OR 0.8, 95% CI 0.44–1.32) when compared to women admitted in active labor. The likelihood of cesarean delivery was higher for women admitted before active labor onset (15.8% and 6.9%, respectively; OR 2.6, 95% CI 1.02–6.37). Discussion Many low-risk nulliparous women with regular, spontaneous uterine contractions are admitted to labor units before active labor onset, which increases their likelihood of receiving oxytocin and being delivered via cesarean section. An evidence-based, standardized approach for labor admission decision-making is recommended to decrease inadvertent admissions of women in pre-active

  8. Reproduction of overall spontaneous pain pattern by manual stimulation of active myofascial trigger points in fibromyalgia patients

    DEFF Research Database (Denmark)

    Ge, Hong-You; Wang, Ying; Fernández-de-las-Peñas, César

    2011-01-01

    It has previously been reported that local and referred pain from active myofascial trigger points (MTPs) in the neck and shoulder region contribute to fibromyalgia (FM) pain and that the pain pattern induced from active MTPs can reproduce parts of the spontaneous clinical FM pain pattern...

  9. Reproduction of overall spontaneous pain pattern by manual stimulation of active myofascial trigger points in fibromyalgia patients

    DEFF Research Database (Denmark)

    Ge, Hong-You; Wang, Ying; Fernandez-de-las-Penas, Cesar

    2011-01-01

    It has previously been reported that local and referred pain from active myofascial trigger points (MTPs) in the neck and shoulder region contribute to fibromyalgia (FM) pain and that the pain pattern induced from active MTPs can reproduce parts of the spontaneous clinical FM pain pattern. The cu...

  10. ANTIMICROBIAL ACTIVITY OF EXTRACTS OF WILD GARLIC (Allium ursinum FROM ROMANIAN SPONTANEOUS FLORA

    Directory of Open Access Journals (Sweden)

    MARIANA LUPOAE

    2014-05-01

    Full Text Available Wild Romanian spontaneous garlic’s (Allium ursinum antimicrobial activity was tested in order to establish the inhibition potential of growth of some microorganisms. As test microorganisms were used pure cultures of fungs (Aspergillus glaucus, Geotrichum candidum, Mucor mucedo, Saccharomyces cerevisiae and bacteria (Bacillus subtilis isolated from food microbiota. There were also, used microbial strains isolated from different pathological products: wound secretions (Staphylococcus aureus, throat swab (Streptococcus pyogenes, urine (Escherichia coli and oral mucosa (Candida albicans. The antimicrobial potential of used extracts is highlighted depending on the type of the vegetal tissue (leaves, roots, bulbs and the nature of the solvent used for extraction. Extracts used in these experiments are recommended to use in food industry to preserve the stability and to improve the organoleptic quality of products.

  11. Tamping Ramping: Algorithmic, Implementational, and Computational Explanations of Phasic Dopamine Signals in the Accumbens

    Science.gov (United States)

    Lloyd, Kevin; Dayan, Peter

    2015-01-01

    Substantial evidence suggests that the phasic activity of dopamine neurons represents reinforcement learning’s temporal difference prediction error. However, recent reports of ramp-like increases in dopamine concentration in the striatum when animals are about to act, or are about to reach rewards, appear to pose a challenge to established thinking. This is because the implied activity is persistently predictable by preceding stimuli, and so cannot arise as this sort of prediction error. Here, we explore three possible accounts of such ramping signals: (a) the resolution of uncertainty about the timing of action; (b) the direct influence of dopamine over mechanisms associated with making choices; and (c) a new model of discounted vigour. Collectively, these suggest that dopamine ramps may be explained, with only minor disturbance, by standard theoretical ideas, though urgent questions remain regarding their proximal cause. We suggest experimental approaches to disentangling which of the proposed mechanisms are responsible for dopamine ramps. PMID:26699940

  12. Tamping Ramping: Algorithmic, Implementational, and Computational Explanations of Phasic Dopamine Signals in the Accumbens.

    Directory of Open Access Journals (Sweden)

    Kevin Lloyd

    2015-12-01

    Full Text Available Substantial evidence suggests that the phasic activity of dopamine neurons represents reinforcement learning's temporal difference prediction error. However, recent reports of ramp-like increases in dopamine concentration in the striatum when animals are about to act, or are about to reach rewards, appear to pose a challenge to established thinking. This is because the implied activity is persistently predictable by preceding stimuli, and so cannot arise as this sort of prediction error. Here, we explore three possible accounts of such ramping signals: (a the resolution of uncertainty about the timing of action; (b the direct influence of dopamine over mechanisms associated with making choices; and (c a new model of discounted vigour. Collectively, these suggest that dopamine ramps may be explained, with only minor disturbance, by standard theoretical ideas, though urgent questions remain regarding their proximal cause. We suggest experimental approaches to disentangling which of the proposed mechanisms are responsible for dopamine ramps.

  13. Bi-phasic hitting with constraints on impact velocity and temporal precision

    NARCIS (Netherlands)

    Caljouw, S.R.; van der Kamp, J.; Savelsbergh, G.J.P.

    2005-01-01

    The aim of the experiment was to investigate how bi-phasic hitting movements are organized to comply with both impact and temporal precision constraints. 'Bi-phasic' refers to a sequential movement with a preparatory movement away from the interception location followed by a strike phase. The

  14. Impact of corticosterone treatment on spontaneous seizure frequency and epileptiform activity in mice with chronic epilepsy.

    Directory of Open Access Journals (Sweden)

    Olagide W Castro

    Full Text Available Stress is the most commonly reported precipitating factor for seizures in patients with epilepsy. Despite compelling anecdotal evidence for stress-induced seizures, animal models of the phenomena are sparse and possible mechanisms are unclear. Here, we tested the hypothesis that increased levels of the stress-associated hormone corticosterone (CORT would increase epileptiform activity and spontaneous seizure frequency in mice rendered epileptic following pilocarpine-induced status epilepticus. We monitored video-EEG activity in pilocarpine-treated mice 24/7 for a period of four or more weeks, during which animals were serially treated with CORT or vehicle. CORT increased the frequency and duration of epileptiform events within the first 24 hours of treatment, and this effect persisted for up to two weeks following termination of CORT injections. Interestingly, vehicle injection produced a transient spike in CORT levels - presumably due to the stress of injection - and a modest but significant increase in epileptiform activity. Neither CORT nor vehicle treatment significantly altered seizure frequency; although a small subset of animals did appear responsive. Taken together, our findings indicate that treatment of epileptic animals with exogenous CORT designed to mimic chronic stress can induce a persistent increase in interictal epileptiform activity.

  15. Spontaneous Activity Patterns in Primary Visual Cortex Predispose to Visual Hallucinations.

    Science.gov (United States)

    Pajani, Auréliane; Kok, Peter; Kouider, Sid; de Lange, Floris P

    2015-09-16

    According to theoretical frameworks casting perception as inference, vision results from the integration of bottom-up visual input with top-down expectations. Under conditions of strongly degraded sensory input, this may occasionally result in false perceptions in the absence of a sensory signal, also termed "hallucinations." Here, we investigated whether spontaneous prestimulus activity patterns in sensory circuits, which may embody a participant's prior expectations, predispose the observer toward false perceptions. Specifically, we used fMRI to investigate whether the representational content of prestimulus activity in early visual cortex is linked to subsequent perception during a challenging detection task. Human participants were asked to detect oriented gratings of a particular orientation that were embedded in noise. We found two characteristics of prestimulus activity that predisposed participants to hallucinations: overall lower prestimulus activity and a bias in the prestimulus activity patterns toward the to-be-detected (expected) grating. These results suggest that perceptual hallucinations may be due to an imprecise and biased state of sensory circuits preceding sensory evidence collection. When sensory stimulation is strongly degraded, we occasionally misperceive a stimulus when only noise is present: a perceptual hallucination. Using fMRI in healthy participants, we investigated whether the state of early visual cortex preceding stimulus onset predisposes an observer to hallucinations. We found two characteristics of prestimulus activity that predisposed participants to hallucinations: overall lower prestimulus activity and a bias in the prestimulus activity patterns toward the expected grating. These results suggest that perceptual hallucinations are due to an imprecise and biased state of sensory circuits preceding sensation. Copyright © 2015 the authors 0270-6474/15/3512947-07$15.00/0.

  16. The epileptic human hippocampal cornu ammonis 2 region generates spontaneous interictal-like activity in vitro.

    Science.gov (United States)

    Wittner, Lucia; Huberfeld, Gilles; Clémenceau, Stéphane; Eross, Loránd; Dezamis, Edouard; Entz, László; Ulbert, István; Baulac, Michel; Freund, Tamás F; Maglóczky, Zsófia; Miles, Richard

    2009-11-01

    The dentate gyrus, the cornu ammonis 2 region and the subiculum of the human hippocampal formation are resistant to the cell loss associated with temporal lobe epilepsy. The subiculum, but not the dentate gyrus, generates interictal-like activity in tissue slices from epileptic patients. In this study, we asked whether a similar population activity is generated in the cornu ammonis 2 region and examined the electrophysiological and neuroanatomical characteristics of human epileptic cornu ammonis 2 neurons that may be involved. Hippocampal slices were prepared from postoperative temporal lobe tissue derived from epileptic patients. Field potentials and multi-unit activity were recorded in vitro using multiple extracellular microelectrodes. Pyramidal cells were characterized in intra-cellular records and were filled with biocytin for subsequent anatomy. Fluorescent immunostaining was made on fixed tissue against the chloride-cation cotransporters sodium-potassium-chloride cotransporter-1 and potassium-chloride cotransporter-2. Light and electron microscopy were used to examine the parvalbumin-positive perisomatic inhibitory network. In 15 of 20 slices, the hippocampal cornu ammonis 2 region generated a spontaneous interictal-like activity, independently of population events in the subiculum. Most cornu ammonis 2 pyramidal cells fired spontaneously. All cells fired single action potentials and burst firing was evoked in three cells. Spontaneous excitatory postsynaptic potentials were recorded in all cells, but hyperpolarizing inhibitory postsynaptic potentials were detected in only 27% of the cells. Two-thirds of cornu ammonis 2 neurons showed depolarizing responses during interictal-like events, while the others were inhibited, according to the current sink in the cell body layer. Two biocytin-filled cells both showed a pyramidal-like morphology with axons projecting to the cornu ammonis 2 and cornu ammonis 3 regions. Expression of sodium

  17. Drug-induced modification of the system properties associated with spontaneous human electroencephalographic activity

    Science.gov (United States)

    Liley, David T.; Cadusch, Peter J.; Gray, Marcus; Nathan, Pradeep J.

    2003-11-01

    The benzodiazepine (BZ) class of minor tranquilizers are important modulators of the γ-amino butyric acid (GABAA)/BZ receptor complex that are well known to affect the spectral properties of spontaneous electroencephalographic activity. While it is experimentally well established that the BZs reduce total alpha band (8 13 Hz) power and increase total beta band (13 30 Hz) power, it is unclear what the physiological basis for this effect is. Based on a detailed theory of cortical electrorhythmogenesis it is conjectured that such an effect is explicable in terms of the modulation of GABAergic neurotransmission within locally connected populations of excitatory and inhibitory cortical neurons. Motivated by this theory, fixed order autoregressive moving average (ARMA) models were fitted to spontaneous eyes-closed electroencephalograms recorded from subjects before and approximately 2 h after the oral administration of a single 1 mg dose of the BZ alprazolam. Subsequent pole-zero analysis revealed that BZs significantly transform the dominant system pole such that its frequency and damping increase. Comparisons of ARMA derived power spectra with fast Fourier transform derived spectra indicate an enhanced ability to identify benzodiazepine induced electroencephalographic changes. This experimental result is in accord with the theoretical predictions implying that alprazolam enhances inhibition acting on inhibitory neurons more than inhibition acting on excitatory neurons. Further such a result is consistent with reported cortical neuronal distributions of the various GABAA receptor pharmacological subtypes. Therefore physiologically specified fixed order ARMA modeling is expected to become an important tool for the systematic investigation and modeling of a wide range of cortically acting compounds.

  18. Cellular Origin of Spontaneous Ganglion Cell Spike Activity in Animal Models of Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    David J. Margolis

    2011-01-01

    Full Text Available Here we review evidence that loss of photoreceptors due to degenerative retinal disease causes an increase in the rate of spontaneous ganglion spike discharge. Information about persistent spike activity is important since it is expected to add noise to the communication between the eye and the brain and thus impact the design and effective use of retinal prosthetics for restoring visual function in patients blinded by disease. Patch-clamp recordings from identified types of ON and OFF retinal ganglion cells in the adult (36–210 d old rd1 mouse show that the ongoing oscillatory spike activity in both cell types is driven by strong rhythmic synaptic input from presynaptic neurons that is blocked by CNQX. The recurrent synaptic activity may arise in a negative feedback loop between a bipolar cell and an amacrine cell that exhibits resonant behavior and oscillations in membrane potential when the normal balance between excitation and inhibition is disrupted by the absence of photoreceptor input.

  19. Electrophysiological study in the infraorbital nerve of the rat: Spontaneous and evoked activity

    Energy Technology Data Exchange (ETDEWEB)

    AlbarracIn, A L [Catedra de Neurociencias, Facultad de Medicina, Universidad Nacional de Tucuman, Av. Roca 2200, PC 4000 (Argentina); Farfan, F D [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, PC 4000 (Argentina); Felice, C J [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, PC 4000 (Argentina)

    2007-11-15

    In this work we present some studies in the afferent nerve of the rat vibrissae. Studies on spontaneous activity (SA) in this sensorial system are of long data. Nevertheless, SA recordings in the nerve of a single vibrissa have not been made until present. In this work, we use an algorithm based on signal decomposition with Continuous Wavelet Transform (CWT) to analyse the discharges of two nerves. The action potentials of both nerves were detected and the firing rates were calculated. These results suggest that the firing rate of one vibrissa innervation is low considering that this nerve contains hundred of fibers. In addition, we present preliminary studies suggesting important effects of the hair shaft length in the afferent discharge during the vibrissae movements. The experiments consisted in recording the nerve activity after the vibrissae were sectioned at two different levels. The results showed important differences in the signal energy contents. It suggests that the hair shaft length would produce a differential activation of the mechanoreceptors located in the vibrissae follicle.

  20. Hypotensive and Angiotensin-Converting Enzyme Inhibitory Activities of Eisenia fetida Extract in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Shumei Mao

    2015-01-01

    Full Text Available Objectives. This study aimed to investigate the antihypertensive effects of an Eisenia fetida extract (EFE and its possible mechanisms in spontaneously hypertensive rats (SHR rats. Methods. Sixteen-week-old SHR rats and Wistar-Kyoto rats (WKY rats were used in this study. Rats were, respectively, given EFE (EFE group, captopril (captopril group, or phosphate-buffered saline (PBS (normal control group and SHR group for 4 weeks. ACE inhibitory activity of EFE in vitro was determined. The systolic blood pressure (SBP and diastolic blood pressure (DBP were measured using a Rat Tail-Cuff Blood Pressure System. Levels of angiotensin II (Ang II, aldosterone (Ald, and 6-keto-prostaglandin F1 alpha (6-keto-PGF1α in plasma were determined by radioimmunoassay, and serum nitric oxide (NO concentration was measured by Griess reagent systems. Results. EFE had marked ACE inhibitory activity in vitro (IC50 = 2.5 mg/mL. After the 4-week drug management, SHR rats in EFE group and in captopril group had lower SBP and DBP, lower levels of Ang II and Ald, and higher levels of 6-keto-PGF1α and NO than the SHR rats in SHR group. Conclusion. These results indicate that EFE has hypotensive effects in SHR rats and its effects might be associated with its ACE inhibitory activity.

  1. Expression and activity of matrix metalloproteinases in the uterus of bitches after spontaneous and induced abortion.

    Science.gov (United States)

    Kanca, H; Walter, I; Miller, I; Schäfer-Somi, S; Izgur, H; Aslan, S

    2011-04-01

    Aim of this study was to determine the intrauterine activity of matrix metalloproteinases (MMP)-2 and -9 after cessation of the local effect of progesterone. For this purpose, pregnancy was terminated in 10 bitches at mid-gestation with the progesterone receptor antagonist aglepristone (10 mg/kg body weight, sc, Alizine®; Virbac, France) at two subsequent days (group IRA = induced resorption/abortion). The IRA group was divided into two subgroups (Group I, n = 5, days 25-35 of pregnancy; group II, n = 5, days 36-45). Five further bitches were introduced with beginning abortion (group SRA = spontaneous resorption/abortion). Seven healthy bitches between day 25 and 45 of gestation served as controls. After ovariohysterectomy at the end of abortion and between days 25 and 45 of gestation, respectively, the distribution and activity of collagenases were investigated by immunohistochemistry and gelatin zymography. At placental sites, MMP-2 activity in the endometrium was significantly lower in IRA groups than in the SRA group (33.7 ± 11.8% and 39.3 ± 5.4% vs 52.2 ± 10.2%, p < 0.05); however, MMP-2 expression was lowest in the control group (control: 21.4 ± 6.3%; p < 0.01) and similarly in the myometrium (controls: 13.1 ± 2.5%; p < 0.05). MMP-9 activity was also lower in the endometrium and myometrium of the control group in comparison to SRA and IRA groups (11.8 ± 3.2%; p < 0.01 and 28.4 ± 32.8%; p < 0.05). At interplacental sites, the amount of active collagenases in the myometrium was significantly lower in the control group. It is concluded that the blockade of the biological progesterone effect was associated with an increase in activity of both collagenases. © 2010 Blackwell Verlag GmbH.

  2. The association between heart rate variability and biatrial phasic function in arterial hypertension.

    Science.gov (United States)

    Tadic, Marijana; Cuspidi, Cesare; Pencic, Biljana; Marjanovic, Tamara; Celic, Vera

    2014-10-01

    We sought to investigate (1) left atrial (LA) and right atrial (RA) phasic function and mechanics; (2) heart rate variability (HRV); and (3) their relationship in untreated hypertensive patients. This cross-sectional study involved 73 untreated hypertensive patients and 51 subjects without cardiovascular risk factors with similar gender and age. All the subjects underwent a 24-hour Holter monitoring and comprehensive two- and three-dimensional echocardiography examination. LA and RA reservoir and conduit function, estimated by total and passive atrial emptying fractions and systolic and early diastolic strain rates, were reduced in the hypertensive patients. On the other hand, LA and RA booster function, assessed by active atrial emptying fraction and late diastolic strain rate, was increased in this group. All time and frequency domain heart-rate variability parameters were reduced in the hypertensive subjects. In the whole study population, parameters of cardiac sympathovagal balance (standard deviation of all normal RR intervals, root mean square of the difference between the coupling intervals of adjacent R-R intervals, 24-hour low-frequency domain [0.04-0.15 Hz], 24-hour high-frequency domain [0.15-0.40 Hz], and 24-hour total power [0.01-0.40 Hz]) correlated with LA and RA volume indexes, biatrial booster function assessed by active emptying fraction, biatrial longitudinal function evaluated by longitudinal strain; and biatrial expansion index. LA and RA phasic function and mechanics are significantly impaired in the untreated hypertensive patients. Heart-rate variability parameters are also deteriorated in the hypertensive population. Biatrial function and mechanics correlated with cardiac autonomic nervous system indexes in the whole study population.

  3. Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures grown on multi-electrode arrays

    OpenAIRE

    Hammond, Mark W; Xydas, Dimitris; Downes, Julia H; Bucci, Giovanna; Becerra, Victor; Warwick, Kevin; Constanti, Andrew; Nasuto, Slawomir J; Whalley, Benjamin J

    2013-01-01

    Background\\ud Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events ...

  4. Abnormal Spontaneous Brain Activity in Patients With Anisometropic Amblyopia Using Resting-State Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    Tang, Angcang; Chen, Taolin; Zhang, Junran; Gong, Qiyong; Liu, Longqian

    2017-09-01

    To explore the abnormality of spontaneous activity in patients with anisometropic amblyopia under resting-state functional magnetic resonance imaging (Rs-fMRI). Twenty-four participants were split into two groups. The anisometropic amblyopia group had 10 patients, all of whom had anisometropic amblyopia of the right eye, and the control group had 14 healthy subjects. All participants underwent Rs-fMRI scanning. Measurement of amplitude of low frequency fluctuations of the brain, which is a measure of the amplitudes of spontaneous brain activity, was used to investigate brain changes between the anisometropic amblyopia and control groups. Compared with an age- and gender-matched control group, the anisometropic amblyopia group showed increased amplitude of low frequency fluctuations of spontaneous brain activity in the left superior temporal gyrus, the left inferior parietal lobe, the left pons, and the right inferior semi-lunar lobe. The anisometropic amblyopia group also showed decreased amplitude of low frequency fluctuations in the bilateral medial frontal gyrus. This study demonstrated abnormal spontaneous brain activities in patients with anisometropic amblyopia under Rs-fMRI, and these abnormalities might contribute to the neuropathological mechanisms of anisometropic amblyopia. [J Pediatr Ophthalmol Strabismus. 2017;54(5):303-310.]. Copyright 2017, SLACK Incorporated.

  5. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI. However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo analysis based on resting-state functional magnetic resonance imaging.A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for

  6. Pharmacological evidence of hypotensive activity of Marrubium vulgare and Foeniculum vulgare in spontaneously hypertensive rat.

    Science.gov (United States)

    El Bardai, S; Lyoussi, B; Wibo, M; Morel, N

    2001-05-01

    The hypotensive effects of the water extract of Marrubium vulgare L. and Foeniculum vulgare L. were investigated in spontaneously hypertensive rats (SHR) and in normotensive Wistar-Kyoto rats (WKY). Oral administration of Marrubium or Foeniculum extract lowered the systolic blood pressure of SHR but not of WKY. In SHR, Foeniculum but not Marrubium treatment increased water, sodium and potassium excretion. Ex vivo as well as in vitro, Marrubium extract inhibited the contractile responses of rat aorta to noradrenaline and to KCl (100 mM). Inhibition was greater in aorta from SHR compared to WKY and was not affected by the NO synthase inhibitor N-nitro-L-arginine. Vascular effects of Foeniculum extract were less pronounced than those of Marrubium and were blocked by N-nitro-L-arginine. These results indicate that hypotensive activity of Marrubium and Foeniculum extracts seems to be mediated through different pathways: Foeniculum appeared to act mainly as a diuretic and a natriuretic while Marrubium displayed vascular relaxant activity.

  7. Beyond blow-up in excitatory integrate and fire neuronal networks: Refractory period and spontaneous activity.

    Science.gov (United States)

    Cáceres, María J; Perthame, Benoît

    2014-06-07

    The Network Noisy Leaky Integrate and Fire equation is among the simplest model allowing for a self-consistent description of neural networks and gives a rule to determine the probability to find a neuron at the potential v. However, its mathematical structure is still poorly understood and, concerning its solutions, very few results are available. In the midst of them, a recent result shows blow-up in finite time for fully excitatory networks. The intuitive explanation is that each firing neuron induces a discharge of the others; thus increases the activity and consequently the discharge rate of the full network. In order to better understand the details of the phenomena and show that the equation is more complex and fruitful than expected, we analyze further the model. We extend the finite time blow-up result to the case when neurons, after firing, enter a refractory state for a given period of time. We also show that spontaneous activity may occur when, additionally, randomness is included on the firing potential VF in regimes where blow-up occurs for a fixed value of VF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Physiological reactivity to spontaneously occurring seizure activity in dogs with epilepsy and their carers.

    Science.gov (United States)

    Packer, R M A; Volk, H A; Fowkes, R C

    2017-08-01

    There is a complex bidirectional relationship between stress and epilepsy. Stressful stimuli and subsequent cortisol release act as a trigger for seizure activity in some individuals with epilepsy, and seizure activity itself may act as a stressor to the affected individual. Epilepsy is the most common chronic neurological condition in domestic dogs and requires chronic management by their human carers, impacting upon the quality of life of both dog and carer. Seizures occur unpredictably and may be stressful for carers to witness and manage. In the present study we investigated the role of seizure activity as a stressor, measuring the effect of spontaneously occurring seizure activity in dogs with epilepsy upon their own cortisol levels and that of their carers. Furthermore, we tested whether individual differences in HPA reactivity were associated with owner personality characteristics and the quality of the dog-carer relationship. Saliva samples were obtained from sixteen dog-carer dyads in the home setting 20 and 40minute post-seizure, and at time-matched points on the following (non-seizure) day. Significant differences in cortisol levels were found in dogs at 40minute post-seizure (265.1% increase), and at 20minute post-seizure in their carers (40.5% increase). No associations were found between cortisol reactivity and the strength of the dog-carer bond. Carers with higher neuroticism scores exhibited higher cortisol levels at both post-seizure sampling points. As there was a gender bias in the carer sample (15/16 were female), and there are known sex differences in cortisol reactivity in response to psychological stress, the conclusions of this study may be limited to female carers. These findings are the first to objectively demonstrate the acutely stressful effects of seizures in dogs with epilepsy and their carers. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Vagally mediated effects of brain stem dopamine on gastric tone and phasic contractions of the rat.

    Science.gov (United States)

    Anselmi, L; Toti, L; Bove, C; Travagli, R A

    2017-11-01

    Dopamine (DA)-containing fibers and neurons are embedded within the brain stem dorsal vagal complex (DVC); we have shown previously that DA modulates the membrane properties of neurons of the dorsal motor nucleus of the vagus (DMV) via DA1 and DA2 receptors. The vagally dependent modulation of gastric tone and phasic contractions, i.e., motility, by DA, however, has not been characterized. With the use of microinjections of DA in the DVC while recording gastric tone and motility, the aims of the present study were 1 ) assess the gastric effects of brain stem DA application, 2 ) identify the DA receptor subtype, and, 3 ) identify the postganglionic pathway(s) activated. Dopamine microinjection in the DVC decreased gastric tone and motility in both corpus and antrum in 29 of 34 rats, and the effects were abolished by ipsilateral vagotomy and fourth ventricular treatment with the selective DA2 receptor antagonist L741,626 but not by application of the selective DA1 receptor antagonist SCH 23390. Systemic administration of the cholinergic antagonist atropine attenuated the inhibition of corpus and antrum tone in response to DA microinjection in the DVC. Conversely, systemic administration of the nitric oxide synthase inhibitor nitro-l-arginine methyl ester did not alter the DA-induced decrease in gastric tone and motility. Our data provide evidence of a dopaminergic modulation of a brain stem vagal neurocircuit that controls gastric tone and motility. NEW & NOTEWORTHY Dopamine administration in the brain stem decreases gastric tone and phasic contractions. The gastric effects of dopamine are mediated via dopamine 2 receptors on neurons of the dorsal motor nucleus of the vagus. The inhibitory effects of dopamine are mediated via inhibition of the postganglionic cholinergic pathway. Copyright © 2017 the American Physiological Society.

  10. The Wiring of Developing Sensory Circuits-From Patterned Spontaneous Activity to Synaptic Plasticity Mechanisms

    NARCIS (Netherlands)

    Leighton, Alexandra H; Lohmann, C.

    2016-01-01

    In order to accurately process incoming sensory stimuli, neurons must be organized into functional networks, with both genetic and environmental factors influencing the precise arrangement of connections between cells. Teasing apart the relative contributions of molecular guidance cues, spontaneous

  11. EXERCISE TRAINING IMPROVES CARDIOVASCULAR AUTONOMIC ACTIVITY AND ATTENUATES RENAL DAMAGE IN SPONTANEOUSLY HYPERTENSIVE RATS

    Directory of Open Access Journals (Sweden)

    Octávio Barbosa Neto

    2013-03-01

    Full Text Available Experiments were performed to determine the influence of exercise training by swimming on cardiovascular autonomic control and renal morphology in spontaneously hypertensive rats (SHR and Wystar-Kyoto (WKY rats. Sedentary normotensive (SN, trained normotensive (TN, sedentary hypertensive (SH, and trained hypertensive (TH rats were included in this study. Arterial pressure (AP, heart rate (HR, means of power spectral analysis of HR (HRV and systolic AP variability (SAPV were recorded in baseline conditions. Following, the HR baroreflex and autonomic tonus control were assessed. At the end, all animals were euthanized and their kidneys were excised to evaluate renal damage. Resting bradycardia was observed in TH and TN rats compared with their respective sedentary animals (p < 0.05. Exercise training attenuated AP in TH vs. SH (p < 0.001. The LF component of HRV and SAPV were lower in TH than SH (p < 0.05. The LF/HF relation was lower in TH than SH and SN (p < 0.05. TN and TH rats showed a sympathetic tonus reduction in comparison to SN and SH rats (p < 0.001. The TH presented an increased vagal tonus compared to SH (p < 0.05. Exercise training improved baroreflex control of HR in TH group versus SH (p < 0.05. The TH showed a lower number of sclerotic glomeruli compared to SH (p < 0.005. The exercise training decrease the glomerular indexes in TN and TH (p < 0.05. Further analysis showed a significant correlation between sympathetic nervous activity and AP levels (p < 0.05. A positive association was also found between sympathetic nervous activity and glomerular index (p < 0.05. Therefore, the exercise training reduces AP and attenuates renal damage. In addition, the attenuation of renal injury was associated with lower sympathetic activity. These findings strongly suggest that exercise training may be a therapeutic tool for improving structure and renal function in hypertensive individuals.

  12. Effects of taurine on resting-state fMRI activity in spontaneously hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Vincent Chin-Hung Chen

    Full Text Available Attention deficit hyperactivity disorder (ADHD is a global behavior illness among children and adults. To investigate the effects of taurine on resting-state fMRI activity in ADHD, a spontaneously hypertensive rat (SHR animal model was adopted. Significantly decreased serum C-reactive protein (CRP was detected in rats of Wistar Kyoto (WKY high-taurine group and significantly decreased interleukin (IL-1β and CRP were detected in rats of SHR low-taurine and high-taurine groups. Moreover, significantly higher horizontal locomotion was detected in rats of WKY low-taurine and SHR low-taurine groups than in those of controls. In contrast, significantly lower horizontal locomotion was detected in rats of the SHR high-taurine group than in those of the SHR control group. Additionally, significantly lower functional connectivity (FC and mean amplitude of low-frequency fluctuation (mALFF in the bilateral hippocampus in rats of WKY high-taurine and SHR high-taurine groups was detected. Notably, the mALFF in rats of the SHR low-taurine and high-taurine groups was significantly lower than in those of the SHR control group. These findings suggest that the administration of a high-dose taurine probably improves hyperactive behavior in SHR rats by ameliorating the inflammatory cytokines and modulating brain functional signals in SHR rats.

  13. Electroacupuncture Delays Hypertension Development through Enhancing NO/NOS Activity in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Hye Suk Hwang

    2011-01-01

    Full Text Available Using spontaneously hypertensive rats (SHR, this study investigated whether electroacupuncture (EA could reduce early stage hypertension by examining nitric oxide (NO levels in plasma and nitric oxide synthase (NOS levels in the mesenteric resistance artery. EA was applied to the acupuncture point Governor Vessel 20 (GV20 or to a non-acupuncture point in the tail twice weekly for 3 weeks under anesthesia. In conscious SHR and normotensive Wistar Kyoto (WKY rats, blood pressure was determined the day after EA treatment by the tail-cuff method. We measured plasma NO concentration, and evaluated endothelial NO syntheses (eNOS and neuronal NOS (nNOS protein expression in the mesenteric artery. Systolic blood pressure (SBP and diastolic blood pressure (DBP were lower after 3 weeks of GV20 treatment than EA at non-acupuncture point and no treatment control in SHR. nNOS expression by EA was significantly different between both WKY and no treatment SHR control, and EA at GV20 in SHR. eNOS expression was significantly high in EA at GV 20 compared with no treatment control. In conclusion, EA could attenuate the blood pressure elevation of SHR, along with enhancing NO/NOS activity in the mesenteric artery in SHR.

  14. Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception.

    Science.gov (United States)

    Megumi, Fukuda; Bahrami, Bahador; Kanai, Ryota; Rees, Geraint

    2015-02-15

    The neural mechanisms underlying conscious visual perception have been extensively investigated using bistable perception paradigms. Previous functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) studies suggest that the right anterior superior parietal (r-aSPL) and the right posterior superior parietal lobule (r-pSPL) have opposite roles in triggering perceptual reversals. It has been proposed that these two areas are part of a hierarchical network whose dynamics determine perceptual switches. However, how these two parietal regions interact with each other and with the rest of the brain during bistable perception is not known. Here, we investigated such a model by recording brain activity using fMRI while participants viewed a bistable structure-from-motion stimulus. Using dynamic causal modeling (DCM), we found that resolving such perceptual ambiguity was specifically associated with reciprocal interactions between these parietal regions and V5/MT. Strikingly, the strength of bottom-up coupling between V5/MT to r-pSPL and from r-pSPL to r-aSPL predicted individual mean dominance duration. Our findings are consistent with a hierarchical predictive coding model of parietal involvement in bistable perception and suggest that visual information processing underlying spontaneous perceptual switches can be described as changes in connectivity strength between parietal and visual cortical regions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Effects of taurine on resting-state fMRI activity in spontaneously hypertensive rats

    Science.gov (United States)

    Chen, Vincent Chin-Hung; Hsu, Tsai-Ching; Chen, Li-Jeng; Chou, Hong-Chun

    2017-01-01

    Attention deficit hyperactivity disorder (ADHD) is a global behavior illness among children and adults. To investigate the effects of taurine on resting-state fMRI activity in ADHD, a spontaneously hypertensive rat (SHR) animal model was adopted. Significantly decreased serum C-reactive protein (CRP) was detected in rats of Wistar Kyoto (WKY) high-taurine group and significantly decreased interleukin (IL)-1β and CRP were detected in rats of SHR low-taurine and high-taurine groups. Moreover, significantly higher horizontal locomotion was detected in rats of WKY low-taurine and SHR low-taurine groups than in those of controls. In contrast, significantly lower horizontal locomotion was detected in rats of the SHR high-taurine group than in those of the SHR control group. Additionally, significantly lower functional connectivity (FC) and mean amplitude of low-frequency fluctuation (mALFF) in the bilateral hippocampus in rats of WKY high-taurine and SHR high-taurine groups was detected. Notably, the mALFF in rats of the SHR low-taurine and high-taurine groups was significantly lower than in those of the SHR control group. These findings suggest that the administration of a high-dose taurine probably improves hyperactive behavior in SHR rats by ameliorating the inflammatory cytokines and modulating brain functional signals in SHR rats. PMID:28700674

  16. Effects of taurine on resting-state fMRI activity in spontaneously hypertensive rats.

    Science.gov (United States)

    Chen, Vincent Chin-Hung; Hsu, Tsai-Ching; Chen, Li-Jeng; Chou, Hong-Chun; Weng, Jun-Cheng; Tzang, Bor-Show

    2017-01-01

    Attention deficit hyperactivity disorder (ADHD) is a global behavior illness among children and adults. To investigate the effects of taurine on resting-state fMRI activity in ADHD, a spontaneously hypertensive rat (SHR) animal model was adopted. Significantly decreased serum C-reactive protein (CRP) was detected in rats of Wistar Kyoto (WKY) high-taurine group and significantly decreased interleukin (IL)-1β and CRP were detected in rats of SHR low-taurine and high-taurine groups. Moreover, significantly higher horizontal locomotion was detected in rats of WKY low-taurine and SHR low-taurine groups than in those of controls. In contrast, significantly lower horizontal locomotion was detected in rats of the SHR high-taurine group than in those of the SHR control group. Additionally, significantly lower functional connectivity (FC) and mean amplitude of low-frequency fluctuation (mALFF) in the bilateral hippocampus in rats of WKY high-taurine and SHR high-taurine groups was detected. Notably, the mALFF in rats of the SHR low-taurine and high-taurine groups was significantly lower than in those of the SHR control group. These findings suggest that the administration of a high-dose taurine probably improves hyperactive behavior in SHR rats by ameliorating the inflammatory cytokines and modulating brain functional signals in SHR rats.

  17. Observation of new spontaneous fission activities from elements 100 to 105

    International Nuclear Information System (INIS)

    Somerville, L.P.

    1982-03-01

    Several new Spontaneous Fission (SF) activities have been found. No definite identification could be made for any of the new SF activities; however, half-lives and possible assignments to element-104 isotopes consistent with several cross bombardments include 257 Rf(3.8 s, 14% SF), 258 Rf(13 ms), 259 Rf(approx. 3 s, 8% SF), 260 Rf(approx. 20 ms), and 262 Rf(approx. 50 ms). The 80-ms SF activity claimed by the Dubna group for the discovery of element 104 ( 260 104) was not observed. A difficulty exists in the interpretation that 260 Rf is a approx. 20-ms SF activity: in order to be correct, for example, the SF activities with half-lives between 14 and 24 ms produced in the reactions 109- to 119-MeV 18 O + 248 Cm, 88- to 100-MeV 15 N + 249 Bk, and 96-MeV 18 O + 249 Cf must be other nuclides due to their large production cross sections, or the cross sections for production of 260 Rf must be enhanced by unknown mechanisms. Based on calculated total production cross sections a possible approx. 1% electron-capture branch in 258 Lr(4.5 s) to the SF emitter 258 No(1.2 ms) and an upper limit of 0.05% for SF branching in 254 No(55 s) were determined. Other measured half-lives from unknown nuclides produced in respective reactions include approx. 1.6 s ( 18 O + 248 CM), indications of a approx. 47-s SF activity (75-MeV 12 C + 249 Cf), and two or more SF activities with 3 s less than or equal to T/sub 1/2/ less than or equal to 60 s ( 18 O + 249 Bk). The most exciting conclusion of this work is that if the tentative assignments to even-even element 104 isotopes are correct, there would be a sudden change in the SF half-life systematics at element 104 which has been predicted theoretically and attributed to the disappearance of the second hump of the double-humped fission barrier

  18. Interactions between procedural learning and cocaine exposure alter spontaneous and cortically-evoked spike activity in the dorsal striatum

    Directory of Open Access Journals (Sweden)

    Janie eOndracek

    2010-12-01

    Full Text Available We have previously shown that cocaine enhances gene regulation in the sensorimotor striatum associated with procedural learning in a running-wheel paradigm. Here we assessed whether cocaine produces enduring modifications of learning-related changes in striatal neuron activity, using single-unit recordings in anesthetized rats 1 day after the wheel training. Spontaneous and cortically-evoked spike activity was compared between groups treated with cocaine or vehicle immediately prior to the running-wheel training or placement in a locked wheel (control conditions. We found that wheel training in vehicle-treated rats increased the average firing rate of spontaneously active neurons without changing the relative proportion of active to quiescent cells. In contrast, in rats trained under the influence of cocaine, the proportion of spontaneously firing to quiescent cells was significantly greater than in vehicle-treated, trained rats. However, this effect was associated with a lower average firing rate in these spontaneously active cells, suggesting that training under the influence of cocaine recruited additional low-firing cells. Measures of cortically-evoked activity revealed a second interaction between cocaine treatment and wheel training, namely, a cocaine-induced decrease in spike onset latency in control rats (locked wheel. This facilitatory effect of cocaine was abolished when rats trained in the running wheel during cocaine action. These findings highlight important interactions between cocaine and procedural learning, which act to modify population firing activity and the responsiveness of striatal neurons to excitatory inputs. Moreover, these effects were found 24 hours after the training and last drug exposure indicating that cocaine exposure during the learning phase triggers long-lasting changes in synaptic plasticity in the dorsal striatum. Such changes may contribute to the transition from recreational to habitual or compulsive drug

  19. Learning to modulate one's own brain activity: The effect of spontaneous mental strategies

    Directory of Open Access Journals (Sweden)

    Silvia Erika Kober

    2013-10-01

    Full Text Available Using neurofeedback (NF, individuals can learn to modulate their own brain activity, in most cases electroencephalographic (EEG rhythms. Although a large body of literature reports positive effects of NF training on behavior and cognitive functions, there are hardly any reports on how participants can successfully learn to gain control over their own brain activity. About one third of people fail to gain significant control over their brain signals even after repeated training sessions. The reasons for this failure are still largely unknown. In this context, we investigated the effects of spontaneous mental strategies on NF performance. Twenty healthy participants performed either a SMR (sensorimotor rhythm, 12-15 Hz based or a Gamma (40-43 Hz based NF training over ten sessions. After the first and the last training session, they were asked to write down which mental strategy they have used for self-regulating their EEG. After the first session, all participants reported the use of various types of mental strategies such as visual strategies, concentration, or relaxation. After the last NF training session, four participants of the SMR group reported to employ no specific strategy. These four participants showed linear improvements in NF performance over the ten training sessions. In contrast, participants still reporting the use of specific mental strategies in the last NF session showed no changes in SMR based NF performance over the ten sessions. This effect could not be observed in the Gamma group. The Gamma group showed no prominent changes in Gamma power over the NF training sessions, regardless of the mental strategies used. These results indicate that successful SMR based NF performance is associated with implicit learning mechanisms. Participants stating vivid reports on strategies to control their SMR probably overload cognitive resources, which might be counterproductive in terms of increasing SMR power.

  20. Altered local spontaneous activity in frontal lobe epilepsy: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Dong, Li; Li, Hechun; He, Zhongqiong; Jiang, Sisi; Klugah-Brown, Benjamin; Chen, Lin; Wang, Pu; Tan, Song; Luo, Cheng; Yao, Dezhong

    2016-11-01

    The purpose of this study was to investigate the local spatiotemporal consistency of spontaneous brain activity in patients with frontal lobe epilepsy (FLE). Eyes closed resting-state functional magnetic resonance imaging (fMRI) data were collected from 19 FLE patients and 19 age- and gender-matched healthy controls. A novel measure, named FOur-dimensional (spatiotemporal) Consistency of local neural Activities (FOCA) was used to assess the spatiotemporal consistency of local spontaneous activity (emphasizing both local temporal homogeneity and regional stability of brain activity states). Then, two-sample t test was performed to detect the FOCA differences between two groups. Partial correlations between the FOCA values and durations of epilepsy were further analyzed. Compared with controls, FLE patients demonstrated increased FOCA in distant brain regions including the frontal and parietal cortices, as well as the basal ganglia. The decreased FOCA was located in the temporal cortex, posterior default model regions, and cerebellum. In addition, the FOCA measure was linked to the duration of epilepsy in basal ganglia. Our study suggested that alterations of local spontaneous activity in frontoparietal cortex and basal ganglia was associated with the pathophysiology of FLE; and the abnormality in frontal and default model regions might account for the potential cognitive impairment in FLE. We also presumed that the FOCA measure had potential to provide important insights into understanding epilepsy such as FLE.

  1. GABA-A receptor antagonists increase firing, bursting and synchrony of spontaneous activity in neuronal networks grown on microelectrode arrays: a step towards chemical "fingerprinting"

    Science.gov (United States)

    Assessment of effects on spontaneous network activity in neurons grown on MEAs is a proposed method to screen chemicals for potential neurotoxicity. In addition, differential effects on network activity (chemical "fingerprints") could be used to classify chemical modes of action....

  2. AN INFLUENCE OF SPONTANEOUS MICROFLORA OF FERMENTED HORSEMEAT PRODUCTS ON THE FORMATION OF BIOLOGICALLY ACTIVE PEPTIDES

    Directory of Open Access Journals (Sweden)

    I. M. Chernukha

    2017-01-01

    Full Text Available At present, different methods are used to accumulate functional peptides in meat raw materials, including the use of spontaneous microflora during autolysis, the use of the microbial enzymes (the application of starter cultures and the use of the non-microbial enzymes (enzymes of animals and plant origin. Each method has its own specific characteristics of an impact on raw materials, which requires their detail study. This paper examines an effect of spontaneous microflora of fermented meat products from horsemeat on formation of biologically active peptides. Using the T-RFLP analysis, it was established that in air dried and uncooked smoked sausages produced with the use of the muscle tissue of horsemeat as a raw material, a significant proportion of microflora was presented by lactic acid microorganisms. The highest content of lactic acid microflora was observed in sample 1 (52.45 %, and the least in sample 3 (29.62 %. Sample 2 had the medium percent content of microflora compared to samples 1 and 3 — 38.82 %. It is necessary to note that about 25 % of microflora was unculturable; i.e., it had metabolic processes but did not grow on culture media. In the samples, the representatives of Actinobacteria and Pseudomonadales were found. Pathogenic and conditionally pathogenic microflora was not detected. Not only quantitative but also qualitative changes were observed in the studied samples. For example, in samples 1 and 2, the fractions of amilo-1,6-glucosidase, fast-type muscle myosin-binding-protein C; glucose-6-phosphate isomerase; fast skeletal muscle troponin I, phosphoglycerate kinase, pyruvate kinase and skeletal muscle actin were found, which were absent or reduced in sample 3. Therefore, in the studied product, good preservation of the main spectra of muscle proteins was observed, and the identified fractions, apparently, can be sources of new functional peptides. Not only quantitative but also qualitative changes were observed in the

  3. Phasic D1 and tonic D2 dopamine receptor signaling double dissociate the motivational effects of acute nicotine and chronic nicotine withdrawal

    Science.gov (United States)

    Grieder, Taryn E.; George, Olivier; Tan, Huibing; George, Susan R.; Le Foll, Bernard; Laviolette, Steven R.; van der Kooy, Derek

    2012-01-01

    Nicotine, the main psychoactive ingredient of tobacco smoke, induces negative motivational symptoms during withdrawal that contribute to relapse in dependent individuals. The neurobiological mechanisms underlying how the brain signals nicotine withdrawal remain poorly understood. Using electrophysiological, genetic, pharmacological, and behavioral methods, we demonstrate that tonic but not phasic activity is reduced during nicotine withdrawal in ventral tegmental area dopamine (DA) neurons, and that this pattern of signaling acts through DA D2 and adenosine A2A, but not DA D1, receptors. Selective blockade of phasic DA activity prevents the expression of conditioned place aversions to a single injection of nicotine in nondependent mice, but not to withdrawal from chronic nicotine in dependent mice, suggesting a shift from phasic to tonic dopaminergic mediation of the conditioned motivational response in nicotine dependent and withdrawn animals. Either increasing or decreasing activity at D2 or A2A receptors prevents the aversive motivational response to withdrawal from chronic nicotine, but not to acute nicotine. Modification of D1 receptor activity prevents the aversive response to acute nicotine, but not to nicotine withdrawal. This double dissociation demonstrates that the specific pattern of tonic DA activity at D2 receptors is a key mechanism in signaling the motivational effects experienced during nicotine withdrawal, and may represent a unique target for therapeutic treatments for nicotine addiction. PMID:22308372

  4. Population calcium imaging of spontaneous respiratory and novel motor activity in the facial nucleus and ventral brainstem in newborn mice

    DEFF Research Database (Denmark)

    Persson, Karin; Rekling, Jens C

    2011-01-01

    The brainstem contains rhythm and pattern forming circuits, which drive cranial and spinal motor pools to produce respiratory and other motor patterns. Here we used calcium imaging combined with nerve recordings in newborn mice to reveal spontaneous population activity in the ventral brainstem...... in lateral and medial subnuclei. Whole-cell recordings from facial motoneurons showed weak respiratory drives, and electrical field potential recordings confirmed respiratory drive to particularly the dorsal and lateral subnuclei. Putative facial premotoneurons showed respiratory-related calcium signals...

  5. Phasic Dopamine Modifies Sensory-Driven Output of Striatal Neurons through Synaptic Plasticity.

    Science.gov (United States)

    Wieland, Sebastian; Schindler, Sebastian; Huber, Cathrin; Köhr, Georg; Oswald, Manfred J; Kelsch, Wolfgang

    2015-07-08

    Animals are facing a complex sensory world in which only few stimuli are relevant to guide behavior. Value has to be assigned to relevant stimuli such as odors to select them over concurring information. Phasic dopamine is involved in the value assignment to stimuli in the ventral striatum. The underlying cellular mechanisms are incompletely understood. In striatal projection neurons of the ventral striatum in adult mice, we therefore examined the features and dynamics of phasic dopamine-induced synaptic plasticity and how this plasticity may modify the striatal output. Phasic dopamine is predicted to tag inputs that occur in temporal proximity. Indeed, we observed D1 receptor-dependent synaptic potentiation only when odor-like bursts and optogenetically evoked phasic dopamine release were paired within a time window of synaptic potentiation persisted after the phasic dopamine signal had ceased, but gradually reversed when odor-like bursts continued to be presented. The synaptic plasticity depended on the sensory input rate and was input specific. Importantly, synaptic plasticity amplified the firing response to a given olfactory input as the dendritic integration and the firing threshold remained unchanged during synaptic potentiation. Thus, phasic dopamine-induced synaptic plasticity can change information transfer through dynamic increases of the output of striatal projection neurons to specific sensory inputs. This plasticity may provide a neural substrate for dynamic value assignment in the striatum. Copyright © 2015 the authors 0270-6474/15/359946-11$15.00/0.

  6. The adaptive significance of phasic colony cycles in army ants.

    Science.gov (United States)

    Garnier, Simon; Kronauer, Daniel J C

    2017-09-07

    Army ants are top arthropod predators in tropical forests around the world. The colonies of many army ant species undergo stereotypical behavioral and reproductive cycles, alternating between brood care and reproductive phases. In the brood care phase, colonies contain a cohort of larvae that are synchronized in their development and have to be fed. In the reproductive phase larvae are absent and oviposition takes place. Despite these colony cycles being a striking feature of army ant biology, their adaptive significance is unclear. Here we use a modeling approach to show that cyclic reproduction is favored under conditions where per capita foraging costs decrease with the number of larvae in a colony ("High Cost of Entry" scenario), while continuous reproduction is favored under conditions where per capita foraging costs increase with the number of larvae ("Resource Exhaustion" scenario). We argue that the former scenario specifically applies to army ants, because large raiding parties are required to overpower prey colonies. However, once raiding is successful it provides abundant food for a large cohort of larvae. The latter scenario, on the other hand, will apply to non-army ants, because in those species local resource depletion will force workers to forage over larger distances to feed large larval cohorts. Our model provides a quantitative framework for understanding the adaptive value of phasic colony cycles in ants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Bi-phasic regulation of glycogen content in astrocytes via Cav-1/PTEN/PI3K/AKT/GSK-3β pathway by fluoxetine.

    Science.gov (United States)

    Bai, Qiufang; Song, Dan; Gu, Li; Verkhratsky, Alexei; Peng, Liang

    2017-04-01

    Here, we present the data indicating that chronic treatment with fluoxetine regulates Cav-1/PTEN/PI3K/AKT/GSK-3β signalling pathway and glycogen content in primary cultures of astrocytes with bi-phasic concentration dependence. At lower concentrations, fluoxetine downregulates gene expression of Cav-1, decreases membrane content of PTEN, increases activity of PI3K/AKT, and elevates GSK-3β phosphorylation thus suppressing its activity. At higher concentrations, fluoxetine acts in an inverse fashion. As expected, fluoxetine at lower concentrations increased while at higher concentrations decreased glycogen content in astrocytes. Our findings indicate that bi-phasic regulation of glycogen content via Cav-1/PTEN/PI3K/AKT/GSK-3β pathway by fluoxetine may be responsible for both therapeutic and side effects of the drug.

  8. Does low protein concentration of tissue-type plasminogen activator predict a low risk of spontaneous deep vein thrombosis?

    DEFF Research Database (Denmark)

    Gram, J; Sidelmann, Johannes Jakobsen; Jespersen, J

    1995-01-01

    Many reports have demonstrated an abnormal fibrinolysis in a subset of patients with deep vein thrombosis. We have studied systemic global fibrinolytic activity and protein concentrations of tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor type 1 (PAI-1) in plasma of 25...... young patients with a previous instance of spontaneous deep vein thrombosis documented by phlebography and in 50 healthy controls. The two populations were comparable with respect to a number of base-line variables (age, height, weight, etc.), while the patients had significantly lower fibrinolytic...

  9. The Cortisol Paradox of Trauma-Related Disorders: Lower Phasic Responses but Higher Tonic Levels of Cortisol Are Associated with Sexual Abuse in Childhood

    OpenAIRE

    Schalinski, Inga; Elbert, Thomas; Steudte-Schmiedgen, Susann; Kirschbaum, Clemens

    2015-01-01

    ObjectivesInconsistent findings exist for the activity of the hypothalamic-pituitary-adrenal (HPA) axis in patients with stress related disorders. Recent studies point towards early life stress as a potential modulator.MethodsWe investigated the impact of childhood sexual abuse on phasic (saliva cortisol reactivity) and tonic (hair cortisol) regulation. Furthermore, we assessed predictors on cortisol accumulation in hair. Women (N = 43) with stress-related disorders underwent a standardized a...

  10. Activity-dependent plasticity in the isolated embryonic avian brainstem following manipulations of rhythmic spontaneous neural activity.

    Science.gov (United States)

    Vincen-Brown, Michael A; Revill, Ann L; Pilarski, Jason Q

    2016-07-15

    When rhythmic spontaneous neural activity (rSNA) first appears in the embryonic chick brainstem and cranial nerve motor axons it is principally driven by nicotinic neurotransmission (NT). At this early age, the nicotinic acetylcholine receptor (nAChR) agonist nicotine is known to critically disrupt rSNA at low concentrations (0.1-0.5μM), which are levels that mimic the blood plasma levels of a fetus following maternal cigarette smoking. Thus, we quantified the effect of persistent exposure to exogenous nicotine on rSNA using an in vitro developmental model. We found that rSNA was eliminated by continuous bath application of exogenous nicotine, but rSNA recovered activity within 6-12h despite the persistent activation and desensitization of nAChRs. During the recovery period rSNA was critically driven by chloride-mediated membrane depolarization instead of nicotinic NT. To test whether this observed compensation was unique to the antagonism of nicotinic NT or whether the loss of spiking behavior also played a role, we eliminated rSNA by lowering overall excitatory drive with a low [K(+)]o superfusate. In this context, rSNA again recovered, although the recovery time was much quicker, and exhibited a lower frequency, higher duration, and an increase in the number of bursts per episode when compared to control embryos. Importantly, we show that the main compensatory response to lower overall excitatory drive, similar to nicotinergic block, is a result of potentiated chloride mediated membrane depolarization. These results support increasing evidence that early neural circuits sense spiking behavior to maintain primordial bioelectric rhythms. Understanding the nature of developmental plasticity in the nervous system, especially versions that preserve rhythmic behaviors following clinically meaningful environmental stimuli, both normal and pathological, will require similar studies to determine the consequences of feedback compensation at more mature chronological ages

  11. Central command does not suppress baroreflex control of cardiac sympathetic nerve activity at the onset of spontaneous motor activity in the decerebrate cat.

    Science.gov (United States)

    Matsukawa, Kanji; Ishii, Kei; Asahara, Ryota; Idesako, Mitsuhiro

    2016-10-01

    Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in animals. We have examined whether baroreflex control of cardiac sympathetic nerve activity (CSNA) and/or cardiovagal baroreflex sensitivity are altered at the onset of spontaneously occurring motor behavior, which was monitored with tibial nerve activity in paralyzed, decerebrate cats. CSNA exhibited a peak increase (126 ± 17%) immediately after exercise onset, followed by increases in HR and mean arterial pressure (MAP). With development of the pressor response, CSNA and HR decreased near baseline, although spontaneous motor activity was not terminated. Atropine methyl nitrate (0.1-0.2 mg/kg iv) with little central influence delayed the initial increase in HR but did not alter the response magnitudes of HR and CSNA, while atropine augmented the pressor response. The baroreflex-induced decreases in CSNA and HR elicited by brief occlusion of the abdominal aorta were challenged at the onset of spontaneous motor activity. Spontaneous motor activity blunted the baroreflex reduction in HR by aortic occlusion but did not alter the baroreflex inhibition of CSNA. Similarly, atropine abolished the baroreflex reduction in HR but did not influence the baroreflex inhibition of CSNA. Thus it is likely that central command increases CSNA and decreases cardiac vagal outflow at the onset of spontaneous motor activity while preserving baroreflex control of CSNA. Accordingly, central command must attenuate cardiovagal baroreflex sensitivity against an excess rise in MAP as estimated from the effect of muscarinic blockade. Copyright © 2016 the American Physiological Society.

  12. Combining task-evoked and spontaneous activity to improve pre-operative brain mapping with fMRI

    Science.gov (United States)

    Fox, Michael D.; Qian, Tianyi; Madsen, Joseph R.; Wang, Danhong; Li, Meiling; Ge, Manling; Zuo, Huan-cong; Groppe, David M.; Mehta, Ashesh D.; Hong, Bo; Liu, Hesheng

    2016-01-01

    Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice for over 20 years. Recently, pre-operative fMRI mapping based on correlations in spontaneous brain activity has been demonstrated, however this approach has its own limitations and has not seen widespread clinical use. Here we show that spontaneous and task-based mapping can be performed together using the same pre-operative fMRI data, provide complimentary information relevant for functional localization, and can be combined to improve identification of eloquent motor cortex. Accuracy, sensitivity, and specificity of our approach are quantified through comparison with electrical cortical stimulation mapping in eight patients with intractable epilepsy. Broad applicability and reproducibility of our approach is demonstrated through prospective replication in an independent dataset of six patients from a different center. In both cohorts and every individual patient, we see a significant improvement in signal to noise and mapping accuracy independent of threshold, quantified using receiver operating characteristic curves. Collectively, our results suggest that modifying the processing of fMRI data to incorporate both task-based and spontaneous activity significantly improves functional localization in pre-operative patients. Because this method requires no additional scan time or modification to conventional pre-operative data acquisition protocols it could have widespread utility. PMID:26408860

  13. Urokinase vs Tissue-Type Plasminogen Activator for Thrombolytic Evacuation of Spontaneous Intracerebral Hemorrhage in Basal Ganglia

    Directory of Open Access Journals (Sweden)

    Yuqian Li

    2017-08-01

    Full Text Available Spontaneous intracerebral hemorrhage (ICH is a devastating form of stroke, which leads to a high rate of mortality and poor neurological outcomes worldwide. Thrombolytic evacuation with urokinase-type plasminogen activator (uPA or tissue-type plasminogen activator (tPA has been showed to be a hopeful treatment for ICH. However, to the best of our knowledge, no clinical trials were reported to compare the efficacy and safety of these two fibrinolytics administrated following minimally invasive stereotactic puncture (MISP in patients with spontaneous basal ganglia ICH. Therefore, the authors intended here to evaluate the differential impact of uPA and tPA in a retrospective study. In the present study, a total of 86 patients with spontaneous ICH in basal ganglia using MISP received either uPA (uPA group, n = 45 or tPA (tPA group, n = 41, respectively. The clinical baseline characteristics prior to the operation were collected. In addition, therapeutic responses were assessed by the short-term outcomes within 30 days postoperation, as well as long-term outcomes at 1 year postoperation. Our findings showed that, in comparison with tPA, uPA was able to better promote hematoma evacuation and ameliorate perihematomal edema, but the differences were not statistically significant. Moreover, the long-term functional outcomes of both groups were similar, with no statistical difference. In conclusion, these results provide evidence supporting that uPA and tPA are similar in the efficacy and safety for thrombolytic evacuation in combination with MISP in patients with spontaneous basal ganglia ICH.

  14. High-Tc superconducting quantum interference device recordings of spontaneous brain activity: Towards high-Tc magnetoencephalography

    Science.gov (United States)

    Öisjöen, F.; Schneiderman, J. F.; Figueras, G. A.; Chukharkin, M. L.; Kalabukhov, A.; Hedström, A.; Elam, M.; Winkler, D.

    2012-03-01

    We have performed single- and two-channel high transition temperature (high-Tc) superconducting quantum interference device (SQUID) magnetoencephalography (MEG) recordings of spontaneous brain activity in two healthy human subjects. We demonstrate modulation of two well-known brain rhythms: the occipital alpha rhythm and the mu rhythm found in the motor cortex. We further show that despite higher noise-levels compared to their low-Tc counterparts, high-Tc SQUIDs can be used to detect and record physiologically relevant brain rhythms with comparable signal-to-noise ratios. These results indicate the utility of high-Tc technology in MEG recordings of a broader range of brain activity.

  15. Anti-nerve growth factor therapy increases spontaneous day/night activity in mice with orthopedic surgery-induced pain.

    Science.gov (United States)

    Majuta, Lisa A; Guedon, Jean-Marc G; Mitchell, Stefanie A T; Ossipov, Michael H; Mantyh, Patrick W

    2017-04-01

    Total knee arthroplasty (TKA) and total hip arthroplasty (THA) are 2 of the most common and successful surgical interventions to relieve osteoarthritis pain. Control of postoperative pain is critical for patients to fully participate in the required physical therapy which is the most influential factor in effective postoperative knee rehabilitation. Currently, opiates are a mainstay for managing postoperative orthopedic surgery pain including TKA or THA pain. Recently, issues including efficacy, dependence, overdose, and death from opiates have made clinicians and researchers more critical of use of opioids for treating nonmalignant skeletal pain. In the present report, a nonopiate therapy using a monoclonal antibody raised against nerve growth factor (anti-NGF) was assessed for its ability to increase the spontaneous activity of the operated knee joint in a mouse model of orthopedic surgery pain-induced by drilling and coring the trochlear groove of the mouse femur. Horizontal activity and velocity and vertical rearing were continually assessed over a 20 hours day/night period using automated activity boxes in an effort to reduce observer bias and capture night activity when the mice are most active. At days 1 and 3, after orthopedic surgery, there was a marked reduction in spontaneous activity and vertical rearing; anti-NGF significantly attenuated this decline. The present data suggest that anti-NGF improves limb use in a rodent model of joint/orthopedic surgery and as such anti-NGF may be useful in controlling pain after orthopedic surgeries such as TKA or THA.

  16. Effect of age and severity of cognitive dysfunction on spontaneous activity in pet dogs - part 1: locomotor and exploratory behaviour.

    Science.gov (United States)

    Rosado, B; González-Martínez, A; Pesini, P; García-Belenguer, S; Palacio, J; Villegas, A; Suárez, M-L; Santamarina, G; Sarasa, M

    2012-11-01

    Age-related cognitive dysfunction syndrome (CDS) has been reported in dogs and it is considered a natural model for Alzheimer's disease in humans. Changes in spontaneous activity (including locomotor and exploratory behaviour) and social responsiveness have been related to the age and cognitive status of kennel-reared Beagle dogs. The aim of this study was to assess the influence of age and severity of CDS on locomotor and exploratory behaviour of privately owned dogs. This is the first part of a two-part report on spontaneous activity in pet dogs. An open-field (OF) test and a curiosity test were administered at baseline and 6 months later to young (1-4 years, n=9), middle-aged (5-8 years, n=9), cognitively unimpaired aged (≥ 9 years, n=31), and cognitively impaired aged ( ≥ 9 years, n=36) animals. Classification of cognitive status was carried out using an owner-based observational questionnaire, and in the cognitively impaired group, the dogs were categorised as having either mild or severe cognitive impairment. Dogs were recorded during sessions in the testing room and the video-recordings were subsequently analysed. The severity of CDS (but not age) influenced locomotion and exploratory behaviour so that the more severe the impairment, the higher the locomotor activity and frequency of corner-directed (aimless) behaviours, and the lower the frequency of door-aimed activities. Curiosity directed toward novel stimuli exhibited an age-dependent decline although severely affected animals displayed more sniffing episodes directed towards the objects. OF activity did not change after 6 months. Testing aged pet dogs for spontaneous behaviour might help to better characterise cognitively affected individuals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Neuronal functional connection graphs among multiple areas of the rat somatosensory system during spontaneous and evoked activities.

    Science.gov (United States)

    Zippo, Antonio G; Storchi, Riccardo; Nencini, Sara; Caramenti, Gian Carlo; Valente, Maurizio; Biella, Gabriele Eliseo M

    2013-01-01

    Small-World Networks (SWNs) represent a fundamental model for the comprehension of many complex man-made and biological networks. In the central nervous system, SWN models have been shown to fit well both anatomical and functional maps at the macroscopic level. However, the functional microscopic level, where the nodes of a network are represented by single neurons, is still poorly understood. At this level, although recent evidences suggest that functional connection graphs exhibit small-world organization, it is not known whether and how these maps, potentially distributed in multiple brain regions, change across different conditions, such as spontaneous and stimulus-evoked activities. We addressed these questions by analyzing the data from simultaneous multi-array extracellular recordings in three brain regions of rats, diversely involved in somatosensory information processing: the ventropostero-lateral thalamic nuclei, the primary somatosensory cortex and the centro-median thalamic nuclei. From both spike and Local Field Potential (LFP) recordings, we estimated the functional connection graphs by using the Normalized Compression Similarity for spikes and the Phase Synchrony for LFPs. Then, by using graph-theoretical statistics, we characterized the functional topology both during spontaneous activity and sensory stimulation. Our main results show that: (i) spikes and LFPs show SWN organization during spontaneous activity; (ii) after stimulation onset, while substantial functional graph reconfigurations occur both in spike and LFPs, small-worldness is nonetheless preserved; (iii) the stimulus triggers a significant increase of inter-area LFP connections without modifying the topology of intra-area functional connections. Finally, investigating computationally the functional substrate that supports the observed phenomena, we found that (iv) the fundamental concept of cell assemblies, transient groups of activating neurons, can be described by small

  18. Sources of variation and genetic profile of spontaneous, out-of-season ovulatory activity in the Chios sheep

    Directory of Open Access Journals (Sweden)

    Kouttos Athanasios

    2003-01-01

    Full Text Available Abstract Organising the breeding plan of a seasonally breeding species, such as sheep, presents a challenge to farmers and the industry as a whole, since both economical and biological considerations need to be carefully balanced. Understanding the breeding activity of individual animals becomes a prerequisite for a successful breeding program. This study set out to investigate the sources of variation and the genetic profile of the spontaneous, out-of-season ovulatory activity of ewes of the Chios dairy sheep breed in Greece. The definition of the trait was based on blood progesterone levels, measured before exposing the ewes to rams, which marks the onset of the usual breeding season. Data were 707 records, taken over two consecutive years, of 435 ewes kept at the Agricultural Research Station of Chalkidiki in northern Greece. When all available pedigree was included, the total number of animals involved was 1068. On average, 29% of all ewes exhibited spontaneous, out-of-season ovulatory activity, with no substantial variation between the years. Significant sources of systematic variation were the ewe age and live weight, and the month of previous lambing. Older, heavier ewes, that had lambed early the previous autumn, exhibited more frequent activity. Heritability estimates were 0.216 (± 0.084 with a linear and 0.291 with a threshold model. The latter better accounts for the categorical nature of the trait. The linear model repeatability was 0.230 (± 0.095. The results obtained in this study support the notion that spontaneous out-of-season ovulatory activity can be considered in the development of a breeding plan for the Chios sheep breed.

  19. Spontaneous food allergy in Was-/-mice occurs independent of FcεRI-mediated mast cell activation.

    Science.gov (United States)

    Lexmond, W S; Goettel, J A; Sallis, B F; McCann, K; Rings, E H H M; Jensen-Jarolim, E; Nurko, S; Snapper, S B; Fiebiger, E

    2017-12-01

    Food allergies are a growing health problem, and the development of therapies that prevent disease onset is limited by the lack of adjuvant-free experimental animal models. We compared allergic sensitization in patients with food allergy or Wiskott-Aldrich syndrome (WAS) and defined whether spontaneous disease in Was -/- mice recapitulates the pathology of a conventional disease model and/or human food allergy. Comparative ImmunoCAP ISAC microarray was performed in patients with food allergy or WAS. Spontaneous food allergy in Was -/- mice was compared to an adjuvant-based model in wild-type mice (WT-OVA/alum). Intestinal and systemic anaphylaxis was assessed, and the role of the high-affinity IgE Fc receptor (FcεRI) in allergic sensitization was evaluated using Was -/- Fcer1a -/- mice. Polysensitization to food was detected in both WAS and food-allergic patients which was recapitulated in the Was -/- model. Oral administration of ovalbumin (OVA) in Was -/- mice induced low titers of OVA-specific IgE compared to the WT-OVA/alum model. Irrespectively, 79% of Was -/- mice developed allergic diarrhea following oral OVA challenge. Systemic anaphylaxis occurred in Was -/- mice (95%) with a mortality rate >50%. Spontaneous sensitization and intestinal allergy occurred independent of FcεRI expression on mast cells (MCs) and basophils. Was -/- mice provide a model of food allergy with the advantage of mimicking polysensitization and low food-antigen IgE titers as observed in humans with clinical food allergy. This model will facilitate studies on aberrant immune responses during spontaneous disease development. Our results imply that therapeutic targeting of the IgE/FcεRI activation cascade will not affect sensitization to food. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  20. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study

    OpenAIRE

    Wei Pan; Wei Pan; Wei Pan; Xuemei Gao; Shuo Shi; Fuqu Liu; Chao Li

    2018-01-01

    A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the...

  1. A high-fat diet rich in corn oil reduces spontaneous locomotor activity and induces insulin resistance in mice.

    Science.gov (United States)

    Wong, Chi Kin; Botta, Amy; Pither, Jason; Dai, Chuanbin; Gibson, William T; Ghosh, Sanjoy

    2015-04-01

    Over the last few decades, polyunsaturated fatty acid (PUFA), especially n-6 PUFA, and monounsaturated fatty acid content in 'Western diets' has increased manyfold. Such a dietary shift also parallels rising sedentary behavior and diabetes in the Western world. We queried if a shift in dietary fats could be linked to physical inactivity and insulin insensitivity in mice. Eight-week old female C57/Bl6 mice were fed either high-fat (HF) diets [40% energy corn oil (CO) or isocaloric olive oil (OO) diets] or chow (n=10/group) for 6 weeks, followed by estimation of spontaneous locomotor activity, body composition and in vivo metabolic outcomes. Although lean mass and resting energy expenditure stayed similar in both OO- and CO-fed mice, only CO-fed mice demonstrated reduced spontaneous locomotor activity. Such depressed activity in CO-fed mice was accompanied by a lower respiratory ratio, hyperinsulinemia and impaired glucose disposal following intraperitoneal glucose tolerance and insulin tolerance tests compared to OO-fed mice. Unlike the liver, where both HF diets increased expression of fat oxidation genes like PPARs, the skeletal muscle of CO-fed mice failed to up-regulate such genes, thereby supporting the metabolic insufficiencies observed in these mice. In summary, this study demonstrates a specific contribution of n-6 PUFA-rich oils like CO to the loss of spontaneous physical activity and insulin sensitivity in mice. If these data hold true for humans, this study could provide a novel link between recent increases in dietary n-6 PUFA to sedentary behavior and the development of insulin resistance in the Western world. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The Roles of Phasic and Tonic Dopamine in Tic Learning and Expression.

    Science.gov (United States)

    Maia, Tiago V; Conceição, Vasco A

    2017-09-15

    Tourette syndrome (TS) prominently involves dopaminergic disturbances, but the precise nature of those disturbances has remained elusive. A substantial body of empirical work and recent computational models have characterized the specific roles of phasic and tonic dopamine (DA) in action learning and selection, respectively. Using insights from this work and models, we suggest that TS involves increases in both phasic and tonic DA, which produce increased propensities for tic learning and expression, respectively. We review the evidence from reinforcement-learning and habit-learning studies in TS, which supports the idea that TS involves increased phasic DA responses; we also review the evidence that tics engage the habit-learning circuitry. On the basis of these findings, we suggest that tics are exaggerated, maladaptive, and persistent motor habits reinforced by aberrant, increased phasic DA responses. Increased tonic DA amplifies the tendency to execute learned tics and also provides a fertile ground of motor hyperactivity for tic learning. We review evidence suggesting that antipsychotics may counter both the increased propensity for tic expression, by increasing excitability in the indirect pathway, and the increased propensity for tic learning, by shifting plasticity in the indirect pathway toward long-term potentiation (and possibly also through more complex mechanisms). Finally, we review evidence suggesting that low doses of DA agonists that effectively treat TS decrease both phasic and tonic DA, thereby also reducing the propensity for both tic learning and tic expression, respectively. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Comparative Analysis of Human and Rodent Brain Primary Neuronal Culture Spontaneous Activity Using Micro-Electrode Array Technology.

    Science.gov (United States)

    Napoli, Alessandro; Obeid, Iyad

    2016-03-01

    Electrical activity in embryonic brain tissue has typically been studied using Micro Electrode Array (MEA) technology to make dozens of simultaneous recordings from dissociated neuronal cultures, brain stem cell progenitors, or brain slices from fetal rodents. Although these rodent neuronal primary culture electrical properties are mostly investigated, it has not been yet established to what extent the electrical characteristics of rodent brain neuronal cultures can be generalized to those of humans. A direct comparison of spontaneous spiking activity between rodent and human primary neurons grown under the same in vitro conditions using MEA technology has never been carried out before and will be described in the present study. Human and rodent dissociated fetal brain neuronal cultures were established in-vitro by culturing on a glass grid of 60 planar microelectrodes neurons under identical conditions. Three different cultures of human neurons were produced from tissue sourced from a single aborted fetus (at 16-18 gestational weeks) and these were compared with seven different cultures of embryonic rat neurons (at 18 gestational days) originally isolated from a single rat. The results show that the human and rodent cultures behaved significantly differently. Whereas the rodent cultures demonstrated robust spontaneous activation and network activity after only 10 days, the human cultures required nearly 40 days to achieve a substantially weaker level of electrical function. These results suggest that rat neuron preparations may yield inferences that do not necessarily transfer to humans. © 2015 Wiley Periodicals, Inc.

  4. Phasic bursts of the antagonistic jaw muscles during REM sleep mimic a coordinated motor pattern during mastication.

    Science.gov (United States)

    Kato, T; Nakamura, N; Masuda, Y; Yoshida, A; Morimoto, T; Yamamura, K; Yamashita, S; Sato, F

    2013-02-01

    Sleep-related movement disorders are characterized by the specific phenotypes of muscle activities and movements during sleep. However, the state-specific characteristics of muscle bursts and movement during sleep are poorly understood. In this study, jaw-closing and -opening muscle electromyographic (EMG) activities and jaw movements were quantified to characterize phenotypes of motor patterns during sleep in freely moving and head-restrained guinea pigs. During non-rapid eye movement (NREM) sleep, both muscles were irregularly activated in terms of duration, activity, and intervals. During rapid eye movement (REM) sleep, clusters of phasic bursts occurred in the two muscles. Compared with NREM sleep, burst duration, activity, and intervals were less variable during REM sleep for both muscles. Although burst activity was lower during the two sleep states than during chewing, burst duration and intervals during REM sleep were distributed within a similar range to those during chewing. A trigger-averaged analysis of muscle bursts revealed that the temporal association between the bursts of the jaw-closing and -opening muscles during REM sleep was analogous to the temporal association during natural chewing. The burst characteristics of the two muscles reflected irregular patterns of jaw movements during NREM sleep and repetitive alternating bilateral movements during REM sleep. The distinct patterns of jaw muscle bursts and movements reflect state-specific regulations of the jaw motor system during sleep states. Phasic activations in the antagonistic jaw muscles during REM sleep are regulated, at least in part, by the neural networks involving masticatory pattern generation, demonstrating that waking jaw motor patterns are replayed during sleep periods.

  5. Relaxant effect of a novel calcium-activated potassium channel modulator on human myometrial spontaneous contractility in vitro

    DEFF Research Database (Denmark)

    Rosenbaum, S.T.; Larsen, T.; Joergensen, J.C.

    2012-01-01

    Aim: To investigate the effect of 4,5-dichloro-1,3-diethyl-1,3-dihydro-benzoimidazol-2-one (NS4591), a novel SK/IK channels positive modulator, on human myometrial activity. Methods: Organ bath studies were performed on myometrial preparations obtained from women undergoing elective caesarean....... Simultaneous vehicle controls were performed for all experiments. The effects of drugs were studied on spontaneous contractions. Results: NS4591 exerted an inhibitory effect on myometrial contractions in muscle strips from non-pregnant and pregnant women. The contractility in non-pregnant and pregnant...

  6. Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules.

    Science.gov (United States)

    Hanson, M Gartz; Landmesser, Lynn T

    2004-09-02

    Rhythmic spontaneous electrical activity occurs in many parts of the developing nervous system, where it plays essential roles in the refinement of neural connections. By blocking or slowing this bursting activity, via in ovo drug applications at precise developmental periods, we show that such activity is also required at much earlier stages for spinal motoneurons to accurately execute their first major dorsal-ventral pathfinding decision. Blockade or slowing of rhythmic bursting activity also prevents the normal expression patterns of EphA4 and polysialic acid on NCAM, which may contribute to the pathfinding errors observed. More prolonged (E2-5) blockade resulted in a downregulation of LIM homeodomain transcription factors, but since this occurred only after the pathfinding errors and alterations in guidance molecules, it cannot have contributed to them.

  7. Spontaneous pneumothorax

    Directory of Open Access Journals (Sweden)

    Davari R

    1996-07-01

    Full Text Available A case with bilateral spontaneous pneumothorax was presented. Etiology, mechanism, and treatment were discussed on the review of literature. Spontaneous Pneumothorax is a clinical entity resulting from a sudden non traumatic rupture of the lung. Biach reported in 1880 that 78% of 916 patients with spontaneous pneumothorax had tuberculosis. Kjergaard emphasized 1932 the primary importance of subpleural bleb disease. Currently the clinical spectrum of spontaneous pneumothorax seems to have entered a third era with the recognition of the interstitial lung disease and AIDS as a significant etiology. Standard treatment is including: observation, thoracocentesis, tube thoracostomy. Chemical pleurodesis, bullectomy or wedge resection of lung with pleural abrasion and occasionally pleurectomy. Little information has been reported regarding the efficacy of such treatment in spontaneous pneumothorax secondary to non bleb disease

  8. Self-monitoring of spontaneous physical activity and sedentary behavior to prevent weight regain in older adults

    Science.gov (United States)

    Nicklas, Barbara J.; Gaukstern, Jill E.; Beavers, Kristen M.; Newman, Jill C.; Leng, Xiaoyan; Rejeski, W. Jack

    2014-01-01

    Objective This study determined whether adding a self-regulatory intervention (SRI) focused on self-monitoring of spontaneous physical activity and sedentary behavior to a standard weight loss intervention improved maintenance of lost weight. Design and Methods Older (65–79 yrs), obese (BMI=30–40 kg/m2) adults (n=48) were randomized to a five-month weight loss intervention involving a hypocaloric diet (DIET) and aerobic exercise (EX) with or without the SRI to promote spontaneous physical activity and decrease sedentary behavior (SRI+DIET+EX compared to DIET+EX). Following the weight loss phase, both groups transitioned to self-selected diet and exercise behavior during a 5-month follow-up. Throughout the 10-months, the SRI+DIET+EX group utilized real-time accelerometer feedback for self-monitoring. Results There was an overall group by time effect of the SRI (P physical activity and decrease sedentary behavior, to a standard weight loss intervention enhances successful maintenance of lost weight. PMID:24585701

  9. Combining task-evoked and spontaneous activity to improve pre-operative brain mapping with fMRI.

    Science.gov (United States)

    Fox, Michael D; Qian, Tianyi; Madsen, Joseph R; Wang, Danhong; Li, Meiling; Ge, Manling; Zuo, Huan-Cong; Groppe, David M; Mehta, Ashesh D; Hong, Bo; Liu, Hesheng

    2016-01-01

    Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice for over 20years. Recently, pre-operative fMRI mapping based on correlations in spontaneous brain activity has been demonstrated, however this approach has its own limitations and has not seen widespread clinical use. Here we show that spontaneous and task-based mapping can be performed together using the same pre-operative fMRI data, provide complimentary information relevant for functional localization, and can be combined to improve identification of eloquent motor cortex. Accuracy, sensitivity, and specificity of our approach are quantified through comparison with electrical cortical stimulation mapping in eight patients with intractable epilepsy. Broad applicability and reproducibility of our approach are demonstrated through prospective replication in an independent dataset of six patients from a different center. In both cohorts and every individual patient, we see a significant improvement in signal to noise and mapping accuracy independent of threshold, quantified using receiver operating characteristic curves. Collectively, our results suggest that modifying the processing of fMRI data to incorporate both task-based and spontaneous activity significantly improves functional localization in pre-operative patients. Because this method requires no additional scan time or modification to conventional pre-operative data acquisition protocols it could have widespread utility. Copyright © 2015. Published by Elsevier Inc.

  10. The dynamics of cortical neuronal activity in the first minutes after spontaneous awakening in rats and mice.

    Science.gov (United States)

    Vyazovskiy, Vladyslav V; Cui, Nanyi; Rodriguez, Alexander V; Funk, Chadd; Cirelli, Chiara; Tononi, Giulio

    2014-08-01

    Upon awakening from sleep, a fully awake brain state is not reestablished immediately, but the origin and physiological properties of the distinct brain state during the first min after awakening are unclear. To investigate whether neuronal firing immediately upon arousal is different from the remaining part of the waking episode, we recorded and analyzed the dynamics of cortical neuronal activity in the first 15 min after spontaneous awakenings in freely moving rats and mice. Intracortical recordings of the local field potential and neuronal activity in freely-moving mice and rats. Basic sleep research laboratory. WKY adult male rats, C57BL/6 adult male mice. N/A. In both species the average population spiking activity upon arousal was initially low, though substantial variability in the dynamics of firing activity was apparent between individual neurons. A distinct population of neurons was found that was virtually silent in the first min upon awakening. The overall lower population spiking initially after awakening was associated with the occurrence of brief periods of generalized neuronal silence (OFF periods), whose frequency peaked immediately after awakening and then progressively declined. OFF periods incidence upon awakening was independent of ongoing locomotor activity but was sensitive to immediate preceding sleep/wake history. Notably, in both rats and mice if sleep before a waking episode was enriched in rapid eye movement sleep, the incidence of OFF periods was initially higher as compared to those waking episodes preceded mainly by nonrapid eye movement sleep. We speculate that an intrusion of sleep-like patterns of cortical neuronal activity into the wake state immediately after awakening may account for some of the changes in the behavior and cognitive function typical of what is referred to as sleep inertia. Vyazovskiy VV, Cui N, Rodriguez AV, Funk C, Cirelli C, Tononi G. The dynamics of cortical neuronal activity in the first minutes after

  11. Translational Science: How experimental research has contributed to the understanding of spontaneous Physical Activity and Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Izabelle D Benfato

    2017-05-01

    Full Text Available Abstract Spontaneous physical activity (SPA consists of all daily living activities other than volitional exercise (e.g. sports and fitness-related activities. SPA is an important component of energy expenditure and may protect from overweight and obesity. Little is known about the biological regulation of SPA, but animal researchhas contributedsignificantly to expand our knowledge in this field. Studies in rodents have shown that SPA is influenced by nutrients and volitional exercise. High-fat diet seems to decrease SPA, which contributes to weigh gain. Volitional exercisemayalso reduce SPA, helping to explain the commonly reported low efficiency of exercise to cause weight loss, and highlighting the need to finda volume/intensity of exercise to maximize total daily energy expenditure. Animal studieshave also allowed for the identification of some brain areas and chemical mediatorsinvolved in SPA regulation. These discoveries could enable the development of new therapeutics aiming to enhance SPA.

  12. Spontaneous activity in electromyography may differentiate certain benign lower motor neuron disease forms from amyotrophic lateral sclerosis.

    Science.gov (United States)

    Jokela, Manu E; Jääskeläinen, Satu K; Sandell, Satu; Palmio, Johanna; Penttilä, Sini; Saukkonen, Annamaija; Soikkeli, Raija; Udd, Bjarne

    2015-08-15

    There is limited data on electromyography (EMG) findings in other motor neuron disorders than amyotrophic lateral sclerosis (ALS). We assessed whether the distribution of active denervation detected by EMG, i.e. fibrillations and fasciculations, differs between ALS and slowly progressive motor neuron disorders. We compared the initial EMG findings of 43 clinically confirmed, consecutive ALS patients with those of 41 genetically confirmed Late-onset Spinal Motor Neuronopathy and 14 Spinal and Bulbar Muscular Atrophy patients. Spontaneous activity was more frequently detected in the first dorsal interosseus and deltoid muscles of ALS patients than in patients with the slowly progressive motor neuron diseases. The most important observation was that absent fibrillations in the first dorsal interosseus muscle identified the benign forms with sensitivities of 66%-77% and a specificity of 93%. The distribution of active denervation may help to separate ALS from mimicking disorders at an early stage. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Bi-phasic growth of Listeria monocytogenes in chemically defined medium at low temperatures.

    Science.gov (United States)

    Tyrovouzis, Nikolaos A; Angelidis, Apostolos S; Stoforos, Nikolaos G

    2014-09-01

    The present work reports a novel observation regarding the growth of L. monocytogenes in modified Welshimer's broth (MWB) at low temperatures. Specifically, the direct monitoring of the growth of L. monocytogenes Scott A using plate count data revealed that the pathogen displays a bi-phasic growth pattern in MWB at 7 °C. This bi-phasic growth pattern is masked (not observed) when optical density (OD) measurements are used to monitor growth due to the inability of OD readings to detect L. monocytogenes population density increases up to 10(7) CFU/mL. This bi-phasic growth phenomenon was further investigated as a function of growth temperature (4 °C, 7 °C, 10 °C, 14 °C and 18 °C), medium composition (by altering the MWB composition by ten-fold increases in different sets of medium constituents), inoculum level (10(2), 10(3), 10(4), 10(5), 10(6), and 10(7) CFU/mL) and L. monocytogenes strain (10 strains). The growth of L. monocytogenes Scott A in MWB at 7 °C, 10 °C and 14 °C was consistently bi-phasic and independent of growth rate; at 18 °C, growth was consistently mono-phasic (single-phase, typical sigmoid growth curves), whereas no growth was observed at 4 °C. The tested modifications in the composition of MWB did not influence the bi-phasic nature of L. monocytogenes Scott A growth at 7 °C, and, overall, we could not point out any strain-, or serotype-specific effects. On the other hand, the initial inoculum level appears to affect the form of the growth curve, as there was a shift towards mono-phasic growth in trials with increasing initial inocula. A mathematical model, based on a stepwise response and described through two sequential sigmoid curves, was used to describe bi-phasic growth and estimate the kinetic parameters of L. monocytogenes growth. An alternative hypothesis, based on the assumption of the existence of two subpopulations, possessing different growth kinetics, materialized under the stress imposed on L. monocytogenes cells due to the

  14. Modulation by endothelin-1 of spontaneous activity and membrane currents of atrioventricular node myocytes from the rabbit heart.

    Directory of Open Access Journals (Sweden)

    Stéphanie C Choisy

    Full Text Available The atrioventricular node (AVN is a key component of the cardiac pacemaker-conduction system. Although it is known that receptors for the peptide hormone endothelin-1 (ET-1 are expressed in the AVN, there is very little information available on the modulatory effects of ET-1 on AVN electrophysiology. This study characterises for the first time acute modulatory effects of ET-1 on AVN cellular electrophysiology.Electrophysiological experiments were conducted in which recordings were made from rabbit isolated AVN cells at 35-37°C using the whole-cell patch clamp recording technique.Application of ET-1 (10 nM to spontaneously active AVN cells led rapidly (within ~13 s to membrane potential hyperpolarisation and cessation of spontaneous action potentials (APs. This effect was prevented by pre-application of the ET(A receptor inhibitor BQ-123 (1 µM and was not mimicked by the ET(B receptor agonist IRL-1620 (300 nM. In whole-cell voltage-clamp experiments, ET-1 partially inhibited L-type calcium current (I(Ca,L and rapid delayed rectifier K(+ current (I(Kr, whilst it transiently activated the hyperpolarisation-activated current (I(f at voltages negative to the pacemaking range, and activated an inwardly rectifying current that was inhibited by both tertiapin-Q (300 nM and Ba(2+ ions (2 mM; each of these effects was sensitive to ET(A receptor inhibition. In cells exposed to tertiapin-Q, ET-1 application did not produce membrane potential hyperpolarisation or immediate cessation of spontaneous activity; instead, there was a progressive decline in AP amplitude and depolarisation of maximum diastolic potential.Acutely applied ET-1 exerts a direct modulatory effect on AVN cell electrophysiology. The dominant effect of ET-1 in this study was activation of a tertiapin-Q sensitive inwardly rectifying K(+ current via ET(A receptors, which led rapidly to cell quiescence.

  15. An open-source LabVIEW application toolkit for phasic heart rate analysis in psychophysiological research.

    Science.gov (United States)

    Duley, Aaron R; Janelle, Christopher M; Coombes, Stephen A

    2004-11-01

    The cardiovascular system has been extensively measured in a variety of research and clinical domains. Despite technological and methodological advances in cardiovascular science, the analysis and evaluation of phasic changes in heart rate persists as a way to assess numerous psychological concomitants. Some researchers, however, have pointed to constraints on data analysis when evaluating cardiac activity indexed by heart rate or heart period. Thus, an off-line application toolkit for heart rate analysis is presented. The program, written with National Instruments' LabVIEW, incorporates a variety of tools for off-line extraction and analysis of heart rate data. Current methods and issues concerning heart rate analysis are highlighted, and how the toolkit provides a flexible environment to ameliorate common problems that typically lead to trial rejection is discussed. Source code for this program may be downloaded from the Psychonomic Society Web archive at www.psychonomic.org/archive/.

  16. Kinematic analysis of preterm newborns' spontaneous movements for postural activity assessment.

    Science.gov (United States)

    Halek, Jan; Muckova, Anita; Svoboda, Zdenek; Janura, Miroslav; Marikova, Jana; Horakova, Katerina; Kantor, Lumir; Nemcova, Nina

    2015-12-01

    The objectives of this pilot study were to assess the potential use of 3D videography for analyzing the motion of the body center of mass (COM) in newborns and to determine differences in spontaneous movements between preterm and full-term infants. The group comprised 10 preterm newborns (gestational age at birth between 26 and 37 weeks; birth weight 800 to 2960 g; gestational age at the time of examination 34 to 39 weeks) and 10 full-term infants (gestational week 38 to 41; birth weight 2810 to 4360 g). To determine the range of motion of the COM, 3D videography was used (2 cameras, 25 Hz). When recording their movements, the infants were in the supine position, calm and awake. The recordings were processed using the APAS software. Selected points on the body were marked to obtain data for calculating the basic parameters of COM trajectories. The range of motion of the COM in both craniocaudal and anteroposterior directions was significantly greater in premature infants (P preterm babies. This was also valid for the velocity of motion of the COM in the craniocaudal direction (P preterm infants. Basic kinematic characteristics of the motion of the COM (range, variability, velocity) are greater in preterm infants.

  17. Etiology of spontaneous pneumothorax in 105 HIV-infected patients without highly active antiretroviral therapy

    International Nuclear Information System (INIS)

    Rivero, Antonio; Perez-Camacho, Ines; Lozano, Fernando; Santos, Jesus; Camacho, Angela; Serrano, Ascencion; Cordero, Elisa; Jimenez, Francisco; Torres-Tortosa, Manuel; Torre-Cisneros, Julian

    2009-01-01

    Introduction: Spontaneous pneumothorax (SP) is a frequent complication in non-treated HIV-infected patients as a complication of opportunistic infections and tumours. Objective: To analyse the aetiology of SP in non-treated HIV patients. Patients and methods: Observational study of SP cases observed in a cohort of 9831 of non-treated HIV-infected patients attended in seven Spanish hospitals. Results: 105 patients (1.06%) developed SP. The aetiological cause was identified in 89 patients. The major causes identified were: bacterial pneumonia (36 subjects, 34.3%); Pneumocystis jiroveci pneumonia (PJP) (31 patients, 29.5%); and pulmonary tuberculosis (17 cases, 15.2%). The most common cause of SP in drugs users was bacterial pneumonia (40%), whereas PJP was more common (65%) in sexual transmitted HIV-patients. The most common cause of bilateral SP was PJP (62.5%) whereas unilateral SP was most commonly associated with bacterial pneumonia (40.2%). The most common cause of SP in patients with a CD4+ lymphocyte count >200 cells/ml and in patients without AIDS criteria was bacterial pneumonia. PJP was the more common cause in patients with a CD4+ lymphocyte count <200 cells/ml or with AIDS. Conclusion: The incidence of SP in non-treated HIV-infected patients was 1.06%. The aetiology was related to the patients risk practices and to their degree of immunosuppression. Bacterial pneumonia was the most common cause of SP.

  18. Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains.

    Directory of Open Access Journals (Sweden)

    Chung-Wei Chiang

    Full Text Available BACKGROUND: In neonatal binocular animals, the developing retina displays patterned spontaneous activity termed retinal waves, which are initiated by a single class of interneurons (starburst amacrine cells, SACs that release neurotransmitters. Although SACs are shown to regulate wave dynamics, little is known regarding how altering the proteins involved in neurotransmitter release may affect wave dynamics. Synaptotagmin (Syt family harbors two Ca(2+-binding domains (C2A and C2B which serve as Ca(2+ sensors in neurotransmitter release. However, it remains unclear whether SACs express any specific Syt isoform mediating retinal waves. Moreover, it is unknown how Ca(2+ binding to C2A and C2B of Syt affects wave dynamics. Here, we investigated the expression of Syt I in the neonatal rat retina and examined the roles of C2A and C2B in regulating wave dynamics. METHODOLOGY/PRINCIPAL FINDINGS: Immunostaining and confocal microscopy showed that Syt I was expressed in neonatal rat SACs and cholinergic synapses, consistent with its potential role as a Ca(2+ sensor mediating retinal waves. By combining a horizontal electroporation strategy with the SAC-specific promoter, we specifically expressed Syt I mutants with weakened Ca(2+-binding ability in C2A or C2B in SACs. Subsequent live Ca(2+ imaging was used to monitor the effects of these molecular perturbations on wave-associated spontaneous Ca(2+ transients. We found that targeted expression of Syt I C2A or C2B mutants in SACs significantly reduced the frequency, duration, and amplitude of wave-associated Ca(2+ transients, suggesting that both C2 domains regulate wave temporal properties. In contrast, these C2 mutants had relatively minor effects on pairwise correlations over distance for wave-associated Ca(2+ transients. CONCLUSIONS/SIGNIFICANCE: Through Ca(2+ binding to C2A or C2B, the Ca(2+ sensor Syt I in SACs may regulate patterned spontaneous activity to shape network activity during development

  19. Study of spontaneous deposition of 210Po on various metals and application for activity assessment in cigarette smoke

    International Nuclear Information System (INIS)

    Karali, T.; Oelmez, S.; Yener, G.

    1996-01-01

    210 Po in environmental samples has been accumulated on various metals using the chemical electrodeposition technique. The 210 Po was deposited spontaneously on metal discs after decomposition of the sample in HCl acid and then measured using a ZnS(Ag)α-particle detector. Silver was observed to have the highest deposition efficiency when 210 Po deposition on different metals was studied. Copper discs were used in the application of activity assessment in cigarette smoke as this is more available and more economical although silver has a higher efficiency than that of other materials examined. The technique is applied for the analysis of 210 Po in tobacco, ash and butt for several brands of imported and domestic cigarettes smoked in Turkey. (Author)

  20. Regional homogeneity of spontaneous brain activity in adult patients with obsessive-compulsive disorder before and after cognitive behavioural therapy.

    Science.gov (United States)

    Yang, Xiang-Yun; Sun, Jing; Luo, Jia; Zhong, Zhao-Xi; Li, Ping; Yao, Shu-Min; Xiong, Hong-Fang; Huang, Fang-Fang; Li, Zhan-Jiang

    2015-12-01

    Cognitive behavioural therapy (CBT) is an effective treatment for obsessive-compulsive disorder (OCD). Several neuroimaging studies have explored alterations of brain function in OCD patients as they performed tasks after CBT. However, the effects of CBT on the neural activityin OCD during rest remain unknown. Therefore, we investigated changes in regional homogeneity (ReHo) in OCD patients before and after CBT. Twenty-two OCD patients and 22 well-matched healthy controls participated in the resting-state functional magnetic resonance imaging scans. We compared differences in ReHo between the OCD and control groups before treatment and investigated the changes of ReHo in 17 OCD patients who responded to CBT. Compared to healthy controls, OCD patients exhibited higher ReHo in the right orbitofrontal cortex (OFC), bilateral middle frontal cortex, right precuneus, left cerebellum, and vermis, as well as lower ReHo in the bilateral caudate, right calcarine, right posterior cingulate cortex, and right middle temporal cortex. Along with the clinical improvement in OCD patients after CBT, we found decreased ReHo in the right OFC, bilateral middle frontal cortex, left cerebellum and vermis, and increased ReHo in the left caudate. Improvement of OCD symptoms was significantly correlated with the changed ReHo in the right OFC and left cerebellum. Although these findings are preliminary and need to be replicated in larger samples, they indicate the presence of abnormal spontaneous brain activity of the prefrontal-striatal-cerebellar circuit in OCD patients, and provide evidence that CBT can selectively modulate the spontaneous brain activity of this circuit in OCD patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Spontaneous flow in polar active fluids: the effect of a phenomenological self propulsion-like term.

    Science.gov (United States)

    Bonelli, Francesco; Gonnella, Giuseppe; Tiribocchi, Adriano; Marenduzzo, Davide

    2016-01-01

    We present hybrid lattice Boltzmann simulations of extensile and contractile active fluids where we incorporate phenomenologically the tendency of active particles such as cell and bacteria, to move, or swim, along the local orientation. Quite surprisingly, we show that the interplay between alignment and activity can lead to completely different results, according to geometry (periodic boundary conditions or confinement between flat walls) and nature of the activity (extensile or contractile). An interesting generic outcome is that the alignment interaction can transform stationary active patterns into continuously moving ones: the dynamics of these evolving patterns can be oscillatory or chaotic according to the strength of the alignment term. Our results suggest that flow-polarisation alignment can have important consequences on the collective dynamics of active fluids and active gel.

  2. Population calcium imaging of spontaneous respiratory and novel motor activity in the facial nucleus and ventral brainstem in newborn mice.

    Science.gov (United States)

    Persson, Karin; Rekling, Jens C

    2011-05-15

    The brainstem contains rhythm and pattern forming circuits, which drive cranial and spinal motor pools to produce respiratory and other motor patterns. Here we used calcium imaging combined with nerve recordings in newborn mice to reveal spontaneous population activity in the ventral brainstem and in the facial nucleus. In Fluo-8AM loaded brainstem-spinal cord preparations, respiratory activity on cervical nerves was synchronized with calcium signals at the ventrolateral brainstem surface. Individual ventrolateral neurons at the level of the parafacial respiratory group showed perfect or partial synchrony with respiratory nerve bursts. In brainstem-spinal cord preparations, cut at the level of the mid-facial nucleus, calcium signals were recorded in the dorsal, lateral and medial facial subnuclei during respiratory activity. Strong activity initiated in the dorsal subnucleus, followed by activity in lateral and medial subnuclei. Whole-cell recordings from facial motoneurons showed weak respiratory drives, and electrical field potential recordings confirmed respiratory drive to particularly the dorsal and lateral subnuclei. Putative facial premotoneurons showed respiratory-related calcium signals, and were predominantly located dorsomedial to the facial nucleus. A novel motor activity on facial, cervical and thoracic nerves was synchronized with calcium signals at the ventromedial brainstem extending from the level of the facial nucleus to the medulla–spinal cord border. Cervical dorsal root stimulation induced similar ventromedial activity. The medial facial subnucleus showed calcium signals synchronized with this novel motor activity on cervical nerves, and cervical dorsal root stimulation induced similar medial facial subnucleus activity. In conclusion, the dorsal and lateral facial subnuclei are strongly respiratory-modulated, and the brainstem contains a novel pattern forming circuit that drives the medial facial subnucleus and cervical motor pools.

  3. Chronic baroreflex activation restores spontaneous baroreflex control and variability of heart rate in obesity-induced hypertension.

    Science.gov (United States)

    Iliescu, Radu; Tudorancea, Ionut; Irwin, Eric D; Lohmeier, Thomas E

    2013-10-01

    The sensitivity of baroreflex control of heart rate is depressed in subjects with obesity hypertension, which increases the risk for cardiac arrhythmias. The mechanisms are not fully known, and there are no therapies to improve this dysfunction. To determine the cardiovascular dynamic effects of progressive increases in body weight leading to obesity and hypertension in dogs fed a high-fat diet, 24-h continuous recordings of spontaneous fluctuations in blood pressure and heart rate were analyzed in the time and frequency domains. Furthermore, we investigated whether autonomic mechanisms stimulated by chronic baroreflex activation and renal denervation-current therapies in patients with resistant hypertension, who are commonly obese-restore cardiovascular dynamic control. Increases in body weight to ∼150% of control led to a gradual increase in mean arterial pressure to 17 ± 3 mmHg above control (100 ± 2 mmHg) after 4 wk on the high-fat diet. In contrast to the gradual increase in arterial pressure, tachycardia, attenuated chronotropic baroreflex responses, and reduced heart rate variability were manifest within 1-4 days on high-fat intake, reaching 130 ± 4 beats per minute (bpm) (control = 86 ± 3 bpm) and ∼45% and baroreflex activation and renal denervation abolished the hypertension. However, only baroreflex activation effectively attenuated the tachycardia and restored cardiac baroreflex sensitivity and heart rate variability. These findings suggest that baroreflex activation therapy may reduce the risk factors for cardiac arrhythmias as well as lower arterial pressure.

  4. To Take the Stairs or Not to Take the Stairs? Employing the Reflective–Impulsive Model to Predict Spontaneous Physical Activity

    Directory of Open Access Journals (Sweden)

    Marcos Daou

    2017-09-01

    Full Text Available The reflective–impulsive model (RIM has been employed to explain various health behaviors. The present study used RIM to predict a spontaneous physical activity behavior. Specifically, 107 participants (75 females; Mage = 20.6 years, SD = 1.92 years completed measures of (1 reflections about spontaneous physical activity, as indexed by self-report questionnaire; (2 impulse toward physical activity, as indexed by the manikin task; and (3 (state self-control, as indexed by the Stroop task. The dependent variable was whether participants took the stairs or the elevator to the study laboratory. Results revealed reflections toward spontaneous physical activity positively predicted stair-taking. Further, a significant impulse toward physical activity × self-control interaction was observed. This interaction revealed that participants with high self-control who had a high impulse toward PA were more likely to take the stairs than their counterparts with a low impulse toward PA, whereas the opposite was the case for participants with low self-control. However, the impulse × self-control interaction was not significant when employing a self-report measure of trait self-control. Thus, RIM may be a good framework with which to consider spontaneous physical activity, but careful consideration must be given when examining variables within RIM (e.g., the boundary condition of self-control.

  5. Spontaneous and cytokine induced expression and activity of matrix metalloproteinases in human colonic epithelium

    DEFF Research Database (Denmark)

    Pedersen, G; Saermark, T; Kirkegaard, T

    2009-01-01

    levels in cells from inflamed IBD mucosa. MMP-2 and -8 mRNA were expressed inconsistently and MMP-11, -13 and -14 mRNA undetectable. Proteolytic MMP activity was detected in CEC supernatants and the level was increased significantly in inflamed IBD epithelium. The enzyme activity was inhibited strongly...

  6. Spontaneous cluster activity in the inferior olivary nucleus in brainstem slices from postnatal mice

    DEFF Research Database (Denmark)

    Rekling, Jens C; Reveles Jensen, Kristian; Jahnsen, Henrik

    2012-01-01

    A distinctive property of the cerebellar system is olivocerebellar modules, where synchronized electrical activity in neurons in the inferior olivary nucleus (IO) evokes organized activity in the cerebellar cortex. However, the exact function of these modules, and how they are developed, is still...

  7. Effect of distance vision and refractive error on the spontaneous eye blink activity in human subjects in primary eye gaze.

    Science.gov (United States)

    Doughty, Michael J

    2018-04-04

    To evaluate whether visual target character and visibility affects spontaneous eye blink rate (SEBR) in primary eye gaze and silence. Video recordings were made of young healthy adults who were either emmetropic (n=32) or who wore spectacles for refractive error (range -4.75D and +4.50D (n=31). Emmetropes had 5min recordings made whilst seated and looking towards a distant whiteboard. For spectacle wearers, recordings were made whilst looking towards the whiteboard with a 35mm sized cross, and repeated after spectacle removal. The average number of eye blinks over 5min was assessed, and its intra-subject variability as the coefficient of variation (COV). Over 5min without a distance target, an average SEBR of 10.4blinks/min was observed in emmetropes with a of COV=38.1%, and a significant increase in SEBR over the 5th minute to 13.6blinks/min. Hyperopes being asked to look towards a distant target showed the essentially same blinking rate of 11.1/min with or without spectacle wear with the intra-subject variability (COV) being 21.3%. Myopic subjects showed a slightly higher SEBR if looking towards a target without their spectacles (12.4 vs. 11.0blinks/min), with the COV being 18.8%. The studies indicate that some form of visual target could be useful to promote constancy of spontaneous eye blink activity over time, but that a distance visual target (when provided) does not need to be seen clearly. Crown Copyright © 2018. Published by Elsevier España, S.L.U. All rights reserved.

  8. MHC class I-restricted determinants on the glutamic acid decarboxylase 65 molecule induce spontaneous CTL activity.

    Science.gov (United States)

    Quinn, A; McInerney, M F; Sercarz, E E

    2001-08-01

    CD4(+) T cell responses to glutamic acid decarboxylase (GAD65) spontaneously arise in nonobese diabetic (NOD) mice before the onset of insulin-dependent diabetes mellitus (IDDM) and may be critical to the pathogenic process. However, since both CD4(+) and CD8(+) T cells are involved in autoimmune diabetes, we sought to determine whether GAD65-specific CD8(+) T cells were also present in prediabetic NOD mice and contribute to IDDM. To refine the analysis, putative K(d)-binding determinants that were proximal to previously described dominant Th determinants (206-220 and 524-543) were examined for their ability to elicit cytolytic activity in young NOD mice. Naive NOD spleen cells stimulated with GAD65 peptides 206-214 (p206) and 546-554 (p546) produced IFN-gamma and showed Ag-specific CTL responses against targets pulsed with homologous peptide. Conversely, several GAD peptides distal to the Th determinants, and control K(d)-binding peptides did not induce similar responses. Spontaneous CTL responses to p206 and p546 were mediated by CD8(+) T cells that are capable of lysing GAD65-expressing target cells, and p546-specific T cells transferred insulitis to NOD.scid mice. Young NOD mice pretreated with p206 and p546 showed reduced CTL responses to homologous peptides and a delay in the onset of IDDM. Thus, MHC class I-restricted responses to GAD65 may provide an inflammatory focus for the generation of islet-specific pathogenesis and beta cell destruction. This report reveals a potential therapeutic role for MHC class I-restricted peptides in treating autoimmune disease and revisits the notion that the CD4- and CD8-inducing determinants on some molecules may benefit from a proximal relationship.

  9. Correlation properties of spontaneous motor activity in healthy infants: a new computer-assisted method to evaluate neurological maturation.

    Science.gov (United States)

    Waldmeier, Sandra; Grunt, Sebastian; Delgado-Eckert, Edgar; Latzin, Philipp; Steinlin, Maja; Fuhrer, Katharina; Frey, Urs

    2013-06-01

    Qualitative assessment of spontaneous motor activity in early infancy is widely used in clinical practice. It enables the description of maturational changes of motor behavior in both healthy infants and infants who are at risk for later neurological impairment. These assessments are, however, time-consuming and are dependent upon professional experience. Therefore, a simple physiological method that describes the complex behavior of spontaneous movements (SMs) in infants would be helpful. In this methodological study, we aimed to determine whether time series of motor acceleration measurements at 40-44 weeks and 50-55 weeks gestational age in healthy infants exhibit fractal-like properties and if this self-affinity of the acceleration signal is sensitive to maturation. Healthy motor state was ensured by General Movement assessment. We assessed statistical persistence in the acceleration time series by calculating the scaling exponent α via detrended fluctuation analysis of the time series. In hand trajectories of SMs in infants we found a mean α value of 1.198 (95 % CI 1.167-1.230) at 40-44 weeks. Alpha changed significantly (p = 0.001) at 50-55 weeks to a mean of 1.102 (1.055-1.149). Complementary multilevel regression analysis confirmed a decreasing trend of α with increasing age. Statistical persistence of fluctuation in hand trajectories of SMs is sensitive to neurological maturation and can be characterized by a simple parameter α in an automated and observer-independent fashion. Future studies including children at risk for neurological impairment should evaluate whether this method could be used as an early clinical screening tool for later neurological compromise.

  10. Spontaneous deregulation

    NARCIS (Netherlands)

    Edelman, Benjamin; Geradin, Damien

    Platform businesses such as Airbnb and Uber have risen to success partly by sidestepping laws and regulations that encumber their traditional competitors. Such rule flouting is what the authors call “spontaneous private deregulation,” and it’s happening in a growing number of industries. The authors

  11. Spontaneous and cytokine induced expression and activity of matrix metalloproteinases in human colonic epithelium

    DEFF Research Database (Denmark)

    Pedersen, G; Saermark, T; Kirkegaard, T

    2009-01-01

    levels in cells from inflamed IBD mucosa. MMP-2 and -8 mRNA were expressed inconsistently and MMP-11, -13 and -14 mRNA undetectable. Proteolytic MMP activity was detected in CEC supernatants and the level was increased significantly in inflamed IBD epithelium. The enzyme activity was inhibited strongly......Matrix metalloproteinases (MMPs) have been implicated in tissue damage associated with inflammatory bowel disease (IBD).As the role of the intestinal epithelium in this process is unknown, we determined MMP expression and enzyme activity in human colonic epithelial cells (CEC). MMP mRNA expression...... was assessed by reverse transcription-polymerase chain reaction in HT-29 and DLD-1 cells and in CEC isolated from biopsies from IBD and control patients. Total MMP activity in the cells was measured by a functional assay, based on degradation of a fluorescent synthetic peptide containing the specific bond...

  12. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter

    Science.gov (United States)

    Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya

    2018-02-01

    Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.

  13. Preictal activity of subicular, CA1, and dentate gyrus principal neurons in the dorsal hippocampus before spontaneous seizures in a rat model of temporal lobe epilepsy.

    Science.gov (United States)

    Fujita, Satoshi; Toyoda, Izumi; Thamattoor, Ajoy K; Buckmaster, Paul S

    2014-12-10

    Previous studies suggest that spontaneous seizures in patients with temporal lobe epilepsy might be preceded by increased action potential firing of hippocampal neurons. Preictal activity is potentially important because it might provide new opportunities for predicting when a seizure is about to occur and insight into how spontaneous seizures are generated. We evaluated local field potentials and unit activity of single, putative excitatory neurons in the subiculum, CA1, CA3, and dentate gyrus of the dorsal hippocampus in epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Average action potential firing rates of neurons in the subiculum, CA1, and dentate gyrus, but not CA3, increased significantly and progressively beginning 2-4 min before locally recorded spontaneous seizures. In the subiculum, CA1, and dentate gyrus, but not CA3, 41-57% of neurons displayed increased preictal activity with significant consistency across multiple seizures. Much of the increased preictal firing of neurons in the subiculum and CA1 correlated with preictal theta activity, whereas preictal firing of neurons in the dentate gyrus was independent of theta. In addition, some CA1 and dentate gyrus neurons displayed reduced firing rates preictally. These results reveal that different hippocampal subregions exhibit differences in the extent and potential underlying mechanisms of preictal activity. The finding of robust and significantly consistent preictal activity of subicular, CA1, and dentate neurons in the dorsal hippocampus, despite the likelihood that many seizures initiated in other brain regions, suggests the existence of a broader neuronal network whose activity changes minutes before spontaneous seizures initiate. Copyright © 2014 the authors 0270-6474/14/3416671-17$15.00/0.

  14. Vibroacustic microvibrations enhance kidney blood supply, glomerular filtration and glutathione peroxidase activity in spontaneously hypertensive rats.

    Science.gov (United States)

    Miloradović, Zoran; Mihailović-Stanojević, Nevena; Jovović, Đurđica; Ivanov, Milan; Vajić, Una J; Karanović, Danijela; Grujić Milanović, Jelica

    2015-01-01

    Limited numbers of studies include research of microvibration therapy in experimental models. We examined effects of chronic vibroacustic-microvibration treatment on haemodynamics and anti-oxidative defense in experimental hypertension. Study was performed on chronically treated hypertensive and normotensive Wistar rats. Mean arterial pressure (MAP), cardiac output (CO), renal blood flow (RBF), glomerular filtration and activity of anti-oxidative enzymes were determined after three weeks treatment. Vibroacustic treatment had no influence on MAP and CO, but RBF was increased in both groups of treated rats. Additionally, vibroacustic treatment enhanced diuresis and increased glomerular filtration in hypertensive rats. Glutathione peroxidase (GSH-Px) activity was elevated in both treated rat strains, but activity of superoxide dismutase was unchanged. We conclude that microvibration treatment doesn't ameliorate hypertension but improves renal blood supply (trough diminished renal vascular resistance), glomerular filtration, diuresis, and enhances glutathione dependent anti-oxidant defense with more important beneficials in hypertensive animals.

  15. Effect of Imperatorin on the Spontaneous Motor Activity of Rat Isolated Jejunum Strips

    Directory of Open Access Journals (Sweden)

    Marta Mendel

    2015-01-01

    Full Text Available Imperatorin, a psoralen-type furanocoumarin, is a potent myorelaxant agent acting as a calcium antagonist on vascular smooth muscle. Its effects on other types of smooth muscle remain unknown. Therefore, the aim of this study was to investigate the hypothesized myorelaxant effect of imperatorin on gut motor activity and, possibly, to define the underlying mechanism of action. Imperatorin was made available for pharmacological studies from the fruits of the widely available Angelica officinalis through the application of high-performance countercurrent chromatography (HPCCC. Imperatorin generated reversible relaxation of jejunum strips dose-dependently (1–100 μM. At 25 and 50 μM, imperatorin caused relaxation comparable to the strength of the reaction induced by isoproterenol (Isop at 0.1 μM. The observed response resulted neither from the activation of soluble guanylate cyclase, nor from β-adrenoreceptor involvement, nor from Ca2+-activated potassium channels. Imperatorin relaxed intestine strips precontracted with high potassium concentration, attenuated the force and duration of K+-induced contractions, and modulated the response of jejunum strips to acetylcholine. The results suggest that imperatorin probably interacts with various Ca2+ influx pathways in intestine smooth muscle. The types of some calcium channels involved in the activity of imperatorin will be examined in a subsequent study.

  16. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study

    Directory of Open Access Journals (Sweden)

    Wei Pan

    2018-01-01

    Full Text Available A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI. We used the amplitude of low-frequency fluctuations (ALFF and fractional ALFF (fALFF to quantify spontaneous brain activity. The results showed there is no significant difference in ALFF, or fALFF, between violent video game group and the control part, indicating that long time exposure to violent video games won’t significantly influence spontaneous brain activity, especially the core brain regions such as execution control, moral judgment and short-term memory. This implies the adverse impact of violent video games is exaggerated.

  17. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study.

    Science.gov (United States)

    Pan, Wei; Gao, Xuemei; Shi, Shuo; Liu, Fuqu; Li, Chao

    2017-01-01

    A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) to quantify spontaneous brain activity. The results showed there is no significant difference in ALFF, or fALFF, between violent video game group and the control part, indicating that long time exposure to violent video games won't significantly influence spontaneous brain activity, especially the core brain regions such as execution control, moral judgment and short-term memory. This implies the adverse impact of violent video games is exaggerated.

  18. THE EFFECT OF SOME ALPHA-ADRENOCEPTOR ANTAGONISTS ON SPONTANEOUS MYOGENIC ACTIVITY IN THE RAT PORTAL-VEIN AND THE PUTATIVE INVOLVEMENT OF ATP-SENSITIVE K+ CHANNELS

    NARCIS (Netherlands)

    SCHWIETERT, R; WILHELM, D; WILFFERT, B; VANZWIETEN, PA

    1992-01-01

    In the present study we showed that the alpha-adrenoceptor antagonists phentolamine, yohimbine, prazosin, corynanthine and idazoxan, when cumulatively applied in high concentrations (1-100-mu-mol/l), can increase spontaneous myogenic activity in the rat portal vein. 5-Methyl-urapidil and rauwolscine

  19. The effect of some α-adrenoceptor antagonists on spontaneous myogenic activity in the rat portal vein and the putative involvement of ATP-sensitive K+channels

    NARCIS (Netherlands)

    Schwietert, R.; Wilhelm, D.; Wilffert, B.; Van Zwieten, P.A.

    1992-01-01

    In the present study we showed that the α-adrenoceptor antagonists phentolamine, yohimbine, prazosin, corynanthine and idazoxan, when cumulatively applied in high concentrations (1-100 μmol/l), can increase spontaneous myogenic activity in the rat portal vein. 5-Methyl-urapidil and rauwolscine were

  20. Altered spontaneous activity of posterior cingulate cortex and superior temporal gyrus are associated with a smoking cessation treatment outcome using varenicline revealed by regional homogeneity.

    Science.gov (United States)

    Wang, Chao; Shen, Zhujing; Huang, Peiyu; Qian, Wei; Yu, Xinfeng; Sun, Jianzhong; Yu, Hualiang; Yang, Yihong; Zhang, Minming

    2017-06-01

    Compared to nonsmokers, smokers exhibit a number of potentially important differences in regional brain function. However, little is known about the associations between the local spontaneous brain activity and smoking cessation treatment outcomes. In the present analysis, we aimed to evaluate whether the local features of spontaneous brain activity prior to the target quit date was associated with the smoking cessation outcomes. All the participants underwent magnetic resonance imaging scans and smoking-related behavioral assessments. After a 12-week treatment with varenicline, 23 smokers succeeded in quitting smoking and 32 failed. Smokers underwent functional magnetic resonance imaging (fMRI) scanning prior to an open label smoking cessation treatment trial. Regional homogeneity (ReHo) was used to measure spontaneous brain activity, and whole-brain voxel-wise comparisons of ReHo were performed to detect brain regions with altered spontaneous brain activity between relapser and quitter groups. After controlling for potentially confounding factors including years of education, years smoked, cigarettes smoked per day and FTND score as covariates, compared to quitters, relapsers displayed significantly decreased ReHo in bilateral posterior cingulate cortex (PCC), as well as increased ReHo in left superior temporal gyrus (STG). These preliminary results suggest that regional brain function variables may be promising predictors of smoking relapse. This study provided novel insights into the neurobiological mechanisms underlying smoking relapse. A deeper understanding of the neurobiological mechanisms associated with relapse may result in novel pharmacological and behavioral interventions.

  1. The activity of spontaneous action potentials in developing hair cells is regulated by Ca(2+-dependence of a transient K+ current.

    Directory of Open Access Journals (Sweden)

    Snezana Levic

    Full Text Available Spontaneous action potentials have been described in developing sensory systems. These rhythmic activities may have instructional roles for the functional development of synaptic connections. The importance of spontaneous action potentials in the developing auditory system is underpinned by the stark correlation between the time of auditory system functional maturity, and the cessation of spontaneous action potentials. A prominent K(+ current that regulates patterning of action potentials is I(A. This current undergoes marked changes in expression during chicken hair cell development. Although the properties of I(A are not normally classified as Ca(2+-dependent, we demonstrate that throughout the development of chicken hair cells, I(A is greatly reduced by acute alterations of intracellular Ca(2+. As determinants of spike timing and firing frequency, intracellular Ca(2+ buffers shift the activation and inactivation properties of the current to more positive potentials. Our findings provide evidence to demonstrate that the kinetics and functional expression of I(A are tightly regulated by intracellular Ca(2+. Such feedback mechanism between the functional expression of I(A and intracellular Ca(2+ may shape the activity of spontaneous action potentials, thus potentially sculpting synaptic connections in an activity-dependent manner in the developing cochlea.

  2. Spontaneous Activity Associated with Delusions of Schizophrenia in the Left Medial Superior Frontal Gyrus: A Resting-State fMRI Study.

    Directory of Open Access Journals (Sweden)

    Bin Gao

    Full Text Available Delusions of schizophrenia have been found to be associated with alterations of some brain regions in structure and task-induced activation. However, the relationship between spontaneously occurring symptoms and spontaneous brain activity remains unclear. In the current study, 14 schizophrenic patients with delusions and 14 healthy controls underwent a resting-state functional magnetic resonance imaging (RS-fMRI scan. Patients with delusions of schizophrenia patients were rated with Positive and Negative Syndrome Scale (PANSS and Characteristics of Delusional Rating Scale (CDRS. Regional homogeneity (ReHo was calculated to measure the local synchronization of the spontaneous activity in a voxel-wise way. A two-sample t-test showed that ReHo of the right anterior cingulate gyrus and left medial superior frontal gyrus were higher in patients, and ReHo of the left superior occipital gyrus was lower, compared to healthy controls. Further, among patients, correlation analysis showed a significant difference between delusion scores of CRDS and ReHo of brain regions. ReHo of the left medial superior frontal gyrus was negatively correlated with patients' CDRS scores but not with delusional PANSS scores. These results suggested that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of delusion in schizophrenia.

  3. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study

    Science.gov (United States)

    Pan, Wei; Gao, Xuemei; Shi, Shuo; Liu, Fuqu; Li, Chao

    2018-01-01

    A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) to quantify spontaneous brain activity. The results showed there is no significant difference in ALFF, or fALFF, between violent video game group and the control part, indicating that long time exposure to violent video games won’t significantly influence spontaneous brain activity, especially the core brain regions such as execution control, moral judgment and short-term memory. This implies the adverse impact of violent video games is exaggerated. PMID:29375416

  4. Reduction of circulating annexin A5 levels and resistance to annexin A5 anticoagulant activity in women with recurrent spontaneous pregnancy losses.

    NARCIS (Netherlands)

    Rand, J.H.; Arslan, A.A.; Wu, X.X.; Wein, R.; Mulholland, J.; Shah, M.; Heerde, W.L. van; Reutelingsperger, C.P.M.; Lockwood, C.J.; Kuczynski, E.

    2006-01-01

    OBJECTIVE: We investigated whether levels of annexin A5, evidence for resistance to annexin A5 activity, and levels anti-annexin A5 antibodies might be altered in women with a history of recurrent spontaneous pregnancy losses. STUDY DESIGN: These annexin A5 parameters were assayed in 70 nonpregnant

  5. Use of scripts and script-fading procedures and activity schedules to develop spontaneous social interaction in a three-year-old girl with autism

    Directory of Open Access Journals (Sweden)

    Anna Budzińska

    2014-05-01

    Full Text Available Autism entails serious deficiencies in communication and social behaviors. Individuals with autism, even those who have received intensive language intervention, are often viewed as lacking spontaneous language. In addition, some children with autism lack the ability of spontaneously seeking to share enjoyment, interests, or achievements with other people (e.g., a lack of showing, bringing, or pointing out objects of interest to other people. The aim of the study was to use ABA teaching techniques such as script and script fading procedure and activity schedule to teach three-year-old girl with autism spontaneous social interaction and shape joint attention skills. The result shows that ABA techniques were very effective in teaching many verbal skills such as answering questions, making requests, initiating conversation and asking question. Comparison made after implemented teaching procedure shows her initiating of joint attention skill (IJA is at the appropriate level for her age.

  6. Novel Target for Ameliorating Pain and Other Problems after SCI: Spontaneous Activity in Nociceptors

    Science.gov (United States)

    2016-06-01

    neurons within pain pathways and thus their electrical activity leads to the conscious sensation of pain as well associated reflex responses. These...promote pain sensations , and so it was not surprising to find that this chronic nociceptor SA was closely correlated with behavioral measures of pain...similar to those underlying long-term memory in the brain, such as late-phase long-term synaptic potentiation (LTP) (Asiedu et al., 2011; Laferriere et

  7. Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transylvania.

    Science.gov (United States)

    Roman, Ioana; Stănilă, Andreea; Stănilă, Sorin

    2013-04-23

    The theoretical, but especially the practical values of identifying the biochemical compounds from the Rosa canina L. fruits are of present interest, this aspect being illustrated by the numerous researches. It was reported that the Rosa canina L. fruit, with its high ascorbic acid, phenolics and flavonoids contents, have antioxidant, antimutagenic and anticarcinogenic effects.This study was performed on order to evaluate the amount of the main phytochemicals (vitamin C, total polyphenols, and total flavonoids) content and their antioxidant activity. The results obtained revealed that the average amounts of vitamin C within the studied genotypes were: 360.22 mg/100 g frozen pulp (var. transitoria f. ramosissima, altitude 1250 m) and 112.20 mg/100 g frozen pulp (var. assiensis, altitude 440 m), giving a good correlation between the vitamin C content of the rosehip and the altitude. The total polyphenols content varied from 575 mg/100 g frozen pulp (var. transitoria f. ramosissima) to 326 mg/100 g frozen pulp (var. lutetiana f. fallens). The total flavonoids content showed the highest value for var. assiensis variant 163.3 mg/100 g frozen pulp and the lowest value attributed to var. transitoria f. montivaga 101.3 mg/100 g frozen pulp. The antioxidant activity of eight rose hip extracts from wild Transylvania populations was investigated through DPPH method. The antioxidant activity revealed a good correlation only with vitamin C content and total polyphenols. Eight Rose hip fruit species were compared taking into consideration the ascorbic acid, total polyphenols, total flavonoids contents and their antioxidant activity. Based on these results, two of the rosehip genotypes that were analysed could be of perspective for these species' amelioration, due to their content of phytochemicals mentioned above. These varieties are var. transitoria f. ramosissima (Bistrita-Nasaud, Agiesel) and var. transitoria f. montivaga (Bistrita-Nasaud, Salva) which can be used as a

  8. Multicompartment retinal ganglion cells response to high frequency bi-phasic pulse train stimulation: Simulation results.

    Science.gov (United States)

    Maturana, Matias I; Grayden, David B; Burkitt, Anthony N; Meffin, Hamish; Kameneva, Tatiana

    2013-01-01

    Retinal ganglion cells (RGCs) are the sole output neurons of the retina that carry information about a visual scene to the brain. By stimulating RGCs with electrical stimulation, it is possible to elicit a sensation of light for people with macular degeneration or retinitis pigmentosa. To investigate the responses of RGCs to high frequency bi-phasic pulse train stimulation, we use previously constrained models of multi-compartment OFF RGCs. The morphologies of mouse RGCs are taken from the Chalupa set of the NeuroMorpho database. The cell models are divided into compartments representing the dendrites, soma and axon that vary between the cells. A total of 132 cells are simulated in the NEURON environment. Results show that the cell morphology plays an important role in the response characteristics of the cell to high frequency bi-phasic pulse train stimulation.

  9. Differential dynamic processing of afferent signals in frog tonic and phasic second-order vestibular neurons.

    Science.gov (United States)

    Pfanzelt, Sandra; Rössert, Christian; Rohregger, Martin; Glasauer, Stefan; Moore, Lee E; Straka, Hans

    2008-10-08

    The sensory-motor transformation of the large dynamic spectrum of head-motion-related signals occurs in separate vestibulo-ocular pathways. Synaptic responses of tonic and phasic second-order vestibular neurons were recorded in isolated frog brains after stimulation of individual labyrinthine nerve branches with trains of single electrical pulses. The timing of the single pulses was adapted from spike discharge patterns of frog semicircular canal nerve afferents during sinusoidal head rotation. Because each electrical pulse evoked a single spike in afferent fibers, the resulting sequences with sinusoidally modulated intervals and peak frequencies up to 100 Hz allowed studying the processing of presynaptic afferent inputs with in vivo characteristics in second-order vestibular neurons recorded in vitro in an isolated whole brain. Variation of pulse-train parameters showed that the postsynaptic compound response dynamics differ in the two types of frog vestibular neurons. In tonic neurons, subthreshold compound responses and evoked discharge patterns exhibited relatively linear dynamics and were generally aligned with pulse frequency modulation. In contrast, compound responses of phasic neurons were asymmetric with large leads of subthreshold response peaks and evoked spike discharge relative to stimulus waveform. These nonlinearities were caused by the particular intrinsic properties of phasic vestibular neurons and were facilitated by GABAergic and glycinergic inhibitory inputs from tonic type vestibular interneurons and by cerebellar circuits. Coadapted intrinsic filter and emerging network properties thus form dynamically different neuronal elements that provide the appropriate cellular basis for a parallel processing of linear, tonic, and nonlinear phasic vestibulo-ocular response components in central vestibular neurons.

  10. Are spontaneous conformational interconversions a molecular basis for long-period oscillations in enzyme activity?

    Science.gov (United States)

    Queiroz-Claret, C; Valon, C; Queiroz, O

    1988-01-01

    An unconventional hypothesis to the molecular basis of enzyme rhythms is that the intrinsic physical instability of the protein molecules which, in an aqueous medium, tend to move continuously from one conformational state to another could lead, in the population of enzyme molecules, to sizeable long-period oscillations in affinity for substrate and sensitivity to ligands and regulatory effects. To investigate this hypothesis, malate dehydrogenase was extracted and purified from leaves of the plant Kalanchoe blossfeldiana. The enzyme solutions were maintained under constant conditions and sampled at regular intervals for up to 40 or 70 h for measurements of activity as a function of substrate concentration, Km for oxaloacetic acid and sensitivity to the action of 2,3-butanedione, a modifier of active site arginyl residues. The results show that continuous slow oscillations in the catalytic capacity of the enzyme occur in all the extracts checked, together with fluctuations in Km. Apparent circadian periodicities were observed in accordance with previous data established during long run (100 h) experiments. The saturation curves for substrate showed multiple kinetic functions, with various pronounced intermediary plateaus and "bumps" depending on the time of sampling. Variation in the response to the effect of butanedione indicated fluctuation in the accessibility to the active site. Taken together, the results suggest that, under constant conditions, the enzyme in solution shifts continuously and reversibly between different configurations. This was confirmed by parallel studies on the proton-NMR spectrum of water aggregates in the enzyme solution and proton exchange rates.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Differential effect of central command on aortic and carotid sinus baroreceptor-heart rate reflexes at the onset of spontaneous, fictive motor activity.

    Science.gov (United States)

    Matsukawa, Kanji; Ishii, Kei; Kadowaki, Akito; Liang, Nan; Ishida, Tomoko

    2012-08-15

    Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in conscious cats and spontaneous contraction in decerebrate cats. The purpose of this study was to examine whether central command attenuates the sensitivity of the carotid sinus baroreceptor-HR reflex at the onset of spontaneous, fictive motor activity in paralyzed, decerebrate cats. We confirmed that aortic nerve (AN)-stimulation-induced bradycardia was markedly blunted to 26 ± 4.4% of the control (21 ± 1.3 beats/min) at the onset of spontaneous motor activity. Although the baroreflex bradycardia by electrical stimulation of the carotid sinus nerve (CSN) was suppressed (P activity was much weaker (P abdominal aorta was blunted to 36% of the control (36 ± 1.6 beats/min) during spontaneous motor activity, suggesting that central command is able to inhibit the cardiomotor sensitivity of arterial baroreflexes as the net effect. Mechanical stretch of the triceps surae muscle never affected the baroreflex bradycardia elicited by AN or CSN stimulation and by aortic occlusion, suggesting that muscle mechanoreflex did not modify the cardiomotor sensitivity of aortic and carotid sinus baroreflex. Since the inhibitory effect of central command on the carotid baroreflex pathway, associated with spontaneous motor activity, was much weaker compared with the aortic baroreflex pathway, it is concluded that central command does not force a generalized modulation on the whole pathways of arterial baroreflexes but provides selective inhibition for the cardiomotor component of the aortic baroreflex.

  12. Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting-state networks.

    Science.gov (United States)

    Musso, F; Brinkmeyer, J; Mobascher, A; Warbrick, T; Winterer, G

    2010-10-01

    The brain is active even in the absence of explicit input or output as demonstrated from electrophysiological as well as imaging studies. Using a combined approach we measured spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal along with electroencephalography (EEG) in eleven healthy subjects during relaxed wakefulness (eyes closed). In contrast to other studies which used the EEG frequency information to guide the functional MRI (fMRI) analysis, we opted for transient EEG events, which identify and quantify brain electric microstates as time epochs with quasi-stable field topography. We then used this microstate information as regressors for the BOLD fluctuations. Single trial EEGs were segmented with a specific module of the LORETA (low resolution electromagnetic tomography) software package in which microstates are represented as normalized vectors constituted by scalp electric potentials, i.e., the related 3-dimensional distribution of cortical current density in the brain. Using the occurrence and the duration of each microstate, we modeled the hemodynamic response function (HRF) which revealed BOLD activation in all subjects. The BOLD activation patterns resembled well known resting-state networks (RSNs) such as the default mode network. Furthermore we "cross validated" the data performing a BOLD independent component analysis (ICA) and computing the correlation between each ICs and the EEG microstates across all subjects. This study shows for the first time that the information contained within EEG microstates on a millisecond timescale is able to elicit BOLD activation patterns consistent with well known RSNs, opening new avenues for multimodal imaging data processing. Copyright 2010. Published by Elsevier Inc.

  13. Effects of voluntary exercise on spontaneous physical activity and food consumption in mice: Results from an artificial selection experiment.

    Science.gov (United States)

    Copes, Lynn E; Schutz, Heidi; Dlugosz, Elizabeth M; Acosta, Wendy; Chappell, Mark A; Garland, Theodore

    2015-10-01

    We evaluated the effect of voluntary exercise on spontaneous physical activity (SPA) and food consumption in mice from 4 replicate lines bred for 57 generations for high voluntary wheel running (HR) and from 4 non-selected control (C) lines. Beginning at ~24 days of age, mice were housed in standard cages or in cages with attached wheels. Wheel activity and SPA were monitored in 1-min intervals. Data from the 8th week of the experiment were analyzed because mice were sexually mature and had plateaued in body mass, weekly wheel running distance, SPA, and food consumption. Body mass, length, and masses of the retroperitoneal fat pad, liver, and heart were recorded after the 13th week. SPA of both HR and C mice decreased with wheel access, due to reductions in both duration and average intensity of SPA. However, total activity duration (SPA+wheel running; min/day) was ~1/3 greater when mice were housed with wheels, and food consumption was significantly increased. Overall, food consumption in both HR and C mice was more strongly affected by wheel running than by SPA. Duration of wheel running had a stronger effect than average speed, but the opposite was true for SPA. With body mass as a covariate, chronic wheel access significantly reduced fat pad mass and increased heart mass in both HR and C mice. Given that both HR and C mice housed with wheels had increased food consumption, the energetic cost of wheel running was not fully compensated by concomitant reductions in SPA. The experiment demonstrates that both duration and intensity of both wheel running and SPA were significant predictors of food consumption. This sort of detailed analysis of the effects of different aspects of physical activity on food consumption has not previously been reported for a non-human animal, and it sets the stage for longitudinal examination of energy balance and its components in rodent models. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Essential Oil Composition, Antioxidant, Cytotoxic and Antiviral Activities of Teucrium pseudochamaepitys Growing Spontaneously in Tunisia

    Directory of Open Access Journals (Sweden)

    Saoussen Hammami

    2015-11-01

    Full Text Available The chemical composition, antioxidant, cytotoxic and antiviral activities of the essential oil obtained by hydrodistillation from the aerial parts of Teucrium pseudochamaepitys (Lamiaceae collected from Zaghouan province of Tunisia are reported. The essential oil was analyzed by gas chromatography equipped with a flame ionization detector (GC-FID and gas chromatography coupled with mass spectrometry (GC/MS. Thirty-one compounds were identified representing 88.6% of the total essential oil. Hexadecanoic acid was found to be the most abundant component (26.1% followed by caryophyllene oxide (6.3%, myristicin (4.9% and α-cubebene (3.9%. The antioxidant capacity of the oil was measured on the basis of the scavenging activity to the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH. The IC50 value of the oil was evaluated as 0.77 mg·mL−1. In addition, the essential oil was found to possess moderate cytotoxic effects on the HEp-2 cell line (50% cytotoxic concentration (CC50 = 653.6 µg·mL−1. The potential antiviral effect was tested against Coxsackievirus B (CV-B, a significant human and mouse pathogen that causes pediatric central nervous system disease, commonly with acute syndromes. The reduction of viral infectivity by the essential oil was measured using a cytopathic (CPE reduction assay.

  15. Brain activation for spontaneous and explicit false belief tasks overlaps: new fMRI evidence on belief processing and violation of expectation.

    Science.gov (United States)

    Bardi, Lara; Desmet, Charlotte; Nijhof, Annabel; Wiersema, Jan R; Brass, Marcel

    2017-03-01

    There is extensive discussion on whether spontaneous and explicit forms of ToM are based on the same cognitive/neural mechanisms or rather reflect qualitatively different processes. For the first time, we analyzed the BOLD signal for false belief processing by directly comparing spontaneous and explicit ToM task versions. In both versions, participants watched videos of a scene including an agent who acquires a true or false belief about the location of an object (belief formation phase). At the end of the movies (outcome phase), participants had to react to the presence of the object. During the belief formation phase, greater activity was found for false vs true belief trials in the right posterior parietal cortex. The ROI analysis of the right temporo-parietal junction (TPJ), confirmed this observation. Moreover, the anterior medial prefrontal cortex (aMPFC) was active during the outcome phase, being sensitive to violation of both the participant's and agent's expectations about the location of the object. Activity in the TPJ and aMPFC was not modulated by the spontaneous/explicit task. Overall, these data show that neural mechanisms for spontaneous and explicit ToM overlap. Interestingly, a dissociation between TPJ and aMPFC for belief tracking and outcome evaluation, respectively, was also found. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Color Doppler US and tri-phasic CT in differentiating benign from malignant portal vein thrombosis (PVT

    Directory of Open Access Journals (Sweden)

    Atef H. Teama

    2015-12-01

    Full Text Available Objective: To evaluate the efficacy of color Doppler US and tri-phasic CT in discriminating benign from malignant PVT. Patients and methods: This study included 30 patients presented ultrasonically with PVT and referred for color Doppler US and Tri-phasic CT examination for discriminating the benign from malignant PVT. The color Doppler US and tri-phasic CT results were compared and correlated with available histopathological results in the patients who had FNAC. Results: Those 30 patients were classified according to US, Tri-phasic CT, lab., findings into two groups: G.(A included 16 patients with malignant PVT and G.(B included 14 patients with benign PVT. Intrathrombus pulsatile flow was depicted in 12 patients with malignant PVT (12/16 (75%, while non-depicted in 14 patients with benign PVT with 100% specificity. On tri-phasic CT, neovascularity and an early arterial enhancement of PVT were depicted in 14 cases with malignant PVT with 87.5% sensitivity and non-depicted in 14 benign cases with PVT with 100% specificity. Conclusion: Distinguishing benign from malignant PVT in patients with HCC is required to determine the management plan. The color Doppler study of PVT should be an essential step in evaluation of patients with HCC. The combination of Color Doppler US and tri-phasic CT is common and essential for more accurate evaluation and differentiation of benign from malignant PVT.

  17. Predicting stroop effect from spontaneous neuronal activity: a study of regional homogeneity.

    Science.gov (United States)

    Liu, Congcong; Chen, Zhencai; Wang, Ting; Tang, Dandan; Hitchman, Glenn; Sun, Jiangzhou; Zhao, Xiaoyue; Wang, Lijun; Chen, Antao

    2015-01-01

    The Stroop effect is one of the most robust and well-studied phenomena in cognitive psychology and cognitive neuroscience. However, little is known about the relationship between intrinsic brain activity and the individual differences of this effect. In the present study, we explored this issue by examining whether resting-state functional magnetic resonance imaging (rs-fMRI) signals could predict individual differences in the Stroop effect of healthy individuals. A partial correlation analysis was calculated to examine the relationship between regional homogeneity (ReHo) and Stroop effect size, while controlling for age, sex, and framewise displacement (FD). The results showed positive correlations in the left inferior frontal gyrus (LIFG), the left insula, the ventral anterior cingulate cortex (vACC), and the medial frontal gyrus (MFG), and negative correlation in the left precentral gyrus (LPG). These results indicate the possible influences of the LIFG, the left insula, and the LPG on the efficiency of cognitive control, and demonstrate that the key nodes of default mode network (DMN) may be important in goal-directed behavior and/or mental effort during cognitive control tasks.

  18. Neural activations during visual sequence learning leave a trace in post-training spontaneous EEG.

    Directory of Open Access Journals (Sweden)

    Clara Moisello

    Full Text Available Recent EEG studies have shown that implicit learning involving specific cortical circuits results in an enduring local trace manifested as local changes in spectral power. Here we used a well characterized visual sequence learning task and high density-(hd-EEG recording to determine whether also declarative learning leaves a post-task, local change in the resting state oscillatory activity in the areas involved in the learning process. Thus, we recorded hd-EEG in normal subjects before, during and after the acquisition of the order of a fixed spatial target sequence (VSEQ and during the presentation of targets in random order (VRAN. We first determined the temporal evolution of spectral changes during VSEQ and compared it to VRAN. We found significant differences in the alpha and theta bands in three main scalp regions, a right occipito-parietal (ROP, an anterior-frontal (AFr, and a right frontal (RFr area. The changes in frontal theta power during VSEQ were positively correlated with the learning rate. Further, post-learning EEG recordings during resting state revealed a significant increase in alpha power in ROP relative to a pre-learning baseline. We conclude that declarative learning is associated with alpha and theta changes in frontal and posterior regions that occur during the task, and with an increase of alpha power in the occipito-parietal region after the task. These post-task changes may represent a trace of learning and a hallmark of use-dependent plasticity.

  19. Spontaneous pre-stimulus fluctuations in the activity of right fronto-parietal areas influence inhibitory control performance

    Directory of Open Access Journals (Sweden)

    Camille F. Chavan

    2013-06-01

    Full Text Available Inhibitory control refers to the ability to suppress planned or ongoing cognitive or motor processes. Electrophysiological indices of inhibitory control failure have been found to manifest even before the presentation of the stimuli triggering the inhibition, suggesting that pre-stimulus brain-states modulate inhibition performance. However, previous electrophysiological investigations on the state-dependency of inhibitory control were based on averaged event-related potentials, a method eliminating the variability in the ongoing brain activity not time-locked to the event of interest. These studies thus left unresolved whether spontaneous variations in the brain-state immediately preceding unpredictable inhibition-triggering stimuli also influence inhibitory control performance.To address this question, we applied single-trial EEG topographic analyses on the time interval immediately preceding NoGo stimuli in conditions where the responses to NoGo trials were correctly inhibited (correct rejection vs. committed (false alarms during an auditory spatial Go/NoGo task.We found a specific configuration of the EEG voltage field manifesting more frequently before correctly inhibited responses to NoGo stimuli than before false alarms. There was no evidence for an EEG topography occurring more frequently before false alarms than before correct rejections. The visualization of distributed electrical source estimations of the EEG topography preceding successful response inhibition suggested that it resulted from the activity of a right fronto-parietal brain network.Our results suggest that the fluctuations in the ongoing brain activity immediately preceding stimulus presentation contribute to the behavioral outcomes during an inhibitory control task. Our results further suggest that the state-dependency of sensory-cognitive processing might not only concern perceptual processes, but also high-order, top-down inhibitory control mechanisms.

  20. Decreased Spontaneous Electrical Activity and Acetylcholine at Myofascial Trigger Spots after Dry Needling Treatment: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Qing-Guang Liu

    2017-01-01

    Full Text Available Objective. The aims of this study are to investigate the changes in spontaneous electrical activities (SEAs and in acetylcholine (ACh, acetylcholine receptor (AChR, and acetylcholine esterase (AChE levels after dry needling at myofascial trigger spots in model rats. Materials and Methods. Forty-eight male Sprague-Dawley rats were divided into four groups. Thirty-six rats were assigned to three model groups, which underwent MTrSs modeling intervention. Twelve rats were assigned to the blank control (BC group. After model construction, the 36 model rats were randomly subdivided into three groups according to treatment: MTrSs model control (MC and two dry needling groups. One dry needling group received puncturing at MTrSs (DN-M, whereas the other underwent puncturing at non-MTrSs (DN-nM. Dry needling treatment will last for two weeks, once a week. SEAs and ACh, AChR, and AChE levels were measured after one-week rest of dry needling treatment. Results. The amplitudes and frequencies of endplate noise (EPN and endplate spike (EPS significantly decreased after dry needling treatment in the DN-M group. Moreover, ACh and AChR levels significantly decreased, whereas AChE significantly increased after dry needling treatment in the DN-M group. Conclusion. Dry needling at the exact MTrSs is more effective than dry needling at non-MTrSs.

  1. Self-monitoring of spontaneous physical activity and sedentary behavior to prevent weight regain in older adults.

    Science.gov (United States)

    Nicklas, Barbara J; Gaukstern, Jill E; Beavers, Kristen M; Newman, Jill C; Leng, Xiaoyan; Rejeski, W Jack

    2014-06-01

    The objective was to determine whether adding a self-regulatory intervention (SRI) focused on self-monitoring of spontaneous physical activity (SPA) and sedentary behavior to a standard weight loss intervention improved maintenance of lost weight. Older (65-79 years), obese (BMI = 30-40 kg/m(2) ) adults (n = 48) were randomized to a 5-month weight loss intervention involving a hypocaloric diet (DIET) and aerobic exercise (EX) with or without the SRI to promote SPA and decrease sedentary behavior (SRI + DIET + EX compared with DIET + EX). Following the weight loss phase, both groups transitioned to self-selected diet and exercise behavior during a 5-month follow-up. Throughout the 10-months, the SRI + DIET + EX group utilized real-time accelerometer feedback for self-monitoring. There was an overall group by time effect of the SRI (P weight and regained more weight than SRI + DIET + EX. The average weight regain during follow-up was 1.3 kg less in the SRI + DIET + EX group. Individuals in this group maintained approximately 10% lower weight than baseline compared with those in the DIET + EX group whom maintained approximately 5% lower weight than baseline. Addition of a SRI, designed to increase SPA and decrease sedentary behavior, to a standard weight loss intervention enhanced successful maintenance of lost weight. Copyright © 2014 The Obesity Society.

  2. Effect of a non lethal whole-body gamma irradiation on the spontaneous and evoked electroencephalographic activities of the adult rabbit

    International Nuclear Information System (INIS)

    Court, L.

    1969-01-01

    The whole of the experimental methods described (animal preparation, achievement of a precise physiological technique, dosimetry, biological information processing) allowed us to follow the changes for 15 days in the spontaneous and evoked electroencephalogram activities of rabbits submitted to a non-lethal 400 rads whole-body gamma-irradiation. Behavioural troubles, changes in the arousal state and the spontaneous electrical activity of the neo-cortex and hippocampus were noticed constantly together with an enhanced cortical excitability, and the appearance of elements of the paroxystic series sometimes in contrast with a general decrease in amplitude. After a visual stimulus the general morphology of evoked activities at the level of the primary visual areas and hippocampus was unchanged, but enhanced latencies and delays, less systematic modifications in amplitudes seemed to show out a direct effect of radiations on the nervous system and sensorial activities; these troubles seemed to occur independently from the basic electrical activity. As a whole, the changes observed were usually transitory and varied with each individual. Finally an assumption is made to explain the mechanism of arousal troubles and the general evolution of spontaneous electrical activity in the brain. (author) [fr

  3. Associations of lifetime active and passive smoking with spontaneous abortion, stillbirth and tubal ectopic pregnancy: a cross-sectional analysis of historical data from the Women's Health Initiative.

    Science.gov (United States)

    Hyland, Andrew; Piazza, Kenneth M; Hovey, Kathleen M; Ockene, Judith K; Andrews, Christopher A; Rivard, Cheryl; Wactawski-Wende, Jean

    2015-07-01

    To examine the associations between tobacco exposure and adverse pregnancy outcomes using quantitative measures of lifetime active smoking and secondhand smoke (SHS) exposure. Historical reproductive data on 80 762 women who participated in the Women's Health Initiative Observational Study were examined with a cross-sectional analysis. We assessed self-reported lifetime active and passive tobacco smoke exposure, self-reported spontaneous abortions, stillbirths and ectopic pregnancies. When compared with never-smoking women, participants who were ever active smokers during their reproductive years had ORs (OR) of 1.16 (95% CI 1.08 to 1.26) for 1 or more spontaneous abortions, 1.44 (95% CI 1.20 to 1.73) for 1 or more stillbirths, and 1.43 (95% CI 1.10 to 1.86) for 1 or more ectopic pregnancies. Never-smoking women participants with the highest levels of lifetime SHS exposure, including childhood >10 years, adult home >20 years and adult work exposure >10 years, when compared with never-smoking women with no SHS exposure had adjusted ORs of 1.17 (95% CI 1.05 to 1.30) for spontaneous abortion, 1.55 (95% CI 1.21 to 1.97) for stillbirth, and 1.61 (95% CI 1.16 to 2.24) for ectopic pregnancy. Women who were ever-smokers during their reproductive years had significantly greater estimates of risk for spontaneous abortion, stillbirth and tubal ectopic pregnancy. Never-smoking women with the highest levels of lifetime exposure to SHS had significantly increased estimates of risk for spontaneous abortion, stillbirth and tubal ectopic pregnancy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Effects of a phasic oral contraceptive containing desogestrel on facial seborrhea and acne.

    Science.gov (United States)

    Prilepskaya, V N; Serov, V N; Zharov, E V; Golousenko, I J; Mejevitinova, E A; Gogaeva, E V; Yaglov, V V; Golubeva, O N

    2003-10-01

    The combined oral contraceptive containing ethinylestradiol and the selective progestogen, desogestrel, in a phasic regimen (DSG-OC, Tri-merci) has been shown to reduce facial oiliness. This study was designed to evaluate further the effects of this OC on the skin of women with facial seborrhea and mild or moderate acne. This was an open, noncomparative, bicenter study in 60 healthy Russian women, aged 18-30 years, with facial seborrhea and mild or moderate facial acne, who wished to use oral contraception. All women received the OC containing desogestrel (50/100/150 microg) and ethinylestradiol (35/30/30 microg) for three phases of 7 days followed by a 7-day pill-free interval, for six cycles. Seborrhea was assessed using the Sebutape technique, in which strips of adhesive microporous polymeric film pressed onto facial sites are used to assess sebaceous activity. Acne was assessed by counting facial lesions. Subjective evaluations of skin and hair condition, patients' feelings to them and satisfaction with the OC were made using a visual analogue scale (VAS). Assessments were made at baseline, and after one, three and six treatment cycles. Sebutape assessments of seborrhea were significantly improved, on the right and left cheeks, after one treatment cycle, and on the forehead after three treatment cycles. These improvements increased steadily and were much larger at the end of Cycle 6. Acne grades were significantly improved after three and six treatment cycles. VAS scores in response to questions dealing with self-esteem and self-confidence were significantly improved after three cycles and in some cases after just one cycle. The women's views of their skin and hair (greasiness) were correspondingly significantly improved. Subjective assessments indicated that after one, three and six cycles, 69%, 93% and 98%, respectively, of women were satisfied or very satisfied with the DSG-OC. In women with facial seborrhea and mild or moderate acne, the use of DSG

  5. Early and phasic cortical metabolic changes in vestibular neuritis onset.

    Science.gov (United States)

    Alessandrini, Marco; Pagani, Marco; Napolitano, Bianca; Micarelli, Alessandro; Candidi, Matteo; Bruno, Ernesto; Chiaravalloti, Agostino; Di Pietro, Barbara; Schillaci, Orazio

    2013-01-01

    Functional brain activation studies described the presence of separate cortical areas responsible for central processing of peripheral vestibular information and reported their activation and interactions with other sensory modalities and the changes of this network associated to strategic peripheral or central vestibular lesions. It is already known that cortical changes induced by acute unilateral vestibular failure (UVF) are various and undergo variations over time, revealing different cortical involved areas at the onset and recovery from symptoms. The present study aimed at reporting the earliest change in cortical metabolic activity during a paradigmatic form of UVF such as vestibular neuritis (VN), that is, a purely peripheral lesion of the vestibular system, that offers the opportunity to study the cortical response to altered vestibular processing. This research reports [(18)F]fluorodeoxyglucose positron emission tomography brain scan data concerning the early cortical metabolic activity associated to symptoms onset in a group of eight patients suffering from VN. VN patients' cortical metabolic activity during the first two days from symptoms onset was compared to that recorded one month later and to a control healthy group. Beside the known cortical response in the sensorimotor network associated to vestibular deafferentation, we show for the first time the involvement of Entorhinal (BAs 28, 34) and Temporal (BA 38) cortices in early phases of symptomatology onset. We interpret these findings as the cortical counterparts of the attempt to reorient oneself in space counteracting the vertigo symptom (Bas 28, 34) and of the emotional response to the new pathologic condition (BA 38) respectively. These interpretations were further supported by changes in patients' subjective ratings in balance, anxiety, and depersonalization/derealization scores when tested at illness onset and one month later. The present findings contribute in expanding knowledge about

  6. Early and phasic cortical metabolic changes in vestibular neuritis onset.

    Directory of Open Access Journals (Sweden)

    Marco Alessandrini

    Full Text Available Functional brain activation studies described the presence of separate cortical areas responsible for central processing of peripheral vestibular information and reported their activation and interactions with other sensory modalities and the changes of this network associated to strategic peripheral or central vestibular lesions. It is already known that cortical changes induced by acute unilateral vestibular failure (UVF are various and undergo variations over time, revealing different cortical involved areas at the onset and recovery from symptoms. The present study aimed at reporting the earliest change in cortical metabolic activity during a paradigmatic form of UVF such as vestibular neuritis (VN, that is, a purely peripheral lesion of the vestibular system, that offers the opportunity to study the cortical response to altered vestibular processing. This research reports [(18F]fluorodeoxyglucose positron emission tomography brain scan data concerning the early cortical metabolic activity associated to symptoms onset in a group of eight patients suffering from VN. VN patients' cortical metabolic activity during the first two days from symptoms onset was compared to that recorded one month later and to a control healthy group. Beside the known cortical response in the sensorimotor network associated to vestibular deafferentation, we show for the first time the involvement of Entorhinal (BAs 28, 34 and Temporal (BA 38 cortices in early phases of symptomatology onset. We interpret these findings as the cortical counterparts of the attempt to reorient oneself in space counteracting the vertigo symptom (Bas 28, 34 and of the emotional response to the new pathologic condition (BA 38 respectively. These interpretations were further supported by changes in patients' subjective ratings in balance, anxiety, and depersonalization/derealization scores when tested at illness onset and one month later. The present findings contribute in expanding

  7. Intervening on spontaneous physical activity to prevent weight regain in older adults: design of a randomized, clinical trial.

    Science.gov (United States)

    Nicklas, Barbara J; Gaukstern, Jill E; Legault, Claudine; Leng, Iris; Rejeski, W Jack

    2012-03-01

    There is a need to identify evidenced-based obesity treatments that are effective in maintaining lost weight. Weight loss results in reductions in energy expenditure, including spontaneous physical activity (SPA) which is defined as energy expenditure resulting primarily from unstructured mobility-related activities that occur during daily life. To date, there is little research, especially randomized, controlled trials, testing strategies that can be adopted and sustained to prevent declines in SPA that occur with weight loss. Self-monitoring is a successful behavioral strategy to facilitate behavior change, so a provocative question is whether monitoring SPA-related energy expenditure would override these reductions in SPA, and slow weight regain. This study is a randomized trial in older, obese men and women designed to test the hypothesis that adding a self-regulatory intervention (SRI), focused around self-monitoring of SPA, to a weight loss intervention will result in less weight and fat mass regain following weight loss than a comparable intervention that lacks this self-regulatory behavioral strategy. Participants (n=72) are randomized to a 5-month weight loss intervention with or without the addition of a behavioral component that includes an innovative approach to promoting increased SPA. Both groups then transition to self-selected diet and exercise behavior for a 5-month follow-up. Throughout the 10-month period, the SRI group is provided with an intervention designed to promote a SPA level that is equal to or greater than each individual's baseline SPA level, allowing us to isolate the effects of the SPA self-regulatory intervention component on weight and fat mass regain. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. The Cortisol Paradox of Trauma-Related Disorders: Lower Phasic Responses but Higher Tonic Levels of Cortisol Are Associated with Sexual Abuse in Childhood.

    Directory of Open Access Journals (Sweden)

    Inga Schalinski

    Full Text Available Inconsistent findings exist for the activity of the hypothalamic-pituitary-adrenal (HPA axis in patients with stress related disorders. Recent studies point towards early life stress as a potential modulator.We investigated the impact of childhood sexual abuse on phasic (saliva cortisol reactivity and tonic (hair cortisol regulation. Furthermore, we assessed predictors on cortisol accumulation in hair. Women (N = 43 with stress-related disorders underwent a standardized assessment of idiographic adverse and traumatic experiences and psychopathology, while measuring salivary cortisol and, heart rate and blood pressure.Comparing women with and without childhood sexual abuse revealed lower rates of responders and distinct levels of salivary cortisol to the interview in conjunction with a lower heart rate for the abused group. Childhood adversities, traumatic experiences, and depression contributed to higher hair cortisol levels.Our finding of lower response rate and distinct salivary cortisol pattern in individuals with childhood sexual abuse compared to individuals without early sexual abuse supports the role of environmental programming for the HPA axis. Both, childhood adversities and traumatic stress emerge as crucial factors for long-term cortisol secretion. Lower or suppressed phasic cortisol responses to trauma-related stimuli may therefore be associated with higher tonic values. Thus, early exposure to adversities may result in a biological distinct phenotype in adult patients with stress-related disorders.

  9. The Cortisol Paradox of Trauma-Related Disorders: Lower Phasic Responses but Higher Tonic Levels of Cortisol Are Associated with Sexual Abuse in Childhood.

    Science.gov (United States)

    Schalinski, Inga; Elbert, Thomas; Steudte-Schmiedgen, Susann; Kirschbaum, Clemens

    2015-01-01

    Inconsistent findings exist for the activity of the hypothalamic-pituitary-adrenal (HPA) axis in patients with stress related disorders. Recent studies point towards early life stress as a potential modulator. We investigated the impact of childhood sexual abuse on phasic (saliva cortisol reactivity) and tonic (hair cortisol) regulation. Furthermore, we assessed predictors on cortisol accumulation in hair. Women (N = 43) with stress-related disorders underwent a standardized assessment of idiographic adverse and traumatic experiences and psychopathology, while measuring salivary cortisol and, heart rate and blood pressure. Comparing women with and without childhood sexual abuse revealed lower rates of responders and distinct levels of salivary cortisol to the interview in conjunction with a lower heart rate for the abused group. Childhood adversities, traumatic experiences, and depression contributed to higher hair cortisol levels. Our finding of lower response rate and distinct salivary cortisol pattern in individuals with childhood sexual abuse compared to individuals without early sexual abuse supports the role of environmental programming for the HPA axis. Both, childhood adversities and traumatic stress emerge as crucial factors for long-term cortisol secretion. Lower or suppressed phasic cortisol responses to trauma-related stimuli may therefore be associated with higher tonic values. Thus, early exposure to adversities may result in a biological distinct phenotype in adult patients with stress-related disorders.

  10. Unaltered Network Activity and Interneuronal Firing During Spontaneous Cortical Dynamics In Vivo in a Mouse Model of Severe Myoclonic Epilepsy of Infancy.

    Science.gov (United States)

    De Stasi, Angela Michela; Farisello, Pasqualina; Marcon, Iacopo; Cavallari, Stefano; Forli, Angelo; Vecchia, Dania; Losi, Gabriele; Mantegazza, Massimo; Panzeri, Stefano; Carmignoto, Giorgio; Bacci, Alberto; Fellin, Tommaso

    2016-04-01

    Severe myoclonic epilepsy of infancy (SMEI) is associated with loss of function of the SCN1A gene encoding the NaV1.1 sodium channel isoform. Previous studies in Scn1a(-/+) mice during the pre-epileptic period reported selective reduction in interneuron excitability and proposed this as the main pathological mechanism underlying SMEI. Yet, the functional consequences of this interneuronal dysfunction at the circuit level in vivo are unknown. Here, we investigated whether Scn1a(-/+) mice showed alterations in cortical network function. We found that various forms of spontaneous network activity were similar in Scn1a(-/+) during the pre-epileptic period compared with wild-type (WT) in vivo. Importantly, in brain slices from Scn1a(-/+) mice, the excitability of parvalbumin (PV) and somatostatin (SST) interneurons was reduced, epileptiform activity propagated more rapidly, and complex synaptic changes were observed. However, in vivo, optogenetic reduction of firing in PV or SST cells in WT mice modified ongoing network activities, and juxtasomal recordings from identified PV and SST interneurons showed unaffected interneuronal firing during spontaneous cortical dynamics in Scn1a(-/+) compared with WT. These results demonstrate that interneuronal hypoexcitability is not observed in Scn1a(-/+) mice during spontaneous activities in vivo and suggest that additional mechanisms may contribute to homeostatic rearrangements and the pathogenesis of SMEI. © The Author 2016. Published by Oxford University Press.

  11. Effect of calorie restriction on spontaneous physical activity and body mass in mice divergently selected for basal metabolic rate (BMR).

    Science.gov (United States)

    Brzęk, Paweł; Gębczyński, Andrzej K; Książek, Aneta; Konarzewski, Marek

    2016-07-01

    Spontaneous physical activity (SPA) represents an important component of daily energy expenditures in animals and humans. Intra-specific variation in SPA may be related to the susceptibility to metabolic disease or obesity. In particular, reduced SPA under conditions of limited food availability may conserve energy and prevent loss of body and fat mass ('thrifty genotype hypothesis'). However, both SPA and its changes during food restriction show wide inter-individual variations. We studied the effect of 30% caloric restriction (CR) on SPA in laboratory mice divergently selected for high (H-BMR) and low (L-BMR) basal metabolic rate. Selection increased SPA in the H-BMR line but did not change it in the L-BMR mice. This effect reflected changes in SPA intensity but not SPA duration. CR increased SPA intensity more strongly in the L-BMR line than in the H-BMR line and significantly modified the temporal variation of SPA. However, the initial between-line differences in SPA were not affected by CR. Loss of body mass during CR did not differ between both lines. Our results show that the H-BMR mice can maintain their genetically determined high SPA under conditions of reduced food intake without sacrificing their body mass. We hypothesize that this pattern may reflect the higher flexibility in the energy budget in the H-BMR line, as we showed previously that mice from this line reduced their BMR during CR. These energy savings may allow for the maintenance of elevated SPA in spite of reduced food intake. We conclude that the effect of CR on SPA is in large part determined by the initial level of BMR, whose variation may account for the lack of universal pattern of behavioural responses to CR. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Association of exercise training and angiotensin-converting enzyme 2 activator improves baroreflex sensitivity of spontaneously hypertensive rats.

    Science.gov (United States)

    Lopes, P R; Moreira, M C S; Marques, S M; Pinto, I S J; Macedo, L M; Silva, C C; Freiria-Oliveira, A H; Rebelo, A C S; Reis, A A S; Rosa, D A; Ferreira-Neto, M L; Castro, C H; Pedrino, G R

    2016-08-01

    The present study sought to determine cardiovascular effects of aerobic training associated with diminazene aceturate (DIZE), an activator of the angiotensin converting enzyme 2, in spontaneously hypertensive rats (SHRs). Male SHRs (280-350 g) were either subjected to exercise training or not (sedentary group). The trained group was subjected to 8 weeks of aerobic training on a treadmill (five times a week, lasting 60 min at an intensity of 50-60% of maximum aerobic speed). In the last 15 days of the experimental protocol, these groups were redistributed into four groups: i) sedentary SHRs with daily treatment of 1 mg/kg DIZE (S+D1); ii) trained SHRs with daily treatment of 1 mg/kg DIZE (T+D1); iii) sedentary SHRs with daily treatment of vehicle (S+V); and iv) trained SHRs with daily treatment of vehicle (T+V). After treatment, SHRs were anesthetized and subjected to artery and femoral vein cannulation prior to the implantation of ECG electrode. After 24 h, mean arterial pressure (MAP) and heart rate (HR) were recorded; the baroreflex sensitivity and the effect of double autonomic blockade (DAB) were evaluated in non-anesthetized SHRs. DIZE treatment improved baroreflex sensitivity in the T+D1 group as compared with the T+V and S+D1 groups. The intrinsic heart rate (IHR) and MAP were reduced in T+D1 group as compared with T+V and S+D1 groups. Hence, we conclude that the association of exercise training with DIZE treatment improved baroreflex function and cardiovascular regulation.

  13. Functional Architecture of Noise Correlations in Human Early Visual Cortex and its Relationship with Coherent Spontaneous Activity

    Directory of Open Access Journals (Sweden)

    Jungwon Ryu

    2012-10-01

    Full Text Available Responses of single sensory neurons to stimuli are ‘noisy’, varying substantially across repeated trials of identical stimulation. Intriguingly, these individual ‘noise responses’ (NR—deviations from their means—are not isolated; rather they are highly correlated, referred to as ‘noise correlation’ (NC. From a computational viewpoint, the presence and nature of NC exert great impacts on the information processing capacity of neurons as they encode sensory events as a population, decode those encoded neural responses, and contribute to perceptual choices for action. Regarding the origin of NR, on the other hand, there has been growing evidence pointing to its tight linkage with ‘spontaneous responses’ (SR—fluctuations of neural activity in the absence of external input or tasks. To investigate the functional structure of NC and its relationship with ‘correlations in SR’ (SC, we defined population receptive fields (pRFs of unit volumes of gray matter (UV in human early visual cortex and computed NRs and SRs using fMRI. NC increased with an increasing degree of similarity in pRF tuning properties such as orientation, spatial frequency, and visuotopic position, particularly between UV pairs close in cortical distance. This ‘like-to-like’ structure of NC remained unaltered across scan runs with different stimuli, even among between-area UV pairs. SC was higher than NC, and its functional and temporal structures were quite similar to those of NC. Furthermore, the partial correlation analysis revealed that NC between a given pair of UVs was best predicted by their SC than by any other factors examined in the current study.

  14. Optical suppression of drug-evoked phasic dopamine release

    Directory of Open Access Journals (Sweden)

    James Edgar Mccutcheon

    2014-09-01

    Full Text Available Brief fluctuations in dopamine concentration (dopamine transients play a key role in behavior towards rewards, including drugs of abuse. Drug-evoked dopamine transients may result from actions at both dopamine cell bodies and dopamine terminals. Inhibitory opsins can be targeted to dopamine neurons permitting their firing activity to be suppressed. However, as dopamine transients can become uncoupled from firing, it is unknown whether optogenetic hyperpolarization at the level of the soma is able to suppress dopamine transients. Here, we used in vivo fast-scan cyclic voltammetry to record transients evoked by cocaine and raclopride in nucleus accumbens (NAc of urethane-anesthetized rats. We targeted halorhodopsin (NpHR specifically to dopamine cells by injecting Cre-inducible virus into ventral tegmental area (VTA of transgenic rats that expressed Cre recombinase under control of the tyrosine hydroxylase promoter (TH-Cre+ rats. Consistent with previous work, co-administration of cocaine and raclopride led to the generation of dopamine transients in NAc shell. Illumination of VTA with laser strongly suppressed the frequency of transients in NpHR-expressing rats, but not in control rats. Laser did not have any effect on amplitude of transients. Thus, optogenetics can effectively reduce the occurrence of drug-evoked transients and is therefore a suitable approach for studying the functional role of such transients in drug-associated behavior.

  15. Pectoral fin beat frequency predicts oxygen consumption during spontaneous activity in a labriform swimming fish (Embiotoca lateralis)

    DEFF Research Database (Denmark)

    Tudorache, Christian; Jordan, Anders D.; Svendsen, Jon Christian

    2009-01-01

    The objective of this study was to identify kinematic variables correlated with oxygen consumption during spontaneous labriform swimming. Kinematic variables (swimming speed, change of speed, turning angle, turning rate, turning radius and pectoral fin beat frequency) and oxygen consumption (MO2......) of spontaneous swimming in Embiotoca lateralis were measured in a circular arena using video tracking and respirometry, respectively. The main variable influencing MO2 was pectoral fin beat frequency (r (2) = 0.71). No significant relationship was found between swimming speed and pectoral fin beat frequency...

  16. Spontaneous mechanical and electrical activities of human calf musculature at rest assessed by repetitive single-shot diffusion-weighted MRI and simultaneous surface electromyography.

    Science.gov (United States)

    Schwartz, Martin; Steidle, Günter; Martirosian, Petros; Ramos-Murguialday, Ander; Preißl, Hubert; Stemmer, Alto; Yang, Bin; Schick, Fritz

    2018-05-01

    Assessment of temporal and spatial relations between spontaneous mechanical activities in musculature (SMAM) at rest as revealed by diffusion-weighted imaging (DWI) and electrical muscular activities in surface EMG (sEMG). Potential influences of static and radiofrequency magnetic fields on muscular activity on sEMG measurements at rest were examined systematically. Series of diffusion-weighted stimulated echo planar imaging were recorded with concurrent sEMG measurements. Electrical activities in sEMG were analyzed by non-parametric Friedman and two-sample Kolmogorov-Smirnov test. Direct correlation of both modalities was investigated by temporal mapping of electrical activity in sEMG to DWI repetition interval. Electrical activities in sEMG and number of visible SMAMs in DWI showed a strong correlation (ρ = 0.9718). High accordance between sEMG activities and visible SMAMs in DWI in a near-surface region around sEMG electrodes was achieved. Characteristics of sEMG activities were almost similar under varying magnetic field conditions. Visible SMAMs in DWI have shown a close and direct relation to concurrent signals recorded by sEMG. MR-related magnetic fields had no significant effects on findings in sEMG. Hence, appearance of SMAMs in DWI should not be considered as imaging artifact or as effects originating from the special conditions of MR examinations. Spatial and temporal distributions of SMAMs indicate characteristics of spontaneous (microscopic) mechanical muscular action at rest. Therefore, DWI techniques should be considered as non-invasive tools for studying physiology and pathophysiology of spontaneous activities in resting muscle. Magn Reson Med 79:2784-2794, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Role of hindbrain melanocortin-4 receptor activity in controlling cardiovascular and metabolic functions in spontaneously hypertensive rats.

    Science.gov (United States)

    do Carmo, Jussara M; da Silva, Alexandre A; Hall, John E

    2015-06-01

    Although we previously demonstrated that activation of central nervous system (CNS) melanocortin3/4 receptors (MC3/4R) play a key role in blood pressure (BP) regulation, especially in spontaneously hypertensive rats (SHRs), the importance of hindbrain MC4R is still unclear. In the present study, we examined the cardiovascular and metabolic effects of chronic inhibition of MC3/4R in the hindbrain of SHRs and normotensive Wistar-Kyoto (WKY) rats. Male WKY rats (n = 6) and SHRs (n = 7) were implanted with telemetry probes to measure BP and heart rate (HR) 24 h/day, and an intracerebroventricular cannula was placed into the fourth ventricle. After 10 days of recovery and 5 days of control measurements, the MC3/4R antagonist (SHU-9119) was infused into the fourth ventricle (1 nmol/h) to antagonize hindbrain MC4R for 10 days, followed by a 5-day recovery period. Chronic hindbrain MC3/4R antagonism significantly increased food intake and body weight in WKY rats (17 ± 1 to 35 ± 2 g/day and 280 ± 8 to 353 ± 8 g) and SHRs (19 ± 2 to 35 ± 2 g/day and 323 ± 7 to 371 ± 11 g), and markedly increased fasting insulin and leptin levels while causing no changes in blood glucose levels (99 ± 4 to 87 ± 4 and 89 ± 5 to 89 ± 4 mg/dl, respectively, for WKY rats and SHRs). Chronic SHU-9119 infusion reduced mean arterial pressure and HR similarly in WKY rats (-8 ± 1 mmHg and -47 ± 3 b.p.m.) and SHRs (-11 ± 3 mmHg and -44 ± 3 b.p.m.). These results suggest that although hindbrain MC4R activity contributes to appetite and HR regulation, it does not play a major role in mediating the elevated BP in SHRs.

  18. Age-related weakening of baroreflex-mediated sympathetic activity in spontaneously hypertensive rats in response to blood pressure reduction.

    Science.gov (United States)

    Prados, P; Santa, T; Fukushima, T; Homma, H; Kasai, C; Martin, M A; del Castillo, B; Imai, K

    1998-09-01

    Nicardipine, a dihydropyridine type calcium channel blocker, was infused into 4-, 6-, and 23-wk-old spontaneously hypertensive (SH) and age-matched normotensive Wistar-Kyoto (WKY) rats (under sodium thiobutabarbital anesthesia and ventilation, n = 4) through the left femoral vein, resulting in the reduction of blood pressure. In each rat, mean arterial blood pressure, heart rate, and the concentration of plasma catecholamines (CAs), norepinephrine (NE), and epinephrine (E) were concomitantly determined, and the correlations between these three variables were studied. During the infusion of nicardipine, the plasma concentration of CAs was measured with an automatic detection system in blood samples collected from the right femoral artery of each rat. The reduction in blood pressure induced by nicardipine brought about an increase in plasma CA levels. The blood pressure correlated well with the logarithm of plasma NE or E concentration according to the formula Y= -alpha log (X) + m (Y, blood pressure; X, concentration of plasma NE or E; a, slope; and m, intercept). The slopes (as) of 6-wk-old and 23-wk-old SH rats were significantly greater than those of aged-matched WKY rats, meaning that the increment in plasma CAs in response to a decrease in blood pressure was smaller in SH than in WKY rats of similar ages. However, no significant differences were found between the as of 4-wk-old SH and WKY rats. We conclude that the increment in the baroreflex-mediated sympathetic activity in response to a drop in blood pressure induced by nicardipine is similar or greater in prehypertensive SH than in normotensive WKY 4-wk-old rats, while the increment becomes smaller in SH rats with the onset of hypertension (6-wk-old rats), and is much less in fully hypertensive adult (23-wk-old) SH rats than in age-matched WKY rats. On the basis of these findings and previous data obtained by neurography, we conclude that plasma CAs can be used to evaluate baroreflex-mediated sympathetic

  19. Primary angle-closure glaucomas disturb regional spontaneous brain activity in the visual pathway: an fMRI study

    Directory of Open Access Journals (Sweden)

    Chen W

    2017-05-01

    Full Text Available Wei Chen, Li Zhang, Yong-gen Xu, Kai Zhu, Man Luo Department of Ophthalmology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China Objective: To explore the underlying regional brain activity deficits in the visual cortex in patients with primary angle-closure glaucoma (PACG relative to normal controls (NCs using regional homogeneity (ReHo method, and its relationship with behavioral performances. Patients: Twenty PACG patients (10 females, 10 males; mean age ± standard deviation [SD]: 54.42±9.46 years and 20 age-, and sex status-matched NCs (10 females, 10 males; mean age ± SD: 53.75±9.16 years were included in this study. Measurements and results: Compared with NCs, patients with PACG showed significant atrophic peripapillary retinal nerve fiber layer (pRNFL and neuroretinal rim area, increased optic disk cup-to-disc ratio (CDR and optic disk volume (P<0.05, higher ReHo value in the left fusiform gyrus, left cerebellum anterior lobe, right frontal-temporal space, and right insula, and lower ReHo value in the bilateral middle occipital gyrus, left claustrum, and right paracentral lobule lobe. The receiver operating characteristic analysis revealed these different areas with high value of area under curve, and high degree of sensitivity and specificity. The mean beta values of these different areas were extracted. In PACG, the duration of disease showed a negative correlation with the mean beta value of left cerebellum anterior lobe (r=-0.453, P=0.045 and a positive correlation with right middle occipital gyrus (r=0.586, P=0.007; left middle occipital gyrus showed positive correlations with duration of disease (r=0.562, P=0.01 and left pRNFL (r=0.49, P=0.028; left claustrum had a positive correlation with left CDR (r=0.515, P=0.02; and right paracentral lobule lobe demonstrated a positive correlation with left pRNFL (r=0.623, P=0.003. Conclusion: PACG is involved in abnormal spontaneous brain activity in multiple

  20. Conditional firing probabilities in cultured neuronal networks: a stable underlying structure in widely varying spontaneous activity patterns

    NARCIS (Netherlands)

    le Feber, Jakob; Rutten, Wim; Stegenga, J.; Wolters, P.S.; Ramakers, G.J.A.; van Pelt, J.

    2007-01-01

    To properly observe induced connectivity changes after training sessions, one needs a network model that describes individual relationships in sufficient detail to enable observation of induced changes and yet reveals some kind of stability in these relationships. We analyzed spontaneous firing

  1. Muscarinic Long-Term Enhancement of Tonic and Phasic GABAA Inhibition in Rat CA1 Pyramidal Neurons

    Science.gov (United States)

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2016-01-01

    Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABAARs). Although, the enhancing effects of ACh on GABAARs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with post-synaptic depolarization induced a long-term enhancement of tonic GABAA currents (tGABAA) and puff-evoked GABAA currents (pGABAA). ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition) in the same PCs, without signs of interactions of synaptic responses with pGABAA and tGABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals. PMID:27833531

  2. Orexin signaling in rostral lateral hypothalamus and nucleus accumbens shell in the control of spontaneous physical activity in high- and low-activity rats.

    Science.gov (United States)

    Perez-Leighton, Claudio; Little, Morgan R; Grace, Martha; Billington, Charles; Kotz, Catherine M

    2017-03-01

    Spontaneous physical activity (SPA) describes activity outside of formal exercise and shows large interindividual variability. The hypothalamic orexin/hypocretin peptides are key regulators of SPA. Orexins drive SPA within multiple brain sites, including rostral lateral hypothalamus (LH) and nucleus accumbens shell (NAcSh). Rats with high basal SPA (high activity, HA) show higher orexin mRNA expression and SPA after injection of orexin-A in rostral LH compared with low-activity (LA) rats. Here, we explored the contribution of orexin signaling in rostral LH and NAcSh to the HA/LA phenotype. We found that HA rats have higher sensitivity to SPA after injection of orexin-A in rostral LH, but not in NAcSh. HA and LA rats showed similar levels of orexin receptor expression in rostral LH, and activation of orexin-producing neurons after orexin-A injection in rostral LH. Also, in HA and LA rats, the coinjection of orexin-A in rostral LH and NAcSh failed to further increase SPA beyond the effects of orexin-A in rostral LH. Pretreatment with muscimol, a GABA A receptor agonist, in NAcSh potentiated SPA produced by orexin-A injection in rostral LH in HA but not in LA rats. Our results suggest that a feedback loop from orexin-responsive neurons in rostral LH to orexin neurons and a the NAcSh-orexin neuron-rostral LH circuit regulate SPA. Overall, our data suggest that differences in orexin sensitivity in rostral LH and its modulation by GABA afferents from NAcSh contribute to individual SPA differences. Copyright © 2017 the American Physiological Society.

  3. MDCT urography: experience with a bi-phasic excretory phase examination protocol

    International Nuclear Information System (INIS)

    Meindl, Thomas; Coppenrath, Eva; Degenhart, Christoph; Reiser, Maximilian F.; Mueller-Lisse, Ullrich G.; Mueller-Lisse, Ulrike L.

    2007-01-01

    The benefit of multidetector computed tomographic urography (MDCTU) for visualising early and late excretory phase (EP) upper urinary tract (UUT) opacification has been studied. UUT opacification was retrospectively evaluated in 45 bi-phasic four-row MDCTU examinations. The UUT was divided into intrarenal collecting system (IRCS), proximal, middle and distal ureter. Two independent readers rated opacification: 1, none; 2, partial; 3, complete. Numbers of segments and percentages of UUTs at each score were calculated for each EP and two EPs combined. Results of a single EP and of combined EPs were compared by Wilcoxon matched-pairs signed-ranks. IRCS and proximal ureter were at least partially opacified in each EP in >95%. The middle ureter was at least partially opacified in the early and late EP in 85% and 93%, respectively. The distal ureter was opacified in 65% (49/75) in the early EP and in 78% (59/75) in the late EP. Combining two EPs, non-opacified distal segments decreased to 9% (7/75). Significant improvement between a single EP and combining two EPs were found for the middle and distal ureter (P < 0.03). Bi-phasic MDCTU substantially improved opacification of the middle and distal ureter. IRCS and proximal ureter are reliably opacified with one EP. (orig.)

  4. MDCT urography: experience with a bi-phasic excretory phase examination protocol

    Energy Technology Data Exchange (ETDEWEB)

    Meindl, Thomas; Coppenrath, Eva; Degenhart, Christoph; Reiser, Maximilian F.; Mueller-Lisse, Ullrich G. [University Munich, Department of Clinical Radiology, Munich (Germany); Mueller-Lisse, Ulrike L. [University Munich, Department of Urology, Munich (Germany)

    2007-10-15

    The benefit of multidetector computed tomographic urography (MDCTU) for visualising early and late excretory phase (EP) upper urinary tract (UUT) opacification has been studied. UUT opacification was retrospectively evaluated in 45 bi-phasic four-row MDCTU examinations. The UUT was divided into intrarenal collecting system (IRCS), proximal, middle and distal ureter. Two independent readers rated opacification: 1, none; 2, partial; 3, complete. Numbers of segments and percentages of UUTs at each score were calculated for each EP and two EPs combined. Results of a single EP and of combined EPs were compared by Wilcoxon matched-pairs signed-ranks. IRCS and proximal ureter were at least partially opacified in each EP in >95%. The middle ureter was at least partially opacified in the early and late EP in 85% and 93%, respectively. The distal ureter was opacified in 65% (49/75) in the early EP and in 78% (59/75) in the late EP. Combining two EPs, non-opacified distal segments decreased to 9% (7/75). Significant improvement between a single EP and combining two EPs were found for the middle and distal ureter (P < 0.03). Bi-phasic MDCTU substantially improved opacification of the middle and distal ureter. IRCS and proximal ureter are reliably opacified with one EP. (orig.)

  5. Role of FAT/CD36 in novel PKC isoform activation in heart of spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Klevstig, M. J.; Marková, I.; Burianová, J.; Kazdová, L.; Pravenec, Michal; Nováková, O.; Novák, F.

    2011-01-01

    Roč. 357, 1-2 (2011), s. 163-169 ISSN 0300-8177 R&D Projects: GA ČR(CZ) GD305/08/H037; GA MŠk(CZ) ME08006 Grant - others:Univerzita Karlova(CZ) SVV33779266 Institutional research plan: CEZ:AV0Z50110509 Keywords : CD36 * novel PKC * spontaneously hypertensive rat * insulin resistance Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 2.057, year: 2011

  6. Aspirin-induced AMP-activated protein kinase activation regulates the proliferation of vascular smooth muscle cells from spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Jin Young [Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr [Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of)

    2011-05-06

    Highlights: {yields} Aspirin-induced AMPK phosphorylation was greater in VSMC from SHR than WKY. {yields} Aspirin-induced AMPK phosphorylation inhibited proliferation of VSMC from SHR. {yields} Low basal AMPK phosphorylation in SHR elicits increased VSMC proliferation. {yields} Inhibition of AMPK restored decreased VSMC proliferation by aspirin in SHR. {yields} Aspirin exerts anti-proliferative effect through AMPK activation in VSMC from SHR. -- Abstract: Acetylsalicylic acid (aspirin), used to reduce risk of cardiovascular disease, plays an important role in the regulation of cellular proliferation. However, mechanisms responsible for aspirin-induced growth inhibition are not fully understood. Here, we investigated whether aspirin may exert therapeutic effects via AMP-activated protein kinase (AMPK) activation in vascular smooth muscle cells (VSMC) from wistar kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Aspirin increased AMPK and acetyl-CoA carboxylase phosphorylation in a time- and dose-dependent manner in VSMCs from WKY and SHR, but with greater efficacy in SHR. In SHR, a low basal phosphorylation status of AMPK resulted in increased VSMC proliferation and aspirin-induced AMPK phosphorylation inhibited proliferation of VSMCs. Compound C, an AMPK inhibitor, and AMPK siRNA reduced the aspirin-mediated inhibition of VSMC proliferation, this effect was more pronounced in SHR than in WKY. In VSMCs from SHR, aspirin increased p53 and p21 expression and inhibited the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. These results indicate that in SHR VSMCs aspirin exerts anti-proliferative effects through the induction of AMPK phosphorylation.

  7. Aspirin-induced AMP-activated protein kinase activation regulates the proliferation of vascular smooth muscle cells from spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Sung, Jin Young; Choi, Hyoung Chul

    2011-01-01

    Highlights: → Aspirin-induced AMPK phosphorylation was greater in VSMC from SHR than WKY. → Aspirin-induced AMPK phosphorylation inhibited proliferation of VSMC from SHR. → Low basal AMPK phosphorylation in SHR elicits increased VSMC proliferation. → Inhibition of AMPK restored decreased VSMC proliferation by aspirin in SHR. → Aspirin exerts anti-proliferative effect through AMPK activation in VSMC from SHR. -- Abstract: Acetylsalicylic acid (aspirin), used to reduce risk of cardiovascular disease, plays an important role in the regulation of cellular proliferation. However, mechanisms responsible for aspirin-induced growth inhibition are not fully understood. Here, we investigated whether aspirin may exert therapeutic effects via AMP-activated protein kinase (AMPK) activation in vascular smooth muscle cells (VSMC) from wistar kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Aspirin increased AMPK and acetyl-CoA carboxylase phosphorylation in a time- and dose-dependent manner in VSMCs from WKY and SHR, but with greater efficacy in SHR. In SHR, a low basal phosphorylation status of AMPK resulted in increased VSMC proliferation and aspirin-induced AMPK phosphorylation inhibited proliferation of VSMCs. Compound C, an AMPK inhibitor, and AMPK siRNA reduced the aspirin-mediated inhibition of VSMC proliferation, this effect was more pronounced in SHR than in WKY. In VSMCs from SHR, aspirin increased p53 and p21 expression and inhibited the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. These results indicate that in SHR VSMCs aspirin exerts anti-proliferative effects through the induction of AMPK phosphorylation.

  8. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration

    Directory of Open Access Journals (Sweden)

    Caroline E Bass

    2013-11-01

    Full Text Available There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2 on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  9. Regionally distinct phasic dopamine release patterns in the striatum during reversal learning.

    Science.gov (United States)

    Klanker, Marianne; Fellinger, Lisanne; Feenstra, Matthijs; Willuhn, Ingo; Denys, Damiaan

    2017-03-14

    Striatal dopamine (DA) plays a central role in reward-related learning and behavioral adaptation to changing environments. Recent studies suggest that rather than being broadcast as a uniform signal throughout the entire region, DA release dynamics diverge between different striatal regions. In a previous study, we showed that phasic DA release patterns in the ventromedial striatum (VMS) rapidly adapt during reversal learning. However, it is unknown how DA dynamics in the dorsolateral striatum (DLS) are modulated during such adaptive behavior. Here, we used fast-scan cyclic voltammetry to measure phasic DA release in the DLS during spatial reversal learning. In the DLS, we observed minor DA release after the onset of a visual cue signaling reward availability, followed by more pronounced DA release during more proximal reward cues (e.g., lever extension) and execution of the operant response (i.e., lever press), both in rewarded and non-rewarded trials. These release dynamics (minor DA after onset of the predictive visual cue, prominent DA during the operant response) did not change significantly during or following a reversal of response-reward contingencies. Notably, the DA increase to the lever press did not reflect a general signal related to the initiation of any motivated motor response, as we did not observe DA release when rats initiated nose pokes into the food receptacle during inter-trial intervals. This suggests that DA release in the DLS occurs selectively during the initiation and execution of a learned operant response. Together with our previous results obtained in the VMS, these findings reveal distinct phasic DA release patterns during adaptation of established behavior in DLS and VMS. The VMS DA signal, which is highly sensitive to reversal of response-reward contingences, may provide a teaching signal to guide reward-related learning and facilitate behavioral adaptation, whereas DLS DA may reflect a 'response execution signal' largely

  10. Comparative study of the antihypertensive activity of Marrubium vulgare and of the dihydropyridine calcium antagonist amlodipine in spontaneously hypertensive rat.

    Science.gov (United States)

    El Bardai, Sanae; Lyoussi, Badiaa; Wibo, Maurice; Morel, Nicole

    2004-08-01

    Water extract of Marrubium vulgare is widely used as antihypertensive treatment in folk medicine. We have compared the effect of 10-week-long treatment with amlodipine or Marrubium water extract on systolic blood pressure (SBP), cardiovascular remodeling and vascular relaxation in spontaneously hypertensive rats (SHR). Both treatments produced similar decrease in SBP. Amlodipine treatment reduced left ventricle, aortic and mesenteric artery weight. Marrubium treatment had a significant antihypertrophic effect in aorta only. Relaxation to acetylcholine (ACh) of mesenteric artery was improved by Marrubium but not by amlodipine treatment. These results demonstrate that, in addition to its antihypertensive effect, Marrubium water extract improved the impaired endothelial function in SHR.

  11. Electrical Responses and Spontaneous Activity of Human iPS-Derived Neuronal Networks Characterized for 3-month Culture with 4096-Electrode Arrays.

    Science.gov (United States)

    Amin, Hayder; Maccione, Alessandro; Marinaro, Federica; Zordan, Stefano; Nieus, Thierry; Berdondini, Luca

    2016-01-01

    The recent availability of human induced pluripotent stem cells (hiPSCs) holds great promise as a novel source of human-derived neurons for cell and tissue therapies as well as for in vitro drug screenings that might replace the use of animal models. However, there is still a considerable lack of knowledge on the functional properties of hiPSC-derived neuronal networks, thus limiting their application. Here, upon optimization of cell culture protocols, we demonstrate that both spontaneous and evoked electrical spiking activities of these networks can be characterized on-chip by taking advantage of the resolution provided by CMOS multielectrode arrays (CMOS-MEAs). These devices feature a large and closely-spaced array of 4096 simultaneously recording electrodes and multi-site on-chip electrical stimulation. Our results show that networks of human-derived neurons can respond to electrical stimulation with a physiological repertoire of spike waveforms after 3 months of cell culture, a period of time during which the network undergoes the expression of developing patterns of spontaneous spiking activity. To achieve this, we have investigated the impact on the network formation and on the emerging network-wide functional properties induced by different biochemical substrates, i.e., poly-dl-ornithine (PDLO), poly-l-ornithine (PLO), and polyethylenimine (PEI), that were used as adhesion promoters for the cell culture. Interestingly, we found that neuronal networks grown on PDLO coated substrates show significantly higher spontaneous firing activity, reliable responses to low-frequency electrical stimuli, and an appropriate level of PSD-95 that may denote a physiological neuronal maturation profile and synapse stabilization. However, our results also suggest that even 3-month culture might not be sufficient for human-derived neuronal network maturation. Taken together, our results highlight the tight relationship existing between substrate coatings and emerging network

  12. The GABAA Antagonist DPP-4-PIOL Selectively Antagonises Tonic over Phasic GABAergic Currents in Dentate Gyrus Granule Cells

    DEFF Research Database (Denmark)

    Boddum, Kim; Frølund, Bente; Kristiansen, Uffe

    2014-01-01

    that phasic and tonic GABAA receptor currents can be selectively inhibited by the antagonists SR 95531 and the 4-PIOL derivative, 4-(3,3-diphenylpropyl)-5-(4-piperidyl)-3-isoxazolol hydrobromide (DPP-4-PIOL), respectively. In dentate gyrus granule cells, SR 95531 was found approximately 4 times as potent...

  13. Effects of dietary tryptophan and phenylalanine–tyrosine depletion on phasic alertness in healthy adults – A pilot study

    Directory of Open Access Journals (Sweden)

    Patricia Hildebrand

    2015-04-01

    Full Text Available Background: The synthesis of the neurotransmitters serotonin (5-HT and dopamine (DA in the brain can be directly altered by dietary manipulation of their relevant precursor amino acids (AA. There is evidence that altered serotonergic and dopaminergic neurotransmission are both associated with impaired attentional control. Specifically, phasic alertness is one specific aspect of attention that has been linked to changes in 5-HT and DA availability in different neurocircuitries related to attentional processes. The present study investigated the impact of short-term reductions in central nervous system 5-HT and DA synthesis, which was achieved by dietary depletion of the relevant precursor AA, on phasic alertness in healthy adult volunteers; body weight–adapted dietary tryptophan and phenylalanine–tyrosine depletion (PTD techniques were used. Methods: The study employed a double-blind between-subject design. Fifty healthy male and female subjects were allocated to three groups in a randomized and counterbalanced manner and received three different dietary challenge conditions: acute tryptophan depletion (ATD, for the depletion of 5-HT; N=16, PTD (for the depletion of DA; N=17, and a balanced AA load (BAL; N=17, which served as a control condition. Three hours after challenge intake (ATD/PTD/BAL, phasic alertness was assessed using a standardized test battery for attentional performance (TAP. Blood samples for AA level analyses were obtained at baseline and 360 min after the challenge intake. Results: Overall, there were no significant differences in phasic alertness for the different challenge conditions. Regarding PTD administration, a positive correlation between the reaction times and the DA-related depletion magnitude was detected via the lower plasma tyrosine levels and the slow reaction times of the first run of the task. In contrast, higher tryptophan concentrations were associated with slower reaction times in the fourth run of the

  14. Echocardiographic and hemodynamic determinants of right coronary artery flow reserve and phasic flow pattern in advanced non-ischemic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Mady Charles

    2007-09-01

    Full Text Available Abstract Background In patients with advanced non-ischemic cardiomyopathy (NIC, right-sided cardiac disturbances has prognostic implications. Right coronary artery (RCA flow pattern and flow reserve (CFR are not well known in this setting. The purpose of this study was to assess, in human advanced NIC, the RCA phasic flow pattern and CFR, also under right-sided cardiac disturbances, and compare with left coronary circulation. As well as to investigate any correlation between the cardiac structural, mechanical and hemodynamic parameters with RCA phasic flow pattern or CFR. Methods Twenty four patients with dilated severe NIC were evaluated non-invasively, even by echocardiography, and also by cardiac catheterization, inclusive with Swan-Ganz catheter. Intracoronary Doppler (Flowire data was obtained in RCA and left anterior descendent coronary artery (LAD before and after adenosine. Resting RCA phasic pattern (diastolic/systolic was compared between subgroups with and without pulmonary hypertension, and with and without right ventricular (RV dysfunction; and also with LAD. RCA-CFR was compared with LAD, as well as in those subgroups. Pearson's correlation analysis was accomplished among echocardiographic (including LV fractional shortening, mass index, end systolic wall stress more hemodynamic parameters with RCA phasic flow pattern or RCA-CFR. Results LV fractional shortening and end diastolic diameter were 15.3 ± 3.5 % and 69.4 ± 12.2 mm. Resting RCA phasic pattern had no difference comparing subgroups with vs. without pulmonary hypertension (1.45 vs. 1.29, p = NS either with vs. without RV dysfunction (1.47 vs. 1.23, p = NS; RCA vs. LAD was 1.35 vs. 2.85 (p Conclusion In patients with chronic advanced NIC, RCA phasic flow pattern has a mild diastolic predominance, less marked than in LAD, with no effects from pulmonary artery hypertension or RV dysfunction. There is no significant correlation between any cardiac mechanical-structural or

  15. Experimental investigation on spontaneously active hippocampal cultures recorded by means of high-density MEAs: analysis of the spatial resolution effects

    Directory of Open Access Journals (Sweden)

    Alessandro Maccione

    2010-05-01

    Full Text Available Based on experiments performed with high-resolution Active Pixel Sensor microelectrode arrays (APS-MEAs coupled with spontaneously active hippocampal cultures, this work investigates the spatial resolution effects of the neuroelectronic interface on the analysis of the recorded electrophysiological signals. The adopted methodology consists, first, in recording the spontaneous activity at the highest spatial resolution (inter-electrode separation of 21 µm from the whole array of 4096 microelectrodes. Then, the full resolution dataset is spatially down sampled in order to evaluate the effects on raster plot representation, array-wide spike rate (AWSR, mean firing rate (MFR and mean bursting rate (MBR. Furthermore, the effects of the array-to-network relative position are evaluated by shifting a subset of equally spaced electrodes on the entire recorded area. Results highlight that MFR and MBR are particularly influenced by the spatial resolution provided by the neuroelectronic interface. On high-resolution large MEAs, such analysis better represent the time-based parameterization of the network dynamics. Finally, this work suggest interesting capabilities of high-resolution MEAs for spatial-based analysis in dense and low-dense neuronal preparation for investigating signalling at both local and global neuronal circuitries.

  16. Effect of inactivity and passive stretch on protein turnover in phasic and postural rat muscles

    Energy Technology Data Exchange (ETDEWEB)

    Loughna, P.; Goldspink, G.; Goldspink, D.F.

    1986-07-01

    Muscle atrophy in humans can occur during prolonged bed rest, plaster cast immobilization, and space flight. In the present study, the suspension model used by Musacchia et al. (1983) is employed to investigate changes in protein synthesis and degradation in fast-twitch phasic (extensor digitorum longus) and slow-twitch postural (soleus) muscles in the rat, following hypokinesia and hypodynamia. In addition, the use of passive stretch was examined as a means of preventing atrophy. The obtained results suggest that the mechanisms controlling the processes of protein synthesis and protein breakdown during muscle disuse atrophy may be independent of each other. It appears, however, that the muscle atrophy due to hypokinesia and hypodynamia can be temporarily prevented by passively stretching a muscle. 38 references.

  17. Involvement of cyclic nucleotide-gated channels in spontaneous activity generated in isolated interstitial cells of Cajal from the rabbit urethra.

    Science.gov (United States)

    Sancho, Maria; Bradley, Eamonn; Garcia-Pascual, Angeles; Triguero, Domingo; Thornbury, Keith D; Hollywood, Mark A; Sergeant, Gerard P

    2017-11-05

    Cyclic nucleotide-gated (CNG) channels are non-selective cation channels that mediate influx of extracellular Na + and Ca 2+ in various cell types. L-cis-Diltiazem, a CNG channel blocker, inhibits contraction of urethral smooth muscle (USM), however the mechanisms underlying this effect are still unclear. We investigated the possibility that CNG channels contribute to spontaneous pacemaker activity in freshly isolated interstitial cells of Cajal (ICC) isolated from the rabbit urethra (RUICC). Using immunocytochemistry, we found intense CNG1-immunoreactivity in vimentin-immunoreactive RUICC, mainly within patches of the cellular body and processes. In contrast, α-actin immunoreactive smooth muscle cells (SMC) did not show significant reactivity to a specific CNGA1 antibody. Freshly isolated RUICC, voltage clamped at -60mV, developed spontaneous transient inward currents (STICs) that were inhibited by L-cis-Diltiazem (50µM). Similarly, L-cis-Diltiazem (50µM) also inhibited Ca 2+ waves in isolated RUICC, recorded using a Nipkow spinning disk confocal microscope. L-cis-Diltiazem (50µM) did not affect caffeine (10mM)-induced Ca 2+ transients, but significantly reduced phenylephrine-evoked Ca 2+ oscillations and inward currents in in RUICC. L-type Ca 2+ current amplitude in isolated SMC was reduced by ~18% in the presence of L-cis-Diltiazem (50µM), however D-cis-Diltiazem, a recognised L-type Ca 2+ channel blocker, abolished L-type Ca 2+ current but did not affect Ca 2+ waves or STICs in RUICC. These results indicate that the effects of L-cis-diltiazem on rabbit USM could be mediated by inhibition of CNG1 channels that are present in urethral ICC and therefore CNG channels contribute to spontaneous activity in these cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Phasic excitation of ventral tegmental dopamine neurons potentiates the initiation of conditioned approach behavior: parametric and reinforcement-schedule analyses.

    Science.gov (United States)

    Ilango, Anton; Kesner, Andrew J; Broker, Carl J; Wang, Dong V; Ikemoto, Satoshi

    2014-01-01

    Midbrain dopamine neurons are implicated in motivation and learning. However, it is unclear how phasic excitation of dopamine neurons, which is implicated in learning, is involved in motivation. Here we used a self-stimulation procedure to examine how mice seek for optogenetically-induced phasic excitation of dopamine neurons, with an emphasis on the temporal dimension. TH-Cre transgenic mice received adeno-associated viral vectors encoding channelrhodopsin-2 into the ventral tegmental area, resulting in selective expression of the opsin in dopamine neurons. These mice were trained to press on a lever for photo-pulse trains that phasically excited dopamine neurons. They learned to self-stimulate in a fast, constant manner, and rapidly reduced pressing during extinction. We first determined effective parameters of photo-pulse trains in self-stimulation. Lever-press rates changed as a function of the manipulation of pulse number, duration, intensity, and frequency. We then examined effects of interval and ratio schedules of reinforcement on photo-pulse train reinforcement, which was contrasted with food reinforcement. Reinforcement with food inhibited lever pressing for a few seconds, after which pressing was robustly regulated in a goal-directed manner. In contrast, phasic excitation of dopamine neurons robustly potentiated the initiation of lever pressing; however, this effect did not last more than 1 s and quickly diminished. Indeed, response rates markedly decreased when lever pressing was reinforced with inter-reinforcement interval schedules of 3 or 10 s or ratio schedules requiring multiple responses per reinforcement. Thus, phasic excitation of dopamine neurons briefly potentiates the initiation of approach behavior with apparent lack of long-term motivational regulation.

  19. Phasic excitation of ventral tegmental dopamine neurons potentiates the initiation of conditioned approach behavior: parametric and reinforcement-schedule analyses

    Science.gov (United States)

    Ilango, Anton; Kesner, Andrew J.; Broker, Carl J.; Wang, Dong V.; Ikemoto, Satoshi

    2014-01-01

    Midbrain dopamine neurons are implicated in motivation and learning. However, it is unclear how phasic excitation of dopamine neurons, which is implicated in learning, is involved in motivation. Here we used a self-stimulation procedure to examine how mice seek for optogenetically-induced phasic excitation of dopamine neurons, with an emphasis on the temporal dimension. TH-Cre transgenic mice received adeno-associated viral vectors encoding channelrhodopsin-2 into the ventral tegmental area, resulting in selective expression of the opsin in dopamine neurons. These mice were trained to press on a lever for photo-pulse trains that phasically excited dopamine neurons. They learned to self-stimulate in a fast, constant manner, and rapidly reduced pressing during extinction. We first determined effective parameters of photo-pulse trains in self-stimulation. Lever-press rates changed as a function of the manipulation of pulse number, duration, intensity, and frequency. We then examined effects of interval and ratio schedules of reinforcement on photo-pulse train reinforcement, which was contrasted with food reinforcement. Reinforcement with food inhibited lever pressing for a few seconds, after which pressing was robustly regulated in a goal-directed manner. In contrast, phasic excitation of dopamine neurons robustly potentiated the initiation of lever pressing; however, this effect did not last more than 1 s and quickly diminished. Indeed, response rates markedly decreased when lever pressing was reinforced with inter-reinforcement interval schedules of 3 or 10 s or ratio schedules requiring multiple responses per reinforcement. Thus, phasic excitation of dopamine neurons briefly potentiates the initiation of approach behavior with apparent lack of long-term motivational regulation. PMID:24834037

  20. Phasic excitation of ventral tegmental dopamine neurons potentiates the initiation of conditioned approach behavior: Parametric and reinforcement-schedule analyses

    Directory of Open Access Journals (Sweden)

    Anton eIlango

    2014-05-01

    Full Text Available Midbrain dopamine neurons are implicated in motivation and learning. However, it is unclear how phasic excitation of dopamine neurons, which is implicated in learning, is involved in motivation. Here we used a self-stimulation procedure to examine how mice seek for optogenetically-induced phasic excitation of dopamine neurons, with an emphasis on the temporal dimension. TH-Cre transgenic mice received adeno-associated viral vectors encoding channelrhodopsin-2 into the ventral tegmental area, resulting in selective expression of the opsin in dopamine neurons. These mice were trained to press on a lever for photo-pulse trains that phasically excited dopamine neurons. They learned to self-stimulate in a fast, constant manner, and rapidly reduced pressing during extinction. We first determined effective parameters of photo-pulse trains in self-stimulation. Lever-press rates changed as a function of the manipulation of pulse number, duration, intensity and frequency. We then examined effects of interval and ratio schedules of reinforcement on photo-pulse train reinforcement, which was contrasted with food reinforcement. Reinforcement with food inhibited lever pressing for a few seconds, after which pressing was robustly regulated in a goal-directed manner. In contrast, phasic excitation of dopamine neurons robustly potentiated the initiation of lever pressing; however, this effect did not last more than 1 s and quickly diminished. Indeed, response rates markedly decreased when lever pressing was reinforced with inter-reinforcement interval schedules of 3 or 10 s or ratio schedules requiring multiple responses per reinforcement. Thus, phasic excitation of dopamine neurons briefly potentiates the initiation of approach behavior with apparent lack of long-term motivational regulation.

  1. BK channel activation by NS11021 decreases excitability and contractility of urinary bladder smooth muscle

    DEFF Research Database (Denmark)

    Layne, Jeffrey J; Nausch, Bernhard; Olesen, Søren-Peter

    2009-01-01

    reduction was blocked by pretreatment with the BK channel blocker iberiotoxin. NS11021 (3 microM) had no effect on contractions evoked by nerve stimulation. These findings indicate that activating BK channels reduces the force of UBSM spontaneous phasic contractions, principally through decreasing......Large-conductance Ca(2+)-activated potassium (BK) channels play an important role in regulating the function and activity of urinary bladder smooth muscle (UBSM), and the loss of BK channel function has been shown to increase UBSM excitability and contractility. However, it is not known whether...... activation of BK channels has the converse effect of reducing UBSM excitability and contractility. Here, we have sought to investigate this possibility by using the novel BK channel opener NS11021. NS11021 (3 microM) caused an approximately threefold increase in both single BK channel open probability (P...

  2. Glycine and GABAA receptors mediate tonic and phasic inhibitory processes that contribute to prepulse inhibition in the goldfish startle network

    Directory of Open Access Journals (Sweden)

    Paul C.P. Curtin

    2015-03-01

    Full Text Available Prepulse inhibition (PPI is understood as an inhibitory process that attenuates sensory flow during early stages (20-1000ms of information processing. Here, we applied in vivo electrophysiology and pharmacology to determine if prepulse inhibition (PPI is mediated by glycine receptors (GlyRs and/or GABAA receptors (GABAARs in the goldfish auditory startle circuit. Specifically, we used selective antagonists to dissect the contributions of target receptors on sound-evoked postsynaptic potentials (PSPs recorded in the neurons that initiate startle, the Mauthner-cells (M-cell. We found that strychnine, a GlyR antagonist, disrupted a fast-activated (5 ms and rapidly (< 50ms decaying (feed-forward inhibitory process that disrupts PPI at 20 ms prepulse/pulse inter-stimulus intervals (ISI. Additionally we observed increases of the evoked postsynaptic potential (PSP peak amplitude (+87.43 ± 21.53%; N=9 and duration (+204 ± 48.91%, N=9. In contrast, treatment with bicuculline, a GABAAR antagonist, caused a general reduction in PPI across all tested ISIs (20-500 ms, essentially eliminating PPI at ISIs from 20-100 ms. Bicuculline also increased PSP peak amplitude (+133.8 ± 10.3%, N=5 and PSP duration (+284.95 ± 65.64%, N=5. Treatment with either antagonist also tonically increased post-synaptic excitability in the M-cells, reflected by an increase in the magnitude of antidromically-evoked action potentials (APs by 15.07 ± 3.21%, N=7 and 16.23 ± 7.08%, N=5 for strychnine and bicuculline, respectively. These results suggest that GABAARs and GlyRs are functionally segregated to short- and longer-lasting sound-evoked (phasic inhibitory processes that contribute to PPI, with the mediation of tonic inhibition by both receptor systems being critical for gain control within the M-cell startle circuit.

  3. Effect of galantamine on the human α7 neuronal nicotinic acetylcholine receptor, the Torpedo nicotinic acetylcholine receptor and spontaneous cholinergic synaptic activity

    Science.gov (United States)

    Texidó, Laura; Ros, Esteve; Martín-Satué, Mireia; López, Susana; Aleu, Jordi; Marsal, Jordi; Solsona, Carles

    2005-01-01

    Various types of anticholinesterasic agents have been used to improve the daily activities of Alzheimer's disease patients. It was recently demonstrated that Galantamine, described as a molecule with anticholinesterasic properties, is also an allosteric enhancer of human α4β2 neuronal nicotinic receptor activity. We explored its effect on the human α7 neuronal nicotinic acetylcholine receptor (nAChR) expressed in Xenopus oocytes. Galantamine, at a concentration of 0.1 μM, increased the amplitude of acetylcholine (ACh)-induced ion currents in the human α7 nAChR expressed in Xenopus oocytes, but caused inhibition at higher concentrations. The maximum effect of galantamine, an increase of 22% in the amplitude of ACh-induced currents, was observed at a concentration of 250 μM Ach. The same enhancing effect was obtained in oocytes transplanted with Torpedo nicotinic acetylcholine receptor (AChR) isolated from the electric organ, but in this case the optimal concentration of galantamine was 1 μM. In this case, the maximum effect of galantamine, an increase of 35% in the amplitude of ACh-induced currents, occurred at a concentration of 50 μM ACh. Galantamine affects not only the activity of post-synaptic receptors but also the activity of nerve terminals. At a concentration of 1 μM, quantal spontaneous events, recorded in a cholinergic synapse, increased their amplitude, an effect which was independent of the anticholinesterasic activity associated with this compound. The anticholinesterasic effect was recorded in preparations treated with a galantamine concentration of 10 μM. In conclusion, our results show that galantamine enhances human α7 neuronal nicotinic ACh receptor activity. It also enhances muscular AChRs and the size of spontaneous cholinergic synaptic events. However, only a very narrow range of galantamine concentrations can be used for enhancing effects. PMID:15834443

  4. Effect of effective mass and spontaneous polarization on photocatalytic activity of wurtzite and zinc-blende ZnS

    Directory of Open Access Journals (Sweden)

    Ming Dong

    2015-10-01

    Full Text Available Semiconductor zinc sulphide (ZnS has two common phases: hexagonal wurtzite and cubic zinc-blende structures. The crystal structures, energy band structures, density of states (DOS, bond populations, and optical properties of wurtzite and zinc-blende ZnS were investigated by the density functional theory of first-principles. The similar band gaps and DOS of wurtzite and zinc-blende ZnS were found and implied the similarities in crystal structures. However, the distortion of ZnS4 tetrahedron in wurtzite ZnS resulted in the production of spontaneous polarization and internal electric field, which was beneficial for the transfer and separation of photogenerated electrons and holes.

  5. Altered neuronal spontaneous activity correlates with glutamate concentration in medial prefrontal cortex of major depressed females: An fMRI-MRS study.

    Science.gov (United States)

    Zhang, Xiaoliu; Tang, Yingying; Maletic-Savatic, Mirjana; Sheng, Jianhua; Zhang, Xuanhong; Zhu, Yajing; Zhang, Tianhong; Wang, Junjie; Tong, Shanbao; Wang, Jijun; Li, Yao

    2016-09-01

    Major depressive disorder (MDD) is twice more prevalent in females than in males. Yet, there have only been a few studies on the functional brain activity in female MDD patients and the detailed mechanisms underlying their neurobiology merit further investigations. In the present work, we used combined fMRI-MRS methods to investigate the altered intrinsic neuronal activity and its association with neurotransmitter concentration in female MDD patients. The whole brain amplitude of low frequency fluctuation (ALFF) analysis using resting state functional magnetic resonance imaging (fMRI) was performed to explore the alteration of intrinsic neuronal signals in MDD females (n=11) compared with female healthy controls (n=11). With a specific interest in the medial prefrontal cortex (mPFC) area, we quantified the concentration of amino acid neurotransmitters including GABA ((r-aminobutyric acid)), Glu (Glutamate), and Glx (Glutamate + Glutamine) using (1)H-MRS technology. Moreover, we conducted Pearson correlation analysis between the ALFF value and neurotransmitter concentration to find out the functional-biochemical relation in mPFC area. The relationship between the metabolites concentration and MDD symptomatology was also examined through Spearman correlation analysis. We found that the female MDD patients showed increased neuronal spontaneous activity in left medial prefrontal cortex (mPFC) and left middle frontal cortex, with decreased ALFF level in right putamen and right middle temporal cortex (pconcentration in female MDD patients (r=0.67, p=0.023). The Glu concentration in mPFC was positively correlated with patients HAMA scores (r=0.641, p=0.033). The relatively small sample size, metabolite information acquired only in mPFC and not all patients were unmedicated are the major limitations of our study. Using combined fMRI-MRS methods, we found increased spontaneous neuronal activity was correlated with Glu concentration in mPFC of female MDD patients. Other

  6. Preclinical study of selective thermal neutron capture treatment of pigs having spontaneous melanoma using melanin productive activity

    International Nuclear Information System (INIS)

    Miyashita, Ichiro; Sawaya, Hiroshi; Nomura, Toyoichiro

    1980-01-01

    Four pigs having spontaneous melanoma were irradiated with 0.5 - 2 x 10 13 n/cm 2 of thermal neutron under remote anesthesia. Compounds of 10 B used in this experiment were 10 B 12 -chlorpromazine ( 10 B 12 -CPZ), 10 B-dopa, and 10 B 1 -para-boronophenylalanine ( 10 B 1 -BPA), and they were injected into melanoma or regions around melanoma. After irradiation of thermal neutron, melanoma tended to reduce in four pigs, and melanoma cells in white fur and hair bulb disappeared in 3 of 4 pigs. Hematological examinations and blood chemistry tests did not show any changes in blood findings both before and after the irradiation, and white blood cell counts were within a normal range. Dermatitis following the irradiation disappeared one week later. Histological changes one month after the irradiation indicated that many melanophages feeding melanosome replaced melanoma cells, which suggested disintegration of melanoma cells. Marked effectiveness of this treatment was recognized in each pig. 10 B-BPA.HCI was injected into one pig twice, and its accumulation in melanoma and normal regions around melanoma was expressed as boron concentrations. As a result, the accumulation in melanoma (6.6 μg/g wet tissue) was 3.1 times as much as that in normal regions around melanoma (2.1 μg/g wet tissue). (Tsunoda, M.)

  7. Altered spontaneous brain activity pattern in patients with high myopia using amplitude of low-frequency fluctuation: a resting-state fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2016-11-01

    Full Text Available Xin Huang,1,2,* Fu-Qing Zhou,3,* Yu-Xiang Hu,1 Xiao-Xuan Xu,1 Xiong Zhou,4 Yu-Lin Zhong,1 Jun Wang,4 Xiao-Rong Wu1 1Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 2Department of Ophthalmology, The First People’s Hospital of Jiujiang City, Jiujiang, 3Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, 4Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, People’s Republic of China *These authors contributed equally to this work Objective: Many previous reports have demonstrated significant neural anatomy changes in the brain of high myopic (HM patients, whereas the spontaneous brain activity changes in the HM patients at rest are not well studied. Our objective was to use amplitude of low-frequency fluctuation (ALFF method to investigate the changes in spontaneous brain activity in HM patients and their relationships with clinical features. Methods: A total of 38 patients with HM (17 males and 21 females and 38 healthy controls (HCs (17 males and 21 females closely matched in age, sex, and education underwent resting-state functional magnetic resonance imaging scans. The ALFF method was used to assess local features of spontaneous brain activity. The relationship between the mean ALFF signal values in many brain regions and the clinical features in HM patients was calculated by correlation analysis. Results: Compared with HCs, the HM patients had significantly lower ALFF in the right inferior and middle temporal gyrus, left middle temporal gyrus, left inferior frontal gyrus/putamen, right inferior frontal gyrus/putamen/insula, right middle frontal gyrus, and right inferior parietal lobule and higher ALFF values in the bilateral midcingulate cortex, left postcentral gyrus, and left precuneus/inferior parietal lobule. However, no relationship was found between the mean ALFF

  8. Disturbed spontaneous brain activity pattern in patients with primary angle-closure glaucoma using amplitude of low-frequency fluctuation: a fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2015-07-01

    Full Text Available Xin Huang,1,* Yu-Lin Zhong,1,* Xian-Jun Zeng,2 Fuqing Zhou,2 Xin-Hua Liu,1 Pei-Hong Hu,1 Chong-Gang Pei,1 Yi Shao,1 Xi-Jian Dai21Department of Ophthalmology, 2Department of Radiology, The First Affiliated Hospital of Nanchang University, Nangchang, Jiangxi, People’s Republic of China*These authors contributed equally to this workObjective: The aim of this study is to use amplitude of low-frequency fluctuation (ALFF as a method to explore the local features of spontaneous brain activity in patients with primary angle -closure glaucoma (PACG and ALFFs relationship with the behavioral performances.Methods: A total of twenty one patients with PACG (eight males and 13 females, and twenty one healthy subjects (nine males and twelve females closely matched in age, sex, and education, each underwent a resting-state functional magnetic resonance imaging scan. The ALFF method was used to assess the local features of spontaneous brain activity. The correlation analysis was used to explore the relationships between the observed mean ALFF signal values of the different areas in PACG patients and the thickness of the retinal nerve fiber layer (RNFL. Results: Compared with the healthy subjects, patients with PACG had significant lower ALFF areas in the left precentral gyrus, bilateral middle frontal gyrus, bilateral superior frontal gyrus, right precuneus, and right angular gyrus, and higher areas in the right precentral gyrus. In the PACG group, there were significant negative correlations between the mean ALFF signal value of the right middle frontal gyrus and the left mean RNFL thickness (r=-0.487, P=0.033, and between the mean ALFF signal value of the left middle frontal gyrus and the right mean RNFL thickness (r=-0.504, P=0.020. Conclusion: PACG mainly involved in the dysfunction in the frontal lobe, which may reflect the underlying pathologic mechanism of PACG.Keywords: angle-closure glaucoma, amplitude of low-frequency fluctuation, functional

  9. Blockade of persistent sodium currents contributes to the riluzole-induced inhibition of spontaneous activity and oscillations in injured DRG neurons.

    Directory of Open Access Journals (Sweden)

    Rou-Gang Xie

    Full Text Available In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (I(NaP. The I(NaP is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG is the gateway for ectopic impulses that originate in pathological pain signals from the periphery. However, the role of I(NaP in DRG neurons remains unclear, particularly in neuropathic pain states. Using in vivo recordings from single medium- and large-diameter fibers isolated from the compressed DRG in Sprague-Dawley rats, we show that local application of riluzole, which blocks the I(NaP, also inhibits the spontaneous activity of A-type DRG neurons in a dose-dependent manner. Significantly, riluzole also abolished subthreshold membrane potential oscillations (SMPOs, although DRG neurons still responded to intracellular current injection with a single full-sized spike. In addition, the I(NaP was enhanced in medium- and large-sized neurons of the compressed DRG, while bath-applied riluzole significantly inhibited the I(NaP without affecting the transient sodium current (I(NaT. Taken together, these results demonstrate for the first time that the I(NaP blocker riluzole selectively inhibits I(NaP and thereby blocks SMPOs and the ectopic spontaneous activity of injured A-type DRG neurons. This suggests that the I(NaP of DRG neurons is a potential target for treating neuropathic pain at the peripheral level.

  10. Spontaneous pneumothorax in weightlifters.

    Science.gov (United States)

    Marnejon, T; Sarac, S; Cropp, A J

    1995-06-01

    Spontaneous pneumothorax is infrequently caused by strenuous exertion. To our knowledge there has only been one case of spontaneous pneumothorax associated with weightlifting reported in the medical literature. We describe three consecutive cases of spontaneous pneumothorax associated with weightlifting. We postulate that spontaneous pneumothorax in these patients may be secondary to improper breathing techniques. It is important that physicians and weight trainers be aware of the association between weight lifting and spontaneous pneumothorax and assure that proper instruction is given to athletes who work with weights.

  11. Assessment of the ability of CT urography with low-dose multi-phasic excretory phases for opacification of the urinary system

    OpenAIRE

    Juri, Hiroshi; Tsuboyama, Takahiro; Koyama, Mitsuhiro; Yamamoto, Kiyohito; Nakai, Go; Nakamoto, Atsushi; Yamamoto, Kazuhiro; Azuma, Haruhito; Narumi, Yoshifumi

    2017-01-01

    Objective To prospectively evaluate the ability of CT urography with a low-dose multi-phasic excretory phase for opacification of the urinary system. Materials and methods Thirty-two patients underwent CT urography with low-dose multi-phasic s using adaptive iterative dose reduction 3D acquired at 5-, 10-, and 15-minute delays. Opacification scores of the upper urinary tracts and the urinary bladder were assigned for each excretory phase by two radiologists, who recorded whether adequate (>75...

  12. Anti-hypertensive and cardioprotective effects of a novel apitherapy formulation via upregulation of peroxisome proliferator-activated receptor-α and -γ in spontaneous hypertensive rats

    Directory of Open Access Journals (Sweden)

    Yanru Sun

    2018-02-01

    Full Text Available Ventricular remodeling is associated with many heart diseases, and ventricular remodeling induced by hypertension can be fatal independent of hypertension. In this study, we prepared a novel apitherapy formulation, designated Bao-Yuan-Ling (BYL, which contained propolis, royal jelly, and bee venom, to treat spontaneous hypertensive rats (SHRs. We then evaluated the pharmacology of BYL and the potential mechanisms through which BYL affects hypertension and ventricular remodeling. We found that BYL treatment could reduce blood pressure in SHRs. Thereafter, we found that BYL treatment reduced serum levels of angiotensin II, endothelin 1, and transforming growth factor-β and improved the myocardial structure. Moreover, the results of quantitative real-time polymerase chain reaction indicated that BYL treatment could upregulate the mRNA expression of peroxisome proliferator-activated receptor (PPAR-α and PPAR-γ. Thus, we could conclude that BYL had hypotensive and cardioprotective effects in SHRs, potentially through improvement of myocardial energy metabolism.

  13. Anti-hypertensive and cardioprotective effects of a novel apitherapy formulation via upregulation of peroxisome proliferator-activated receptor-α and -γ in spontaneous hypertensive rats.

    Science.gov (United States)

    Sun, Yanru; Han, Mingfeng; Shen, Zhenhuang; Huang, Haibo; Miao, Xiaoqing

    2018-02-01

    Ventricular remodeling is associated with many heart diseases, and ventricular remodeling induced by hypertension can be fatal independent of hypertension. In this study, we prepared a novel apitherapy formulation, designated Bao-Yuan-Ling (BYL), which contained propolis, royal jelly, and bee venom, to treat spontaneous hypertensive rats (SHRs). We then evaluated the pharmacology of BYL and the potential mechanisms through which BYL affects hypertension and ventricular remodeling. We found that BYL treatment could reduce blood pressure in SHRs. Thereafter, we found that BYL treatment reduced serum levels of angiotensin II, endothelin 1, and transforming growth factor-β and improved the myocardial structure. Moreover, the results of quantitative real-time polymerase chain reaction indicated that BYL treatment could upregulate the mRNA expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ. Thus, we could conclude that BYL had hypotensive and cardioprotective effects in SHRs, potentially through improvement of myocardial energy metabolism.

  14. A contribution to the study of spontaneous and evoked electrical activities of the adult rabbit hypothalamus and application of digital analysis

    International Nuclear Information System (INIS)

    Lasmoles, Francoise

    1974-01-01

    The spontaneous and evoked electrical activities of the hypothalamus were studied in 18 adult rabbits chronically implanted with electrodes. The graphic study of the EEG was completed by digital analyses of the signal considered as a random process and processed both by statistical analysis in order to know the distribution function of the signal amplitude and harmonic analysis allowing classification of power density spectra by the calculation of the autocorrelation function and its Fourier transform. Absolute values and percentage of energy distribution were obtained from 0 to 40 Hz for each frequency rate (0.25 Hz) and in various frequency bands (0-3, 3-6, 7-9, 9-15, 15-20, 20-30 and 30-40 Hz). The experimental methods (electrode implantation, data acquisition and processing) are described: 240 sequences corresponding to stable physiological states were analyzed after analogical-digital conversion (sampling rate: 10 ms, period of integration: 20 s). Whatever the state of vigilance, the hypothalamus had a fairly homogeneous function different from the spontaneous electrical activity of the cortex. The signal characteristics both in amplitude and frequency allowed to distinguish the hypothalamic areas studied (supra-optic area, mammillary body, postero-lateral hypothalamus). The results were reproducible and verified the information supplied by visual examination of the EEG. Following light stimulus, the evoked potentials were collected in the hypothalamus; there should therefore be convergence, yet since the answers are unstable and long latent, the neuronal paths followed by the impulse must not be direct. (author) [fr

  15. Spontaneous neural activity in the right superior temporal gyrus and left middle temporal gyrus is associated with insight level in obsessive-compulsive disorder.

    Science.gov (United States)

    Fan, Jie; Zhong, Mingtian; Gan, Jun; Liu, Wanting; Niu, Chaoyang; Liao, Haiyan; Zhang, Hongchun; Tan, Changlian; Yi, Jinyao; Zhu, Xiongzhao

    2017-01-01

    Insight into illness is an important issue for psychiatry disorder. Although the existence of a poor insight subtype of obsessive-compulsive disorder (OCD) was recognized in the DSM-IV, and the insight level in OCD was specified further in DSM-V, the neural underpinnings of insight in OCD have been rarely explored. The present study was designed to bridge this research gap by using resting-state functional magnetic resonance imaging (fMRI). Spontaneous neural activity were examined in 19 OCD patients with good insight (OCD-GI), 18 OCD patients with poor insight (OCD-PI), and 25 healthy controls (HC) by analyzing the amplitude of low-frequency fluctuation (ALFF) in the resting state. Pearson correlation analysis was performed between regional ALFFs and insight levels among OCD patients. OCD-GI and OCD-PI demonstrated overlapping and distinct brain alterations. Notably, compared with OCD-GI, tOCD-PI had reduced ALFF in left middle temporal gyrus (MTG) and right superior temporal gyrus (STG), as well as increased ALFF in right middle occipital gyrus. Further analysis revealed that ALFF values for the left MTG and right STG were correlated negatively with insight level in patients with OCD. Relatively small sample size and not all patients were un-medicated are our major limitations. Spontaneous brain activity in left MTG and right STG may be neural underpinnings of insight in OCD. Our results suggest the great role of human temporal brain regions in understanding insight, and further underscore the importance of considering insight presentation in understanding the clinical heterogeneity of OCD. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Episodic Social Stress-Escalated Cocaine Self-Administration: Role of Phasic and Tonic Corticotropin Releasing Factor in the Anterior and Posterior Ventral Tegmental Area

    Science.gov (United States)

    Boyson, Christopher O.; Montagud-Romero, Sandra; Stein, Dirson J.; Gobrogge, Kyle L.; DeBold, Joseph F.; Miczek, Klaus A.

    2016-01-01

    Intermittent social defeat stress escalates later cocaine self-administration. Reward and stress both activate ventral tegmental area (VTA) dopamine neurons, increasing downstream extracellular dopamine concentration in the medial prefrontal cortex and nucleus accumbens. The stress neuropeptide corticotropin releasing factor (CRF) and its receptors (CRF-R1, CRF-R2) are located in the VTA and influence dopaminergic activity. These experiments explore how CRF release and the activation of its receptors within the VTA both during and after stress influence later cocaine self-administration in rats. In vivo microdialysis of CRF in the VTA demonstrated that CRF is phasically released in the posterior VTA (pVTA) during acute defeat, but, with repeated defeat, CRF is recruited into the anterior VTA (aVTA) and CRF tone is increased in both subregions. Intra-VTA antagonism of CRF-R1 in the pVTA and CRF-R2 in the aVTA during each social defeat prevented escalated cocaine self-administration in a 24 h “binge.” VTA CRF continues to influence cocaine seeking in stressed animals long after social defeat exposure. Unlike nonstressed controls, previously stressed rats show significant cocaine seeking after 15 d of forced abstinence. Previously stressed rats continue to express elevated CRF tone within the VTA and antagonism of pVTA CRF-R1 or aVTA CRF-R2 reverses cocaine seeking. In conclusion, these experiments demonstrate neuroadaptive changes in tonic and phasic CRF with repeated stress, that CRF release during stress may contribute to later escalated cocaine taking, and that persistently elevated CRF tone in the VTA may drive later cocaine seeking through increased activation of pVTA CRF-R1 and aVTA CRF-R2. SIGNIFICANCE STATEMENT Corticotropin releasing factor (CRF) within the ventral tegmental area (VTA) has emerged as a likely candidate molecule underlying the fundamental link between stress history and escalated drug self-administration. However, the nature of CRF

  17. Green asparagus (Asparagus officinalis) prevented hypertension by an inhibitory effect on angiotensin-converting enzyme activity in the kidney of spontaneously hypertensive rats.

    Science.gov (United States)

    Sanae, Matsuda; Yasuo, Aoyagi

    2013-06-12

    Green asparagus (Asparagus officinalis) is known to be rich in functional components. In the present study, spontaneously hypertensive rats (SHR) were used to clarify whether green asparagus prevents hypertension by inhibition of angiotensin-converting enzyme (ACE) activity. Six-week-old male SHR were fed a diet with (AD group) or without (ND group) 5% asparagus for 10 weeks. Systolic blood pressure (SBP) (AD: 159 ± 4.8 mmHg, ND: 192 ± 14.7 mmHg), urinary protein excretion/creatinine excretion, and ACE activity in the kidney were significantly lower in the AD group compared with the ND group. Creatinine clearance was significantly higher in the AD group compared with the ND group. In addition, ACE inhibitory activity was observed in a boiling water extract of asparagus. The ACE inhibitor purified and isolated from asparagus was identified as 2″-hydroxynicotianamine. In conclusion, 2″-hydroxynicotianamine in asparagus may be one of the factors inhibiting ACE activity in the kidney, thus preventing hypertension and preserving renal function.

  18. Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO2 and concomitant changes in mitochondrial redox state.

    Science.gov (United States)

    Huchzermeyer, Christine; Albus, Klaus; Gabriel, Hans-Jürgen; Otáhal, Jakub; Taubenberger, Nando; Heinemann, Uwe; Kovács, Richard; Kann, Oliver

    2008-01-30

    Gamma oscillations have been implicated in higher cognitive processes and might critically depend on proper mitochondrial function. Using electrophysiology, oxygen sensor microelectrode, and imaging techniques, we investigated the interactions of neuronal activity, interstitial pO2, and mitochondrial redox state [NAD(P)H and FAD (flavin adenine dinucleotide) fluorescence] in the CA3 subfield of organotypic hippocampal slice cultures. We find that gamma oscillations and spontaneous network activity decrease significantly at pO2 levels that do not affect neuronal population responses as elicited by moderate electrical stimuli. Moreover, pO2 and mitochondrial redox states are tightly coupled, and electrical stimuli reveal transient alterations of redox responses when pO2 decreases within the normoxic range. Finally, evoked redox responses are distinct in somatic and synaptic neuronal compartments and show different sensitivity to changes in pO2. We conclude that the threshold of interstitial pO2 for robust CA3 network activities and required mitochondrial function is clearly above the "critical" value, which causes spreading depression as a result of generalized energy failure. Our study highlights the importance of a functional understanding of mitochondria and their implications on activities of individual neurons and neuronal networks.

  19. Preferential Inhibition of Tonically over Phasically Activated NMDA Receptors by Pregnane Derivatives

    Czech Academy of Sciences Publication Activity Database

    Vyklický, Vojtěch; Smejkalová, Tereza; Krausová, Barbora; Balík, Aleš; Kořínek, Miloslav; Borovská, Jiřina; Horák, Martin; Chvojková, Markéta; Kletečková, Lenka; Valeš, Karel; Černý, Jiří; Nekardová, Michaela; Chodounská, Hana; Kudová, Eva; Vyklický ml., Ladislav

    2016-01-01

    Roč. 36, č. 7 (2016), s. 2161-2175 ISSN 0270-6474 R&D Projects: GA ČR(CZ) GAP303/12/1464; GA ČR(CZ) GBP304/12/G069; GA TA ČR(CZ) TE01020028; GA ČR(CZ) GBP208/12/G016; GA MŠk(CZ) EE2.3.30.0025; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 ; RVO:61388963 Keywords : memantine * neuroprotection * neurosteroid * NMDA receptor * pregnanolone sulfate * synaptic transmission Subject RIV: ED - Physiology Impact factor: 5.988, year: 2016

  20. Quilotórax espontâneo associado a atividade física leve Spontaneous chylothorax associated with light physical activity

    Directory of Open Access Journals (Sweden)

    José Carlos Miranda Torrejais

    2006-12-01

    Full Text Available O quilotórax ocorre quando há ruptura, laceração ou obstrução do ducto torácico, com liberação de quilo no espaço pleural. Pode acontecer em malformações linfáticas congênitas, linfomas, tumores de mediastino, doenças infecciosas, procedimentos cirúrgicos, traumas automobilísticos, ou ser idiopático. Apresenta sinais clínicos de dispnéia, hipotensão, edema generalizado e cianose. O diagnóstico geralmente é feito por toracocentese e o tratamento é conservador. O quilotórax espontâneo é uma condição incomum de derrame pleural, e somente é hipótese diagnóstica após a exclusão das demais causas. Descrevemos um caso de quilotórax espontâneo associado a atividade física leve em academia de ginástica.Chylothorax occurs when there is rupture, laceration or obstruction of the thoracic duct, resulting in the release of chyle into the pleural space. Chylothorax can occur in cases of congenital lymphatic malformation, lymphoma, mediastinal tumor and infectious disease, as well as during surgical procedures and after traffic accident-related trauma. It can also be idiopathic. The condition presents clinical signs of dyspnea, hypotension, generalized edema and cyanosis. The diagnosis is usually made through thoracocentesis, and the treatment is conservative. Spontaneous chylothorax is an uncommon form of pleural effusion, and its diagnosis should be hypothesized only after all other causes have been ruled out. Herein, we describe a case of spontaneous chylothorax associated with light physical activity at a fitness center.

  1. The ducky2J mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression

    Science.gov (United States)

    Donato, Roberta; Page, Karen M.; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A.; Dolphin, Annette C.

    2006-01-01

    The mouse mutant ducky and its allele ducky2J represent a model for absence epilepsy characterized by spike-wave seizures, and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the α2δ-2 calcium channel subunit. Of relevance to the ataxic phenotype, α2δ-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2du2J mutation results in a two base-pair deletion in the coding region and a complete loss of α2δ-2 protein. Here we show that du2J/du2J mice have a 30% reduction in somatic calcium current, and a marked fall in the spontaneous PC firing rate at 22°C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34°C du2J/du2J PCs show no spontaneous intrinsic activity. Du2J/du2J mice also have alterations in the cerebellar expression of several genes related to PC function. At P21 there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du2J/+ mice have a marked reduction in α2δ-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tryrosine hydroxylase gene expression. However, du2J/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in α2δ-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of α2δ-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma. PMID:17135419

  2. The ducky(2J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression.

    Science.gov (United States)

    Donato, Roberta; Page, Karen M; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A; Dolphin, Annette C

    2006-11-29

    The mouse mutant ducky and its allele ducky(2J) represent a model for absence epilepsy characterized by spike-wave seizures and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the alpha2delta-2 calcium channel subunit. Of relevance to the ataxic phenotype, alpha2delta-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2(du2J) mutation results in a 2 bp deletion in the coding region and a complete loss of alpha2delta-2 protein. Here we show that du(2J)/du(2J) mice have a 30% reduction in somatic calcium current and a marked fall in the spontaneous PC firing rate at 22 degrees C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34 degrees C, du(2J)/du(2J) PCs show no spontaneous intrinsic activity. Du(2J)/du(2J) mice also have alterations in the cerebellar expression of several genes related to PC function. At postnatal day 21, there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du(2J)/+ mice have a marked reduction in alpha2delta-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tyrosine hydroxylase gene expression. However, du(2J)/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in alpha2delta-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of alpha2delta-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma.

  3. Retigabine diminishes the effects of acetylcholine, adrenaline and adrenergic agonists on the spontaneous activity of guinea pig smooth muscle strips in vitro.

    Science.gov (United States)

    Apostolova, Elisaveta; Zagorchev, Plamen; Kokova, Vesela; Peychev, Lyudmil

    2017-03-01

    The aim of this study is to evaluate the effect of retigabine on the smooth muscle response to acetylcholine, adrenaline, α-and β-adrenoceptor agonists. We studied the change in the spontaneous smooth muscle contraction of guinea pig gastric corpus strips before and after 20-min treatment with 2μM retigabine. We also evaluated the effect of retigabine on the smooth muscle response to 10μM acetylcholine, 1 and 10μM adrenaline, 1μM methoxamine, 0.1μM p-iodoclonidine and 10μM isoproterenol. We observed a significant reduction in the effects of all studied mediators and agonists when they were added to organ baths in the presence of retigabine. Retigabine diminished the effect of acetylcholine on the spontaneous smooth muscle activity. The effect was fully antagonized by XE-991 (Kv7 channel blocker), which supports our hypothesis about the role of KCNQ channels in the registered changes. The increase in the contraction force after adding of 1μM adrenaline, methoxamine, and 0.1μM p-iodoclonidine was also significantly smaller in presence of retigabine. However, comparing the effect of 10μM adrenaline on the contractility before and after treatment with retigabine, we observed increased contractility when retigabine was present in the organ baths. A possible explanation for the observed diminished effects of mediators and receptor agonists is that the effect of retigabine on smooth muscle contractility is complex. The membrane hyperpolarization, the interaction between Kv7 channels and adrenoceptors, and the influence on signaling pathways may contribute to the summary smooth muscle response. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Hemorrhagic shock-induced endothelial cell activation in a spontaneous breathing and a mechanical ventilation hemorrhagic shock model is induced by a proinflammatory response and not by hypoxia.

    Science.gov (United States)

    van Meurs, Matijs; Wulfert, Francis M; Jongman, Rianne M; Schipper, Martin; Houwertjes, Martin C; Vaneker, Michiel; Scheffer, Gert Jan; Teppema, Luc J; Aarts, Leon P H J; Heeringa, Peter; Zijlstra, Jan G; Molema, Grietje

    2011-09-01

    The interaction between neutrophils and activated endothelium is essential for the development of multiple organ dysfunction in patients with hemorrhagic shock (HS). Mechanical ventilation frequently is used in patients with HS. The authors sought to investigate the consequences of mechanical ventilation of mice subjected to HS on microvascular endothelial activation in the lung and kidney. Anesthetized wild type C57BL/6 male mice were subjected to controlled hemorrhage; subgroups of mice were mechanically ventilated during the HS insult. To study the effect of acute hypoxia on the mice, the animals were housed in hypoxic cages. Gene expression levels was assessed by quantitative real-time polymerase chain reaction. Protein expression was assessed by immunohistochemistry and enzyme-linked immunosorbent assay. Ninety minutes after the shock induction, a vascular bed-specific, heterogeneous proinflammatory endothelial activation represented by E-selectin, vascular cell adhesion molecule 1, and intercellular adhesion molecule 1 expression was seen in kidney and lung. No differences in adhesion molecules between the spontaneously breathing and mechanically ventilated mice were found. Concentrations of the proinflammatory cytokines chemokine (C-X-C motif) ligand 1 (11.0-fold) and interleukin-6 (21.7-fold) were increased after 90 min of HS. Two hours of 6% oxygen did not induce the expression of E-selectin, vascular cell adhesion molecule 1, and intercellular adhesion molecule 1 in the kidneys and the lung. Hemorrhagic shock leads to an early and reversible proinflammatory endothelial activation in kidney and lung. HS-induced endothelial activation is not changed by mechanical ventilation during the shock phase. Hypoxia alone does not lead to endothelial activation. The observed proinflammatory endothelial activation is mostly ischemia- or reperfusion-dependent and not related to hypoxia.

  5. Association between CISH polymorphisms and spontaneous clearance of hepatitis B virus in hepatitis B extracellular antigen-positive patients during immune active phase.

    Science.gov (United States)

    Song, Guangjun; Rao, Huiying; Feng, Bo; Wei, Lai

    2014-01-01

    Some hepatitis B extracellular antigen (HBeAg)-positive chronic hepatitis B (CHB) patients in their immune active phase can clear the virus spontaneously and enter into an inactive hepatitis B virus (HBV) carrier state, indicating a benign prognosis. In this study, the association between cytokine-inducible SRC homology 2 domain protein (CISH) gene polymorphisms at -292 (rs414171) and the spontaneous clearance of HBV in HBeAg-positive CHB patients in immune the active phase was investigated. Seventy HBeAg-positive CHB patients in the immune active phase were followed up for 76 weeks without antiviral therapy. The alanine transaminase, aspartate transaminase, HBV DNA, HBeAg and hepatitis B extracellular antibody levels were tested regularly. At week 76, 27 patients were classified into group A (HBV DNA level below 2 104 IU/ml and the value of HBeAg declined below 10% of the baseline at week 76), and 43 patients were classified into group B (HBV DNA level higher than 2×10(4) IU/ml or the value of HBeAg did not decline substantially at week 76). CISH (rs414171) polymorphisms were also tested using the iPLEX system. The HBV DNA levels at week 12 were significantly greater in group B compared with group A (group A: (6.87±1.40) log10IU/ml; group B: (7.61±1.38) log10IU/ml, P = 0.034) and the HBeAg values were greater in group B at week 28 compared with group A (P = 0.001). The differences in HBV DNA and HBeAg values increased between the groups over time. Sixteen patients in group A and 11 in group B were genotype AA. Those with genotype AT or TT included 11 in group A and 31 in group B (AA vs. AT and TT, odds ratio 4.10 (95% confidence interval: 1.462-11.491), P = 0.006). CISH gene polymorphisms at -292 (rs414171) are associated with HBV clearance in HBeAg-positive CHB patients in the immune active phase, and AA is a favorable genotype for this effect.

  6. Spontaneous improvement in randomised clinical trials: meta-analysis of three-armed trials comparing no treatment, placebo and active intervention

    DEFF Research Database (Denmark)

    Krogsbøll, Lasse Theis; Hróbjartsson, Asbjørn; Gøtzsche, Peter C

    2009-01-01

    uncertainty, as indicated by the confidence intervals for the three SMDs. The conditions that had the most pronounced spontaneous improvement were nausea (45%), smoking (40%), depression (35%), phobia (34%) and acute pain (25%). CONCLUSION: Spontaneous improvement and effect of placebo contributed importantly...

  7. Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Baldrian, P.; Trogl, J.; Frouz, J.; Snajdr, J.; Valaskova, V.; Merhautova, V.; Cajthaml, T.; Herinkova, J. [ASCR, Prague (Czech Republic). Institute for Microbiology

    2008-09-15

    Changes in the activity of extracellular enzymes (cellobiohydrolase, beta-glucosidase, beta-xylosidase, chitinase, arylsulfatase and phosphatases) and the changes in microbial community and abiotic properties in the topsoil layer, as well as soil abiotic properties during primary succession were investigated in a brown coal mine deposit area near Sokolov, Czech Republic. The study considered the chronosequence of 4 post-mining plots, 4-, 12-, 21 - and 45-year old. The 4-year old site had no vegetation cover. Herbs and grasses (mainly Calamagrostis epigeios) were present on the 12-year old plot, shrubs (Salix caprea) occurred on the 21-year old plot and tree cover (Betula spp. and Populus tremuloides) developed on the 45-year old plot. Soil pH gradually decreased with site age, while the content of K, C and N peaked in the 21-year old site, being significantly lower in the 45-year old site and much lower in the 4- and 12-year old sites. Phosphatase activities were strongly affected by seasonality while the activities of all the other enzymes measured were more influenced by the effects of succession age and soil layer than by seasonality. Succession age was also the most important factor affecting the total and bacterial PLFA contents, followed by the effects of soil layer and season while for the fungal biomass content-related properties (ergosterol, fungal PLFA and the fungal/bacterial PLFA ratio), season was the most important. Activities of individual enzymes in the topsoil (0-5 cm depth) were significantly affected by both site age and season. Cellobiohydrolase and beta-xylosidase were more affected by site age while chitinase and phosphatases were more affected by season. Enzyme activity increased with succession age. Comparison of the effect of site and season on enzyme activity showed that season played a principal role in the enzyme activity of the entire 0-5 cm component of topsoil, as well the soil layers when evaluated separately.

  8. [Effects of nicotinic cholinoreceptor ligands and nootropic drugs on the spontaneous exploratory activity in a labyrinth in mice].

    Science.gov (United States)

    Salimov, R M; Kovalev, G I

    2008-01-01

    We have studied the effects of nicotine (0.125, 0.25, and 0.5 mg/kg) and mecamylamine (0.5, 1.5, and 3 mg/kg) in comparison to reference cognition-enhancing drugs piracetam (100 and 300 mg/kg) and meclofenoxate (20, 50, and 100 mg/kg) administered to male C57BL mice intraperitoneally 30 min prior to behavioral test. The behavioral drug effect was evaluated as influencing the activity in visiting arms of a closed plus-maze. Piracetam (300 mg/kg) and meclofenoxate (100 mg/kg) improved the exploratory activity. Mecamylamine (0.5 mg/kg) also improved the exploratory activity, while nicotine (0.5 mg/kg) deteriorated it.

  9. Phasic or terminal detrusor overactivity in women: age, urodynamic findings and sphincter behavior relationships

    Directory of Open Access Journals (Sweden)

    Françoise A. Valentini

    2011-12-01

    Full Text Available OBJECTIVES: To search for relationships between phasic (P and terminal (T DO with age, urodynamic findings and sphincter behavior during involuntary detrusor contraction in woman. MATERIALS AND METHODS: Urodynamic studies (triple lumen catheter 7F, seated position of 164 successive women referred for LUTS with diagnosis of DO were reviewed. Patients were stratified in 4 sub-groups: pre- (18-44y, peri- (45-54 y, post-menopause (55-74 y and oldest old (≥ 75 y. The urethral sensor was positioned at the level of the maximum urethral closure pressure for sphincter behavior analysis. A variation of at least 5 cmH2O in pressure (detrusor or urethra was chosen to assert DO or sphincter response. Sphincter response was classified as relaxation (re before or during DO, or steady (st. RESULTS: Occurrence of P and TDO was similar: 77 P and 87 T. The PDO group was significantly younger (p = 0.0003. TDO was more frequent in patients with a history of neurological disease. The percentage of PDO remained almost constant in age groups, while that of TDO increased with age from 6.7% to 23.2% (p = 0.0013. Uninhibited contraction occurred at a smaller bladder volume in the P group: 149 ± 95 vs. 221 ± 113 mL (p < 0.0001. Steady sphincter predominated in the TDO subgroup: 45.9% vs. 32.1% and increased significantly in each DO sub-group of ³ 75y. CONCLUSION: Steady sphincter during both P and TDO, and occurrence of TDO appear as specific of aging. The last result could be related to structural changes in the detrusor muscle with aging.

  10. Tonic and phasic phenomena underlying eye movements during sleep in the cat.

    Science.gov (United States)

    Márquez-Ruiz, Javier; Escudero, Miguel

    2008-07-15

    Mammalian sleep is not a homogenous state, and different variables have traditionally been used to distinguish different periods during sleep. Of these variables, eye movement is one of the most paradigmatic, and has been used to differentiate between the so-called rapid eye movement (REM) and non-REM (NREM) sleep periods. Despite this, eye movements during sleep are poorly understood, and the behaviour of the oculomotor system remains almost unknown. In the present work, we recorded binocular eye movements during the sleep-wake cycle of adult cats by the scleral search-coil technique. During alertness, eye movements consisted of conjugated saccades and eye fixations. During NREM sleep, eye movements were slow and mostly unconjugated. The two eyes moved upwardly and in the abducting direction, producing a tonic divergence and elevation of the visual axis. During the transition period between NREM and REM sleep, rapid monocular eye movements of low amplitude in the abducting direction occurred in coincidence with ponto-geniculo-occipital waves. Along REM sleep, the eyes tended to maintain a tonic convergence and depression, broken by high-frequency bursts of complex rapid eye movements. In the horizontal plane, each eye movement in the burst comprised two consecutive movements in opposite directions, which were more evident in the eye that performed the abducting movements. In the vertical plane, rapid eye movements were always upward. Comparisons of the characteristics of eye movements during the sleep-wake cycle reveal the uniqueness of eye movements during sleep, and the noteworthy existence of tonic and phasic phenomena in the oculomotor system, not observed until now.

  11. Left atrial deformation and phasic function determined by 2-dimensional speckle tracking echocardiography in healthy dogs.

    Science.gov (United States)

    Caivano, D; Rishniw, M; Patata, V; Giorgi, M E; Birettoni, F; Porciello, F

    2016-06-01

    Feasibility, intra- and inter-observer variability of measuring left atrial (LA) longitudinal strain and strain rate (SR) variables using speckle tracking echocardiography (STE) have not been reported in the dog. Reference intervals for these variables which can be useful to estimate LA function have been provided. Forty-eight healthy adult dogs. Left atrial longitudinal deformation was evaluated in each dog by STE, and different combinations of STE variables were used to describe the 3 phases (reservoir, conduit and booster pump phase) of the LA function. Left atrial STE was possible in 40/48 dogs (83%). Strain and SR curves in healthy dogs were characterized, and reference intervals for several strain and SR variables are provided. Intra- and inter-observer variability, expressed as percent difference between observations or observers, was 3.58%-10.8% for indices of the LA reservoir function, 10.48%-15.82% for indices of the LA conduit function and 14.1%-34% for indices of the LA contractile function. Strain rate in early diastole and strain rate at atrial contraction variables were correlated significantly with age. No other relationships (body weight, heart rate or LA size) with any STE variables could be identified. Speckle tracking echocardiography provides quantitative measurements of LA longitudinal deformation and can be used to assess LA phasic function in healthy dogs. Further studies of these variables in dogs with cardiac diseases are needed to determine the clinical applicability and utility. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Patterns of spontaneous activity in single rat olfactory receptor neurons are different in normally breathing and tracheotomized animals

    Czech Academy of Sciences Publication Activity Database

    Duchamp-Viret, P.; Košťál, Lubomír; Chaput, M.; Lánský, Petr; Rospars, J. P.

    2005-01-01

    Roč. 65, č. 2 (2005), s. 97-114 ISSN 0022-3034 R&D Projects: GA AV ČR(CZ) 1ET400110401 Grant - others:Barrande(FR) 9146 QL Institutional research plan: CEZ:AV0Z50110509 Keywords : olfactory neurons * unit activity * receptors Subject RIV: ED - Physiology Impact factor: 4.170, year: 2005

  13. Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Trögl, Josef; Frouz, Jan; Šnajdr, Jaroslav; Valášková, Vendula; Merhautová, Věra; Cajthaml, Tomáš; Herinková, Jana

    2008-01-01

    Roč. 40, č. 9 (2008), s. 2107-2115 ISSN 0038-0717 R&D Projects: GA MŠk LC06066 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z60660521 Keywords : enzyme activity * lignocellulose * microbial biomass Subject RIV: EH - Ecology, Behaviour Impact factor: 2.926, year: 2008

  14. Single-Site Active Cobalt-Based Photocatalyst with a Long Carrier Lifetime for Spontaneous Overall Water Splitting.

    Science.gov (United States)

    Liu, Wei; Cao, Linlin; Cheng, Weiren; Cao, Yuanjie; Liu, Xiaokang; Zhang, Wei; Mou, Xiaoli; Jin, Lili; Zheng, Xusheng; Che, Wei; Liu, Qinghua; Yao, Tao; Wei, Shiqiang

    2017-08-01

    An active and stable photocatalyst to directly split water is desirable for solar-energy conversion. However, it is difficult to accomplish overall water splitting without sacrificial electron donors. Herein, we demonstrate a strategy via constructing a single site to simultaneously promote charge separation and catalytic activity for robust overall water splitting. A single Co 1 -P 4 site confined on g-C 3 N 4 nanosheets was prepared by a facile phosphidation method, and identified by electron microscopy and X-ray absorption spectroscopy. This coordinatively unsaturated Co site can effectively suppress charge recombination and prolong carrier lifetime by about 20 times relative to pristine g-C 3 N 4 , and boost water molecular adsorption and activation for oxygen evolution. This single-site photocatalyst exhibits steady and high water splitting activity with H 2 evolution rate up to 410.3 μmol h -1  g -1 , and quantum efficiency as high as 2.2 % at 500 nm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Spontaneous focal activation of invariant natural killer T (iNKT cells in mouse liver and kidney

    Directory of Open Access Journals (Sweden)

    Zeng Jia

    2010-11-01

    Full Text Available Abstract Background Invariant natural killer T (iNKT cells differ from other T cells by their hyperactive effector T-cell status, in addition to the expression of NK lineage receptors and semi-invariant T-cell receptors. It is generally agreed that the immune phenotype of iNKT cells is maintained by repeated activation in peripheral tissues although no explicit evidence for such iNKT cell activity in vivo has so far been reported. Results We used an interferon (IFN-γ-inducible cytoplasmic protein, Irga6, as a histological marker for local IFN-γ production. Irga6 was intensely expressed in small foci of liver parenchymal cells and kidney tubular epithelium. Focal Irga6 expression was unaffected by germ-free status or loss of TLR signalling and was totally dependent on IFN-γ secreted by T cells in the centres of expression foci. These were shown to be iNKT cells by diagnostic T cell receptor usage and their activity was lost in both CD1 d and Jα-deficient mice. Conclusions This is the first report that supplies direct evidence for explicit activation events of NKT cells in vivo and raises issues about the triggering mechanism and consequences for immune functions in liver and kidney.

  16. The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives.

    Science.gov (United States)

    Garland, Theodore; Schutz, Heidi; Chappell, Mark A; Keeney, Brooke K; Meek, Thomas H; Copes, Lynn E; Acosta, Wendy; Drenowatz, Clemens; Maciel, Robert C; van Dijk, Gertjan; Kotz, Catherine M; Eisenmann, Joey C

    2011-01-15

    Mammals expend energy in many ways, including basic cellular maintenance and repair, digestion, thermoregulation, locomotion, growth and reproduction. These processes can vary tremendously among species and individuals, potentially leading to large variation in daily energy expenditure (DEE). Locomotor energy costs can be substantial for large-bodied species and those with high-activity lifestyles. For humans in industrialized societies, locomotion necessary for daily activities is often relatively low, so it has been presumed that activity energy expenditure and DEE are lower than in our ancestors. Whether this is true and has contributed to a rise in obesity is controversial. In humans, much attention has centered on spontaneous physical activity (SPA) or non-exercise activity thermogenesis (NEAT), the latter sometimes defined so broadly as to include all energy expended due to activity, exclusive of volitional exercise. Given that most people in Western societies engage in little voluntary exercise, increasing NEAT may be an effective way to maintain DEE and combat overweight and obesity. One way to promote NEAT is to decrease the amount of time spent on sedentary behaviours (e.g. watching television). The effects of voluntary exercise on other components of physical activity are highly variable in humans, partly as a function of age, and have rarely been studied in rodents. However, most rodent studies indicate that food consumption increases in the presence of wheels; therefore, other aspects of physical activity are not reduced enough to compensate for the energetic cost of wheel running. Most rodent studies also show negative effects of wheel access on body fat, especially in males. Sedentary behaviours per se have not been studied in rodents in relation to obesity. Several lines of evidence demonstrate the important role of dopamine, in addition to other neural signaling networks (e.g. the endocannabinoid system), in the control of voluntary exercise. A

  17. Involvement of the TRPV1 channel in the modulation of spontaneous locomotor activity, physical performance and physical exercise-induced physiological responses

    Directory of Open Access Journals (Sweden)

    A.S.R. Hudson

    2016-01-01

    Full Text Available Physical exercise triggers coordinated physiological responses to meet the augmented metabolic demand of contracting muscles. To provide adequate responses, the brain must receive sensory information about the physiological status of peripheral tissues and organs, such as changes in osmolality, temperature and pH. Most of the receptors involved in these afferent pathways express ion channels, including transient receptor potential (TRP channels, which are usually activated by more than one type of stimulus and are therefore considered polymodal receptors. Among these TRP channels, the TRPV1 channel (transient receptor potential vanilloid type 1 or capsaicin receptor has well-documented functions in the modulation of pain sensation and thermoregulatory responses. However, the TRPV1 channel is also expressed in non-neural tissues, suggesting that this channel may perform a broad range of functions. In this review, we first present a brief overview of the available tools for studying the physiological roles of the TRPV1 channel. Then, we present the relationship between the TRPV1 channel and spontaneous locomotor activity, physical performance, and modulation of several physiological responses, including water and electrolyte balance, muscle hypertrophy, and metabolic, cardiovascular, gastrointestinal, and inflammatory responses. Altogether, the data presented herein indicate that the TPRV1 channel modulates many physiological functions other than nociception and thermoregulation. In addition, these data open new possibilities for investigating the role of this channel in the acute effects induced by a single bout of physical exercise and in the chronic effects induced by physical training.

  18. Upregulated LINE-1 Activity in the Fanconi Anemia Cancer Susceptibility Syndrome Leads to Spontaneous Pro-inflammatory Cytokine Production.

    Science.gov (United States)

    Brégnard, Christelle; Guerra, Jessica; Déjardin, Stéphanie; Passalacqua, Frank; Benkirane, Monsef; Laguette, Nadine

    2016-06-01

    Fanconi Anemia (FA) is a genetic disorder characterized by elevated cancer susceptibility and pro-inflammatory cytokine production. Using SLX4(FANCP) deficiency as a working model, we questioned the trigger for chronic inflammation in FA. We found that absence of SLX4 caused cytoplasmic DNA accumulation, including sequences deriving from active Long INterspersed Element-1 (LINE-1), triggering the cGAS-STING pathway to elicit interferon (IFN) expression. In agreement, absence of SLX4 leads to upregulated LINE-1 retrotransposition. Importantly, similar results were obtained with the FANCD2 upstream activator of SLX4. Furthermore, treatment of FA cells with the Tenofovir reverse transcriptase inhibitor (RTi), that prevents endogenous retrotransposition, decreased both accumulation of cytoplasmic DNA and pro-inflammatory signaling. Collectively, our data suggest a contribution of endogenous RT activities to the generation of immunogenic cytoplasmic nucleic acids responsible for inflammation in FA. The additional observation that RTi decreased pro-inflammatory cytokine production induced by DNA replication stress-inducing drugs further demonstrates the contribution of endogenous RTs to sustaining chronic inflammation. Altogether, our data open perspectives in the prevention of adverse effects of chronic inflammation in tumorigenesis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Spontaneous uterine rupture

    African Journals Online (AJOL)

    ABSTRACT. Rupture of a gravid uterus is a surgical emergency. Predisposing factors include a scarred uterus. Spontaneous rupture of an unscarred uterus during pregnancy is a rare occurrence. We hereby present the case of a spontaneous complete uterine rupture at a gestational age of 34 weeks in a 35 year old patient ...

  20. Spontaneous intracranial hypotension.

    LENUS (Irish Health Repository)

    Fullam, L

    2012-01-31

    INTRODUCTION: Spontaneous\\/primary intracranial hypotension is characterised by orthostatic headache and is associated with characteristic magnetic resonance imaging findings. CASE REPORT: We present a case report of a patient with typical symptoms and classical radiological images. DISCUSSION: Spontaneous intracranial hypotension is an under-recognised cause of headache and can be diagnosed by history of typical orthostatic headache and findings on MRI brain.

  1. Omega-3 fatty acids from fish oil lower anxiety, improve cognitive functions and reduce spontaneous locomotor activity in a non-human primate.

    Directory of Open Access Journals (Sweden)

    Nina Vinot

    Full Text Available Omega-3 (ω3 polyunsaturated fatty acids (PUFA are major components of brain cells membranes. ω3 PUFA-deficient rodents exhibit severe cognitive impairments (learning, memory that have been linked to alteration of brain glucose utilization or to changes in neurotransmission processes. ω3 PUFA supplementation has been shown to lower anxiety and to improve several cognitive parameters in rodents, while very few data are available in primates. In humans, little is known about the association between anxiety and ω3 fatty acids supplementation and data are divergent about their impact on cognitive functions. Therefore, the development of nutritional studies in non-human primates is needed to disclose whether a long-term supplementation with long-chain ω3 PUFA has an impact on behavioural and cognitive parameters, differently or not from rodents. We address the hypothesis that ω3 PUFA supplementation could lower anxiety and improve cognitive performances of the Grey Mouse Lemur (Microcebus murinus, a nocturnal Malagasy prosimian primate. Adult male mouse lemurs were fed for 5 months on a control diet or on a diet supplemented with long-chain ω3 PUFA (n = 6 per group. Behavioural, cognitive and motor performances were measured using an open field test to evaluate anxiety, a circular platform test to evaluate reference spatial memory, a spontaneous locomotor activity monitoring and a sensory-motor test. ω3-supplemented animals exhibited lower anxiety level compared to control animals, what was accompanied by better performances in a reference spatial memory task (80% of successful trials vs 35% in controls, p<0.05, while the spontaneous locomotor activity was reduced by 31% in ω3-supplemented animals (p<0.001, a parameter that can be linked with lowered anxiety. The long-term dietary ω3 PUFA supplementation positively impacts on anxiety and cognitive performances in the adult mouse lemur. The supplementation of human food with ω3 fatty

  2. Novel wearable technology for assessing spontaneous daily physical activity and risk of falling in older adults with diabetes.

    Science.gov (United States)

    Najafi, Bijan; Armstrong, David G; Mohler, Jane

    2013-09-01

    As baby boomers age and their expected life span increases, there is an unprecedented need to better manage the health care of elders with diabetes who are at increased risk of falling due to diabetes complications, frailty, or other conditions. New clinical and research tools are needed to measure functioning accurately and to identify early indicators of risk of falling, thus translating into more effective and earlier intervention. The objective of this pilot study was to validate a significant change in hardware and algorithm to track activity patterns using a single triaxial accelerometer through validation of timed up and go and standard measures of balance and gait. We recruited a convenience sample of eight older adults with diabetes and peripheral neuropathy (age, 77 ± 7 years old) who were asked to wear the sensor for imposed daytime activity performed in our gait laboratory. Subjects were stratified into risk of falling categories based on Tinetti scores. We examined the accuracy of the suggested technology for discrimination of high- versus low-risk groups. The system was accurate in identifying the number of steps taken and walking duration (random error risk of falling, suggesting that subjects with high risk of falling required a substantially longer duration for rising from a chair when compared with those with low risk of falling (p risk of falling, and could be useful for intermittent or even continuous monitoring of older adults with diabetes. Other potential applications could include activity monitoring of the diabetes population with lower extremity disease and of patients undergoing surgical procedures or as an objective measure during rehabilitation. © 2013 Diabetes Technology Society.

  3. Tongxinluo Protects against Hypertensive Kidney Injury in Spontaneously-Hypertensive Rats by Inhibiting Oxidative Stress and Activating Forkhead Box O1 Signaling.

    Directory of Open Access Journals (Sweden)

    Wei-Min Luo

    Full Text Available Hypertension is an independent risk factor for the progression of chronic renal failure, and oxidative stress plays a critical role in hypertensive renal damage. Forkbox O1(FoxO1 signaling protects cells against oxidative stress and may be a useful target for treating oxidative stress-induced hypertension. Tongxinluo is a traditional Chinese medicine with cardioprotective and renoprotective functions. Therefore, this study aimed to determine the effects of Tongxinluo in hypertensive renal damage in spontaneously hypertensive rats(SHRsand elucidate the possible involvement of oxidative stress and FoxO1 signaling in its molecular mechanisms. SHRs treated with Tongxinluo for 12 weeks showed a reduction in systolic blood pressure. In addition to increasing creatinine clearance, Tongxinluo decreased urinary albumin excretion, oxidative stress injury markers including malondialdehyde and protein carbonyls, and expression of nicotinamide adenine dinucleotide phosphate oxidase subunits and its activity in SHR kidneys. While decreasing phosphorylation of FoxO1, Tongxinluo also inhibited the phosphorylation of extracellular signal-regulated kinase1/2 and p38 and enhanced manganese superoxide dismutase and catalase activities in SHR kidneys. Furthermore, histology revealed attenuation of glomerulosclerosis and renal podocyte injury, while Tongxinluo decreased the expression of α-smooth muscle actin, extracellular matrixprotein, transforming growth factor β1 and small mothers against decapentaplegic homolog 3,and improved tubulointerstitial fibrosis in SHR kidneys. Finally, Tongxinluo inhibited inflammatory cell infiltration as well as expression of tumor necrosis factor-α and interleukin-6. In conclusion, Tongxinluo protected SHRs against hypertension-induced renal injury by exerting antioxidant, antifibrotic, and anti-inflammatory activities. Moreover, the underlying mechanisms of these effects may involve inhibition of oxidative stress and functional

  4. Chronic recordings reveal tactile stimuli can suppress spontaneous activity of neurons in somatosensory cortex of awake and anesthetized primates.

    Science.gov (United States)

    Qi, Hui-Xin; Reed, Jamie L; Franca, Joao G; Jain, Neeraj; Kajikawa, Yoshinao; Kaas, Jon H

    2016-04-01

    In somatosensory cortex, tactile stimulation within the neuronal receptive field (RF) typically evokes a transient excitatory response with or without postexcitatory inhibition. Here, we describe neuronal responses in which stimulation on the hand is followed by suppression of the ongoing discharge. With the use of 16-channel microelectrode arrays implanted in the hand representation of primary somatosensory cortex of New World monkeys and prosimian galagos, we recorded neuronal responses from single units and neuron clusters. In 66% of our sample, neuron activity tended to display suppression of firing when regions of skin outside of the excitatory RF were stimulated. In a small proportion of neurons, single-site indentations suppressed firing without initial increases in response to any of the tested sites on the hand. Latencies of suppressive responses to skin indentation (usually 12-34 ms) were similar to excitatory response latencies. The duration of inhibition varied across neurons. Although most observations were from anesthetized animals, we also found similar neuron response properties in one awake galago. Notably, suppression of ongoing neuronal activity did not require conditioning stimuli or multi-site stimulation. The suppressive effects were generally seen following single-site skin indentations outside of the neuron's minimal RF and typically on different digits and palm pads, which have not often been studied in this context. Overall, the characteristics of widespread suppressive or inhibitory response properties with and without initial facilitative or excitatory responses add to the growing evidence that neurons in primary somatosensory cortex provide essential processing for integrating sensory stimulation from across the hand. Copyright © 2016 the American Physiological Society.

  5. ARGINASE 2 DEFICIENCY RESULTS IN SPONTANEOUS STEATOHEPATITIS: A NOVEL LINK BETWEEN INNATE IMMUNE ACTIVATION AND HEPATIC DE NOVO LIPOGENESIS

    Science.gov (United States)

    Navarro, Laura A.; Wree, Alexander; Povero, Davide; Berk, Michael P.; Eguchi, Akiko; Ghosh, Sudakshina; Papouchado, Bettina G.; Erzurum, Serpil C.; Feldstein, Ariel E.

    2016-01-01

    BACKGROUND & AIMS Innate immune activation has been postulated as a central mechanism for disease progression from hepatic steatosis to steatohepatitis in obesity-related fatty liver disease. Arginase 2 competes with inducible nitric oxide synthase (iNOS) for its substrate and the balance between these two enzymes plays a crucial role in regulating immune responses and macrophage activation. Our aim was to test the hypothesis that arginase 2 deficiency in mice favors progression from isolated hepatic steatosis, induced by high fat feeding to steatohepatitis. METHODS Arginase 2-knockout (Arg2−/−) mice were studied for changes in liver histology and metabolic phenotype at baseline and after a short term course (7 week) feeding with a high fat (HFAT) diet. In additional experiments, Arg2−/− mice received tail vein injections of liposome-encapsulated clodronate (CLOD) over a three-week period to selectively deplete liver macrophages. RESULTS Unexpectedly, Arg2−/− mice showed profound changes in their livers at baseline characterized by significant steatosis as demonstrated with histological and biochemical analysis. These changes were independent of systemic metabolic parameters and associated with marked increase mRNA levels of genes involved in hepatic de novo lipogenesis. Liver injury and inflammation were present with elevated serum ALT, marked infiltration of F4/80 positive cells, and increased mRNA levels of inflammatory genes. HFAT feeding exacerbated these changes. Macrophage depletion after CLOD injection significantly attenuated lipid deposition and normalized lipogenic mRNA profile of livers from Arg2−/− mice. CONCLUSIONS This study identifies arginase 2 as novel link between innate immune responses, hepatic lipid deposition, and liver injury. PMID:25234945

  6. Usefulness of three-phasic bone scan in young male patients suspected of post-traumatic reflex sympathetic dystrophy syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Woo; Kim, Tae Uk; Kim, Tae Hoon; Jung, Cheoul Yun; Moon, Jin Ho [Armed Forces Daejeon Hospital, Taejon (Korea, Republic of)

    2001-02-01

    In young male patients who suffered several kinds of trauma with subsequent suspicious reflex sympathetic dystrophy syndrome, we performed three-phasic bone scan in order to investigate its usefulness. Patients with narrow range of age (21-25. mean 22.8 {+-}1.3, all male) were included with suspicious reflex sympathetic dystrophy syndrome of 12 feet and 5 hands. Only one was bilateral feet case and 16 were ipsilateral (Rt:13, Lt:3). The etiologic traumas were 4 fractures, 4 sprains, 3 blunt trauma, 2 cellulitis, 1 tendon teat, 1 crush injury, 1 overexercise, and 1 unknown. Radiologically 3 showed osteoporotic changes. Three-phasic bone scans were performed 21.1 {+-}7.3 wks after trauma. According to symptom complex, confirmatory reflex sympathetic dystrophy syndrome 4 cases and suspicious 13 were analyzed. All confirmatory cases (100%) showed increased uptake at delay phase with periarticular accentuation. Of confirmatory 4 cases, 2 showed increased uptake in all three phases (perfusion: P, blood pool: B, and delay: D), and other 2 revealed decreased P but, both increased B and D. Of suspicious 13 cases, 9(69.2%) had increased D (4 periarticular and 5 focal), 2 decreased D, and 2 symmetric D. In 12 foot cases, so-called weight bearing patterns-increased contralateral sole at P and B- were revealed in 7(58.3%). Diffuse periarticular increased uptake at delay phase of three-phasic bone scan was a compatible finding to reflex sympathetic dystrophy syndrome in young male patients whose symptom complex strongly designated post traumatic reflex sympathetic dystrophy syndrome.

  7. BLOCKADE OF ROSTRAL VENTROLATERAL MEDULLA (RVLM BOMBESIN RECEPTOR TYPE 1 DECREASES BLOOD PRESSURE AND SYMPATHETIC ACTIVITY IN ANESTHETIZED SPONTANEOUSLY HYPERTENSIVE RATS

    Directory of Open Access Journals (Sweden)

    Izabella Silva De Jesus Pinto

    2016-06-01

    Full Text Available IIntrathecal injection of bombesin (BBS promoted hypertensive and sympathoexcitatory effects in normotensive (NT rats. However, the involvement of rostral ventrolateral medulla (RVLM in these responses is still unclear. In the present study, we investigated: (1 the effects of BBS injected bilaterally into RVLM on cardiorespiratory and sympathetic activity in NT and spontaneously hypertensive rats (SHR; (2 the contribution of RVLM bombesin type 1 receptors (BB1 to the maintenance of hypertension in SHR. Urethane-anesthetized rats (1.2 g · kg−1, i.v. were instrumented to record mean arterial pressure (MAP, diaphragm (DIA motor and renal sympathetic nerve activity (RSNA. In NT rats and SHR, BBS (0.3 mM nanoinjected into RVLM increased MAP (33.9 ± 6.6 mmHg and 37.1 ± 4.5 mmHg, respectively; p < 0.05 and RSNA (97.8 ± 12.9 % and 84.5 ± 18.1 %, respectively; p < 0.05. In SHR, BBS also increased DIA burst amplitude (115.3 ± 22.7 %; p < 0.05. BB1 receptors antagonist (BIM-23127; 3 mM reduced MAP (-19.9 ± 4.4 mmHg; p < 0.05 and RSNA (-17.7 ± 3.8 %; p < 0.05 in SHR, but not in NT rats (-2.5 ± 2.8 mmHg; -2.7 ± 5.6 %, respectively. These results show that BBS can evoke sympathoexcitatory and pressor responses by activating RVLM BB1 receptors. This pathway might be involved in the maintenance of high levels of arterial blood pressure in SHR.

  8. Healthy human CSF promotes glial differentiation of hESC-derived neural cells while retaining spontaneous activity in existing neuronal networks

    Directory of Open Access Journals (Sweden)

    Heikki Kiiski

    2013-05-01

    The possibilities of human pluripotent stem cell-derived neural cells from the basic research tool to a treatment option in regenerative medicine have been well recognized. These cells also offer an interesting tool for in vitro models of neuronal networks to be used for drug screening and neurotoxicological studies and for patient/disease specific in vitro models. Here, as aiming to develop a reductionistic in vitro human neuronal network model, we tested whether human embryonic stem cell (hESC-derived neural cells could be cultured in human cerebrospinal fluid (CSF in order to better mimic the in vivo conditions. Our results showed that CSF altered the differentiation of hESC-derived neural cells towards glial cells at the expense of neuronal differentiation. The proliferation rate was reduced in CSF cultures. However, even though the use of CSF as the culture medium altered the glial vs. neuronal differentiation rate, the pre-existing spontaneous activity of the neuronal networks persisted throughout the study. These results suggest that it is possible to develop fully human cell and culture-based environments that can further be modified for various in vitro modeling purposes.

  9. Pictorial encoding effects and memory confusions in the Deese-Roediger-McDermott paradigm: evidence for the activation of spontaneous imagery.

    Science.gov (United States)

    Foley, Mary Ann; Foy, Jeffrey

    2008-10-01

    The purpose of the experiments reported in this paper was to examine the possible role of spontaneous imagery and list-specific cues on pictorial encoding effects induced by the Deese-Roediger-McDermott (DRM) task. After viewing pictures and words referring to thematically related materials, by way of a picture/word source-judgement task, participants were asked to remember the way in which these materials were presented. Participants reported "seeing" pictures of items that were presented as words, an effect predicted by the imaginal activation hypothesis in its suggestion that incidental images experienced during encoding will later be mistaken as memories for pictures. Whether participants made the same picture misattributions on related lures (or non-presented related items) depended on the way in which the lures' respective thematic lists were experienced during encoding (Experiments 1 and 2), pointing to the effects of list-specific cues in picture/word judgements. These findings have intriguing implications for interpretations of picture-encoding effects induced by the DRM task. The findings also speak to the use of DRM false-memory rates when marshalling evidence against the use of imagery in applied settings.

  10. Abnormality of spontaneous brain activities in patients with chronic neck and shoulder pain: A resting-state fMRI study.

    Science.gov (United States)

    Yu, Cheng-Xin; Ji, Ting-Ting; Song, Hao; Li, Bo; Han, Qiang; Li, Liang; Zhuo, Zhi-Zheng

    2017-02-01

    Objectives Chronic gneck and shoulder pain (CNSP) is a common clinical symptom of cervical spondylotic radiculopathy. Several studies using resting-state functional magnetic resonance imaging (rs-fMRI) have reported that most chronic pain diseases are accompanied by structural and functional changes in the brain. However, few rs-fMRI studies have examined CNSP. The current study investigated cerebral structural and functional changes in CNSP patients. Methods In total, 25 CNSP patients and 20 healthy volunteers participated in the study. 3D-T1W and rs-fMRI images were acquired. Voxel-based morphometry analysis was applied to structural images, and regional homogeneity (ReHo) was extracted from rs-fMRI. Statistical analysis was performed on post-processing images and ReHo parameter maps. Results The results revealed no significant differences in brain structure between the two groups. In the patient group, ReHo values were significantly increased in the bilateral middle frontal gyrus and decreased in the left insula, superior frontal gyrus, middle cingulate gyrus, supplementary motor area, right postcentral gyrus, and superior parietal lobule. Conclusions This initial structural and rs-fMRI study of CNSP revealed characteristic features of spontaneous brain activity of CNSP patients. These findings may be helpful for increasing our understanding of the neuropathology of CNSP.

  11. Regulating the Access to Awareness: Brain Activity Related to Probe-related and Spontaneous Reversals in Binocular Rivalry.

    Science.gov (United States)

    Metzger, Brian A; Mathewson, Kyle E; Tapia, Evelina; Fabiani, Monica; Gratton, Gabriele; Beck, Diane M

    2017-06-01

    Research on the neural correlates of consciousness (NCC) has implicated an assortment of brain regions, ERP components, and network properties associated with visual awareness. Recently, the P3b ERP component has emerged as a leading NCC candidate. However, typical P3b paradigms depend on the detection of some stimulus change, making it difficult to separate brain processes elicited by the stimulus itself from those associated with updates or changes in visual awareness. Here we used binocular rivalry to ask whether the P3b is associated with changes in awareness even in the absence of changes in the object of awareness. We recorded ERPs during a probe-mediated binocular rivalry paradigm in which brief probes were presented over the image in either the suppressed or dominant eye to determine whether the elicited P3b activity is probe or reversal related. We found that the timing of P3b (but not its amplitude) was closely related to the timing of the report of a perceptual change rather than to the onset of the probe. This is consistent with the proposal that P3b indexes updates in conscious awareness, rather than being related to stimulus processing per se. Conversely, the probe-related P1 amplitude (but not its latency) was associated with reversal latency, suggesting that the degree to which the probe is processed increases the likelihood of a fast perceptual reversal. Finally, the response-locked P3b amplitude (but not its latency) was associated with the duration of an intermediate stage between reversals in which parts of both percepts coexist (piecemeal period). Together, the data suggest that the P3b reflects an update in consciousness and that the intensity of that process (as indexed by P3b amplitude) predicts how immediate that update is.

  12. Estradiol valerate and dienogest: a novel four-phasic oral contraceptive pill effective for pregnancy prevention and treatment of heavy menstrual bleeding.

    Science.gov (United States)

    Micks, Elizabeth; Jensen, Jeffrey T

    2011-09-01

    Estradiol valerate and dienogest have been combined to create a novel four-phasic oral contraceptive pill effective for both pregnancy prevention and treatment of heavy menstrual bleeding. This formulation represents the only oral contraceptive pill available in the USA containing an estrogen component that is biologically active as the endogenous estrogen 17β-estradiol. This medication was developed out of efforts to replace the most common estrogen in contraceptive pills, ethinyl estradiol, which is known to be a potent inducer of hepatic protein synthesis. Estradiol valerate has been available since the 1970s in oral and injectable forms indicated for the treatment of menopausal climacteric symptoms. Dienogest has been used in other oral contraceptive pills for over 10 years. Previous attempts to develop an oral contraceptive pill with natural estradiol or estradiol valerate were unsuccessful due to poor cycle control. A novel dynamic-dosing regimen was devised to improve the bleeding pattern. This medication has been shown in several clinical trials to have good contraceptive efficacy and cycle control. Recent studies have also demonstrated that this medication is effective for the treatment of heavy menstrual bleeding. However, compared with other oral contraceptive pills, this medication is associated with a higher frequency of absent withdrawal bleeding. Furthermore, the dynamic dosing regimen requires relatively complex instructions for users who miss pills.

  13. Cooperative Ge-N Bond activation in aluminium-functionalised aminogermanes and spontaneous imine elimination via an intermediate germyl cation.

    Science.gov (United States)

    Uhl, Werner; Tannert, Jens; Honacker, Christian; Layh, Marcus; Qu, Zheng-Wang; Risthaus, Tobias; Grimme, Stefan

    2015-02-02

    Hydrometallation of iPr2 N-Ge(CMe3 )(C≡C-CMe3 )2 with H-M(CMe3 )2 (M=Al, Ga) affords alkenyl-alkynylgermanes in which the Lewis-acidic metal atoms are not coordinated by the amino N atoms but by the α-C atoms of the ethynyl groups. These interactions result in a lengthening of the Ge-C bonds by approximately 10 pm and a comparably strong deviation of the Ge-CC angle from linearity (154.3(1)°). This unusual behaviour may be caused by steric shielding of the N atoms. Coordination of the metal atoms by the amino groups is observed upon hydrometallation of Et2 N-Ge(C6 H5 )(C≡C-CMe3 )2 , bearing a smaller NR2 group. Strong M-N interactions lead to a lengthening of the Ge-N bonds by 10 to 15 pm and a strong deviation of the M atoms from the MC3 plane by 52 and 47 pm, for Al and Ga, respectively. Dual hydrometallation is achieved only with HAl(CMe3 )2 . In the product, there is a strong Al-N bond with converging Al-N and Ge-N distances (208 vs. 200 pm) and an interaction of the second Al atom to the phenyl group. Addition of chloride anions terminates the latter interaction while the activated Ge-N bond undergoes an unprecedented elimination of EtN=C(H)Me at room temperature, leading to a germane with a Ge-H bond. State-of-the-art DFT calculations reveal that the unique mechanism comprises the transfer of the amino group from Ge to Al to yield an intermediate germyl cation as a strong Lewis acid, which induces β-hydride elimination, with chloride binding being crucial for providing the thermodynamic driving force. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    Science.gov (United States)

    Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; D'Incerti, Ludovico; Jovicich, Jorge

    2015-03-01

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  15. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    International Nuclear Information System (INIS)

    Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; Jovicich, Jorge; D'Incerti, Ludovico

    2015-01-01

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D 2 ), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes

  16. A 21-35 kDa Mixed Protein Component from Helicobacter pylori Activates Mast Cells Effectively in Chronic Spontaneous Urticaria.

    Science.gov (United States)

    Tan, Ran-Jing; Sun, He-Qiang; Zhang, Wei; Yuan, Han-Mei; Li, Bin; Yan, Hong-Tao; Lan, Chun-Hui; Yang, Jun; Zhao, Zhuo; Wu, Jin-Jin; Wu, Chao

    2016-12-01

    Helicobacter pylori (H. pylori) seem to involve in the etiology of chronic spontaneous urticaria (CSU). But studies of the pathogenic mechanism are very little. In this study, we detected the serum-specific anti-H. pylori IgG and IgE antibodies in 211 CSU and 137 normal subjects by enzyme-linked immunosorbent assay (ELISA), evaluated the direct activation effects of H. pylori preparations and its protein components on human LAD 2 mast cell line in vitro, and analyzed the specific protein ingredients and functions of the most effective H. pylori mixed protein component using liquid chromatography-mass spectrometry and ELISA assay. In CSU patients, the positive rate of anti-H. pylori IgG positive rate was significantly higher than that in normal controls, and the anti-H. pylori IgE levels had no statistical difference between H. pylori-infected patients with and without CSU. Further studies suggested that H. pylori preparations can directly activate human LAD 2 mast cell line in a dose-dependent manner and its most powerful protein component was a mixture of 21-35 kDa proteins. Moreover, the 21-35 kDa mixed protein component mainly contained 23 kinds of proteins, which can stimulate the release of histamine, TNF-a, IL-3, IFN-γ, and LTB4 by LAD 2 cells in a dose-dependent or time-dependent manner. A 21-35 kDa mixed protein component should be regarded as the most promising pathogenic factor contributing to the CSU associated with H. pylori infection. © 2016 John Wiley & Sons Ltd.

  17. Sodium arsanilate-induced vestibular dysfunction in rats: effects on open-field behavior and spontaneous activity in the automated digiscan monitoring system.

    Science.gov (United States)

    Ossenkopp, K P; Prkacin, A; Hargreaves, E L

    1990-08-01

    Vestibular dysfunction was chemically induced in Long-Evans rats by intratympanic injections (30 mg per side) of sodium arsanilate (atoxyl). Following a one-week recovery period the rats were behaviorally assayed for integrity of the labyrinthine systems. All subjects were tested for presence of the air-righting reflex, the contact-righting reflex (by lightly holding a sheet of Plexiglas against the soles of the rat's feet), and body rotation-induced nystagmus. All animals were then tested for their ability to remain on a small (15 x 15 cm) platform. Next, the subjects were given two 10-min open-field tests during which ambulation, rearing, grooming, and defecation responses were recorded. Four to five weeks later all rats were tested twice (60 min per session) in the automated Digiscan Activity Monitor which provides a multivariate assessment of spontaneous motor activity. The rats with vestibular dysfunction (Group VNX) took significantly less time to fall off the platform (p less than 0.01). They also exhibited significantly more open-field ambulation but fewer rearing responses (ps less than 0.01). An examination of group correlation coefficients for open-field variables and the platform test scores revealed some interesting group differences (ps less than 0.05). In the Digiscan tests the atoxyl-treated rats exhibited fewer number of horizontal movements, but increased speed for these movements (ps less than 0.05). Vertical movements did not differ significantly in incidence, but these movements were greatly reduced in duration (p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Assessment of the ability of CT urography with low-dose multi-phasic excretory phases for opacification of the urinary system.

    Science.gov (United States)

    Juri, Hiroshi; Tsuboyama, Takahiro; Koyama, Mitsuhiro; Yamamoto, Kiyohito; Nakai, Go; Nakamoto, Atsushi; Yamamoto, Kazuhiro; Azuma, Haruhito; Narumi, Yoshifumi

    2017-01-01

    To prospectively evaluate the ability of CT urography with a low-dose multi-phasic excretory phase for opacification of the urinary system. Thirty-two patients underwent CT urography with low-dose multi-phasic s using adaptive iterative dose reduction 3D acquired at 5-, 10-, and 15-minute delays. Opacification scores of the upper urinary tracts and the urinary bladder were assigned for each excretory phase by two radiologists, who recorded whether adequate (>75%) or complete (100%) opacification of the upper urinary tract and urinary bladder was achieved in each patient. Adequate and complete opacification rates of the upper urinary tracts and the urinary bladder were compared among three excretory phases and among combined multi-phasic excretory phases using Cochran's Q test. There was no significant difference among three excretory phases with 5-, 10-, and 15-minute delays in adequate (56.3, 43.8, and 63.5%, respectively; P = 0.174) and complete opacification rates (9.3, 15.6, and 18.7%, respectively; P = 0.417) of the upper urinary tracts. Combined tri-phasic excretory phases significantly improved adequate and complete opacification rates to 84.4% and 43.8%, respectively (P = 0.002). In contrast, there were significant differences among three excretory phases for the rate of adequate (31.3, 84.4, and 93.8%, respectively; Pexcretory phases did not improve these rates because opacification was always better with a longer delay. Although multi-phasic acquisition of excretory phases is effective at improving opacification of the upper urinary tracts, complete opacification is difficult even with tri-phasic acquisition.

  19. A decentralized control scheme for an effective coordination of phasic and tonic control in a snake-like robot

    International Nuclear Information System (INIS)

    Sato, Takahide; Kano, Takeshi; Ishiguro, Akio

    2012-01-01

    Autonomous decentralized control has attracted considerable attention because it enables us to understand the adaptive and versatile locomotion of animals and facilitates the construction of truly intelligent artificial agents. Thus far, we have developed a snake-like robot (HAUBOT I) that is driven by a decentralized control scheme based on a discrepancy function, which incorporates phasic control. In this paper, we investigate a decentralized control scheme in which phasic and tonic control are well coordinated, as an extension of our previous study. To verify the validity of the proposed control scheme, we apply it to a snake-like robot (HAUBOT II) that can adjust both the phase relationship between its body segments and the stiffness at each joint. The results indicate that the proposed control scheme enables the robot to exhibit remarkable real-time adaptability over various frictional and inclined terrains. These findings can potentially enable us to gain a deeper insight into the autonomous decentralized control mechanism underlying the adaptive and resilient locomotion of animals.

  20. Design and hydraulic characteristics of a field-scale bi-phasic bioretention rain garden system for storm water management.

    Science.gov (United States)

    Yang, H; Florence, D C; McCoy, E L; Dick, W A; Grewal, P S

    2009-01-01

    A field-scale bioretention rain garden system was constructed using a novel bi-phasic (i.e. sequence of anaerobic to aerobic) concept for improving retention and removal of storm water runoff pollutants. Hydraulic tests with bromide tracer and simulated runoff pollutants (nitrate-N, phosphate-P, Cu, Pb, and Zn) were performed in the system under a simulated continuous rainfall. The objectives of the tests were (1) to determine hydraulic characteristics of the system, and (2) to evaluate the movement of runoff pollutants through the system. For the 180 mm/24 h rainfall, the bi-phasic bioretention system effectively reduced both peak flow (approximately 70%) and runoff volume (approximately 42%). The breakthrough curves (BTCs) of bromide tracer suggest that the transport pattern of the system is similar to dispersed plug flow under this large runoff event. The BTCs of bromide showed mean 10% and 90% breakthrough times of 5.7 h and 12.5 h, respectively. Under the continuous rainfall, a significantly different transport pattern was found between each runoff pollutant. Nitrate-N was easily transported through the system with potential leaching risk from the initial soil medium, whereas phosphate-P and metals were significantly retained indicating sorption-mediated transport. These findings support the importance of hydraulics, in combination with the soil medium, when creating bioretention systems for bioremediation that are effective for various rainfall sizes and intervals.

  1. Trophic Ecology of Benthic Marine Invertebrates with Bi-Phasic Life Cycles: What Are We Still Missing?

    Science.gov (United States)

    Calado, Ricardo; Leal, Miguel Costa

    2015-01-01

    The study of trophic ecology of benthic marine invertebrates with bi-phasic life cycles is critical to understand the mechanisms shaping population dynamics. Moreover, global climate change is impacting the marine environment at an unprecedented level, which promotes trophic mismatches that affect the phenology of these species and, ultimately, act as drivers of ecological and evolutionary change. Assessing the trophic ecology of marine invertebrates is critical to understanding maternal investment, larval survival to metamorphosis, post-metamorphic performance, resource partitioning and trophic cascades. Tools already available to assess the trophic ecology of marine invertebrates, including visual observation, gut content analysis, food concentration, trophic markers, stable isotopes and molecular genetics, are reviewed and their main advantages and disadvantages for qualitative and quantitative approaches are discussed. The challenges to perform the partitioning of ingestion, digestion and assimilation are discussed together with different approaches to address each of these processes for short- and long-term fingerprinting. Future directions for research on the trophic ecology of benthic marine invertebrates with bi-phasic life cycles are discussed with emphasis on five guidelines that will allow for systematic study and comparative meta-analysis to address important unresolved questions. © 2015 Elsevier Ltd. All rights reserved.

  2. Spontaneous Pneumomediastinum: Hamman Syndrome

    Directory of Open Access Journals (Sweden)

    Tushank Chadha, BS

    2018-04-01

    pneumomediastinum. Hamman’s sign, crepitus heard with auscultation of the chest, is understood to be a more specific indicator of pneumomediastinum.3,4 CT is the ideal diagnostic modality in order to most accurately determine the presence of free air in the mediastinum.3 For this patient, treatment involved symptom management and brief hospitalization for observation purposes. Typical standard of care encourages bed rest with limited physical activity and pain management sometimes also with oxygen administration, anti-anxiety drugs, and cough suppressants, all with the intent to decrease alveolar stress.3 While spontaneous pneumomediastinum may be a more benign condition when ultimately diagnosed, it is important to recognize and seriously consider the differential diagnosis for pneumomediastinum because it includes conditions that demand urgent diagnosis, workup and often definitive treatment. Topics: Pneumomediastinum, Hamman’s syndrome, gastric cancer, computerized tomography

  3. Preference for Western diet coadapts in High Runner mice and affects voluntary exercise and spontaneous physical activity in a genotype-dependent manner.

    Science.gov (United States)

    Acosta, Wendy; Meek, Thomas H; Schutz, Heidi; Dlugosz, Elizabeth M; Garland, Theodore

    2017-02-01

    Do animals evolve (coadapt) to choose diets that positively affect their performance abilities? We addressed this question from a microevolutionary perspective by examining preference for Western diet (WD: high in fat and sugar, but lower in protein) versus standard rodent chow in adults of both sexes from 4 lines of mice selectively bred for high levels of voluntary wheel running (High Runner or HR lines) and 4 non-selected control (C) lines. We also assessed whether food preference or substitution affects physical activity (wheel running and/or spontaneous physical activity [SPA] in the attached home cages). In experiment 1 (generation 56), mice were given 6days of wheel acclimation (as is used routinely to pick breeders in the selection experiment) prior to a 2-day food choice trial. In experiment 2 (generation 56), 17days of wheel acclimation allowed mice to reach a stable level of daily running, followed by a 7-day food-choice trial. In experiment 3 (generation 58), mice had 6days of wheel acclimation with standard chow, after which half were switched to WD for two days. In experiment 1, WD was highly preferred by all mice, with somewhat greater preference in male C mice. In experiment 2, wheel running increased and SPA decreased continuously for the first 14days of adult wheel testing, followed by 3-day plateaus in both. During the subsequent 7-day food choice trial, HR mice of both sexes preferred WD significantly more than did C mice; moreover, wheel running increased in all groups except males from C lines, with the increase being significantly greater in HR than C, while SPA declined further in all groups. In experiment 3, the effect of being switched to WD depended on both linetype and sex. On standard chow, only HR females showed a significant change in wheel running during nights 7+8, increasing by 10%. In contrast, when switched to WD, C females (+28%), HR females (+33%), and HR males (+10%) all significantly increased their daily wheel

  4. Modulatory effect of intestinal polyamines and trace amines on the spontaneous phasic contractions of the isolated ileum and colon rings of mice

    OpenAIRE

    Sánchez Fernández, Manuel; Suárez García, Lorena; Andrés, María Teresa; Henar Flórez, Blanca; Bordallo Landa, Javier; Riestra, Sabino; Cantabrana Plaza, Begoña

    2017-01-01

    ABSTRACT Background: Gastrointestinal motility modulatory factors include substances of the intestinal content, such as polyamines and trace amines (TAs), the focus of this study. Methods: The amines of food, intestinal content and from faecal bacteria of Swiss mice were determined by HPLC and functionally characterised in isolated distal ileum and medial colon rings. Results: Mouse food and intestinal content contain polyamines (spermidine>putrescine>spermine) and TAs (isoamylamine>cadaverin...

  5. Staphylococcus-mediated T-cell activation and spontaneous natural killer cell activity in the absence of major histocompatibility complex class II molecules

    Science.gov (United States)

    Chapes, S. K.; Hoynowski, S. M.; Woods, K. M.; Armstrong, J. W.; Beharka, A. A.; Iandolo, J. J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    We used major histocompatibility complex class II antigen-deficient transgenic mice to show that in vitro natural killer cell cytotoxicity and T-cell activation by staphylococcal exotoxins (superantigens) are not dependent upon the presence of major histocompatibility complex class II molecules. T cells can be activated by exotoxins in the presence of exogenously added interleukin 1 or 2 or in the presence of specific antibody without exogenously added cytokines.

  6. Comparing brain activity patterns during spontaneous exploratory and cue-instructed learning using single photon-emission computed tomography (SPECT) imaging of regional cerebral blood flow in freely behaving rats.

    Science.gov (United States)

    Mannewitz, A; Bock, J; Kreitz, S; Hess, A; Goldschmidt, J; Scheich, H; Braun, Katharina

    2018-05-01

    Learning can be categorized into cue-instructed and spontaneous learning types; however, so far, there is no detailed comparative analysis of specific brain pathways involved in these learning types. The aim of this study was to compare brain activity patterns during these learning tasks using the in vivo imaging technique of single photon-emission computed tomography (SPECT) of regional cerebral blood flow (rCBF). During spontaneous exploratory learning, higher levels of rCBF compared to cue-instructed learning were observed in motor control regions, including specific subregions of the motor cortex and the striatum, as well as in regions of sensory pathways including olfactory, somatosensory, and visual modalities. In addition, elevated activity was found in limbic areas, including specific subregions of the hippocampal formation, the amygdala, and the insula. The main difference between the two learning paradigms analyzed in this study was the higher rCBF observed in prefrontal cortical regions during cue-instructed learning when compared to spontaneous learning. Higher rCBF during cue-instructed learning was also observed in the anterior insular cortex and in limbic areas, including the ectorhinal and entorhinal cortexes, subregions of the hippocampus, subnuclei of the amygdala, and the septum. Many of the rCBF changes showed hemispheric lateralization. Taken together, our study is the first to compare partly lateralized brain activity patterns during two different types of learning.

  7. Spontaneous Atraumatic Mediastinal Hemorrhage

    Directory of Open Access Journals (Sweden)

    Morkos Iskander BSc, BMBS, MRCS, PGCertMedEd

    2013-04-01

    Full Text Available Spontaneous atraumatic mediastinal hematomas are rare. We present a case of a previously fit and well middle-aged lady who presented with acute breathlessness and an increasing neck swelling and spontaneous neck bruising. On plain chest radiograph, widening of the mediastinum was noted. The bruising was later confirmed to be secondary to mediastinal hematoma. This life-threatening diagnostic conundrum was managed conservatively with a multidisciplinary team approach involving upper gastrointestinal and thoracic surgeons, gastroenterologists, radiologists, intensivists, and hematologists along with a variety of diagnostic modalities. A review of literature is also presented to help surgeons manage such challenging and complicated cases.

  8. Dorsomedial prefontal cortex supports spontaneous thinking per se.

    Science.gov (United States)

    Raij, T T; Riekki, T J J

    2017-06-01

    Spontaneous thinking, an action to produce, consider, integrate, and reason through mental representations, is central to our daily experience and has been suggested to serve crucial adaptive purposes. Such thinking occurs among other experiences during mind wandering that is associated with activation of the default mode network among other brain circuitries. Whether and how such brain activation is linked to the experience of spontaneous thinking per se remains poorly known. We studied 51 healthy subjects using a comprehensive experience-sampling paradigm during 3T functional magnetic resonance imaging. In comparison with fixation, the experiences of spontaneous thinking and spontaneous perception were related to activation of wide-spread brain circuitries, including the cortical midline structures, the anterior cingulate cortex and the visual cortex. In direct comparison of the spontaneous thinking versus spontaneous perception, activation was observed in the anterior dorsomedial prefrontal cortex. Modality congruence of spontaneous-experience-related brain activation was suggested by several findings, including association of the lingual gyrus with visual in comparison with non-verbal-non-visual thinking. In the context of current literature, these findings suggest that the cortical midline structures are involved in the integrative core substrate of spontaneous thinking that is coupled with other brain systems depending on the characteristics of thinking. Furthermore, involvement of the anterior dorsomedial prefrontal cortex suggests the control of high-order abstract functions to characterize spontaneous thinking per se. Hum Brain Mapp 38:3277-3288, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. [Toe phasic posture reflex: description and distribution among patients with neurological disease and in the general population].

    Science.gov (United States)

    Degos, J D; Malapert, D; Louletzian, O

    2001-03-01

    A clinical sign is described consisting of a brief extension of the toes after upward tapping of the plantar surface of their terminal phalanges. Electrological data support the hypothesis of a long loop reflex, which we call the "toe phasic posture reflex" (TPPR). In a preliminary study, this sign was observed in patients with central nervous system disease, especially in subcortical brain disorders regardless of etiology. In Parkinson's disease, it was seen mostly in severe and postural forms. Among 237 healthy subjects, it was observed in none of those under 70 years old (n=116), and in 10p. cent of those over 69 years and doing no sport (n=132), but in none of those doing regularly gymnastics or swimming (n=29). TPPR could thus be a sign of motor and especially postural aging.

  10. Evidence for a lack of phasic inhibitory properties of habituated stressors on HPA axis responses in rats.

    Science.gov (United States)

    Masini, C V; Day, H E W; Gray, T; Crema, L M; Nyhuis, T J; Babb, J A; Campeau, S

    2012-01-18

    This experiment tested the hypothesis that habituation to repeated stressor exposures is produced by phasic inhibitory influence on the neural circuitry that normally drives the paraventricular nucleus of the hypothalamus and subsequently the adrenocortical hormone response to psychological stress. Such a process would be expected to lower the acute response to a novel stressor when experienced concurrently with a habituated stressor. Rats were exposed to restraint or no stress conditions for 14 consecutive days. On the 15th day, the rats were exposed to the control condition (no stress), acute restraint, loud noise, or restraint and loud noise concurrently. Blood was taken and assayed for ACTH and corticosterone and brains were collected to examine c-fos messenger RNA expression in several brain areas. As predicted, the rats that received the same (homotypic) stressor repeatedly and again on the test day displayed low levels of ACTH and corticosterone, similar to the control conditions (i.e., showed habituation). All rats that received a single novel stressor on the test day, regardless of prior stress history, exhibited high levels of ACTH and corticosterone. The rats that received two novel stressors also displayed high levels of ACTH and corticosterone, but little evidence of additivity was observed. Importantly, when a novel stressor was concurrently given with a habituated stressor on the test day, no reduction of HPA axis response was observed when compared to previously habituated rats given only the novel stressor on the test day. In general, c-fos mRNA induction in several stress responsive brain areas followed the same patterns as the ACTH and corticosterone data. These data suggest that habituation of the adrenocortical hormone response to psychological stressors is not mediated by phasic inhibition of the effector system. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Continuous Aerobic Training in Individualized Intensity Avoids Spontaneous Physical Activity Decline and Improves MCT1 Expression in Oxidative Muscle of Swimming Rats

    Directory of Open Access Journals (Sweden)

    Pedro Paulo Menezes Scariot

    2016-04-01

    Full Text Available Although aerobic training has been shown to affect the lactate transport of skeletal muscle, there is no information concerning the effect of continuous aerobic training on spontaneous physical activity (SPA. Because every movement in daily life (i.e. SPA is generated by skeletal muscle, we think that it is possible that an improvement of SPA could affect the physiological properties of muscle with regard to lactate transport. The aim of this study was to evaluate the effect of 12 weeks of continuous aerobic training in individualized intensity on SPA of rats and their gene expressions of monocarboxylate transporters (MCT 1 and 4 in soleus (oxidative and white gastrocnemius (glycolytic muscles. We also analyzed the effect of continuous aerobic training on aerobic and anaerobic parameters using the lactate minimum test (LMT. 60-day-old rats were randomly divided into three groups: a baseline group in which rats were evaluated prior to initiation of the study; a control group (Co in which rats were kept without any treatment during 12 weeks; and a chronic exercise group (Tr in which rats swam for 40min/day, 5 days/week at 80% of anaerobic threshold during 12 weeks. After the experimental period, SPA of rats was measured using a gravimetric method. Rats had their expression of MCTs determined by RT-PCR analysis. In essence, aerobic training is effective in maintaining SPA, but did not prevent the decline of aerobic capacity and anaerobic performance, leading us to propose that the decline of SPA is not fully attributed to a deterioration of physical properties. Changes in SPA were concomitant with changes in MCT1 expression in the soleus muscle of trained rats, suggestive of an additional adaptive response toward increased lactate clearance. This result is in line with our observation showing a better equilibrium on lactate production-remotion during the continuous exercise (LMT. We propose an approach to combat the decline of SPA of rats in their

  12. Altered pattern of spontaneous brain activity in the patients with end-stage renal disease: a resting-state functional MRI study with regional homogeneity analysis.

    Directory of Open Access Journals (Sweden)

    Xue Liang

    Full Text Available PURPOSE: To investigate the pattern of spontaneous neural activity in patients with end-stage renal disease (ESRD with and without neurocognitive dysfunction using resting-state functional magnetic resonance imaging (rs-fMRI with a regional homogeneity (ReHo algorithm. MATERIALS AND METHODS: rs-fMRI data were acquired in 36 ESRD patients (minimal nephro-encephalopathy [MNE], n = 19, 13 male, 37±12.07 years; non-nephro-encephalopathy [non-NE], n = 17, 11 male, 38±12.13 years and 20 healthy controls (13 male, 7 female, 36±10.27 years. Neuropsychological (number connection test type A [NCT-A], digit symbol test [DST] and laboratory tests were performed in all patients. The Kendall's coefficient of concordance (KCC was used to measure the regional homogeneity for each subject. The regional homogeneity maps were compared using ANOVA tests among MNE, non-NE, and healthy control groups and post hoc t -tests between each pair in a voxel-wise way. A multiple regression analysis was performed to evaluate the relationships between ReHo index and NCT-A, DST scores, serum creatinine and urea levels, disease and dialysis duration. RESULTS: Compared with healthy controls, both MNE and non-NE patients showed decreased ReHo in the multiple areas of bilateral frontal, parietal and temporal lobes. Compared with the non-NE, MNE patients showed decreased ReHo in the right inferior parietal lobe (IPL, medial frontal cortex (MFC and left precuneus (PCu. The NCT-A scores and serum urea levels of ESRD patients negatively correlated with ReHo values in the frontal and parietal lobes, while DST scores positively correlated with ReHo values in the bilateral PCC/precuneus, MFC and inferior parietal lobe (IPL (all P0.05, AlphaSim corrected. CONCLUSION: Diffused decreased ReHo values were found in both MNE and non-NE patients. The progressively decreased ReHo in the default mode network (DMN, frontal and parietal lobes might be trait-related in MNE. The Re

  13. Active suppression of host-vs-graft reaction in pregnant mice. VII. Spontaneous abortion of allogeneic CBA/J x DBA/2 fetuses in the uterus of CBA/J mice correlates with deficient non-T suppressor cell activity

    International Nuclear Information System (INIS)

    Clark, D.A.; Chaput, A.; Tutton, D.

    1986-01-01

    The mammalian fetus has been viewed as an unusually successful type of allograft and unexplained spontaneous abortion as a possible example of maternal rejection. Previous studies have shown the presence of small lymphocytic suppressor cells in the murine decidua which block the generation and reactivation of anti-paternal cytotoxic T lymphocytes (CTL) and lymphokine-activated killer cells (LAK) by elaborating a factor that inhibits the response to interleukin 2 (IL 2). A deficiency of these suppressor cells was associated with implants of xenogeneic Mus caroli embryos in the Mus musculus uterus which are infiltrated by maternal lymphoid cells and aborted. A deficiency of such suppressor cells in the lymph nodes draining the uterus of CBA/J females in the process of aborting their semi-allogeneic CBA x DBA/2 F 1 progeny has also been shown. CBA/J females possess significantly lower levels of decidua-associated non-T suppressor cells on day 8.5 to 10.5 of allopregnancy than do mothers that will produce large litters of live babies. The F 1 embryos are infiltrated by maternal lymphocytes prior to abortion, and the infiltration and abortion rate appears to be augmented by pre-immunization with paternal DBA/2 spleen cells. The CBA/J x DBA/2J mating combination provides a model of spontaneous abortion in which immunologic factors play an important role and demonstrates that the association between deficiency of decidua-associated suppressor cells and xenopregnancy failure also holds true for the failure of allopregnancies resulting from natural within-species mating

  14. Spontaneous Appendicocutaneous Fistula I

    African Journals Online (AJOL)

    M T0k0de* MB, BS and. Dr 0. A. AWOj0bi+ FMCS (Nig). ABSTRACT. Ruptured appendicitis is not a common cause of spontaneous enterocutaneous fistula. A case of ruptured retrocaecal appendicitis presenting as an enterocutaneous fistula in a Nigerian woman is presented. The literature on this disorder is also reviewed.

  15. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Strauss, Edna; Caly, Wanda Regina

    2003-01-01

    Spontaneous bacterial peritonitis occurs in 30% of patients with ascites due to cirrhosis leading to high morbidity and mortality rates. The pathogenesis of spontaneous bacterial peritonitis is related to altered host defenses observed in end-stage liver disease, overgrowth of microorganisms, and bacterial translocation from the intestinal lumen to mesenteric lymph nodes. Clinical manifestations vary from severe to slight or absent, demanding analysis of the ascitic fluid. The diagnosis is confirmed by a number of neutrophils over 250/mm3 associated or not to bacterial growth in culture of an ascites sample. Enterobacteriae prevail and Escherichia coli has been the most frequent bacterium reported. Mortality rates decreased markedly in the last two decades due to early diagnosis and prompt antibiotic treatment. Third generation intravenous cephalosporins are effective in 70% to 95% of the cases. Recurrence of spontaneous bacterial peritonitis is common and can be prevented by the continuous use of oral norfloxacin. The development of bacterial resistance demands the search for new options in the prophylaxis of spontaneous bacterial peritonitis; probiotics are a promising new approach, but deserve further evaluation. Short-term antibiotic prophylaxis is recommended for patients with cirrhosis and ascites shortly after an acute episode of gastrointestinal bleeding.

  16. Spontaneous Grammar Explanations.

    Science.gov (United States)

    Tjoo, Hong Sing; Lewis, Marilyn

    1998-01-01

    Describes one New Zealand university language teacher's reflection on her own grammar explanations to university-level students of Bahasa Indonesian. Examines form-focused instruction through the teacher's spontaneous answers to students' questions about the form of the language they are studying. The teacher's experiences show that it takes time…

  17. EDITORIAL SPONTANEOUS BACTERIAL PERITONITIS ...

    African Journals Online (AJOL)

    hi-tech

    Spontaneous bacterial peritonitis (SBP) frequent]y occurs in patients with liver cirrhosis and ascites. It is defined as an infection of previously sterile ascitic fluid without any demonstrable intrabdominal source of infection. It is now internationally agreed that a polymorphonuclear (PMN) cell count in the ascitic fluid of over 250 ...

  18. Spontaneous dimensional reduction?

    Science.gov (United States)

    Carlip, Steven

    2012-10-01

    Over the past few years, evidence has begun to accumulate suggesting that spacetime may undergo a "spontaneous dimensional reduction" to two dimensions near the Planck scale. I review some of this evidence, and discuss the (still very speculative) proposal that the underlying mechanism may be related to short-distance focusing of light rays by quantum fluctuations.

  19. Bypassing the Need for the Transcriptional Activator EarA through a Spontaneous Deletion in the BRE Portion of the fla Operon Promoter in Methanococcus maripaludis

    Directory of Open Access Journals (Sweden)

    Yan Ding

    2017-07-01

    Full Text Available In Methanococcus maripaludis, the euryarchaeal archaellum regulator A (EarA is required for the transcription of the fla operon, which is comprised of a series of genes which encode most of the proteins needed for the formation of the archaeal swimming organelle, the archaellum. In mutants deleted for earA (ΔearA, there is almost undetectable transcription of the fla operon, Fla proteins are not synthesized and the cells are non-archaellated. In this study, we have isolated a spontaneous mutant of a ΔearA mutant in which the restoration of the transcription and translation of the fla operon (using flaB2, the second gene of the operon, as a reporter, archaella formation and swarming motility were all restored even in the absence of EarA. Analysis of the DNA sequence from the fla promoter of this spontaneous mutant revealed a deletion of three adenines within a string of seven adenines in the transcription factor B recognition element (BRE. When the three adenine deletion in the BRE was regenerated in a stock culture of the ΔearA mutant, very similar phenotypes to that of the spontaneous mutant were observed. Deletion of the three adenines in the fla promoter BRE resulted in the mutant BRE having high sequence identity to BREs from promoters that have strong basal transcription level in Mc. maripaludis and Methanocaldococcus jannaschii. These data suggest that EarA may help recruit transcription factor B to a weak BRE in the fla promoter of wild-type cells but is not required for transcription from the fla promoter with a strong BRE, as in the three adenine deletion version in the spontaneous mutant.

  20. Psychophysiological correlates of the spontaneous K-complex.

    Science.gov (United States)

    Scott, R; Karle, W; Switzer, A; Hart, J; Corriere, R; Woldenberg, L

    1978-02-01

    A pilot study covering three nights and two studies were carried out to investigate the psychophysiological correlates of the spontaneous K-complex in relation to intense psychotherapy. The pilot study produced evidence that the K-complex was not consistent and stable within or across nights and that its variability might be sensitive to psycho-emotional influences. In the first major study 2 subjects were recorded non-consecutively over a 3-wk. period during experience of intensive therapy while in the second 6 subjects were studied before and after two therapeutic sessions. Results indicated that nights after therapy differed significantly from baseline nights and a significant interaction took place between subjects and therapy on one or more variables of the K-complex and several eye movement indices. Some relationship to length of time in therapy was also noted. These findings were interpreted to indicate a possible relationship between complete expression of feeling and the occurrence of phasic events in the sleeping EEG.

  1. Spontaneous healing of spontaneous coronary artery dissection.

    Science.gov (United States)

    Almafragi, Amar; Convens, Carl; Heuvel, Paul Van Den

    2010-01-01

    Spontaneous coronary artery dissection (SCAD) is a rare cause of acute coronary syndrome and sudden cardiac death. It should be suspected in every healthy young woman without cardiac risk factors, especially during the peripartum or postpartum periods. It is important to check for a history of drug abuse, collagen vascular disease or blunt trauma of the chest. Coronary angiography is essential for diagnosis and early management. We wonder whether thrombolysis might aggravate coronary dissection. All types of treatment (medical therapy, percutaneous intervention or surgery) improve the prognosis without affecting survival times if used appropriately according to the clinical stability and the angiographic features of the involved coronary arteries. Prompt recognition and targeted treatment improve outcomes. We report a case of SCAD in a young female free of traditional cardiovascular risk factors, who presented six hours after thrombolysis for ST elevation myocardial infarction. Coronary angiography showed a dissection of the left anterior descending and immediate branch. She had successful coronary artery bypass grafting, with complete healing of left anterior descending dissection.

  2. Spontaneous spinal epidural abscess.

    LENUS (Irish Health Repository)

    Ellanti, P

    2011-10-01

    Spinal epidural abscess is an uncommon entity, the frequency of which is increasing. They occur spontaneously or as a complication of intervention. The classical triad of fever, back pain and neurological symptoms are not always present. High index of suspicion is key to diagnosis. Any delay in diagnosis and treatment can have significant neurological consequences. We present the case of a previously well man with a one month history of back pain resulting from an epidural abscess.

  3. Long-term total sleep deprivation decreases the default spontaneous activity and connectivity pattern in healthy male subjects: a resting-state fMRI study

    Directory of Open Access Journals (Sweden)

    Dai XJ

    2015-03-01

    .33; P=0.021. The ICA method showed that, compared with RW subjects, SD subjects had decreased rsFC in the right inferior parietal lobule (IPL, BA40 and in the left precuneus (PrC/posterior cingulate cortex (PCC (BA30, 31. The two different areas were selected as regions of interest (ROIs for future rsFC analysis. Compared with the same in RW subjects, in SD subjects, the right IPL showed decreased rsFC with the left PrC (BA7 and increased rsFC with the left fusiform gyrus (BA37 and the left cluster of middle temporal gyrus and inferior temporal gyrus (BA37. However, the left PrC/PCC did not show any connectivity differences. Compared with RW subjects, SD subjects showed lower ALFF area in the left IPL (BA39, 40. The left IPL, as an ROI, showed decreased rsFC with the right cluster of IPL and superior temporal gyrus (BA39, 40. ROC curve analysis showed that the area under the curve (AUC value of the left IPL was 0.75, with a cutoff point of 0.834 (mean ALFF signal value. Further diagnostic analysis exhibited that the AUC alone discriminated SD status from RW status, with 75% sensitivity and 91.7% specificity. Conclusion: Long-term SD disturbed the spontaneous activity and connectivity pattern of DMN. Keywords: sleep deprivation, amplitude of low-frequency fluctuation, default-mode network, functional magnetic resonance imaging, functional connectivity, independent component analysis, receiver operating characteristic curve

  4. Cavity enhanced rephased amplified spontaneous emission

    International Nuclear Information System (INIS)

    A Williamson, Lewis; J Longdell, Jevon

    2014-01-01

    Amplified spontaneous emission is usually treated as an incoherent noise process. Recent theoretical and experimental work using rephasing optical pulses has shown that rephased amplified spontaneous emission (RASE) is a potential source of wide bandwidth time-delayed entanglement. Due to poor echo efficiency the plain RASE protocol does not in theory achieve perfect entanglement. Experiments done to date show a very small amount of entanglement at best. Here we show that RASE can, in principle, produce perfect multimode time-delayed two mode squeezing when the active medium is placed inside a Q-switched cavity. (paper)

  5. Cardiac-locked bursts of muscle sympathetic nerve activity are absent in familial dysautonomia

    Science.gov (United States)

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Axelrod, Felicia B; Kaufmann, Horacio

    2013-01-01

    Familial dysautonomia (Riley–Day syndrome) is an hereditary sensory and autonomic neuropathy (HSAN type III), expressed at birth, that is associated with reduced pain and temperature sensibilities and absent baroreflexes, causing orthostatic hypotension as well as labile blood pressure that increases markedly during emotional excitement. Given the apparent absence of functional baroreceptor afferents, we tested the hypothesis that the normal cardiac-locked bursts of muscle sympathetic nerve activity (MSNA) are absent in patients with familial dysautonomia. Tungsten microelectrodes were inserted percutaneously into muscle or cutaneous fascicles of the common peroneal nerve in 12 patients with familial dysautonomia. Spontaneous bursts of MSNA were absent in all patients, but in five patients we found evidence of tonically firing sympathetic neurones, with no cardiac rhythmicity, that increased their spontaneous discharge during emotional arousal but not during a manoeuvre that unloads the baroreceptors. Conversely, skin sympathetic nerve activity (SSNA), recorded in four patients, appeared normal. We conclude that the loss of phasic bursts of MSNA and the loss of baroreflex modulation of muscle vasoconstrictor drive contributes to the poor control of blood pressure in familial dysautonomia, and that the increase in tonic firing of muscle vasoconstrictor neurones contributes to the increase in blood pressure during emotional excitement. PMID:23165765

  6. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats

    Science.gov (United States)

    Wang, Xuefei; Sugam, Jonathan A.; Carelli, Regina M.

    2016-01-01

    Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. SIGNIFICANCE STATEMENT Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence

  7. Spontaneous Thigh Compartment Syndrome

    Directory of Open Access Journals (Sweden)

    Khan, Sameer K

    2011-02-01

    Full Text Available A young man presented with a painful and swollen thigh, without any history of trauma, illness, coagulopathic medication or recent exertional exercise. Preliminary imaging delineated a haematoma in the anterior thigh, without any fractures or muscle trauma. Emergent fasciotomies were performed. No pathology could be identified intra-operatively, or on follow-up imaging. A review of thigh compartment syndromes described in literature is presented in a table. Emergency physicians and traumatologists should be cognisant of spontaneous atraumatic presentations of thigh compartment syndrome, to ensure prompt referral and definitive management of this limb-threatening condition. [West J Emerg Med. 2011;12(1:134-138].

  8. Spontaneous Glutamatergic Synaptic Activity Regulates Constitutive COX-2 Expression in Neurons: OPPOSING ROLES FOR THE TRANSCRIPTION FACTORS CREB (cAMP RESPONSE ELEMENT BINDING) PROTEIN AND Sp1 (STIMULATORY PROTEIN-1).

    Science.gov (United States)

    Hewett, Sandra J; Shi, Jingxue; Gong, Yifan; Dhandapani, Krishnan; Pilbeam, Carol; Hewett, James A

    2016-12-30

    Burgeoning evidence supports a role for cyclooxygenase metabolites in regulating membrane excitability in various forms of synaptic plasticity. Two cyclooxygenases, COX-1 and COX-2, catalyze the initial step in the metabolism of arachidonic acid to prostaglandins. COX-2 is generally considered inducible, but in glutamatergic neurons in some brain regions, including the cerebral cortex, it is constitutively expressed. However, the transcriptional mechanisms by which this occurs have not been elucidated. Here, we used quantitative PCR and also analyzed reporter gene expression in a mouse line carrying a construct consisting of a portion of the proximal promoter region of the mouse COX-2 gene upstream of luciferase cDNA to characterize COX-2 basal transcriptional regulation in cortical neurons. Extracts from the whole brain and from the cerebral cortex, hippocampus, and olfactory bulbs exhibited high luciferase activity. Moreover, constitutive COX-2 expression and luciferase activity were detected in cortical neurons, but not in cortical astrocytes, cultured from wild-type and transgenic mice, respectively. Constitutive COX-2 expression depended on spontaneous but not evoked excitatory synaptic activity and was shown to be N-methyl-d-aspartate receptor-dependent. Constitutive promoter activity was reduced in neurons transfected with a dominant-negative cAMP response element binding protein (CREB) and was eliminated by mutating the CRE-binding site on the COX-2 promoter. However, mutation of the stimulatory protein-1 (Sp1)-binding site resulted in an N-methyl-d-aspartate receptor-dependent enhancement of COX-2 promoter activity. Basal binding of the transcription factors CREB and Sp1 to the native neuronal COX-2 promoter was confirmed. In toto, our data suggest that spontaneous glutamatergic synaptic activity regulates constitutive neuronal COX-2 expression via Sp1 and CREB protein-dependent transcriptional mechanisms. © 2016 by The American Society for Biochemistry

  9. Spontaneous Strategies in Innovation Networks

    DEFF Research Database (Denmark)

    Plesner, Ursula; Husted, Emil Krastrup

    and a site ontology, we show how physical sites and objects become constitutive of the inside of virtual worlds through innovation processes. This argument is in line with ANT’s perspective on strategy, where sites and objects are considered a strategically relevant resource in the innovation process...... of materiality in relation to the organization and structuring of virtual worlds. We examine various innovation processes in five Danish entrepreneurial companies where actors continuously struggle to stabilize virtual worlds as platforms for professional communication. With inspiration from actor-network theory....... Empirically, the analysis is founded on descriptive accounts from the five entrepreneurs. By highlighting the spontaneous strategies described by actors, we show how sites and objects are actively used as an element in their strategy, and also how the sites and objects end up facilitating new ways of thinking...

  10. Early endogenous activation of CB1 and CB2 receptors after spinal cord injury is a protective response involved in spontaneous recovery.

    Directory of Open Access Journals (Sweden)

    Angel Arevalo-Martin

    Full Text Available Spinal cord injury (SCI induces a cascade of processes that may further expand the damage (secondary injury or, alternatively, may be part of a safeguard response. Here we show that after a moderate-severe contusive SCI in rats there is a significant and very early increase in the spinal cord content of the endocannabinoids 2-arachidonoylglycerol (2-AG and arachidonoyl ethanolamide (anandamide, AEA. Since 2-AG and AEA act through CB1 and CB2 cannabinoid receptors, we administered at 20 minutes after lesion a single injection of their respective antagonists AM281 and AM630 alone or in combination to block the effects of this early endocannabinoid accumulation. We observed that AM281, AM630 or AM281 plus AM630 administration impairs the spontaneous motor recovery of rats according to the Basso-Beattie-Bresnahan (BBB locomotor scale. However, blockade of CB1, CB2 or both receptors produced different effects at the histopathological level. Thus, AM630 administration results at 90 days after lesion in increased MHC-II expression by spinal cord microglia/monocytes and reduced number of serotoninergic fibres in lumbar spinal cord (below the lesion. AM281 exerted the same effects but also increased oedema volume estimated by MRI. Co-administration of AM281 and AM630 produced the effects observed with the administration of either AM281 or AM630 and also reduced white matter and myelin preservation and enhanced microgliosis in the epicentre. Overall, our results suggest that the endocannabinoids acting through CB1 and CB2 receptors are part of an early neuroprotective response triggered after SCI that is involved in the spontaneous recovery after an incomplete lesion.

  11. Spontaneous Tumor Lysis Syndrome

    Directory of Open Access Journals (Sweden)

    Alicia C. Weeks MD

    2015-08-01

    Full Text Available Tumor lysis syndrome (TLS is a known complication of malignancy and its treatment. The incidence varies on malignancy type, but is most common with hematologic neoplasms during cytotoxic treatment. Spontaneous TLS is thought to be rare. This case study is of a 62-year-old female admitted with multisystem organ failure, with subsequent diagnosis of aggressive B cell lymphoma. On admission, laboratory abnormalities included renal failure, elevated uric acid (20.7 mg/dL, and 3+ amorphous urates on urinalysis. Oliguric renal failure persisted despite aggressive hydration and diuretic use, requiring initiation of hemodialysis prior to chemotherapy. Antihyperuricemic therapy and hemodialysis were used to resolve hyperuricemia. However, due to multisystem organ dysfunction syndrome with extremely poor prognosis, the patient ultimately expired in the setting of a terminal ventilator wean. Although our patient did not meet current TLS criteria, she required hemodialysis due to uric acid nephropathy, a complication of TLS. This poses the clinical question of whether adequate diagnostic criteria exist for spontaneous TLS and if the lack of currently accepted guidelines has resulted in the underestimation of its incidence. Allopurinol and rasburicase are commonly used for prevention and treatment of TLS. Although both drugs decrease uric acid levels, allopurinol mechanistically prevents formation of the substrate rasburicase acts to solubilize. These drugs were administered together in our patient, although no established guidelines recommend combined use. This raises the clinical question of whether combined therapy is truly beneficial or, conversely, detrimental to patient outcomes.

  12. The cholinergic agonist carbachol increases the frequency of spontaneous GABAergic synaptic currents in dorsal raphe serotonergic neurons in the mouse.

    Science.gov (United States)

    Yang, C; Brown, R E

    2014-01-31

    Dorsal raphe nucleus (DRN) serotonin (5-HT) neurons play an important role in feeding, mood control and stress responses. One important feature of their activity across the sleep-wake cycle is their reduced firing during rapid-eye-movement (REM) sleep which stands in stark contrast to the wake/REM-on discharge pattern of brainstem cholinergic neurons. A prominent model of REM sleep control posits a reciprocal interaction between these cell groups. 5-HT inhibits cholinergic neurons, and activation of nicotinic receptors can excite DRN 5-HT neurons but the cholinergic effect on inhibitory inputs is incompletely understood. Here, in vitro, in DRN brain slices prepared from GAD67-GFP knock-in mice, a brief (3 min) bath application of carbachol (50 μM) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in GFP-negative, putative 5-HT neurons but did not affect miniature (tetrodotoxin-insensitive) IPSCs. Carbachol had no direct postsynaptic effect. Thus, carbachol likely increases the activity of local GABAergic neurons which synapse on 5-HT neurons. Removal of dorsal regions of the slice including the ventrolateral periaqueductal gray (vlPAG) region where GABAergic neurons projecting to the DRN have been identified, abolished the effect of carbachol on sIPSCs whereas the removal of ventral regions containing the oral region of the pontine reticular nucleus (PnO) did not. In addition, carbachol directly excited GFP-positive, GABAergic vlPAG neurons. Antagonism of both muscarinic and nicotinic receptors completely abolished the effects of carbachol. We suggest cholinergic neurons inhibit DRN 5-HT neurons when acetylcholine levels are lower i.e. during quiet wakefulness and the beginning of REM sleep periods, in part via excitation of muscarinic and nicotinic receptors located on local vlPAG and DRN GABAergic neurons. Higher firing rates or burst firing of cholinergic neurons associated with attentive wakefulness or phasic REM sleep periods

  13. Spontaneously emerging cortical representations of visual attributes

    Science.gov (United States)

    Kenet, Tal; Bibitchkov, Dmitri; Tsodyks, Misha; Grinvald, Amiram; Arieli, Amos

    2003-10-01

    Spontaneous cortical activity-ongoing activity in the absence of intentional sensory input-has been studied extensively, using methods ranging from EEG (electroencephalography), through voltage sensitive dye imaging, down to recordings from single neurons. Ongoing cortical activity has been shown to play a critical role in development, and must also be essential for processing sensory perception, because it modulates stimulus-evoked activity, and is correlated with behaviour. Yet its role in the processing of external information and its relationship to internal representations of sensory attributes remains unknown. Using voltage sensitive dye imaging, we previously established a close link between ongoing activity in the visual cortex of anaesthetized cats and the spontaneous firing of a single neuron. Here we report that such activity encompasses a set of dynamically switching cortical states, many of which correspond closely to orientation maps. When such an orientation state emerged spontaneously, it spanned several hypercolumns and was often followed by a state corresponding to a proximal orientation. We suggest that dynamically switching cortical states could represent the brain's internal context, and therefore reflect or influence memory, perception and behaviour.

  14. Resistance to APC and SHBG levels during use of a four-phasic oral contraceptive containing dienogest and estradiol valerate: a randomized controlled trial.

    Science.gov (United States)

    Raps, M; Rosendaal, F; Ballieux, B; Rosing, J; Thomassen, S; Helmerhorst, F; van Vliet, H

    2013-05-01

    The use of combined oral contraceptives is associated with a 3- to 6-fold increased risk of venous thrombosis. This increased risk depends on the estrogen dose as well as the progestogen type of combined oral contraceptives. Thrombin generation-based activated protein C resistance (APC resistance) and sex hormone-binding globulin (SHBG) levels predict the thrombotic risk of a combined hormonal contraceptive. Recently, a four-phasic oral contraceptive containing dienogest (DNG) and estradiol valerate (E2V) has been marketed. The aim of this study was to evaluate the thrombotic risk of the DNG/E2V oral contraceptive by comparing APC resistance by measuring normalized APC sensitivity ratios (nAPCsr) and SHBG levels in users of oral contraceptives containing dienogest and estradiol valerate (DNG/E2V) and oral contraceptives containing levonorgestrel and ethinyl estradiol (LNG/EE). We conducted a single-center, randomized, open label, parallel-group study in 74 women using DNG/E2V or LNG/EE, and measured nAPCsr and SHBG levels in every phase of the regimen of DNG/E2V. During the pill cycle SHBG levels did not differ between DNG/E2V users and LNG/EE users. nAPCsr levels were overall slightly lower in DNG/E2V users than in LNG/EE users, mean difference -0.44 (95% CI, -1.04 to 0.17) for day 2, -0.20 (95% CI, -0.76 to 0.37) for day 7, -0.27 (95% CI, -0.81 to 0.28) for day 24 and -0.34 (95% CI, -0.91 to 0.24) for day 26. No statistical significant differences in nAPCsr and SHBG levels were found between users of the oral contraceptive containing DNG/E2V and LNG/EE, suggesting a comparable thrombotic risk. © 2013 International Society on Thrombosis and Haemostasis.

  15. Amlodipine and atorvastatin improved hypertensive cardiac hypertrophy through regulation of receptor activator of nuclear factor kappa B ligand/receptor activator of nuclear factor kappa B/osteoprotegerin system in spontaneous hypertension rats.

    Science.gov (United States)

    Lu, Jingchao; Liu, Fan; Liu, Demin; Du, Hong; Hao, Jie; Yang, Xiuchun; Cui, Wei

    2016-06-01

    The present study aims to study the role of receptor activator of nuclear factor kappa B ligand/receptor activator of nuclear factor kappa B/osteoprotegerin (RANKL/RANK/OPG) system in cardiac hypertrophy in a spontaneous hypertension rat (SHR) model and the effects of amlodipine and atorvastatin intervention. Thirty-six-week-old male SHRs were randomly divided into four groups: 1) SHR control group; 2) amlodipine alone (10 mg/kg/d) group, 3) atorvastatin alone (10 mg/kg/d) group, 4) combination of amlodinpine and atorvastatin (10 mg/kg/d for each) group. Same gender, weight, and age of Wistar-Kyoto (WKY) rats with normal blood pressure were used as normal control. Drugs were administered by oral gavage over 12 weeks. The thicknesses of left ventricle walls, left ventricle weight, and cardiac function were measured by transthoracic echocardiography. Left ventricular pressure and function were assessed by hemodynamic examination. Cardiomyocyte hypertrophy and collagen accumulation in cardiac tissue were measured by hematoxylin and eosin (HE) and Masson staining, respectively. The hydroxyproline content of cardiac tissue was examined by biochemistry technique. RANKL, RANK and OPG mRNA, protein expression and tissue localization were studied by RT-PCR, Immunohistochemistry and Western blot. Treatment with amlodipine or atorvastatin alone significantly decreased left ventricular mass index, cardiomyocyte cross-sectional area and interstitial fibrosis in SHR (each P < 0.05). Moreover, combined amlodipine and atorvastatin treatment induced significant reversal of left ventricular hypertrophy and decreased cardiomyocyte cross-sectional area and interstitial fibrosis in SHR to a greater extent than each agent alone (P < 0.05). Compared with WKY rats, the myocardial expression of RANKL, RANK, and OPG was increased. Both amlodipine and atorvastatin reduced RANKL, RANK, and OPG expression, with the best effects seen with the combination. Based on our results

  16. Spontaneous Intracranial Hypotension

    International Nuclear Information System (INIS)

    Joash, Dr.

    2015-01-01

    Epidemiology is not only rare but an important cause of new daily persistent headaches among young & middle age individuals. The Etiology & Pathogenesis is generally caused by spinal CSF leak. Precise cause remains largely unknown, underlying structural weakness of spinal meninges is suspected. There are several MR Signs of Intracranial Hypotension that include:- diffuse pachymeningeal (dural) enhancement; bilateral subdural, effusion/hematomas; Downward displacement of brain; enlargement of pituitary gland; Engorgement of dural venous sinuses; prominence of spinal epidural venous plexus and Venous sinus thrombosis & isolated cortical vein thrombosis. The sum of volumes of intracranial blood, CSF & cerebral tissue must remain constant in an intact cranium. Treatment in Many cases can be resolved spontaneously or by use Conservative approach that include bed rest, oral hydration, caffeine intake and use of abdominal binder. Imaging Modalities for Detection of CSF leakage include CT myelography, Radioisotope cisternography, MR myelography, MR imaging and Intrathecal Gd-enhanced MR

  17. Spontaneous wave packet reduction

    International Nuclear Information System (INIS)

    Ghirardi, G.C.

    1994-06-01

    There are taken into account the main conceptual difficulties met by standard quantum mechanics in dealing with physical processes involving macroscopic system. It is stressed how J.A.Wheeler's remarks and lucid analysis have been relevant to pinpoint and to bring to its extreme consequences the puzzling aspects of quantum phenomena. It is shown how the recently proposed models of spontaneous dynamical reduction represent a consistent way to overcome the conceptual difficulties of the standard theory. Obviously, many nontrivial problems remain open, the first and more relevant one being that of generalizing the model theories considered to the relativistic case. This is the challenge of the dynamical reduction program. 43 refs, 2 figs

  18. Do positive spontaneous thoughts function as incentive salience?

    Science.gov (United States)

    Rice, Elise L; Fredrickson, Barbara L

    2017-08-01

    The present work explores the theoretical relationship between positive spontaneous thoughts and incentive salience-a psychological property thought to energize wanting and approach motivation by rendering cues that are associated with enjoyment more likely to stand out to the individual when subsequently encountered in the environment (Berridge, 2007). We reasoned that positive spontaneous thoughts may at least be concomitants of incentive salience, and as such, they might likewise mediate the effect of liking on wanting. In Study 1, 103 adults recruited via Amazon's Mechanical Turk reported on key aspects of 10 everyday activities. As predicted, positive spontaneous thoughts mediated the relationship between liking an activity in the past and wanting to engage in it in the future. In Study 2, 99 undergraduate students viewed amusing and humorless cartoons and completed a thought-listing task, providing experimental evidence for the causal effect of liking on positive spontaneous thoughts. In Study 3, we tested whether positive spontaneous thoughts play an active role in energizing wanting rather than merely co-occurring with (inferred) incentive salience. In that experiment involving 80 undergraduates, participants who were led to believe that their spontaneous thoughts about a target activity were especially positive planned to devote more time to that activity over the coming week than participants who received no such information about their spontaneous thoughts. Collectively, these findings suggest that positive spontaneous thoughts may play an important role in shaping approach motivation. Broader implications and future directions in the study of positive spontaneous thoughts are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Pomegranate extract decreases oxidative stress and alleviates mitochondrial impairment by activating AMPK-Nrf2 in hypothalamic paraventricular nucleus of spontaneously hypertensive rats.

    Science.gov (United States)

    Sun, Wenyan; Yan, Chunhong; Frost, Bess; Wang, Xin; Hou, Chen; Zeng, Mengqi; Gao, Hongli; Kang, Yuming; Liu, Jiankang

    2016-10-07

    High blood pressure, or "hypertension," is associated with high levels of oxidative stress in the paraventricular nucleus of the hypothalamus. While pomegranate extract is a known antioxidant that is thought to have antihypertensive effects, the mechanism whereby pomegranate extract lowers blood pressure and the tissue that mediates its antihypertensive effects are currently unknown. We have used a spontaneously hypertensive rat model to investigate the antihypertensive properties of pomegranate extract. We found that chronic treatment of hypertensive rats with pomegranate extract significantly reduced blood pressure and cardiac hypertrophy. Furthermore, pomegranate extract reduced oxidative stress, increased the antioxidant defense system, and decreased inflammation in the paraventricular nucleus of hypertensive rats. We determined that pomegranate extract reduced mitochondrial superoxide anion levels and increased mitochondrial function in the paraventricular nucleus of hypertensive rats by promoting mitochondrial biogenesis and improving mitochondrial dynamics and clearance. We went on to identify the AMPK-nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) pathway as a mechanism whereby pomegranate extract reduces oxidative stress in the paraventricular nucleus to relieve hypertension. Our findings demonstrate that pomegranate extract alleviates hypertension by reducing oxidative stress and improving mitochondrial function in the paraventricular nucleus, and reveal multiple novel targets for therapeutic treatment of hypertension.

  20. Serological evidence that activation of ubiquitous human herpesvirus-6 (HHV-6) plays a role in chronic idiopathic/spontaneous urticaria (CIU).

    Science.gov (United States)

    Dreyfus, D H

    2016-02-01

    Acute infection with viral pathogens in the herpesviridae family can trigger acute urticaria, and reactivation of herpesviridae is associated with cutaneous urticarial-like syndromes such as drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms (DRESS). Reactivation of latent herpesviridae has not been studied systematically in chronic idiopathic/spontaneous urticaria (CIU). This review proposes that CIU is an inflammatory disorder with autoimmune features (termed 'CVU' for chronic viral urticaria), based on serology consistent with the hypothesis that reactivation of a latent herpesvirus or -viruses may play a role in CIU. Serology obtained from a cohort of omalizumab (Xolair)-dependent patients with severe CIU was consistent with previous HHV-6 infection, persistent viral gene expression and replication. CIU patients also exhibited serological evidence of increased immune response to HHV-4 (Epstein-Barr virus, or EBV) but not all CIU patients were infected with EBV. These observations, combined with case reports of CIU response to anti-viral therapy, suggest that HHV-6, possibly interacting with HHV-4 in cutaneous tissues, is a candidate for further prospective study as a co-factor in CIU. © 2015 British Society for Immunology.

  1. Factors related to the occurrence of isolated sleep paralysis elicited during a multi-phasic sleep-wake schedule.

    Science.gov (United States)

    Takeuchi, Tomoka; Fukuda, Kazuhiko; Sasaki, Yuka; Inugami, Maki; Murphy, Timothy I

    2002-02-01

    To further investigate mechanisms of isolated sleep paralysis (ISP) in normal individuals, we experimentally elicited ISPs by facilitating sleep onset REM periods (SOREMP), a prerequisite of ISPs, and examined behavioral and psychological measurements relating to ISP appearances. The multi-phasic sleep/wake schedule (MPS) began at approximately midnight and ended when net sleep reached 7.5 hours. Participants were awakened after every 5 min of REM sleep to obtain a maximum number of SOREMPs. Upon each awakening, mentation reports and subjective measurements were collected. Performance tests were then assigned. Sleep lab, Tokyo Metropolitan Institute for Neurosciences, Japan. Thirteen healthy Japanese students (10 males) with high self-reported frequencies of ISPs but no other narcolepsy-related symptoms. From 184 sleep interruptions, 8 ISP episodes were obtained. In within participant comparisons between episodes with and without ISPs, the vigilance task (VT) reaction times were elevated before SOREMPs with ISPs. In between analyses (ISP vs non-ISP), the ISP group showed poorer performance, more complaints of physical, mental, and neurotic symptoms, increased subjective fatigue and increased stage 1 throughout the entire schedule. VT hit rates remained constant in the non-ISP group, but dropped in the later part of schedule in the ISP group. Subjective sleepiness dropped over time in the non-ISP group while it slightly increased in the ISP group. ISP is likely to appear as a phenotype of REM dissociation during SOREMP when participants with low tolerance for disrupted sleep-wake rhythms are placed in this type of schedule.

  2. Phasic and tonic stress-strain data obtained in intact intestinal segment in vitro

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Liao, Donghua; Gregersen, Hans

    2008-01-01

    segments were isolated from ten Wistar rats and put into an organ bath containing 37 degrees C aerated Krebs solution. Ramp distension was done on active and passive intestinal segments at longitudinal stretch ratios of 0, 10, and 20%. Ramp pressures from 0 to 7.5 cmH(2)O were applied to the intestinal...... was defined as the total stress minus the passive stress. The total and passive circumferential stresses increased exponentially as a function of the strain. The amplitude of both the total and passive stress was biggest in the jejunum. The total circumferential stress decreased whereas the passive...

  3. Spontaneous compactification to homogeneous spaces

    International Nuclear Information System (INIS)

    Mourao, J.M.

    1988-01-01

    The spontaneous compactification of extra dimensions to compact homogeneous spaces is studied. The methods developed within the framework of coset space dimensional reduction scheme and the most general form of invariant metrics are used to find solutions of spontaneous compactification equations

  4. Screening for spontaneous preterm birth

    NARCIS (Netherlands)

    van Os, M.A.; van Dam, A.J.E.M.

    2015-01-01

    Preterm birth is the most important cause of perinatal morbidity and mortality worldwide. In this thesis studies on spontaneous preterm birth are presented. The main objective was to investigate the predictive capacity of mid-trimester cervical length measurement for spontaneous preterm birth in a

  5. Endogenous Cholinergic Inputs and Local Circuit Mechanisms Govern the Phasic Mesolimbic Dopamine Response to Nicotine

    Science.gov (United States)

    Graupner, Michael; Maex, Reinoud; Gutkin, Boris

    2013-01-01

    Nicotine exerts its reinforcing action by stimulating nicotinic acetylcholine receptors (nAChRs) and boosting dopamine (DA) output from the ventral tegmental area (VTA). Recent data have led to a debate about the principal pathway of nicotine action: direct stimulation of the DAergic cells through nAChR activation, or disinhibition mediated through desensitization of nAChRs on GABAergic interneurons. We use a computational model of the VTA circuitry and nAChR function to shed light on this issue. Our model illustrates that the α4β2-containing nAChRs either on DA or GABA cells can mediate the acute effects of nicotine. We account for in vitro as well as in vivo data, and predict the conditions necessary for either direct stimulation or disinhibition to be at the origin of DA activity increases. We propose key experiments to disentangle the contribution of both mechanisms. We show that the rate of endogenous acetylcholine input crucially determines the evoked DA response for both mechanisms. Together our results delineate the mechanisms by which the VTA mediates the acute rewarding properties of nicotine and suggest an acetylcholine dependence hypothesis for nicotine reinforcement. PMID:23966848

  6. Exocytosis of ATP From Astrocytes Modulates Phasic and Tonic Inhibition in the Neocortex

    Science.gov (United States)

    Rasooli-Nejad, Seyed; Andrew, Jemma; Haydon, Philip G.; Pankratov, Yuriy

    2014-01-01

    Communication between neuronal and glial cells is important for many brain functions. Astrocytes can modulate synaptic strength via Ca2+-stimulated release of various gliotransmitters, including glutamate and ATP. A physiological role of ATP release from astrocytes was suggested by its contribution to glial Ca2+-waves and purinergic modulation of neuronal activity and sleep homeostasis. The mechanisms underlying release of gliotransmitters remain uncertain, and exocytosis is the most intriguing and debated pathway. We investigated release of ATP from acutely dissociated cortical astrocytes using “sniff-cell” approach and demonstrated that release is vesicular in nature and can be triggered by elevation of intracellular Ca2+ via metabotropic and ionotropic receptors or direct UV-uncaging. The exocytosis of ATP from neocortical astrocytes occurred in the millisecond time scale contrasting with much slower nonvesicular release of gliotransmitters via Best1 and TREK-1 channels, reported recently in hippocampus. Furthermore, we discovered that elevation of cytosolic Ca2+ in cortical astrocytes triggered the release of ATP that directly activated quantal purinergic currents in the pyramidal neurons. The glia-driven burst of purinergic currents in neurons was followed by significant attenuation of both synaptic and tonic inhibition. The Ca2+-entry through the neuronal P2X purinoreceptors led to phosphorylation-dependent down-regulation of GABAA receptors. The negative purinergic modulation of postsynaptic GABA receptors was accompanied by small presynaptic enhancement of GABA release. Glia-driven purinergic modulation of inhibitory transmission was not observed in neurons when astrocytes expressed dn-SNARE to impair exocytosis. The astrocyte-driven purinergic currents and glia-driven modulation of GABA receptors were significantly reduced in the P2X4 KO mice. Our data provide a key evidence to support the physiological importance of exocytosis of ATP from astrocytes

  7. Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex.

    Directory of Open Access Journals (Sweden)

    Ulyana Lalo

    2014-01-01

    Full Text Available Communication between neuronal and glial cells is important for many brain functions. Astrocytes can modulate synaptic strength via Ca(2+-stimulated release of various gliotransmitters, including glutamate and ATP. A physiological role of ATP release from astrocytes was suggested by its contribution to glial Ca(2+-waves and purinergic modulation of neuronal activity and sleep homeostasis. The mechanisms underlying release of gliotransmitters remain uncertain, and exocytosis is the most intriguing and debated pathway. We investigated release of ATP from acutely dissociated cortical astrocytes using "sniff-cell" approach and demonstrated that release is vesicular in nature and can be triggered by elevation of intracellular Ca(2+ via metabotropic and ionotropic receptors or direct UV-uncaging. The exocytosis of ATP from neocortical astrocytes occurred in the millisecond time scale contrasting with much slower nonvesicular release of gliotransmitters via Best1 and TREK-1 channels, reported recently in hippocampus. Furthermore, we discovered that elevation of cytosolic Ca(2+ in cortical astrocytes triggered the release of ATP that directly activated quantal purinergic currents in the pyramidal neurons. The glia-driven burst of purinergic currents in neurons was followed by significant attenuation of both synaptic and tonic inhibition. The Ca(2+-entry through the neuronal P2X purinoreceptors led to phosphorylation-dependent down-regulation of GABAA receptors. The negative purinergic modulation of postsynaptic GABA receptors was accompanied by small presynaptic enhancement of GABA release. Glia-driven purinergic modulation of inhibitory transmission was not observed in neurons when astrocytes expressed dn-SNARE to impair exocytosis. The astrocyte-driven purinergic currents and glia-driven modulation of GABA receptors were significantly reduced in the P2X4 KO mice. Our data provide a key evidence to support the physiological importance of exocytosis of

  8. The Use of Functional Data Analysis to Evaluate Activity in a Spontaneous Model of Degenerative Joint Disease Associated Pain in Cats

    Science.gov (United States)

    Gruen, Margaret E.; Alfaro-Córdoba, Marcela; Thomson, Andrea E.; Worth, Alicia C.; Staicu, Ana-Maria; Lascelles, B. Duncan X.

    2017-01-01

    Introduction and objectives Accelerometry is used as an objective measure of physical activity in humans and veterinary species. In cats, one important use of accelerometry is in the study of therapeutics designed to treat degenerative joint disease (DJD) associated pain, where it serves as the most widely applied objective outcome measure. These analyses have commonly used summary measures, calculating the mean activity per-minute over days and comparing between treatment periods. While this technique has been effective, information about the pattern of activity in cats is lost. In this study, functional data analysis was applied to activity data from client-owned cats with (n = 83) and without (n = 15) DJD. Functional data analysis retains information about the pattern of activity over the 24-hour day, providing insight into activity over time. We hypothesized that 1) cats without DJD would have higher activity counts and intensity of activity than cats with DJD; 2) that activity counts and intensity of activity in cats with DJD would be inversely correlated with total radiographic DJD burden and total orthopedic pain score; and 3) that activity counts and intensity would have a different pattern on weekends versus weekdays. Results and conclusions Results showed marked inter-cat variability in activity. Cats exhibited a bimodal pattern of activity with a sharp peak in the morning and broader peak in the evening. Results further showed that this pattern was different on weekends than weekdays, with the morning peak being shifted to the right (later). Cats with DJD showed different patterns of activity from cats without DJD, though activity and intensity were not always lower; instead both the peaks and troughs of activity were less extreme than those of the cats without DJD. Functional data analysis provides insight into the pattern of activity in cats, and an alternative method for analyzing accelerometry data that incorporates fluctuations in activity across

  9. Spontaneous breaking of supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Zumino, B.

    1981-12-01

    There has been recently a revival of interest in supersymmetric gauge theories, stimulated by the hope that supersymmetry might help in clarifying some of the questions which remain unanswered in the so called Grand Unified Theories and in particular the gauge hierarchy problem. In a Grand Unified Theory one has two widely different mass scales: the unification mass M approx. = 10/sup 15/GeV at which the unification group (e.g. SU(5)) breaks down to SU(3) x SU(2) x U(1) and the mass ..mu.. approx. = 100 GeV at which SU(2) x U(1) is broken down to the U(1) of electromagnetism. There is at present no theoretical understanding of the extreme smallness of the ratio ..mu../M of these two numbers. This is the gauge hierarchy problem. This lecture attempts to review the various mechanisms for spontaneous supersymmetry breaking in gauge theories. Most of the discussions are concerned with the tree approximation, but what is presently known about radiative correction is also reviewed.

  10. Spontaneous intracranial hypotension

    International Nuclear Information System (INIS)

    Haritanti, A.; Karacostas, D.; Drevelengas, A.; Kanellopoulos, V.; Paraskevopoulou, E.; Lefkopoulos, A.; Economou, I.; Dimitriadis, A.S.

    2009-01-01

    Spontaneous intracranial hypotension (SIH) is an uncommon but increasingly recognized syndrome. Orthostatic headache with typical findings on magnetic resonance imaging (MRI) are the key to diagnosis. Delayed diagnosis of this condition may subject patients to unnecessary procedures and prolong morbidity. We describe six patients with SIH and outline the important clinical and neuroimaging findings. They were all relatively young, 20-54 years old, with clearly orthostatic headache, minimal neurological signs (only abducent nerve paresis in two) and diffuse pachymeningeal gadolinium enhancement on brain MRI, while two of them presented subdural hygromas. Spinal MRI was helpful in detecting a cervical cerebrospinal fluid leak in three patients and dilatation of the vertebral venous plexus with extradural fluid collection in another. Conservative management resulted in rapid resolution of symptoms in five patients (10 days-3 weeks) and in one who developed cerebral venous sinus thrombosis, the condition resolved in 2 months. However, this rapid clinical improvement was not accompanied by an analogous regression of the brain MR findings that persisted on a longer follow-up. Along with recent literature data, our patients further point out that SIH, to be correctly diagnosed, necessitates increased alertness by the attending physician, in the evaluation of headaches

  11. Spontaneous lateral temporal encephalocele.

    Science.gov (United States)

    Tuncbilek, Gokhan; Calis, Mert; Akalan, Nejat

    2013-01-01

    A spontaneous encephalocele is one that develops either because of embryological maldevelopment or from a poorly understood postnatal process that permits brain herniation to occur. We here report a rare case of lateral temporal encephalocele extending to the infratemporal fossa under the zygomatic arch. At birth, the infant was noted to have a large cystic mass in the right side of the face. After being operated on initially in another center in the newborn period, the patient was referred to our clinic with a diagnosis of temporal encephalocele. He was 6 months old at the time of admission. Computerized tomography scan and magnetic resonance imaging studies revealed a 8 × 9 cm fluid-filled, multiloculated cystic mass at the right infratemporal fossa. No intracranial pathology or connection is seen. The patient was operated on to reduce the distortion effect of the growing mass. The histopathological examination of the sac revealed well-differentiated mature glial tissue stained with glial fibrillary acid protein. This rare clinical presentation of encephaloceles should be taken into consideration during the evaluation of the lateral facial masses in the infancy period, and possible intracranial connection should be ruled out before surgery to avoid complications.

  12. Bilateral spontaneous carotid artery dissection.

    Science.gov (United States)

    Townend, Bradley Scott; Traves, Laura; Crimmins, Denis

    2005-06-01

    Bilateral internal carotid artery dissections have been reported, but spontaneous bilateral dissections are rare. Internal carotid artery dissection can present with a spectrum of symptoms ranging from headache to completed stroke. Two cases of spontaneous bilateral carotid artery dissection are presented, one with headache and minimal symptoms and the other with a stroke syndrome. No cause could be found in either case, making the dissections completely spontaneous. Bilateral internal carotid artery dissection (ICAD) should be considered in young patients with unexplained head and neck pain with or without focal neurological symptoms and signs. The increasing availability of imaging would sustain the higher index of suspicion.

  13. Factors affecting the spontaneous mutational spectra in somatic mammalian cells

    Directory of Open Access Journals (Sweden)

    О.А. Ковальова

    2006-04-01

    Full Text Available  In our survey of references we are discussed the influence of factors biological origin on the spontaneous mutation specters in mammalian. Seasonal and age components influence on the frequence of cytogenetic anomalies. The immune and endocrinous systems are take part in control of the alteration of the spontaneous mutation specters. Genetical difference of sensibility in animal and human at the alteration of factors enviroment as and  genetical differences of repair systems activity are may influence on individual variation of spontaneous destabilization characters of chromosomal apparatus.

  14. Decreased spontaneous activity in AMPK alpha 2 muscle specific kinase dead mice is not caused by changes in brain dopamine metabolism

    DEFF Research Database (Denmark)

    Møller, Lisbeth Liliendal Valbjørn; Sylow, Lykke; Gøtzsche, Casper René

    2016-01-01

    It is well known that physical activity has several health benefits, yet many people do not exercise. Dopamine levels in the striatum of the brain are thought to be important for the motivation to exercise. Conversely, we hypothesized that muscle quality can affect the motivation to exercise...... DOPAC and HVA were also similar between genotypes. These findings show that decreased AMPK activity in muscle leads to decreased voluntary activity which is not due to secondary abnormalities in dopamine levels in the ventral striatum or sensitivity to cocaine. Thus, decreased voluntary activity in AMPK...

  15. Transgenic mice exhibiting inducible and spontaneous Cre activities driven by a bovine keratin 5 promoter that can be used for the conditional analysis of basal epithelial cells in multiple organs.

    Science.gov (United States)

    Liang, Chih-Chia; You, Li-Ru; Chang, Junn-Liang; Tsai, Ting-Fen; Chen, Chun-Ming

    2009-01-08

    Cre/loxP-mediated genetic modification is the most widely used conditional genetic approach used in the mouse. Engineered Cre and the mutated ligand-binding domain of estrogen receptor fusion recombinase (CreERT) allow temporal control of Cre activity. In this study, we have generated two distinct transgenic mouse lines expressing CreERT, which show 4-hydroxytamoxifen (4-OHT)-inducible and spontaneous (4-OHT-independent) Cre activities, referred to Tg(BK5-CreERT)I and Tg(BK5-CreERT)S, respectively. The transgenic construct is driven by the bovine Keratin 5 promoter, which is active in the basal epithelial lineage of stratified and pseudo-stratified epithelium across multiple organs. Despite the difference in 4-OHT dependency, the Tg(BK5-CreERT)I and Tg(BK5-CreERT)S mouse lines shared similar Cre-mediated recombination among various organs, except for unique mammary epithelial Cre activity in Tg(BK5-CreERT)S females. These two new transgenic mouse lines for the analysis of basal epithelial function and for the genetic modification have been created allowing the identification of these cell lineages and analysis of their differentiation during embryogenesis, during perinatal development and in adult mice.

  16. Transgenic mice exhibiting inducible and spontaneous Cre activities driven by a bovine keratin 5 promoter that can be used for the conditional analysis of basal epithelial cells in multiple organs

    Directory of Open Access Journals (Sweden)

    Liang Chih-Chia

    2009-01-01

    Full Text Available Abstract Background Cre/loxP-mediated genetic modification is the most widely used conditional genetic approach used in the mouse. Engineered Cre and the mutated ligand-binding domain of estrogen receptor fusion recombinase (CreERT allow temporal control of Cre activity. Results In this study, we have generated two distinct transgenic mouse lines expressing CreERT, which show 4-hydroxytamoxifen (4-OHT-inducible and spontaneous (4-OHT-independent Cre activities, referred to Tg(BK5-CreERTI and Tg(BK5-CreERTS, respectively. The transgenic construct is driven by the bovine Keratin 5 promoter, which is active in the basal epithelial lineage of stratified and pseudo-stratified epithelium across multiple organs. Despite the difference in 4-OHT dependency, the Tg(BK5-CreERTI and Tg(BK5-CreERTS mouse lines shared similar Cre-mediated recombination among various organs, except for unique mammary epithelial Cre activity in Tg(BK5-CreERTS females. Conclusion These two new transgenic mouse lines for the analysis of basal epithelial function and for the genetic modification have been created allowing the identification of these cell lineages and analysis of their differentiation during embryogenesis, during perinatal development and in adult mice.

  17. Plasminogen activator inhibitor-1 5G/5G genotype is associated with early spontaneous recanalization of the infarct-related artery in patients presenting with acute ST-elevation myocardial infarction.

    Science.gov (United States)

    Cagliyan, Caglar E; Yuregir, Ozge O; Balli, Mehmet; Tekin, Kamuran; Akilli, Rabia E; Bozdogan, Sevcan T; Turkmen, Serdar; Deniz, Ali; Baykan, Oytun A; Aslan, Huseyin; Cayli, Murat

    2013-05-01

    We aimed to examine the association between plasminogen activator inhibitor-1 (PAI-1) genetic polymorphism and early spontaneous recanalization in patients presenting with acute ST-elevation myocardial infarction. Patients admitted to our emergency department with ST-elevation myocardial infarction in the first 6 h of symptom onset were included. An immediate primary percutaneous coronary intervention was performed. Patients were grouped according to the initial patency of the infarct-related artery (IRA) as follows: total occlusion (TO) group [Thrombolysis in Myocardial Infarction (TIMI) 0-1 flow in the IRA], partial recanalization group (TIMI 2 flow in the IRA), and complete recanalization (CR) group (TIMI 3 flow in the IRA). PAI-1 4G/5G polymorphism was detected using the real-time PCR method. There were 107 patients in the TO group, 30 patients in the partial recanalization group, and 45 patients in the CR group. When we evaluated degrees of patency according to the PAI-1 genotype, TO of the IRA was the highest in patients with the PAI 4G/4G genotype (PAI-1 4G/4G: 66.7%, PAI-1 4G/5G: 65.9%, PAI-1 5G/5G: 40.4%) and CR of the IRA was the highest in patients with the PAI 5G/5G genotype (PAI-1 5G/5G: 38.5%, PAI-1 4G/5G: 19.8%, PAI-1 4G/4G: 17.9%). The distribution of genotypes in different degrees of patency of IRA was statistically significant (P=0.029). In logistic regression analysis, the PAI-1 5G/5G genotype was associated independently with the spontaneous CR of the IRA (odds ratio: 2.875, 95% confidence interval [1.059-7.086], P=0.038). Patients with the PAI-1 5G/5G genotype seem to be luckier than others in terms of early spontaneous recanalization of the IRA. Further prospective studies with large patient populations are required for more precise results.

  18. Spontaneous intraorbital hematoma: case report

    Directory of Open Access Journals (Sweden)

    Vinodan Paramanathan

    2010-12-01

    Full Text Available Vinodan Paramanathan, Ardalan ZolnourianQueen's Hospital NHS Foundation Trust, Burton on Trent, Staffordshire DE13 0RB, UKAbstract: Spontaneous intraorbital hematoma is an uncommon clinical entity seen in ophthalmology practice. It is poorly represented in the literature. Current evidence attributes it to orbital trauma, neoplasm, vascular malformations, acute sinusitis, and systemic abnormalities. A 65-year-old female presented with spontaneous intraorbital hematoma manifesting as severe ocular pains, eyelid edema, proptosis, and diplopia, without a history of trauma. Computer tomography demonstrated a fairly well defined extraconal lesion with opacification of the paranasal sinuses. The principal differential based on all findings was that of a spreading sinus infection and an extraconal tumor. An unprecedented finding of a spontaneous orbital hematoma was discovered when the patient was taken to theater. We discuss the rarity of this condition and its management.Keywords: hemorrhage, ophthalmology, spontaneous, intra-orbital, hematoma

  19. Spontaneous stress fractures of the femoral neck

    International Nuclear Information System (INIS)

    Dorne, H.L.; Lander, P.H.

    1985-01-01

    The diagnosis of spontaneous stress fractures of the femoral neck, a form of insufficiency stress fracture, can be missed easily. Patients present with unremitting hip pain without a history of significant trauma or unusual increase in daily activity. The initial radiographic features include osteoporosis, minor alterations of trabecular alignment, minimal extracortical or endosteal reaction, and lucent fracture lines. Initial scintigraphic examinations performed in three of four patients showed focal increased radionuclide uptake in two and no focal abnormality in one. Emphasis is placed on the paucity of early findings. Evaluation of patients with persistent hip pain requires a high degree of clinical suspicion and close follow-up; the sequelae of undetected spontaneous fractures are subcapital fracture with displacement, angular deformity, and a vascular necrosis of the femoral head

  20. Spontaneous ischaemic stroke in dogs

    DEFF Research Database (Denmark)

    Gredal, Hanne Birgit; Skerritt, G. C.; Gideon, P.

    2013-01-01

    Translation of experimental stroke research into the clinical setting is often unsuccessful. Novel approaches are therefore desirable. As humans, pet dogs suffer from spontaneous ischaemic stroke and may hence offer new ways of studying genuine stroke injury mechanisms.......Translation of experimental stroke research into the clinical setting is often unsuccessful. Novel approaches are therefore desirable. As humans, pet dogs suffer from spontaneous ischaemic stroke and may hence offer new ways of studying genuine stroke injury mechanisms....

  1. Spontaneity and international marketing performance

    OpenAIRE

    Souchon, Anne L.; Hughes, Paul; Farrell, Andrew M.; Nemkova, Ekaterina; Oliveira, Joao S.

    2016-01-01

    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link. Purpose – The purpose of this paper is to ascertain how today’s international marketers can perform better on the global scene by harnessing spontaneity. Design/methodology/approach – The authors draw on contingency theory to develop a model of the spontaneity – international marketing performance relationship, and identify three potential m...

  2. Hemorrhagic Shock-induced Endothelial Cell Activation in a Spontaneous Breathing and a Mechanical Ventilation Hemorrhagic Shock Model Is Induced by a Proinflammatory Response and Not by Hypoxia

    NARCIS (Netherlands)

    van Meurs, Matijs; Wulfert, Francis M.; Jongman, Rianne M.; Schipper, Martin; Houwertjes, Martin C.; Vaneker, Michiel; Scheffer, Gert Jan; Teppema, Luc J.; Aarts, Leon P. H. J.; Heeringa, Peter; Zijlstra, Jan G.; Molema, Grietje

    Introduction: The interaction between neutrophils and activated endothelium is essential for the development of multiple organ dysfunction in patients with hemorrhagic shock (HS). Mechanical ventilation frequently is used in patients with HS. The authors sought to investigate the consequences of

  3. Hemorrhagic shock-induced endothelial cell activation in a spontaneous breathing and a mechanical ventilation hemorrhagic shock model is induced by a proinflammatory response and not by hypoxia

    NARCIS (Netherlands)

    Meurs, M. van; Wulfert, F.M.; Jongman, R.M.; Schipper, M.; Houwertjes, M.C.; Vaneker, M.; Scheffer, G.J.; Teppema, L.J.; Aarts, L.P.; Heeringa, P.; Zijlstra, J.G.; Molema, G.

    2011-01-01

    INTRODUCTION: The interaction between neutrophils and activated endothelium is essential for the development of multiple organ dysfunction in patients with hemorrhagic shock (HS). Mechanical ventilation frequently is used in patients with HS. The authors sought to investigate the consequences of

  4. Mobilized Spontaneity: The Park Chunghee Regime’s Conversion of College Student Volunteer Activities for Rural Communities as Observed Through the Taehan News

    Directory of Open Access Journals (Sweden)

    Bowoon Keum

    2015-08-01

    Full Text Available This article aims to examine the Park Chunghee regime’s mobilization of college students, who were participating in the volunteer activities for the rural community, by erasing their original goal and characteristics using government- made films such as “Taehan News.” It is the process of excavating the people’s forgotten history under the Cold War system. The rural problem in the 1960’s was the most important task for the military government of Park Chunghee to resolve during the Cold War. The Park regime turned to college student activities because the students were leading social movements to reform South Korean society after the April 19 Student Revolution. Using films, the government propagandized that the college students’ activities were part of the government’s efforts and part of the government’s contingency plans for the rural community problems, even though the students’ goal for volunteer activities in the rural areas differed from the government’s policies. Consequently, the students’ activities for the rural community in the 1960's lost their “name,” and the standards to correctly evaluate their past as well as their rightful identity have been stolen from them.

  5. Electrophysiological evidence of increased glycine receptor-mediated phasic and tonic inhibition by blockade of glycine transporters in spinal superficial dorsal horn neurons of adult mice

    Directory of Open Access Journals (Sweden)

    Misa Oyama

    2017-03-01

    Full Text Available To understand the synaptic and/or extrasynaptic mechanisms underlying pain relief by blockade of glycine transporter subtypes GlyT1 and GlyT2, whole-cell recordings were made from dorsal horn neurons in spinal slices from adult mice, and the effects of NFPS and ALX-1393, selective GlyT1 and GlyT2 inhibitors, respectively, on phasic evoked or miniature glycinergic inhibitory postsynaptic currents (eIPSCs or mIPSCs were examined. NFPS and ALX-1393 prolonged the decay phase of eIPSCs without affecting their amplitude. In the presence of tetrodotoxin to record mIPSCs, NFPS and ALX-1393 induced a tonic inward current that was reversed by strychnine. Although NFPS had no statistically significant influences on mIPSCs, ALX-1393 significantly increased their frequency. We then further explored the role of GlyTs in the maintenance of glycinergic IPSCs. To facilitate vesicular release of glycine, repetitive high-frequency stimulation (HFS was applied at 10 Hz for 3 min during continuous recordings of eIPSCs at 0.1 Hz. Prominent suppression of eIPSCs was evident after HFS in the presence of ALX-1393, but not NFPS. Thus, it appears that phasic and tonic inhibition may contribute to the analgesic effects of GlyT inhibitors. However, reduced glycinergic inhibition due to impaired vesicular refilling could hamper the analgesic efficacy of GlyT2 inhibitors.

  6. When endogenous spatial attention improves conscious perception: effects of alerting and bottom-up activation.

    Science.gov (United States)

    Botta, Fabiano; Lupiáñez, Juan; Chica, Ana B

    2014-01-01

    Recent studies have consistently demonstrated that conscious perception interacts with exogenous attentional orienting, but it can be dissociated from endogenous attentional orienting (Chica Lasaponara, et al., 2011; Wyart & Tallon-Baudry, 2008). It has been hypothesized that enhanced conscious processing at exogenously attended locations results from a synergistic action of spatial orienting, bottom-up activation, and phasic alerting induced by the abrupt onset of the exogenous cue (Chica, Lasaponara, et al., 2011). Instead, as endogenous cues need more time to be interpreted, the phasic alerting they produce may have dissipated when the target appears. Furthermore, endogenous cues presumably elicit a weak bottom-up activation at the cued location. Consistent with these hypotheses, we observed that endogenous attention modulated conscious perception, but only when phasic alerting or bottom-up activation was increased. Results are discussed in the context of recent theoretical models of consciousness (Dehaene, Changeux, Naccache, Sackur, & Sergent, 2006). Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Cysteines introduced into extracellular loops 1 and 4 of human P-glycoprotein that are close only in the open conformation spontaneously form a disulfide bond that inhibits drug efflux and ATPase activity.

    Science.gov (United States)

    Loo, Tip W; Clarke, David M

    2014-09-05

    P-glycoprotein (P-gp) is an ATP-binding cassette drug pump that protects us from toxic compounds and confers multidrug resistance. The protein is organized into two halves. The halves contain a transmembrane domain (TMD) with six transmembrane segments and a nucleotide-binding domain (NBD). The drug- and ATP-binding sites reside at the TMD1/TMD2 and NBD1/NBD2 interfaces, respectively. ATP-dependent drug efflux involves changes between the open inward-facing (NBDs apart, extracellular loops (ECLs) close together) and the closed outward-facing (NBDs close together, ECLs apart) conformations. It is controversial, however, whether the open conformation only exists transiently in intact cells because of the presence of high levels of ATP. To test for the presence of an open conformation in intact cells, reporter cysteines were placed in extracellular loops 1 (A80C, N half) and 4 (R741C, C half). The rationale was that cysteines A80C/R741C would only come close enough to form a disulfide bond in an open conformation (6.9 Å apart) because they are separated widely (30.4 Å apart) in the closed conformation. It was observed that the mutant A80C/R741C cross-linked spontaneously (>90%) when expressed in cells. In contrast to previous reports showing that trapping P-gp in a closed conformation highly activated ATPase activity, here we show that A80C/R741C cross-linking inhibited ATPase activity and drug efflux. Both activities were restored when the cross-linked mutant was treated with a thiol-reducing agent. The results show that an open conformation can be readily detected in cells and that cross-linking of cysteines placed in ECLs 1 and 4 inhibits activity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats.

    Science.gov (United States)

    Balti, Rafik; Bougatef, Ali; Sila, Assaâd; Guillochon, Didier; Dhulster, Pascal; Nedjar-Arroume, Naima

    2015-03-01

    This study aimed to identify novel ACE inhibitory peptides from the muscle of cuttlefish. Proteins were hydrolyzed and the hydrolysates were then subjected to various types of chromatography to isolate the active peptides. Nine ACE inhibitory peptides were isolated and their molecular masses and amino acid sequences were determined using ESI-MS and ESI-MS/MS, respectively. The structures of the most potent peptides were identified as Val-Glu-Leu-Tyr-Pro, Ala-Phe-Val-Gly-Tyr-Val-Leu-Pro and Glu-Lys-Ser-Tyr-Glu-Leu-Pro. The first peptide displayed the highest ACE inhibitory activity with an IC50 of 5.22μM. Lineweaver-Burk plots suggest that Val-Glu-Leu-Tyr-Pro acts as a non-competitive inhibitor against ACE. Furthermore, antihypertensive effects in spontaneously hypertensive rats (SHR) also revealed that oral administration of Val-Glu-Leu-Tyr-Pro can decrease systolic blood pressure significantly (p<0.01). These results suggest that the Val-Glu-Leu-Tyr-Pro would be a beneficial ingredient for nutraceuticals and pharmaceuticals acting against hypertension and its related diseases. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Spontaneous fission of the heaviest elements

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.C.

    1989-04-01

    Although spontaneous fission was discovered in /sup 238/U in 1940, detailed studies of the process were first made possible in the 1960's with the availability of milligram quantities of /sup 252/Cf. The advent of solid-state detectors made it possible to perform measurements of coincident fission fragments from even very short-lived spontaneous fission activities or those available in only very small quantities. Until 1971 it was believed that the main features of the mass and kinetic-energy distributions were essentially the same as those for thermal neutron-induced fission and that all low-energy fission proceeded via asymmetric mass division with total kinetic energies which could be derived by linear extrapolation from those of lighter elements. In 1971, measurements of /sup 257/Fm showed an increase in symmetric mass division with anomalously high TKE's. Subsequent experiments showed that in /sup 258/Fm and /sup 259/Fm, the most probable mass split was symmetric with very high total kinetic energy. Measurements for the heavier elements have shown symmetric mass distributions with both high and low total kinetic energies. Recent results for spontaneous fission properties of the heaviest elements are reviewed and compared with theory. 31 refs., 8 figs., 1 tab.

  10. Vasodilator efficiency of endogenous prostanoids, Ca2+-activated K+ channels and nitric oxide in rats with spontaneous, salt-dependent or NO-deficient hypertension

    Czech Academy of Sciences Publication Activity Database

    Behuliak, Michal; Pintérová, Mária; Kuneš, Jaroslav; Zicha, Josef

    2011-01-01

    Roč. 34, č. 8 (2011), s. 968-975 ISSN 0916-9636 R&D Projects: GA ČR(CZ) GA305/09/0336; GA AV ČR(CZ) IAA500110902; GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : Ca2+-activated K+ channels * nitric oxide-dependent vasodilatation * prostacyclin Subject RIV: ED - Physiology Impact factor: 2.576, year: 2011

  11. Influence of xanthine oxidase inhibitors allopurinol and oxypurinol on the course of body weight, on body composition and spontaneous activity in a rat model of tumour cachexia

    OpenAIRE

    Hartmann, Kai

    2010-01-01

    The pathways involved in the pathogenesis of tumor-associated cachexia are not yet fully understood. A higher activity of the enzyme xanthine oxidase was reported in this context, which could play a causative role in the course of events by raising the production of reactive oxygen species. In this thesis, the effects of medication with xanthine oxidase inhibitors allopurinol and oxypurinol on the extent of induced tumour cachexia in rats have been investigated. A combined medication of oxypu...

  12. The correlation between white-matter microstructure and the complexity of spontaneous brain activity: a difussion tensor imaging-MEG study.

    OpenAIRE

    Fernández, A; Ríos-Lago, M; Abásolo, D; Hornero, R; Alvarez-Linera, J; Paul, N; Maestú, F; Ortiz, T

    2011-01-01

    The advent of new signal processing methods, such as non-linear analysis techniques, represents a new perspective which adds further value to brain signals' analysis. Particularly, Lempel–Ziv's Complexity (LZC) has proven to be useful in exploring the complexity of the brain electromagnetic activity. However, an important problem is the lack of knowledge about the physiological determinants of these measures. Although acorrelation between complexity and connectivity has been proposed, this hy...

  13. Alterations in Spontaneous Brain Activity and Functional Network Reorganization following Surgery in Children with Medically Refractory Epilepsy: A Resting-State Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Yongxin Li

    2017-08-01

    Full Text Available For some patients with medically refractory epilepsy (MRE, surgery is a safe and effective treatment for controlling epilepsy. However, the functional consequences of such surgery on brain activity and connectivity in children remain unknown. In the present study, we carried out a longitudinal study using resting-state functional magnetic resonance imaging in 10 children with MRE before and again at a mean of 79 days after surgery, as well as in a group of 28 healthy controls. Compared with the controls, children with epilepsy exhibited abnormalities in intrinsic activity in the thalamus, putamen, pallidum, insula, hippocampus, cerebellum, and cingulate gyrus both before and after surgery. Longitudinal analyses showed that the amplitude of low frequency fluctuations (ALFF increased in the parietal–frontal cortex and decreased in the deep nuclei from pre- to post-surgery. The percentage changes in ALFF values in the deep nuclei were positively correlated with the age of epilepsy onset. Functional connectivity (FC analyses demonstrated a reorganization of FC architecture after surgery. These changes in brain activity and FC after surgery might indicate that the previously disrupted functional interactions were reorganized after surgery. All these results provide preliminary evidence that the age of epilepsy onset may have some potential to predict the outcome of brain functional reorganization after surgery in children with MRE.

  14. A case of spontaneous ventriculocisternostomy

    International Nuclear Information System (INIS)

    Yamane, Kanji; Yoshimoto, Hisanori; Harada, Kiyoshi; Uozumi, Tohru; Kuwabara, Satoshi.

    1983-01-01

    The authors experienced a case of spontaneous ventriculocisternostomy diagnosed by CT scan with metrizamide and Conray. Patient was 23-year-old male who had been in good health until one month before admission, when he began to have headache and tinnitus. He noticed bilateral visual acuity was decreased about one week before admission and vomiting appeared two days before admission. He was admitted to our hospital because of bilateral papilledema and remarkable hydrocephalus diagnosed by CT scan. On admission, no abnormal neurological signs except for bilateral papilledema were noted. Immediately, right ventricular drainage was performed. Pressure of the ventricle was over 300mmH 2 O and CSF was clear. PVG and PEG disclosed an another cavity behind the third ventricle, which was communicated with the third ventricle, and occlusion of aqueduct of Sylvius. Metrizamide CT scan and Conray CT scan showed a communication between this cavity and quadrigeminal and supracerebellar cisterns. On these neuroradiological findings, the diagnosis of obstructive hydrocephalus due to benign aqueduct stenosis accompanied with spontaneous ventriculocisternostomy was obtained. Spontaneous ventriculocisternostomy was noticed to produce arrest of hydrocephalus, but with our case, spontaneous regression of such symptoms did not appeared. By surgical ventriculocisternostomy (method by Torkildsen, Dandy, or Scarff), arrest of hydrocephalus was seen in about 50 to 70 per cent, which was the same results as those of spontaneous ventriculocisternostomy. It is concluded that VP shunt or VA shunt is thought to be better treatment of obstructive hydrocephalus than the various kinds of surgical ventriculocisternostomy. (J.P.N.)

  15. Optical antenna enhanced spontaneous emission.

    Science.gov (United States)

    Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C

    2015-02-10

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.

  16. Review of the Methods to Obtain Paediatric Drug Safety Information: Spontaneous Reporting and Healthcare Databases, Active Surveillance Programmes, Systematic Reviews and Meta-analyses

    Science.gov (United States)

    Gentili, Marta; Pozzi, Marco; Peeters, Gabrielle; Radice, Sonia; Carnovale, Carla

    2018-02-06

    Knowledge of drugs safety collected during the pre-marketing phase is inevitably limited because the randomized clinical trials (RCTs) are rarely designed to evaluate safety. The small and selective groups of enrolled individuals and the limited duration of trials may hamper the ability to characterize fully the safety profiles of drugs. Additionally, information about rare adverse drug reactions (ADRs) in special groups is often incomplete or not available for most of the drugs commonly used in the daily clinical practice. In the paediatric setting several highimpact safety issues have emerged. Hence, in recent years, there has been a call for improved post-marketing pharmacoepidemiological studies, in which cohorts of patients are monitored for sufficient time in order to determine the precise risk-benefit ratio. In this review, we discuss the current available strategies enhancing the post-marketing monitoring activities of the drugs in the paediatric setting and define criteria whereby they can provide valuable information to improve the management of therapy in daily clinical practice including both safety and efficacy aspects. The strategies we cover include the signal detection using international pharmacovigilance and/or healthcare databases, the promotion of active surveillance initiatives which can generate complete, informative data sets for the signal detection and systematic review/meta-analysis. Together, these methods provide a comprehensive picture of causality and risk improving the management of therapy in a paediatric setting and they should be considered as a unique tool to be integrated with post-marketing activities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Spontaneous pepsin C-catalyzed activation of human pepsinogen C in transgenic rice cell suspension culture: Production and characterization of human pepsin C.

    Science.gov (United States)

    Islam, Md Reyazul; Kim, Nan-Sun; Jung, Jae-Wan; Kim, Hyo-Boon; Han, So-Chon; Yang, Moon-Sik

    2018-01-01

    A human pepsinogen C (hPGC) gene was synthesized with rice-optimized codon usage and cloned into a rice expression vector containing the promoter, signal peptide, and terminator derived from the rice α-amylase 3D (Ramy3D) gene. In addition, a 6-His tag was added to the 3' end of the synthetic hPGC gene for easy purification. The plant expression vector was introduced into rice calli (Oryza sativa L. cv. Dongjin) mediated by Agrobacterium tumefaciens. The integration of the hPGC gene into the chromosome of the transgenic rice callus and hPGC expression in transgenic rice cell suspensions was verified via genomic DNA polymerase chain reaction amplification and Northern blot analysis. Western blot analysis indicated both hPGC and its mature form, human pepsin C, with masses of 42- and 36-kDa in the culture medium under sugar starvation conditions. Human pepsin C was purified from the culture medium using a Ni-NTA agarose column and the NH 2 -terminal 5-residue sequences were verified by amino acid sequencing. The hydrolyzing activity of human pepsin C was confirmed using bovine hemoglobin as a substrate. The optimum pH and temperature for pepsin activity were 2.0 and 40°C, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Spontaneous subcapsular and perirrenal hemorrhage

    International Nuclear Information System (INIS)

    Fuster, M.J.; Saez, J.; Perez-Paya, F.J.; Fernandez, F.

    1997-01-01

    To assess the role of CT in the etiologic diagnosis of spontaneous subcapsular and perirrenal hemorrhage. The CT findings are described in 13 patients presenting subcapsular and perirrenal hemorrhage. Those patients in whom the bleeding was not spontaneous were excluded. Surgical confirmation was obtained in nine cases. In 11 of the 13 cases (84.6%), involving five adenocarcinomas, five angiomyolipoma, two complicated cysts and one case of panarterities nodosa, CT disclosed the underlying pathology. In two cases (15.4%), it only revealed the extension of the hematoma, but gave no clue to its origin. CT is the technique of choice when spontaneous subcapsular and perirrenal hemorrhage is suspected since, in most cases, it reveals the underlying pathology. (Author)

  19. Of faeces and sweat. How much a mouse is willing to run: having a hard time measuring spontaneous physical activity in different mouse sub-strains

    Directory of Open Access Journals (Sweden)

    Dario Coletti

    2017-03-01

    Full Text Available Physical activity has multiple beneficial effects in the physiology and pathology of the organism. In particular, we and other groups have shown that running counteracts cancer cachexia in both humans and rodents. The latter are prone to exercise in wheel-equipped cages even at advanced stages of cachexia. However, when we wanted to replicate the experimental model routinely used at the University of Rome in a different laboratory (i.e. at Paris 6 University, we had to struggle with puzzling results due to unpredicted mouse behavior. Here we report the experience and offer the explanation underlying these apparently irreproducible results. The original data are currently used for teaching purposes in undergraduate student classes of biological sciences.

  20. Spontaneous isolated celiac artery dissection

    Directory of Open Access Journals (Sweden)

    Tuba Cimilli Ozturk

    2011-01-01

    Full Text Available Dyspepsia with mild, stabbing epigastric discomfort without history of trauma is a very common symptom that emergency physicians see in their daily practice. Vascular emergencies, mostly the aortic dissection and aneurysm, are always described in the differential diagnosis with persistent symptoms. Isolated celiac artery dissection occurring spontaneously is a very rare diagnosis. The involvement of branch vessels is generally observed and patients show various clinical signs and symptoms according to the involved branch vessel. Here we are presenting a case with spontaneous isolated celiac artery dissection, without any branch vessel involvement or visceral damage, detected by computed tomography scans taken on admission.

  1. Spontaneous waves in muscle fibres

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Stefan; Kruse, Karsten [Department of Theoretical Physics, Saarland University, 66041 Saarbruecken (Germany); Max Planck Institute for the Physics of Complex Systems, Noethnitzer Street 38, 01187 Dresden (Germany)

    2007-11-15

    Mechanical oscillations are important for many cellular processes, e.g. the beating of cilia and flagella or the sensation of sound by hair cells. These dynamic states originate from spontaneous oscillations of molecular motors. A particularly clear example of such oscillations has been observed in muscle fibers under non-physiological conditions. In that case, motor oscillations lead to contraction waves along the fiber. By a macroscopic analysis of muscle fiber dynamics we find that the spontaneous waves involve non-hydrodynamic modes. A simple microscopic model of sarcomere dynamics highlights mechanical aspects of the motor dynamics and fits with the experimental observations.

  2. Spontaneous Slow Fluctuation of EEG Alpha Rhythm Reflects Activity in Deep-Brain Structures: A Simultaneous EEG-fMRI Study.

    Directory of Open Access Journals (Sweden)

    Kei Omata

    Full Text Available The emergence of the occipital alpha rhythm on brain electroencephalogram (EEG is associated with brain activity in the cerebral neocortex and deep brain structures. To further understand the mechanisms of alpha rhythm power fluctuation, we performed simultaneous EEGs and functional magnetic resonance imaging recordings in human subjects during a resting state and explored the dynamic relationship between alpha power fluctuation and blood oxygenation level-dependent (BOLD signals of the brain. Based on the frequency characteristics of the alpha power time series (APTS during 20-minute EEG recordings, we divided the APTS into two components: fast fluctuation (0.04-0.167 Hz and slow fluctuation (0-0.04 Hz. Analysis of the correlation between the MRI signal and each component revealed that the slow fluctuation component of alpha power was positively correlated with BOLD signal changes in the brain stem and the medial part of the thalamus and anterior cingulate cortex, while the fast fluctuation component was correlated with the lateral part of the thalamus and the anterior cingulate cortex, but not the brain stem. In summary, these data suggest that different subcortical structures contribute to slow and fast modulations of alpha spectra on brain EEG.

  3. Fracture of maternal sternum during spontaneous delivery.

    Science.gov (United States)

    Stubert, J; Gerber, B

    2009-12-01

    We report of a maternal sternal fracture during a spontaneous delivery in a 31-year-old primipara without a suitable trauma. The putative mechanism of fracture was strong hyperflexion of the thoracic spine and additional cervical flexion with pushing the chin to the thorax due to active management of labour. The history of the healthy woman was free of related risk factors. A possible promoting factor might be pregnancy-induced bone loss. Although there were clear symptoms, the diagnosis of the fracture was delayed by a week because nobody took account of such a possibility.

  4. [Results of spontaneous NBT-test in influenza patients].

    Science.gov (United States)

    Nagoev, B S; Orazaev, N G

    2000-01-01

    Assessment of leukocyte activity with spontaneous NBT-test in influenza patients regarding the disease stage, severity, complication and concomitant diseases. 107 influenza patients aged 16-84 years were studied. 70 patients had no complications, 11 patients had early influenzal pneumonia, 26 patients had late viral-bacterial infection. Chronic concomitant diseases were diagnosed in 23 cases. Cytochemical examination of leukocyte activity was made in all the patients using spontaneous NBT-test. In mild influenza NBT-test results were within upper limits of normal value. In alleviation of the symptoms NBT-test parameters were low. In early influenzal and viral-bacterial pneumonia leukocyte activity was high and lowered to normal in late convalescence. Parameters of spontaneous NBT-test in influenzal patients were elevated depending on influenza stage, severity and complications. This fact is of differential-diagnostic importance.

  5. Human Papillomavirus Infection as a Possible Cause of Spontaneous Abortion and Spontaneous Preterm Delivery

    DEFF Research Database (Denmark)

    Ambühl, Lea Maria Margareta; Baandrup, Ulrik; Dybkær, Karen

    2016-01-01

    , and 10.9% (95% CI; 10.1–11.7) for umbilical cord blood. Summary estimates for HPV prevalence of spontaneous abortions and spontaneous preterm deliveries, in cervix (spontaneous abortions: 24.5%, and pretermdeliveries: 47%, resp.) and placenta (spontaneous abortions: 24.9%, and preterm deliveries: 50......%, resp.), were identified to be higher compared to normal full-term pregnancies (푃 spontaneous abortion, spontaneous preterm...

  6. Thromboembolic events with recombinant activated factor VII in spontaneous intracerebral hemorrhage: results from the Factor Seven for Acute Hemorrhagic Stroke (FAST) trial.

    Science.gov (United States)

    Diringer, Michael N; Skolnick, Brett E; Mayer, Stephan A; Steiner, Thorsten; Davis, Stephen M; Brun, Nikolai C; Broderick, Joseph P

    2010-01-01

    Patients with intracerebral hemorrhage have a high risk of thromboembolic events (TEs) due to advanced age, hypertension, atherosclerosis, diabetes, and immobility. Use of recombinant activated factor VII (rFVIIa) could increase TEs in high-risk patients. Factor Seven for Acute Hemorrhagic Stroke (FAST) trial data were reviewed to define the frequency of and risk factors for TE with rFVIIa. Eight hundred forty-one patients presenting hemorrhage were randomized to 20 or 80 microg/kg of rFVIIa or placebo. Those with Glasgow Coma Scale score surgery, coagulopathy, or recent TE were excluded. Myocardial, cerebral, or venous TEs were subject to detailed reporting and expedited local review. Additionally, a blinded Data Monitoring Committee reviewed all electrocardiograms, centrally analyzed troponin I values, and CT scans. There were 178 arterial and 47 venous TEs. Venous events were similar across groups. There were 49 (27%) arterial events in the placebo group, 47 (26%) in the 20-microg/kg group, and 82 (46%) in the 80 microg/kg group (P=0.04). Of the myocardial events, 38 were investigator-reported and 103 identified by the Data Monitoring Committee. They occurred in 17 (6.3%) placebo and 57 (9.9%) rFVIIa patients (P=0.09). Arterial TEs were associated with: receiving 80 microg/kg rFVIIa (OR=2.14; P=0.031), signs of cardiac or cerebral ischemia at presentation (OR=4.19; P=0.010), age (OR=1.14/5 years; P=0.0123), and prior use of antiplatelet agents (OR=1.83; P=0.035). Ischemic strokes possibly related to study drug occurred in 7, 5, and 8 patients in the placebo, 20 microg/kg, and 80-microg/kg groups, respectively. Higher doses of rFVIIa in a high-risk population are associated with a small increased risk of what are usually minor cardiac events. Demonstration of the ability of rFVIIa to improve outcome in future studies should be driven by its effectiveness in slowing bleeding outweighting the risk of a small increase in arterial TEs.

  7. Task-dependent modulation of oscillatory neural activity during movements

    DEFF Research Database (Denmark)

    Herz, D. M.; Christensen, M. S.; Reck, C.

    2011-01-01

    Neural oscillations in different frequency bands have been observed in a range of sensorimotor tasks and have been linked to coupling of spatially distinct neurons. The goal of this study was to detect a general motor network that is activated during phasic and tonic movements and to study the ta...

  8. Spontaneous emission by moving atoms

    International Nuclear Information System (INIS)

    Meystre, P.; Wilkens, M.

    1994-01-01

    It is well known that spontaneous emission is not an intrinsic atomic property, but rather results from the coupling of the atom to the vacuum modes of the electromagnetic field. As such, it can be modified by tailoring the electromagnetic environment into which the atom can radiate. This was already realized by Purcell, who noted that the spontaneous emission rate can be enhanced if the atom placed inside a cavity is resonant with one of the cavity is resonant with one of the cavity modes, and by Kleppner, who discussed the opposite case of inhibited spontaneous emission. It has also been recognized that spontaneous emission need not be an irreversible process. Indeed, a system consisting of a single atom coupled to a single mode of the electromagnetic field undergoes a periodic exchange of excitation between the atom and the field. This periodic exchange remains dominant as long as the strength of the coupling between the atom and a cavity mode is itself dominant. 23 refs., 6 figs

  9. Spontaneous Development of Moral Concepts

    Science.gov (United States)

    Siegal, M.

    1975-01-01

    Moral competence is more difficult to attain than scientific competence. Since language comprehension plays a central role in conceptual development, and moral language is difficult to learn, there is a common deficiency in moral conceptual development. This suggests a theory of non-spontaneous solutions to moral problems. (Author/MS)

  10. Shell theorem for spontaneous emission

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter

    2013-01-01

    and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....

  11. Prediction of Spontaneous Preterm Birth

    NARCIS (Netherlands)

    Dijkstra, Karolien

    2002-01-01

    Preterm birth is a leading cause of neonatal morbidity and mortality. It is a major goal in obstetrics to lower the incidence of spontaneous preterm birth (SPB) and related neonatal morbidity and mortality. One of the principal objectives is to discover early markers that would allow us to identify

  12. EAMJ Dec. Spontaneous.indd

    African Journals Online (AJOL)

    2008-12-12

    Dec 12, 2008 ... surgical abortion at one month gestation without any complication. The second pregnancy which was a year prior resulted in a spontaneous miscarriage at two months followed by evacuation of retained products of conception with no post abortion complications. Antibiotics were taken following both.

  13. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the ...

  14. Specific diurnal EMG activity pattern observed in occlusal collapse patients: relationship between diurnal bruxism and tooth loss progression.

    Directory of Open Access Journals (Sweden)

    Shigehisa Kawakami

    Full Text Available AIM: The role of parafunctional masticatory muscle activity in tooth loss has not been fully clarified. This study aimed to reveal the characteristic activity of masseter muscles in bite collapse patients while awake and asleep. MATERIALS AND METHODS: Six progressive bite collapse patients (PBC group, six age- and gender-matched control subjects (MC group, and six young control subjects (YC group were enrolled. Electromyograms (EMG of the masseter muscles were continuously recorded with an ambulatory EMG recorder while patients were awake and asleep. Diurnal and nocturnal parafunctional EMG activity was classified as phasic, tonic, or mixed using an EMG threshold of 20% maximal voluntary clenching. RESULTS: Highly extended diurnal phasic activity was observed only in the PBC group. The three groups had significantly different mean diurnal phasic episodes per hour, with 13.29±7.18 per hour in the PBC group, 0.95±0.97 per hour in the MC group, and 0.87±0.98 per hour in the YC group (p<0.01. ROC curve analysis suggested that the number of diurnal phasic episodes might be used to predict bite collapsing tooth loss. CONCLUSION: Extensive bite loss might be related to diurnal masticatory muscle parafunction but not to parafunction during sleep. CLINICAL RELEVANCE SCIENTIFIC RATIONALE FOR STUDY: Although mandibular parafunction has been implicated in stomatognathic system breakdown, a causal relationship has not been established because scientific modalities to evaluate parafunctional activity have been lacking. PRINCIPAL FINDINGS: This study used a newly developed EMG recording system that evaluates masseter muscle activity throughout the day. Our results challenge the stereotypical idea of nocturnal bruxism as a strong destructive force. We found that diurnal phasic masticatory muscle activity was most characteristic in patients with progressive bite collapse. PRACTICAL IMPLICATIONS: The incidence of diurnal phasic contractions could be used for

  15. Being Spontaneous: The Future of Telehealth Implementation?

    Science.gov (United States)

    Mars, Maurice; Scott, Richard E

    2017-09-01

    The smartphone simplifies interprofessional communication, and smartphone applications can facilitate telemedicine activity. Much has been written about the steps that need to be followed to implement and establish a successful telemedicine service that is integrated into everyday clinical practice. A traditional and systematic approach has evolved incorporating activities such as strategy development, needs assessment, business cases and plans, readiness assessment, implementation plans, change management interventions, and ongoing monitoring and evaluation. This "best practice" has been promoted in the telehealth literature for many years. In contrast, several recent initiatives have arisen without any such formal undertakings. This article describes the strengths and weaknesses of two "spontaneous" telemedicine services in dermatology and burn management that have evolved in South Africa. Two spontaneous services were identified and reviewed. In one unsolicited service, doctors at rural referring hospitals have been taking photographs of skin lesions and sending them with a brief text message history to dermatologists using the instant messaging smartphone app, WhatsApp. In the other, burns service, admissions to the burns unit or the clinic were triaged by telephonic description of the case and completion of a preadmission questionnaire. More recently, management and referral decisions are made only after completion of the questionnaire and subsequent submission of photographs of the burn sent by WhatsApp, with the decision transmitted by text message. Although efficient and effective, potential legal and ethical shortcomings have been identified. These "spontaneous" telehealth services challenge traditional best practice, yet appear to lead to truly integrated practice and, therefore, are successful and warrant further study.

  16. Role of Spontaneous Brain Activity in Explicit and Implicit Aspects of Cognitive Flexibility under Socially Conflicting Situations: A Resting-state fMRI Study using Fractional Amplitude of Low-frequency Fluctuations.

    Science.gov (United States)

    Fujino, Junya; Tei, Shisei; Jankowski, Kathryn F; Kawada, Ryosaku; Murai, Toshiya; Takahashi, Hidehiko

    2017-12-26

    We are constantly exposed to socially conflicting situations in everyday life, and cognitive flexibility is essential for adaptively coping with such difficulties. Flexible goal choice and pursuit are not exclusively conscious, and therefore cognitive flexibility involves both explicit and implicit forms of processing. However, it is unclear how individual differences in explicit and implicit aspects of flexibility are associated with neural activity in a resting state. Here, we measured intrinsic fractional amplitude of low-frequency fluctuations (fALFF) by resting-state functional magnetic resonance imaging (RS-fMRI) as an indicator of regional brain spontaneous activity, together with explicit and implicit aspects of cognitive flexibility using the Cognitive Flexibility Scale (CFS) and Implicit Association Test (IAT). Consistent with the dual processing theory, there was a strong association between explicit aspects of flexibility (CFS score) and "rationalism" thinking style and between implicit aspects (IAT effect) and "experientialism." The level of explicit flexibility was also correlated with fALFF values in the left lateral prefrontal cortex, whereas the level of implicit flexibility was correlated with fALFF values in the right cerebellum. Furthermore, the fALFF values in both regions predicted individual preference for flexible decision-making strategy in a vignettes simulation task. These results add to our understanding of the neural mechanisms underlying flexible decision-making for solving social conflicts. More generally, our findings highlight the utility of RS-fMRI combined with both explicit and implicit psychometric measures for better understanding individual differences in social cognition. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Spontaneous Retropharyngeal Emphysema: A Case Report | Chi ...

    African Journals Online (AJOL)

    ... is a rare clinical condition in pediatric otolaryngology. The predominant symptoms are sore throat, odynophagia, dysphagia, and neck pain. Here, we report a case of spontaneous retropharyngeal emphysema. Keywords: Iatrogenic injury, retropharyngeal emphysema, spontaneous retropharyngeal emphysem, trauma ...

  18. La maladie de Grisel : Spontaneous atlantoaxial subluxation

    NARCIS (Netherlands)

    Meek, MF; Robinson, PH; Hermens, RAEC

    Objective: "La maladie de Grisel" (Grisel's syndrome) is a spontaneously occurring atlantoaxial subluxation with torticollis. We present a case of atlantoaxial subluxation occurring in a 20-year period of pharyngoplasty surgery. The occurrence of a "spontaneous" atlantoaxial subluxation after oral

  19. Spontaneous ad hoc mobile cloud computing network.

    Science.gov (United States)

    Lacuesta, Raquel; Lloret, Jaime; Sendra, Sandra; Peñalver, Lourdes

    2014-01-01

    Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes.

  20. Body Mass Index and spontaneous miscarriage.

    LENUS (Irish Health Repository)

    Turner, Michael J

    2012-02-01

    OBJECTIVE: We compared the incidence of spontaneous miscarriage in women categorised as obese, based on a Body Mass Index (BMI) >29.9 kg\\/m(2), with women in other BMI categories. STUDY DESIGN: In a prospective observational study conducted in a university teaching hospital, women were enrolled at their convenience in the first trimester after a sonogram confirmed an ongoing singleton pregnancy with fetal heart activity present. Maternal height and weight were measured digitally and BMI calculated. Maternal body composition was measured by advanced bioelectrical impedance analysis. RESULTS: In 1200 women, the overall miscarriage rate was 2.8% (n=33). The mean gestational age at enrolment was 9.9 weeks. In the obese category (n=217), the miscarriage rate was 2.3% compared with 3.3% in the overweight category (n=329), and 2.3% in the normal BMI group (n=621). There was no difference in the mean body composition parameters, particularly fat mass parameters, between those women who miscarried and those who did not. CONCLUSIONS: In women with sonographic evidence of fetal heart activity in the first trimester, the rate of spontaneous miscarriage is low and is not increased in women with BMI>29.9 kg\\/m(2) compared to women in the normal BMI category.

  1. Angiotensin-converting enzyme D/I and plasminogen activator inhibitor-1 4G/5G gene polymorphisms are associated with increased risk of spontaneous abortions in polycystic ovarian syndrome.

    Science.gov (United States)

    Sun, L; Lv, H; Wei, W; Zhang, D; Guan, Y

    2010-02-01

    Polycystic ovary syndrome (PCOS) is a main cause of infertility, particularly in high-risk settings such as spontaneous abortions (SAB). We aimed to evaluate the effect of genetic polymorphisms in ACE and plasminogen activator inhibitor-1 (PAI-1) on the occurrence of SAB in PCOS. One hundred and forty-two PCOS patients (83 women have a history of one or more unexplained SAB, 59 women have successfully live births) and 107 healthy controls matched for age and body mass index were included in the study. Levels of PAI-1, LH, FSH, testosterone, fasting glucose and insulin were measured. ACE deletion (D)/insertion (I) and PAI-1 4G/5G gene polymorphisms were performed. The D/D and/or 4G/4G genotype frequency, the D or 4G allelic frequency, the combination of the ACE D/D and PAI-1 4G/5G, D/I and 4G/4G genotypes of PCOS patients with SAB women were statistically higher than non-SAB group (p4G/4G or D/D genotype of PCOS with SAB patients had significantly higher PAI-1 levels than non-SAB women. The ACE D/I and PAI-1 4G/5G gene polymorphisms might represent risk factor in PCOS with SAB. Homozygosity for ACE D or PAI-1 4G polymorphisms as well as compound carrier status are significant positive explanatory variable for PCOS patients with SAB, which may result in increased PAI-1 concentrations and hypofibrinolysis and contribute to early pregnancy loss.

  2. Loss of the trpc4 gene is associated with a reduction in cocaine self-administration and reduced spontaneous ventral tegmental area dopamine neuronal activity, without deficits in learning for natural rewards.

    Science.gov (United States)

    Klipec, William D; Burrow, Kristin R; O'Neill, Casey; Cao, Jun-Li; Lawyer, Chloe R; Ostertag, Eric; Fowler, Melissa; Bachtell, Ryan K; Illig, Kurt R; Cooper, Donald C

    2016-06-01

    Among the canonical transient receptor potential (TRPC) channels, the TRPC4 non-selective cation channel is one of the most abundantly expressed subtypes within mammalian corticolimbic brain regions, but its functional and behavioral role is unknown. To identify a function for TRPC4 channels we compared the performance of rats with a genetic knockout of the trpc4 gene (trpc4 KO) to wild-type (WT) controls on the acquisition of simple and complex learning for natural rewards, and on cocaine self-administration (SA). Despite the abundant distribution of TRPC4 channels through the corticolimbic brain regions, we found trpc4 KO rats exhibited normal learning in Y-maze and complex reversal shift paradigms. However, a deficit was observed in cocaine SA in the trpc4 KO group, which infused significantly less cocaine than WT controls despite displaying normal sucrose SA. Given the important role of ventral tegmental area (VTA) dopamine neurons in cocaine SA, we hypothesized that TRPC4 channels may regulate basal dopamine neuron excitability. Double-immunolabeling showed a selective expression of TRPC4 channels in a subpopulation of putative dopamine neurons in the VTA. Ex vivo recordings of spontaneous VTA dopamine neuronal activity from acute brain slices revealed fewer cells with high-frequency firing rates in trpc4 KO rats compared to WT controls. Since deletion of the trpc4 gene does not impair learning involving natural rewards, but reduces cocaine SA, these data demonstrate a potentially novel role for TRPC4 channels in dopamine systems and may offer a new pharmacological target for more effective treatment of a variety of dopamine disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Systematics of spontaneous positron lines

    International Nuclear Information System (INIS)

    Mueller, U.; Reus, T. de; Reinhardt, J.; Mueller, B.; Greiner, W.

    1985-08-01

    Dynamical and spontaneous positron emission are investigated for heavy-ion collisions with long time delay using a semiclassical description. Numerical results and analytical expressions for the characteristic quantities of the resulting spontaneous positron line, i.e., its position, width, and cross section, are compared. The expected behaviour of the line position and cross section and its visibility against the spectrum of dynamically created positrons is discussed in dependence of the united charge Zsub(u) of projectile and target nucleus in a range of systems from Zsub(u)=180 up to Zsub(u)=188. The results are confronted with presently available experimental data, and possible implications on further experiments are worked out. (orig.)

  4. Spontaneous Rotational Inversion in Phycomyces

    KAUST Repository

    Goriely, Alain

    2011-03-01

    The filamentary fungus Phycomyces blakesleeanus undergoes a series of remarkable transitions during aerial growth. During what is known as the stagea IV growth phase, the fungus extends while rotating in a counterclockwise manner when viewed from above (stagea IVa) and then, while continuing to grow, spontaneously reverses to a clockwise rotation (stagea IVb). This phase lasts for 24-48Ah and is sometimes followed by yet another reversal (stageAIVc) before the overall growth ends. Here, we propose a continuum mechanical model of this entire process using nonlinear, anisotropic, elasticity and show how helical anisotropy associated with the cell wall structure can induce spontaneous rotation and, under appropriate circumstances, the observed reversal of rotational handedness. © 2011 American Physical Society.

  5. Spontaneous regression of colon cancer.

    Science.gov (United States)

    Kihara, Kyoichi; Fujita, Shin; Ohshiro, Taihei; Yamamoto, Seiichiro; Sekine, Shigeki

    2015-01-01

    A case of spontaneous regression of transverse colon cancer is reported. A 64-year-old man was diagnosed as having cancer of the transverse colon at a local hospital. Initial and second colonoscopy examinations revealed a typical cancer of the transverse colon, which was diagnosed as moderately differentiated adenocarcinoma. The patient underwent right hemicolectomy 6 weeks after the initial colonoscopy. The resected specimen showed only a scar at the tumor site, and no cancerous tissue was proven histologically. The patient is alive with no evidence of recurrence 1 year after surgery. Although an antitumor immune response is the most likely explanation, the exact nature of the phenomenon was unclear. We describe this rare case and review the literature pertaining to spontaneous regression of colorectal cancer. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Management of intractable spontaneous epistaxis

    Science.gov (United States)

    Rudmik, Luke

    2012-01-01

    Background: Epistaxis is a common otolaryngology emergency and is often controlled with first-line interventions such as cautery, hemostatic agents, or anterior nasal packing. A subset of patients will continue to bleed and require more aggressive therapy. Methods: Intractable spontaneous epistaxis was traditionally managed with posterior nasal packing and prolonged hospital admission. In an effort to reduce patient morbidity and shorten hospital stay, surgical and endovascular techniques have gained popularity. A literature review was conducted. Results: Transnasal endoscopic sphenopalatine artery ligation and arterial embolization provide excellent control rates but the decision to choose one over the other can be challenging. The role of transnasal endoscopic anterior ethmoid artery ligation is unclear but may be considered in certain cases when bleeding localizes to the ethmoid region. Conclusion: This article will focus on the management of intractable spontaneous epistaxis and discuss the role of endoscopic arterial ligation and embolization as it pertains to this challenging clinical scenario. PMID:22391084

  7. Spontaneous baryogenesis in warm inflation

    OpenAIRE

    Brandenberger, Robert H.; Yamaguchi, Masahide

    2003-01-01

    We discuss spontaneous baryogenesis in the warm inflation scenario. In contrast with standard inflation models, radiation always exists in the warm inflation scenario, and the inflaton must be directly coupled to it. Also, the transition to the post-inflationary radiation dominated phase is smooth and the entropy is not significantly increased at the end of the period of inflation. In addition, after the period of warm inflation ends, the inflaton does not oscillate coherently but slowly roll...

  8. Spontaneous Splenic Rupture in Melanoma

    Directory of Open Access Journals (Sweden)

    Hadi Mirfazaelian

    2014-01-01

    Full Text Available Spontaneous rupture of spleen due to malignant melanoma is a rare situation, with only a few case reports in the literature. This study reports a previously healthy, 30-year-old man who came with chief complaint of acute abdominal pain to emergency room. On physical examination, abdominal tenderness and guarding were detected to be coincident with hypotension. Ultrasonography revealed mild splenomegaly with moderate free fluid in abdominopelvic cavity. Considering acute abdominal pain and hemodynamic instability, he underwent splenectomy with splenic rupture as the source of bleeding. Histologic examination showed diffuse infiltration by tumor. Immunohistochemical study (positive for S100, HMB45, and vimentin and negative for CK, CD10, CK20, CK7, CD30, LCA, EMA, and chromogranin confirmed metastatic malignant melanoma. On further questioning, there was a past history of a nasal dark skin lesion which was removed two years ago with no pathologic examination. Spontaneous (nontraumatic rupture of spleen is an uncommon situation and it happens very rarely due to neoplastic metastasis. Metastasis of malignant melanoma is one of the rare causes of the spontaneous rupture of spleen.

  9. Chronic recordings of hypoglossal nerve activity in a dog model of upper airway obstruction.

    Science.gov (United States)

    Sahin, M; Durand, D M; Haxhiu, M A

    1999-12-01

    The activity of the hypoglossal nerve was recorded during pharyngeal loading in sleeping dogs with chronically implanted cuff electrodes. Three self-coiling spiral-cuff electrodes were implanted in two beagles for durations of 17, 7, and 6 mo. During quiet wakefulness and sleep, phasic hypoglossal activity was either very small or not observable above the baseline noise. Applying a perpendicular force on the submental region by using a mechanical device to narrow the pharyngeal airway passage increased the phasic hypoglossal activity, the phasic esophageal pressure, and the inspiratory time in the next breath during non-rapid-eye-movement sleep. The phasic hypoglossal activity sustained at the elevated level while the force was present and increased with increasing amounts of loading. The hypoglossal nerve was very active in rapid-eye-movement sleep, especially when the submental force was present. The data demonstrate the feasibility of chronic recordings of the hypoglossal nerve with cuff electrodes and show that hypoglossal activity has a fast and sustained response to the internal loading of the pharynx induced by applying a submental force during non-rapid-eye-movement sleep.

  10. Spontaneous oscillations in microfluidic networks

    Science.gov (United States)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2017-11-01

    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  11. General features of spontaneous baryogenesis

    Science.gov (United States)

    Arbuzova, Elena

    2017-04-01

    The classical version of spontaneous baryogenesis is studied in details. It is shown that the relation between the time derivative of the (pseudo)goldstone field and the baryonic chemical potential essentially depends upon the representation chosen for the fermionic fields with non-zero baryonic number (quarks). The kinetic equation, used for the calculations of the cosmological baryon asymmetry, is generalized to the case of non-stationary background. The effects of the finite interval of the integration over time are also included into consideration.

  12. Spontaneous osteonecrosis of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Kattapuram, Taj M. [Department of Radiology, Massachusetts General Hospital (United States); Kattapuram, Susan V. [Department of Radiology, Massachusetts General Hospital (United States)], E-mail: skattapuram@partners.org

    2008-07-15

    Spontaneous osteonecrosis of the knee presents with acute onset of severe, pain in elderly patients, usually female and usually without a history of trauma. Originally described as idiopathic osteonecrosis, the exact etiology is still debated. Evidence suggests that an acute fracture occurs as a result of chronic stress or minor trauma to a weakened subchondral bone plate. The imaging characteristics on MR reflect the age of the lesion and the symptoms. More appropriate terminology may be ' subchondral insufficiency fracture of the knee' or 'focal subchondral osteonecrosis'.

  13. Stereotactic fibrinolysis of spontaneous intracerebral hematoma using infusion of recombinant tissue plasminogen activator Fibrinólise com infusão de rtPA e drenagem estereotáxica de hematoma intracerebral espontâneo profundo

    Directory of Open Access Journals (Sweden)

    José Augusto Nasser

    2002-06-01

    Full Text Available PURPOSE: The authors present a prospective study on 10 patients with stereotactic infusion of tissue plasminogen activator (rtPA intraparenchimal hemorrhage. METHODS: Between 1999 and 2000, 10 patients with deep seated hematomas in the basal ganglia were selected for stereotactic infusion of rtPA and spontaneous clot drainage. RESULTS: All cases had about 80% reduction of the hematoma volume in the CT scan at the third day. The intracranial pressure was normalized by the third day too. There were no local or systemic complications with the use of this trombolitic. The results were shown by the Glasgow Outcome Scale with six patients in V, three in IV and one in III after 3 months. CONCLUSION: Early treatment and drainage with minimally invasive neurosurgery , can make these patients with deep-seated hematomas recover the consciousness and they can be rehabilitated earlier avoiding secondary complications.OBJETIVO: Estudo prospectivo em 10 pacientes com infusão de trombolítico (rtPA dentro do hematoma cerebral profundo supratentorial e drenagem estereotáxica. MÉTODO: Entre 1999 e 2000 10 pacientes com hematomas de profundidade foram selecionados para infusão de rtPA e drenagem do coágulo espontânea. RESULTADO: Todos os casos obtiveram 80% de redução do volume do hematoma medidos por TC no terceiro dia. A pressão intracraniana estava normalizada no terceiro dia. Não houve complicações locais ou sistêmicas relacionadas com o uso deste trombolítico. Os resultados comparados foram mostrados pela Escala de Prognóstico de Glasgow com 6 pacientes em GrauV, 3 pacientes em Grau IV e 1 paciente em Grau III após três meses. CONCLUSÃO: Tratamento precoce e drenagem com técnica neurocirúrgica minimamente invasiva pode fazer estes pacientes terem uma recuperação da consciência mais rápida e assim serem reabilitados mais precocemente evitando complicações secundárias.

  14. Radionuclide evaluation of spontaneous femoral osteonecrosis

    International Nuclear Information System (INIS)

    Greyson, N.D.; Lotem, M.M.; Gross, A.E.; Houpt, J.B.

    1982-01-01

    Spontaneous osteonecrosis of the femoral condyle in 40 knees was followed by sequential radiographs and three-phase bone scans using 99 /sup m/Tc-methylene diphosphonate. The characteristic bone scan appearance of focal increased uptake by the medial femoral condyle in blood flow, blood pool, and delayed images helped to make the specific diagnosis in 11 knees that had no characteristic radiographic findings at the time of presentation. The three phases of the bone scan demonstrated a pattern that was useful in determining the activity of the process. There was a gradual loss of hyperemia as healing progressed. Late bone scans were normal or showed nonspecific findings. Radionuclide bone scans were able to confirm or exclude this disease and were superior to radiographs in demonstrating the disease in the acute phase

  15. The area postrema (AP) and the parabrachial nucleus (PBN) are important sites for salmon calcitonin (sCT) to decrease evoked phasic dopamine release in the nucleus accumbens (NAc).

    Science.gov (United States)

    Whiting, Lynda; McCutcheon, James E; Boyle, Christina N; Roitman, Mitchell F; Lutz, Thomas A

    2017-07-01

    The pancreatic hormone amylin and its agonist salmon calcitonin (sCT) act via the area postrema (AP) and the lateral parabrachial nucleus (PBN) to reduce food intake. Investigations of amylin and sCT signaling in the ventral tegmental area (VTA) and nucleus accumbens (NAc) suggest that the eating inhibitory effect of amylin is, in part, mediated through the mesolimbic 'reward' pathway. Indeed, administration of the sCT directly to the VTA decreased phasic dopamine release (DA) in the NAc. However, it is not known if peripheral amylin modulates the mesolimbic system directly or whether this occurs via the AP and PBN. To determine whether and how peripheral amylin or sCT affect mesolimbic reward circuitry we utilized fast scan cyclic voltammetry under anesthesia to measure phasic DA release in the NAc evoked by electrical stimulation of the VTA in intact, AP lesioned and bilaterally PBN lesioned rats. Amylin (50μg/kg i.p.) did not change phasic DA responses compared to saline control rats. However, sCT (50μg/kg i.p.) decreased evoked DA release to VTA-stimulation over 1h compared to saline treated control rats. Further investigations determined that AP and bilateral PBN lesions abolished the ability of sCT to suppress evoked phasic DA responses to VTA-stimulation. These findings implicate the AP and the PBN as important sites for peripheral sCT to decrease evoked DA release in the NAc and suggest that these nuclei may influence hedonic and motivational processes to modulate food intake. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effect of mefloquine on the mechanical activity of the mouse isolated ...

    African Journals Online (AJOL)

    The effects of mefloquine on the mechanical activity of the mouse isolated rectal smooth muscle was studied. Mefloquine (4.1x10-5 - 5.2x10-3M) when applied alone and separately exerted variable effects on the rectum. In some preparations, it caused slight phasic contractions while in others no response was elicited.

  17. effect of mefloquine on the mechanical activity of the mouse isolated ...

    African Journals Online (AJOL)

    Summary: The effects of mefloquine on the mechanical activity of the mouse isolated rectal smooth muscle was studied. Mefloquine (4.1x10-5 - 5.2x10-3M) when applied alone and separately exerted variable effects on the rectum. In some preparations, it caused slight phasic contractions while in others no response was ...

  18. Rhythmic activity of feline dorsal and ventral spinocerebellar tract neurons during fictive motor actions

    DEFF Research Database (Denmark)

    Fedirchuk, Brent; Stecina, Katinka; Kristensen, Kasper Kyhl

    2013-01-01

    nerves. Spinocerebellar tract cells with cell bodies located in the lumbar segments were identified by electrophysiological techniques and examined by extra- and intracellular microelectrode recordings. During fictive locomotion, 57/81 DSCT and 30/30 VSCT neurons showed phasic, cycle-related activity...

  19. Pentobarbital dose-dependently increases respiratory genioglossus muscle activity while impairing diaphragmatic function in anesthetized rats.

    Science.gov (United States)

    Eikermann, Matthias; Fassbender, Philipp; Zaremba, Sebastian; Jordan, Amy S; Rosow, Carl; Malhotra, Atul; Chamberlin, Nancy L

    2009-06-01

    Anesthetics depress both ventilatory and upper airway dilator muscle activity and thus put the upper airway at risk for collapse. However, these effects are agent-dependent and may involve upper airway and diaphragm muscles to varying degrees. The authors assessed the effects of pentobarbital on upper airway dilator and respiratory pump muscle function in rats and compared these results with the effects of normal sleep. Tracheostomized rats were given increasing doses of pentobarbital to produce deep sedation then light and deep anesthesia, and negative pressure airway stimuli were applied (n = 11). To compare the effects of pentobarbital with those of natural sleep, the authors chronically instrumented rats (n = 10) with genioglossus and neck electromyogram and electroencephalogram electrodes and compared genioglossus activity during wakefulness, sleep (rapid eye movement and non-rapid eye movement), and pentobarbital anesthesia. Pentobarbital caused a dose-dependent decrease in ventilation and in phasic diaphragmatic electromyogram by 11 +/- 0.1%, but it increased phasic genioglossus electromyogram by 23 +/- 0.2%. Natural non-rapid eye movement sleep and pentobarbital anesthesia (10 mg/kg intraperitoneally) decreased respiratory genioglossus electromyogram by 61 +/- 29% and 45 +/- 35%, respectively, and natural rapid eye movement sleep caused the greatest decrease in phasic genioglossus electromyogram (95 +/- 0.3%). Pentobarbital in rats impairs respiratory genioglossus activity compared to the awake state, but the decrease is no greater than seen during natural sleep. During anesthesia, in the absence of pharyngeal airflow, phasic genioglossus activity is increased in a dose-dependent fashion.

  20. Radiological evaluation of spontaneous pneumoperitoneum

    International Nuclear Information System (INIS)

    Kim, H. S.; Kim, J. D.; Rhee, H. S.

    1982-01-01

    112 cases of spontaneous penumoperitoneum, the causes of which were confirmed by clinical and surgical procedure at Presbyterian Medical Center from January, 1977 to July, 1981 were reviewed radiologically. The results were as follows: 1. Perforation of duodenal ulcer (46/112: 41.1%), stomach ulcer (22/112: 19.6%), and stomach cancer (11/112: 9.8%) were the three most common causes of spontaneous penumoperitoneum. These were 70.5% of all causes. 2. The most common site of free gas was both subdiaphragmatic areas (46: 41.1%). Others were Rt. subdiaphragmatic only (31: 27.7%), both subdiaphragmatic with subhepatic (16: 14.3%), Rt. subdiaphragmatic with subhepatic (7: 6.2%), Rt. subdiaphragmatic only (5: 4.4%), diffuse in abdomen (4: 3.6%), and subhepatic only (3: 2.7%). So 92.0% (103/112) were located in RUQ. 3. The radiological shape of free gas was classified: crescent (52: 46.4%) of small amount; half-moon (21: 18.8%) of moderate amount; large or diffuse (39: 34.8%) of large amount.4. The age between 31 and 60 occupied 69.1% (77/112), and male was predominant (5.2 times). 5. The patient's position showing free air most frequently was erect

  1. A Case of Multiple Spontaneous Keloid Scars

    Directory of Open Access Journals (Sweden)

    Abdulhadi Jfri

    2015-07-01

    Full Text Available Keloid scars result from an abnormal healing response to cutaneous injury or inflammation that extends beyond the borders of the original wound. Spontaneous keloid scars forming in the absence of any previous trauma or surgical procedure are rare. Certain syndromes have been associated with this phenomenon, and few reports have discussed the evidence of single spontaneous keloid scar, which raises the question whether they are really spontaneous. Here, we present a 27-year-old mentally retarded single female with orbital hypertelorism, broad nasal bridge, repaired cleft lip and high-arched palate who presented with progressive multiple spontaneous keloid scars in different parts of her body which were confirmed histologically by the presence of typical keloidal collagen. This report supports the fact that keloid scars can appear spontaneously and are possibly linked to a genetic factor. Furthermore, it describes a new presentation of spontaneous keloid scars in the form of multiple large lesions in different sites of the body.

  2. Spontaneity of communication in individuals with autism.

    Science.gov (United States)

    Chiang, Hsu-Min; Carter, Mark

    2008-04-01

    This article provides an examination of issues related to spontaneity of communication in children with autism. Deficits relating to spontaneity or initiation are frequently reported in individuals with autism, particularly in relation to communication and social behavior. Nevertheless, spontaneity is not necessarily clearly conceptualized or measured. Several approaches to conceptualization of communicative spontaneity are examined with a particular focus on the continuum model and how it might be practically applied. A range of possible explanations for deficits in spontaneity of communication in children with autism is subsequently explored, including external factors (highly structured teaching programs, failure to systematically instruct for spontaneity) and intrinsic characteristics (intellectual disability, stimulus overselectivity, weak central coherence). Possible implications for future research are presented.

  3. Comparison of spontaneous brain activity revealed by regional homogeneity in AQP4-IgG neuromyelitis optica-optic neuritis versus MOG-IgG optic neuritis patients: a resting-state functional MRI study

    Directory of Open Access Journals (Sweden)

    Wang J

    2017-10-01

    Full Text Available Junqing Wang,1,* Yuan Tian,2,* Yi Shao,3,* Hui Feng,1 Limin Qin,1 Weiwei Xu,1 Hongjuan Liu,1 Quangang Xu,1 Shihui Wei,1 Lin Ma2 1Department of Ophthalmology, 2Department of Radiology, Chinese PLA General Hospital, Beijing, 3Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China *These authors contributed equally to this work Objective: Many previous studies have demonstrated that neuromyelitis optica (NMO patients have abnormalities of brain anatomy and function. However, differences in spontaneous brain activity between myelin oligodendrocyte glycoprotein (MOG-IgG ON and aquaporin 4(AQP4-neuromyelitis optica-optic neuritis (ON remain unknown. In the current study, we investigated the brain neural homogeneity in MOG-IgG ON versus AQP4-IgG NMO-ON subjects by regional homogeneity (ReHo method using magnetic resonance imaging (MRI. Patients and methods: A total of 32 NMO-ON and ON subjects (21 with AQP4-IgG+NMO-ON and 11 with MOG-IgG+ON and 34 healthy controls (HCs closely matched for age were recruited, and scans were performed for all subjects. A one-way analysis of variance (ANOVA was performed to determine the regions in which the ReHo was different across the three groups. NMO-ON and ON subjects were distinguished from HCs by a receiver operating characteristic (ROC curve. The relationship between the mean ReHo in many brain regions and clinical features in NMO subjects was calculated by Pearson correlation analysis. Results: Compared with HCs, MOG-IgG+ON subjects had significantly decreased ReHo values in the posterior lobe of the left cerebellum and increased ReHo values in the left inferior frontal gyrus, right prefrontal gyrus, and left precentral/postcentral gyrus. AQP4-IgG+NMO-ON subjects showed higher ReHo values in the left inferior frontal gyrus and right middle temporal/occipital gyrus. Compared with MOG-IgG+ON subjects, AQP4-IgG+NMO-ON subjects had lower Re

  4. Evaluation of spontaneous intracranial hypotension using radionuclide cisternography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Zy; Park, Chan H.; Pai, Moon Sun; Yoon, Seok Nam; Oh, Yun Min; Kim, Jang Sung [College of Medicine, Ajou Univ., Suwon (Korea, Republic of)

    1999-02-01

    We report four cases of spontaneous intracranial hypotension that were investigated by radionuclide cisternography. {sup 99m}Tc-diethylenetriamine pentaacetic acid radionuclide cisternography of all our patients showed direct sign of cerebrospinal fluid leakage as well as indirect signs of less activity than expected over the cerebral convexities and rapid appearance of bladder activity. The headache of all patients was eventually controlled with bed rest and hydration.

  5. Electrocatalytic Production of C3-C4 Compounds by Conversion of CO2 on a Chloride-Induced Bi-Phasic Cu2O-Cu Catalyst.

    Science.gov (United States)

    Lee, Seunghwa; Kim, Dahee; Lee, Jaeyoung

    2015-12-01

    Electrocatalytic conversion of carbon dioxide (CO2) has recently received considerable attention as one of the most feasible CO2 utilization techniques. In particular, copper and copper-derived catalysts have exhibited the ability to produce a number of organic molecules from CO2. Herein, we report a chloride (Cl)-induced bi-phasic cuprous oxide (Cu2O) and metallic copper (Cu) electrode (Cu2OCl) as an efficient catalyst for the formation of high-carbon organic molecules by CO2 conversion, and identify the origin of electroselectivity toward the formation of high-carbon organic compounds. The Cu2OCl electrocatalyst results in the preferential formation of multi-carbon fuels, including n-propanol and n-butane C3-C4 compounds. We propose that the remarkable electrocatalytic conversion behavior is due to the favorable affinity between the reaction intermediates and the catalytic surface. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten Joan

    2013-01-01

    loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased...... on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O(2) tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca(2+) activity in PCs. The increased wave...... activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology....

  7. Spontaneous cryptococcal peritonitis in cirrhotic patients.

    Directory of Open Access Journals (Sweden)

    Sungkanuparph S

    2002-07-01

    Full Text Available Spontaneous bacterial peritonitis is a common complication in patients with cirrhosis and ascites. However, spontaneous peritonitis caused by Cryptococcus neoformans is uncommon. Delayed diagnosis of cryptococcal peritonitis often results in death. We describe three cases of spontaneous cryptococcal peritonitis in patients with decompensated cirrhosis. One case had associated symptomatic human immunodeficiency virus infection. Clinical awareness of this entity may lead to the early diagnosis and proper treatment.

  8. Spontaneous Intracranial Hypotension without Orthostatic Headache

    Directory of Open Access Journals (Sweden)

    Tülay Kansu

    2009-03-01

    Full Text Available We report 2 cases of spontaneous intracranial hypotension that presented with unilateral abducens nerve palsy, without orthostatic headache. While sixth nerve palsies improved without any intervention, subdural hematoma was detected with magnetic resonance imaging. We conclude that headache may be absent in spontaneous intracranial hypotension and spontaneous improvement of sixth nerve palsy can occur, even after the development of a subdural hematoma

  9. Spontaneous renal hematoma - a case report

    International Nuclear Information System (INIS)

    Obrzut, M.; Obrzut, M.; Homa, J.; Obrzut, B.

    2006-01-01

    Spontaneous pararenal hematoma is a rare pathology most frequently coexisting with renal tumours, vascular anomalies and inflammatory processes. In some cases one cannot establish its etiology. The paper describes a case of a 58-year-old man with a spontaneous pararenal hematoma and presents a diagnostic algorithm. Ultrasonography and CT play an important role in diagnostics of spontaneous pararenal haemorrhages. These methods enable a precise evaluation of size and location of hematoma and its evolution. (author)

  10. Biomarkers of spontaneous preterm birth

    DEFF Research Database (Denmark)

    Polettini, Jossimara; Cobo, Teresa; Kacerovsky, Marian

    2017-01-01

    predictors of pregnancy outcome. This systematic review was conducted to synthesize the knowledge on PTB biomarkers identified using multiplex analysis. Three electronic databases (PubMed, EMBASE and Web of Science) were searched for studies in any language reporting the use of multiplex assays for maternal......Despite decades of research on risk indicators of spontaneous preterm birth (PTB), reliable biomarkers are still not available to screen or diagnose high-risk pregnancies. Several biomarkers in maternal and fetal compartments have been mechanistically linked to PTB, but none of them are reliable......) followed by MIP-1β, GM-CSF, Eotaxin, and TNF-RI (two studies) were reported more than once in maternal serum. However, results could not be combined due to heterogeneity in type of sample, study population, assay, and analysis methods. By this systematic review, we conclude that multiplex assays...

  11. Recurrent spontaneous attacks of dizziness.

    Science.gov (United States)

    Lempert, Thomas

    2012-10-01

    This article describes the common causes of recurrent vertigo and dizziness that can be diagnosed largely on the basis of history. Ninety percent of spontaneous re