WorldWideScience

Sample records for spontaneous myogenic activity

  1. Tamsulosin modulates, but does not abolish the spontaneous activity in the guinea pig prostate gland.

    Science.gov (United States)

    Chakrabarty, Basu; Dey, Anupa; Lam, Michelle; Ventura, Sabatino; Exintaris, Betty

    2015-06-01

    To examine the effects of the α1A -adrenoceptor antagonist, tamsulosin, on spontaneous contractile and electrical activity in the guinea-pig prostate gland. The effects of tamsulosin (0.1 and 0.3 nM) were investigated in adult and ageing male guinea pig prostate glands using conventional tension recording and electrophysiological intracellular microelectrode recording techniques. Tamsulosin reduced spontaneous activity, and had different age-dependent effects on adult and ageing guinea pigs at different concentrations. 0.1 nM tamsulosin caused a significantly greater reduction of spontaneous contractile and electrical activity in ageing guinea pigs in comparison to adult guinea pigs. In contrast, 0.3 nM tamsulosin had a significantly greater reduction of spontaneous contractile and electrical activity in adult guinea pigs in comparison to ageing guinea pigs. This study demonstrates that tamsulosin can modulate spontaneous myogenic stromal contractility and the underlying spontaneous electrical activity; tamsulosin does not block spontaneous activity. This reduction in spontaneous activity suggests that downstream cellular mechanisms underlying smooth muscle tone are being targeted, and these may represent novel therapeutic targets to better treat benign prostatic hyperplasia. © 2014 Wiley Periodicals, Inc.

  2. Opposite roles of MRF4 and MyoD in cell proliferation and myogenic differentiation

    International Nuclear Information System (INIS)

    Jin Xun; Kim, Jong-Gun; Oh, Myung-Joo; Oh, Ho-Yeon; Sohn, Young-Woo; Pian, Xumin; Yin, Jin Long; Beck, Samuel; Lee, Namkyung; Son, Jeesoo; Kim, Hyunggee; Yan Changguo; Wang Jihui; Choi, Yun-Jaie; Whang, Kwang Youn

    2007-01-01

    The basic helix-loop-helix myogenic regulatory factors play critical roles in skeletal myogenesis. Among the myogenic regulatory factors (MRFs), MRF4 shows a biphasic expression pattern during the formation of myotomes, although its function remains unclear. In this study, we used BEF (spontaneously immortalized bovine embryonic fibroblast that shows myogenic differentiation by overexpression of MyoD) and C2C12 cells to investigate the function of MRF4. Ectopic expressions of MRF4 did not stimulate myogenic differentiation in the BEF and C2C12 cells, but did show a marked increase of cell proliferation, upregulation of cyclin E, and downregulation of p21 WAF1 . Furthermore, MRF4 was found to induce degradation of the MyoD protein, which acts as a transcriptional activator for p21 WAF1 , and thus indicates that MRF4 accelerates cell proliferation by suppressing MyoD-dependent p21 WAF1 expression. However, forced expression of MyoD in the MRF4-overexpressing cells inhibited cell proliferation and partially induced myogenic differentiation, which suggests that MyoD is a potential negative intercessor of MRF4 in the regulation of the cell cycle. Taken together, these results indicate that MRF4 and MyoD play competitive roles in myogenesis by stimulating cell proliferation and differentiation, respectively

  3. TRAF6 promotes myogenic differentiation via the TAK1/p38 mitogen-activated protein kinase and Akt pathways.

    Directory of Open Access Journals (Sweden)

    Fang Xiao

    Full Text Available p38 mitogen-activated protein kinase (MAPK is an essential kinase involved in myogenic differentiation. Although many substrates of p38 MAPK have been identified, little is known about its upstream activators during myogenic differentiation. TRAF6 is known to function in cytokine signaling during inflammatory responses. However, not much is known about its role in myogenic differentiation and muscle regeneration. We showed here that TRAF6 and its intrinsic ubiquitin E3 ligase activity are required for myogenic differentiation. In mouse myoblasts, knockdown of TRAF6 compromised the p38 MAPK and Akt pathways, while deliberate activation of either pathway rescued the differentiation defect caused by TRAF6 knockdown. TAK1 acted as a key signal transducer downstream of TRAF6 in myogenic differentiation. In vivo, knockdown of TRAF6 in mouse muscles compromised the injury-induced muscle regeneration without impairing macrophage infiltration and myoblast proliferation. Collectively, we demonstrated that TRAF6 promotes myogenic differentiation and muscle regeneration via the TAK1/p38 MAPK and Akt pathways.

  4. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion

    International Nuclear Information System (INIS)

    Mukai, Atsushi; Hashimoto, Naohiro

    2008-01-01

    Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells

  5. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration

    DEFF Research Database (Denmark)

    Saclier, Marielle; Yacoub-Youssef, Houda; Mackey, Abigail

    2013-01-01

    , we explored both in vitro and in vivo, in human, the interactions of differentially activated MPs with myogenic precursor cells (MPCs) during adult myogenesis and skeletal muscle regeneration. We showed in vitro that through the differential secretion of cytokines and growth factors, proinflammatory...... anti-inflammatory markers. These data demonstrate for the first time in human that MPs sequentially orchestrate adult myogenesis during regeneration of damaged skeletal muscle. These results support the emerging concept that inflammation, through MP activation, controls stem cell fate and coordinates......Macrophages (MPs) exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for adult skeletal muscle repair, notably by acting on myogenic precursor cells. However, these interactions have not been fully characterized. Here...

  6. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Wada, Eiji, E-mail: gacchu1@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Zammit, Peter S., E-mail: peter.zammit@kcl.ac.uk [Randall Division of Cell and Molecular Biophysics, King' s College London, London SE1 1UL (United Kingdom); Shiozuka, Masataka, E-mail: cmuscle@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Matsuda, Ryoichi, E-mail: cmatsuda@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan)

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  7. Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise.

    Directory of Open Access Journals (Sweden)

    Gabi Shefer

    2010-10-01

    Full Text Available Muscle regeneration depends on satellite cells, myogenic stem cells that reside on the myofiber surface. Reduced numbers and/or decreased myogenic aptitude of these cells may impede proper maintenance and contribute to the age-associated decline in muscle mass and repair capacity. Endurance exercise was shown to improve muscle performance; however, the direct impact on satellite cells in aging was not yet thoroughly determined. Here, we focused on characterizing the effect of moderate-intensity endurance exercise on satellite cell, as possible means to attenuate adverse effects of aging. Young and old rats of both genders underwent 13 weeks of treadmill-running or remained sedentary.Gastrocnemius muscles were assessed for the effect of age, gender and exercise on satellite-cell numbers and myogenic capacity. Satellite cells were identified in freshly isolated myofibers based on Pax7 immunostaining (i.e., ex-vivo. The capacity of individual myofiber-associated cells to produce myogenic progeny was determined in clonal assays (in-vitro. We show an age-associated decrease in satellite-cell numbers and in the percent of myogenic clones in old sedentary rats. Upon exercise, there was an increase in myofibers that contain higher numbers of satellite cells in both young and old rats, and an increase in the percent of myogenic clones derived from old rats. Changes at the satellite cell level in old rats were accompanied with positive effects on the lean-to-fat Gast muscle composition and on spontaneous locomotion levels. The significance of these data is that they suggest that the endurance exercise-mediated boost in both satellite numbers and myogenic properties may improve myofiber maintenance in aging.

  8. MAPK signaling pathways and HDAC3 activity are disrupted during differentiation of emerin-null myogenic progenitor cells

    Directory of Open Access Journals (Sweden)

    Carol M. Collins

    2017-04-01

    Full Text Available Mutations in the gene encoding emerin cause Emery–Dreifuss muscular dystrophy (EDMD. Emerin is an integral inner nuclear membrane protein and a component of the nuclear lamina. EDMD is characterized by skeletal muscle wasting, cardiac conduction defects and tendon contractures. The failure to regenerate skeletal muscle is predicted to contribute to the skeletal muscle pathology of EDMD. We hypothesize that muscle regeneration defects are caused by impaired muscle stem cell differentiation. Myogenic progenitors derived from emerin-null mice were used to confirm their impaired differentiation and analyze selected myogenic molecular pathways. Emerin-null progenitors were delayed in their cell cycle exit, had decreased myosin heavy chain (MyHC expression and formed fewer myotubes. Emerin binds to and activates histone deacetylase 3 (HDAC3. Here, we show that theophylline, an HDAC3-specific activator, improved myotube formation in emerin-null cells. Addition of the HDAC3-specific inhibitor RGFP966 blocked myotube formation and MyHC expression in wild-type and emerin-null myogenic progenitors, but did not affect cell cycle exit. Downregulation of emerin was previously shown to affect the p38 MAPK and ERK/MAPK pathways in C2C12 myoblast differentiation. Using a pure population of myogenic progenitors completely lacking emerin expression, we show that these pathways are also disrupted. ERK inhibition improved MyHC expression in emerin-null cells, but failed to rescue myotube formation or cell cycle exit. Inhibition of p38 MAPK prevented differentiation in both wild-type and emerin-null progenitors. These results show that each of these molecular pathways specifically regulates a particular stage of myogenic differentiation in an emerin-dependent manner. Thus, pharmacological targeting of multiple pathways acting at specific differentiation stages may be a better therapeutic approach in the future to rescue muscle regeneration in vivo.

  9. Community effect triggers terminal differentiation of myogenic cells derived from muscle satellite cells by quenching Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Michiko [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Aging Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 (Japan); Mukai, Atsushi; Shiomi, Kosuke [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Song, Si-Yong [Institute of Neuroscience, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki-shi, Kagawa 769-2193 (Japan); Hashimoto, Naohiro, E-mail: nao@ncgg.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2011-01-15

    A high concentration of bone morphogenetic proteins (BMPs) stimulates myogenic progenitor cells to undergo heterotopic osteogenic differentiation. However, the physiological role of the Smad signaling pathway during terminal muscle differentiation has not been resolved. We report here that Smad1/5/8 was phosphorylated and activated in undifferentiated growing mouse myogenic progenitor Ric10 cells without exposure to any exogenous BMPs. The amount of phosphorylated Smad1/5/8 was severely reduced during precocious myogenic differentiation under the high cell density culture condition even in growth medium supplemented with a high concentration of serum. Inhibition of the Smad signaling pathway by dorsomorphin, an inhibitor of Smad activation, or noggin, a specific antagonist of BMP, induced precocious terminal differentiation of myogenic progenitor cells in a cell density-dependent fashion even in growth medium. In addition, Smad1/5/8 was transiently activated in proliferating myogenic progenitor cells during muscle regeneration in rats. The present results indicate that the Smad signaling pathway is involved in a critical switch between growth and differentiation of myogenic progenitor cells both in vitro and in vivo. Furthermore, precocious cell density-dependent myogenic differentiation suggests that a community effect triggers the terminal muscle differentiation of myogenic cells by quenching the Smad signaling.

  10. Community effect triggers terminal differentiation of myogenic cells derived from muscle satellite cells by quenching Smad signaling

    International Nuclear Information System (INIS)

    Yanagisawa, Michiko; Mukai, Atsushi; Shiomi, Kosuke; Song, Si-Yong; Hashimoto, Naohiro

    2011-01-01

    A high concentration of bone morphogenetic proteins (BMPs) stimulates myogenic progenitor cells to undergo heterotopic osteogenic differentiation. However, the physiological role of the Smad signaling pathway during terminal muscle differentiation has not been resolved. We report here that Smad1/5/8 was phosphorylated and activated in undifferentiated growing mouse myogenic progenitor Ric10 cells without exposure to any exogenous BMPs. The amount of phosphorylated Smad1/5/8 was severely reduced during precocious myogenic differentiation under the high cell density culture condition even in growth medium supplemented with a high concentration of serum. Inhibition of the Smad signaling pathway by dorsomorphin, an inhibitor of Smad activation, or noggin, a specific antagonist of BMP, induced precocious terminal differentiation of myogenic progenitor cells in a cell density-dependent fashion even in growth medium. In addition, Smad1/5/8 was transiently activated in proliferating myogenic progenitor cells during muscle regeneration in rats. The present results indicate that the Smad signaling pathway is involved in a critical switch between growth and differentiation of myogenic progenitor cells both in vitro and in vivo. Furthermore, precocious cell density-dependent myogenic differentiation suggests that a community effect triggers the terminal muscle differentiation of myogenic cells by quenching the Smad signaling.

  11. Changes in vestibular evoked myogenic potentials after Meniere attacks.

    Science.gov (United States)

    Kuo, Shih-Wei; Yang, Ting-Hua; Young, Yi-Ho

    2005-09-01

    The aim of this study was to apply videonystagmography (VNG) and vestibular evoked myogenic potential (VEMP) tests to patients with Meniere attacks, to explore the mechanics of where saccular disorders may affect the semicircular canals. From January 2001 to December 2003, 12 consecutive patients with unilateral definite Meniere's disease with vertiginous attacks underwent VNG for recording spontaneous nystagmus, as well as VEMP tests. At the very beginning of the Meniere attack, the spontaneous nystagmus beat toward the lesion side in 5 patients (42%) and toward the healthy side in 7 patients (58%). Twenty-four hours later, only 6 patients (50%) showed spontaneous nystagmus beating toward the healthy side. Nevertheless, spontaneous nystagmus subsided in all patients within 48 hours. The VEMP test was performed within 24 hours of a Meniere attack; the VEMPs were normal in 4 patients and abnormal in 8 patients (67%). After 48 hours, 4 patients with initially abnormal VEMPs had resolution and return to normal VEMPs, and the other 4 patients still had absent VEMPs. Most patients (67%) with Meniere attacks revealed abnormal VEMPs, indicating that the saccule participates in a Meniere attack. This is an important idea that stimulates consideration of the mechanism of Meniere attacks.

  12. Otolithic disease: clinical features and the role of vestibular evoked myogenic potentials.

    Science.gov (United States)

    Curthoys, Ian S; Manzari, Leonardo

    2013-07-01

    Through selective tests of the function of the canal and otolith sense organs, it is possible to assert that patient conditions are purely otolithic and that the canals are not involved. The video head impulse test selectively tests each semicircular canal; the ocular vestibular-evoked myogenic potential to 500 Hz Fz (Fz is the location on the forehead in the midline at the hairline) bone-conducted vibration (BCV) selectively tests the utricular macula and the cervical vestibular-evoked myogenic potential to 500 Hz Fz BCV selectively tests the saccular macula. The development of new specific tests of otolith function has shown that some patients may have specific deficits of just otolithic function. In the authors' experience, patients who complain strongly of postural unsteadiness should be suspected to have otolithic deficits. They may also have vertigo and in some cases have spontaneous nystagmus of peripheral origin, even though their semicircular canal function is normal. The prognosis for such patients is good. They usually appear to regain their postural stability spontaneously over weeks (or longer), even though they still have an otolithic deficit as shown by objective tests when they are free of symptoms. It is not known what procedures may accelerate the recovery of otolith function. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Immortalization of human myogenic progenitor cell clone retaining multipotentiality

    International Nuclear Information System (INIS)

    Hashimoto, Naohiro; Kiyono, Tohru; Wada, Michiko R.; Shimizu, Shirabe; Yasumoto, Shigeru; Inagawa, Masayo

    2006-01-01

    Human myogenic cells have limited ability to proliferate in culture. Although forced expression of telomerase can immortalize some cell types, telomerase alone delays senescence of human primary cultured myogenic cells, but fails to immortalize them. In contrast, constitutive expression of both telomerase and the E7 gene from human papillomavirus type 16 immortalizes primary human myogenic cells. We have established an immortalized primary human myogenic cell line preserving multipotentiality by ectopic expression of telomerase and E7. The immortalized human myogenic cells exhibit the phenotypic characteristics of their primary parent, including an ability to undergo myogenic, osteogenic, and adipogenic terminal differentiation under appropriate culture conditions. The immortalized cells will be useful for both basic and applied studies aimed at human muscle disorders. Furthermore, immortalization by transduction of telomerase and E7 represents a useful method by which to expand human myogenic cells in vitro without compromising their ability to differentiate

  14. Reporter-Based Isolation of Developmental Myogenic Progenitors

    Directory of Open Access Journals (Sweden)

    Eyemen Kheir

    2018-04-01

    Full Text Available The formation and activity of mammalian tissues entail finely regulated processes, involving the concerted organization and interaction of multiple cell types. In recent years the prospective isolation of distinct progenitor and stem cell populations has become a powerful tool in the hands of developmental biologists and has rendered the investigation of their intrinsic properties possible. In this protocol, we describe how to purify progenitors with different lineage history and degree of differentiation from embryonic and fetal skeletal muscle by fluorescence-activated cell sorting (FACS. The approach takes advantage of a panel of murine strains expressing fluorescent reporter genes specifically in the myogenic progenitors. We provide a detailed description of the dissection procedures and of the enzymatic dissociation required to maximize the yield of mononucleated cells for subsequent FACS-based purification. The procedure takes ~6–7 h to complete and allows for the isolation and the subsequent molecular and phenotypic characterization of developmental myogenic progenitors.

  15. Analysis of interaction between TGF and the myogenic response in renal blood flow autoregulation

    DEFF Research Database (Denmark)

    Feldberg, R; Colding-Jørgensen, M; Holstein-Rathlou, N H

    1995-01-01

    . The contribution of TGF to smooth muscle activity is assumed to be a linear function of the glomerular capillary pressure. The results show that the myogenic response plays an important role in renal blood flow autoregulation. Without a myogenic response, mechanisms such as TGF that are localized in the distal......The present study investigates the interaction between the tubuloglomerular feedback (TGF) response and the myogenic mechanism by use of a mathematical model. The two control mechanisms are implemented in a spatially distributed model of the rat renal juxtamedullary afferent arteriole. The model...

  16. A new pro-migratory activity on human myogenic precursor cells for a synthetic peptide within the E domain of the mechano growth factor

    International Nuclear Information System (INIS)

    Mills, Philippe; Lafreniere, Jean-Francois; Benabdallah, Basma Fattouma; El Fahime, El Mostafa; Tremblay, Jacques-P.

    2007-01-01

    Duchenne muscular dystrophy (DMD) is an inherited disease that leads to progressive muscle wasting. Myogenic precursor cell transplantation is an approach that can introduce the normal dystrophin gene in the muscle fibers of the patients. Unfortunately, these myogenic precursor cells do not migrate well in the muscle and thus many injections have to be done to enable a good graft success. Recent reports have shown that there is extensive splicing of the IGF-1 gene in muscles. The MGF isoform contains a C-terminal 24 amino acids peptide in the E domain (MGF-Ct24E) that has intrinsic properties. It can promote the proliferation while delaying the differentiation of C 2 C 12 cells. Here, we demonstrated that this synthetic peptide is a motogenic factor for human precursor myogenic cells in vitro and in vivo. Indeed, MGF-Ct24E peptide can modulate members of the fibrinolytic and metalloproteinase systems, which are implicated in the migration of myogenic cells. MGF-Ct24E peptide enhances the expression of u-PA, u-PAR and MMP-7 while reducing PAI-1 activity. Moreover, it has no effect on the gelatinases MMP-2 and -9. Those combined effects can favour cell migration. Finally, we present some results suggesting that the MGF-Ct24E peptide induces these cell responses through a mechanism that does not involve the IGF-1 receptor. Thus, this MGF-Ct24E peptide has a new pro-migratory activity on human myogenic precursor cells that may be helpful in the treatment of DMD. Those results reinforce the possibility that the IGF-1Ec isoform may produce an E domain peptide that can act as a cytokine

  17. Impaired myogenic tone in mesenteric arteries from overweight rats

    Directory of Open Access Journals (Sweden)

    Sweazea Karen L

    2012-03-01

    Full Text Available Abstract Background Rats fed high fat (HFD or high sucrose (HSD diets develop increased adiposity as well as impaired vasodilatory responsiveness stemming from oxidative stress. Moreover, HFD rats become hypertensive compared to either control (Chow or HSD fed rats, suggesting elevated vascular tone. We hypothesized that rats with increased adiposity and oxidative stress demonstrate augmented pressure-induced vasoconstriction (i.e. myogenic tone that could account for the hypertensive state. Methods Male Sprague-Dawley rats were fed Chow, HFD or HSD for 6 weeks. The effects of oxidative stress and endogenous nitric oxide on myogenic responses were examined in small mesenteric arteries by exposing the arteries to incremental intraluminal pressure steps in the presence of antioxidants or an inhibitor of nitric oxide synthase, LNNA (100 μM. Results Contrary to the hypothesis, rats fed either HSD or HFD had significantly impaired myogenic responses despite similar vascular morphology and passive diameter responses to increasing pressures. Vascular smooth muscle (VSM calcium levels were normal in HFD arteries suggesting that diminished calcium sensitivity was responsible for the impaired myogenic response. In contrast, VSM calcium levels were reduced in HSD arteries but were increased with pre-exposure of arteries to the antioxidants tiron (10 mM and catalase (1200 U/mL, also resulting in enhanced myogenic tone. These findings show that oxidative stress impairs myogenic tone in arteries from HSD rats by decreasing VSM calcium. Similarly, VSM calcium responses were increased in arteries from HFD rats following treatment with tiron and catalase, but this did not result in improved myogenic tone. Nitric oxide is involved in the impaired myogenic response in HFD, but not HSD, rats since inhibition with LNNA resulted in maximal myogenic responses at lower intraluminal pressures and VSM calcium levels, further implicating reduced calcium sensitivity in

  18. The production of fluorescent transgenic trout to study in vitro myogenic cell differentiation

    Directory of Open Access Journals (Sweden)

    Rescan Pierre-Yves

    2010-05-01

    Full Text Available Abstract Background Fish skeletal muscle growth involves the activation of a resident myogenic stem cell population, referred to as satellite cells, that can fuse with pre-existing muscle fibers or among themselves to generate a new fiber. In order to monitor the regulation of myogenic cell differentiation and fusion by various extrinsic factors, we generated transgenic trout (Oncorhynchus mykiss carrying a construct containing the green fluorescent protein reporter gene driven by a fast myosin light chain 2 (MlC2f promoter, and cultivated genetically modified myogenic cells derived from these fish. Results In transgenic trout, green fluorescence appeared in fast muscle fibers as early as the somitogenesis stage and persisted throughout life. Using an in vitro myogenesis system we observed that satellite cells isolated from the myotomal muscle of transgenic trout expressed GFP about 5 days post-plating as they started to fuse. GFP fluorescence persisted subsequently in myosatellite cell-derived myotubes. Using this in vitro myogenesis system, we showed that the rate of muscle cell differentiation was strongly dependent on temperature, one of the most important environmental factors in the muscle growth of poikilotherms. Conclusions We produced MLC2f-gfp transgenic trout that exhibited fluorescence in their fast muscle fibers. The culture of muscle cells extracted from these trout enabled the real-time monitoring of myogenic differentiation. This in vitro myogenesis system could have numerous applications in fish physiology to evaluate the myogenic activity of circulating growth factors, to test interfering RNA and to assess the myogenic potential of fish mesenchymal stem cells. In ecotoxicology, this system could be useful to assess the impact of environmental factors and marine pollutants on fish muscle growth.

  19. Myogenic conversion of bladder fibroblasts by construction and ...

    African Journals Online (AJOL)

    The cultured primary bladder fibroblasts were transfected by pEGFP-Myod1 with Lipofection 2000 reagent. The results showed that expression of Myod1 could cause myogenic differentiation of bladder fibroblasts. These findings support the possibility of an alternative approach to exploit the capacity of Myod1 to activate ...

  20. Small activating RNA induces myogenic differentiation of rat adipose-derived stem cells by upregulating MyoD

    Directory of Open Access Journals (Sweden)

    Chenghe Wang

    2015-08-01

    Full Text Available ABSTRACTPurpose:RNA activation (RNAa is a mechanism of gene activation triggered by promoter-targeted small double stranded RNAs (dsRNAs, also known as small activating RNAs (saRNAs. Myogenic regulatory factor MyoD is regarded as the master activator of myogenic differentiation cascade by binding to enhancer of muscle specific genes. Stress urinary incontinence (SUI is a condition primarily resulted from urethral sphincter deficiency. It is thus expected that by promoting differentiation of adipose-derived stem cells (ADSCs into myoblasts by activating MyoD gene through RNAa may offer benefits to SUI.Materials and Methods:Rats ADSCs were isolated, proliferated in vitro, and identified by flow cytometry. Purified ADSCs were then transfected with a MyoD saRNA or control transfected. Real-time polymerase chain reaction (RT-PCR and western blotting were used to detect MyoD mRNA and protein expression, respectively. Immunocytochemical staining was applied to determine the expression of desmin protein in transfected cells. Cell viability was measured by using CellTiter 96® AQueous One Solution Cell Proliferation Assay kit.Results:Transfection of a MyoD saRNA (dsMyoD into ADSCs significantly induced the expression of MyoD at both the mRNA and protein levels, and inhibited cell proliferation. Desmin protein expression was detected in dsMyoD treated ADSCs 2 weeks later.Conclusion:Our findings show that RNAa mediated overexpression of MyoD can promote transdifferentiation of ADSCs into myoblasts and may help treat stress urinary incontinence (SUI–a condition primarily resulted from urethral sphincter deficiency.

  1. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy.

    Science.gov (United States)

    Reza, Musarrat Maisha; Subramaniyam, Nathiya; Sim, Chu Ming; Ge, Xiaojia; Sathiakumar, Durgalakshmi; McFarlane, Craig; Sharma, Mridula; Kambadur, Ravi

    2017-10-24

    Exercise induces expression of the myokine irisin, which is known to promote browning of white adipose tissue and has been shown to mediate beneficial effects following exercise. Here we show that irisin induces expression of a number of pro-myogenic and exercise response genes in myotubes. Irisin increases myogenic differentiation and myoblast fusion via activation of IL6 signaling. Injection of irisin in mice induces significant hypertrophy and enhances grip strength of uninjured muscle. Following skeletal muscle injury, irisin injection improves regeneration and induces hypertrophy. The effects of irisin on hypertrophy are due to activation of satellite cells and enhanced protein synthesis. In addition, irisin injection rescues loss of skeletal muscle mass following denervation by enhancing satellite cell activation and reducing protein degradation. These data suggest that irisin functions as a pro-myogenic factor in mice.

  2. FoxO6 and PGC-1? form a regulatory loop in myogenic cells

    OpenAIRE

    Chung, Shih?Ying; Huang, Wei?Chieh; Su, Ching?Wen; Lee, Kuan?Wei; Chi, Hsiang?Cheng; Lin, Cheng?Tao; Chen, Szu-Tah; Huang, Kai?Min; Tsai, Mu?Shiun; Yu, Hui?Peng; Chen, Shen?Liang

    2013-01-01

    Transcription factors of the FoxO (forkhead box O) family regulate a wide range of cellular physiological processes, including metabolic adaptation and myogenic differentiation. The transcriptional activity of most FoxO members is inhibitory to myogenic differentiation and overexpression of FoxO1 inhibits the development of oxidative type?I fibres in?vivo. In this study, we found that FoxO6, the last discovered FoxO family member, is expressed ubiquitously in various tissues but with higher e...

  3. Characterization of the Methylation Status of Pax7 and Myogenic Regulator Factors in Cell Myogenic Differentiation.

    Science.gov (United States)

    Chao, Zhe; Zheng, Xin-Li; Sun, Rui-Ping; Liu, Hai-Long; Huang, Li-Li; Cao, Zong-Xi; Deng, Chang-Yan; Wang, Feng

    2016-07-01

    Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation.

  4. Spontaneous Plasticity of Multineuronal Activity Patterns in Activated Hippocampal Networks

    Directory of Open Access Journals (Sweden)

    Atsushi Usami

    2008-01-01

    Full Text Available Using functional multineuron imaging with single-cell resolution, we examined how hippocampal networks by themselves change the spatiotemporal patterns of spontaneous activity during the course of emitting spontaneous activity. When extracellular ionic concentrations were changed to those that mimicked in vivo conditions, spontaneous activity was increased in active cell number and activity frequency. When ionic compositions were restored to the control conditions, the activity level returned to baseline, but the weighted spatial dispersion of active cells, as assessed by entropy-based metrics, did not. Thus, the networks can modify themselves by altering the internal structure of their correlated activity, even though they as a whole maintained the same level of activity in space and time.

  5. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Chen, Lin; Zeng, Jing; Cui, Jian; Ning, Jiao-nin [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Wang, Guan-song [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Belguise, Karine; Wang, Xiaobo [Université P. Sabatier Toulouse III and CNRS, LBCMCP, 31062 Toulouse Cedex 9 (France); Qian, Gui-sheng [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Lu, Kai-zhi [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Yi, Bin, E-mail: yibin1974@163.com [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China)

    2015-08-01

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observed that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic

  6. Activation of Pax7-positive cells in a non-contractile tissue contributes to regeneration of myogenic tissues in the electric fish S. macrurus.

    Directory of Open Access Journals (Sweden)

    Christopher M Weber

    Full Text Available The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these

  7. Skeletal Muscle Satellite Cells Are Committed to Myogenesis and Do Not Spontaneously Adopt Nonmyogenic Fates

    Science.gov (United States)

    Starkey, Jessica D.; Yamamoto, Masakazu; Yamamoto, Shoko; Goldhamer, David J.

    2011-01-01

    The developmental potential of skeletal muscle stem cells (satellite cells) remains controversial. The authors investigated satellite cell developmental potential in single fiber and clonal cultures derived from MyoDiCre/+;R26REYFP/+ muscle, in which essentially all satellite cells are permanently labeled. Approximately 60% of the clones derived from cells that co-purified with muscle fibers spontaneously underwent adipogenic differentiation. These adipocytes stained with Oil-Red-O and expressed the terminal differentiation markers, adipsin and fatty acid binding protein 4, but did not express EYFP and were therefore not of satellite cell origin. Satellite cells mutant for either MyoD or Myf-5 also maintained myogenic programming in culture and did not adopt an adipogenic fate. Incorporation of additional wash steps prior to muscle fiber plating virtually eliminated the non-myogenic cells but did not reduce the number of adherent Pax7+ satellite cells. More than half of the adipocytes observed in cultures from Tie2-Cre mice were recombined, further demonstrating a non-satellite cell origin. Under adipogenesis-inducing conditions, satellite cells accumulated cytoplasmic lipid but maintained myogenic protein expression and did not fully execute the adipogenic differentiation program, distinguishing them from adipocytes observed in muscle fiber cultures. The authors conclude that skeletal muscle satellite cells are committed to myogenesis and do not spontaneously adopt an adipogenic fate. PMID:21339173

  8. Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries.

    Directory of Open Access Journals (Sweden)

    Sonya Hui

    Full Text Available We recently identified sphingosine-1-phosphate (S1P signaling and the cystic fibrosis transmembrane conductance regulator (CFTR as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i express critical S1P signaling elements, (ii constrict in response to S1P and (iii lose myogenic responsiveness following S1P receptor antagonism (JTE013. However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study.

  9. Vestibular neuritis: three-dimensional videonystagmography and vestibular evoked myogenic potential results.

    Science.gov (United States)

    Chen, C W; Young, Y H; Wu, C H

    2000-10-01

    Eight patients diagnosed with vestibular neuritis received the newly developed three-dimensional videonystagmography (3D VNG) and vestibular evoked myogenic potential (VEMP) examination in order to localize the lesion site. Two (25%) of the 8 patients exhibited spontaneous nystagmus with 3 components, indicating that both the horizontal semicircular canal (HSCC) and anterior semicircular canal (ASCC) were affected. The remaining 6 patients (75%) displayed only horizontal nystagmus, meaning that only the HSCC was involved. Seven (88%) of the 8 patients had bilateral normal VEMPs, revealing sparing of the posterior semicircular canal (PSCC). In a comparative study, another seven patients with vestibular neuritis 1 year post-treatment also received the caloric test, 3D VNG and VEMP examination. Only one patient exhibited spontaneous nystagmus. An absent caloric response of the lesioned side persisted in 5 (71%) of the 7 patients. However, all patients showed normal VEMPs bilaterally. 3D VNG and VEMP examination indicates that vestibular neuritis mainly affects the superior division of the vestibular nerve, which innervates the HSCC and ASCC. Meanwhile, the function of the PSCC and saccule, innervated by the inferior vestibular nerve, is preserved.

  10. Retained Myogenic Potency of Human Satellite Cells from Torn Rotator Cuff Muscles Despite Fatty Infiltration.

    Science.gov (United States)

    Koide, Masashi; Hagiwara, Yoshihiro; Tsuchiya, Masahiro; Kanzaki, Makoto; Hatakeyama, Hiroyasu; Tanaka, Yukinori; Minowa, Takashi; Takemura, Taro; Ando, Akira; Sekiguchi, Takuya; Yabe, Yutaka; Itoi, Eiji

    2018-01-01

    Rotator cuff tears (RCTs) are a common shoulder problem in the elderly that can lead to both muscle atrophy and fatty infiltration due to less physical load. Satellite cells, quiescent cells under the basal lamina of skeletal muscle fibers, play a major role in muscle regeneration. However, the myogenic potency of human satellite cells in muscles with fatty infiltration is unclear due to the difficulty in isolating from small samples, and the mechanism of the progression of fatty infiltration has not been elucidated. The purpose of this study was to analyze the population of myogenic and adipogenic cells in disused supraspinatus (SSP) and intact subscapularis (SSC) muscles of the RCTs from the same patients using fluorescence-activated cell sorting. The microstructure of the muscle with fatty infiltration was observed as a whole mount condition under multi-photon microscopy. Myogenic differentiation potential and gene expression were evaluated in satellite cells. The results showed that the SSP muscle with greater fatty infiltration surrounded by collagen fibers compared with the SSC muscle under multi-photon microscopy. A positive correlation was observed between the ratio of muscle volume to fat volume and the ratio of myogenic precursor to adipogenic precursor. Although no difference was observed in the myogenic potential between the two groups in cell culture, satellite cells in the disused SSP muscle showed higher intrinsic myogenic gene expression than those in the intact SSC muscle. Our results indicate that satellite cells from the disused SSP retain sufficient potential of muscle growth despite the fatty infiltration.

  11. Myogenic potential of canine craniofacial satellite cells

    Directory of Open Access Journals (Sweden)

    Rita Maria Laura La Rovere

    2014-05-01

    Full Text Available The skeletal fibres have different embryological origin; the extraocular and jaw-closer muscles develop from prechordal mesoderm while the limb and trunk muscles from somites. These different origins characterise also the adult muscle stem cells, known as satellite cells (SCs and responsible for the fibre growth and regeneration. The physiological properties of presomitic SCs and their epigenetics are poorly studied despite their peculiar characteristics to preserve muscle integrity during chronic muscle degeneration. Here we isolated SCs from canine somitic (SDM: vastus lateralis, rectus abdominus, gluteus superficialis, biceps femoris, psoas and presomitic (PSDM: lateral rectus, temporalis and retractor bulbi muscles as myogenic progenitor cells from young and old animals. In addition, SDM and PSDM satellite cells were obtained also from Golden retrievers affected by muscular dystrophy (GRMD. We characterised the lifespan, the myogenic potential and functions and oxidative stress of both somitic and presomitic SCs with the aim to reveal differences with ageing and between healthy and dystrophic animals. The different proliferation rate was consistent with higher telomerase activity in PSDM-SCs compared to SDM-SCs, although restricted at early passages. SDM-SCs express early (Pax7, MyoD and late (MyHC, Myogenin myogenic markers differently from PSDM-SCs resulting in a more efficient and faster cell differentiation. Taken together our results showed that PSDM-SCs elicit a stronger stem cell phenotype compared to SDM ones. Finally, myomiR expression profile reveals a unique epigenetic signature in GRMD satellite cells and miR-206, highly expressed in dystrophic SCs, seems to play a critical role in muscle degeneration. Thus, miR-206 could represent a potential target for novel therapeutic approaches.

  12. Pannexin channels mediate the acquisition of myogenic commitment in C2C12 reserve cells promoted by P2 receptor activation

    Science.gov (United States)

    Riquelme, Manuel A.; Cea, Luis A.; Vega, José L.; Puebla, Carlos; Vargas, Aníbal A.; Shoji, Kenji F.; Subiabre, Mario; Sáez, Juan C.

    2015-01-01

    The acquisition of myoblast commitment to the myogenic linage requires rises in intracellular free Ca2+ concentration ([Ca2+]i). Putative cell membrane pathways involved in these [Ca2+]i increments are P2 receptors (P2Rs) as well as connexin (Cx) and/or pannexin (Panx) hemichannels and channels (Cx HChs and Panx Chs), respectively, which are known to permeate Ca2+. Reserve cells (RCs) are uncommitted myoblasts obtained from differentiated C2C12 cell cultures, which acquire commitment upon replating. Regarding these cells, we found that extracellular ATP increases the [Ca2+]i via P2Rs. Moreover, ATP increases the plasma membrane permeability to small molecules and a non-selective membrane current, both of which were inhibited by Cx HCh/Panx1Ch blockers. However, RCs exposed to divalent cation-free saline solution, which is known to activate Cx HChs (but not Panx Chs), did not enhance membrane permeability, thus ruling out the possible involvement of Cx HChs. Moreover, ATP-induced membrane permeability was inhibited with blockers of P2Rs that activate Panx Chs. In addition, exogenous ATP induced the expression of myogenic commitment and increased MyoD levels, which was prevented by the inhibition of P2Rs or knockdown of Panx1 Chs. Similarly, increases in MyoD levels induced by ATP released by RCs were inhibited by Panx Ch/Cx HCh blockers. Myogenic commitment acquisition thus requires a feed-forward mechanism mediated by extracellular ATP, P2Rs, and Panx Chs. PMID:26000275

  13. Active hippocampal networks undergo spontaneous synaptic modification.

    Directory of Open Access Journals (Sweden)

    Masako Tsukamoto-Yasui

    Full Text Available The brain is self-writable; as the brain voluntarily adapts itself to a changing environment, the neural circuitry rearranges its functional connectivity by referring to its own activity. How the internal activity modifies synaptic weights is largely unknown, however. Here we report that spontaneous activity causes complex reorganization of synaptic connectivity without any external (or artificial stimuli. Under physiologically relevant ionic conditions, CA3 pyramidal cells in hippocampal slices displayed spontaneous spikes with bistable slow oscillations of membrane potential, alternating between the so-called UP and DOWN states. The generation of slow oscillations did not require fast synaptic transmission, but their patterns were coordinated by local circuit activity. In the course of generating spontaneous activity, individual neurons acquired bidirectional long-lasting synaptic modification. The spontaneous synaptic plasticity depended on a rise in intracellular calcium concentrations of postsynaptic cells, but not on NMDA receptor activity. The direction and amount of the plasticity varied depending on slow oscillation patterns and synapse locations, and thus, they were diverse in a network. Once this global synaptic refinement occurred, the same neurons now displayed different patterns of spontaneous activity, which in turn exhibited different levels of synaptic plasticity. Thus, active networks continuously update their internal states through ongoing synaptic plasticity. With computational simulations, we suggest that with this slow oscillation-induced plasticity, a recurrent network converges on a more specific state, compared to that with spike timing-dependent plasticity alone.

  14. Spatial diversity of spontaneous activity in the cortex

    Directory of Open Access Journals (Sweden)

    Andrew Yong-Yi Tan

    2015-09-01

    Full Text Available The neocortex is a layered sheet across which a basic organization is thought to widely apply. The variety of spontaneous activity patterns is similar throughout the cortex, consistent with the notion of a basic cortical organization. However, the basic organization is only an outline which needs adjustments and additions to account for the structural and functional diversity across cortical layers and areas. Such diversity suggests that spontaneous activity is spatially diverse in any particular behavioral state. Accordingly, this review summarizes the laminar and areal diversity in cortical activity during fixation and slow oscillations, and the effects of attention, anesthesia and plasticity on the cortical distribution of spontaneous activity. Among questions that remain open, characterizing the spatial diversity in spontaneous membrane potential may help elucidate how differences in circuitry among cortical regions supports their varied functions. More work is also needed to understand whether cortical spontaneous activity not only reflects cortical circuitry, but also contributes to determining the outcome of plasticity, so that it is itself a factor shaping the functional diversity of the cortex.

  15. Interleukin-4 improves the migration of human myogenic precursor cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Lafreniere, J.F.; Mills, P.; Bouchentouf, M.; Tremblay, J.P.

    2006-01-01

    Different molecules are available to recruit new neighboring myogenic cells to the site of regeneration. Formerly called B cell stimulatory factor-1, IL-4 can now be included in the list of motogenic factors. The present report demonstrates that human IL-4 is not required for fusion between mononucleated myoblasts but is required for myotube maturation. In identifying IL-4 as a pro-migratory agent for myogenic cells, these results provide a mechanism which partly explains IL-4 demonstrated activity during differentiation. Among the different mechanisms by which IL-4 might enhance myoblast migration processes, our results indicate that there are implications of some integrins and of three major components of the fibrinolytic system. Indeed, increases in the amount of active urokinase plasminogen activator and its receptor were observed following an IL-4 treatment, while the plasminogen activator inhibitor-1 decreased. Finally, IL-4 did not modify the amount of cell surface α5 integrin but increased the presence of β3 and β1 integrins. This integrin modulation might favor myogenic cell migration and its interaction with newly formed myotubes. Therefore, IL-4 co-injection with transplanted myoblasts might be an approach to enhance the migration of transplanted cells for the treatment of a damaged myocardium or of a Duchenne Muscular Dystrophy patient

  16. IL-6 Impairs Myogenic Differentiation by Downmodulation of p90RSK/eEF2 and mTOR/p70S6K Axes, without Affecting AKT Activity

    Directory of Open Access Journals (Sweden)

    Michele Pelosi

    2014-01-01

    Full Text Available IL-6 is a multifaceted pleiotropic cytokine, which is produced by a variety of cell types and targets different cells and tissues. In physiological conditions, IL-6 can be locally and transiently produced by skeletal muscle and plays an important role in muscle homeostasis. Circulating IL-6 levels are normally very low or undetectable but are dramatically increased in several pathologic conditions. In this study, we aimed to define the potential molecular mechanisms underlying the effects of IL-6 on myogenic program. We explored the molecular mechanisms through which exogenous IL-6, or the conditioned medium from the murine C-26 adenocarcinoma cells (a cellular model that secretes high levels of IL-6 and induces cancer cachexia in mice, interferes with the myogenic program. Our study revealed that IL-6 induces the activation of the Stat3 signaling and promotes the downmodulation of the p90RSK/eEF2 and mTOR/p70S6K axes, while it does not affect the activation of AKT. We thus identified potential molecular mediators of the inhibitory effects of IL-6 on myogenic program.

  17. Inhibition of glycogen synthase kinase-3β attenuates glucocorticoid-induced suppression of myogenic differentiation in vitro.

    Directory of Open Access Journals (Sweden)

    Zhenyu Ma

    Full Text Available Glucocorticoids are the only therapy that has been demonstrated to alter the progress of Duchenne muscular dystrophy (DMD, the most common muscular dystrophy in children. However, glucocorticoids disturb skeletal muscle metabolism and hamper myogenesis and muscle regeneration. The mechanisms involved in the glucocorticoid-mediated suppression of myogenic differentiation are not fully understood. Glycogen synthase kinase-3β (GSK-3β is considered to play a central role as a negative regulator in myogenic differentiation. Here, we showed that glucocorticoid treatment during the first 48 h in differentiation medium decreased the level of phosphorylated Ser9-GSK-3β, an inactive form of GSK-3β, suggesting that glucocorticoids affect GSK-3β activity. We then investigated whether GSK-3β inhibition could regulate glucocorticoid-mediated suppression of myogenic differentiation in vitro. Two methods were employed to inhibit GSK-3β: pharmacological inhibition with LiCl and GSK-3β gene knockdown. We found that both methods resulted in enhanced myotube formation and increased levels of muscle regulatory factors and muscle-specific protein expression. Importantly, GSK-3β inhibition attenuated glucocorticoid-induced suppression of myogenic differentiation. Collectively, these data suggest the involvement of GSK-3β in the glucocorticoid-mediated impairment of myogenic differentiation. Therefore, the inhibition of GSK-3β may be a strategy for preventing glucocorticoid-induced muscle degeneration.

  18. Associative memory model with spontaneous neural activity

    Science.gov (United States)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2012-05-01

    We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.

  19. Local myogenic pulp-derived cell injection enhances craniofacial muscle regeneration in vivo.

    Science.gov (United States)

    Jung, J E; Song, M J; Shin, S; Choi, Y J; Kim, K H; Chung, C J

    2017-02-01

    To enhance myogenic differentiation in pulp cells isolated from extracted premolars by epigenetic modification using a DNA demethylation agent, 5-aza-2'-deoxycytidine (5-Aza), and to evaluate the potent stimulatory effect of 5-Aza-treated pulp cell injection for craniofacial muscle regeneration in vivo. Pulp cells were isolated from premolars extracted for orthodontic purposes from four adults (age range, 18-22.1 years). Levels of myogenic differentiation and functional contraction response in vitro were compared between pulp cells with or without pre-treatment of 5-Aza. Changes in muscle regeneration in response to green fluorescent protein (GFP)-labelled myogenic pulp cell injection in vivo were evaluated using a cardiotoxin (CTX)-induced muscle injury model of the gastrocnemius as well as the masseter muscle in mice. Pre-treatment of 5-Aza in pulp cells stimulated myotube formation, myogenic differentiation in terms of desmin and myogenin expression, and the level of collagen gel contraction. The local injection of 5-Aza pre-treated myogenic pulp cells was engrafted into the host tissue and indicated signs of enhanced muscle regeneration in both the gastrocnemius and the masseter muscles. The epigenetic modification of pulp cells from extracted premolars and the local injection of myogenic pulp cells may stimulate craniofacial muscles regeneration in vivo. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Tumor necrosis factor-alpha inhibits differentiation of myogenic cells in human urethral rhabdosphincter.

    Science.gov (United States)

    Shinohara, Mayuka; Sumino, Yasuhiro; Sato, Fuminori; Kiyono, Tohru; Hashimoto, Naohiro; Mimata, Hiromitsu

    2017-06-01

    To examine the inhibitory effects of tumor necrosis factor-α on myogenic differentiation of human urethral rhabdosphincter cells. A rhabdosphincter sample was obtained from a patient who underwent total cystectomy. To expand the lifespan of the primary cultured cells, rhabdosphincter myogenic cells were immortalized with mutated cyclin-dependent kinase 4, cyclin D1 and telomerase. The differential potential of the cells was investigated. The transfected human rhabdosphincter cells were induced for myogenic differentiation with recombinant human tumor necrosis factor-α and/or the tumor necrosis factor-α antagonist etanercept at different concentrations, and activation of signaling pathways was monitored. Human rhabdosphincter cells were selectively cultured for at least 40 passages. Molecular analysis confirmed the expression of myosin heavy chain, which is a specific marker of differentiated muscle cells, significantly increased after differentiation induction. Although tumor necrosis factor-α treatment reduced the myosin heavy chain expression in a concentration-dependent manner, etanercept inhibited this suppression. Tumor necrosis factor-α suppressed phosphorylation of protein kinase B and p38, whereas etanercept pretreatment promoted phosphorylation and myosin heavy chain expression in a concentration-dependent manner. Tumor necrosis factor-α inhibits differentiation of urethral rhabdosphincter cells in part through the p38 mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. Inhibition of tumor necrosis factor-α might be a useful strategy to treat stress urinary incontinence. © 2017 The Japanese Urological Association.

  1. New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter.

    Science.gov (United States)

    Tozzi, Arturo; Zare, Marzieh; Benasich, April A

    2016-01-01

    Spontaneous brain activity has received increasing attention as demonstrated by the exponential rise in the number of published article on this topic over the last 30 years. Such "intrinsic" brain activity, generated in the absence of an explicit task, is frequently associated with resting-state or default-mode networks (DMN)s. The focus on characterizing spontaneous brain activity promises to shed new light on questions concerning the structural and functional architecture of the brain and how they are related to "mind". However, many critical questions have yet to be addressed. In this review, we focus on a scarcely explored area, specifically the energetic requirements and constraints of spontaneous activity, taking into account both thermodynamical and informational perspectives. We argue that the "classical" definitions of spontaneous activity do not take into account an important feature, that is, the critical thermodynamic energetic differences between spontaneous and evoked brain activity. Spontaneous brain activity is associated with slower oscillations compared with evoked, task-related activity, hence it exhibits lower levels of enthalpy and "free-energy" (i.e., the energy that can be converted to do work), thus supporting noteworthy thermodynamic energetic differences between spontaneous and evoked brain activity. Increased spike frequency during evoked activity has a significant metabolic cost, consequently, brain functions traditionally associated with spontaneous activity, such as mind wandering, require less energy that other nervous activities. We also review recent empirical observations in neuroscience, in order to capture how spontaneous brain dynamics and mental function can be embedded in a non-linear dynamical framework, which considers nervous activity in terms of phase spaces, particle trajectories, random walks, attractors and/or paths at the edge of the chaos. This takes us from the thermodynamic free-energy, to the realm of "variational

  2. Behavioral Modulation by Spontaneous Activity of Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    Toshiharu Ichinose

    2017-12-01

    Full Text Available Dopamine modulates a variety of animal behaviors that range from sleep and learning to courtship and aggression. Besides its well-known phasic firing to natural reward, a substantial number of dopamine neurons (DANs are known to exhibit ongoing intrinsic activity in the absence of an external stimulus. While accumulating evidence points at functional implications for these intrinsic “spontaneous activities” of DANs in cognitive processes, a causal link to behavior and its underlying mechanisms has yet to be elucidated. Recent physiological studies in the model organism Drosophila melanogaster have uncovered that DANs in the fly brain are also spontaneously active, and that this activity reflects the behavioral/internal states of the animal. Strikingly, genetic manipulation of basal DAN activity resulted in behavioral alterations in the fly, providing critical evidence that links spontaneous DAN activity to behavioral states. Furthermore, circuit-level analyses have started to reveal cellular and molecular mechanisms that mediate or regulate spontaneous DAN activity. Through reviewing recent findings in different animals with the major focus on flies, we will discuss potential roles of this physiological phenomenon in directing animal behaviors.

  3. Myogenic Differentiation from MYOGENIN-Mutated Human iPS Cells by CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Koki Higashioka

    2017-01-01

    Full Text Available It is well known that myogenic regulatory factors encoded by the Myod1 family of genes have pivotal roles in myogenesis, with partially overlapping functions, as demonstrated for the mouse embryo. Myogenin-mutant mice, however, exhibit severe myogenic defects without compensation by other myogenic factors. MYOGENIN might be expected to have an analogous function in human myogenic cells. To verify this hypothesis, we generated MYOGENIN-mutated human iPS cells by using CRISPR/Cas9 genome-editing technology. Our results suggest that MYOD1-independent or MYOD1-dependent mechanisms can compensate for the loss of MYOGENIN and that these mechanisms are likely to be crucial for regulating skeletal muscle differentiation and formation.

  4. Normalization reduces intersubject variability in cervical vestibular evoked myogenic potentials.

    Science.gov (United States)

    van Tilburg, Mark J; Herrmann, Barbara S; Guinan, John J; Rauch, Steven D

    2014-09-01

    Cervical vestibular evoked myogenic potentials are used to assess saccular and inferior vestibular nerve function. Normalization of the VEMP waveform has been proposed to reduce the variability in vestibular evoked myogenic potentials by correcting for muscle activation. In this study, we test the hypothesis that normalization of the raw cervical VEMP waveform causes a significant decrease in the intersubject variability. Prospective cohort study. Large specialty hospital, department of otolaryngology. Twenty healthy subjects were used in this study. All subjects underwent cervical vestibular evoked myogenic potential testing using short tone bursts at 250, 500, 750, and 1,000 Hz. Both intersubject and intrasubject variability was assessed. Variability between raw and normalized peak-to-peak amplitudes was compared using the coefficient of variation. Intrasubject variability was assessed using the intraclass correlation coefficient and interaural asymmetry ratio. cVEMPs were present in most ears. Highest peak-to-peak amplitudes were recorded at 750 Hz. Normalization did not alter cVEMP tuning characteristics. Normalization of the cVEMP response caused a significant reduction in intersubject variability of the peak-to-peak amplitude. No significant change was seen in the intrasubject variability. Normalization significantly reduces cVEMP intersubject variability in healthy subjects without altering cVEMP characteristics. By reducing cVEMP amplitude variation due to nonsaccular, muscle-related factors, cVEMP normalization is expected to improve the ability to distinguish between healthy and pathologic responses in the clinical application of cVEMP testing.

  5. Vision drives correlated activity without patterned spontaneous activity in developing Xenopus retina.

    Science.gov (United States)

    Demas, James A; Payne, Hannah; Cline, Hollis T

    2012-04-01

    Developing amphibians need vision to avoid predators and locate food before visual system circuits fully mature. Xenopus tadpoles can respond to visual stimuli as soon as retinal ganglion cells (RGCs) innervate the brain, however, in mammals, chicks and turtles, RGCs reach their central targets many days, or even weeks, before their retinas are capable of vision. In the absence of vision, activity-dependent refinement in these amniote species is mediated by waves of spontaneous activity that periodically spread across the retina, correlating the firing of action potentials in neighboring RGCs. Theory suggests that retinorecipient neurons in the brain use patterned RGC activity to sharpen the retinotopy first established by genetic cues. We find that in both wild type and albino Xenopus tadpoles, RGCs are spontaneously active at all stages of tadpole development studied, but their population activity never coalesces into waves. Even at the earliest stages recorded, visual stimulation dominates over spontaneous activity and can generate patterns of RGC activity similar to the locally correlated spontaneous activity observed in amniotes. In addition, we show that blocking AMPA and NMDA type glutamate receptors significantly decreases spontaneous activity in young Xenopus retina, but that blocking GABA(A) receptor blockers does not. Our findings indicate that vision drives correlated activity required for topographic map formation. They further suggest that developing retinal circuits in the two major subdivisions of tetrapods, amphibians and amniotes, evolved different strategies to supply appropriately patterned RGC activity to drive visual circuit refinement. Copyright © 2011 Wiley Periodicals, Inc.

  6. Refractory episodic vertigo: role of intratympanic gentamicin and vestibular evoked myogenic potentials,

    Directory of Open Access Journals (Sweden)

    Erika Celis-Aguilar

    Full Text Available Abstract Introduction: Even today, the treatment of intractable vertigo remains a challenge. Vestibular ablation with intratympanic gentamicin stands as a good alternative in the management of refractory vertigo patients. Objective: To control intractable vertigo through complete saccular and horizontal canal vestibular ablation with intratympanic gentamicin treatment. Methods: Patients with refractory episodic vertigo were included. The inclusion criteria were: unilateral ear disease, moderate to profound sensorineural hearing loss, and failure to other treatments. Included patients underwent 0.5-0.8 mL of gentamicin intratympanic application at a 30 mg/mL concentration. Vestibular ablation was confirmed by the absence of response on cervical vestibular evoked myogenic potentials and no response on caloric tests. Audiometry, electronystagmography with iced water, and vestibular evoked myogenic potentials were performed in all patients. Results: Ten patients were included; nine patients with Meniere's disease and one patient with (late onset delayed hydrops. Nine patients showed an absent response on vestibular evoked myogenic potentials and no response on caloric tests. The only patient with low amplitude on cervical vestibular evoked myogenic potentials had vertigo recurrence. Vertigo control was achieved in 90% of the patients. One patient developed hearing loss >30 dB. Conclusions: Cervical vestibular evoked myogenic potentials confirmed vestibular ablation in patients treated with intratympanic gentamicin. High-grade vertigo control was due to complete saccular and horizontal canal ablation (no response to iced water in electronystagmography and no response on cervical vestibular evoked myogenic potentials.

  7. CD36 is required for myoblast fusion during myogenic differentiation

    International Nuclear Information System (INIS)

    Park, Seung-Yoon; Yun, Youngeun; Kim, In-San

    2012-01-01

    Highlights: ► CD36 expression was induced during myogenic differentiation. ► CD36 expression was localized in multinucleated myotubes. ► The expression of myogenic markers is attenuated in CD36 knockdown C2C12 cells. ► Knockdown of CD36 significantly inhibited myotube formation during differentiation. -- Abstract: Recently, CD36 has been found to be involved in the cytokine-induced fusion of macrophage. Myoblast fusion to form multinucleated myotubes is required for myogenesis and muscle regeneration. Because a search of gene expression database revealed the attenuation of CD36 expression in the muscles of muscular dystrophy patients, the possibility that CD36 could be required for myoblast fusion was investigated. CD36 expression was markedly up-regulated during myoblast differentiation and localized in multinucleated myotubes. Knockdown of endogenous CD36 significantly decreased the expression of myogenic markers as well as myotube formation. These results support the notion that CD36 plays an important role in cell fusion during myogenic differentiation. Our finding will aid the elucidation of the common mechanism governing cell-to-cell fusion in various fusion models.

  8. CD36 is required for myoblast fusion during myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung-Yoon [Department of Biochemistry, College of Medicine, Dongguk University and Medical Institute of Dongguk University, Gyeongju 780-714 (Korea, Republic of); Yun, Youngeun [Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Kim, In-San, E-mail: iskim@knu.ac.kr [Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Biomedical Research Institute, Korea Institute Science and Technology, Seoul (Korea, Republic of)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer CD36 expression was induced during myogenic differentiation. Black-Right-Pointing-Pointer CD36 expression was localized in multinucleated myotubes. Black-Right-Pointing-Pointer The expression of myogenic markers is attenuated in CD36 knockdown C2C12 cells. Black-Right-Pointing-Pointer Knockdown of CD36 significantly inhibited myotube formation during differentiation. -- Abstract: Recently, CD36 has been found to be involved in the cytokine-induced fusion of macrophage. Myoblast fusion to form multinucleated myotubes is required for myogenesis and muscle regeneration. Because a search of gene expression database revealed the attenuation of CD36 expression in the muscles of muscular dystrophy patients, the possibility that CD36 could be required for myoblast fusion was investigated. CD36 expression was markedly up-regulated during myoblast differentiation and localized in multinucleated myotubes. Knockdown of endogenous CD36 significantly decreased the expression of myogenic markers as well as myotube formation. These results support the notion that CD36 plays an important role in cell fusion during myogenic differentiation. Our finding will aid the elucidation of the common mechanism governing cell-to-cell fusion in various fusion models.

  9. Adult medulloblastoma with myogenic differentiation

    Directory of Open Access Journals (Sweden)

    Xia-ling ZHANG

    2015-09-01

    Full Text Available Objective To explore the clinicopathological features of adult medulloblastoma with myogenic differentiation and to discuss clinicopathological differentiations from relevant tumors, so as to improve the ability of diagnosing and differentiating this kind of tumor. Methods The clinical manifestations, imaging, pathological features and immunohistochemical features of one case of adult medulloblastoma with myogenic differentiation were analyzed, and related literatures were reviewed. Results A 32-year-old female patient presented with repeated distortion of mouth and facial numbness for over 6 years. T1WI showed a mixed-signal lesion in the cerebellar vermis and dorsal part of brainstem, and protruded toward the fourth ventricle. Enhanced T1WI showed a round strengthened nodule in the lesion. During operation, it was seen that the tumor arised in cerebellar vermis, projected into the fourth ventricle and invaded brainstem. On microscopy examination, it was found that oval nuclei tumor cells were distributed in sheet or scattered patterns, and neuroblastic rosettes were observed. Abundant and eosinophilic cytoplasm, eccentrically placed and atypical nuclei containing hyperchromatic chromatin or prominent nucleoli in the tumor could be displayed. Mitoses were frequently seen. The tumor also presented with fresh and old hemorrhage in some place. Immunohistochemical staining showed that tumor cells were diffusely positive for integrase interactor 1 (INI1, synaptophysin (Syn, chromogranin A (CgA, human internexin neuronal intermediate filament protein α (INα, neurofilament protein (NF, Nestin (Nes, β-catenin and P53, and partly positive for desmin (Des, neuronal nuclei (NeuN and S-100 protein (S-100, but negative for glial fibrillary acidic protein (GFAP, oligodendrocyte transcription factor-2 (Olig-2, CD99, pan cytokeratin (PCK, epithelial membrane antigen (EMA, MyoD1, myogenin, muscle-specific actin (MSA and smooth muscle actin (SMA. Ki-67

  10. Learning shapes spontaneous activity itinerating over memorized states.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Learning is a process that helps create neural dynamical systems so that an appropriate output pattern is generated for a given input. Often, such a memory is considered to be included in one of the attractors in neural dynamical systems, depending on the initial neural state specified by an input. Neither neural activities observed in the absence of inputs nor changes caused in the neural activity when an input is provided were studied extensively in the past. However, recent experimental studies have reported existence of structured spontaneous neural activity and its changes when an input is provided. With this background, we propose that memory recall occurs when the spontaneous neural activity changes to an appropriate output activity upon the application of an input, and this phenomenon is known as bifurcation in the dynamical systems theory. We introduce a reinforcement-learning-based layered neural network model with two synaptic time scales; in this network, I/O relations are successively memorized when the difference between the time scales is appropriate. After the learning process is complete, the neural dynamics are shaped so that it changes appropriately with each input. As the number of memorized patterns is increased, the generated spontaneous neural activity after learning shows itineration over the previously learned output patterns. This theoretical finding also shows remarkable agreement with recent experimental reports, where spontaneous neural activity in the visual cortex without stimuli itinerate over evoked patterns by previously applied signals. Our results suggest that itinerant spontaneous activity can be a natural outcome of successive learning of several patterns, and it facilitates bifurcation of the network when an input is provided.

  11. Pharmacological targeting of HSP90 with 17-AAG induces apoptosis of myogenic cells through activation of the intrinsic pathway.

    Science.gov (United States)

    Wagatsuma, Akira; Takayama, Yuzo; Hoshino, Takayuki; Shiozuka, Masataka; Yamada, Shigeru; Matsuda, Ryoichi; Mabuchi, Kunihiko

    2017-12-16

    We have shown that pharmacological inhibition of HSP90 ATPase activity induces apoptosis of myoblasts during their differentiation. However, the signaling pathways remain not fully characterized. We report that pharmacological targeting of HSP90 with 17-AAG activates the intrinsic pathway including caspase-dependent and caspase-independent pathways. 17-AAG induces the typical apoptotic phenotypes including PARP cleavage, chromatin condensation, and nuclear fragmentation with mitochondrial release of cytochrome c, Smac/DIABLO, procaspase-9 processing, and caspase-3 activation. AIF and EndoG redistribute from the mitochondria into the cytosol and are partially translocated to the nucleus in 17-AAG-treated cells. These results suggest that caspase-dependent and caspase-independent pathways should be considered in apoptosis of myogenic cells induced by inhibition of HSP90 ATPase activity.

  12. Refractory episodic vertigo: role of intratympanic gentamicin and vestibular evoked myogenic potentials.

    Science.gov (United States)

    Celis-Aguilar, Erika; Hinojosa-González, Ramon; Vales-Hidalgo, Olivia; Coutinho-Toledo, Heloisa

    Even today, the treatment of intractable vertigo remains a challenge. Vestibular ablation with intratympanic gentamicin stands as a good alternative in the management of refractory vertigo patients. To control intractable vertigo through complete saccular and horizontal canal vestibular ablation with intratympanic gentamicin treatment. Patients with refractory episodic vertigo were included. The inclusion criteria were: unilateral ear disease, moderate to profound sensorineural hearing loss, and failure to other treatments. Included patients underwent 0.5-0.8mL of gentamicin intratympanic application at a 30mg/mL concentration. Vestibular ablation was confirmed by the absence of response on cervical vestibular evoked myogenic potentials and no response on caloric tests. Audiometry, electronystagmography with iced water, and vestibular evoked myogenic potentials were performed in all patients. Ten patients were included; nine patients with Meniere's disease and one patient with (late onset) delayed hydrops. Nine patients showed an absent response on vestibular evoked myogenic potentials and no response on caloric tests. The only patient with low amplitude on cervical vestibular evoked myogenic potentials had vertigo recurrence. Vertigo control was achieved in 90% of the patients. One patient developed hearing loss >30dB. Cervical vestibular evoked myogenic potentials confirmed vestibular ablation in patients treated with intratympanic gentamicin. High-grade vertigo control was due to complete saccular and horizontal canal ablation (no response to iced water in electronystagmography and no response on cervical vestibular evoked myogenic potentials). Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  13. Synaptic model for spontaneous activity in developing networks

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Rinzel, J.

    2005-01-01

    Spontaneous rhythmic activity occurs in many developing neural networks. The activity in these hyperexcitable networks is comprised of recurring "episodes" consisting of "cycles" of high activity that alternate with "silent phases" with little or no activity. We introduce a new model of synaptic...... dynamics that takes into account that only a fraction of the vesicles stored in a synaptic terminal is readily available for release. We show that our model can reproduce spontaneous rhythmic activity with the same general features as observed in experiments, including a positive correlation between...

  14. The influence of spontaneous activity on stimulus processing in primary visual cortex.

    Science.gov (United States)

    Schölvinck, M L; Friston, K J; Rees, G

    2012-02-01

    Spontaneous activity in the resting human brain has been studied extensively; however, how such activity affects the local processing of a sensory stimulus is relatively unknown. Here, we examined the impact of spontaneous activity in primary visual cortex on neuronal and behavioural responses to a simple visual stimulus, using functional MRI. Stimulus-evoked responses remained essentially unchanged by spontaneous fluctuations, combining with them in a largely linear fashion (i.e., with little evidence for an interaction). However, interactions between spontaneous fluctuations and stimulus-evoked responses were evident behaviourally; high levels of spontaneous activity tended to be associated with increased stimulus detection at perceptual threshold. Our results extend those found in studies of spontaneous fluctuations in motor cortex and higher order visual areas, and suggest a fundamental role for spontaneous activity in stimulus processing. Copyright © 2011. Published by Elsevier Inc.

  15. Spontaneous neutrophil activation in HTLV-1 infected patients

    Directory of Open Access Journals (Sweden)

    Jaqueline B. Guerreiro

    Full Text Available Human T cell lymphotropic Virus type-1 (HTLV-1 induces lymphocyte activation and proliferation, but little is known about the innate immune response due to HTLV-1 infection. We evaluated the percentage of neutrophils that metabolize Nitroblue tetrazolium (NBT to formazan in HTLV-1 infected subjects and the association between neutrophil activation and IFN-gamma and TNF-alpha levels. Blood was collected from 35 HTLV-1 carriers, from 8 patients with HAM/TSP (HTLV-1- associated myelopathy; 22 healthy individuals were evaluated for spontaneous and lipopolysaccharide (LPS-stimulated neutrophil activity (reduction of NBT to formazan. The production of IFN-gamma and TNF-alpha by unstimulated mononuclear cells was determined by ELISA. Spontaneous NBT levels, as well as spontaneous IFN-gamma and TNF-alpha production, were significantly higher (p<0.001 in HTLV-1 infected subjects than in healthy individuals. A trend towards a positive correlation was noted, with increasing percentage of NBT positive neutrophils and levels of IFN-gamma. The high IFN-gamma producing HTLV-1 patient group had significantly greater NBT than healthy controls, 43±24% and 17±4.8% respectively (p< 0.001, while no significant difference was observed between healthy controls and the low IFN-gamma-producing HTLV-1 patient group (30±20%. Spontaneous neutrophil activation is another marker of immune perturbation resulting from HTLV-1 infection. In vivo activation of neutrophils observed in HTLV-1 infected subjects is likely to be the same process that causes spontaneous IFN-gamma production, or it may partially result from direct IFN-gamma stimulation.

  16. Mesenchymal Stromal Cells for Sphincter Regeneration: Role of Laminin Isoforms upon Myogenic Differentiation

    Science.gov (United States)

    Seeger, Tanja; Hart, Melanie; Patarroyo, Manuel; Rolauffs, Bernd; Aicher, Wilhelm K.; Klein, Gerd

    2015-01-01

    Multipotent mesenchymal stromal cells (MSCs) are well known for their tri-lineage potential and ability to differentiate in vitro into osteogenic, chondrogenic or adipogenic lineages. By selecting appropriate conditions MSCs can also be differentiated in vitro into the myogenic lineage and are therefore a promising option for cell-based regeneration of muscle tissue such as an aged or damaged sphincter muscle. For the differentiation into the myogenic lineage there is still a need to evaluate the effects of extracellular matrix proteins such as laminins (LM) which are crucial for different stem cell types and for normal muscle function. The laminin family consists of 16 functionally different isoforms with LM-211 being the most abundant isoform of adult muscle tissues. In the sphincter tissue a strong expression of the isoforms LM-211/221, LM-411/421 and LM-511/521 can be detected in the different cell layers. Bone marrow-derived MSCs in culture, however, mainly express the isoforms LM-411 and LM-511, but not LM-211. Even after myogenic differentiation, LM-211 can hardly be detected. All laminin isoforms tested (LM-211, LM-411, LM-511 and LM-521) showed a significant inhibition of the proliferation of undifferentiated MSCs but, with the exception of LM-521, they had no influence on the proliferation of MSCs cultivated in myogenic medium. The strongest cellular adhesion of MSCs was to LM-511 and LM-521, whereas LM-211 was only a weakly-adhesive substrate for MSCs. Myogenic differentiation of MSCs even reduced the interaction with LM-211, but it did not affect the interaction with LM-511 and LM-521. Since during normal myogenesis the latter two isoforms are the major laminins surrounding developing myogenic progenitors, α5 chain-containing laminins are recommended for further improvements of myogenic differentiation protocols of MSCs into smooth muscle cells. PMID:26406476

  17. Mesenchymal Stromal Cells for Sphincter Regeneration: Role of Laminin Isoforms upon Myogenic Differentiation.

    Directory of Open Access Journals (Sweden)

    Tanja Seeger

    Full Text Available Multipotent mesenchymal stromal cells (MSCs are well known for their tri-lineage potential and ability to differentiate in vitro into osteogenic, chondrogenic or adipogenic lineages. By selecting appropriate conditions MSCs can also be differentiated in vitro into the myogenic lineage and are therefore a promising option for cell-based regeneration of muscle tissue such as an aged or damaged sphincter muscle. For the differentiation into the myogenic lineage there is still a need to evaluate the effects of extracellular matrix proteins such as laminins (LM which are crucial for different stem cell types and for normal muscle function. The laminin family consists of 16 functionally different isoforms with LM-211 being the most abundant isoform of adult muscle tissues. In the sphincter tissue a strong expression of the isoforms LM-211/221, LM-411/421 and LM-511/521 can be detected in the different cell layers. Bone marrow-derived MSCs in culture, however, mainly express the isoforms LM-411 and LM-511, but not LM-211. Even after myogenic differentiation, LM-211 can hardly be detected. All laminin isoforms tested (LM-211, LM-411, LM-511 and LM-521 showed a significant inhibition of the proliferation of undifferentiated MSCs but, with the exception of LM-521, they had no influence on the proliferation of MSCs cultivated in myogenic medium. The strongest cellular adhesion of MSCs was to LM-511 and LM-521, whereas LM-211 was only a weakly-adhesive substrate for MSCs. Myogenic differentiation of MSCs even reduced the interaction with LM-211, but it did not affect the interaction with LM-511 and LM-521. Since during normal myogenesis the latter two isoforms are the major laminins surrounding developing myogenic progenitors, α5 chain-containing laminins are recommended for further improvements of myogenic differentiation protocols of MSCs into smooth muscle cells.

  18. miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4.

    Science.gov (United States)

    Winbanks, Catherine E; Beyer, Claudia; Hagg, Adam; Qian, Hongwei; Sepulveda, Patricio V; Gregorevic, Paul

    2013-01-01

    microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 "sponge," featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype

  19. Role of Coronary Myogenic Response in Pressure-Flow Autoregulation in Swine: A Meta-Analysis With Coronary Flow Modeling

    OpenAIRE

    Gregory M. Dick; Ravi Namani; Bhavesh Patel; Ghassan S. Kassab

    2018-01-01

    Myogenic responses (pressure-dependent contractions) of coronary arterioles play a role in autoregulation (relatively constant flow vs. pressure). Publications on myogenic reactivity in swine coronaries vary in caliber, analysis, and degree of responsiveness. Further, data on myogenic responses and autoregulation in swine have not been completely compiled, compared, and modeled. Thus, it has been difficult to understand these physiological phenomena. Our purpose was to: (a) analyze myogenic d...

  20. Low Oxygen Tension Enhances Expression of Myogenic Genes When Human Myoblasts Are Activated from G0 Arrest

    DEFF Research Database (Denmark)

    Sellathurai, Jeeva; Nielsen, Joachim; Hejbøl, Eva Kildall

    2016-01-01

    -PCR, immunocytochemistry and western blot. RESULTS AND CONCLUSIONS: We found an increase in proliferation rate of myoblasts when activated at a low oxygen tension (1% O2) compared to 21% O2. In addition, the gene expression studies showed up regulation of the myogenesis related genes PAX3, PAX7, MYOD, MYOG (myogenin), MET......, NCAM, DES (desmin), MEF2A, MEF2C and CDH15 (M-cadherin), however, the fraction of DES and MYOD positive cells was not increased by low oxygen tension, indicating that 1% O2 may not have a functional effect on the myogenic response. Furthermore, the expression of genes involved in the TGFβ, Notch...... and Wnt signaling pathways were also up regulated in low oxygen tension. The differences in gene expression were most pronounced at day one after activation from G0-arrest, thus the initial activation of myoblasts seemed most sensitive to changes in oxygen tension. Protein expression of HES1 and β...

  1. Mechanisms of morphine enhancement of spontaneous seizure activity.

    Science.gov (United States)

    Saboory, Ehsan; Derchansky, Miron; Ismaili, Mohammed; Jahromi, Shokrollah S; Brull, Richard; Carlen, Peter L; El Beheiry, Hossam

    2007-12-01

    High-dose opioid therapy can precipitate seizures; however, the mechanism of such a dangerous adverse effect remains poorly understood. The aim of our study was to determine whether the neuroexcitatory activity of high-dose morphine is mediated by selective stimulation of opioid receptors. Mice hippocampi were resected intact and bathed in low magnesium artificial cerebrospinal fluid to induce spontaneous seizure-like events recorded from CA1 neurons. Application of morphine had a biphasic effect on the recorded spontaneous seizure-like events. In a low concentration (10 microM), morphine depressed electrographic seizure activity. Higher morphine concentrations (30 and 100 microM) enhanced seizure activity in an apparent dose-dependent manner. Naloxone, a nonselective opiate antagonist blocked the proconvulsant action of morphine. Selective mu and kappa opiate receptor agonists and antagonists enhanced and suppressed the spontaneous seizure activity, respectively. On the contrary, delta opioid receptor ligands did not have an effect. The proseizure effect of morphine is mediated through selective stimulation of mu and kappa opiate receptors but not the activation of the delta receptor system. The observed dose-dependent mechanism of morphine neuroexcitation underscores careful adjustment and individualized opioid dosing in the clinical setting.

  2. Histone deacetylase inhibitor trichostatin A enhances myogenesis by coordinating muscle regulatory factors and myogenic repressors

    International Nuclear Information System (INIS)

    Hagiwara, Hiroki; Saito, Fumiaki; Masaki, Toshihiro; Ikeda, Miki; Nakamura-Ohkuma, Ayami; Shimizu, Teruo; Matsumura, Kiichiro

    2011-01-01

    Highlights: ► We investigated the effect of TSA, one of most potent HDACIs, on myogenesis using the C2C12 skeletal muscle cell line. ► TSA enhances the expression of myosin heavy chain without affecting DAPC expression. ► TSA enhances the expression of the early MRFs, Myf5 and MEF2, and suppresses the late MRF, myogenin, after 24 h treatment. ► TSA enhances the expression of the myogenic repressors, Ids, which inhibit myogenic differentiation. ► TSA promotes myogenesis by coordinating the expression of MRFs and myogenic repressors. -- Abstract: Histone deacetylase inhibitors (HDACIs) are known to promote skeletal muscle formation. However, their mechanisms that include effects on the expression of major muscle components such as the dystrophin-associated proteins complex (DAPC) or myogenic regulatory factors (MRFs) remain unknown. In this study, we investigated the effects of HDACIs on skeletal muscle formation using the C2C12 cell culture system. C2C12 myoblasts were exposed to trichostatin A (TSA), one of the most potent HDACIs, and differentiation was subsequently induced. We found that TSA enhances the expression of myosin heavy chain without affecting DAPC expression. In addition, TSA increases the expression of the early MRFs, Myf5 and MEF2, whereas it suppresses the expression of the late MRF, myogenin. Interestingly, TSA also enhances the expression of Id1, Id2, and Id3 (Ids). Ids are myogenic repressors that inhibit myogenic differentiation. These findings suggest that TSA promotes gene expression in proliferation and suppresses it in the differentiation stage of muscle formation. Taken together, our data demonstrate that TSA enhances myogenesis by coordinating the expression of MRFs and myogenic repressors.

  3. Functional relationships between genes associated with differentiation potential of aged myogenic progenitors

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Nagarajan

    2010-09-01

    Full Text Available Aging is accompanied by considerable heterogeneity with possible co-expression of differentiation pathways. The present study investigates the interplay between crucial myogenic, adipogenic and Wnt-related genes orchestrating aged myogenic progenitor differentiation (AMPD using clonal gene expression profiling in conjunction with Bayesian structure learning (BSL techniques. The expression of three myogenic regulatory factor genes (Myogenin, Myf-5, MyoD1, four genes involved in regulating adipogenic potential (C/EBPα, DDIT3, FoxC2, PPARγ, and two genes in the Wnt-signaling pathway (Lrp5, Wnt5a known to influence both differentiation programs were determined across thirty-four clones by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Three control genes were used for normalization of the clonal expression data (18S, GAPDH and B2M. Constraint-based BSL techniques, namely (a PC Algorithm, (b Grow-shrink algorithm (GS, and (c Incremental Association Markov Blanket (IAMB were used to model the functional relationships (FRs in the form of acyclic networks from the clonal expression profiles. A novel resampling approach that obviates the need for a user-defined confidence threshold is proposed to identify statistically significant FRs at small sample sizes. Interestingly, the resulting acyclic network consisted of FRs corresponding to myogenic, adipogenic, Wnt-related genes and their interaction. A significant number of these FRs were robust to normalization across the three house-keeping genes and the choice of the BSL technique. The results presented elucidate the delicate balance between differentiation pathways (i.e. myogenic as well as adipogenic and possible cross-talk between pathways in AMPD.

  4. Role of Coronary Myogenic Response in Pressure-Flow Autoregulation in Swine: A Meta-Analysis With Coronary Flow Modeling

    Science.gov (United States)

    Dick, Gregory M.; Namani, Ravi; Patel, Bhavesh; Kassab, Ghassan S.

    2018-01-01

    Myogenic responses (pressure-dependent contractions) of coronary arterioles play a role in autoregulation (relatively constant flow vs. pressure). Publications on myogenic reactivity in swine coronaries vary in caliber, analysis, and degree of responsiveness. Further, data on myogenic responses and autoregulation in swine have not been completely compiled, compared, and modeled. Thus, it has been difficult to understand these physiological phenomena. Our purpose was to: (a) analyze myogenic data with standard criteria; (b) assign results to diameter categories defined by morphometry; and (c) use our novel multiscale flow model to determine the extent to which ex vivo myogenic reactivity can explain autoregulation in vivo. When myogenic responses from the literature are an input for our model, the predicted coronary autoregulation approaches in vivo observations. More complete and appropriate data are now available to investigate the regulation of coronary blood flow in swine, a highly relevant model for human physiology and disease. PMID:29875686

  5. Role of Coronary Myogenic Response in Pressure-Flow Autoregulation in Swine: A Meta-Analysis With Coronary Flow Modeling

    Directory of Open Access Journals (Sweden)

    Gregory M. Dick

    2018-05-01

    Full Text Available Myogenic responses (pressure-dependent contractions of coronary arterioles play a role in autoregulation (relatively constant flow vs. pressure. Publications on myogenic reactivity in swine coronaries vary in caliber, analysis, and degree of responsiveness. Further, data on myogenic responses and autoregulation in swine have not been completely compiled, compared, and modeled. Thus, it has been difficult to understand these physiological phenomena. Our purpose was to: (a analyze myogenic data with standard criteria; (b assign results to diameter categories defined by morphometry; and (c use our novel multiscale flow model to determine the extent to which ex vivo myogenic reactivity can explain autoregulation in vivo. When myogenic responses from the literature are an input for our model, the predicted coronary autoregulation approaches in vivo observations. More complete and appropriate data are now available to investigate the regulation of coronary blood flow in swine, a highly relevant model for human physiology and disease.

  6. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Atsushi [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Kurisaki, Tomohiro [Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Sato, Satoshi B. [Research Center for Low Temperature and Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8501 (Japan); Kobayashi, Toshihide [Lipid Biology Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Kondoh, Gen [Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Hashimoto, Naohiro, E-mail: nao@nils.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2009-10-15

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, {beta}-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  7. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    International Nuclear Information System (INIS)

    Mukai, Atsushi; Kurisaki, Tomohiro; Sato, Satoshi B.; Kobayashi, Toshihide; Kondoh, Gen; Hashimoto, Naohiro

    2009-01-01

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, β-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  8. Ocular vestibular evoked myogenic potential in patients with benign paroxysmal positional vertigo

    Directory of Open Access Journals (Sweden)

    Mozhgan Masoom

    2014-06-01

    Full Text Available Background and Aim: Since utricle is the main damaged organ in benign paroxysmal positional vertigo (BPPV, ocular vestibular evoked myogenic potential (oVEMP may be an appropriate method to evaluate the utricule dysfunction and the effect of disease recurrence rate on it. This study aimed to record myogenic potential in patients with benign paroxysmal positional vertigo.Methods: In a cross-sectional study, ocular myogenic potential was recorded in 25 healthy subjects and 20 patients with benign paroxysmal positional vertigo using 500 Hz-tone bursts (95 dB nHL.Results: In the affected ear, mean amplitude was lower and mean threshold was higher than those in the unaffected ear and in the normal group (p<0.05. Mean amplitude asymmetry ratio of patients was more than the healthy subjects (p0.05. Frequencies of abnormal responses in the affected ears were higher than in unaffected ears and in the normal group (p<0.05. Furthermore, the patients with recurrent vertigo showed more abnormalities than the patients with non-recurrent (p=0.030.Conclusion: In the recurrent benign paroxysmal positional vertigo, ocular vestibular evoked myogenic potential showed more damage in the utricle, suggesting this response could be used to evaluate the patients with benign paroxysmal positional vertigo.

  9. Selection of reference genes for expression studies with fish myogenic cell cultures

    Directory of Open Access Journals (Sweden)

    Johnston Ian A

    2009-08-01

    Full Text Available Abstract Background Relatively few studies have used cell culture systems to investigate gene expression and the regulation of myogenesis in fish. To produce robust data from quantitative real-time PCR mRNA levels need to be normalised using internal reference genes which have stable expression across all experimental samples. We have investigated the expression of eight candidate genes to identify suitable reference genes for use in primary myogenic cell cultures from Atlantic salmon (Salmo salar L.. The software analysis packages geNorm, Normfinder and Best keeper were used to rank genes according to their stability across 42 samples during the course of myogenic differentiation. Results Initial results showed several of the candidate genes exhibited stable expression throughout myogenic culture while Sdha was identified as the least stable gene. Further analysis with geNorm, Normfinder and Bestkeeper identified Ef1α, Hprt1, Ppia and RNApolII as stably expressed. Comparison of data normalised with the geometric average obtained from combinations of any three of these genes showed no significant differences, indicating that any combination of these genes is valid. Conclusion The geometric average of any three of Hprt1, Ef1α, Ppia and RNApolII is suitable for normalisation of gene expression data in primary myogenic cultures from Atlantic salmon.

  10. Selection of reference genes for expression studies with fish myogenic cell cultures.

    Science.gov (United States)

    Bower, Neil I; Johnston, Ian A

    2009-08-10

    Relatively few studies have used cell culture systems to investigate gene expression and the regulation of myogenesis in fish. To produce robust data from quantitative real-time PCR mRNA levels need to be normalised using internal reference genes which have stable expression across all experimental samples. We have investigated the expression of eight candidate genes to identify suitable reference genes for use in primary myogenic cell cultures from Atlantic salmon (Salmo salar L.). The software analysis packages geNorm, Normfinder and Best keeper were used to rank genes according to their stability across 42 samples during the course of myogenic differentiation. Initial results showed several of the candidate genes exhibited stable expression throughout myogenic culture while Sdha was identified as the least stable gene. Further analysis with geNorm, Normfinder and Bestkeeper identified Ef1alpha, Hprt1, Ppia and RNApolII as stably expressed. Comparison of data normalised with the geometric average obtained from combinations of any three of these genes showed no significant differences, indicating that any combination of these genes is valid. The geometric average of any three of Hprt1, Ef1alpha, Ppia and RNApolII is suitable for normalisation of gene expression data in primary myogenic cultures from Atlantic salmon.

  11. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts.

    Science.gov (United States)

    Sin, Jon; Andres, Allen M; Taylor, David J R; Weston, Thomas; Hiraumi, Yoshimi; Stotland, Aleksandr; Kim, Brandon J; Huang, Chengqun; Doran, Kelly S; Gottlieb, Roberta A

    2016-01-01

    Myogenesis is a crucial process governing skeletal muscle development and homeostasis. Differentiation of primitive myoblasts into mature myotubes requires a metabolic switch to support the increased energetic demand of contractile muscle. Skeletal myoblasts specifically shift from a highly glycolytic state to relying predominantly on oxidative phosphorylation (OXPHOS) upon differentiation. We have found that this phenomenon requires dramatic remodeling of the mitochondrial network involving both mitochondrial clearance and biogenesis. During early myogenic differentiation, autophagy is robustly upregulated and this coincides with DNM1L/DRP1 (dynamin 1-like)-mediated fragmentation and subsequent removal of mitochondria via SQSTM1 (sequestosome 1)-mediated mitophagy. Mitochondria are then repopulated via PPARGC1A/PGC-1α (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha)-mediated biogenesis. Mitochondrial fusion protein OPA1 (optic atrophy 1 [autosomal dominant]) is then briskly upregulated, resulting in the reformation of mitochondrial networks. The final product is a myotube replete with new mitochondria. Respirometry reveals that the constituents of these newly established mitochondrial networks are better primed for OXPHOS and are more tightly coupled than those in myoblasts. Additionally, we have found that suppressing autophagy with various inhibitors during differentiation interferes with myogenic differentiation. Together these data highlight the integral role of autophagy and mitophagy in myogenic differentiation.

  12. Which nerve conduction parameters can predict spontaneous electromyographic activity in carpal tunnel syndrome?

    Science.gov (United States)

    Chang, Chia-Wei; Lee, Wei-Ju; Liao, Yi-Chu; Chang, Ming-Hong

    2013-11-01

    We investigate electrodiagnostic markers to determine which parameters are the best predictors of spontaneous electromyographic (EMG) activity in carpal tunnel syndrome (CTS). We enrolled 229 patients with clinically proven and nerve conduction study (NCS)-proven CTS, as well as 100 normal control subjects. All subjects were evaluated using electrodiagnostic techniques, including median distal sensory latencies (DSLs), sensory nerve action potentials (SNAPs), distal motor latencies (DMLs), compound muscle action potentials (CMAPs), forearm median nerve conduction velocities (FMCVs) and wrist-palm motor conduction velocities (W-P MCVs). All CTS patients underwent EMG examination of the abductor pollicis brevis (APB) muscle, and the presence or absence of spontaneous EMG activities was recorded. Normal limits were determined by calculating the means ± 2 standard deviations from the control data. Associations between parameters from the NCS and EMG findings were investigated. In patients with clinically diagnosed CTS, abnormal median CMAP amplitudes were the best predictors of spontaneous activity during EMG examination (p95% (positive predictive rate >95%). If the median CMAP amplitude was higher than the normal limit (>4.9 mV), the rate of no spontaneous EMG activity was >94% (negative predictive rate >94%). An abnormal SNAP amplitude was the second best predictor of spontaneous EMG activity (p<0.001; OR 4.13; 95% CI 2.16-7.90), and an abnormal FMCV was the third best predictor (p=0.01; OR 2.10; 95% CI 1.20-3.67). No other nerve conduction parameters had significant power to predict spontaneous activity upon EMG examination. The CMAP amplitudes of the APB are the most powerful predictors of the occurrence of spontaneous EMG activity. Low CMAP amplitudes are strongly associated with spontaneous activity, whereas high CMAP amplitude are less associated with spontaneous activity, implying that needle EMG examination should be recommended for the detection of

  13. Spontaneous emission from active dielectric microstructures

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Tromborg, Bjarne

    2001-01-01

    and engineered due to the dependence of the emission rate on the location and polarisation of the emitters in the structure. This paper addresses the methods of quantum electrodynamics of dielectric media which enable calculation of the local rate of spontaneous emission in active microstructures....

  14. Decorin expression in quiescent myogenic cells

    International Nuclear Information System (INIS)

    Nishimura, Takanori; Nozu, Kenjiro; Kishioka, Yasuhiro; Wakamatsu, Jun-ichi; Hattori, Akihito

    2008-01-01

    Satellite cells are quiescent muscle stem cells that promote postnatal muscle growth and repair. When satellite cells are activated by myotrauma, they proliferate, migrate, differentiate, and ultimately fuse to existing myofibers. The remainder of these cells do not differentiate, but instead return to quiescence and remain in a quiescent state until activation begins the process again. This ability to maintain their own population is important for skeletal muscle to maintain the capability to repair during postnatal life. However, the mechanisms by which satellite cells return to quiescence and maintain the quiescent state are still unclear. Here, we demonstrated that decorin mRNA expression was high in cell cultures containing a higher ratio of quiescent satellite cells when satellite cells were stimulated with various concentrations of hepatocyte growth factor. This result suggests that quiescent satellite cells express decorin at a high level compared to activated satellite cells. Furthermore, we examined the expression of decorin in reserve cells, which were undifferentiated myoblasts remaining after induction of differentiation by serum-deprivation. Decorin mRNA levels in reserve cells were higher than those in differentiated myotubes and growing myoblasts. These results suggest that decorin participates in the quiescence of myogenic cells

  15. Spontaneous Gamma Activity in Schizophrenia.

    Science.gov (United States)

    Hirano, Yoji; Oribe, Naoya; Kanba, Shigenobu; Onitsuka, Toshiaki; Nestor, Paul G; Spencer, Kevin M

    2015-08-01

    A major goal of translational neuroscience is to identify neural circuit abnormalities in neuropsychiatric disorders that can be studied in animal models to facilitate the development of new treatments. Oscillations in the gamma band (30-100 Hz) of the electroencephalogram have received considerable interest as the basic mechanisms underlying these oscillations are understood, and gamma abnormalities have been found in schizophrenia (SZ). Animal models of SZ based on hypofunction of the N-methyl-d-aspartate receptor (NMDAR) demonstrate increased spontaneous broadband gamma power, but this phenomenon has not been identified clearly in patients with SZ. To examine spontaneous gamma power and its relationship to evoked gamma oscillations in the auditory cortex of patients with SZ. We performed a cross-sectional study including 24 patients with chronic SZ and 24 matched healthy control participants at the Veterans Affairs Boston Healthcare System from January 1, 2009, through December 31, 2012. Electroencephalograms were obtained during auditory steady-state stimulation at multiple frequencies (20, 30, and 40 Hz) and during a resting state in 18 participants in each group. Electroencephalographic activity in the auditory cortex was estimated using dipole source localization. Auditory steady-state response (ASSR) measures included the phase-locking factor and evoked power. Spontaneous gamma power was measured as induced (non-phase-locked) gamma power in the ASSR data and as total gamma power in the resting-state data. The ASSR phase-locking factor was reduced significantly in patients with SZ compared with controls for the 40-Hz stimulation (mean [SD], 0.075 [0.028] vs 0.113 [0.065]; F1,46 = 6.79 [P = .012]) but not the 20- or the 30-Hz stimulation (0.042 [0.038] vs 0.043 [0.034]; F1,46 = 0.006 [P = .938] and 0.084 [0.040] vs 0.098 [0.050]; F1,46 = 1.605 [P = .212], respectively), repeating previous findings. The mean [SD] broadband-induced (30

  16. Magic-factor 1, a partial agonist of Met, induces muscle hypertrophy by protecting myogenic progenitors from apoptosis.

    Directory of Open Access Journals (Sweden)

    Marco Cassano

    2008-09-01

    Full Text Available Hepatocyte Growth Factor (HGF is a pleiotropic cytokine of mesenchymal origin that mediates a characteristic array of biological activities including cell proliferation, survival, motility and morphogenesis. Its high affinity receptor, the tyrosine kinase Met, is expressed by a wide range of tissues and can be activated by either paracrine or autocrine stimulation. Adult myogenic precursor cells, the so called satellite cells, express both HGF and Met. Following muscle injury, autocrine HGF-Met stimulation plays a key role in promoting activation and early division of satellite cells, but is shut off in a second phase to allow myogenic differentiation. In culture, HGF stimulation promotes proliferation of muscle precursors thereby inhibiting their differentiation.Magic-Factor 1 (Met-Activating Genetically Improved Chimeric Factor-1 or Magic-F1 is an HGF-derived, engineered protein that contains two Met-binding domains repeated in tandem. It has a reduced affinity for Met and, in contrast to HGF it elicits activation of the AKT but not the ERK signaling pathway. As a result, Magic-F1 is not mitogenic but conserves the ability to promote cell survival. Here we show that Magic-F1 protects myogenic precursors against apoptosis, thus increasing their fusion ability and enhancing muscular differentiation. Electrotransfer of Magic-F1 gene into adult mice promoted muscular hypertrophy and decreased myocyte apoptosis. Magic-F1 transgenic mice displayed constitutive muscular hypertrophy, improved running performance and accelerated muscle regeneration following injury. Crossing of Magic-F1 transgenic mice with alpha-sarcoglycan knock-out mice -a mouse model of muscular dystrophy- or adenovirus-mediated Magic-F1 gene delivery resulted in amelioration of the dystrophic phenotype as measured by both anatomical/histological analysis and functional tests.Because of these features Magic-F1 represents a novel molecular tool to counteract muscle wasting in major

  17. Interaural difference values of vestibular evoked myogenic.

    Directory of Open Access Journals (Sweden)

    Marziyeh Moallemi

    2015-01-01

    Full Text Available Migraine is a neurologic disease, which often is associated with a unilateral headache. Vestibular abnormalities are common in migraine. Vestibular evoked myogenic potentials (VEMPs assess otolith function in particular functional integrity of the saccule and the inferior vestibular nerve. We used VEMP to evaluate if the migraine headache can affect VEMP asymmetry parameters. A total of 25 patients with migraine (22 females and 3 males who were diagnosed according to the criteria of IHS-1988 were enrolled in this cross-sectional study. Control group consisted of 26 healthy participants (18 female and 8 male, without neurotological symptoms and history of migraine. The short tone burst (95 dB nHL, 500 Hz was presented to ears. VEMP was recorded with surface electromyography over the contracted ipsilateral sternocleidomastoid (SCM muscle. Although current results showed that the amplitude ratio is greater in migraine patients than normal group, there was no statistical difference between two groups in mean asymmetry parameters of VEMP. Asymmetry measurements in vestibular evoked myogenic potentials probably are not indicators of unilateral deficient in saccular pathways of migraine patients.

  18. Neonatal epicardial-derived progenitors aquire myogenic traits in skeletal muscle, but not cardiac muscle

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Jensen, Charlotte H; Skovrind, Ida

    2016-01-01

    heart missing regenerative signals essential for directed differentiation of EPDCs. Herein, we aimed to evaluate the myogenic potential of neonatal EPDCs in adult and neonatal mouse myocardium, as well as in skeletal muscle. The two latter tissues have an intrinsic capability to develop and regenerate......, in contrast to the adult heart. METHODS: Highly purified mouse EPDCs were transplanted into damaged neonatal and adult myocardium as well as regenerating skeletal muscle. Co-cultures with skeletal myoblasts were used to distinguish fusion independent myogenic conversion. RESULTS: No donor EPDC...... that EPDCs may be more myogenic than previously anticipated. But, the heart may lack factors for induction of myogenesis of EPDCs, a scenario that should be taken into consideration when aiming for repair of damaged myocardium by stem cell transplantation....

  19. Noise-induced effects on multicellular biopacemaker spontaneous activity: Differences between weak and strong pacemaker cells

    Science.gov (United States)

    Aghighi, Alireza; Comtois, Philippe

    2017-09-01

    Self-organization of spontaneous activity of a network of active elements is important to the general theory of reaction-diffusion systems as well as for pacemaking activity to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes, consisting of resting and pacemaker cells, exhibit spontaneous activation of their electrical activity. Similarly, one proposed approach to the development of biopacemakers as an alternative to electronic pacemakers for cardiac therapy is based on heterogeneous cardiac cells with resting and spontaneously beating phenotypes. However, the combined effect of pacemaker characteristics, density, and spatial distribution of the pacemaker cells on spontaneous activity is unknown. Using a simple stochastic pattern formation algorithm, we previously showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of pacemaker cells. In this study, we show that this behavior is dependent on the pacemaker cell characteristics, with weaker pacemaker cells requiring higher density and larger clusters to sustain multicellular activity. These multicellular structures also demonstrated an increased sensitivity to voltage noise that favored spontaneous activity at lower density while increasing temporal variation in the period of activity. This information will help researchers overcome the current limitations of biopacemakers.

  20. Altered myogenic vasoconstriction and regulation of whole kidney blood flow in the ASIC2 knockout mouse.

    Science.gov (United States)

    Gannon, Kimberly P; McKey, Susan E; Stec, David E; Drummond, Heather A

    2015-02-15

    Previous studies from our laboratory have suggested that degenerin proteins contribute to myogenic constriction, a mechanism of blood flow regulation and protection against pressure-dependent organ injury, in renal vessels. The goal of the present study was to determine the importance of one family member, acid-sensing ion channel 2 (ASIC2), in myogenic constriction of renal interlobar arteries, myogenic regulation of whole kidney blood flow, renal injury, and blood pressure using ASIC2(+/+), ASIC2(+/-), and ASIC2(-/-) mice. Myogenic constriction in renal interlobar arteries was impaired in ASIC2(+/-) and ASIC2(-/-) mice, whereas constriction to KCl/phenylephrine was unchanged. Correction of whole kidney renal vascular resistance (RVR) during the first 5 s after a 10- to 20-mmHg step increase in perfusion pressure, a timeframe associated with myogenic-mediated correction of RVR, was slowed (4.2 ± 0.9, 0.3 ± 0.7, and 2.4 ± 0.3 resistance units/s in ASIC2(+/+), ASIC2(+/-), and ASIC2(-/-) mice). Although modest reductions in function were observed in ASIC2(-/-) mice, greater reductions were observed in ASIC2(+/-) mice, which may be explained by protein-protein interactions of ASIC2 with other degenerins. Isolated glomeruli from ASIC2(+/-) and ASIC2(-/-) mice had modest alterations in the expression of inflammation and injury markers (transforming growth factor-β, mouse anti-target of antiproliferative antibody-1, and nephrin), whereas ASIC2(+/-) mice had an increase in the remodeling marker collagen type III. Consistent with a more severe loss of function, mean arterial pressure was increased in ASIC2(+/-) mice (131 ± 3 mmHg) but not in ASIC2(-/-) mice (122 ± 3 vs. 117 ± 2 mmHg in ASIC2(+/+) mice). These results suggest that ASIC2 contributes to transduction of the renal myogenic response and are consistent with the protective role of myogenic constriction against renal injury and hypertension. Copyright © 2015 the American Physiological Society.

  1. Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness.

    Directory of Open Access Journals (Sweden)

    Stanislas Dehaene

    2005-05-01

    Full Text Available Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden "ignition" of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of "inattentional blindness," in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness.

  2. Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness.

    Science.gov (United States)

    Dehaene, Stanislas; Changeux, Jean-Pierre

    2005-05-01

    Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden "ignition" of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of "inattentional blindness," in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness.

  3. Renal myogenic constriction protects the kidney from age-related hypertensive renal damage in the Fawn-Hooded rat

    NARCIS (Netherlands)

    Vavrinec, Peter; Henning, Robert H.; Goris, Maaike; Landheer, Sjoerd W.; Buikema, Hendrik; van Dokkum, Richard P. E.

    Introduction:Intact myogenic constriction plays a role in renal blood flow autoregulation and protection against pressure-related (renal) injury. However, to what extent alterations in renal artery myogenic constriction are involved in development of renal damage during aging is unknown. Therefore,

  4. N-cadherin and integrin blockade inhibit arteriolar myogenic reactivity but not pressure-induced increases in intracellular Ca2+

    Directory of Open Access Journals (Sweden)

    Teresa Y. Jackson

    2010-12-01

    Full Text Available The vascular myogenic response is characterized by arterial constriction in response to an increase in intraluminal pressure and dilatation to a decrease in pressure. This mechanism is important for the regulation of blood flow, capillary pressure and arterial pressure. The identity of the mechanosensory mechanism(s for this response is incompletely understood but has been shown to include the integrins as cell-extracellular matrix receptors. The possibility that a cell-cell adhesion receptor is involved has not been studied. Thus, we tested the hypothesis that N-cadherin, a cell-cell adhesion molecule in vascular smooth muscle cells (VSMCs, was important for myogenic responsiveness. The purpose of this study was to investigate:
    1. whether cadherin inhibition blocks myogenic responses to increases in intraluminal pressure and 2. the effect of the cadherin or integrin blockade on pressure-induced changes in [Ca2+]i. Cadherin blockade was tested in isolated rat cremaster arterioles on myogenic responses to acute pressure steps from 60 – 100 mmHg and changes in VSMC Ca2+ were measured using fura-2. In the presence of a synthetic cadherin inhibitory peptide or a function blocking antibody, myogenic responses were inhibited. In contrast, during N-cadherin blockade, pressure-induced changes in [Ca2+]i were not altered. Similarly, vessels treated with function-blocking β1- or β3-integrin antibodies maintained pressure-induced [Ca2+]i responses despite inhibition of myogenic constriction. Collectively, these data suggest that both cadherins and integrins play a fundamental role in mediating myogenic constriction but argue against their direct involvement in mediating pressure-induced [Ca2+]i increases.

  5. Myogenic Precursors from iPS Cells for Skeletal Muscle Cell Replacement Therapy

    Directory of Open Access Journals (Sweden)

    Isart Roca

    2015-01-01

    Full Text Available The use of adult myogenic stem cells as a cell therapy for skeletal muscle regeneration has been attempted for decades, with only moderate success. Myogenic progenitors (MP made from induced pluripotent stem cells (iPSCs are promising candidates for stem cell therapy to regenerate skeletal muscle since they allow allogenic transplantation, can be produced in large quantities, and, as compared to adult myoblasts, present more embryonic-like features and more proliferative capacity in vitro, which indicates a potential for more self-renewal and regenerative capacity in vivo. Different approaches have been described to make myogenic progenitors either by gene overexpression or by directed differentiation through culture conditions, and several myopathies have already been modeled using iPSC-MP. However, even though results in animal models have shown improvement from previous work with isolated adult myoblasts, major challenges regarding host response have to be addressed and clinically relevant transplantation protocols are lacking. Despite these challenges we are closer than we think to bringing iPSC-MP towards clinical use for treating human muscle disease and sporting injuries.

  6. Uncovering intrinsic modular organization of spontaneous brain activity in humans.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available The characterization of topological architecture of complex brain networks is one of the most challenging issues in neuroscience. Slow (<0.1 Hz, spontaneous fluctuations of the blood oxygen level dependent (BOLD signal in functional magnetic resonance imaging are thought to be potentially important for the reflection of spontaneous neuronal activity. Many studies have shown that these fluctuations are highly coherent within anatomically or functionally linked areas of the brain. However, the underlying topological mechanisms responsible for these coherent intrinsic or spontaneous fluctuations are still poorly understood. Here, we apply modern network analysis techniques to investigate how spontaneous neuronal activities in the human brain derived from the resting-state BOLD signals are topologically organized at both the temporal and spatial scales. We first show that the spontaneous brain functional networks have an intrinsically cohesive modular structure in which the connections between regions are much denser within modules than between them. These identified modules are found to be closely associated with several well known functionally interconnected subsystems such as the somatosensory/motor, auditory, attention, visual, subcortical, and the "default" system. Specifically, we demonstrate that the module-specific topological features can not be captured by means of computing the corresponding global network parameters, suggesting a unique organization within each module. Finally, we identify several pivotal network connectors and paths (predominantly associated with the association and limbic/paralimbic cortex regions that are vital for the global coordination of information flow over the whole network, and we find that their lesions (deletions critically affect the stability and robustness of the brain functional system. Together, our results demonstrate the highly organized modular architecture and associated topological properties in

  7. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in

  8. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chen

    2018-03-01

    Full Text Available Purpose: Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI approach.Methods: Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF and regional homogeneity (ReHo of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis.Results: Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG, parahippocampal gyrus (PHG, precuneus and inferior parietal lobule (IPL as well as increased neural activity in the middle frontal gyrus (MFG, cuneus and postcentral gyrus (PoCG. A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B scores, indicative of impaired cognitive function involving the frontal lobe.Conclusions: Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the

  9. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI.

    Science.gov (United States)

    Chen, Yu-Chen; Chen, Huiyou; Jiang, Liang; Bo, Fan; Xu, Jin-Jing; Mao, Cun-Nan; Salvi, Richard; Yin, Xindao; Lu, Guangming; Gu, Jian-Ping

    2018-01-01

    Purpose : Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI) approach. Methods : Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis. Results : Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG), parahippocampal gyrus (PHG), precuneus and inferior parietal lobule (IPL) as well as increased neural activity in the middle frontal gyrus (MFG), cuneus and postcentral gyrus (PoCG). A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B) scores, indicative of impaired cognitive function involving the frontal lobe. Conclusions : Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the

  10. Endogenous activation of adenosine A(1) receptors accelerates ischemic suppression of spontaneous electrocortical activity

    DEFF Research Database (Denmark)

    Ilie, Andrei; Ciocan, Dragos; Zagrean, Ana-Maria

    2006-01-01

    Cerebral ischemia induces a rapid suppression of spontaneous brain rhythms prior to major alterations in ionic homeostasis. It was found in vitro during ischemia that the rapidly formed adenosine, resulting from the intracellular breakdown of ATP, may inhibit synaptic transmission via the A(1......) receptor subtype. The link between endogenous A(1) receptor activation during ischemia and the suppression of spontaneous electrocortical activity has not yet been established in the intact brain. The aim of this study was to investigate in vivo the effects of A(1) receptor antagonism by 8-cyclopentyl-1...

  11. Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli.

    Science.gov (United States)

    Galán, Roberto F; Weidert, Marcel; Menzel, Randolf; Herz, Andreas V M; Galizia, C Giovanni

    2006-01-01

    Sensory memory is a short-lived persistence of a sensory stimulus in the nervous system, such as iconic memory in the visual system. However, little is known about the mechanisms underlying olfactory sensory memory. We have therefore analyzed the effect of odor stimuli on the first odor-processing network in the honeybee brain, the antennal lobe, which corresponds to the vertebrate olfactory bulb. We stained output neurons with a calcium-sensitive dye and measured across-glomerular patterns of spontaneous activity before and after a stimulus. Such a single-odor presentation changed the relative timing of spontaneous activity across glomeruli in accordance with Hebb's theory of learning. Moreover, during the first few minutes after odor presentation, correlations between the spontaneous activity fluctuations suffice to reconstruct the stimulus. As spontaneous activity is ubiquitous in the brain, modifiable fluctuations could provide an ideal substrate for Hebbian reverberations and sensory memory in other neural systems.

  12. A nonlinear model for myogenic regulation of blood flow to bone: equilibrium states and stability characteristics.

    Science.gov (United States)

    Harrigan, T P

    1996-01-01

    A simple compartmental model for myogenic regulation of interstitial pressure in bone is developed, and the interaction between changes in interstitial pressure and changes in arterial and venous resistance is studied. The arterial resistance is modeled by a myogenic model that depends on transmural pressure, and the venous resistance is modeled by using a vascular waterfall. Two series capacitances model blood storage in the vascular system and interstitial fluid storage in the extravascular space. The static results mimic the observed effect that vasodilators work less well in bone than do vasoconstrictors. The static results also show that the model gives constant flow rates over a limited range of arterial pressure. The dynamic model shows unstable behavior at small values of bony capacitance and at high enough myogenic gain. At low myogenic gain, only a single equilibrium state is present, but a high enough myogenic gain, two new equilibrium states appear. At additional increases in gain, one of the two new states merges with and then separates from the original state, and the original state becomes a saddle point. The appearance of the new states and the transition of the original state to a saddle point do not depend on the bony capacitance, and these results are relevant to general fluid compartments. Numerical integration of the rate equations confirms the stability calculations and shows limit cycling behavior in several situations. The relevance of this model to circulation in bone and to other compartments is discussed.

  13. FSHD myoblasts fail to downregulate intermediate filament protein vimentin during myogenic differentiation.

    Directory of Open Access Journals (Sweden)

    Lipinski M.

    2011-10-01

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal dominant hereditary neuromuscular disorder. The clinical features of FSHD include weakness of the facial and shoulder girdle muscles followed by wasting of skeletal muscles of the pelvic girdle and lower extremities. Although FSHD myoblasts grown in vitro can be induced to differentiate into myotubes by serum starvation, the resulting FSHD myotubes have been shown previously to be morphologically abnormal. Aim. In order to find the cause of morphological anomalies of FSHD myotubes we compared in vitro myogenic differentiation of normal and FSHD myoblasts at the protein level. Methods. We induced myogenic differentiation of normal and FSHD myoblasts by serum starvation. We then compared protein extracts from proliferating myoblasts and differentiated myotubes using SDS-PAGE followed by mass spectrometry identification of differentially expressed proteins. Results. We demonstrated that the expression of vimentin was elevated at the protein and mRNA levels in FSHD myotubes as compared to normal myotubes. Conclusions. We demonstrate for the first time that in contrast to normal myoblasts, FSHD myoblasts fail to downregulate vimentin after induction of in vitro myogenic differentiation. We suggest that vimentin could be an easily detectable marker of FSHD myotubes

  14. Spontaneous Electrical Activity in the Nervous System and its ...

    African Journals Online (AJOL)

    The present study was carried out to examine the effects of biogenic amines on the spontaneous electrical activity of the nervous system in the silkworm Bombyx mori. The activity recorded from different segments of the ventral nerve cord differed in the frequency and number of spike categories firing. The activity was highest ...

  15. Patchwork-Type Spontaneous Activity in Neonatal Barrel Cortex Layer 4 Transmitted via Thalamocortical Projections

    Directory of Open Access Journals (Sweden)

    Hidenobu Mizuno

    2018-01-01

    Full Text Available Summary: Establishment of precise neuronal connectivity in the neocortex relies on activity-dependent circuit reorganization during postnatal development; however, the nature of cortical activity during this period remains largely unknown. Using two-photon calcium imaging of the barrel cortex in vivo during the first postnatal week, we reveal that layer 4 (L4 neurons within the same barrel fire synchronously in the absence of peripheral stimulation, creating a “patchwork” pattern of spontaneous activity corresponding to the barrel map. By generating transgenic mice expressing GCaMP6s in thalamocortical axons, we show that thalamocortical axons also demonstrate the spontaneous patchwork activity pattern. Patchwork activity is diminished by peripheral anesthesia but is mostly independent of self-generated whisker movements. The patchwork activity pattern largely disappeared during postnatal week 2, as even L4 neurons within the same barrel tended to fire asynchronously. This spontaneous L4 activity pattern has features suitable for thalamocortical (TC circuit refinement in the neonatal barrel cortex. : By two-photon calcium imaging of layer 4 neurons and thalamocortical axon terminals in neonatal mouse barrel cortex, Mizuno et al. find a patchwork-like spontaneous activity pattern corresponding to the barrel map, which may be important for thalamocortical circuit maturation. Keywords: activity-dependent development, spontaneous activity, synchronized activity, barrel cortex, thalamocortical axons, neonates, in vivo calcium imaging, awake, single-cell labeling, whisker monitoring

  16. Voluntary breath holding affects spontaneous brain activity measured by magnetoencephalography

    NARCIS (Netherlands)

    Schellart, N. A.; Reits, D.

    1999-01-01

    Spontaneous brain activity was measured by multichannel magnetoencephalography (MEG) during voluntary breath holds. Significant changes in the activity are limited to the alpha rhythm: 0.25 Hz frequency increase and narrowing of the peak. The area of alpha activity shifts slightly toward (fronto-)

  17. Effect of caffeine on vestibular evoked myogenic potential: a systematic review with meta-analysis.

    Science.gov (United States)

    Souza, Maria Eduarda Di Cavalcanti Alves de; Costa, Klinger Vagner Teixeira da; Menezes, Pedro de Lemos

    2017-12-24

    Caffeine can be considered the most consumed drug by adults worldwide, and can be found in several foods, such as chocolate, coffee, tea, soda and others. Overall, caffeine in moderate doses, results in increased physical and intellectual productivity, increases the capacity of concentration and reduces the time of reaction to sensory stimuli. On the other hand, high doses can cause noticeable signs of mental confusion and error induction in intellectual tasks, anxiety, restlessness, muscle tremors, tachycardia, labyrinthine changes, and tinnitus. Considering that the vestibular evoked myogenic potential is a clinical test that evaluates the muscular response of high intensity auditory stimulation, the present systematic review aimed to analyze the effects of caffeine on vestibular evoked myogenic potential. This study consisted of the search of the following databases: MEDLINE, CENTRAL, ScienceDirect, Scopus, Web of Science, LILACS, SciELO and ClinicalTrials.gov. Additionally, the gray literature was also searched. The search strategy included terms related to intervention (caffeine or coffee consumption) and the primary outcome (vestibular evoked myogenic potential). Based on the 253 potentially relevant articles identified through the database search, only two full-text publications were retrieved for further evaluation, which were maintained for qualitative analysis. Analyzing the articles found, caffeine has no effect on vestibular evoked myogenic potential in normal individuals. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  18. Vestibular-evoked myogenic potentials in miniature pigs

    Directory of Open Access Journals (Sweden)

    Xi Shi

    2016-06-01

    Conclusion: The latencies and thresholds of VEMPs recorded from the neck extensor muscle and the masseter muscle appear to be comparable in normal adult Bama miniature pigs, although the amplitude recorded from the neck extensor muscle seems to be higher than that from the masseter muscle. However, because of their usually relatively superficial and easily accessible location, as well as their large volume and strong contractions, masseter muscles may be better target muscles for recording myogenic potentials.

  19. Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation.

    Science.gov (United States)

    Yamane, Hitomi; Nishikawa, Akio

    2013-08-01

    During Xenopus laevis metamorphosis, larval-to-adult muscle conversion depends on the differential responses of adult and larval myogenic cells to thyroid hormone. Essential differences in cell growth, differentiation, and hormone-dependent life-or-death fate have been reported between cultured larval (tail) and adult (hindlimb) myogenic cells. A previous study revealed that tail notochord cells suppress terminal differentiation in adult (but not larval) myogenic cells. However, little is known about the differences in expression patterns of myogenic regulatory factors (MRF) and the satellite cell marker Pax7 between adult and larval myogenic cells. In the present study, we compared mRNA expression of these factors between the two types. At first, reverse transcription polymerase chain reaction analysis of hindlimb buds showed sequential upregulation of myf5, myogenin, myod, and mrf4 during stages 50-54, when limb buds elongate and muscles begin to form. By contrast, in the tail, there was no such increase during the same period. Secondary, these results were duplicated in vitro: adult myogenic cells upregulated myf5, myod, and pax7 in the early culture period, followed by myogenin upregulation and myotube differentiation, while larval myogenic cells did not upregulate these genes and precociously started myotube differentiation. Thirdly, myf5 upregulation and early-phase proliferation in adult myogenic cells were potently inhibited by the presence of notochord cells, suggesting that notochord cells suppress adult myogenesis through inhibiting the transition from Myf5(-) stem cells to Myf5(+) committed myoblasts. All of the data presented here suggest that myf5 upregulation can be a good criterion for the activation of adult myogenesis during X. laevis metamorphosis.

  20. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks

    Science.gov (United States)

    Amin, Hayder; Maccione, Alessandro; Nieus, Thierry

    2017-01-01

    Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs), interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities) that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity. PMID:28749937

  1. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks.

    Directory of Open Access Journals (Sweden)

    Davide Lonardoni

    2017-07-01

    Full Text Available Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs, interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity.

  2. Altered spontaneous activity in anisometropic amblyopia subjects: revealed by resting-state FMRI.

    Directory of Open Access Journals (Sweden)

    Xiaoming Lin

    Full Text Available Amblyopia, also known as lazy eye, usually occurs during early childhood and results in poor or blurred vision. Recent neuroimaging studies have found cortical structural/functional abnormalities in amblyopia. However, until now, it was still not known whether the spontaneous activity of the brain changes in amblyopia subjects. In the present study, regional homogeneity (ReHo, a measure of the homogeneity of functional magnetic resonance imaging signals, was used for the first time to investigate changes in resting-state local spontaneous brain activity in individuals with anisometropic amblyopia. Compared with age- and gender-matched subjects with normal vision, the anisometropic amblyopia subjects showed decreased ReHo of spontaneous brain activity in the right precuneus, the left medial prefrontal cortex, the left inferior frontal gyrus, and the left cerebellum, and increased ReHo of spontaneous brain activity was found in the bilateral conjunction area of the postcentral and precentral gyri, the left paracentral lobule, the left superior temporal gyrus, the left fusiform gyrus, the conjunction area of the right insula, putamen and the right middle occipital gyrus. The observed decreases in ReHo may reflect decreased visuo-motor processing ability, and the increases in ReHo in the somatosensory cortices, the motor areas and the auditory area may indicate compensatory plasticity in amblyopia.

  3. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program.

    Science.gov (United States)

    Lee, Eun Ju; Jan, Arif Tasleem; Baig, Mohammad Hassan; Ashraf, Jalaluddin Mohammad; Nahm, Sang-Soep; Kim, Yong-Woon; Park, So-Young; Choi, Inho

    2016-08-01

    Differentiation of muscle satellite cells (MSCs) involves interaction of the proteins present in the extracellular matrix (ECM) with MSCs to regulate their activity, and therefore phenotype. Herein, we report fibromodulin (FMOD), a member of the proteoglycan family participating in the assembly of ECM, as a novel regulator of myostatin (MSTN) during myoblast differentiation. In addition to having a pronounced effect on the expression of myogenic marker genes [myogenin (MYOG) and myosin light chain 2 (MYL2)], FMOD was found to maintain the transcriptional activity of MSTN Moreover, coimmunoprecipitation and in silico studies performed to investigate the interaction of FMOD helped confirm that it antagonizes MSTN function by distorting its folding and preventing its binding to activin receptor type IIB. Furthermore, in vivo studies revealed that FMOD plays an active role in healing by increasing satellite cell recruitment to sites of injury. Together, these findings disclose a hitherto unrecognized regulatory role for FMOD in MSCs and highlight new mechanisms whereby FMOD circumvents the inhibitory effects of MSTN and triggers myoblast differentiation. These findings offer a basis for the design of novel MSTN inhibitors that promote muscle regeneration after injury or for the development of pharmaceutical agents for the treatment of different muscle atrophies.-Lee, E. J., Jan, A. T., Baig, M. H., Ashraf, J. M., Nahm, S.-S., Kim, Y.-W., Park, S.-Y., Choi, I. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program. © FASEB.

  4. Computational Account of Spontaneous Activity as a Signature of Predictive Coding.

    Directory of Open Access Journals (Sweden)

    Veronika Koren

    2017-01-01

    Full Text Available Spontaneous activity is commonly observed in a variety of cortical states. Experimental evidence suggested that neural assemblies undergo slow oscillations with Up ad Down states even when the network is isolated from the rest of the brain. Here we show that these spontaneous events can be generated by the recurrent connections within the network and understood as signatures of neural circuits that are correcting their internal representation. A noiseless spiking neural network can represent its input signals most accurately when excitatory and inhibitory currents are as strong and as tightly balanced as possible. However, in the presence of realistic neural noise and synaptic delays, this may result in prohibitively large spike counts. An optimal working regime can be found by considering terms that control firing rates in the objective function from which the network is derived and then minimizing simultaneously the coding error and the cost of neural activity. In biological terms, this is equivalent to tuning neural thresholds and after-spike hyperpolarization. In suboptimal working regimes, we observe spontaneous activity even in the absence of feed-forward inputs. In an all-to-all randomly connected network, the entire population is involved in Up states. In spatially organized networks with local connectivity, Up states spread through local connections between neurons of similar selectivity and take the form of a traveling wave. Up states are observed for a wide range of parameters and have similar statistical properties in both active and quiescent state. In the optimal working regime, Up states are vanishing, leaving place to asynchronous activity, suggesting that this working regime is a signature of maximally efficient coding. Although they result in a massive increase in the firing activity, the read-out of spontaneous Up states is in fact orthogonal to the stimulus representation, therefore interfering minimally with the network

  5. Skeletal myogenic differentiation of human urine-derived cells as a potential source for skeletal muscle regeneration.

    Science.gov (United States)

    Chen, Wei; Xie, Minkai; Yang, Bin; Bharadwaj, Shantaram; Song, Lujie; Liu, Guihua; Yi, Shanhong; Ye, Gang; Atala, Anthony; Zhang, Yuanyuan

    2017-02-01

    Stem cells are regarded as possible cell therapy candidates for skeletal muscle regeneration. However, invasive harvesting of those cells can cause potential harvest-site morbidity. The goal of this study was to assess whether human urine-derived stem cells (USCs), obtained through non-invasive procedures, can differentiate into skeletal muscle linage cells (Sk-MCs) and potentially be used for skeletal muscle regeneration. In this study, USCs were harvested from six healthy individuals aged 25-55. Expression profiles of cell-surface markers were assessed by flow cytometry. To optimize the myogenic differentiation medium, we selected two from four different types of myogenic differentiation media to induce the USCs. Differentiated USCs were identified with myogenic markers by gene and protein expression. USCs were implanted into the tibialis anterior muscles of nude mice for 1 month. The results showed that USCs displayed surface markers with positive staining for CD24, CD29, CD44, CD73, CD90, CD105, CD117, CD133, CD146, SSEA-4 and STRO-1, and negative staining for CD14, CD31, CD34 and CD45. After myogenic differentiation, a change in morphology was observed from 'rice-grain'-like cells to spindle-shaped cells. The USCs expressed specific Sk-MC transcripts and protein markers (myf5, myoD, myosin, and desmin) after being induced with different myogenic culture media. Implanted cells expressed Sk-MC markers stably in vivo. Our findings suggest that USCs are able to differentiate into the Sk-MC lineage in vitro and after being implanted in vivo. Thus, they might be a potential source for cell injection therapy in the use of skeletal muscle regeneration. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Min Sun [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Mun, Ji-Young [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kwon, Ohsuk [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Kwon, Ki-Sun [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Oh, Doo-Byoung, E-mail: dboh@kribb.re.kr [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2013-07-19

    Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineered the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method.

  7. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein

    International Nuclear Information System (INIS)

    Sung, Min Sun; Mun, Ji-Young; Kwon, Ohsuk; Kwon, Ki-Sun; Oh, Doo-Byoung

    2013-01-01

    Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineered the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method

  8. Combined ocular and cervical vestibular evoked myogenic potential in individuals with vestibular hyporeflexia and in patients with Ménière's disease.

    Science.gov (United States)

    Silva, Tatiana Rocha; de Resende, Luciana Macedo; Santos, Marco Aurélio Rocha

    The vestibular evoked myogenic potential is a potential of mean latency that measures the muscle response to auditory stimulation. This potential can be generated from the contraction of the sternocleidomastoid muscle and also from the contraction of extraocular muscles in response to high-intensity sounds. This study presents a combined or simultaneous technique of cervical and ocular vestibular evoked myogenic potential in individuals with changes in the vestibular system, for use in otoneurologic diagnosis. To characterize the records and analyze the results of combined cervical and ocular VEMP in individuals with vestibular hyporeflexia and in those with Ménière's disease. The study included 120 subjects: 30 subjects with vestibular hyporeflexia, 30 with Ménière's disease, and 60 individuals with normal hearing. Data collection was performed by simultaneously recording the cervical and ocular vestibular evoked myogenic potential. There were differences between the study groups (individuals with vestibular hyporeflexia and individuals with Ménière's disease) and the control group for most of wave parameters in combined cervical and ocular vestibular evoked myogenic potential. For cervical vestibular evoked myogenic potential, it was observed that the prolongation of latency of the P13 and N23 waves was the most frequent finding in the group with vestibular hyporeflexia and in the group with Ménière's disease. For ocular vestibular evoked myogenic potential, prolonged latency of N10 and P15 waves was the most frequent finding in the study groups. Combined cervical and ocular vestibular evoked myogenic potential presented relevant results for individuals with vestibular hyporeflexia and for those with Ménière's disease. There were differences between the study groups and the control group for most of the wave parameters in combined cervical and ocular vestibular evoked myogenic potential. Copyright © 2016 Associação Brasileira de Otorrinolaringologia

  9. Different responses of spontaneous and stimulus-related alpha activity to ambient luminance changes.

    Science.gov (United States)

    Benedetto, Alessandro; Lozano-Soldevilla, Diego; VanRullen, Rufin

    2017-12-04

    Alpha oscillations are particularly important in determining our percepts and have been implicated in fundamental brain functions. Oscillatory activity can be spontaneous or stimulus-related. Furthermore, stimulus-related responses can be phase- or non-phase-locked to the stimulus. Non-phase-locked (induced) activity can be identified as the average amplitude changes in response to a stimulation, while phase-locked activity can be measured via reverse-correlation techniques (echo function). However, the mechanisms and the functional roles of these oscillations are far from clear. Here, we investigated the effect of ambient luminance changes, known to dramatically modulate neural oscillations, on spontaneous and stimulus-related alpha. We investigated the effect of ambient luminance on EEG alpha during spontaneous human brain activity at rest (experiment 1) and during visual stimulation (experiment 2). Results show that spontaneous alpha amplitude increased by decreasing ambient luminance, while alpha frequency remained unaffected. In the second experiment, we found that under low-luminance viewing, the stimulus-related alpha amplitude was lower, and its frequency was slightly faster. These effects were evident in the phase-locked part of the alpha response (echo function), but weaker or absent in the induced (non-phase-locked) alpha responses. Finally, we explored the possible behavioural correlates of these modulations in a monocular critical flicker frequency task (experiment 3), finding that dark adaptation in the left eye decreased the temporal threshold of the right eye. Overall, we found that ambient luminance changes impact differently on spontaneous and stimulus-related alpha expression. We suggest that stimulus-related alpha activity is crucial in determining human temporal segmentation abilities. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Spontaneous Physical Activity Downregulates Pax7 in Cancer Cachexia

    Directory of Open Access Journals (Sweden)

    Dario Coletti

    2016-01-01

    Full Text Available Emerging evidence suggests that the muscle microenvironment plays a prominent role in cancer cachexia. We recently showed that NF-kB-induced Pax7 overexpression impairs the myogenic potential of muscle precursors in cachectic mice, suggesting that lowering Pax7 expression may be beneficial in cancer cachexia. We evaluated the muscle regenerative potential after acute injury in C26 colon carcinoma tumor-bearing mice and healthy controls. Our analyses confirmed that the delayed muscle regeneration observed in muscles form tumor-bearing mice was associated with a persistent local inflammation and Pax7 overexpression. Physical activity is known to exert positive effects on cachectic muscles. However, the mechanism by which a moderate voluntary exercise ameliorates muscle wasting is not fully elucidated. To verify if physical activity affects Pax7 expression, we hosted control and C26-bearing mice in wheel-equipped cages and we found that voluntary wheel running downregulated Pax7 expression in muscles from tumor-bearing mice. As expected, downregulation of Pax7 expression was associated with a rescue of muscle mass and fiber size. Our findings shed light on the molecular basis of the beneficial effect exerted by a moderate physical exercise on muscle stem cells in cancer cachexia. Furthermore, we propose voluntary exercise as a physiological tool to counteract the overexpression of Pax7 observed in cancer cachexia.

  11. Oscillatory brain activity in spontaneous and induced sleep stages in flies.

    Science.gov (United States)

    Yap, Melvyn H W; Grabowska, Martyna J; Rohrscheib, Chelsie; Jeans, Rhiannon; Troup, Michael; Paulk, Angelique C; van Alphen, Bart; Shaw, Paul J; van Swinderen, Bruno

    2017-11-28

    Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABA A agonist Gaboxadol. We find a transitional sleep stage associated with a 7-10 Hz oscillation in the central brain during spontaneous sleep. Oscillatory activity is also evident when we acutely activate sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila. In contrast, sleep following Gaboxadol exposure is characterized by low-amplitude LFPs, during which dFB-induced effects are suppressed. Sleep in flies thus appears to involve at least two distinct stages: increased oscillatory activity, particularly during sleep induction, followed by desynchronized or decreased brain activity.

  12. A gravimetric method for the measurement of total spontaneous activity in rats.

    Science.gov (United States)

    Biesiadecki, B J; Brand, P H; Koch, L G; Britton, S L

    1999-10-01

    Currently available methods for the measurement of spontaneous activity of laboratory animals require expensive, specialized equipment and may not be suitable for use in low light conditions with nocturnal species. We developed a gravimetric method that uses common laboratory equipment to quantify the total spontaneous activity of rats and is suitable for use in the dark. The rat in its home cage is placed on a top-loading electronic balance interfaced to a computer. Movements are recorded by the balance as changes in weight and transmitted to the computer at 10 Hz. Data are analyzed on-line to derive the absolute value of the difference in weight between consecutive samples, and the one-second average of the absolute values is calculated. The averages are written to file for off-line analysis and summed over the desired observation period to provide a measure of total spontaneous activity. The results of in vitro experiments demonstrated that: 1) recorded weight changes were not influenced by position of the weight on the bottom of the cage, 2) values recorded from a series of weight changes were not significantly different from the calculated values, 3) the constantly decreasing force exerted by a swinging pendulum placed on the balance was accurately recorded, 4) the measurement of activity was not influenced by the evaporation of a fluid such as urine, and 5) the method can detect differences in the activity of sleeping and waking rats over a 10-min period, as well as during 4-hr intervals recorded during active (night-time) and inactive (daytime) periods. These results demonstrate that this method provides an inexpensive, accurate, and noninvasive method to quantitate the spontaneous activity of small animals.

  13. Clone-derived human AF-amniotic fluid stem cells are capable of skeletal myogenic differentiation in vitro and in vivo.

    Science.gov (United States)

    Ma, Xiaorong; Zhang, Shengli; Zhou, Junmei; Chen, Baisong; Shang, Yafeng; Gao, Tongbing; Wang, Xue; Xie, Hua; Chen, Fang

    2012-08-01

    Stem cell-based therapy may be the most promising method to cure skeletal muscle degenerative diseases such as Duchenne muscular dystrophy (DMD) and trauma in the future. Human amniotic fluid is enriched with early-stage stem cells from developing fetuses and these cells have cardiomyogenic potential both in vitro and in vivo. In the present study, we investigated the characteristics of human amniotic fluid-derived AF-type stem (HAF-AFS) cells by flow cytometry, immunofluorescence staining, reverse-transcription polymerase chain reaction, and osteogenic and adipogenic differentiation analysis. After confirming the stemness of HAF-AFS cells, we tested whether HAF-AFS cells could differentiate into skeletal myogenic cells in vitro and incorporate into regenerating skeletal muscle in vivo. By temporary exposure to the DNA demethylation agent 5-aza-2'-deoxycytidine (5-Aza dC) or co-cultured with C2C12 myoblasts, HAF-AFS cells differentiated into skeletal myogenic cells, expressing skeletal myogenic cell-specific markers such as Desmin, Troponin I (Tn I) and α-Actinin. Four weeks after transplantation into cardiotoxin-injured and X-ray-irradiated tibialis anterior (TA) muscles of NOD/SCID mice, HAF-AFS cells survived, differentiated into myogenic precursor cells and fused with host myofibres. The findings that HAF-AFS cells differentiate into myogenic cells in vitro and incorporate in skeletal muscle regeneration in vivo hold the promise of HAF-AFS cell-based therapy for skeletal muscle degenerative diseases. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways.

    Science.gov (United States)

    Zanou, Nadège; Gailly, Philippe

    2013-11-01

    Adult skeletal muscle can regenerate in response to muscle damage. This ability is conferred by the presence of myogenic stem cells called satellite cells. In response to stimuli such as injury or exercise, these cells become activated and express myogenic regulatory factors (MRFs), i.e., transcription factors of the myogenic lineage including Myf5, MyoD, myogenin, and Mrf4 to proliferate and differentiate into myofibers. The MRF family of proteins controls the transcription of important muscle-specific proteins such as myosin heavy chain and muscle creatine kinase. Different growth factors are secreted during muscle repair among which insulin-like growth factors (IGFs) are the only ones that promote both muscle cell proliferation and differentiation and that play a key role in muscle regeneration and hypertrophy. Different isoforms of IGFs are expressed during muscle repair: IGF-IEa, IGF-IEb, or IGF-IEc (also known as mechano growth factor, MGF) and IGF-II. MGF is expressed first and is observed in satellite cells and in proliferating myoblasts whereas IGF-Ia and IGF-II expression occurs at the state of muscle fiber formation. Interestingly, several studies report the induction of MRFs in response to IGFs stimulation. Inversely, IGFs expression may also be regulated by MRFs. Various mechanisms are proposed to support these interactions. In this review, we describe the general process of muscle hypertrophy and regeneration and decipher the interactions between the two groups of factors involved in the process.

  15. Smad1/5/8 are myogenic regulators of murine and human mesoangioblasts

    NARCIS (Netherlands)

    Costamagna, D. (Domiziana); Quattrocelli, M. (Mattia); F.H.J. van Tienen; L. Umans (Lieve); De Coo, I.F.M. (Irineus F.M.); A. Zwijsen (An); D. Huylebroeck (Danny); Sampaolesi, M. (Maurilio)

    2016-01-01

    textabstractMesoangioblasts (MABs) are vessel-associated stem cells that express pericyte marker genes and participate in skeletal muscle regeneration. Molecular circuits that regulate the myogenic commitment of MABs are still poorly characterized. The critical role of bone morphogenetic protein

  16. Spontaneous high-gamma band activity reflects functional organization of auditory cortex in the awake macaque.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2012-06-07

    In the absence of sensory stimuli, spontaneous activity in the brain has been shown to exhibit organization at multiple spatiotemporal scales. In the macaque auditory cortex, responses to acoustic stimuli are tonotopically organized within multiple, adjacent frequency maps aligned in a caudorostral direction on the supratemporal plane (STP) of the lateral sulcus. Here, we used chronic microelectrocorticography to investigate the correspondence between sensory maps and spontaneous neural fluctuations in the auditory cortex. We first mapped tonotopic organization across 96 electrodes spanning approximately two centimeters along the primary and higher auditory cortex. In separate sessions, we then observed that spontaneous activity at the same sites exhibited spatial covariation that reflected the tonotopic map of the STP. This observation demonstrates a close relationship between functional organization and spontaneous neural activity in the sensory cortex of the awake monkey. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. [Cellular mechanism of the generation of spontaneous activity in gastric muscle].

    Science.gov (United States)

    Nakamura, Eri; Kito, Yoshihiko; Fukuta, Hiroyasu; Yanai, Yoshimasa; Hashitani, Hikaru; Yamamoto, Yoshimichi; Suzuki, Hikaru

    2004-03-01

    In gastric smooth muscles, interstitial cells of Cajal (ICC) might be the pacemaker cells of spontaneous activities since ICC are rich in mitochondria and are connected with smooth muscle cells via gap junctions. Several types of ICC are distributed widely in the stomach wall. A group of ICC distributed in the myenteric layer (ICC-MY) were the pacemaker cells of gastrointestinal smooth muscles. Pacemaker potentials were generated in ICC-MY, and the potentials were conducted to circular smooth muscles to trigger slow waves and also conducted to longitudinal muscles to form follower potentials. In circular muscle preparations, interstitial cells distributed within muscle bundles (ICC-IM) produced unitary potentials, which were conducted to circular muscles to form slow potentials by summation. In mutant mice lacking inositol trisphosphate (IP(3)) receptor, slow waves were absent in gastric smooth muscles. The generation of spontaneous activity was impaired by the inhibition of Ca(2+)-release from internal stores through IP(3) receptors, inhibition of mitochondrial Ca(2+)-handling with proton pump inhibitors, and inhibition of ATP-sensitive K(+)-channels at the mitochondrial inner membrane. These results suggested that mitochondrial Ca(2+)-handling causes the generation of spontaneous activity in pacemaker cells. Possible involvement of protein kinase C (PKC) in the Ca(2+) signaling system was also suggested.

  18. Differential expression of myogenic regulatory genes and Msx-1 during dedifferentiation and redifferentiation of regenerating amphibian limbs.

    Science.gov (United States)

    Simon, H G; Nelson, C; Goff, D; Laufer, E; Morgan, B A; Tabin, C

    1995-01-01

    An amputated limb of an adult urodele amphibian is capable of undergoing regeneration. The new structures form from an undifferentiated mass of cells called the regenerative blastema. The cells of the blastema are believed to derive from differentiated tissues of the adult limb. However, the exact source of these cells and the process by which they undergo dedifferentiation are poorly understood. In order to elucidate the molecular and cellular basis for dedifferentiation we isolated a number of genes which are potential regulators of the process. These include Msx-1, which is believed to support the undifferentiated and proliferative state of cells in the embryonic limb bud; and two members of the myogenic regulatory gene family, MRF-4 and Myf-5, which are expressed in differentiated muscle and regulate muscle-specific gene activity. As anticipated, we find that Msx-1 is strongly up-regulated during the initiation of regeneration. It remains expressed throughout regeneration but is not found in the fully regenerated limb. The myogenic gene MRF-4 has the reverse expression pattern. It is expressed in adult limb muscle, is rapidly shut off in early regenerative blastemas, and is only reexpressed at the completion of regeneration. These kinetics are paralleled by those of a muscle-specific Myosin gene. In contrast Myf-5, a second member of the myogenic gene family, continues to be expressed throughout the regenerative process. Thus, MRF-4 and Myf-5 are likely to play distinct roles during regeneration. MRF-4 may directly regulate muscle phenotype and as such its repression may be a key event in dedifferentiation.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Efffects of vigabatrin on spontaneous locomotor activity of rats

    NARCIS (Netherlands)

    Bouwman, B.M.; Rijn, C.M. van; Willems-van Bree, P.C.M.; Coenen, A.M.L.

    2003-01-01

    Effects of vigibatrin (saline, 125, 250, or 500 mg/kg i.p.) on spontaneous locomotor activity in Wistar rats were investigated. There was a dose dependent decrease in amount of locomotion for doses up to 250 mg/kg. This decrease was measurable 2-4 hours after injection and still became more

  20. Promotion of Myogenic Maturation by Timely Application of Electric Field Along the Topographical Alignment.

    Science.gov (United States)

    Ko, Ung Hyun; Park, Sukhee; Bang, Hyunseung; Kim, Mina; Shin, Hyunjun; Shin, Jennifer H

    2018-05-01

    Engineered muscular substitutes can restore the impaired muscle functions when integrated properly into the host tissue. To generate functional muscles with sufficient contractility at the site of transplant, the in vitro construction of fully differentiated muscle fibers would be desired. Many previous reports have identified either topographical alignment or electrical stimulation as an effective tool to promote myogenic differentiation. However, optimization of spatial and temporal arrangement of these two physical cues for better differentiation and maturation of skeletal muscles has not been investigated. In this article, we introduce a novel cell culture system that allows simultaneous application of these two independent directional cues at both orthogonal and parallel arrangements. We then show that the parallel arrangement of the aligned topography and the electric field synergistically facilitates better differentiation and maturation of C2C12, generating myotubes with more fused nuclei. Addition of the electric stimulation at the late stage of myogenic differentiation is found to further improve cell fusion to form multinucleate myotubes through a phosphatidylinositol-3-OH-kinase-dependent pathway. As such, we successfully demonstrated that the combined stimulation of topographical and electrical cues could effectively enhance both myogenic differentiation and maturation in a temporal and orientation-dependent manner, providing the basis for therapeutic strategies for regenerative tissue engineering.

  1. Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes)

    International Nuclear Information System (INIS)

    Ballesteros, M.L.; Durando, P.E.; Nores, M.L.; Diaz, M.P.; Bistoni, M.A.; Wunderlin, D.A.

    2009-01-01

    We assessed changes in spontaneous swimming activity and acetylcholinesterase (AchE) activity of Jenynsia multidentata exposed to Endosulfan (EDS). Females of J. multidentata were exposed to 0.072 and 1.4 μg L -1 EDS. Average speed and movement percentage were recorded during 48 h. We also exposed females to EDS at five concentrations between 0.072 and 1.4 μg L -1 during 24 h, and measured the AchE activity in brain and muscle. At 0.072 μg L -1 EDS swimming motility decreased relative to the control group after 45 h, while at 1.4 μg L -1 EDS swimming motility decreased after 24 h. AchE activity significantly decreased in muscle when J. multidentata were exposed to EDS above 0.072 μg L -1 , while no significant changes were observed in brain. Thus, changes in swimming activity and AchE activity in muscle are good biomarkers of exposure to EDS in J. multidentata. - This work reports changes observed in spontaneous swimming activity and AchE activity of Jenynsia multidentata exposed to sublethal concentrations of Endosulfan.

  2. Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes)

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, M.L. [Facultad de Ciencias Exactas, Fisicas y Naturales, Catedra Diversidad Animal II, Universidad Nacional de Cordoba, Av. Velez Sarsfield 299, 5000 Cordoba (Argentina); Durando, P.E. [Facultad de Ciencias Exactas, Fisicas y Naturales, Departamento de Biologia, Catedra de Fisiologia Animal, Universidad Nacional de San Juan, Complejo ' Islas Malvinas' , Av. Jose I. de la Roza y Meglioli, Rivadavia, San Juan (Argentina); Nores, M.L. [Facultad de Ciencias Medicas, Universidad Nacional de Cordoba-CONICET, Ciudad Universitaria, Cordoba (Argentina); Diaz, M.P. [Facultad de Ciencias Medicas, Catedra de Estadistica y Bioestadistica, Escuela de Nutricion, Universidad Nacional de Cordoba, Pabellon Chile, Ciudad Universitaria, 5000 Cordoba (Argentina); Bistoni, M.A., E-mail: mbistoni@com.uncor.ed [Facultad de Ciencias Exactas, Fisicas y Naturales, Catedra Diversidad Animal II, Universidad Nacional de Cordoba, Av. Velez Sarsfield 299, 5000 Cordoba (Argentina); Wunderlin, D.A. [Facultad de Ciencias Quimicas, Dto. Bioquimica Clinica-CIBICI, Universidad Nacional de Cordoba-CONICET, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2009-05-15

    We assessed changes in spontaneous swimming activity and acetylcholinesterase (AchE) activity of Jenynsia multidentata exposed to Endosulfan (EDS). Females of J. multidentata were exposed to 0.072 and 1.4 mug L{sup -1} EDS. Average speed and movement percentage were recorded during 48 h. We also exposed females to EDS at five concentrations between 0.072 and 1.4 mug L{sup -1} during 24 h, and measured the AchE activity in brain and muscle. At 0.072 mug L{sup -1} EDS swimming motility decreased relative to the control group after 45 h, while at 1.4 mug L{sup -1} EDS swimming motility decreased after 24 h. AchE activity significantly decreased in muscle when J. multidentata were exposed to EDS above 0.072 mug L{sup -1}, while no significant changes were observed in brain. Thus, changes in swimming activity and AchE activity in muscle are good biomarkers of exposure to EDS in J. multidentata. - This work reports changes observed in spontaneous swimming activity and AchE activity of Jenynsia multidentata exposed to sublethal concentrations of Endosulfan.

  3. The Tocotrienol-Rich Fraction Is Superior to Tocopherol in Promoting Myogenic Differentiation in the Prevention of Replicative Senescence of Myoblasts.

    Directory of Open Access Journals (Sweden)

    Shy Cian Khor

    Full Text Available Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF and α-tocopherol (ATF in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal expression, myogenic differentiation and myogenic regulatory factors (MRFs expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts.

  4. Role of T-type calcium channels in myogenic tone of skeletal muscle resistance arteries

    DEFF Research Database (Denmark)

    VanBavel, Ed; Sorop, Oana; Andreasen, Ditte

    2002-01-01

    T-type calcium channels may be involved in the maintenance of myogenic tone. We tested their role in isolated rat cremaster arterioles obtained after CO(2) anesthesia and decapitation. Total RNA was analyzed by RT-PCR and Southern blotting for calcium channel expression. We observed expression...... of voltage-operated calcium (Ca(V)) channels Ca(V)3.1 (T-type), Ca(V)3.2 (T-type), and Ca(V)1.2 (L-type) in cremaster arterioles (n = 3 rats). Amplification products were observed only in the presence of reverse transcriptase and cDNA. Concentration-response curves of the relatively specific L-type blocker......); K(+) -5.4 +/- 0.3 (n = 4); all log(IC(50)) P maintenance of myogenic tone in rat cremaster muscle arterioles....

  5. Changes in spontaneous brain activity in early Parkinson's disease.

    Science.gov (United States)

    Yang, Hong; Zhou, Xiaohong Joe; Zhang, Min-Ming; Zheng, Xu-Ning; Zhao, Yi-Lei; Wang, Jue

    2013-08-09

    Resting state brain activity can provide valuable insights into the pathophysiology of Parkinson's disease (PD). The purpose of the present study was (a) to investigate abnormal spontaneous neuronal activity in early PD patients using resting-state functional MRI (fMRI) with a regional homogeneity (ReHo) method and (b) to demonstrate the potential of using changes in abnormal spontaneous neuronal activity for monitoring the progression of PD during its early stages. Seventeen early PD patients were assessed with the Unified Parkinson's Disease Rating Scale (UPDRS), the Hoehn and Yahr disability scale and the Mini-mental State Examination (MMSE) were compared with seventeen gender- and age-matched healthy controls. All subjects underwent MRI scans using a 1.5T General Electric Signa Excite II scanner. The MRI scan protocol included whole-brain volumetric imaging using a 3D inversion recovery prepared (IR-Prep) fast spoiled gradient-echo pulse sequence and 2D multi-slice (22 axial slices covering the whole brain) resting-state fMRI using an echo planar imaging (EPI) sequence. Images were analyzed in SPM5 together with a ReHo algorithm using the in-house software program REST. A corrected threshold of pbrain regions, including the left cerebellum, left parietal lobe, right middle temporal lobe, right sub-thalamic nucleus areas, right superior frontal gyrus, middle frontal gyrus (MFG), right inferior parietal lobe (IPL), right precuneus lobe, left MFG and left IPL. Additionally, significantly reduced ReHo was also observed in the early PD patients in the following brain regions: the left putamen, left inferior frontal gyrus, right hippocampus, right anterior cingulum, and bilateral lingual gyrus. Moreover, in PD patients, ReHo in the left putamen was negatively correlated with the UPDRS scores (r=-0.69). These results indicate that the abnormal resting state spontaneous brain activity associated with patients with early PD can be revealed by Reho analysis. Copyright

  6. Dopamine Attenuates Ketamine-Induced Neuronal Apoptosis in the Developing Rat Retina Independent of Early Synchronized Spontaneous Network Activity.

    Science.gov (United States)

    Dong, Jing; Gao, Lingqi; Han, Junde; Zhang, Junjie; Zheng, Jijian

    2017-07-01

    Deprivation of spontaneous rhythmic electrical activity in early development by anesthesia administration, among other interventions, induces neuronal apoptosis. However, it is unclear whether enhancement of neuronal electrical activity attenuates neuronal apoptosis in either normal development or after anesthesia exposure. The present study investigated the effects of dopamine, an enhancer of spontaneous rhythmic electrical activity, on ketamine-induced neuronal apoptosis in the developing rat retina. TUNEL and immunohistochemical assays indicated that ketamine time- and dose-dependently aggravated physiological and ketamine-induced apoptosis and inhibited early-synchronized spontaneous network activity. Dopamine administration reversed ketamine-induced neuronal apoptosis, but did not reverse the inhibitory effects of ketamine on early synchronized spontaneous network activity despite enhancing it in controls. Blockade of D1, D2, and A2A receptors and inhibition of cAMP/PKA signaling partially antagonized the protective effect of dopamine against ketamine-induced apoptosis. Together, these data indicate that dopamine attenuates ketamine-induced neuronal apoptosis in the developing rat retina by activating the D1, D2, and A2A receptors, and upregulating cAMP/PKA signaling, rather than through modulation of early synchronized spontaneous network activity.

  7. Skeletal Muscle Estrogen Receptor Activation in Response to Eccentric Exercise Up-Regulates Myogenic-Related Gene Expression Independent of Differing Serum Estradiol Levels Occurring during the Human Menstrual Cycle.

    Science.gov (United States)

    Haines, Mackenzie; McKinley-Barnard, Sarah K; Andre, Thomas L; Gann, Josh J; Hwang, Paul S; Willoughby, Darryn S

    2018-03-01

    This study sought to determine if the differences in serum estradiol we have previously observed to occur during the mid-follicular (MF) and mid-luteal (ML) phases of the female menstrual cycle could be attributed to estrogen-induced receptor activation and subsequent effects on myogenic-related genes which may otherwise impact muscle regeneration in response to eccentric exercise. Twenty-two physically-active females (20.9 ± 1.4 years, 63.5 ± 9.0 kg, 1.65 ± 0.08 m) underwent an eccentric exercise bout of the knee extensors during the MF and ML phases of their 28-day menstrual cycle. Prior to (PRE), at 6 (6HRPOST), and 24 (24HRPOST) hours post-exercise for each session, participants had muscle biopsies obtained. Skeletal muscle estradiol and estrogen receptor-α (ER-α) content and ER-DNA binding were determined with ELISA. Real-time PCR was used to assess ER-α, Myo-D, and cyclin D1 mRNA expression. Data were analyzed utilizing a 2 x 3 repeated measures univariate analyses of variance (ANOVA) for each criterion variable (p ≤ .05). Skeletal muscle estradiol levels were not significantly impacted by either menstrual phase (p > 0.05); however, both ER-α mRNA and protein were significantly increased during MF (p < 0.05). ER-DNA binding and Myo-D mRNA expression increased significantly in both menstrual phases in response to exercise but were not different from one another; however, cyclin D1 mRNA expression was significantly greater during MF. This study demonstrates that skeletal muscle ER-α activation in response to eccentric exercise up-regulates myogenic-related gene expression independent of serum estradiol levels occurring during the human menstrual cycle.

  8. Spontaneous and Evoked Activity from Murine Ventral Horn Cultures on Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Bryan J. Black

    2017-09-01

    Full Text Available Motor neurons are the site of action for several neurological disorders and paralytic toxins, with cell bodies located in the ventral horn (VH of the spinal cord along with interneurons and support cells. Microelectrode arrays (MEAs have emerged as a high content assay platform for mechanistic studies and drug discovery. Here, we explored the spontaneous and evoked electrical activity of VH cultures derived from embryonic mouse spinal cord on multi-well plates of MEAs. Primary VH cultures from embryonic day 15–16 mice were characterized by expression of choline acetyltransferase (ChAT by immunocytochemistry. Well resolved, all-or-nothing spontaneous spikes with profiles consistent with extracellular action potentials were observed after 3 days in vitro, persisting with consistent firing rates until at least day in vitro 19. The majority of the spontaneous activity consisted of tonic firing interspersed with coordinated bursting across the network. After 5 days in vitro, spike activity was readily evoked by voltage pulses where a minimum amplitude and duration required for excitation was 300 mV and 100 μs/phase, respectively. We characterized the sensitivity of spontaneous and evoked activity to a host of pharmacological agents including AP5, CNQX, strychnine, ω-agatoxin IVA, and botulinum neurotoxin serotype A (BoNT/A. These experiments revealed sensitivity of the cultured VH to both agonist and antagonist compounds in a manner consistent with mature tissue derived from slices. In the case of BoNT/A, we also demonstrated intoxication persistence over an 18-day period, followed by partial intoxication recovery induced by N- and P/Q-type calcium channel agonist GV-58. In total, our findings suggest that VH cultures on multi-well MEA plates may represent a moderate throughput, high content assay for performing mechanistic studies and for screening potential therapeutics pertaining to paralytic toxins and neurological disorders.

  9. Inhibitory effects of silodosin on the bladder mechanosensitive afferent activities and their relation with bladder myogenic contractions in male rats with bladder outlet obstruction.

    Science.gov (United States)

    Aizawa, Naoki; Watanabe, Daiji; Fukuhara, Hiroshi; Fujimura, Tetsuya; Kume, Haruki; Homma, Yukio; Igawa, Yasuhiko

    2018-03-06

    We investigated the effects of silodosin, an α1A-adrenoceptor (AR) antagonist, on bladder function, especially on non-voiding contractions (NVCs), in a male rat model of bladder outlet obstruction (BOO) by evaluating cystometry (CMG) findings and bladder mechanosensitive single-unit afferent activities (SAAs), related with microcontractions, which may be similar with NVCs and to be of myogenic origin, in the rat model. BOO was created by partial ligation of the posterior urethra. At 4 days after surgery for BOO, an osmotic pump filled with silodosin (0.12 mg/kg/day) or its vehicle was subcutaneously implanted. At 10 days after surgery, CMG and SAAs measurements were taken under conscious and urethane-anesthetized conditions, respectively. The SAAs of Aδ- and C-fibers, which were identified by electrical stimulation of the pelvic nerve and by bladder distention, and intravesical pressure were recorded during constant bladder-filling with saline. Microcontractions were divided into three phases: "ascending," "descending," and "stationary." The silodosin-treated group showed a smaller number of NVCs in CMG measurements and lower SAAs of both Aδ- and C-fibers than the vehicle-treated group during bladder-filling. Moreover, in the vehicle-treated groups, the SAAs of both fibers for the ascending phase of microcontractions were significantly higher than those for the other two phases. On the contrary, no significant change was found between any of these three phases in the silodosin-treated group. The present results suggest that silodosin inhibits the SAAs of mechanosensitive Aδ- and C-fibers at least partly due to suppressing myogenic bladder contractions in male BOO rats. © 2018 Wiley Periodicals, Inc.

  10. Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling Miyoshi Myopathy in vitro.

    Directory of Open Access Journals (Sweden)

    Akihito Tanaka

    Full Text Available The establishment of human induced pluripotent stem cells (hiPSCs has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has faced obstacles, namely, low efficiency and/or poor reproducibility. Here, we report the rapid, efficient, and reproducible differentiation of hiPSCs into mature myocytes. We demonstrated that inducible expression of myogenic differentiation1 (MYOD1 in immature hiPSCs for at least 5 days drives cells along the myogenic lineage, with efficiencies reaching 70-90%. Myogenic differentiation driven by MYOD1 occurred even in immature, almost completely undifferentiated hiPSCs, without mesodermal transition. Myocytes induced in this manner reach maturity within 2 weeks of differentiation as assessed by marker gene expression and functional properties, including in vitro and in vivo cell fusion and twitching in response to electrical stimulation. Miyoshi Myopathy (MM is a congenital distal myopathy caused by defective muscle membrane repair due to mutations in DYSFERLIN. Using our induced differentiation technique, we successfully recreated the pathological condition of MM in vitro, demonstrating defective membrane repair in hiPSC-derived myotubes from an MM patient and phenotypic rescue by expression of full-length DYSFERLIN (DYSF. These findings not only facilitate the pathological investigation of MM, but could potentially be applied in modeling of other human muscular diseases by using patient-derived hiPSCs.

  11. Efficient and Reproducible Myogenic Differentiation from Human iPS Cells: Prospects for Modeling Miyoshi Myopathy In Vitro

    Science.gov (United States)

    Tanaka, Akihito; Woltjen, Knut; Miyake, Katsuya; Hotta, Akitsu; Ikeya, Makoto; Yamamoto, Takuya; Nishino, Tokiko; Shoji, Emi; Sehara-Fujisawa, Atsuko; Manabe, Yasuko; Fujii, Nobuharu; Hanaoka, Kazunori; Era, Takumi; Yamashita, Satoshi; Isobe, Ken-ichi; Kimura, En; Sakurai, Hidetoshi

    2013-01-01

    The establishment of human induced pluripotent stem cells (hiPSCs) has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has faced obstacles, namely, low efficiency and/or poor reproducibility. Here, we report the rapid, efficient, and reproducible differentiation of hiPSCs into mature myocytes. We demonstrated that inducible expression of myogenic differentiation1 (MYOD1) in immature hiPSCs for at least 5 days drives cells along the myogenic lineage, with efficiencies reaching 70–90%. Myogenic differentiation driven by MYOD1 occurred even in immature, almost completely undifferentiated hiPSCs, without mesodermal transition. Myocytes induced in this manner reach maturity within 2 weeks of differentiation as assessed by marker gene expression and functional properties, including in vitro and in vivo cell fusion and twitching in response to electrical stimulation. Miyoshi Myopathy (MM) is a congenital distal myopathy caused by defective muscle membrane repair due to mutations in DYSFERLIN. Using our induced differentiation technique, we successfully recreated the pathological condition of MM in vitro, demonstrating defective membrane repair in hiPSC-derived myotubes from an MM patient and phenotypic rescue by expression of full-length DYSFERLIN (DYSF). These findings not only facilitate the pathological investigation of MM, but could potentially be applied in modeling of other human muscular diseases by using patient-derived hiPSCs. PMID:23626698

  12. A Comparative Study to Evaluate Myogenic Differentiation Potential of Human Chorion versus Umbilical Cord Blood-derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Bana, Nikoo; Sanooghi, Davood; Soleimani, Mansoureh; Hayati Roodbari, Nasim; Alavi Moghaddam, Sepideh; Joghataei, Mohammad Taghi; Sayahpour, Forough Azam; Faghihi, Faezeh

    2017-08-01

    Musculodegenerative diseases threaten the life of many patients in the world. Since drug administration is not efficient in regeneration of damaged tissues, stem cell therapy is considered as a good strategy to restore the lost cells. Since the efficiency of myogenic differentiation potential of human Chorion- derived Mesenchymal Stem Cells (C-MSCs) has not been addressed so far; we set out to evaluate myogenic differentiation property of these cells in comparison with Umbilical Cord Blood- derived Mesenchymal Stem Cells (UCB-MSCs) in the presence of 5-azacytidine. To do that, neonate placenta Umbilical Cord Blood were transferred to the lab. After characterization of the isolated cells using flowcytometry and multilineage differentiation capacity, the obtained Mesenchymal Stem Cells were cultured in DMEM/F12 supplemented with 2% FBS and 10μM of 5-azacytidine to induce myogenic differentiation. Real-time PCR and immunocytochemistry were used to assess the myogenic properties of the cells. Our data showed that C-MSCs and UCB-MSCs were spindle shape in morphology. They were positive for CD90, CD73 and CD44 antigens, and negative for hematopoietic markers. They also differentiated into osteoblast and adipoblast lineages. Real-time PCR results showed that the cells could express MyoD, desmin and α-MHC at the end of the first week (P<0.05). No significant upregulation was detected in the expression of GATA-4 in both groups. Immunocytochemical staining revealed the expression of Desmin, cTnT and α-MHC. Results showed that these cells are potent to differentiate into myoblast- like cells. An upregulation in the expression of some myogenic markers (desmin, α- MHC) was observed in C-MSCs in comparison with UCB-MSCs. Copyright © 2017. Published by Elsevier Ltd.

  13. Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy.

    Science.gov (United States)

    Fry, Christopher S; Kirby, Tyler J; Kosmac, Kate; McCarthy, John J; Peterson, Charlotte A

    2017-01-05

    Satellite cells, the predominant stem cell population in adult skeletal muscle, are activated in response to hypertrophic stimuli and give rise to myogenic progenitor cells (MPCs) within the extracellular matrix (ECM) that surrounds myofibers. This ECM is composed largely of collagens secreted by interstitial fibrogenic cells, which influence satellite cell activity and muscle repair during hypertrophy and aging. Here we show that MPCs interact with interstitial fibrogenic cells to ensure proper ECM deposition and optimal muscle remodeling in response to hypertrophic stimuli. MPC-dependent ECM remodeling during the first week of a growth stimulus is sufficient to ensure long-term myofiber hypertrophy. MPCs secrete exosomes containing miR-206, which represses Rrbp1, a master regulator of collagen biosynthesis, in fibrogenic cells to prevent excessive ECM deposition. These findings provide insights into how skeletal stem and progenitor cells interact with other cell types to actively regulate their extracellular environments for tissue maintenance and adaptation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Modifications of spontaneous oculomotor activity in microgravitational conditions

    Science.gov (United States)

    Kornilova, L. N.; Goncharenko, A. M.; Polyakov, V. V.; Grigorova, V.; Manev, A.

    Investigations on spontaneous oculomotor activity were carried out prior to and after (five cosmonauts) and during space flight (two cosmonauts) on the 3rd, 5th and 164th days of the space flight. Recording of oculomotor activity was carried out by electrooculography on automated data acquisition and processing system "Zora" based on personal computers. During the space flight and after it all the cosmonauts with the eyes closed or open and dark-goggled showed an essential increase of the movements' amplitude when removing the eyes into the extreme positions especially in a vertical direction, occurrence of correcting saccadic movements (or nystagmus), an increase in time of fixing reactions.

  15. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available BACKGROUND: The neurophysiological mechanisms underlying tinnitus perception are not well understood. Surprisingly, there have been no group studies comparing abnormalities in ongoing, spontaneous neuronal activity in individuals with and without tinnitus perception. METHODS AND FINDINGS: Here, we show that the spontaneous neuronal activity of a group of individuals with tinnitus (n = 17 is characterised by a marked reduction in alpha (8-12 Hz power together with an enhancement in delta (1.5-4 Hz as compared to a normal hearing control group (n = 16. This pattern was especially pronounced for temporal regions. Moreover, correlations with tinnitus-related distress revealed strong associations with this abnormal spontaneous activity pattern, particularly in right temporal and left frontal areas. Overall, effects were stronger for the alpha than for the delta frequency band. A data stream of 5 min, recorded with a whole-head neuromagnetometer under a resting condition, was sufficient to extract the marked differences. CONCLUSIONS: Despite some limitations, there are arguments that the regional pattern of abnormal spontaneous activity we found could reflect a tinnitus-related cortical network. This finding, which suggests that a neurofeedback approach could reduce the adverse effects of this disturbing condition, could have important implications for the treatment of tinnitus.

  16. Recruitment of Perisomatic Inhibition during Spontaneous Hippocampal Activity In Vitro.

    Directory of Open Access Journals (Sweden)

    Anna Beyeler

    Full Text Available It was recently shown that perisomatic GABAergic inhibitory postsynaptic potentials (IPSPs originating from basket and chandelier cells can be recorded as population IPSPs from the hippocampal pyramidal layer using extracellular electrodes (eIPSPs. Taking advantage of this approach, we have investigated the recruitment of perisomatic inhibition during spontaneous hippocampal activity in vitro. Combining intracellular and extracellular recordings from pyramidal cells and interneurons, we confirm that inhibitory signals generated by basket cells can be recorded extracellularly, but our results suggest that, during spontaneous activity, eIPSPs are mostly confined to the CA3 rather than CA1 region. CA3 eIPSPs produced the powerful time-locked inhibition of multi-unit activity expected from perisomatic inhibition. Analysis of the temporal dynamics of spike discharges relative to eIPSPs suggests significant but moderate recruitment of excitatory and inhibitory neurons within the CA3 network on a 10 ms time scale, within which neurons recruit each other through recurrent collaterals and trigger powerful feedback inhibition. Such quantified parameters of neuronal interactions in the hippocampal network may serve as a basis for future characterisation of pathological conditions potentially affecting the interactions between excitation and inhibition in this circuit.

  17. Where's the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network.

    Directory of Open Access Journals (Sweden)

    Christoph Hartmann

    2015-12-01

    Full Text Available Even in the absence of sensory stimulation the brain is spontaneously active. This background "noise" seems to be the dominant cause of the notoriously high trial-to-trial variability of neural recordings. Recent experimental observations have extended our knowledge of trial-to-trial variability and spontaneous activity in several directions: 1. Trial-to-trial variability systematically decreases following the onset of a sensory stimulus or the start of a motor act. 2. Spontaneous activity states in sensory cortex outline the region of evoked sensory responses. 3. Across development, spontaneous activity aligns itself with typical evoked activity patterns. 4. The spontaneous brain activity prior to the presentation of an ambiguous stimulus predicts how the stimulus will be interpreted. At present it is unclear how these observations relate to each other and how they arise in cortical circuits. Here we demonstrate that all of these phenomena can be accounted for by a deterministic self-organizing recurrent neural network model (SORN, which learns a predictive model of its sensory environment. The SORN comprises recurrently coupled populations of excitatory and inhibitory threshold units and learns via a combination of spike-timing dependent plasticity (STDP and homeostatic plasticity mechanisms. Similar to balanced network architectures, units in the network show irregular activity and variable responses to inputs. Additionally, however, the SORN exhibits sequence learning abilities matching recent findings from visual cortex and the network's spontaneous activity reproduces the experimental findings mentioned above. Intriguingly, the network's behaviour is reminiscent of sampling-based probabilistic inference, suggesting that correlates of sampling-based inference can develop from the interaction of STDP and homeostasis in deterministic networks. We conclude that key observations on spontaneous brain activity and the variability of neural

  18. Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-κB signaling pathway and myoblast-derived tumor necrosis factor-α.

    Directory of Open Access Journals (Sweden)

    Yuko Ono

    Full Text Available Circulating lipopolysaccharide (LPS concentrations are often elevated in patients with sepsis or with various endogenous diseases that are associated with metabolic endotoxemia. Involuntary loss of skeletal muscle, termed muscle wasting, is commonly observed in these conditions, suggesting that circulating LPS might play an essential role in its development. Although impairment of muscle regeneration is an important determinant of skeletal muscle wasting, it is unclear whether LPS affects this process and, if so, by what mechanism. Here, we used the C2C12 myoblast cell line to investigate the effects of LPS on myogenesis.C2C12 myoblasts were grown to 80% confluence and induced to differentiate in the absence or presence of LPS (0.1 or 1 μg/mL; TAK-242 (1 μM, a specific inhibitor of Toll-like receptor 4 (TLR4 signaling; and a tumor necrosis factor (TNF-α neutralizing antibody (5 μg/mL. Expression of a skeletal muscle differentiation marker (myosin heavy chain II, two essential myogenic regulatory factors (myogenin and MyoD, and a muscle negative regulatory factor (myostatin was analyzed by western blotting. Nuclear factor-κB (NF-κB DNA-binding activity was measured using an enzyme-linked immunosorbent assay.LPS dose-dependently and significantly decreased the formation of multinucleated myotubes and the expression of myosin heavy chain II, myogenin, and MyoD, and increased NF-κB DNA-binding activity and myostatin expression. The inhibitory effect of LPS on myogenic differentiation was reversible, suggesting that it was not caused by nonspecific toxicity. Both TAK-242 and anti-TNF-α reduced the LPS-induced increase in NF-κB DNA-binding activity, downregulation of myogenic regulatory factors, and upregulation of myostatin, thereby partially rescuing the impairment of myogenesis.Our data suggest that LPS inhibits myogenic differentiation via a TLR4-NF-κB-dependent pathway and an autocrine/paracrine TNF-α-induced pathway. These pathways

  19. Engraftment potential of dermal fibroblasts following in vivo myogenic conversion in immunocompetent dystrophic skeletal muscle

    Directory of Open Access Journals (Sweden)

    Lindsey A Muir

    2014-01-01

    Full Text Available Autologous dermal fibroblasts (dFbs are promising candidates for enhancing muscle regeneration in Duchenne muscular dystrophy (DMD due to their ease of isolation, immunological compatibility, and greater proliferative potential than DMD satellite cells. We previously showed that mouse fibroblasts, after MyoD-mediated myogenic reprogramming in vivo, engraft in skeletal muscle and supply dystrophin. Assessing the therapeutic utility of this system requires optimization of conversion and transplantation conditions and quantitation of engraftment so that these parameters can be correlated with possible functional improvements. Here, we derived dFbs from transgenic mice carrying mini-dystrophin, transduced them by lentivirus carrying tamoxifen-inducible MyoD, and characterized their myogenic and engraftment potential. After cell transplantation into the muscles of immunocompetent dystrophic mdx4cv mice, tamoxifen treatment drove myogenic conversion and fusion into myofibers that expressed high levels of mini-dystrophin. Injecting 50,000 cells/µl (1 × 106 total cells resulted in a peak of ∼600 mini-dystrophin positive myofibers in tibialis anterior muscle single cross-sections. However, extensor digitorum longus muscles with up to 30% regional engraftment showed no functional improvements; similar limitations were obtained with whole muscle mononuclear cells. Despite the current lack of physiological improvement, this study suggests a viable initial strategy for using a patient-accessible dermal cell population to enhance skeletal muscle regeneration in DMD.

  20. The wiring of developing sensory circuits - from patterned spontaneous activity to mechanisms of synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Alexandra Helen Leighton

    2016-09-01

    Full Text Available In order to accurately process incoming sensory stimuli, neurons must be organized into functional networks, with both genetic and environmental factors influencing the precise arrangement of connections between cells. Teasing apart the relative contributions of molecular guidance cues, spontaneous activity and visual experience during this maturation is on-going. During development of the sensory system, the first, rough organization of connections is created by molecular factors. These connections are then modulated by the intrinsically generated activity of neurons, even before the senses have become operational. Spontaneous waves of depolarisations sweep across the nervous system, placing them in a prime position to strengthen correct connections and weaken others, shaping synapses into a useful network. A large body of work now supports the idea that, rather than being a mere side-effect of the system, spontaneous activity actually contains information which readies the nervous system so that, as soon as the senses become active, sensory information can be utilized by the animal. An example is the neonatal mouse. As soon as the eyelids first open, neurons in the cortex respond to visual information without the animal having previously encountered structured sensory input (Cang et al., 2005a; Ko et al., 2013; Rochefort et al., 2011; Zhang et al., 2012. In vivo imaging techniques have advanced considerably, allowing observation of the natural activity in the brain of living animals down to the level of the individual synapse. New (optogenetic methods make it possible to subtly modulate the spatio-temporal properties of activity, aiding our understanding of how these characteristics relate to the function of spontaneous activity. Such experiments have had a huge impact on our knowledge by permitting direct testing of ideas about the plasticity mechanisms at play in the intact system, opening up a provocative range of fresh questions. Here, we

  1. Copper is an endogenous modulator of neural circuit spontaneous activity.

    Science.gov (United States)

    Dodani, Sheel C; Firl, Alana; Chan, Jefferson; Nam, Christine I; Aron, Allegra T; Onak, Carl S; Ramos-Torres, Karla M; Paek, Jaeho; Webster, Corey M; Feller, Marla B; Chang, Christopher J

    2014-11-18

    For reasons that remain insufficiently understood, the brain requires among the highest levels of metals in the body for normal function. The traditional paradigm for this organ and others is that fluxes of alkali and alkaline earth metals are required for signaling, but transition metals are maintained in static, tightly bound reservoirs for metabolism and protection against oxidative stress. Here we show that copper is an endogenous modulator of spontaneous activity, a property of functional neural circuitry. Using Copper Fluor-3 (CF3), a new fluorescent Cu(+) sensor for one- and two-photon imaging, we show that neurons and neural tissue maintain basal stores of loosely bound copper that can be attenuated by chelation, which define a labile copper pool. Targeted disruption of these labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the spatiotemporal properties of spontaneous activity in developing hippocampal and retinal circuits. The data identify an essential role for copper neuronal function and suggest broader contributions of this transition metal to cell signaling.

  2. In ovo feeding of creatine pyruvate alters energy reserves, satellite cell mitotic activity and myogenic gene expression of breast muscle in embryos and neonatal broilers.

    Science.gov (United States)

    Zhao, M M; Gao, T; Zhang, L; Li, J L; Lv, P A; Yu, L L; Gao, F; Zhou, G H

    2017-09-01

    We investigated the effects of in ovo feeding (IOF) of creatine pyruvate (CrPyr) on energy reserves, satellite cell mitotic activity (SCMA) and myogenic gene expression in breast muscle of embryos and neonatal broilers. A total of 960 eggs were randomly allocated into three treatments: 1) non-injected control group, 2) saline group injected with 0.6 mL of physiological saline (0.75%), and 3) CrPyr group injected with 0.6 mL of physiological saline (0.75%) containing 12 mg CrPyr/egg at 17.5 d of incubation. After hatching, a total of 120 male chicks were randomly assigned to each treatment group, with eight replicate sets per group. Selected chicks had body BW close to the average of their pooled group. Our results showed that the total and relative breast muscle weights of broilers subjected to CrPyr treatment were higher than those in the control and saline groups on 19 d of incubation (19 E), the day of hatch, 3 and 7 d post-hatch (P creatine concentrations on 19 E, the day of hatch and 3 d post-hatch, the same treatment increased phosphocreatine concentrations on 19 E. Broilers in the CrPyr group showed higher expression of myogenic differentiation 1 (MyoD) (P < 0.05), myogenin and paired box 7 (Pax7), as well as higher index of SCMA on 3 d post-hatch. However, myostatin mRNA expression in CrPyr-treated broilers was down-regulated on 3 d post-hatch (P < 0.05). These results indicated that IOF of CrPyr increased energy reserves of embryos and SCMA of broilers on 3 d post-hatch, which led to enhanced muscle growth in the late embryos and neonatal broilers. Additionally, IOF of CrPyr increased the activity of satellite cells possibly through up-regulating MyoD, myogenin, and Pax7 mRNA expression and down-regulating myostatin mRNA expression. © 2017 Poultry Science Association Inc.

  3. Altered spontaneous brain activity in patients with hemifacial spasm: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Ye Tu

    Full Text Available Resting-state functional magnetic resonance imaging (fMRI has been used to detect the alterations of spontaneous neuronal activity in various neurological and neuropsychiatric diseases, but rarely in hemifacial spasm (HFS, a nervous system disorder. We used resting-state fMRI with regional homogeneity (ReHo analysis to investigate changes in spontaneous brain activity of patients with HFS and to determine the relationship of these functional changes with clinical features. Thirty patients with HFS and 33 age-, sex-, and education-matched healthy controls were included in this study. Compared with controls, HFS patients had significantly decreased ReHo values in left middle frontal gyrus (MFG, left medial cingulate cortex (MCC, left lingual gyrus, right superior temporal gyrus (STG and right precuneus; and increased ReHo values in left precentral gyrus, anterior cingulate cortex (ACC, right brainstem, and right cerebellum. Furthermore, the mean ReHo value in brainstem showed a positive correlation with the spasm severity (r = 0.404, p = 0.027, and the mean ReHo value in MFG was inversely related with spasm severity in HFS group (r = -0.398, p = 0.028. This study reveals that HFS is associated with abnormal spontaneous brain activity in brain regions most involved in motor control and blinking movement. The disturbances of spontaneous brain activity reflected by ReHo measurements may provide insights into the neurological pathophysiology of HFS.

  4. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment.

    Science.gov (United States)

    Berkes, Pietro; Orbán, Gergo; Lengyel, Máté; Fiser, József

    2011-01-07

    The brain maintains internal models of its environment to interpret sensory inputs and to prepare actions. Although behavioral studies have demonstrated that these internal models are optimally adapted to the statistics of the environment, the neural underpinning of this adaptation is unknown. Using a Bayesian model of sensory cortical processing, we related stimulus-evoked and spontaneous neural activities to inferences and prior expectations in an internal model and predicted that they should match if the model is statistically optimal. To test this prediction, we analyzed visual cortical activity of awake ferrets during development. Similarity between spontaneous and evoked activities increased with age and was specific to responses evoked by natural scenes. This demonstrates the progressive adaptation of internal models to the statistics of natural stimuli at the neural level.

  5. Gender differences in myogenic regulation along the vascular tree of the gerbil cochlea.

    Directory of Open Access Journals (Sweden)

    Katrin Reimann

    Full Text Available Regulation of cochlear blood flow is critical for hearing due to its exquisite sensitivity to ischemia and oxidative stress. Many forms of hearing loss such as sensorineural hearing loss and presbyacusis may involve or be aggravated by blood flow disorders. Animal experiments and clinical outcomes further suggest that there is a gender preference in hearing loss, with males being more susceptible. Autoregulation of cochlear blood flow has been demonstrated in some animal models in vivo, suggesting that similar to the brain, blood vessels supplying the cochlea have the ability to control flow within normal limits, despite variations in systemic blood pressure. Here, we investigated myogenic regulation in the cochlear blood supply of the Mongolian gerbil, a widely used animal model in hearing research. The cochlear blood supply originates at the basilar artery, followed by the anterior inferior cerebellar artery, and inside the inner ear, by the spiral modiolar artery and the radiating arterioles that supply the capillary beds of the spiral ligament and stria vascularis. Arteries from male and female gerbils were isolated and pressurized using a concentric pipette system. Diameter changes in response to increasing luminal pressures were recorded by laser scanning microscopy. Our results show that cochlear vessels from male and female gerbils exhibit myogenic regulation but with important differences. Whereas in male gerbils, both spiral modiolar arteries and radiating arterioles exhibited pressure-dependent tone, in females, only radiating arterioles had this property. Male spiral modiolar arteries responded more to L-NNA than female spiral modiolar arteries, suggesting that NO-dependent mechanisms play a bigger role in the myogenic regulation of male than female gerbil cochlear vessels.

  6. Spatiotemporal stability of neonatal rat cardiomyocyte monolayers spontaneous activity is dependent on the culture substrate.

    Directory of Open Access Journals (Sweden)

    Jonathan Boudreau-Béland

    Full Text Available In native conditions, cardiac cells must continuously comply with diverse stimuli necessitating a perpetual adaptation. Polydimethylsiloxane (PDMS is commonly used in cell culture to study cellular response to changes in the mechanical environment. The aim of this study was to evaluate the impact of using PDMS substrates on the properties of spontaneous activity of cardiomyocyte monolayer cultures. We compared PDMS to the gold standard normally used in culture: a glass substrate. Although mean frequency of spontaneous activity remained unaltered, incidence of reentrant activity was significantly higher in samples cultured on glass compared to PDMS substrates. Higher spatial and temporal instability of the spontaneous rate activation was found when cardiomyocytes were cultured on PDMS, and correlated with decreased connexin-43 and increased CaV3.1 and HCN2 mRNA levels. Compared to cultures on glass, cultures on PDMS were associated with the strongest response to isoproterenol and acetylcholine. These results reveal the importance of carefully selecting the culture substrate for studies involving mechanical stimulation, especially for tissue engineering or pharmacological high-throughput screening of cardiac tissue analog.

  7. Search for spontaneous fission activity in Salton Sea and Atlantis II hot brines

    International Nuclear Information System (INIS)

    Ter-Akopian, G.M.; Sokol, E.A.; Fam Ngoc Chuong; Ivanov, M.P.; Popeko, G.S.; Molzahn, D.; Lund, T.; Feige, G.; Brandt, R.

    1984-01-01

    A search for an unknown spontaneously fissioning activity, possibly due to SHE, was carried out with the Dubna 3 He-counter system. In the investigation of Salton Sea samples and Atlantis II samples no such activity could be detected with limits -12 g/g. (orig.)

  8. Reproduction of overall spontaneous pain pattern by manual stimulation of active myofascial trigger points in fibromyalgia patients

    DEFF Research Database (Denmark)

    Ge, Hong-You; Wang, Ying; Fernandez-de-las-Penas, Cesar

    2011-01-01

    It has previously been reported that local and referred pain from active myofascial trigger points (MTPs) in the neck and shoulder region contribute to fibromyalgia (FM) pain and that the pain pattern induced from active MTPs can reproduce parts of the spontaneous clinical FM pain pattern....... The current study investigated whether the overall spontaneous FM pain pattern can be reproduced by local and referred pain from active MTPs located in different muscles....

  9. Oscillatory brain activity in spontaneous and induced sleep stages in flies

    OpenAIRE

    Yap, Melvyn H. W.; Grabowska, Martyna J.; Rohrscheib, Chelsie; Jeans, Rhiannon; Troup, Michael; Paulk, Angelique C.; van Alphen, Bart; Shaw, Paul J.; van Swinderen, Bruno

    2017-01-01

    Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABAA ago...

  10. Aberrant Splicing Induced by Dysregulated Rbfox2 Produces Enhanced Function of CaV1.2 Calcium Channel and Vascular Myogenic Tone in Hypertension.

    Science.gov (United States)

    Zhou, Yingying; Fan, Jia; Zhu, Huayuan; Ji, Li; Fan, Wenyong; Kapoor, Isha; Wang, Yue; Wang, Yuan; Zhu, Guoqing; Wang, Juejin

    2017-12-01

    Calcium influx from activated voltage-gated calcium channel Ca V 1.2 in vascular smooth muscle cells is indispensable for maintaining myogenic tone and blood pressure. The function of Ca V 1.2 channel can be optimized by alternative splicing, one of post-transcriptional modification mechanisms. The splicing factor Rbfox2 is known to regulate the Ca V 1.2 pre-mRNA alternative splicing events during neuronal development. However, Rbfox2's roles in modulating the key function of vascular Ca V 1.2 channel and in the pathogenesis of hypertension remain elusive. Here, we report that the proportion of Ca V 1.2 channels with alternative exon 9* is increased by 10.3%, whereas that with alternative exon 33 is decreased by 10.5% in hypertensive arteries. Surprisingly, the expression level of Rbfox2 is increased ≈3-folds, presumably because of the upregulation of a dominant-negative isoform of Rbfox2. In vascular smooth muscle cells, we find that knockdown of Rbfox2 dynamically increases alternative exon 9*, whereas decreases exon 33 inclusion of Ca V 1.2 channels. By patch-clamp studies, we show that diminished Rbfox2-induced alternative splicing shifts the steady-state activation and inactivation curves of vascular Ca V 1.2 calcium channel to hyperpolarization, which makes the window current potential to more negative. Moreover, siRNA-mediated knockdown of Rbfox2 increases the pressure-induced vascular myogenic tone of rat mesenteric artery. Taken together, our data indicate that Rbfox2 modulates the functions of vascular Ca V 1.2 calcium channel by dynamically regulating the expressions of alternative exons 9* and 33, which in turn affects the vascular myogenic tone. Therefore, our work suggests a key role for Rbfox2 in hypertension, which provides a rational basis for designing antihypertensive therapies. © 2017 American Heart Association, Inc.

  11. The cost-effectiveness of TheraBite® as treatment for acute myogenic temporomandibular disorder

    NARCIS (Netherlands)

    Heres Diddens, A.; Kraaijenga, S.; Coupe, V.; Hilgers, F.; van der Molen, L.; Smeele, L.; Retèl, V.P.

    2017-01-01

    Objective: Temporomandibular disorder (TMD) is a very common and costly pain problem concerning the temporomandibular joint. A previous study has shown that for the treatment of acute myogenic TMD, TheraBite® (TB) offers a faster and greater effect than usual care consisting of physical therapy

  12. Human heme oxygenase-1 gene transfer lowers blood pressure and promotes growth in spontaneously hypertensive rats.

    Science.gov (United States)

    Sabaawy, H E; Zhang, F; Nguyen, X; ElHosseiny, A; Nasjletti, A; Schwartzman, M; Dennery, P; Kappas, A; Abraham, N G

    2001-08-01

    Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin, with release of free iron and carbon monoxide. Both heme and carbon monoxide have been implicated in the regulation of vascular tone. A retroviral vector containing human HO-1 cDNA (LSN-HHO-1) was constructed and subjected to purification and concentration of the viral particles to achieve 5x10(9) to 1x10(10) colony-forming units per milliliter. The ability of concentrated infectious viral particles to express human HO-1 (HHO-1) in vivo was tested. A single intracardiac injection of the concentrated infectious viral particles (expressing HHO-1) to 5-day-old spontaneously hypertensive rats resulted in functional expression of the HHO-1 gene and attenuation of the development of hypertension. Rats expressing HHO-1 showed a significant decrease in urinary excretion of a vasoconstrictor arachidonic acid metabolite and a reduction in myogenic responses to increased intraluminal pressure in isolated arterioles. Unexpectedly, HHO-1 chimeric rats showed a simultaneous significant proportionate increase in somatic growth. Thus, delivery of HHO-1 gene by retroviral vector attenuates the development of hypertension and promotes body growth in spontaneously hypertensive rats.

  13. Endo- and exocytic rate constants for spontaneous and protein kinase C-activated T cell receptor cycling

    DEFF Research Database (Denmark)

    Menné, Charlotte; Møller Sørensen, Tine; Siersma, Volkert

    2002-01-01

    To determine the rate constants of spontaneous and activated TCR cycling, we examined TCR endo- and exocytosis in the human T cell line Jurkat by three different methods. Using a simple kinetic model for TCR cycling and non-linear regression analyses, we found that the spontaneous endocytic rate...... constant of the TCR was low (approximately 0.012 min(-1)) whereas the spontaneous exocytic rate constant was similar to that of other cycling receptors (approximately 0.055 min(-1)). Following protein kinase C activation (PKC) the endocytic rate constant was increased tenfold (to approximately 0.128 min(-1......)) whereas the exocytic rate constant was unaffected. Thus, the TCR becomes a rapidly cycling receptor with kinetics similar to classical cycling receptors subsequent to PKC activation. This results in a reduction of the half-life of cell surface expressed TCR from approximately 58 to 6 min and allows rapid...

  14. Nitric oxide signaling pathways involved in the inhibition of spontaneous activity in the guinea pig prostate.

    Science.gov (United States)

    Dey, Anupa; Lang, Richard J; Exintaris, Betty

    2012-06-01

    We investigated nitric oxide mediated inhibition of spontaneous activity recorded in young and aging guinea pig prostates. Conventional intracellular microelectrode and tension recording techniques were used. The nitric oxide donor sodium nitroprusside (10 μM) abolished spontaneous contractions and slow wave activity in 5 young and 5 aging prostates. Upon adding the nitric oxide synthase inhibitor L-NAME (10 μM) the frequency of spontaneous contractile and electrical activity was significantly increased in each age group. This increase was significantly larger in 4 to 8 preparations of younger vs aging prostates (about 40% to 50% vs about 10% to 20%, 2-way ANOVA pguinea pig prostates (Student paired t test pproduction. This may further explain the increase in prostatic smooth muscle tone observed in age related prostate specific conditions, such as benign prostatic hyperplasia. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. [Electromyographic differential diagnosis in cases of abducens nerve paresis with nuclear or distal neurogenic sive myogenic origine (author's transl)].

    Science.gov (United States)

    Heuser, M

    1979-09-01

    Abducens nerve paresis may be of nuclear, of peripheral distal neurogenic origine, or is simulated by a myogenic weakness of abduction. Polygraphic emg analysis of the oculoauricularphenomenon (oap) permits a differentiation. In the emg, the oap proved to be a physiologic and constant automatic and always bilateral interaction between the hemolateral abducens nerve and both Nn. faciales with corresponding and obligatory coinnervation of the Mm. retroauricularis of the external ear. In case of medullary, nuclear or internuclear lesions, the oap is disturbed, instable, diminished or abolished, whereas in distal neurogenic or myogenic paresis, even in complete paralysis the oap is bilaterally well preserved.

  16. Neurofeedback Tunes Scale-Free Dynamics in Spontaneous Brain Activity.

    Science.gov (United States)

    Ros, T; Frewen, P; Théberge, J; Michela, A; Kluetsch, R; Mueller, A; Candrian, G; Jetly, R; Vuilleumier, P; Lanius, R A

    2017-10-01

    Brain oscillations exhibit long-range temporal correlations (LRTCs), which reflect the regularity of their fluctuations: low values representing more random (decorrelated) while high values more persistent (correlated) dynamics. LRTCs constitute supporting evidence that the brain operates near criticality, a state where neuronal activities are balanced between order and randomness. Here, healthy adults used closed-loop brain training (neurofeedback, NFB) to reduce the amplitude of alpha oscillations, producing a significant increase in spontaneous LRTCs post-training. This effect was reproduced in patients with post-traumatic stress disorder, where abnormally random dynamics were reversed by NFB, correlating with significant improvements in hyperarousal. Notably, regions manifesting abnormally low LRTCs (i.e., excessive randomness) normalized toward healthy population levels, consistent with theoretical predictions about self-organized criticality. Hence, when exposed to appropriate training, spontaneous cortical activity reveals a residual capacity for "self-tuning" its own temporal complexity, despite manifesting the abnormal dynamics seen in individuals with psychiatric disorder. Lastly, we observed an inverse-U relationship between strength of LRTC and oscillation amplitude, suggesting a breakdown of long-range dependence at high/low synchronization extremes, in line with recent computational models. Together, our findings offer a broader mechanistic framework for motivating research and clinical applications of NFB, encompassing disorders with perturbed LRTCs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Spontaneous brain activity predicts learning ability of foreign sounds.

    Science.gov (United States)

    Ventura-Campos, Noelia; Sanjuán, Ana; González, Julio; Palomar-García, María-Ángeles; Rodríguez-Pujadas, Aina; Sebastián-Gallés, Núria; Deco, Gustavo; Ávila, César

    2013-05-29

    Can learning capacity of the human brain be predicted from initial spontaneous functional connectivity (FC) between brain areas involved in a task? We combined task-related functional magnetic resonance imaging (fMRI) and resting-state fMRI (rs-fMRI) before and after training with a Hindi dental-retroflex nonnative contrast. Previous fMRI results were replicated, demonstrating that this learning recruited the left insula/frontal operculum and the left superior parietal lobe, among other areas of the brain. Crucially, resting-state FC (rs-FC) between these two areas at pretraining predicted individual differences in learning outcomes after distributed (Experiment 1) and intensive training (Experiment 2). Furthermore, this rs-FC was reduced at posttraining, a change that may also account for learning. Finally, resting-state network analyses showed that the mechanism underlying this reduction of rs-FC was mainly a transfer in intrinsic activity of the left frontal operculum/anterior insula from the left frontoparietal network to the salience network. Thus, rs-FC may contribute to predict learning ability and to understand how learning modifies the functioning of the brain. The discovery of this correspondence between initial spontaneous brain activity in task-related areas and posttraining performance opens new avenues to find predictors of learning capacities in the brain using task-related fMRI and rs-fMRI combined.

  18. JAZF1 promotes proliferation of C2C12 cells, but retards their myogenic differentiation through transcriptional repression of MEF2C and MRF4—Implications for the role of Jazf1 variants in oncogenesis and type 2 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, Katsutoshi; Aoki, Natsumi; Hijikata, Takao, E-mail: hijikata@musashino-u.ac.jp

    2015-08-15

    Single-nucleotide polymorphisms associated with type 2 diabetes (T2D) have been identified in Jazf1, which is also involved in the oncogenesis of endometrial stromal tumors. To understand how Jazf1 variants confer a risk of tumorigenesis and T2D, we explored the functional roles of JAZF1 and searched for JAZF1 target genes in myogenic C2C12 cells. Consistent with an increase of Jazf1 transcripts during myoblast proliferation and their decrease during myogenic differentiation in regenerating skeletal muscle, JAZF1 overexpression promoted cell proliferation, whereas it retarded myogenic differentiation. Examination of myogenic genes revealed that JAZF1 overexpression transcriptionally repressed MEF2C and MRF4 and their downstream genes. AMP deaminase1 (AMPD1) was identified as a candidate for JAZF1 target by gene array analysis. However, promoter assays of Ampd1 demonstrated that mutation of the putative binding site for the TR4/JAZF1 complex did not alleviate the repressive effects of JAZF1 on promoter activity. Instead, JAZF1-mediated repression of Ampd1 occurred through the MEF2-binding site and E-box within the Ampd1 proximal regulatory elements. Consistently, MEF2C and MRF4 expression enhanced Ampd1 promoter activity. AMPD1 overexpression and JAZF1 downregulation impaired AMPK phosphorylation, while JAZF1 overexpression also reduced it. Collectively, these results suggest that aberrant JAZF1 expression contributes to the oncogenesis and T2D pathogenesis. - Highlights: • JAZF1 promotes cell cycle progression and proliferation of myoblasts. • JAZF1 retards myogenic differentiation and hypertrophy of myotubes. • JAZF1 transcriptionally represses Mef2C and Mrf4 expression. • JAZF1 has an impact on the phosphorylation of AMPK.

  19. Bidirectional global spontaneous network activity precedes the canonical unidirectional circuit organization in the developing hippocampus.

    Science.gov (United States)

    Shi, Yulin; Ikrar, Taruna; Olivas, Nicholas D; Xu, Xiangmin

    2014-06-15

    Spontaneous network activity is believed to sculpt developing neural circuits. Spontaneous giant depolarizing potentials (GDPs) were first identified with single-cell recordings from rat CA3 pyramidal neurons, but here we identify and characterize a large-scale spontaneous network activity we term global network activation (GNA) in the developing mouse hippocampal slices, which is measured macroscopically by fast voltage-sensitive dye imaging. The initiation and propagation of GNA in the mouse is largely GABA-independent and dominated by glutamatergic transmission via AMPA receptors. Despite the fact that signal propagation in the adult hippocampus is strongly unidirectional through the canonical trisynaptic circuit (dentate gyrus [DG] to CA3 to CA1), spontaneous GNA in the developing hippocampus originates in distal CA3 and propagates both forward to CA1 and backward to DG. Photostimulation-evoked GNA also shows prominent backward propagation in the developing hippocampus from CA3 to DG. Mouse GNA is strongly correlated to electrophysiological recordings of highly localized single-cell and local field potential events. Photostimulation mapping of neural circuitry demonstrates that the enhancement of local circuit connections to excitatory pyramidal neurons occurs over the same time course as GNA and reveals the underlying pathways accounting for GNA backward propagation from CA3 to DG. The disappearance of GNA coincides with a transition to the adult-like unidirectional circuit organization at about 2 weeks of age. Taken together, our findings strongly suggest a critical link between GNA activity and maturation of functional circuit connections in the developing hippocampus. Copyright © 2013 Wiley Periodicals, Inc.

  20. Outcomes of Nulliparous Women with Spontaneous Labor Onset Admitted to Hospitals in Pre-active versus Active Labor

    Science.gov (United States)

    NEAL, Jeremy L.; LAMP, Jane M.; BUCK, Jacalyn S.; LOWE, Nancy K.; GILLESPIE, Shannon L.; RYAN, Sharon L.

    2014-01-01

    Introduction The timing of when a woman is admitted to the hospital for labor care following spontaneous contraction onset may be among the most important decisions that labor attendants make as it can influence care patterns and birth outcomes. The aims of this study were to estimate the percentage of low-risk, nulliparous women at term who are admitted to labor units prior to active labor and to evaluate the effects of the timing of admission (i.e., pre-active versus active labor) on labor interventions and mode of birth. Methods Obstetrics data from low-risk, nulliparous women with spontaneous labor onset at term gestation (N = 216) were merged from two prospective studies conducted at three large, Midwestern hospitals. Baseline characteristics, labor interventions, and outcomes were compared between groups using Fisher’s exact and Mann-Whitney U tests, as appropriate. Likelihoods for oxytocin augmentation, amniotomy, and cesarean delivery were assessed by logistic regression. Results Of the sample of 216 low-risk nulliparous women, 114 (52.8%) were admitted in pre-active labor and 102 (47.2%) were admitted in active labor. Women admitted in pre-active labor were more likely to undergo oxytocin augmentation (84.2% and 45.1%, respectively; odds ratio (OR) 6.5, 95% confidence interval (CI) 3.43–12.27) but not amniotomy (55.3% and 61.8%, respectively; OR 0.8, 95% CI 0.44–1.32) when compared to women admitted in active labor. The likelihood of cesarean delivery was higher for women admitted before active labor onset (15.8% and 6.9%, respectively; OR 2.6, 95% CI 1.02–6.37). Discussion Many low-risk nulliparous women with regular, spontaneous uterine contractions are admitted to labor units before active labor onset, which increases their likelihood of receiving oxytocin and being delivered via cesarean section. An evidence-based, standardized approach for labor admission decision-making is recommended to decrease inadvertent admissions of women in pre-active

  1. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI. However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo analysis based on resting-state functional magnetic resonance imaging.A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for

  2. Effects of DISC1 Polymorphisms on Resting-State Spontaneous Neuronal Activity in the Early-Stage of Schizophrenia

    Directory of Open Access Journals (Sweden)

    Ningzhi Gou

    2018-05-01

    Full Text Available Background: Localized abnormalities in the synchrony of spontaneous neuronal activity, measured with regional homogeneity (ReHo, has been consistently reported in patients with schizophrenia (SCZ and their unaffected siblings. To date, little is known about the genetic influences affecting the spontaneous neuronal activity in SCZ. DISC1, a strong susceptible gene for SCZ, has been implicated in neuronal excitability and synaptic function possibly associated with regional spontaneous neuronal activity. This study aimed to examine the effects of DISC1 variations on the regional spontaneous neuronal activity in SCZ.Methods: Resting-state fMRI data were obtained from 28 SCZ patients and 21 healthy controls (HC for ReHo analysis. Six single nucleotide polymorphisms (SNPs of DISC1 gene were genotyped using the PCR and direct sequencing.Results: Significant diagnosis × genotype interactions were noted for three SNPs (rs821616, rs821617, and rs2738880. For rs821617, the interactions were localized to the precuneus, basal ganglia and pre-/post-central regions. Significant interactive effects were identified at the temporal and post-central gyri for rs821616 (Ser704Cys and the inferior temporal gyrus for rs2738880. Furthermore, post-hoc analysis revealed that the DISC1 variations on these SNPs exerted different influences on ReHo between SCZ patients and HC.Conclusion: To our knowledge this is the first study to unpick the influence of DISC1 variations on spontaneous neuronal activity in SCZ; Given the emerging evidence that ReHo is a stable inheritable phenotype for schizophrenia, our findings suggest the DISC1 variations are possibly an inheritable source for the altered ReHo in this disorder.

  3. Loss of MyoD and Myf5 in Skeletal Muscle Stem Cells Results in Altered Myogenic Programming and Failed Regeneration

    Directory of Open Access Journals (Sweden)

    Masakazu Yamamoto

    2018-03-01

    Full Text Available Summary: MyoD and Myf5 are fundamental regulators of skeletal muscle lineage determination in the embryo, and their expression is induced in satellite cells following muscle injury. MyoD and Myf5 are also expressed by satellite cell precursors developmentally, although the relative contribution of historical and injury-induced expression to satellite cell function is unknown. We show that satellite cells lacking both MyoD and Myf5 (double knockout [dKO] are maintained with aging in uninjured muscle. However, injured muscle fails to regenerate and dKO satellite cell progeny accumulate in damaged muscle but do not undergo muscle differentiation. dKO satellite cell progeny continue to express markers of myoblast identity, although their myogenic programming is labile, as demonstrated by dramatic morphological changes and increased propensity for non-myogenic differentiation. These data demonstrate an absolute requirement for either MyoD or Myf5 in muscle regeneration and indicate that their expression after injury stabilizes myogenic identity and confers the capacity for muscle differentiation. : In this article, Goldhamer and colleagues show that loss of both MyoD and Myf5 in skeletal muscle satellite cells results in regenerative failure following injury. Satellite cell progeny accumulate in injured muscle and continue to express markers of myoblast identity, but do not undergo muscle differentiation, and exhibit a propensity for non-myogenic differentiation. Keywords: skeletal muscle regeneration, muscle stem cell programming, muscle differentiation, satellite cell, MyoD, Myf5, adipogenesis, fibrosis, conditional knockout, Cre/loxP

  4. Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells.

    Science.gov (United States)

    Stern-Straeter, Jens; Bonaterra, Gabriel Alejandro; Juritz, Stephanie; Birk, Richard; Goessler, Ulrich Reinhart; Bieback, Karen; Bugert, Peter; Schultz, Johannes; Hörmann, Karl; Kinscherf, Ralf; Faber, Anne

    2014-01-01

    The creation of functional muscles/muscle tissue from human stem cells is a major goal of skeletal muscle tissue engineering. Mesenchymal stem cells (MSCs) from fat/adipose tissue (AT-MSCs), as well as bone marrow (BM-MSCs) have been shown to bear myogenic potential, which makes them candidate stem cells for skeletal muscle tissue engineering applications. The aim of this study was to analyse the myogenic differentiation potential of human AT-MSCs and BM-MSCs cultured in six different cell culture media containing different mixtures of growth factors. The following cell culture media were used in our experiments: mesenchymal stem cell growth medium (MSCGM)™ as growth medium, MSCGM + 5-azacytidine (5-Aza), skeletal muscle myoblast cell growth medium (SkGM)-2 BulletKit™, and 5, 30 and 50% conditioned cell culture media, i.e., supernatant of human satellite cell cultures after three days in cell culture mixed with MSCGM. Following the incubation of human AT-MSCs or BM-MSCs for 0, 4, 8, 11, 16 or 21 days with each of the cell culture media, cell proliferation was measured using the alamarBlue® assay. Myogenic differentiation was evaluated by quantitative gene expression analyses, using quantitative RT-PCR (qRT-PCR) and immunocytochemical staining (ICC), using well-defined skeletal markers, such as desmin (DES), myogenic factor 5 (MYF5), myosin, heavy chain 8, skeletal muscle, perinatal (MYH8), myosin, heavy chain 1, skeletal muscle, adult (MYH1) and skeletal muscle actin-α1 (ACTA1). The highest proliferation rates were observed in the AT-MSCs and BM-MSCs cultured with SkGM-2 BulletKit medium. The average proliferation rate was higher in the AT-MSCs than in the BM-MSCs, taking all six culture media into account. qRT-PCR revealed the expression levels of the myogenic markers, ACTA1, MYH1 and MYH8, in the AT-MSC cell cultures, but not in the BM-MSC cultures. The muscle-specific intermediate filament, DES, was only detected (by ICC) in the AT-MSCs, but not in the BM

  5. Dorsomedial prefontal cortex supports spontaneous thinking per se.

    Science.gov (United States)

    Raij, T T; Riekki, T J J

    2017-06-01

    Spontaneous thinking, an action to produce, consider, integrate, and reason through mental representations, is central to our daily experience and has been suggested to serve crucial adaptive purposes. Such thinking occurs among other experiences during mind wandering that is associated with activation of the default mode network among other brain circuitries. Whether and how such brain activation is linked to the experience of spontaneous thinking per se remains poorly known. We studied 51 healthy subjects using a comprehensive experience-sampling paradigm during 3T functional magnetic resonance imaging. In comparison with fixation, the experiences of spontaneous thinking and spontaneous perception were related to activation of wide-spread brain circuitries, including the cortical midline structures, the anterior cingulate cortex and the visual cortex. In direct comparison of the spontaneous thinking versus spontaneous perception, activation was observed in the anterior dorsomedial prefrontal cortex. Modality congruence of spontaneous-experience-related brain activation was suggested by several findings, including association of the lingual gyrus with visual in comparison with non-verbal-non-visual thinking. In the context of current literature, these findings suggest that the cortical midline structures are involved in the integrative core substrate of spontaneous thinking that is coupled with other brain systems depending on the characteristics of thinking. Furthermore, involvement of the anterior dorsomedial prefrontal cortex suggests the control of high-order abstract functions to characterize spontaneous thinking per se. Hum Brain Mapp 38:3277-3288, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. βENaC acts as a mechanosensor in renal vascular smooth muscle cells that contributes to renal myogenic blood flow regulation, protection from renal injury and hypertension.

    Science.gov (United States)

    Drummond, Heather A; Stec, David E

    2015-06-01

    Pressure-induced constriction (also known as the "myogenic response") is an important mechanodependent response in small renal arteries and arterioles. The response is initiated by vascular smooth muscle cell (VSMC) stretch due to an increase in intraluminal pressure and leads to vasoconstriction. The myogenic response has two important roles as a mechanism of local blood flow autoregulation and protection against systemic blood pressure-induced microvascular damage. However, the molecular mechanisms underlying initiation of myogenic response are unresolved. Although several molecules have been considered initiators of the response, our laboratory has focused on the role of degenerin proteins because of their strong evolutionary link to mechanosensing in the nematode. Our laboratory has addressed the hypothesis that certain degenerin proteins act as mechanosensors in VSMCs. This article discusses the importance of a specific degenerin protein, β Epithelial Na + Channel (βENaC), in pressure-induced vasoconstriction, renal blood flow and susceptibility to renal injury. We propose that loss of the renal myogenic constrictor response delays the correction of renal blood flow that occurs with fluctuations in systemic pressure, which allows pressure swings to be transmitted to the microvasculature, thus increasing the susceptibility to renal injury and hypertension. The role of βENaC in myogenic regulation is independent of tubular βENaC and thus represents a non-tubular role for βENaC in renal-cardiovascular homeostasis.

  7. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study

    Science.gov (United States)

    Pan, Wei; Gao, Xuemei; Shi, Shuo; Liu, Fuqu; Li, Chao

    2018-01-01

    A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) to quantify spontaneous brain activity. The results showed there is no significant difference in ALFF, or fALFF, between violent video game group and the control part, indicating that long time exposure to violent video games won’t significantly influence spontaneous brain activity, especially the core brain regions such as execution control, moral judgment and short-term memory. This implies the adverse impact of violent video games is exaggerated. PMID:29375416

  8. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study.

    Science.gov (United States)

    Pan, Wei; Gao, Xuemei; Shi, Shuo; Liu, Fuqu; Li, Chao

    2017-01-01

    A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) to quantify spontaneous brain activity. The results showed there is no significant difference in ALFF, or fALFF, between violent video game group and the control part, indicating that long time exposure to violent video games won't significantly influence spontaneous brain activity, especially the core brain regions such as execution control, moral judgment and short-term memory. This implies the adverse impact of violent video games is exaggerated.

  9. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study

    Directory of Open Access Journals (Sweden)

    Wei Pan

    2018-01-01

    Full Text Available A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI. We used the amplitude of low-frequency fluctuations (ALFF and fractional ALFF (fALFF to quantify spontaneous brain activity. The results showed there is no significant difference in ALFF, or fALFF, between violent video game group and the control part, indicating that long time exposure to violent video games won’t significantly influence spontaneous brain activity, especially the core brain regions such as execution control, moral judgment and short-term memory. This implies the adverse impact of violent video games is exaggerated.

  10. Slow-light enhancement of spontaneous emission in active photonic crystal waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Chen, Yaohui; Semenova, Elizaveta

    2012-01-01

    Photonic crystal defect waveguides with embedded active layers containing single or multiple quantum wells or quantum dots have been fabricated. Spontaneous emission spectra are enhanced close to the bandedge, consistently with the enhancement of gain by slow light effects. These are promising...... results for future compact devices for terabit/s communication, such as miniaturised semiconductor optical amplifiers and mode-locked lasers....

  11. Myogenic Differentiation Potential of Human Newborn Foreskin Stem Cells Combined with Polycaprolactone-Based Nanofiber

    Directory of Open Access Journals (Sweden)

    Ozge Sezin Somuncu

    2016-03-01

    Full Text Available A previous study performed by the authors of the current study revealed the characterization and differentiation of newly defined stem cells known as human newborn foreskin stem cells (hnFSSCs. According to their stem cell properties, this study aimed at investigating myogenic differentiation and related tissue engineering. Human newborn foreskin stem cells were characterized by flow cytometry. The results showed that hnFSSCs carries a noble prospective for myogenic differentiation and can be used as a beneficial method for muscle related diseases, including muscular dystrophy, neuromuscular disorders, muscle damages, muscle weakness, lesion formations, and other problems associated with tissue obtainability and multi-potency; these cells may be accepted as effortlessly accessible and functional, and even superior to other stem cell origins. Furthermore, hnFFSCs were also seeded onto 3D micro-wells and Polycaprolactone (PCL scaffolds in order to examine tissue development. Human newborn foreskin stem cells on PCL scaffolds showed good cell-cell integration, so that they may be thought as a stem cell basis for tissue engineering.

  12. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Margarida Carrolo

    Full Text Available Streptococcus pneumoniae (pneumococcus is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.

  13. Brain modularity controls the critical behavior of spontaneous activity.

    Science.gov (United States)

    Russo, R; Herrmann, H J; de Arcangelis, L

    2014-03-13

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  14. Spontaneous recombinase activity of Cre-ERT2 in vivo.

    Science.gov (United States)

    Kristianto, Jasmin; Johnson, Michael G; Zastrow, Ryley K; Radcliff, Abigail B; Blank, Robert D

    2017-06-01

    Inducible Cre-ERT recombinase technology is widely used for gene targeting studies. The second generation of inducible Cre-ERT recombinase, hemizygous B6.129S-Tg(UBC-cre/ERT2)1Ejb/J (hereafter abbreviated as Cre-ERT2), a fusion of a mutated estrogen receptor and Cre recombinase, was engineered to be more efficient and specific than the original Cre-ERT. The putative mechanism of selective Cre-mediated recombination is Cre sequestration in the cytoplasm in the basal state with translocation to the nucleus only in the presence of tamoxifen. We utilized both a reporter mouse (B6.129 (Cg)-Gt(ROSA)26Sor tm4(ACTB-tdTomato,-EGFP)Luo /J) and endothelin converting enzyme-1 floxed transgenic mouse line to evaluate Cre-ERT2 activity. We observed spontaneous Cre activity in both settings. Unintended Cre activity is a confounding factor that has a potentially large impact on data interpretation. Thus, it is important to consider background Cre activity in experimental design.

  15. Neural activation and memory for natural scenes: Explicit and spontaneous retrieval.

    Science.gov (United States)

    Weymar, Mathias; Bradley, Margaret M; Sege, Christopher T; Lang, Peter J

    2018-05-06

    Stimulus repetition elicits either enhancement or suppression in neural activity, and a recent fMRI meta-analysis of repetition effects for visual stimuli (Kim, 2017) reported cross-stimulus repetition enhancement in medial and lateral parietal cortex, as well as regions of prefrontal, temporal, and posterior cingulate cortex. Repetition enhancement was assessed here for repeated and novel scenes presented in the context of either an explicit episodic recognition task or an implicit judgment task, in order to study the role of spontaneous retrieval of episodic memories. Regardless of whether episodic memory was explicitly probed or not, repetition enhancement was found in medial posterior parietal (precuneus/cuneus), lateral parietal cortex (angular gyrus), as well as in medial prefrontal cortex (frontopolar), which did not differ by task. Enhancement effects in the posterior cingulate cortex were significantly larger during explicit compared to implicit task, primarily due to a lack of functional activity for new scenes. Taken together, the data are consistent with an interpretation that medial and (ventral) lateral parietal cortex are associated with spontaneous episodic retrieval, whereas posterior cingulate cortical regions may reflect task or decision processes. © 2018 Society for Psychophysiological Research.

  16. On nature of spontaneous elongation of polymers preliminarily stretched in adsorption-active media under irradiation

    International Nuclear Information System (INIS)

    Sinevich, E.A.; Prazdnichnyj, A.M.; Tikhomirov, V.S.; Bakeev, N.F.

    1989-01-01

    The nature of the spontaneous elongation under irradiation with fast electrons of polymers preliminary stretched in adsorption-active media has been studied. This effect is related with radiation-induced heating of microporous polymer samples. Its manifestation in amorphous PETP requires the presence of crazes having well developed microfibrillar structure. The spontaneous elongation effect is shown to be a result of crystallization of partially oriented material in transitional regions relating the oriented material of microfibrils inside crazes with nonstrained polymer between them

  17. To Take the Stairs or Not to Take the Stairs? Employing the Reflective–Impulsive Model to Predict Spontaneous Physical Activity

    Directory of Open Access Journals (Sweden)

    Marcos Daou

    2017-09-01

    Full Text Available The reflective–impulsive model (RIM has been employed to explain various health behaviors. The present study used RIM to predict a spontaneous physical activity behavior. Specifically, 107 participants (75 females; Mage = 20.6 years, SD = 1.92 years completed measures of (1 reflections about spontaneous physical activity, as indexed by self-report questionnaire; (2 impulse toward physical activity, as indexed by the manikin task; and (3 (state self-control, as indexed by the Stroop task. The dependent variable was whether participants took the stairs or the elevator to the study laboratory. Results revealed reflections toward spontaneous physical activity positively predicted stair-taking. Further, a significant impulse toward physical activity × self-control interaction was observed. This interaction revealed that participants with high self-control who had a high impulse toward PA were more likely to take the stairs than their counterparts with a low impulse toward PA, whereas the opposite was the case for participants with low self-control. However, the impulse × self-control interaction was not significant when employing a self-report measure of trait self-control. Thus, RIM may be a good framework with which to consider spontaneous physical activity, but careful consideration must be given when examining variables within RIM (e.g., the boundary condition of self-control.

  18. Decorin binds myostatin and modulates its activity to muscle cells

    International Nuclear Information System (INIS)

    Miura, Takayuki; Kishioka, Yasuhiro; Wakamatsu, Jun-ichi; Hattori, Akihito; Hennebry, Alex; Berry, Carole J.; Sharma, Mridula; Kambadur, Ravi; Nishimura, Takanori

    2006-01-01

    Myostatin, a member of TGF-β superfamily of growth factors, acts as a negative regulator of skeletal muscle mass. The mechanism whereby myostatin controls the proliferation and differentiation of myogenic cells is mostly clarified. However, the regulation of myostatin activity to myogenic cells after its secretion in the extracellular matrix (ECM) is still unknown. Decorin, a small leucine-rich proteoglycan, binds TGF-β and regulates its activity in the ECM. Thus, we hypothesized that decorin could also bind to myostatin and participate in modulation of its activity to myogenic cells. In order to test the hypothesis, we investigated the interaction between myostatin and decorin by surface plasmon assay. Decorin interacted with mature myostatin in the presence of concentrations of Zn 2+ greater than 10 μM, but not in the absence of Zn 2+ . Kinetic analysis with a 1:1 binding model resulted in dissociation constants (K D ) of 2.02 x 10 -8 M and 9.36 x 10 -9 M for decorin and the core protein of decorin, respectively. Removal of the glycosaminoglycan chain by chondroitinase ABC digestion did not affect binding, suggesting that decorin could bind to myostatin with its core protein. Furthermore, we demonstrated that immobilized decorin could rescue the inhibitory effect of myostatin on myoblast proliferation in vitro. These results suggest that decorin could trap myostatin and modulate its activity to myogenic cells in the ECM

  19. [Effects of reversing the feeding cycle and the light period on the spontaneous activity of the rat (author's transl)].

    Science.gov (United States)

    Ticca, M

    1976-01-01

    The amount and the circadian distribution of spontaneous activity in the rat are influenced by a number of factors, whose importance and interrelationships are still deeply discussed. In order to check the reliability of previous studies about the effects of meal-eating on the spontaneous activity (wheel running) of rats of our Sprague-Dawley strain, the adjustment to the modifications of the normal day-night cycle and of the normal nocturnal feeding rhythm have been controlled. Reversing the normal light and dark periods caused the rats, after a 24 hours period, to lower and to irregularly distribute their spontaneous activity. Rats shifted their pattern of maximal activity by 12 hours in the new period of darkness in about five days, and showed to have completely fixed the new reversed running habit. Also feeding habits changed in a similar way, but more slowly. The levels of mean daily activity did not change. In a second experiment, rats, received food during light hours, and were deprived during dark hours. Their activity increased considerably and irregularly during dark hours, while a very slight rise of wheel running was shown during light hours. Body weight gain and food consumption were similar to those of the control group. These results slightly differ from those obtained using other rat strains, and are an interesting example of reinforcement of a spontaneous behavior resulting more from the light-dark cycle than from cues provided by food deprivation.

  20. PAX7 Targets, CD54, Integrin α9β1, and SDC2, Allow Isolation of Human ESC/iPSC-Derived Myogenic Progenitors

    Directory of Open Access Journals (Sweden)

    Alessandro Magli

    2017-06-01

    Full Text Available Pluripotent stem (PS-cell-derived cell types hold promise for treating degenerative diseases. However, PS cell differentiation is intrinsically heterogeneous; therefore, clinical translation requires the development of practical methods for isolating progenitors from unwanted and potentially teratogenic cells. Muscle-regenerating progenitors can be derived through transient PAX7 expression. To better understand the biology, and to discover potential markers for these cells, here we investigate PAX7 genomic targets and transcriptional changes in human cells undergoing PAX7-mediated myogenic commitment. We identify CD54, integrin α9β1, and Syndecan2 (SDC2 as surface markers on PAX7-induced myogenic progenitors. We show that these markers allow for the isolation of myogenic progenitors using both fluorescent- and CGMP-compatible magnetic-based sorting technologies and that CD54+α9β1+SDC2+ cells contribute to long-term muscle regeneration in vivo. These findings represent a critical step toward enabling the translation of PS-cell-based therapies for muscle diseases.

  1. A comparison of myogenic motor evoked responses to electrical and magnetic transcranial stimulation during nitrous oxide/opioid anesthesia

    NARCIS (Netherlands)

    Ubags, L. H.; Kalkman, C. J.; Been, H. D.; Koelman, J. H.; Ongerboer de Visser, B. W.

    1999-01-01

    Transcranial motor evoked potentials (tc-MEPs) are used to monitor spinal cord integrity intraoperatively. We compared myogenic motor evoked responses with electrical and magnetic transcranial stimuli during nitrous oxide/opioid anesthesia. In 11 patients undergoing spinal surgery, anesthesia was

  2. Nanolipodendrosome-loaded glatiramer acetate and myogenic differentiation 1 as augmentation therapeutic strategy approaches in muscular dystrophy.

    Science.gov (United States)

    Afzal, Ehsan; Zakeri, Saba; Keyhanvar, Peyman; Bagheri, Meisam; Mahjoubi, Parvin; Asadian, Mahtab; Omoomi, Nogol; Dehqanian, Mohammad; Ghalandarlaki, Negar; Darvishmohammadi, Tahmineh; Farjadian, Fatemeh; Golvajoee, Mohammad Sadegh; Afzal, Shadi; Ghaffari, Maryam; Cohan, Reza Ahangari; Gravand, Amin; Ardestani, Mehdi Shafiee

    2013-01-01

    [Corrected] Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion - like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 [MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation.

  3. Spontaneous membrane formation and self-encapsulation of active rods in an inhomogeneous motility field

    NARCIS (Netherlands)

    Grauer, J.; Löwen, H.; Janssen, L.M.C.

    2018-01-01

    We study the collective dynamics of self-propelled rods in an inhomogeneous motility field. At the interface between two regions of constant but different motility, a smectic rod layer is spontaneously created through aligning interactions between the active rods, reminiscent of an artificial,

  4. Large cell/anaplastic medulloblastoma with myogenic, melanotic and neuronal differentiation: A case report of a rare tumor

    Directory of Open Access Journals (Sweden)

    Amany A. Fathaddin

    2014-01-01

    Full Text Available Medulloblastoma is an embryonal neuroepithelial tumor of the cerebellum and is the most common malignant central nervous system tumor in children. Different histological variants and patterns have been described. The classic variant represents the majority of cases. This report describes a rare case of large cell/anaplastic medulloblastoma with myogenic, melanotic and neuronal differentiation arising in the cerebellum of a 3-year-old boy who presented with headache and vomiting. Magnetic resonance imaging demonstrated a heterogeneously enhanced lesion in the fourth ventricle. Surgical resection of the tumor was accomplished, but a residual tumor was left behind because of the involvement of the brainstem. Postoperatively, the patient received chemotherapy and radiotherapy. Currently, 20 months after treatment, the patient has survived without further progression. Pathological examination revealed a high grade primitive neuronal tumor with foci of myogenic features, melanin containing epithelial elements and ganglion-like cells, which were confirmed by immunohistochemistry.

  5. General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Tromborg, Bjarne

    2001-01-01

    A model for spontaneous emission in active dielectric microstructures is given in terms of the classical electric field Green's tensor and the quantum-mechanical operators for the generating currents. A formalism is given for calculating the Green's tensor, which does not rely on the existence...

  6. Cervical flexion-rotation test and physiological range of motion - A comparative study of patients with myogenic temporomandibular disorder versus healthy subjects.

    Science.gov (United States)

    Greenbaum, Tzvika; Dvir, Zeevi; Reiter, Shoshana; Winocur, Ephraim

    2017-02-01

    Temporomandibular Disorders (TMD) refer to several common clinical disorders which involve the masticatory muscles, the temporomandibular joint (TMJ) and the adjacent structures. Although neck signs and symptoms are found with higher prevalence in TMD patients compared to the overall population, whether limitation of cervical mobility is an additional positive finding in this cohort is still an open question. To compare the physiological cervical range of motion (CROM) and the extent of rotation during cervical flexion (flexion-rotation test, FRT) in people with TMD (muscular origin) and healthy control subjects. The range of motion of the neck and FRT was measured in 20 women with myogenic TMD and 20 age matched healthy controls. Women with myogenic TMD had significantly lower FRT scores compared to their matched healthy women. No difference was found between groups in CROM in any of the planes of movement. The FRT was positive (less than 32°) in 90% of the TMD participants versus 5% in the healthy control but the findings were not correlated with TMD severity. The results point out a potential involvement of the upper cervical joints (c1-c2) in women with myogenic TMD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7.

    Science.gov (United States)

    Darabi, Radbod; Perlingeiro, Rita C R

    2016-01-01

    Cell-based therapies are considered as one of the most promising approaches for the treatment of degenerating pathologies including muscle disorders and dystrophies. Advances in the approach of reprogramming somatic cells into induced pluripotent stem (iPS) cells allow for the possibility of using the patient's own pluripotent cells to generate specific tissues for autologous transplantation. In addition, patient-specific tissue derivatives have been shown to represent valuable material for disease modeling and drug discovery. Nevertheless, directed differentiation of pluripotent stem cells into a specific lineage is not a trivial task especially in the case of skeletal myogenesis, which is generally poorly recapitulated during the in vitro differentiation of pluripotent stem cells.Here, we describe a practical and efficient method for the derivation of skeletal myogenic precursors from differentiating human pluripotent stem cells using controlled expression of PAX7. Flow cytometry (FACS) purified myogenic precursors can be expanded exponentially and differentiated in vitro into myotubes, enabling researchers to use these cells for disease modeling as well as therapeutic purposes.

  8. Brain activity for spontaneous and explicit mentalizing in adults with autism spectrum disorder: An fMRI study

    Directory of Open Access Journals (Sweden)

    Annabel D. Nijhof

    Full Text Available The socio-communicative difficulties of individuals with autism spectrum disorder (ASD are hypothesized to be caused by a specific deficit in the ability to represent one's own and others' mental states, referred to as Theory of Mind or mentalizing. However, many individuals with ASD show successful performance on explicit measures of mentalizing, and for this reason, the deficit is thought to be better captured by measures of spontaneous mentalizing. While there is initial behavioral support for this hypothesis, spontaneous mentalizing in ASD has not yet been studied at the neural level. Recent findings indicate involvement of the right temporoparietal junction (rTPJ in both explicit and spontaneous mentalizing (Bardi et al., 2016. In the current study, we investigated brain activation during explicit and spontaneous mentalizing in adults with ASD by means of fMRI. Based on our hypothesis of a core mentalizing deficit in ASD, decreased rTPJ activity was expected for both forms of mentalizing. A group of 24 adults with ASD and 21 neurotypical controls carried out a spontaneous and an explicit version of the same mentalizing task. They watched videos in which both they themselves and another agent formed a belief about the location of an object (belief formation phase. Only in the explicit task version participants were instructed to report the agent's belief on some trials. At the behavioral level, no group differences were revealed in either of the task versions. A planned region-of-interest analysis of the rTPJ showed that this region was more active for false- than for true-belief formation, independent of task version, especially when the agent's belief had a positive content (when the agent was expecting the object. This effect of belief was absent in adults with ASD. A whole-brain analysis revealed reduced activation in the anterior middle temporal pole in ASD for false - versus true-belief trials, independent of task version. Our findings

  9. Spontaneous Activity Associated with Delusions of Schizophrenia in the Left Medial Superior Frontal Gyrus: A Resting-State fMRI Study.

    Directory of Open Access Journals (Sweden)

    Bin Gao

    Full Text Available Delusions of schizophrenia have been found to be associated with alterations of some brain regions in structure and task-induced activation. However, the relationship between spontaneously occurring symptoms and spontaneous brain activity remains unclear. In the current study, 14 schizophrenic patients with delusions and 14 healthy controls underwent a resting-state functional magnetic resonance imaging (RS-fMRI scan. Patients with delusions of schizophrenia patients were rated with Positive and Negative Syndrome Scale (PANSS and Characteristics of Delusional Rating Scale (CDRS. Regional homogeneity (ReHo was calculated to measure the local synchronization of the spontaneous activity in a voxel-wise way. A two-sample t-test showed that ReHo of the right anterior cingulate gyrus and left medial superior frontal gyrus were higher in patients, and ReHo of the left superior occipital gyrus was lower, compared to healthy controls. Further, among patients, correlation analysis showed a significant difference between delusion scores of CRDS and ReHo of brain regions. ReHo of the left medial superior frontal gyrus was negatively correlated with patients' CDRS scores but not with delusional PANSS scores. These results suggested that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of delusion in schizophrenia.

  10. Spontaneous Activity Associated with Delusions of Schizophrenia in the Left Medial Superior Frontal Gyrus: A Resting-State fMRI Study.

    Science.gov (United States)

    Gao, Bin; Wang, Yiquan; Liu, Weibo; Chen, Zhiyu; Zhou, Heshan; Yang, Jinyu; Cohen, Zachary; Zhu, Yihong; Zang, Yufeng

    2015-01-01

    Delusions of schizophrenia have been found to be associated with alterations of some brain regions in structure and task-induced activation. However, the relationship between spontaneously occurring symptoms and spontaneous brain activity remains unclear. In the current study, 14 schizophrenic patients with delusions and 14 healthy controls underwent a resting-state functional magnetic resonance imaging (RS-fMRI) scan. Patients with delusions of schizophrenia patients were rated with Positive and Negative Syndrome Scale (PANSS) and Characteristics of Delusional Rating Scale (CDRS). Regional homogeneity (ReHo) was calculated to measure the local synchronization of the spontaneous activity in a voxel-wise way. A two-sample t-test showed that ReHo of the right anterior cingulate gyrus and left medial superior frontal gyrus were higher in patients, and ReHo of the left superior occipital gyrus was lower, compared to healthy controls. Further, among patients, correlation analysis showed a significant difference between delusion scores of CRDS and ReHo of brain regions. ReHo of the left medial superior frontal gyrus was negatively correlated with patients' CDRS scores but not with delusional PANSS scores. These results suggested that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of delusion in schizophrenia.

  11. Regulation of turkey myogenic satellite cell migration by MicroRNAs miR-128 and miR-24.

    Science.gov (United States)

    Velleman, S G; Harding, R L

    2017-06-01

    Myogenic satellite cells are an adult stem cell responsible for all post-hatch muscle growth in poultry. As a stem cell population, satellite cells are highly heterogeneous, but the origin of this heterogeneity remains unclear. Heterogeneity is, in part, regulated by gene expression. One method of endogenous gene regulation that may contribute to heterogeneity is microRNAs (miRNAs). Two miRNAs previously shown to regulate poultry myogenic satellite cell proliferation and differentiation, miR-128 and miR-24, were studied to determine if they also affected satellite cell migration. Satellite cell migration is an essential step for both proliferation and differentiation. During proliferation, satellite cells will migrate and align to form new myofibers or donate their nuclei to existing myofibers leading to muscle fiber hypertrophy or regeneration. Transient transfection of miRNA specific mimics to each miRNA reduced migration of satellite cells following a cell culture scratch at 72 h of proliferation when the cultures were 90 to 100% confluent. However, only the migration in cells transfected with miR-24 mimics at 24 and 30 h following the scratch was significantly reduced (P ≤ 0.05) to around 70% of the distance migrated by controls. Alternately, transfection with inhibitors specific to miR-128 or miR-24 significantly (P ≤ 0.05) increased migration between 147 and 252% compared to their controls between 24 and 48 h following the scratch. These data demonstrate that miR-128 and miR-24 play a role in myogenic satellite cell migration, which will impact muscle development and growth. © 2016 Poultry Science Association Inc.

  12. Angiotensin II Type 1 Receptor Mechanoactivation Involves RGS5 (Regulator of G Protein Signaling 5) in Skeletal Muscle Arteries: Impaired Trafficking of RGS5 in Hypertension.

    Science.gov (United States)

    Hong, Kwangseok; Li, Min; Nourian, Zahra; Meininger, Gerald A; Hill, Michael A

    2017-12-01

    Studies suggest that arteriolar pressure-induced vasoconstriction can be initiated by GPCRs (G protein-coupled receptors), including the AT 1 R (angiotensin II type 1 receptor). This raises the question, are such mechanisms regulated by negative feedback? The present studies examined whether RGS (regulators of G protein signaling) proteins in vascular smooth muscle cells are colocalized with the AT 1 R when activated by mechanical stress or angiotensin II and whether this modulates AT 1 R-mediated vasoconstriction. To determine whether activation of the AT 1 R recruits RGS5, an in situ proximity ligation assay was performed in primary cultures of cremaster muscle arteriolar vascular smooth muscle cells treated with angiotensin II or hypotonic solution in the absence or presence of candesartan (an AT 1 R blocker). Proximity ligation assay results revealed a concentration-dependent increase in trafficking/translocation of RGS5 toward the activated AT 1 R, which was attenuated by candesartan. In intact arterioles, knockdown of RGS5 enhanced constriction to angiotensin II and augmented myogenic responses to increased intraluminal pressure. Myogenic constriction was attenuated to a higher degree by candesartan in RGS5 siRNA-transfected arterioles, consistent with RGS5 contributing to downregulation of AT 1 R-mediated signaling. Further, translocation of RGS5 was impaired in vascular smooth muscle cells of spontaneously hypertensive rats. This is consistent with dysregulated (RGS5-mediated) AT 1 R signaling that could contribute to excessive vasoconstriction in hypertension. In intact vessels, candesartan reduced myogenic vasoconstriction to a greater extent in spontaneously hypertensive rats compared with controls. Collectively, these findings suggest that AT 1 R activation results in translocation of RGS5 toward the plasma membrane, limiting AT 1 R-mediated vasoconstriction through its role in G q/11 protein-dependent signaling. © 2017 American Heart Association, Inc.

  13. Increased arterial smooth muscle Ca2+ signaling, vasoconstriction, and myogenic reactivity in Milan hypertensive rats

    Science.gov (United States)

    Linde, Cristina I.; Karashima, Eiji; Raina, Hema; Zulian, Alessandra; Wier, Withrow G.; Hamlyn, John M.; Ferrari, Patrizia; Blaustein, Mordecai P.

    2012-01-01

    The Milan hypertensive strain (MHS) rats are a genetic model of hypertension with adducin gene polymorphisms linked to enhanced renal tubular Na+ reabsorption. Recently we demonstrated that Ca2+ signaling is augmented in freshly isolated mesenteric artery myocytes from MHS rats. This is associated with greatly enhanced expression of Na+/Ca2+ exchanger-1 (NCX1), C-type transient receptor potential (TRPC6) protein, and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) compared with arteries from Milan normotensive strain (MNS) rats. Here, we test the hypothesis that the enhanced Ca2+ signaling in MHS arterial smooth muscle is directly reflected in augmented vasoconstriction [myogenic and phenylephrine (PE)-evoked responses] in isolated mesenteric small arteries. Systolic blood pressure was higher in MHS (145 ± 1 mmHg) than in MNS (112 ± 1 mmHg; P arteries from MHS rats had significantly augmented myogenic tone and reactivity and enhanced constriction to low-dose (1–100 nM) PE. Isolated MHS arterial myocytes exhibited approximately twofold increased peak Ca2+ signals in response to 5 μM PE or ATP in the absence and presence of extracellular Ca2+. These augmented responses are consistent with increased vasoconstrictor-evoked sarcoplasmic reticulum (SR) Ca2+ release and increased Ca2+ entry, respectively. The increased SR Ca2+ release correlates with a doubling of inositol 1,4,5-trisphosphate receptor type 1 and tripling of SERCA2 expression. Pressurized MHS arteries also exhibited a ∼70% increase in 100 nM ouabain-induced vasoconstriction compared with MNS arteries. These functional alterations reveal that, in a genetic model of hypertension linked to renal dysfunction, multiple mechanisms within the arterial myocytes contribute to enhanced Ca2+ signaling and myogenic and vasoconstrictor-induced arterial constriction. MHS rats have elevated plasma levels of endogenous ouabain, which may initiate the protein upregulation and enhanced Ca2+ signaling. These

  14. Auditory Tones and Foot-Shock Recapitulate Spontaneous Sub-Threshold Activity in Basolateral Amygdala Principal Neurons and Interneurons.

    Directory of Open Access Journals (Sweden)

    François Windels

    Full Text Available In quiescent states such as anesthesia and slow wave sleep, cortical networks show slow rhythmic synchronized activity. In sensory cortices this rhythmic activity shows a stereotypical pattern that is recapitulated by stimulation of the appropriate sensory modality. The amygdala receives sensory input from a variety of sources, and in anesthetized animals, neurons in the basolateral amygdala (BLA show slow rhythmic synchronized activity. Extracellular field potential recordings show that these oscillations are synchronized with sensory cortex and the thalamus, with both the thalamus and cortex leading the BLA. Using whole-cell recording in vivo we show that the membrane potential of principal neurons spontaneously oscillates between up- and down-states. Footshock and auditory stimulation delivered during down-states evokes an up-state that fully recapitulates those occurring spontaneously. These results suggest that neurons in the BLA receive convergent input from networks of cortical neurons with slow oscillatory activity and that somatosensory and auditory stimulation can trigger activity in these same networks.

  15. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study

    OpenAIRE

    Wei Pan; Wei Pan; Wei Pan; Xuemei Gao; Shuo Shi; Fuqu Liu; Chao Li

    2018-01-01

    A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the...

  16. Effect of a non lethal whole-body gamma irradiation on the spontaneous and evoked electroencephalographic activities of the adult rabbit

    International Nuclear Information System (INIS)

    Court, L.

    1969-01-01

    The whole of the experimental methods described (animal preparation, achievement of a precise physiological technique, dosimetry, biological information processing) allowed us to follow the changes for 15 days in the spontaneous and evoked electroencephalogram activities of rabbits submitted to a non-lethal 400 rads whole-body gamma-irradiation. Behavioural troubles, changes in the arousal state and the spontaneous electrical activity of the neo-cortex and hippocampus were noticed constantly together with an enhanced cortical excitability, and the appearance of elements of the paroxystic series sometimes in contrast with a general decrease in amplitude. After a visual stimulus the general morphology of evoked activities at the level of the primary visual areas and hippocampus was unchanged, but enhanced latencies and delays, less systematic modifications in amplitudes seemed to show out a direct effect of radiations on the nervous system and sensorial activities; these troubles seemed to occur independently from the basic electrical activity. As a whole, the changes observed were usually transitory and varied with each individual. Finally an assumption is made to explain the mechanism of arousal troubles and the general evolution of spontaneous electrical activity in the brain. (author) [fr

  17. Effect of Ageing on the Passive and Active Tension and Pharmacodynamic Characteristics of Rat Coronary Arteries

    DEFF Research Database (Denmark)

    Sheykhzade, Majid; Simonsen, Anja Hviid; Boonen, Harrie C.M.

    2012-01-01

    The influence of ageing on the passive and active tension and pharmacodynamic characteristics of intramural coronary arteries from 3-month-old and 2-year-old male Wistar rats was investigated using an isometric myograph. The passive vessel wall tension measured in Ca2+-free physiological salt...... solution at L0 was significantly greater in arteries from old rats (1.46 ± 0.10 Nm–1, n = 7) than in young rats (1.13 ± 0.13 Nm–1, n = 6). However, the maximal active tension at L0 was similar. The spontaneous myogenic tone was increased by age and the vasorelaxation induced by extracellular K...... from both young and old rats. The slopes of the regression lines of the Schild plots were not significantly different from unity and the estimated pKB values for ketanserin were similar. In conclusion, ageing is associated with changes in passive mechanical characteristics as well as changes...

  18. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data

    Directory of Open Access Journals (Sweden)

    Rodolfo R Llinas

    2015-10-01

    Full Text Available A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in ten healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in ten healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject’s head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space.

  19. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data

    Science.gov (United States)

    Llinás, Rodolfo R.; Ustinin, Mikhail N.; Rykunov, Stanislav D.; Boyko, Anna I.; Sychev, Vyacheslav V.; Walton, Kerry D.; Rabello, Guilherme M.; Garcia, John

    2015-01-01

    A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in 10 healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in 10 healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject's head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space. PMID:26528119

  20. Potencial evocado miogênico vestibular a baixas frequências de estimulação Vestibular evoked myogenic potentials using low frequency stimuli

    Directory of Open Access Journals (Sweden)

    Aline Cabral de Oliveira

    2011-12-01

    Full Text Available Os potenciais evocados miogênicos vestibulares são reflexos vestíbulo-cervicais, decorrentes da estimulação do sáculo com sons de forte intensidade. São necessários parâmetros de normalidade para indivíduos jovens normais, utilizando-se estímulos a baixas frequências, as quais configuram a região de maior sensibilidade desse órgão sensorial. OBJETIVO: Realizar normatização do potencial evocado miogênico vestibular para baixas frequências de estimulação. MATERIAL E MÉTODO: Captou-se o potencial evocado miogênico vestibular em 160 orelhas, no músculo esternocleidomastoideo, de forma ipsilateral, por meio da promediação de 200 tone bursts, frequência de 250 Hz, intensidade de 95 dB NAn. FORMA DE ESTUDO: Estudo de coorte contemporânea com corte transversal. RESULTADOS: Aplicando-se o teste T de Student ou o Teste de Mann-Whitney, não foi constatada diferença significativa para parâmetros do potencial evocado miogênico vestibular entre os gêneros, para p Vestibular evoked myogenic potentials are vestibulocervical reflexes resulting from sacculus stimulation with strong intensity sounds. Normality parameters are necessary for young normal individuals, using low frequency stimuli, which configure the most sensitive region of this sensory organ. AIM: To establish vestibular evoked myogenic potential standards for low frequency stimulation. MATERIAL AND METHOD: Vestibular evoked myogenic potential was captured from 160 ears, in the ipsilateral sternocleidomastoid muscle, using 200 averaged tone-burst stimuli, at 250 Hz, with an intensity of 95 dB NAn. CASE STUDY: Clinical observational cross-sectional. RESULTS: Neither the student's t-test nor the Mann-Whitney test showed a significant difference in latency or vestibular evoked myogenic potential amplitudes, for p <; 0.05. Irrespective of gender, we found latencies of p13-n23 and p13-n23 interpeaks of 13.84 ms (± 1.41, 23.81 ms (±1.99 and 10.62 ms (± 6.56, respectively

  1. Assessment of D-methionine protecting cisplatin-induced otolith toxicity by vestibular-evoked myogenic potential tests, ATPase activities and oxidative state in guinea pigs.

    Science.gov (United States)

    Lo, Wu-Chia; Chang, Chih-Ming; Liao, Li-Jen; Wang, Chi-Te; Young, Yi-Ho; Chang, Yih-Leong; Cheng, Po-Wen

    2015-01-01

    To date, inadequate study has been devoted to the toxic vestibular effects caused by cisplatin. In addition, no electrophysiological examination has been conducted to assess cisplatin-induced otolith toxicity. The purposes of this study are thus two-fold: 1) to determine whether cervical vestibular-evoked myogenic potentials (VEMPs) and ocular VEMPs are practical electrophysiological methods of testing for cisplatin-induced otolith toxicity and 2) to examine if D-methionine (D-met) pre-injection would protect the otolith organs against cisplatin-induced changes in enzyme activities and/or oxidative status. Guinea pigs were intraperitoneally treated once daily with the following injections for seven consecutive days: sterile 0.9% saline control, cisplatin (5 mg/kg) only, D-met (300 mg/kg) only, or a combination of d-met (300 mg/kg) and cisplatin (5 mg/kg), respectively, with a 30 minute window in between. Each animal underwent the oVEMP and cVEMP tests before and after treatment. The changes in the biochemistry of the otolith organs, including membranous Na(+), K(+)-ATPase and Ca(2+)-ATPase, lipid peroxidation (LPO) levels and nitric oxide (NO) levels, were also evaluated. In the cisplatin-only treated guinea pigs, the mean amplitudes of the oVEMP tests were significantly (potolith dysfunction. D-Met attenuated the reduced ATPase activities and increased oxidative stress induced by cisplatin toxicity in the otolith organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The activity of spontaneous action potentials in developing hair cells is regulated by Ca(2+-dependence of a transient K+ current.

    Directory of Open Access Journals (Sweden)

    Snezana Levic

    Full Text Available Spontaneous action potentials have been described in developing sensory systems. These rhythmic activities may have instructional roles for the functional development of synaptic connections. The importance of spontaneous action potentials in the developing auditory system is underpinned by the stark correlation between the time of auditory system functional maturity, and the cessation of spontaneous action potentials. A prominent K(+ current that regulates patterning of action potentials is I(A. This current undergoes marked changes in expression during chicken hair cell development. Although the properties of I(A are not normally classified as Ca(2+-dependent, we demonstrate that throughout the development of chicken hair cells, I(A is greatly reduced by acute alterations of intracellular Ca(2+. As determinants of spike timing and firing frequency, intracellular Ca(2+ buffers shift the activation and inactivation properties of the current to more positive potentials. Our findings provide evidence to demonstrate that the kinetics and functional expression of I(A are tightly regulated by intracellular Ca(2+. Such feedback mechanism between the functional expression of I(A and intracellular Ca(2+ may shape the activity of spontaneous action potentials, thus potentially sculpting synaptic connections in an activity-dependent manner in the developing cochlea.

  3. Urokinase vs Tissue-Type Plasminogen Activator for Thrombolytic Evacuation of Spontaneous Intracerebral Hemorrhage in Basal Ganglia

    Directory of Open Access Journals (Sweden)

    Yuqian Li

    2017-08-01

    Full Text Available Spontaneous intracerebral hemorrhage (ICH is a devastating form of stroke, which leads to a high rate of mortality and poor neurological outcomes worldwide. Thrombolytic evacuation with urokinase-type plasminogen activator (uPA or tissue-type plasminogen activator (tPA has been showed to be a hopeful treatment for ICH. However, to the best of our knowledge, no clinical trials were reported to compare the efficacy and safety of these two fibrinolytics administrated following minimally invasive stereotactic puncture (MISP in patients with spontaneous basal ganglia ICH. Therefore, the authors intended here to evaluate the differential impact of uPA and tPA in a retrospective study. In the present study, a total of 86 patients with spontaneous ICH in basal ganglia using MISP received either uPA (uPA group, n = 45 or tPA (tPA group, n = 41, respectively. The clinical baseline characteristics prior to the operation were collected. In addition, therapeutic responses were assessed by the short-term outcomes within 30 days postoperation, as well as long-term outcomes at 1 year postoperation. Our findings showed that, in comparison with tPA, uPA was able to better promote hematoma evacuation and ameliorate perihematomal edema, but the differences were not statistically significant. Moreover, the long-term functional outcomes of both groups were similar, with no statistical difference. In conclusion, these results provide evidence supporting that uPA and tPA are similar in the efficacy and safety for thrombolytic evacuation in combination with MISP in patients with spontaneous basal ganglia ICH.

  4. Circadian and individual variations in duration of spontaneous activity among ankle muscles of the cat

    NARCIS (Netherlands)

    Hensbergen, E; Kernell, D

    This article concerns the spontaneous motor behavior of cat hindlimb muscles and muscle regions using 24-h electromyographic (EMG) recordings. Previously, we found marked differences in average daily "duty time" (i.e., the percentage of total sampling time filled with EMG activity) between different

  5. Alpha-Band Activity Reveals Spontaneous Representations of Spatial Position in Visual Working Memory.

    Science.gov (United States)

    Foster, Joshua J; Bsales, Emma M; Jaffe, Russell J; Awh, Edward

    2017-10-23

    An emerging view suggests that spatial position is an integral component of working memory (WM), such that non-spatial features are bound to locations regardless of whether space is relevant [1, 2]. For instance, past work has shown that stimulus position is spontaneously remembered when non-spatial features are stored. Item recognition is enhanced when memoranda appear at the same location where they were encoded [3-5], and accessing non-spatial information elicits shifts of spatial attention to the original position of the stimulus [6, 7]. However, these findings do not establish that a persistent, active representation of stimulus position is maintained in WM because similar effects have also been documented following storage in long-term memory [8, 9]. Here we show that the spatial position of the memorandum is actively coded by persistent neural activity during a non-spatial WM task. We used a spatial encoding model in conjunction with electroencephalogram (EEG) measurements of oscillatory alpha-band (8-12 Hz) activity to track active representations of spatial position. The position of the stimulus varied trial to trial but was wholly irrelevant to the tasks. We nevertheless observed active neural representations of the original stimulus position that persisted throughout the retention interval. Further experiments established that these spatial representations are dependent on the volitional storage of non-spatial features rather than being a lingering effect of sensory energy or initial encoding demands. These findings provide strong evidence that online spatial representations are spontaneously maintained in WM-regardless of task relevance-during the storage of non-spatial features. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K., E-mail: mcloo001@tc.umn.edu

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin{sup -/-} (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a

  7. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    International Nuclear Information System (INIS)

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K.

    2011-01-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin -/- (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a subpopulation of

  8. Can a finding of cervical vestibular evoked myogenic potentials contribute to vestibular migraine diagnostics?

    Directory of Open Access Journals (Sweden)

    Tihana Vešligaj

    2016-02-01

    Full Text Available Aim To investigate differences in vestibular evoked myogenic potentials (VEMP results with patients suffering from vestibular migraine and healthy people, taking into consideration values of threshold and latency of occurrence of the characteristic wave complex, size of amplitude, and interaural amplitude ratio. According to the results, determine the importance and usefulness of VEMP in vestibular migraine diagnostics. Methods A total number of 62 subjects were included in the study, 32 of them belonging to a group of patients suffering from vestibular migraine (VM, while other 30 were in a control group of healthy subjects. Information was collected during the diagnostic evaluation. General and otoneurological history of patients and bedside tests, audiological results, videonystagmography and cervical vestibular evoked myogenic potentials (cVEMP were made. Results There was a difference in an interaural ratio of amplitudes in the experimental and control groups, but it was not found to be clinically significant. By ToneBurst 500 Hz method, the interaural amplitude ratio higher than 35% was measured in 46.97% subjects, while the response was totally unilaterally missing in 28.8% patients. Conclusion Even the sophisticated method as cVEMP does not give the ultimate result confirming the vestibular migraine diagnosis, and neither do other diagnostic methods. cVEMP result can contribute to the completion of full mosaic of vestibular migraine diagnostics.

  9. Reproduction of overall spontaneous pain pattern by manual stimulation of active myofascial trigger points in fibromyalgia patients

    DEFF Research Database (Denmark)

    Ge, Hong-You; Wang, Ying; Fernández-de-las-Peñas, César

    2011-01-01

    It has previously been reported that local and referred pain from active myofascial trigger points (MTPs) in the neck and shoulder region contribute to fibromyalgia (FM) pain and that the pain pattern induced from active MTPs can reproduce parts of the spontaneous clinical FM pain pattern. The cu...

  10. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    Science.gov (United States)

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  11. Bilateral Changes of Spontaneous Activity Within the Central Auditory Pathway Upon Chronic Unilateral Intracochlear Electrical Stimulation.

    Science.gov (United States)

    Basta, Dietmar; Götze, Romy; Gröschel, Moritz; Jansen, Sebastian; Janke, Oliver; Tzschentke, Barbara; Boyle, Patrick; Ernst, Arne

    2015-12-01

    In recent years, cochlear implants have been applied successfully for the treatment of unilateral hearing loss with quite surprising benefit. One reason for this successful treatment, including the relief from tinnitus, could be the normalization of spontaneous activity in the central auditory pathway because of the electrical stimulation. The present study, therefore, investigated at a cellular level, the effect of a unilateral chronic intracochlear stimulation on key structures of the central auditory pathway. Normal-hearing guinea pigs were mechanically single-sided deafened through a standard HiFocus1j electrode array (on a HiRes 90k cochlear implant) being inserted into the first turn of the cochlea. Four to five electrode contacts could be used for the stimulation. Six weeks after surgery, the speech processor (Auria) was fitted, based on tNRI values and mounted on the animal's back. The two experimental groups were stimulated 16 hours per day for 90 days, using a HiRes strategy based on different stimulation rates (low rate (275 pps/ch), high rate (5000 pps/ch)). The results were compared with those of unilateral deafened controls (implanted but not stimulated), as well as between the treatment groups. All animals experienced a standardized free field auditory environment. The low-rate group showed a significantly lower average spontaneous activity bilaterally in the dorsal cochlear nucleus and the medial geniculate body than the controls. However, there was no difference in the inferior colliculus and the primary auditory cortex. Spontaneous activity of the high-rate group was also reduced bilaterally in the dorsal cochlear nucleus and in the primary auditory cortex. No differences could be observed between the high-rate group and the controls in the contra-lateral inferior colliculus and medial geniculate body. The high-rate group showed bilaterally a higher activity in the CN and the MGB compared with the low-rate group, whereas in the IC and in the

  12. Spontaneously emerging cortical representations of visual attributes

    Science.gov (United States)

    Kenet, Tal; Bibitchkov, Dmitri; Tsodyks, Misha; Grinvald, Amiram; Arieli, Amos

    2003-10-01

    Spontaneous cortical activity-ongoing activity in the absence of intentional sensory input-has been studied extensively, using methods ranging from EEG (electroencephalography), through voltage sensitive dye imaging, down to recordings from single neurons. Ongoing cortical activity has been shown to play a critical role in development, and must also be essential for processing sensory perception, because it modulates stimulus-evoked activity, and is correlated with behaviour. Yet its role in the processing of external information and its relationship to internal representations of sensory attributes remains unknown. Using voltage sensitive dye imaging, we previously established a close link between ongoing activity in the visual cortex of anaesthetized cats and the spontaneous firing of a single neuron. Here we report that such activity encompasses a set of dynamically switching cortical states, many of which correspond closely to orientation maps. When such an orientation state emerged spontaneously, it spanned several hypercolumns and was often followed by a state corresponding to a proximal orientation. We suggest that dynamically switching cortical states could represent the brain's internal context, and therefore reflect or influence memory, perception and behaviour.

  13. Abnormal regional spontaneous neuronal activity associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder revealed by resting-state functional MRI.

    Science.gov (United States)

    Qiu, Linlin; Fu, Xiangshuai; Wang, Shuai; Tang, Qunfeng; Chen, Xingui; Cheng, Lin; Zhang, Fuquan; Zhou, Zhenhe; Tian, Lin

    2017-02-15

    A large number of neuroimaging studies have revealed the dysfunction of brain activities in obsessive-compulsive disorder (OCD) during various tasks. However, regional spontaneous activity abnormalities in OCD are gradually being revealed. In this current study, we aimed to investigate cerebral regions with abnormal spontaneous activity using resting-state functional magnetic resonance imaging (fMRI) and further explored the relationship between the spontaneous neuronal activity and symptom severity of patients with OCD. Thirty-one patients with OCD and 32 age-and sex-matched normal controls received the fMRI scans and fractional amplitude of low-frequency fluctuation (fALFF) approach was applied to identify the abnormal brain activity. We found that patients with OCD showed decreased fALFF not only in the cortical-striato-thalamo-cortical (CSTC) circuits like the thalamus, but also in other cerebral systems like the cerebellum, the parietal cortex and the temporal cortex. Additionally, OCD patients demonstrated significant associations between decreased fALFF and obsessive-compulsive symptom severity in the thalamus, the paracentral lobule and the cerebellum. Our results provide evidence for abnormal spontaneous neuronal activity in distributed cerebral areas and support the notion that brain areas outside the CSTC circuits may also play an important role in the pathophysiology of OCD. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Biologically active polymers from spontaneous carotenoid oxidation: a new frontier in carotenoid activity.

    Directory of Open Access Journals (Sweden)

    James B Johnston

    Full Text Available In animals carotenoids show biological activity unrelated to vitamin A that has been considered to arise directly from the behavior of the parent compound, particularly as an antioxidant. However, the very property that confers antioxidant activity on some carotenoids in plants also confers susceptibility to oxidative transformation. As an alternative, it has been suggested that carotenoid oxidative breakdown or metabolic products could be the actual agents of activity in animals. However, an important and neglected aspect of the behavior of the highly unsaturated carotenoids is their potential to undergo addition of oxygen to form copolymers. Recently we reported that spontaneous oxidation of ß-carotene transforms it into a product dominated by ß-carotene-oxygen copolymers. We now report that the polymeric product is biologically active. Results suggest an overall ability to prime innate immune function to more rapidly respond to subsequent microbial challenges. An underlying structural resemblance to sporopollenin, found in the outer shell of spores and pollen, may allow the polymer to modulate innate immune responses through interactions with the pattern recognition receptor system. Oxygen copolymer formation appears common to all carotenoids, is anticipated to be widespread, and the products may contribute to the health benefits of carotenoid-rich fruits and vegetables.

  15. INFLUENCE OF DANCE TRAINING ON SACCULOCOLLIC PATHWAY: VESTIBULAR EVOKED MYOGENIC POTENTIALS (VEMP) AS AN OBJECTIVE TOOL

    OpenAIRE

    Swathi; Sathish Kumar

    2013-01-01

    ABSTRACT : Auditory system is shaped by experience and training. Training (s ensory experience) induces neurophysiologic changes & plasticity in normal hearing individuals, hearing loss patients, hearing aid users and cochlear implanted subjects. Not only speech stimulus, but music also brings about functional and structural organi zation of the brain in musician compared to non - musicians. The Vestibular evoked myogenic potentials (VEMP) are a biphasic in...

  16. Vestibular myogenic and acoustical brainstem evoked potentials in neurological practice

    Directory of Open Access Journals (Sweden)

    O. S. Korepina

    2012-01-01

    Full Text Available Along with the inspection of acoustical cortex and brainstem EP in neurologic, otoneurologic and audiologic practice recently start to use so-called vestibular evoked myogenic potentials (VEMP. It is shown, that at ear stimulation by a loud sound and record of sterno-cleidomastoid contraction is possible to estimate function of the inferior vestibular nerve and vestibulospinal pathways, a sacculo-cervical reflex. In article some methodical and clinical questions of application of these kinds are presented. Combine research acoustic brainstem EP and VEMP allows to confirm effectively lesions of acoustical and vestibular ways at brainstem. The conclusion becomes, that this kind of inspection is important for revealing demielinisation and defeats in vestibulospinal tract, that quite often happens at MS, and at estimation of efficiency of treatment

  17. Combining task-evoked and spontaneous activity to improve pre-operative brain mapping with fMRI

    Science.gov (United States)

    Fox, Michael D.; Qian, Tianyi; Madsen, Joseph R.; Wang, Danhong; Li, Meiling; Ge, Manling; Zuo, Huan-cong; Groppe, David M.; Mehta, Ashesh D.; Hong, Bo; Liu, Hesheng

    2016-01-01

    Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice for over 20 years. Recently, pre-operative fMRI mapping based on correlations in spontaneous brain activity has been demonstrated, however this approach has its own limitations and has not seen widespread clinical use. Here we show that spontaneous and task-based mapping can be performed together using the same pre-operative fMRI data, provide complimentary information relevant for functional localization, and can be combined to improve identification of eloquent motor cortex. Accuracy, sensitivity, and specificity of our approach are quantified through comparison with electrical cortical stimulation mapping in eight patients with intractable epilepsy. Broad applicability and reproducibility of our approach is demonstrated through prospective replication in an independent dataset of six patients from a different center. In both cohorts and every individual patient, we see a significant improvement in signal to noise and mapping accuracy independent of threshold, quantified using receiver operating characteristic curves. Collectively, our results suggest that modifying the processing of fMRI data to incorporate both task-based and spontaneous activity significantly improves functional localization in pre-operative patients. Because this method requires no additional scan time or modification to conventional pre-operative data acquisition protocols it could have widespread utility. PMID:26408860

  18. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation

    International Nuclear Information System (INIS)

    Jana, Soumen; Leung, Matthew; Zhang, Miqin; Chang, Julia

    2014-01-01

    Skeletal muscle injury can lead to severe motor deficits that adversely affect movement and quality of life. Current surgical treatments for skeletal muscle are hindered by the poor formation of organized myotube bundles at the wound site. Tissue-engineered skeletal muscle constructs to date have been unable to generate high degrees of myotube density and alignment. Generating a suitable in vitro tissue-engineered skeletal muscle construct requires the design of a scaffold that recapitulates the structural combination of nanoscale collagen fibrils and aligned microscale basal lamina tracks present in the native extracellular matrix (ECM). We hypothesized that a 3D aligned tubular porous scaffold containing aligned nanofibers inside the pores can mimic the native muscle tissue environment. We constructed a laminar section of the hypothesized scaffold with aligned chitosan-PCL nanofibers arranged co-axially with the aligned microscale chitosan scaffold bands to mimic the required myogenic environment. A 6-day study of C2C12 mouse myoblast cells cultured on this hybrid scaffold indicated that the nanofibers and scaffold bands in the scaffold played a synergetic role in directing cell orientation, interaction, migration and organization. Our results showed that aligned nanofibers mediated cell alignment and the aligned scaffold bands induced the formation of a more compact assembly of myotube cells as compared to various control substrates including chitosan films, nanofibers, and chitosan bands. The expression levels of both early and late-stage myogenic differentiation genes associated with myogenin and myosin heavy chain, respectively, were higher on the hybrid substrate than on control substrates. Our study suggests that the combination of nano and microscale topological features in the ECM can direct myogenic differentiation, and the hybrid material has the potential to improve the outcome of skeletal tissue engineering. (papers)

  19. On-off intermittency in time series of spontaneous paroxysmal activity in rats with genetic absence epilepsy

    International Nuclear Information System (INIS)

    Hramov, Alexander; Koronovskii, Alexey A.; Midzyanovskaya, I.S.; Sitnikova, E.; Rijn, C.M. van

    2006-01-01

    In the present paper we consider the on-off intermittency phenomena observed in time series of spontaneous paroxysmal activity in rats with genetic absence epilepsy. The method to register and analyze the electroencephalogram with the help of continuous wavelet transform is also suggested

  20. CD133+ cells derived from skeletal muscles of Duchenne muscular dystrophy patients have a compromised myogenic and muscle regenerative capability.

    Science.gov (United States)

    Meng, Jinhong; Muntoni, Francesco; Morgan, Jennifer

    2018-05-12

    Cell-mediated gene therapy is a possible means to treat muscular dystrophies like Duchenne muscular dystrophy. Autologous patient stem cells can be genetically-corrected and transplanted back into the patient, without causing immunorejection problems. Regenerated muscle fibres derived from these cells will express the missing dystrophin protein, thus improving muscle function. CD133+ cells derived from normal human skeletal muscle contribute to regenerated muscle fibres and form muscle stem cells after their intra-muscular transplantation into an immunodeficient mouse model. But it is not known whether CD133+ cells derived from DMD patient muscles have compromised muscle regenerative function. To test this, we compared CD133+ cells derived from DMD and normal human muscles. DMD CD133+ cells had a reduced capacity to undergo myogenic differentiation in vitro compared with CD133+ cells derived from normal muscle. In contrast to CD133+ cells derived from normal human muscle, those derived from DMD muscle formed no satellite cells and gave rise to significantly fewer muscle fibres of donor origin, after their intra-muscular transplantation into an immunodeficient, non-dystrophic, mouse muscle. DMD CD133+ cells gave rise to more clones of smaller size and more clones that were less myogenic than did CD133+ cells derived from normal muscle. The heterogeneity of the progeny of CD133+ cells, combined with the reduced proliferation and myogenicity of DMD compared to normal CD133+ cells, may explain the reduced regenerative capacity of DMD CD133+ cells. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Sources of variation and genetic profile of spontaneous, out-of-season ovulatory activity in the Chios sheep

    Directory of Open Access Journals (Sweden)

    Kouttos Athanasios

    2003-01-01

    Full Text Available Abstract Organising the breeding plan of a seasonally breeding species, such as sheep, presents a challenge to farmers and the industry as a whole, since both economical and biological considerations need to be carefully balanced. Understanding the breeding activity of individual animals becomes a prerequisite for a successful breeding program. This study set out to investigate the sources of variation and the genetic profile of the spontaneous, out-of-season ovulatory activity of ewes of the Chios dairy sheep breed in Greece. The definition of the trait was based on blood progesterone levels, measured before exposing the ewes to rams, which marks the onset of the usual breeding season. Data were 707 records, taken over two consecutive years, of 435 ewes kept at the Agricultural Research Station of Chalkidiki in northern Greece. When all available pedigree was included, the total number of animals involved was 1068. On average, 29% of all ewes exhibited spontaneous, out-of-season ovulatory activity, with no substantial variation between the years. Significant sources of systematic variation were the ewe age and live weight, and the month of previous lambing. Older, heavier ewes, that had lambed early the previous autumn, exhibited more frequent activity. Heritability estimates were 0.216 (± 0.084 with a linear and 0.291 with a threshold model. The latter better accounts for the categorical nature of the trait. The linear model repeatability was 0.230 (± 0.095. The results obtained in this study support the notion that spontaneous out-of-season ovulatory activity can be considered in the development of a breeding plan for the Chios sheep breed.

  2. Two types of mental fatigue affect spontaneous oscillatory brain activities in different ways

    OpenAIRE

    Shigihara, Yoshihito; Tanaka, Masaaki; Ishii, Akira; Kanai, Etsuko; Funakura, Masami; Watanabe, Yasuyoshi

    2013-01-01

    Abstract Background Fatigue has a multi-factorial nature. We examined the effects of two types of mental fatigue on spontaneous oscillatory brain activity using magnetoencephalography (MEG). Methods Participants were randomly assigned to two groups in a single-blinded, crossover fashion to perform two types of mental fatigue-inducing experiments. Each experiment consisted of a 30-min fatigue-inducing 0- or 2-back test session and two evaluation sessions performed just before and after the fat...

  3. Research on spontaneous activity in adult anisometropic amblyopia with regional homogeneity

    Science.gov (United States)

    Huang, Yufeng; Zhou, Yifeng

    2017-06-01

    Amblyopia usually occurs in early childhood and results in monocular visual impairment. The functional magnetic resonance imaging (fMRI) studies have reflected functional anomaly in amblyopia. In resting-state fMRI study, spontaneous activity changes abnormally in anisometropic amblyopia could be revealed by the regional homogeneity (ReHo). Twenty two adult anisometropic amblyopes and Twenty one normal controls participated in this fMRI study. Two sample T test was carried out to analysis ReHo within the whole brain for the inter groups. Compare with normal group, our study found that the amblyopia’s ReHo mainly increased in the left frontal lobe, while decreased in the left cerebellum, the temporal lobe (left and right), and the left parietal lobe. And the ReHo values in middle and inferior temporal lobe, the prefrontal lobe, frontal lobe (positive) and parietal lobe and medial frontal gyrus (negative) could be correlated with the acuity deficit of amblyopia. The results increased in ReHo may indicate compensatory plasticity in higher vision information process, while the decreased in ReHo may reflect decreased ability in eye movement, spatial sense and visuo-motor coordination. The correlation revealed that the vision deficit may correspond to the spontaneous in certain brain area.

  4. Biomimetic elastomeric, conductive and biodegradable polycitrate-based nanocomposites for guiding myogenic differentiation and skeletal muscle regeneration.

    Science.gov (United States)

    Du, Yuzhang; Ge, Juan; Li, Yannan; Ma, Peter X; Lei, Bo

    2018-03-01

    Artificial muscle-like biomaterials have gained tremendous interests owing to their broad applications in regenerative medicine, wearable devices, bioelectronics and artificial intelligence. Unfortunately, key challenges are still existed for current materials, including biomimetic viscoelasticity, biocompatibility and biodegradation, multifunctionality. Herein, for the first time, we develop highly elastomeric, conductive and biodegradable poly (citric acid-octanediol-polyethylene glycol)(PCE)-graphene (PCEG) nanocomposites, and demonstrate their applications in myogenic differentiation and guiding skeletal muscle tissue regeneration. In PCEG nanocomposites, PCE provides the biomimetic elastomeric behavior, and the addition of reduced graphene oxide (RGO) endows the enhanced mechanical strength and conductivity. The highly elastomeric behavior, significantly enhanced modulus (400%-800%), strength (200%-300%) of PCEG nanocomposites with controlled biodegradability and electrochemical conductivity were achieved. The myoblasts proliferation and myogenic differentiation were significantly improved by PCEG nanocomposite. Significantly high in vivo biocompatibility of PCEG nanocomposites was observed when implanted in the subcutaneous tissue for 4 weeks in rats. PCEG nanocomposites could significantly enhance the muscle fibers and blood vessels formation in vivo in a skeletal muscle lesion model of rat. This study may provide a novel strategy to develop multifunctional elastomeric nanocomposites with high biocompatibility for potential soft tissue regeneration and stretchable bioelectronic devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Myogenic nature of insect heartbeat and intestinal peristalsis, revealed by neuromuscular paralysis caused by the sting of a braconid wasp

    Czech Academy of Sciences Publication Activity Database

    Sláma, Karel; Lukáš, J.

    2011-01-01

    Roč. 57, č. 2 (2011), s. 251-259 ISSN 0022-1910 Grant - others:MZe ČR(CZ) 002 700 604 Institutional research plan: CEZ:AV0Z50070508 Keywords : autonomic heartbeat * myogenic heartbeat * anterograde heartbeat Subject RIV: ED - Physiology Impact factor: 2.236, year: 2011

  6. Spaced sessions of avoidance extinction reduce spontaneous recovery and promote infralimbic cortex activation.

    Science.gov (United States)

    Tapias-Espinosa, Carles; Kádár, Elisabet; Segura-Torres, Pilar

    2018-01-15

    Extinction-based therapies (EBT) are the psychological treatments of choice for certain anxiety disorders, such as post-traumatic stress disorder. However, some patients relapse and suffer spontaneous recovery (SR) of anxiety symptoms and persistence of avoidance behaviour, which underlines the need for improving EBT. In rats, recent evidence has highlighted the relevance of the temporal distribution of extinction sessions in reducing SR of auditory fear conditioning, although it has seldom been studied in procedures involving proactive avoidance responses, such as two-way active avoidance conditioning (TWAA). We examined whether the temporal distribution of two extinction sessions separated by 24h or 7days (contiguous versus spaced extinction paradigms, respectively), influences SR after 28days of a TWAA task. c-Fos expression, as a marker of neuronal activation, was also measured by immunohistochemistry 90min after the SR test in the amygdala and the medial prefrontal cortex. The temporal distribution of extinction sessions did not affect the degree of extinction learning. However, only the rats that underwent the 7-day spaced extinction paradigm maintained the level of extinction in the long term, showing no SR in TWAA. This behavioural finding was consistent with a greater number of c-Fos-labelled neurons in the infralimbic cortex in the 7-day group, and in the Lateral and Central nuclei of the amygdala in the 24-hour group. These findings show that a time-spaced extinction paradigm reduces the spontaneous recovery of active avoidance behaviour, and that this behavioural advantage appears to be related to the activation of the infralimbic cortex. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Interaction of Wnt Signaling with BMP/Smad Signaling during the Transition from Cell Proliferation to Myogenic Differentiation in Mouse Myoblast-Derived Cells

    Directory of Open Access Journals (Sweden)

    Kumiko Terada

    2013-01-01

    Full Text Available Background. Wnt signaling is involved in muscle formation through β-catenin-dependent or -independent pathways, but interactions with other signaling pathways including transforming growth factor β/Smad have not been precisely elucidated. Results. As Wnt4 stimulates myogenic differentiation by antagonizing myostatin (GDF8 activity, we examined the role of Wnt4 signaling during muscle differentiation in the C2C12 myoblast cell line. Among several extrinsic signaling molecules examined in a microarray analysis of C2C12 cells during the transition from cell proliferation to differentiation after mitogen deprivation, bone morphogenetic protein 4 (BMP4 expression was prominently increased. Wnt4 overexpression had similar effects on BMP4 expression. BMP4 was able to inhibit muscle differentiation when added to the culture medium. BMP4 and noggin had no effects on the cellular localization of β-catenin induced by Wnt3a; however, the BMP4-induced phosphorylation of Smad1/5/8 was enhanced by Wnt4, but not by Wnt3a. The BMP antagonist noggin effectively stimulated muscle differentiation through binding to endogenous BMPs, and the effect of noggin was enhanced by the presence of Wnt3a and Wnt4. Conclusion. These results suggest that BMP/Smad pathways are modified through Wnt signaling during the transition from progenitor cell proliferation to myogenic differentiation, although Wnt/β-catenin signaling is not modified with BMP/Smad signaling.

  8. Accuracy of rate coding: When shorter time window and higher spontaneous activity help

    Czech Academy of Sciences Publication Activity Database

    Leváková, Marie; Tamborrino, M.; Košťál, Lubomír; Lánský, Petr

    2017-01-01

    Roč. 95, č. 2 (2017), č. článku 022310. ISSN 2470-0045 R&D Projects: GA ČR(CZ) GA15-08066S; GA MŠk(CZ) 7AMB17AT048 Institutional support: RVO:67985823 Keywords : rate coding * observation window * spontaneous activity * Fisher information * perfect integrate- and -fire model * Wiener process Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 2.366, year: 2016

  9. Combining task-evoked and spontaneous activity to improve pre-operative brain mapping with fMRI.

    Science.gov (United States)

    Fox, Michael D; Qian, Tianyi; Madsen, Joseph R; Wang, Danhong; Li, Meiling; Ge, Manling; Zuo, Huan-Cong; Groppe, David M; Mehta, Ashesh D; Hong, Bo; Liu, Hesheng

    2016-01-01

    Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice for over 20years. Recently, pre-operative fMRI mapping based on correlations in spontaneous brain activity has been demonstrated, however this approach has its own limitations and has not seen widespread clinical use. Here we show that spontaneous and task-based mapping can be performed together using the same pre-operative fMRI data, provide complimentary information relevant for functional localization, and can be combined to improve identification of eloquent motor cortex. Accuracy, sensitivity, and specificity of our approach are quantified through comparison with electrical cortical stimulation mapping in eight patients with intractable epilepsy. Broad applicability and reproducibility of our approach are demonstrated through prospective replication in an independent dataset of six patients from a different center. In both cohorts and every individual patient, we see a significant improvement in signal to noise and mapping accuracy independent of threshold, quantified using receiver operating characteristic curves. Collectively, our results suggest that modifying the processing of fMRI data to incorporate both task-based and spontaneous activity significantly improves functional localization in pre-operative patients. Because this method requires no additional scan time or modification to conventional pre-operative data acquisition protocols it could have widespread utility. Copyright © 2015. Published by Elsevier Inc.

  10. Vestibular-Evoked Myogenic Potentials in Bilateral Vestibulopathy

    Directory of Open Access Journals (Sweden)

    Sally M. Rosengren

    2018-04-01

    Full Text Available Bilateral vestibulopathy (BVP is a chronic condition in which patients have a reduction or absence of vestibular function in both ears. BVP is characterized by bilateral reduction of horizontal canal responses; however, there is increasing evidence that otolith function can also be affected. Cervical and ocular vestibular-evoked myogenic potentials (cVEMPs/oVEMPs are relatively new tests of otolith function that can be used to test the saccule and utricle of both ears independently. Studies to date show that cVEMPs and oVEMPs are often small or absent in BVP but are in the normal range in a significant proportion of patients. The variability in otolith function is partly due to the heterogeneous nature of BVP but is also due to false negative and positive responses that occur because of the large range of normal VEMP amplitudes. Due to their variability, VEMPs are not part of the diagnosis of BVP; however, they are helpful complementary tests that can provide information about the extent of disease within the labyrinth. This article is a review of the use of VEMPs in BVP, summarizing the available data on VEMP abnormalities in patients and discussing the limitations of VEMPs in diagnosing bilateral loss of otolith function.

  11. Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA

    International Nuclear Information System (INIS)

    Hastings, P.J.; Quah, S.-K.; Borstel, R.C. von

    1976-01-01

    It is stated that strains of yeast carrying mutations in many of the steps in pathways repairing radiation-induced damage to DNA have enhanced spontaneous mutation rates. Most strains isolated because they have enhanced spontaneous mutation carry mutations in DNA repair systems. This suggests that much spontaneous mutation arises by mutagenic repair of spontaneous lesions. (author)

  12. Salicylate-induced changes in spontaneous activity of single units in the inferior colliculus of the guinea pig.

    Science.gov (United States)

    Jastreboff, P J; Sasaki, C T

    1986-11-01

    Changes in spontaneous neuronal activity of the inferior colliculus in albino guinea pigs before and after administration of sodium salicylate were analyzed. Animals were anesthetized with pentobarbital, and two microelectrodes separated by a few hundred microns were driven through the inferior colliculus. After collecting a sufficiently large sample of cells, sodium salicylate (450 mg/kg) was injected i.p. and recordings again made 2 h after the injection. Comparison of spontaneous activity recorded before and after salicylate administration revealed highly statistically significant differences (p less than 0.001). After salicylate, the mean rate of the cell population increased from 29 to 83 Hz and the median from 26 to 74 Hz. Control experiments in which sodium salicylate was replaced by saline injection revealed no statistically significant differences in cell discharges. Recordings made during the same experiments from lobulus V of the cerebellar vermis revealed no changes in response to salicylate. The observed changes in single-unit activity due to salicylate administration may represent the first systematic evidence of a tinnituslike phenomenon in animals.

  13. Distinct Temporal Coordination of Spontaneous Population Activity between Basal Forebrain and Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Josue G. Yague

    2017-09-01

    Full Text Available The basal forebrain (BF has long been implicated in attention, learning and memory, and recent studies have established a causal relationship between artificial BF activation and arousal. However, neural ensemble dynamics in the BF still remains unclear. Here, recording neural population activity in the BF and comparing it with simultaneously recorded cortical population under both anesthetized and unanesthetized conditions, we investigate the difference in the structure of spontaneous population activity between the BF and the auditory cortex (AC in mice. The AC neuronal population show a skewed spike rate distribution, a higher proportion of short (≤80 ms inter-spike intervals (ISIs and a rich repertoire of rhythmic firing across frequencies. Although the distribution of spontaneous firing rate in the BF is also skewed, a proportion of short ISIs can be explained by a Poisson model at short time scales (≤20 ms and spike count correlations are lower compared to AC cells, with optogenetically identified cholinergic cell pairs showing exceptionally higher correlations. Furthermore, a smaller fraction of BF neurons shows spike-field entrainment across frequencies: a subset of BF neurons fire rhythmically at slow (≤6 Hz frequencies, with varied phase preferences to ongoing field potentials, in contrast to a consistent phase preference of AC populations. Firing of these slow rhythmic BF cells is correlated to a greater degree than other rhythmic BF cell pairs. Overall, the fundamental difference in the structure of population activity between the AC and BF is their temporal coordination, in particular their operational timescales. These results suggest that BF neurons slowly modulate downstream populations whereas cortical circuits transmit signals on multiple timescales. Thus, the characterization of the neural ensemble dynamics in the BF provides further insight into the neural mechanisms, by which brain states are regulated.

  14. Expression Profiling of Differentiating Emerin-Null Myogenic Progenitor Identifies Molecular Pathways Implicated in Their Impaired Differentiation

    Directory of Open Access Journals (Sweden)

    Ashvin Iyer

    2017-10-01

    Full Text Available Mutations in the gene encoding emerin cause Emery-Dreifuss muscular dystrophy (EDMD, a disorder causing progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. RNA sequencing was performed on differentiating wildtype and emerin-null myogenic progenitors to identify molecular pathways implicated in EDMD, 340 genes were uniquely differentially expressed during the transition from day 0 to day 1 in wildtype cells. 1605 genes were uniquely expressed in emerin-null cells; 1706 genes were shared among both wildtype and emerin-null cells. One thousand and forty-seven transcripts showed differential expression during the transition from day 1 to day 2. Four hundred and thirty-one transcripts showed altered expression in both wildtype and emerin-null cells. Two hundred and ninety-five transcripts were differentially expressed only in emerin-null cells and 321 transcripts were differentially expressed only in wildtype cells. DAVID, STRING and Ingenuity Pathway Analysis identified pathways implicated in impaired emerin-null differentiation, including cell signaling, cell cycle checkpoints, integrin signaling, YAP/TAZ signaling, stem cell differentiation, and multiple muscle development and myogenic differentiation pathways. Functional enrichment analysis showed biological functions associated with the growth of muscle tissue and myogenesis of skeletal muscle were inhibited. The large number of differentially expressed transcripts upon differentiation induction suggests emerin functions during transcriptional reprograming of progenitors to committed myoblasts.

  15. DNA methyltransferase inhibitor CDA-II inhibits myogenic differentiation

    International Nuclear Information System (INIS)

    Chen, Zirong; Jin, Guorong; Lin, Shuibin; Lin, Xiumei; Gu, Yumei; Zhu, Yujuan; Hu, Chengbin; Zhang, Qingjiong; Wu, Lizi; Shen, Huangxuan

    2012-01-01

    Highlights: ► CDA-II inhibits myogenic differentiation in a dose-dependent manner. ► CDA-II repressed expression of muscle transcription factors and structural proteins. ► CDA-II inhibited proliferation and migration of C2C12 myoblasts. -- Abstract: CDA-II (cell differentiation agent II), isolated from healthy human urine, is a DNA methyltransferase inhibitor. Previous studies indicated that CDA-II played important roles in the regulation of cell growth and certain differentiation processes. However, it has not been determined whether CDA-II affects skeletal myogenesis. In this study, we investigated effects of CDA-II treatment on skeletal muscle progenitor cell differentiation, migration and proliferation. We found that CDA-II blocked differentiation of murine myoblasts C2C12 in a dose-dependent manner. CDA-II repressed expression of muscle transcription factors, such as Myogenin and Mef2c, and structural proteins, such as myosin heavy chain (Myh3), light chain (Mylpf) and MCK. Moreover, CDA-II inhibited C1C12 cell migration and proliferation. Thus, our data provide the first evidence that CDA-II inhibits growth and differentiation of muscle progenitor cells, suggesting that the use of CDA-II might affect skeletal muscle functions.

  16. Activation of Akt/FKHR in the medulla oblongata contributes to spontaneous respiratory recovery after incomplete spinal cord injury in adult rats.

    Science.gov (United States)

    Felix, M S; Bauer, S; Darlot, F; Muscatelli, F; Kastner, A; Gauthier, P; Matarazzo, V

    2014-09-01

    After incomplete spinal cord injury (SCI), patients and animals may exhibit some spontaneous functional recovery which can be partly attributed to remodeling of injured neural circuitry. This post-lesion plasticity implies spinal remodeling but increasing evidences suggest that supraspinal structures contribute also to the functional recovery. Here we tested the hypothesis that partial SCI may activate cell-signaling pathway(s) at the supraspinal level and that this molecular response may contribute to spontaneous recovery. With this aim, we used a rat model of partial cervical hemisection which injures the bulbospinal respiratory tract originating from the medulla oblongata of the brainstem but leads to a time-dependent spontaneous functional recovery of the paralyzed hemidiaphragm. We first demonstrate that after SCI the PI3K/Akt signaling pathway is activated in the medulla oblongata of the brainstem, resulting in an inactivation of its pro-apoptotic downstream target, forkhead transcription factor (FKHR/FOXO1A). Retrograde labeling of medullary premotoneurons including respiratory ones which project to phrenic motoneurons reveals an increased FKHR phosphorylation in their cell bodies together with an unchanged cell number. Medulla infusion of the PI3K inhibitor, LY294002, prevents the SCI-induced Akt and FKHR phosphorylations and activates one of its death-promoting downstream targets, Fas ligand. Quantitative EMG analyses of diaphragmatic contractility demonstrate that the inhibition of medulla PI3K/Akt signaling prevents spontaneous respiratory recovery normally observed after partial cervical SCI. Such inhibition does not however affect either baseline contractile frequency or the ventilatory reactivity under acute respiratory challenge. Together, these findings provide novel evidence of supraspinal cellular contribution to the spontaneous respiratory recovery after partial SCI. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Hydrodynamic interaction induced spontaneous rotation of coupled active filaments.

    Science.gov (United States)

    Jiang, Huijun; Hou, Zhonghuai

    2014-12-14

    We investigate the coupled dynamics of active filaments with long range hydrodynamic interactions (HI). Remarkably, we find that filaments can rotate spontaneously under the same conditions in which a single filament alone can only move in translation. Detailed analysis reveals that the emergence of coupled rotation originates from an asymmetric flow field associated with HI which breaks the symmetry of translational motion when filaments approach. The breaking is then further stabilized by HI to form self-sustained coupled rotation. Intensive simulations show that coupled rotation forms easily when one filament tends to collide with the front-half of the other. For head-to-tail approaching, we observe another interesting HI-induced coupled motion, where filaments move together in the form of one following the other. Moreover, the radius of coupled rotation increases exponentially as the rigidity of the filament increases, which suggests that HI are also important for the alignment of rigid-rod-like filaments which has been assumed to be solely a consequence of direct collisions.

  18. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization

    Science.gov (United States)

    Zhong, Guisheng; Shevtsova, Natalia A; Rybak, Ilya A; Harris-Warrick, Ronald M

    2012-01-01

    We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-resetting, with rhythmic activity resuming after an integer number of cycles. Flexor and extensor deletions showed marked asymmetry: flexor deletions were accompanied by sustained ipsilateral extensor activity, whereas rhythmic flexor bursting was not perturbed during extensor deletions. Rhythmic activity on one side of the cord was not perturbed during non-resetting spontaneous deletions on the other side, and these deletions could occur with no input from the other side of the cord. These results suggest that the locomotor CPG has a two-level organization with rhythm-generating (RG) and pattern-forming (PF) networks, in which only the flexor RG network is intrinsically rhythmic. To further explore the neuronal organization of the CPG, we monitored activity of motoneurons and selected identified interneurons during spontaneous non-resetting deletions. Motoneurons lost rhythmic synaptic drive during ipsilateral deletions. Flexor-related commissural interneurons continued to fire rhythmically during non-resetting ipsilateral flexor deletions. Deletion analysis revealed two classes of rhythmic V2a interneurons. Type I V2a interneurons retained rhythmic synaptic drive and firing during ipsilateral motor deletions, while type II V2a interneurons lost rhythmic synaptic input and fell silent during deletions. This suggests that the type I neurons are components of the RG, whereas the type II neurons are components of the PF network. We propose a computational model of the spinal locomotor CPG that reproduces our experimental results. The results may provide novel insights into the

  19. Multichannel detrended fluctuation analysis reveals synchronized patterns of spontaneous spinal activity in anesthetized cats.

    Directory of Open Access Journals (Sweden)

    Erika E Rodríguez

    Full Text Available The analysis of the interaction and synchronization of relatively large ensembles of neurons is fundamental for the understanding of complex functions of the nervous system. It is known that the temporal synchronization of neural ensembles is involved in the generation of specific motor, sensory or cognitive processes. Also, the intersegmental coherence of spinal spontaneous activity may indicate the existence of synaptic neural pathways between different pairs of lumbar segments. In this study we present a multichannel version of the detrended fluctuation analysis method (mDFA to analyze the correlation dynamics of spontaneous spinal activity (SSA from time series analysis. This method together with the classical detrended fluctuation analysis (DFA were used to find out whether the SSA recorded in one or several segments in the spinal cord of the anesthetized cat occurs either in a random or in an organized manner. Our results are consistent with a non-random organization of the sets of neurons involved in the generation of spontaneous cord dorsum potentials (CDPs recorded either from one lumbar segment (DFA-α mean = 1.04[Formula: see text]0.09 or simultaneously from several lumbar segments (mDFA-α mean = 1.01[Formula: see text]0.06, where α = 0.5 indicates randomness while α = 0.5 indicates long-term correlations. To test the sensitivity of the mDFA method we also examined the effects of small spinal lesions aimed to partially interrupt connectivity between neighboring lumbosacral segments. We found that the synchronization and correlation between the CDPs recorded from the L5 and L6 segments in both sides of the spinal cord were reduced when a lesion comprising the left dorsal quadrant was performed between the segments L5 and L6 (mDFA-[Formula: see text] = 0.992 as compared to initial conditions mDFA-α = 1.186. The synchronization and correlation were reduced even further after a similar additional right spinal lesion (mDFA-α = 0

  20. Adipose-derived stem cells enhance myogenic differentiation in the mdx mouse model of muscular dystrophy via paracrine signaling

    Directory of Open Access Journals (Sweden)

    Ji-qing Cao

    2016-01-01

    Full Text Available Adipose-derived stem cells have been shown to promote peripheral nerve regeneration through the paracrine secretion of neurotrophic factors. However, it is unclear whether these cells can promote myogenic differentiation in muscular dystrophy. Adipose-derived stem cells (6 × 10 6 were injected into the gastrocnemius muscle of mdx mice at various sites. Dystrophin expression was found in the muscle fibers. Phosphorylation levels of Akt, mammalian target of rapamycin (mTOR, eIF-4E binding protein 1 and S6 kinase 1 were increased, and the Akt/mTOR pathway was activated. Simultaneously, myogenin levels were increased, whereas cleaved caspase 3 and vimentin levels were decreased. Necrosis and fibrosis were reduced in the muscle fibers. These findings suggest that adipose-derived stem cells promote the regeneration and survival of muscle cells by inhibiting apoptosis and fibrosis, thereby alleviating muscle damage in muscular dystrophy.

  1. Preictal activity of subicular, CA1, and dentate gyrus principal neurons in the dorsal hippocampus before spontaneous seizures in a rat model of temporal lobe epilepsy.

    Science.gov (United States)

    Fujita, Satoshi; Toyoda, Izumi; Thamattoor, Ajoy K; Buckmaster, Paul S

    2014-12-10

    Previous studies suggest that spontaneous seizures in patients with temporal lobe epilepsy might be preceded by increased action potential firing of hippocampal neurons. Preictal activity is potentially important because it might provide new opportunities for predicting when a seizure is about to occur and insight into how spontaneous seizures are generated. We evaluated local field potentials and unit activity of single, putative excitatory neurons in the subiculum, CA1, CA3, and dentate gyrus of the dorsal hippocampus in epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Average action potential firing rates of neurons in the subiculum, CA1, and dentate gyrus, but not CA3, increased significantly and progressively beginning 2-4 min before locally recorded spontaneous seizures. In the subiculum, CA1, and dentate gyrus, but not CA3, 41-57% of neurons displayed increased preictal activity with significant consistency across multiple seizures. Much of the increased preictal firing of neurons in the subiculum and CA1 correlated with preictal theta activity, whereas preictal firing of neurons in the dentate gyrus was independent of theta. In addition, some CA1 and dentate gyrus neurons displayed reduced firing rates preictally. These results reveal that different hippocampal subregions exhibit differences in the extent and potential underlying mechanisms of preictal activity. The finding of robust and significantly consistent preictal activity of subicular, CA1, and dentate neurons in the dorsal hippocampus, despite the likelihood that many seizures initiated in other brain regions, suggests the existence of a broader neuronal network whose activity changes minutes before spontaneous seizures initiate. Copyright © 2014 the authors 0270-6474/14/3416671-17$15.00/0.

  2. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates promyogenic signaling pathways, thereby promoting myoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran; Kim, Yong Kee [Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Seo, Dong-Wan [College of Pharmacy, Dankook University, Cheonan 330-714 (Korea, Republic of); Kang, Jong-Sun [Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746 (Korea, Republic of); Bae, Gyu-Un, E-mail: gbae@sookmyung.ac.kr [Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of)

    2016-01-29

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δ enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways. - Highlights: • A PPARβ/δ agonist, GW0742 promotes myoblast differentiation. • GW0742 activates both p38MAPK and Akt activation in myogenic differentiation. • GW0742 enhances MyoD activity for myogenic differentiation. • Overexpression of PPARβ/δ enhances myoblast differentiation via activating promyogenic signaling pathways. • This is the first finding for agonistic mechanism of PPARβ/δ in myogenesis.

  3. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates promyogenic signaling pathways, thereby promoting myoblast differentiation

    International Nuclear Information System (INIS)

    Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran; Kim, Yong Kee; Seo, Dong-Wan; Kang, Jong-Sun; Bae, Gyu-Un

    2016-01-01

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δ enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways. - Highlights: • A PPARβ/δ agonist, GW0742 promotes myoblast differentiation. • GW0742 activates both p38MAPK and Akt activation in myogenic differentiation. • GW0742 enhances MyoD activity for myogenic differentiation. • Overexpression of PPARβ/δ enhances myoblast differentiation via activating promyogenic signaling pathways. • This is the first finding for agonistic mechanism of PPARβ/δ in myogenesis.

  4. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    International Nuclear Information System (INIS)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A.; Gallardo-Escarate, C.; Molina, A.; Valdés, J.A.

    2015-01-01

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast

  5. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Gallardo-Escarate, C. [Laboratory of Biotechnology and Aquatic Genomics, Universidad de Concepción, Concepción (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Molina, A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Valdés, J.A., E-mail: jvaldes@unab.cl [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile)

    2015-08-21

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.

  6. Cancer-associated myositis associated with oesophageal adenocarcinoma arising in Barrett's oesophagus without serum myogenic enzymes elevation: an example suggesting the importance of MRI.

    Science.gov (United States)

    Sasaki, Yosuke; Shimizu, Hiroshige; Nemoto, Tetsuo; Urita, Yoshihisa

    2016-04-21

    The strong association between myositis and malignancy has been well recognised. Cancer-associated myositis (CAM) is thought to be a cross-reaction to regenerating muscle tissue similar to tumour antigen. We report a case of CAM due to oesophageal adenocarcinoma arising in Barrett's oesophagus without elevation of myogenic enzymes, diagnosed by MRI and repeated endoscopy. Elderly onset, prominent symptoms, lack of interstitial pneumonia, poorer response to immunosuppressive therapies, and the combination of negative conventional myositis-related antibodies and positive anti-p155/140 antibody may help to distinguish CAM from idiopathic inflammatory myopathy. As the prognosis of patients with CAM depends on the malignancy, aggressive diagnosis of CAM and the causative malignancy is required. Our experience underscores the importance of avoiding the over-reliance on serum myogenic enzymes for excluding CAM and recognising MRI as a useful diagnostic tool of myositis. 2016 BMJ Publishing Group Ltd.

  7. Active caspase-3 and ultrastructural evidence of apoptosis in spontaneous and induced cell death in bovine in vitro produced pre-implantation embryos

    DEFF Research Database (Denmark)

    Gjørret, Jakob O.; Fabian, Dusan; Avery, Birthe

    2007-01-01

    In this study we investigated chronological onset and involvement of active caspase-3, apoptotic nuclear morphology, and TUNEL-labeling, as well as ultrastructural evidence of apoptosis, in both spontaneous and induced cell death during pre-implantation development of bovine in vitro produced...... microscopy in both treated and untreated blastocysts. Activation of caspase-3 is likely involved in both spontaneous and induced apoptosis in bovine pre-implantation embryos, and immunohistochemical staining of active caspase-3 may be used in combination with other markers to identify apoptosis in pre...... embryos. Pre-implantation embryos (2-cell to Day 8 blastocysts) were cultured with either no supplementation (untreated) or with 10 µM staurosporine for 24 hr (treated). Embryos were subjected to immunohistochemical staining of active caspase-3, TUNEL-reaction for detection of DNA degradation and DAPI...

  8. Modulation by endothelin-1 of spontaneous activity and membrane currents of atrioventricular node myocytes from the rabbit heart.

    Directory of Open Access Journals (Sweden)

    Stéphanie C Choisy

    Full Text Available The atrioventricular node (AVN is a key component of the cardiac pacemaker-conduction system. Although it is known that receptors for the peptide hormone endothelin-1 (ET-1 are expressed in the AVN, there is very little information available on the modulatory effects of ET-1 on AVN electrophysiology. This study characterises for the first time acute modulatory effects of ET-1 on AVN cellular electrophysiology.Electrophysiological experiments were conducted in which recordings were made from rabbit isolated AVN cells at 35-37°C using the whole-cell patch clamp recording technique.Application of ET-1 (10 nM to spontaneously active AVN cells led rapidly (within ~13 s to membrane potential hyperpolarisation and cessation of spontaneous action potentials (APs. This effect was prevented by pre-application of the ET(A receptor inhibitor BQ-123 (1 µM and was not mimicked by the ET(B receptor agonist IRL-1620 (300 nM. In whole-cell voltage-clamp experiments, ET-1 partially inhibited L-type calcium current (I(Ca,L and rapid delayed rectifier K(+ current (I(Kr, whilst it transiently activated the hyperpolarisation-activated current (I(f at voltages negative to the pacemaking range, and activated an inwardly rectifying current that was inhibited by both tertiapin-Q (300 nM and Ba(2+ ions (2 mM; each of these effects was sensitive to ET(A receptor inhibition. In cells exposed to tertiapin-Q, ET-1 application did not produce membrane potential hyperpolarisation or immediate cessation of spontaneous activity; instead, there was a progressive decline in AP amplitude and depolarisation of maximum diastolic potential.Acutely applied ET-1 exerts a direct modulatory effect on AVN cell electrophysiology. The dominant effect of ET-1 in this study was activation of a tertiapin-Q sensitive inwardly rectifying K(+ current via ET(A receptors, which led rapidly to cell quiescence.

  9. The pacemaker activity generating the intrinsic myogenic contraction of the dorsal vessel of Tenebrio molitor (Coleoptera).

    Science.gov (United States)

    Markou, T; Theophilidis, G

    2000-11-01

    Combined intracellular and extracellular recordings from various parts of the isolated dorsal vessel of Tenebrio molitor revealed some of the following electrophysiological properties of the heart and the aorta. (i) The wave of depolarization causing forward pulsation of the dorsal vessel was always transmitted from posterior to anterior, with a conduction velocity of 0.014 m s(-1) in the heart and 0.001 m s(-1) in the aorta when the heart rate was 60 beats min(-1). (ii) There was no pacemaker activity in the aorta. (iii) The duration of the compound action potential in the aortic muscle depended on the duration of the pacemaker action potential generated in the heart. (iv) Isolated parts of the heart continued to contract rhythmically for hours, indicating powerful pacemaker activity in individual cardiac segments. (v) There was a direct relationship between action potential duration and the length of the preceding diastolic interval. (vi) The rhythmic wave of depolarization was dependent on the influx of Ca(2+). (vii) The recovery of the electrical properties of myocardial cells that had been disrupted by sectioning was rapid. (viii) In hearts sectioned into two halves, the rhythmic pacemaker action potentials recorded simultaneously from the two isolated halves eventually drifted out of phase, but they had the same intrinsic frequency. In the light of these data, we discuss two alternative models for the generation of spontaneous rhythmic pumping movements of the heart and aorta.

  10. Activation of KCNQ Channels Suppresses Spontaneous Activity in Dorsal Root Ganglion Neurons and Reduces Chronic Pain after Spinal Cord Injury.

    Science.gov (United States)

    Wu, Zizhen; Li, Lin; Xie, Fuhua; Du, Junhui; Zuo, Yan; Frost, Jeffrey A; Carlton, Susan M; Walters, Edgar T; Yang, Qing

    2017-03-15

    A majority of people who have sustained spinal cord injury (SCI) experience chronic pain after injury, and this pain is highly resistant to available treatments. Contusive SCI in rats at T10 results in hyperexcitability of primary sensory neurons, which contributes to chronic pain. KCNQ channels are widely expressed in nociceptive dorsal root ganglion (DRG) neurons, are important for controlling their excitability, and their activation has proven effective in reducing pain in peripheral nerve injury and inflammation models. The possibility that activators of KCNQ channels could be useful for treating SCI-induced chronic pain is strongly supported by the following findings. First, SCI, unlike peripheral nerve injury, failed to decrease the functional or biochemical expression of KCNQ channels in DRG as revealed by electrophysiology, real-time quantitative polymerase chain reaction, and Western blot; therefore, these channels remain available for pharmacological targeting of SCI pain. Second, treatment with retigabine, a specific KCNQ channel opener, profoundly decreased spontaneous activity in primary sensory neurons of SCI animals both in vitro and in vivo without changing the peripheral mechanical threshold. Third, retigabine reversed SCI-induced reflex hypersensitivity, adding to our previous demonstration that retigabine supports the conditioning of place preference after SCI (an operant measure of spontaneous pain). In contrast to SCI animals, naïve animals showed no effects of retigabine on reflex sensitivity or conditioned place preference by pairing with retigabine, indicating that a dose that blocks chronic pain-related behavior has no effect on normal pain sensitivity or motivational state. These results encourage the further exploration of U.S. Food and Drug Administration-approved KCNQ activators for treating SCI pain, as well as efforts to develop a new generation of KCNQ activators that lack central side effects.

  11. Cavity enhanced rephased amplified spontaneous emission

    International Nuclear Information System (INIS)

    A Williamson, Lewis; J Longdell, Jevon

    2014-01-01

    Amplified spontaneous emission is usually treated as an incoherent noise process. Recent theoretical and experimental work using rephasing optical pulses has shown that rephased amplified spontaneous emission (RASE) is a potential source of wide bandwidth time-delayed entanglement. Due to poor echo efficiency the plain RASE protocol does not in theory achieve perfect entanglement. Experiments done to date show a very small amount of entanglement at best. Here we show that RASE can, in principle, produce perfect multimode time-delayed two mode squeezing when the active medium is placed inside a Q-switched cavity. (paper)

  12. Impact of short-term treatment with telmisartan on cerebral arterial remodeling in SHR.

    Directory of Open Access Journals (Sweden)

    Sébastien Foulquier

    Full Text Available Chronic hypertension decreases internal diameter of cerebral arteries and arterioles. We recently showed that short-term treatment with the angiotensin II receptor blocker telmisartan restored baseline internal diameter of small cerebral arterioles in spontaneously hypertensive rats (SHR, via reversal of structural remodeling and inhibition of the angiotensin II vasoconstrictor response. As larger arteries also participate in the regulation of cerebral circulation, we evaluated whether similar short-term treatment affects middle cerebral arteries of SHR.Baseline internal diameters of pressurised middle cerebral arteries from SHR and their respective controls, Wistar Kyoto rats (WKY and responses to angiotensin II were studied in a small vessel arteriograph. Pressure myogenic curves and passive internal diameters were measured following EDTA deactivation, and elastic modulus from stress-strain relationships.Active baseline internal diameter was 23% lower in SHR compared to WKY, passive internal diameter (EDTA 28% lower and elastic modulus unchanged. Pressure myogenic curves were shifted to higher pressure values in SHR. Telmisartan lowered blood pressure but had no effect on baseline internal diameter nor on structural remodeling (passive internal diameter and elastic modulus remained unchanged compared to SHR. Telmisartan shifted the pressure myogenic curve to lower pressure values than SHR.In the middle cerebral arteries of SHR, short-term treatment with telmisartan had no effect on structural remodeling and did not restore baseline internal diameter, but allowed myogenic tone to adapt towards lower pressure values.

  13. Vildagliptin restores renal myogenic function and attenuates renal sclerosis independently of effects on blood glucose or proteinuria in Zucker Diabetic Fatty rat

    NARCIS (Netherlands)

    Vavrinec, Peter; Henning, Robert H.; Landheer, Sjoerd W.; Wang, Yumei; Deelman, Leo E.; van Dokkum, Richard P. E.; Buikema, Hendrik

    Type 2 diabetes mellitus (T2DM) is associated with risk for chronic kidney disease (CKD), which is associated with a decrease in renal myogenic tone - part of renal autoregulatory mechanisms. Novel class of drugs used for the treatment of T2DM, dipeptidyl peptidase-4 (DPP-4) inhibitors, have

  14. Spontaneous and evoked cerebral activity modifications on whole-body γ irradiated adult rabbit

    International Nuclear Information System (INIS)

    Court, L.; Dufour, R.; Bassant, M.H.; Fatome, M.

    1976-01-01

    Whole-body γ-exposure from 150 to 850 rads (dose-rate: 14 rads.min -1 ) delivered to adult rabbits chronically implanted with electrodes resulted in prompt and delayed changes of behavior, arousal and spontaneous and evoked electrical activities. Electrophysiological techniques of polygraphic recording and signal processing showed that the alterations were related to the absorbed dose. The threshold dose accompanied with transient changes of arousal should be in the range of 50-100 rads; below this range, to the exclusion of some possible behavior changes, exposure should act as a stimulation that would become nociceptive at higher doses only [fr

  15. Early spontaneous intermittent myocardial reperfusion during acute myocardial infarction is associated with augmented thrombogenic activity and less myocardial damage

    NARCIS (Netherlands)

    Haider, A.W.; Andreotti, F.; Hackett, D.R.; Tousoulis, D.; Kluft, C.; Maseri, A.; Davies, G.J.

    1995-01-01

    Objectives. This study investigated the influence of early spontaneous intermittent reperfusion on the extent of myocardial damage and its relation to endogenous hemostatic activity, Background. In the early phase of acute myocardial infarction coronary occlusion is often intermittent, even before

  16. Does Spontaneous Favorability to Power (vs. Universalism) Values Predict Spontaneous Prejudice and Discrimination?

    Science.gov (United States)

    Souchon, Nicolas; Maio, Gregory R; Hanel, Paul H P; Bardin, Brigitte

    2017-10-01

    We conducted five studies testing whether an implicit measure of favorability toward power over universalism values predicts spontaneous prejudice and discrimination. Studies 1 (N = 192) and 2 (N = 86) examined correlations between spontaneous favorability toward power (vs. universalism) values, achievement (vs. benevolence) values, and a spontaneous measure of prejudice toward ethnic minorities. Study 3 (N = 159) tested whether conditioning participants to associate power values with positive adjectives and universalism values with negative adjectives (or inversely) affects spontaneous prejudice. Study 4 (N = 95) tested whether decision bias toward female handball players could be predicted by spontaneous attitude toward power (vs. universalism) values. Study 5 (N = 123) examined correlations between spontaneous attitude toward power (vs. universalism) values, spontaneous importance toward power (vs. universalism) values, and spontaneous prejudice toward Black African people. Spontaneous positivity toward power (vs. universalism) values was associated with spontaneous negativity toward minorities and predicted gender bias in a decision task, whereas the explicit measures did not. These results indicate that the implicit assessment of evaluative responses attached to human values helps to model value-attitude-behavior relations. © 2016 The Authors. Journal of Personality Published by Wiley Periodicals, Inc.

  17. Arginine vasopressin antagonizes the effects of prostaglandin E2 on the spontaneous activity of warm-sensitive and temperature-insensitive neurons in the medial preoptic area in rats.

    Science.gov (United States)

    Xu, Jian-Hui; Hou, Xiao-Yu; Tang, Yu; Luo, Rong; Zhang, Jie; Liu, Chang; Yang, Yong-Lu

    2018-01-01

    Arginine vasopressin (AVP) plays an important role in thermoregulation and antipyresis. We have demonstrated that AVP could change the spontaneous activity of thermosensitive and temperature insensitive neurons in the preoptic area. However, whether AVP influences the effects of prostaglandin E 2 (PGE 2 ) on the spontaneous activity of neurons in the medial preoptic area (MPO) remains unclear. Our experiment showed that PGE 2 decreased the spontaneous activity of warm-sensitive neurons, and increased that of low-slope temperature-insensitive neurons in the MPO. AVP attenuated the inhibitory effect of PGE 2 on warm-sensitive neurons, and reversed the excitatory effect of PGE 2 on low-slope temperature-insensitive neurons, demonstrating that AVP antagonized the effects of PGE 2 on the spontaneous activity of these neurons. The effect of AVP was suppressed by an AVP V 1a receptor antagonist, suggesting that V 1a receptor mediated the action of AVP. We also demonstrated that AVP attenuated the PGE 2 -induced decrease in the prepotential's rate of rise in warm-sensitive neurons and the PGE 2 -induced increase in that in low-slope temperature-insensitive neurons through the V 1a receptor. Together, these data indicated that AVP antagonized the PGE 2 -induced change in the spontaneous activity of warm-sensitive and low-slope temperature-insensitive neurons in the MPO partly by reducing the PGE 2 -induced change in the prepotential of these neurons in a V 1a receptor-dependent manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia.

    Science.gov (United States)

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng

    2015-01-01

    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN.

  19. Modulation of CaV1.2 calcium channel by neuropeptide W regulates vascular myogenic tone via G protein-coupled receptor 7.

    Science.gov (United States)

    Ji, Li; Zhu, Huayuan; Chen, Hong; Fan, Wenyong; Chen, Junjie; Chen, Jing; Zhu, Guoqing; Wang, Juejin

    2015-12-01

    Neuropeptide W (NPW), an endogenous ligand for the G protein-coupled receptor 7 (GPR7), was first found to make important roles in central nerve system. In periphery, NPW was also present and regulated intracellular calcium homeostasis by L-type calcium channels. This study was designed to discover the effects of NPW-GPR7 on the function of CaV1.2 calcium channels in the vascular smooth muscle cells (VSMCs) and vasotone of arterial vessels. By whole-cell patch clamp, we studied the effects of NPW-23, the active form of NPW, on the CaV1.2 channels in the heterologously transfected human embryonic kidney 293 cells and VSMCs isolated from rat. Living system was used to explore the physiological function of NPW-23 in arterial myogenic tone. To investigate the pathological relevance, NPW mRNA level of mesenteric arteries was measured in the hypertensive and normotensive rats. NPW's receptor GPR7 was coexpressed with CaV1.2 channels in arterial smooth muscle. NPW-23 increased the ICa,L in transfected human embryonic kidney 293 cells and VSMCs via GPR7, which could be abrogated by phospholipase C (PLC)/protein kinase C (PKC) inhibitors, not protein kinase A or protein kinase G inhibitor. After NPW-23 application, the expression of pan phospho-PKC was increased; moreover, intracellular diacylglycerol level, the second messenger catalyzed by PLC, was increased 1.5-2-fold. Application with NPW-23 increased pressure-induced vasotone of the rat mesenteric arteries. Importantly, the expression of NPW was decreased in the hypertensive rats. NPW-23 regulates ICa,L via GPR7, which is mediated by PLC/PKC signaling, and such a mechanism plays a role in modulating vascular myogenic tone, which may involve in the development of vascular hypertension.

  20. Spontaneous food allergy in Was-/- mice occurs independent of FcεRI-mediated mast cell activation.

    Science.gov (United States)

    Lexmond, W S; Goettel, J A; Sallis, B F; McCann, K; Rings, E H H M; Jensen-Jarolim, E; Nurko, S; Snapper, S B; Fiebiger, E

    2017-12-01

    Food allergies are a growing health problem, and the development of therapies that prevent disease onset is limited by the lack of adjuvant-free experimental animal models. We compared allergic sensitization in patients with food allergy or Wiskott-Aldrich syndrome (WAS) and defined whether spontaneous disease in Was -/- mice recapitulates the pathology of a conventional disease model and/or human food allergy. Comparative ImmunoCAP ISAC microarray was performed in patients with food allergy or WAS. Spontaneous food allergy in Was -/- mice was compared to an adjuvant-based model in wild-type mice (WT-OVA/alum). Intestinal and systemic anaphylaxis was assessed, and the role of the high-affinity IgE Fc receptor (FcεRI) in allergic sensitization was evaluated using Was -/- Fcer1a -/- mice. Polysensitization to food was detected in both WAS and food-allergic patients which was recapitulated in the Was -/- model. Oral administration of ovalbumin (OVA) in Was -/- mice induced low titers of OVA-specific IgE compared to the WT-OVA/alum model. Irrespectively, 79% of Was -/- mice developed allergic diarrhea following oral OVA challenge. Systemic anaphylaxis occurred in Was -/- mice (95%) with a mortality rate >50%. Spontaneous sensitization and intestinal allergy occurred independent of FcεRI expression on mast cells (MCs) and basophils. Was -/- mice provide a model of food allergy with the advantage of mimicking polysensitization and low food-antigen IgE titers as observed in humans with clinical food allergy. This model will facilitate studies on aberrant immune responses during spontaneous disease development. Our results imply that therapeutic targeting of the IgE/FcεRI activation cascade will not affect sensitization to food. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  1. Altered spontaneous activity of posterior cingulate cortex and superior temporal gyrus are associated with a smoking cessation treatment outcome using varenicline revealed by regional homogeneity.

    Science.gov (United States)

    Wang, Chao; Shen, Zhujing; Huang, Peiyu; Qian, Wei; Yu, Xinfeng; Sun, Jianzhong; Yu, Hualiang; Yang, Yihong; Zhang, Minming

    2017-06-01

    Compared to nonsmokers, smokers exhibit a number of potentially important differences in regional brain function. However, little is known about the associations between the local spontaneous brain activity and smoking cessation treatment outcomes. In the present analysis, we aimed to evaluate whether the local features of spontaneous brain activity prior to the target quit date was associated with the smoking cessation outcomes. All the participants underwent magnetic resonance imaging scans and smoking-related behavioral assessments. After a 12-week treatment with varenicline, 23 smokers succeeded in quitting smoking and 32 failed. Smokers underwent functional magnetic resonance imaging (fMRI) scanning prior to an open label smoking cessation treatment trial. Regional homogeneity (ReHo) was used to measure spontaneous brain activity, and whole-brain voxel-wise comparisons of ReHo were performed to detect brain regions with altered spontaneous brain activity between relapser and quitter groups. After controlling for potentially confounding factors including years of education, years smoked, cigarettes smoked per day and FTND score as covariates, compared to quitters, relapsers displayed significantly decreased ReHo in bilateral posterior cingulate cortex (PCC), as well as increased ReHo in left superior temporal gyrus (STG). These preliminary results suggest that regional brain function variables may be promising predictors of smoking relapse. This study provided novel insights into the neurobiological mechanisms underlying smoking relapse. A deeper understanding of the neurobiological mechanisms associated with relapse may result in novel pharmacological and behavioral interventions.

  2. Spontaneous distal rupture of the plantar fascia.

    Science.gov (United States)

    Gitto, Salvatore; Draghi, Ferdinando

    2018-07-01

    Spontaneous ruptures of the plantar fascia are uncommon injuries. They typically occur at its calcaneal insertion and usually represent a complication of plantar fasciitis and local treatment with steroid injections. In contrast, distal ruptures commonly result from traumatic injuries. We describe the case of a spontaneous distal rupture of the plantar fascia in a 48-year-old woman with a low level of physical activity and no history of direct injury to the foot, plantar fasciitis, or steroid injections. © 2017 Wiley Periodicals, Inc.

  3. Comparative Analysis of Human and Rodent Brain Primary Neuronal Culture Spontaneous Activity Using Micro-Electrode Array Technology.

    Science.gov (United States)

    Napoli, Alessandro; Obeid, Iyad

    2016-03-01

    Electrical activity in embryonic brain tissue has typically been studied using Micro Electrode Array (MEA) technology to make dozens of simultaneous recordings from dissociated neuronal cultures, brain stem cell progenitors, or brain slices from fetal rodents. Although these rodent neuronal primary culture electrical properties are mostly investigated, it has not been yet established to what extent the electrical characteristics of rodent brain neuronal cultures can be generalized to those of humans. A direct comparison of spontaneous spiking activity between rodent and human primary neurons grown under the same in vitro conditions using MEA technology has never been carried out before and will be described in the present study. Human and rodent dissociated fetal brain neuronal cultures were established in-vitro by culturing on a glass grid of 60 planar microelectrodes neurons under identical conditions. Three different cultures of human neurons were produced from tissue sourced from a single aborted fetus (at 16-18 gestational weeks) and these were compared with seven different cultures of embryonic rat neurons (at 18 gestational days) originally isolated from a single rat. The results show that the human and rodent cultures behaved significantly differently. Whereas the rodent cultures demonstrated robust spontaneous activation and network activity after only 10 days, the human cultures required nearly 40 days to achieve a substantially weaker level of electrical function. These results suggest that rat neuron preparations may yield inferences that do not necessarily transfer to humans. © 2015 Wiley Periodicals, Inc.

  4. Spontaneous Generation of Chirality in Simple Diaryl Ethers.

    Science.gov (United States)

    Lennartson, Anders; Hedström, Anna; Håkansson, Mikael

    2015-07-01

    We studied the spontaneous formation of chiral crystals of four diaryl ethers, 3-phenoxybenzaldehyde, 1; 1,3-dimethyl-2-phenoxybenzene, 2; di(4-aminophenyl) ether, 3; and di(p-tolyl) ether, 4. Compounds 1, 3, and 4 form conformationally chiral molecules in the solid state, while the chirality of 2 arises from the formation of supramolecular helices. Compound 1 is a liquid at ambient temperature, but 2-4 are crystalline, and solid-state CD-spectroscopy showed that they could be obtained as optically active bulk samples. It should be noted that the optical activity arise upon crystallization, and no optically active precursors were used. Indeed, even commercial samples of 3 and 4 were found to be optically active, giving evidence for the ease at which total spontaneous resolution may occur in certain systems. © 2015 Wiley Periodicals, Inc.

  5. Eliciting Cervical Vestibular-Evoked Myogenic Potentials by Bone-Conducted Vibration via Various Tapping Sites.

    Science.gov (United States)

    Tseng, Chia-Chen; Young, Yi-Ho

    2016-01-01

    This study compared bone-conducted vibration (BCV) cervical vestibular-evoked myogenic potentials (cVEMPs) via tapping at various skull sites in healthy subjects and patients with vestibular migraine (VM) to optimize stimulation conditions. Twenty healthy subjects underwent a series of cVEMP tests by BCV tapping via a minishaker at the Fz (forehead), Cz (vertex), and inion (occiput) sites in a randomized order of tapping sites. Another 20 VM patients were also enrolled in this study for comparison. All 20 healthy subjects had clear BCV cVEMPs when tapping at the inion (100%) or Cz (100%), but not at the Fz (75%). Mean p13 and n23 latencies from the Cz tapping were significantly longer than those from the Fz tapping, but not longer than those from the inion tapping. Unlike healthy subjects, tapping at the Cz (95%) elicited a significantly higher response rate of present cVEMPs than tapping at the inion (78%) in 20 VM patients (40 ears), because seven of nine VM ears with absent cVEMPs by inion tapping turned out to be present cVEMPs by Cz tapping. While both inion and Cz tapping elicited 100% response rate of cVEMPs for healthy individuals, Cz tapping had a higher response rate of cVEMPs than inion tapping for the VM group. In cases of total loss of saccular function, cVEMPs could not be activated by either inion or Cz tapping. However, if residual saccular function remains, Cz tapping may activate saccular afferents more efficiently than inion tapping.

  6. Deconvolution of the vestibular evoked myogenic potential.

    Science.gov (United States)

    Lütkenhöner, Bernd; Basel, Türker

    2012-02-07

    The vestibular evoked myogenic potential (VEMP) and the associated variance modulation can be understood by a convolution model. Two functions of time are incorporated into the model: the motor unit action potential (MUAP) of an average motor unit, and the temporal modulation of the MUAP rate of all contributing motor units, briefly called rate modulation. The latter is the function of interest, whereas the MUAP acts as a filter that distorts the information contained in the measured data. Here, it is shown how to recover the rate modulation by undoing the filtering using a deconvolution approach. The key aspects of our deconvolution algorithm are as follows: (1) the rate modulation is described in terms of just a few parameters; (2) the MUAP is calculated by Wiener deconvolution of the VEMP with the rate modulation; (3) the model parameters are optimized using a figure-of-merit function where the most important term quantifies the difference between measured and model-predicted variance modulation. The effectiveness of the algorithm is demonstrated with simulated data. An analysis of real data confirms the view that there are basically two components, which roughly correspond to the waves p13-n23 and n34-p44 of the VEMP. The rate modulation corresponding to the first, inhibitory component is much stronger than that corresponding to the second, excitatory component. But the latter is more extended so that the two modulations have almost the same equivalent rectangular duration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Electrophysiological study in the infraorbital nerve of the rat: Spontaneous and evoked activity

    Energy Technology Data Exchange (ETDEWEB)

    AlbarracIn, A L [Catedra de Neurociencias, Facultad de Medicina, Universidad Nacional de Tucuman, Av. Roca 2200, PC 4000 (Argentina); Farfan, F D [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, PC 4000 (Argentina); Felice, C J [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, PC 4000 (Argentina)

    2007-11-15

    In this work we present some studies in the afferent nerve of the rat vibrissae. Studies on spontaneous activity (SA) in this sensorial system are of long data. Nevertheless, SA recordings in the nerve of a single vibrissa have not been made until present. In this work, we use an algorithm based on signal decomposition with Continuous Wavelet Transform (CWT) to analyse the discharges of two nerves. The action potentials of both nerves were detected and the firing rates were calculated. These results suggest that the firing rate of one vibrissa innervation is low considering that this nerve contains hundred of fibers. In addition, we present preliminary studies suggesting important effects of the hair shaft length in the afferent discharge during the vibrissae movements. The experiments consisted in recording the nerve activity after the vibrissae were sectioned at two different levels. The results showed important differences in the signal energy contents. It suggests that the hair shaft length would produce a differential activation of the mechanoreceptors located in the vibrissae follicle.

  8. Electrophysiological study in the infraorbital nerve of the rat: Spontaneous and evoked activity

    International Nuclear Information System (INIS)

    AlbarracIn, A L; Farfan, F D; Felice, C J

    2007-01-01

    In this work we present some studies in the afferent nerve of the rat vibrissae. Studies on spontaneous activity (SA) in this sensorial system are of long data. Nevertheless, SA recordings in the nerve of a single vibrissa have not been made until present. In this work, we use an algorithm based on signal decomposition with Continuous Wavelet Transform (CWT) to analyse the discharges of two nerves. The action potentials of both nerves were detected and the firing rates were calculated. These results suggest that the firing rate of one vibrissa innervation is low considering that this nerve contains hundred of fibers. In addition, we present preliminary studies suggesting important effects of the hair shaft length in the afferent discharge during the vibrissae movements. The experiments consisted in recording the nerve activity after the vibrissae were sectioned at two different levels. The results showed important differences in the signal energy contents. It suggests that the hair shaft length would produce a differential activation of the mechanoreceptors located in the vibrissae follicle

  9. Factors affecting the spontaneous mutational spectra in somatic mammalian cells

    Directory of Open Access Journals (Sweden)

    О.А. Ковальова

    2006-04-01

    Full Text Available  In our survey of references we are discussed the influence of factors biological origin on the spontaneous mutation specters in mammalian. Seasonal and age components influence on the frequence of cytogenetic anomalies. The immune and endocrinous systems are take part in control of the alteration of the spontaneous mutation specters. Genetical difference of sensibility in animal and human at the alteration of factors enviroment as and  genetical differences of repair systems activity are may influence on individual variation of spontaneous destabilization characters of chromosomal apparatus.

  10. Factor and Rasch analysis of the Fonseca anamnestic index for the diagnosis of myogenous temporomandibular disorder.

    Science.gov (United States)

    Rodrigues-Bigaton, Delaine; de Castro, Ester M; Pires, Paulo F

    Rasch analysis has been used in recent studies to test the psychometric properties of a questionnaire. The conditions for use of the Rasch model are one-dimensionality (assessed via prior factor analysis) and local independence (the probability of getting a particular item right or wrong should not be conditioned upon success or failure in another). To evaluate the dimensionality and the psychometric properties of the Fonseca anamnestic index (FAI), such as the fit of the data to the model, the degree of difficulty of the items, and the ability to respond in patients with myogenous temporomandibular disorder (TMD). The sample consisted of 94 women with myogenous TMD, diagnosed by the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD), who answered the FAI. For the factor analysis, we applied the Kaiser-Meyer-Olkin test, Bartlett's sphericity, Spearman's correlation, and the determinant of the correlation matrix. For extraction of the factors/dimensions, an eigenvalue >1.0 was used, followed by oblique oblimin rotation. The Rasch analysis was conducted on the dimension that showed the highest proportion of variance explained. Adequate sample "n" and FAI multidimensionality were observed. Dimension 1 (primary) consisted of items 1, 2, 3, 6, and 7. All items of dimension 1 showed adequate fit to the model, being observed according to the degree of difficulty (from most difficult to easiest), respectively, items 2, 1, 3, 6, and 7. The FAI presented multidimensionality with its main dimension consisting of five reliable items with adequate fit to the composition of its structure. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  11. Potencial evocado miogênico vestibular: novas perspectivas diagnósticas em esclerose múltipla Vestibular evoked myogenic potential: new perspectives in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Renata Chade Aidar

    2005-02-01

    (n=15 that comprised patients with diagnosis of multiple sclerosis. Both groups were submitted to vestibular evoked myogenic potential exam. In each ear it was applied 200 stimuli by clicks and repeated for 2 consecutive cycles with the purpose of evaluating reproducibility. The active electrode of surface was put on the superior S‡of sternocleidomastoid muscle and the reference electrode on the anterior border of the clavicle. The individuals were instructed to rotate theirs head to the opposite side to the stimulated ear. RESULTS: Vestibular evoked myogenic potential responses were prompt, reproducible and biphasic. The latency of wave P1 and N2 and P1-N2 amplitude showed a higher value in the studied group when compared with the normal group. There was no significant difference when the ears were compared in P1 and N2 amplitude. We noticed that individuals with multiple sclerosis showed no response in 30% of the cases. In evaluating the individuals of the Studied group with otoneurology symptoms and compared with individuals without symptoms, it was observed that P1 and N2 latencies and P1-N2 amplitude were higher in symptomatic cases. CONCLUSION: Vestibular evoked myogenic potential was considered a good method of diagnostic support of vestibulospinal tract in cases of multiple sclerosis.

  12. Spontaneous acute spinal subdural hematoma: spontaneous recovery from severe paraparesis--case report and review.

    Science.gov (United States)

    Payer, Michael; Agosti, Reto

    2010-11-01

    Spontaneous idiopathic acute spinal subdural hematomas are highly exceptional. Neurological symptoms are usually severe, and rapid diagnosis with MRI is mandatory. Surgical evacuation has frequently been used therapeutically; however, spontaneous recovery in mild cases has also been reported. We present a case of spontaneous recovery from severe paraparesis after spontaneous acute SSDH, and review the English-speaking literature.

  13. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    Science.gov (United States)

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Functional structure of spontaneous sleep slow oscillation activity in humans.

    Directory of Open Access Journals (Sweden)

    Danilo Menicucci

    Full Text Available BACKGROUND: During non-rapid eye movement (NREM sleep synchronous neural oscillations between neural silence (down state and neural activity (up state occur. Sleep Slow Oscillations (SSOs events are their EEG correlates. Each event has an origin site and propagates sweeping the scalp. While recent findings suggest a SSO key role in memory consolidation processes, the structure and the propagation of individual SSO events, as well as their modulation by sleep stages and cortical areas have not been well characterized so far. METHODOLOGY/PRINCIPAL FINDINGS: We detected SSO events in EEG recordings and we defined and measured a set of features corresponding to both wave shapes and event propagations. We found that a typical SSO shape has a transition to down state, which is steeper than the following transition from down to up state. We show that during SWS SSOs are larger and more locally synchronized, but less likely to propagate across the cortex, compared to NREM stage 2. Also, the detection number of SSOs as well as their amplitudes and slopes, are greatest in the frontal regions. Although derived from a small sample, this characterization provides a preliminary reference about SSO activity in healthy subjects for 32-channel sleep recordings. CONCLUSIONS/SIGNIFICANCE: This work gives a quantitative picture of spontaneous SSO activity during NREM sleep: we unveil how SSO features are modulated by sleep stage, site of origin and detection location of the waves. Our measures on SSOs shape indicate that, as in animal models, onsets of silent states are more synchronized than those of neural firing. The differences between sleep stages could be related to the reduction of arousal system activity and to the breakdown of functional connectivity. The frontal SSO prevalence could be related to a greater homeostatic need of the heteromodal association cortices.

  15. Interprofessional learning, impression management, and spontaneity in the acute healthcare setting.

    Science.gov (United States)

    Bell, Elaine; McAllister, Sue; Ward, Paul R; Russell, Alison

    2016-09-01

    Spontaneous learning is integral to definitions of interprofessional learning (IPL) because it has been suggested that spontaneous learning can be deeply connected with the work that people do in collaboration with colleagues via their professional networks. However, its nature and the processes involved are not well understood. Goffman's theory of impression management offers a useful theoretical framework to consider the way in which interaction in the workplace connects to spontaneous learning. This article explores the current literature to investigate the usefulness of this framework to better understand and identify spontaneous learning in the workplace. Aspects such as the connections between spontaneous learning occurring in formal and informal work activities, the spaces in which it occurs, and the influence of professional networking are considered. It is proposed that research directed to developing a better understanding of the nature of spontaneous learning in IPL will assist in connecting this learning to formal IPL curricula, enhancing IPL and patient outcomes.

  16. Ultrafast table-top dynamic radiography of spontaneous or stimulated events

    Science.gov (United States)

    Smilowitz, Laura; Henson, Bryan

    2018-01-16

    Disclosed herein are representative embodiments of methods, apparatus, and systems for performing radiography. For example, certain embodiments concern X-ray radiography of spontaneous events. Particular embodiments of the disclosed technology provide continuous high-speed x-ray imaging of spontaneous dynamic events, such as explosions, reaction-front propagation, and even material failure. Further, in certain embodiments, x-ray activation and data collection activation are triggered by the object itself that is under observation (e.g., triggered by a change of state detected by one or more sensors monitoring the object itself).

  17. Assessment of otolith function using cervical and ocular vestibular evoked myogenic potentials in individuals with motion sickness.

    Science.gov (United States)

    Singh, Niraj Kumar; Pandey, Preeti; Mahesh, Soumya

    2014-01-01

    The involvement of otolith organs in motion sickness has long been debated; however, equivocal findings exist in literature. The present study thus aimed at evaluating the otolith functioning in individuals with motion sickness. Cervical and ocular vestibular evoked myogenic potentials were recorded from 30 individuals with motion sickness, 30 professional drivers and 30 healthy individuals. The results revealed no significant difference in latencies and amplitudes between the groups (p>0.05). Nonetheless, thresholds were significantly elevated and inter-aural asymmetry ratio significantly higher in motion sickness susceptible group (p otolithic function seem the likely reasons behind motion sickness susceptibility.

  18. Electrical responses and spontaneous activity of human iPS-derived neuronal networks characterized for three-month culture with 4096-electrode arrays

    Directory of Open Access Journals (Sweden)

    Hayder eAmin

    2016-03-01

    Full Text Available The recent availability of human induced pluripotent stem cells (hiPSCs holds great promise as a novel source of human-derived neurons for cell and tissue therapies as well as for in vitro drug screenings that might replace the use of animal models. However, there is still a considerable lack of knowledge on the functional properties of hiPSC-derived neuronal networks, thus limiting their application. Here, upon optimization of cell culture protocols, we demonstrate that both spontaneous and evoked electrical spiking activities of these networks can be characterized on-chip by taking advantage of the resolution provided by CMOS multielectrode arrays (CMOS-MEAs. These devices feature a large and closely-spaced array of 4096 simultaneously recording electrodes and multi-site on-chip electrical stimulation. Our results show that networks of human-derived neurons can respond to electrical stimulation with a physiological repertoire of spike waveforms after three months of cell culture, a period of time during which the network undergoes the expression of developing patterns of spontaneous spiking activity. To achieve this, we have investigated the impact on the network formation and on the emerging network-wide functional properties induced by different biochemical substrates, i.e. poly-dl-ornithine (PDLO, poly-l-ornithine (PLO, and polyethylenimine (PEI, that were used as adhesion promoters for the cell culture. Interestingly, we found that neuronal networks grown on PDLO coated substrates show significantly higher spontaneous firing activity, reliable responses to low-frequency electrical stimuli, and an appropriate level of PSD-95 that may denote a physiological neuronal maturation profile and synapse stabilization. However, our results also suggest that even three-month culture might not be sufficient for human-derived neuronal network maturation. Taken together, our results highlight the tight relationship existing between substrate coatings

  19. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen.

    Science.gov (United States)

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin

    2013-02-01

    Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O(2) tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca(2+) activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.

  20. Starting and Stopping Spontaneous Family Conflicts.

    Science.gov (United States)

    Vuchinich, Samuel

    1987-01-01

    Examined how 52 nondistressed families managed spontaneous verbal conflicts during family dinners. Found conflict initiation to be evenly distributed across family roles. Extension of conflict was constrained by constant probability of a next conflict move occurring. Most conflicts ended with no resolution. Mothers were most active in closing…

  1. Radionuclide cisternographic findings in patients with spontaneous intracranial hypotension

    International Nuclear Information System (INIS)

    Jung, Dong Jin; Kim, Jae Seung; Ryu, Jin Sook; Shin, Jung Woo; Im, Joo Hyuk; Lee, Myoung Chong; Jung, Sung Joo; Moon, Dae Hyuk; Lee, Hee Kyung

    1998-01-01

    Radionuclide cisternography may be helpful in understanding pathophysiology of postural headache and low CSF pressure in patients with spontaneous intracranial hypotension. The purpose of this study was to characterize radionuclide cisternogrpahic findings of spontaneous intracranial hypotension. The study population consists of 15 patients with spontaneous intracranial hypotension. Diagnosis was based on their clinical symptoms and results of lumbar puncture. All patients underwent radionuclide cisternography following injection of 111 to 222 MBq of Tc-99m DTPA into the lumbar subarachnoid space. Sequential images were obtained between 1/2 hour and 24 hour after the injection of Tc-99m DTPA. Radioactivity of the bladder, soft tissue uptake, migration of radionuclide in the subarachnoid space, and extradural leakage of radionuclide were evaluated according to the scan time. Radionuclide cisternogram showed delayed migration of radionuclide into the cerebral convexity (14/15), increased soft tissue uptake (11/15), and early visualization of bladder activity at 30 min (6/10) and 2 hr (13/13). Cisternography also demonstrated leakage site of CSF in 4 cases and 2 of these were depicted at 30min. Epidural blood patch was done in 11 patients and headache was improved in all cases. The characteristics findings of spontaneous intracranial hypotension were delayed migration of radionuclide and early visualization of the soft tissue and bladder activity. These scintigraphic findings suggest that CSF leakage rather than increased CSF absorption or decreased production may be the main pathophysiology of spontaneous intracranial hypotension. Early and multiple imaging including the bladder and soft tissue is required to observe the entire dynamics of radionuclide migration

  2. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity.

    Science.gov (United States)

    Chaillou, Thomas; Lanner, Johanna T

    2016-12-01

    Reduced oxygen (O 2 ) levels (hypoxia) are present during embryogenesis and exposure to altitude and in pathologic conditions. During embryogenesis, myogenic progenitor cells reside in a hypoxic microenvironment, which may regulate their activity. Satellite cells are myogenic progenitor cells localized in a local environment, suggesting that the O 2 level could affect their activity during muscle regeneration. In this review, we present the idea that O 2 levels regulate myogenesis and muscle regeneration, we elucidate the molecular mechanisms underlying myogenesis and muscle regeneration in hypoxia and depict therapeutic strategies using changes in O 2 levels to promote muscle regeneration. Severe hypoxia (≤1% O 2 ) appears detrimental for myogenic differentiation in vitro, whereas a 3-6% O 2 level could promote myogenesis. Hypoxia impairs the regenerative capacity of injured muscles. Although it remains to be explored, hypoxia may contribute to the muscle damage observed in patients with pathologies associated with hypoxia (chronic obstructive pulmonary disease, and peripheral arterial disease). Hypoxia affects satellite cell activity and myogenesis through mechanisms dependent and independent of hypoxia-inducible factor-1α. Finally, hyperbaric oxygen therapy and transplantation of hypoxia-conditioned myoblasts are beneficial procedures to enhance muscle regeneration in animals. These therapies may be clinically relevant to treatment of patients with severe muscle damage.-Chaillou, T. Lanner, J. T. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. © FASEB.

  3. Experimental investigation on spontaneously active hippocampal cultures recorded by means of high-density MEAs: analysis of the spatial resolution effects

    Directory of Open Access Journals (Sweden)

    Alessandro Maccione

    2010-05-01

    Full Text Available Based on experiments performed with high-resolution Active Pixel Sensor microelectrode arrays (APS-MEAs coupled with spontaneously active hippocampal cultures, this work investigates the spatial resolution effects of the neuroelectronic interface on the analysis of the recorded electrophysiological signals. The adopted methodology consists, first, in recording the spontaneous activity at the highest spatial resolution (inter-electrode separation of 21 µm from the whole array of 4096 microelectrodes. Then, the full resolution dataset is spatially down sampled in order to evaluate the effects on raster plot representation, array-wide spike rate (AWSR, mean firing rate (MFR and mean bursting rate (MBR. Furthermore, the effects of the array-to-network relative position are evaluated by shifting a subset of equally spaced electrodes on the entire recorded area. Results highlight that MFR and MBR are particularly influenced by the spatial resolution provided by the neuroelectronic interface. On high-resolution large MEAs, such analysis better represent the time-based parameterization of the network dynamics. Finally, this work suggest interesting capabilities of high-resolution MEAs for spatial-based analysis in dense and low-dense neuronal preparation for investigating signalling at both local and global neuronal circuitries.

  4. Changes in Brain Activation Associated with Spontaneous Improvization and Figural Creativity After Design-Thinking-Based Training: A Longitudinal fMRI Study.

    Science.gov (United States)

    Saggar, Manish; Quintin, Eve-Marie; Bott, Nicholas T; Kienitz, Eliza; Chien, Yin-Hsuan; Hong, Daniel W-C; Liu, Ning; Royalty, Adam; Hawthorne, Grace; Reiss, Allan L

    2017-07-01

    Creativity is widely recognized as an essential skill for entrepreneurial success and adaptation to daily-life demands. However, we know little about the neural changes associated with creative capacity enhancement. For the first time, using a prospective, randomized control design, we examined longitudinal changes in brain activity associated with participating in a five-week design-thinking-based Creative Capacity Building Program (CCBP), when compared with Language Capacity Building Program (LCBP). Creativity, an elusive and multifaceted construct, is loosely defined as an ability to produce useful/appropriate and novel outcomes. Here, we focus on one of the facets of creative thinking-spontaneous improvization. Participants were assessed pre- and post-intervention for spontaneous improvization skills using a game-like figural Pictionary-based fMRI task. Whole-brain group-by-time interaction revealed reduced task-related activity in CCBP participants (compared with LCBP participants) after training in the right dorsolateral prefrontal cortex, anterior/paracingulate gyrus, supplementary motor area, and parietal regions. Further, greater cerebellar-cerebral connectivity was observed in CCBP participants at post-intervention when compared with LCBP participants. In sum, our results suggest that improvization-based creative capacity enhancement is associated with reduced engagement of executive functioning regions and increased involvement of spontaneous implicit processing. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Neural substrates of spontaneous musical performance: an FMRI study of jazz improvisation.

    Science.gov (United States)

    Limb, Charles J; Braun, Allen R

    2008-02-27

    To investigate the neural substrates that underlie spontaneous musical performance, we examined improvisation in professional jazz pianists using functional MRI. By employing two paradigms that differed widely in musical complexity, we found that improvisation (compared to production of over-learned musical sequences) was consistently characterized by a dissociated pattern of activity in the prefrontal cortex: extensive deactivation of dorsolateral prefrontal and lateral orbital regions with focal activation of the medial prefrontal (frontal polar) cortex. Such a pattern may reflect a combination of psychological processes required for spontaneous improvisation, in which internally motivated, stimulus-independent behaviors unfold in the absence of central processes that typically mediate self-monitoring and conscious volitional control of ongoing performance. Changes in prefrontal activity during improvisation were accompanied by widespread activation of neocortical sensorimotor areas (that mediate the organization and execution of musical performance) as well as deactivation of limbic structures (that regulate motivation and emotional tone). This distributed neural pattern may provide a cognitive context that enables the emergence of spontaneous creative activity.

  6. Neural substrates of spontaneous musical performance: an FMRI study of jazz improvisation.

    Directory of Open Access Journals (Sweden)

    Charles J Limb

    Full Text Available To investigate the neural substrates that underlie spontaneous musical performance, we examined improvisation in professional jazz pianists using functional MRI. By employing two paradigms that differed widely in musical complexity, we found that improvisation (compared to production of over-learned musical sequences was consistently characterized by a dissociated pattern of activity in the prefrontal cortex: extensive deactivation of dorsolateral prefrontal and lateral orbital regions with focal activation of the medial prefrontal (frontal polar cortex. Such a pattern may reflect a combination of psychological processes required for spontaneous improvisation, in which internally motivated, stimulus-independent behaviors unfold in the absence of central processes that typically mediate self-monitoring and conscious volitional control of ongoing performance. Changes in prefrontal activity during improvisation were accompanied by widespread activation of neocortical sensorimotor areas (that mediate the organization and execution of musical performance as well as deactivation of limbic structures (that regulate motivation and emotional tone. This distributed neural pattern may provide a cognitive context that enables the emergence of spontaneous creative activity.

  7. Expression Pattern of Myogenic Regulatory Transcription Factor mRNAs in the Embryo and Adult Labeo rohita (Hamilton, 1822

    Directory of Open Access Journals (Sweden)

    Archya Sengupta

    2014-01-01

    Full Text Available Understanding the regulation of skeletal muscle development is important to meet the increasing demand of Indian major carp Labeo rohita. Myogenic regulatory factors (MRFs along with myocyte specific enhancer factor 2 (MEF2 play the pivotal role in the determination and differentiation of skeletal muscle. The majority of skeletal muscle genes require both MRFs and MEF2 family members to activate their transcription. In this study, the expression pattern of MyoD, myf-5, myogenin, and MEF2A was observed from 6 h after fertilization to 12 months of age using semiquantitative RT-PCR as well as real-time PCR method. MyoD and myf-5 mRNAs were expressed at high level at the early embryonic stages. Myogenin and MEF2A were expressed after MyoD and myf-5 and remained active up to adult stage. Expression of MyoD was lower than that of Myf-5 after the 5th month. Partial sequencing of MyoD, myf-5, and MEF2A was done to draw phylogeny. In phylogenetic study, Labeo MyoD, MEF2A and myf-5 were found to be closely related to those of common carp. The present investigation suggests that the four transcription factors play pivotal role in the regulation of muscle growth of Labeo rohita in an overlapping and interconnected way.

  8. Transformation quantum optics: designing spontaneous emission using coordinate transformations

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Wubs, Martijn; Ginzburg, Pavel

    2016-01-01

    Spontaneous decay is a fundamental quantum property of emitters that can be controlled in a material environment via modification of the local density of optical states (LDOS). Here we use transformation optics methods in order to design required density of states and thus spontaneous emission (S......, affect the LDOS in complex materials. Tailoring SE properties using transformation optics approach provides an innovative way for designing emission properties in a complex material environment needed for the development of active nanophotonic devices....

  9. Drug-induced modification of the system properties associated with spontaneous human electroencephalographic activity

    Science.gov (United States)

    Liley, David T.; Cadusch, Peter J.; Gray, Marcus; Nathan, Pradeep J.

    2003-11-01

    The benzodiazepine (BZ) class of minor tranquilizers are important modulators of the γ-amino butyric acid (GABAA)/BZ receptor complex that are well known to affect the spectral properties of spontaneous electroencephalographic activity. While it is experimentally well established that the BZs reduce total alpha band (8 13 Hz) power and increase total beta band (13 30 Hz) power, it is unclear what the physiological basis for this effect is. Based on a detailed theory of cortical electrorhythmogenesis it is conjectured that such an effect is explicable in terms of the modulation of GABAergic neurotransmission within locally connected populations of excitatory and inhibitory cortical neurons. Motivated by this theory, fixed order autoregressive moving average (ARMA) models were fitted to spontaneous eyes-closed electroencephalograms recorded from subjects before and approximately 2 h after the oral administration of a single 1 mg dose of the BZ alprazolam. Subsequent pole-zero analysis revealed that BZs significantly transform the dominant system pole such that its frequency and damping increase. Comparisons of ARMA derived power spectra with fast Fourier transform derived spectra indicate an enhanced ability to identify benzodiazepine induced electroencephalographic changes. This experimental result is in accord with the theoretical predictions implying that alprazolam enhances inhibition acting on inhibitory neurons more than inhibition acting on excitatory neurons. Further such a result is consistent with reported cortical neuronal distributions of the various GABAA receptor pharmacological subtypes. Therefore physiologically specified fixed order ARMA modeling is expected to become an important tool for the systematic investigation and modeling of a wide range of cortically acting compounds.

  10. ANTIMICROBIAL ACTIVITY OF EXTRACTS OF WILD GARLIC (Allium ursinum FROM ROMANIAN SPONTANEOUS FLORA

    Directory of Open Access Journals (Sweden)

    MARIANA LUPOAE

    2014-05-01

    Full Text Available Wild Romanian spontaneous garlic’s (Allium ursinum antimicrobial activity was tested in order to establish the inhibition potential of growth of some microorganisms. As test microorganisms were used pure cultures of fungs (Aspergillus glaucus, Geotrichum candidum, Mucor mucedo, Saccharomyces cerevisiae and bacteria (Bacillus subtilis isolated from food microbiota. There were also, used microbial strains isolated from different pathological products: wound secretions (Staphylococcus aureus, throat swab (Streptococcus pyogenes, urine (Escherichia coli and oral mucosa (Candida albicans. The antimicrobial potential of used extracts is highlighted depending on the type of the vegetal tissue (leaves, roots, bulbs and the nature of the solvent used for extraction. Extracts used in these experiments are recommended to use in food industry to preserve the stability and to improve the organoleptic quality of products.

  11. Spontaneous external gallbladder perforation

    International Nuclear Information System (INIS)

    Noeldge, G.; Wimmer, B.; Kirchner, R.

    1981-01-01

    Spontaneous perforation of the gallbladder is one complication of cholelithiasis. There is a greater occurence of free perforation in the peritoneal cavity with bilary pertonitis, followed by the perforation into the stomach, small intestine and colon. A single case of the nowadays rare spontaneous perforation in and through the abdominal wall will be reported. Spontaneous gallbladder perforation appears nearly asymptomatic in its clinical course because of absent biliary peritonitis. (orig.) [de

  12. Regulation of eukaryotic initiation factor 4AII by MyoD during murine myogenic cell differentiation.

    Directory of Open Access Journals (Sweden)

    Gabriela Galicia-Vázquez

    Full Text Available Gene expression during muscle cell differentiation is tightly regulated at multiple levels, including translation initiation. The PI3K/mTOR signalling pathway exerts control over protein synthesis by regulating assembly of eukaryotic initiation factor (eIF 4F, a heterotrimeric complex that stimulates recruitment of ribosomes to mRNA templates. One of the subunits of eIF4F, eIF4A, supplies essential helicase function during this phase of translation. The presence of two cellular eIF4A isoforms, eIF4AI and eIF4AII, has long thought to impart equivalent functions to eIF4F. However, recent experiments have alluded to distinct activities between them. Herein, we characterize distinct regulatory mechanisms between the eIF4A isoforms during muscle cell differentiation. We find that eIF4AI levels decrease during differentiation whereas eIF4AII levels increase during myofiber formation in a MyoD-dependent manner. This study characterizes a previously undefined mechanism for eIF4AII regulation in differentiation and highlights functional differences between eIF4AI and eIF4AII. Finally, RNAi-mediated alterations in eIF4AI and eIF4AII levels indicate that the myogenic process can tolerate short term reductions in eIF4AI or eIF4AII levels, but not both.

  13. Age-dependent impact of CaV3.2 T-type calcium channel deletion on myogenic tone and flow-mediated vasodilatation in small arteries

    DEFF Research Database (Denmark)

    Mikkelsen, Miriam F.; Björling, Karl; Jensen, Lars Jørn

    2016-01-01

    , structural remodeling, and mRNA + protein expression in small mesenteric arteries from CaV3.2 knock-out vs. wild-type mice at young vs. mature adult age. In young mice, only, deletion of CaV3.2 led to enhanced myogenic response and ∼50 % reduction of flow-mediated vasodilatation. Ni(2+) had both CaV3...

  14. Use of scripts and script-fading procedures and activity schedules to develop spontaneous social interaction in a three-year-old girl with autism

    Directory of Open Access Journals (Sweden)

    Anna Budzińska

    2014-05-01

    Full Text Available Autism entails serious deficiencies in communication and social behaviors. Individuals with autism, even those who have received intensive language intervention, are often viewed as lacking spontaneous language. In addition, some children with autism lack the ability of spontaneously seeking to share enjoyment, interests, or achievements with other people (e.g., a lack of showing, bringing, or pointing out objects of interest to other people. The aim of the study was to use ABA teaching techniques such as script and script fading procedure and activity schedule to teach three-year-old girl with autism spontaneous social interaction and shape joint attention skills. The result shows that ABA techniques were very effective in teaching many verbal skills such as answering questions, making requests, initiating conversation and asking question. Comparison made after implemented teaching procedure shows her initiating of joint attention skill (IJA is at the appropriate level for her age.

  15. Effect of practicing yoga on cervical vestibular evoked myogenic potential.

    Science.gov (United States)

    Shambhu, Tejaswini; Kumar, Shubhaganga Dhrruva; Prabhu, Prashanth

    2017-10-01

    The present study attempted to determine the effect of practicing yoga on functioning of sacculo-collic pathway using cervical vestibular evoked myogenic potential (cVEMP). cVEMP was recorded from 40 participants (20 who practice yoga regularly and 20 who do not practice yoga regularly). The differences in amplitude of P1, N1, P1-N1 complex, asymmetry ratio and latencies of P1 and N1 of cVEMP were compared between both the groups. The results of the study showed that there was a significant increase (p yoga was significantly lower (Mean = 6.73) compared to the control group (Mean = 19.13). Multivariate regression analyses suggested that the number of years of yoga practice significantly predicted the amplitude of P1-N1 complex (β = 0.70, p yoga improves postural control and strengthens the muscles and vestibular system leading to enhanced cVEMP responses. The plastic changes in the vestibular system and increased muscular strength because of constant practicing of yoga could have led to changes in cVEMP responses. However, further studies on a larger group of individuals are essential for better clinical applicability of the results.

  16. Spontaneous and posed facial expression in Parkinson's disease.

    Science.gov (United States)

    Smith, M C; Smith, M K; Ellgring, H

    1996-09-01

    Spontaneous and posed emotional facial expressions in individuals with Parkinson's disease (PD, n = 12) were compared with those of healthy age-matched controls (n = 12). The intensity and amount of facial expression in PD patients were expected to be reduced for spontaneous but not posed expressions. Emotional stimuli were video clips selected from films, 2-5 min in duration, designed to elicit feelings of happiness, sadness, fear, disgust, or anger. Facial movements were coded using Ekman and Friesen's (1978) Facial Action Coding System (FACS). In addition, participants rated their emotional experience on 9-point Likert scales. The PD group showed significantly less overall facial reactivity than did controls when viewing the films. The predicted Group X Condition (spontaneous vs. posed) interaction effect on smile intensity was found when PD participants with more severe disease were compared with those with milder disease and with controls. In contrast, ratings of emotional experience were similar for both groups. Depression was positively associated with emotion rating but not with measures of facial activity. Spontaneous facial expression appears to be selectively affected in PD, whereas posed expression and emotional experience remain relatively intact.

  17. Definition of spontaneous reconnection

    International Nuclear Information System (INIS)

    Schindler, K.

    1984-01-01

    The author discusses his view of driven versus spontaneous. There is a close link between ''spontaneous'' and ''instability.'' One of the prominent examples for instability is the thermal convection instability. Just to remind you, if you heat a fluid layer from below, it takes a certain Rayleigh number to make it unstable. Beyond the onset point you find qualitatively new features. That is called ''spontaneous,'' and this is a bit more than semantics. It's a new qualitative property that appears and it is spontaneous although we have an energy flux through the system. It's a misconception, to call this ''driven'' pointing at the energy flux through it. Of course, the convection would not exist without this energy flux. But what makes it ''spontaneous'' is that without any particular external signal, a new qualitative feature appears. And this is what is called an ''instability'' and ''spontaneous.'' From these considerations the author got a little reassured of what distinction should be made in the field of the magnetosphere. If we have a smooth energy transport into the magnetosphere and suddenly we have this qualitatively new feature (change of B-topology) coming up; then, using this terminology we don't have a choice other than calling this spontaneous or unstable, if you like. If we ''tell'' the system where it should make its neutral line and where it should make its plasmoids, then, it is driven. And this provides a very clear-cut observational distinction. The author emphasizes the difference he sees is a qualitative difference, not only a quantitative one

  18. The dental literature on occlusion and myogenous orofacial pain: application of critical thinking.

    Science.gov (United States)

    Solow, Roger Alan

    2016-09-01

    To enhance the reader's critical thinking when reading the dental literature on the relationship of occlusion and myogenous orofacial pain (MOP). Representative journal articles and systematic reviews from the dental literature confirming and denying a relationship of occlusion to MOP were analyzed and reviewed. Studies using computerized occlusal analysis (COA) consistently find a relationship of the occlusion to MOP. Studies that do not confirm this relationship have problems with invalid primary source conclusions, unstated assumptions, bias, and errors in logic that disqualify their conclusion. This review explains four categories of problems with the dental literature that denies occlusion has a relationship with MOP. When the reader understands these examples of flaws in this literature, they can apply this critical thinking to future studies. Correct interpretation of the literature on occlusion and MOP requires a foundation of basic and clinical scientific knowledge as well as an understanding of the details of the primary source articles.

  19. Conditional Loss of Pten in Myogenic Progenitors Leads to Postnatal Skeletal Muscle Hypertrophy but Age-Dependent Exhaustion of Satellite Cells.

    Science.gov (United States)

    Yue, Feng; Bi, Pengpeng; Wang, Chao; Li, Jie; Liu, Xiaoqi; Kuang, Shihuan

    2016-11-22

    Skeletal muscle stem cells (satellite cells [SCs]) are normally maintained in a quiescent (G 0 ) state. Muscle injury not only activates SCs locally, but also alerts SCs in distant uninjured muscles via circulating factors. The resulting G Alert SCs are adapted to regenerative cues and regenerate injured muscles more efficiently, but whether they provide any long-term benefits to SCs is unknown. Here, we report that embryonic myogenic progenitors lacking the phosphatase and tensin homolog (Pten) exhibit enhanced proliferation and differentiation, resulting in muscle hypertrophy but fewer SCs in adult muscles. Interestingly, Pten null SCs are predominantly in the G Alert state, even in the absence of an injury. The G Alert SCs are deficient in self-renewal and subjected to accelerated depletion during regeneration and aging and fail to repair muscle injury in old mice. Our findings demonstrate a key requirement of Pten in G 0 entry of SCs and provide functional evidence that prolonged G Alert leads to stem cell depletion and regenerative failure. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Spontaneous ad hoc mobile cloud computing network.

    Science.gov (United States)

    Lacuesta, Raquel; Lloret, Jaime; Sendra, Sandra; Peñalver, Lourdes

    2014-01-01

    Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes.

  1. Electromyographic activity associated with spontaneous functional recovery after spinal cord injury in rats.

    Science.gov (United States)

    Kaegi, Sibille; Schwab, Martin E; Dietz, Volker; Fouad, Karim

    2002-07-01

    This investigation was designed to study the spontaneous functional recovery of adult rats with incomplete spinal cord injury (SCI) at thoracic level during a time course of 2 weeks. Daily testing sessions included open field locomotor examination and electromyographic (EMG) recordings from a knee extensor (vastus lateralis, VL) and an ankle flexor muscle (tibialis anterior, TA) in the hindlimbs of treadmill walking rats. The BBB score (a locomotor score named after Basso et al., 1995, J. Neurotrauma, 12, 1-21) and various measures from EMG recordings were analysed (i.e. step cycle duration, rhythmicity of limb movements, flexor and extensor burst duration, EMG amplitude, root-mean-square, activity overlap between flexor and extensor muscles and hindlimb coupling). Directly after SCI, a marked drop in locomotor ability occurred in all rats with subsequent partial recovery over 14 days. The recovery was most pronounced during the first week. Significant changes were noted in the recovery of almost all analysed EMG measures. Within the 14 days of recovery, many of these measures approached control levels. Persistent abnormalities included a prolonged flexor burst and increased activity overlap between flexor and extensor muscles. Activity overlap between flexor and extensor muscles might be directly caused by altered descending input or by maladaptation of central pattern generating networks and/or sensory feedback.

  2. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia

    Directory of Open Access Journals (Sweden)

    Wang Y

    2015-10-01

    Full Text Available Yanping Wang,1,2 Xiaoling Zhang,2 Qiaobing Guan,2 Lihong Wan,2 Yahui Yi,2 Chun-Feng Liu1 1Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 2Department of Neurology, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang Province, People’s Republic of China Abstract: The pathophysiology of idiopathic trigeminal neuralgia (ITN has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected. Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002. Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN. Keywords: trigeminal neuralgia, resting fMRI, brain, chronic pain, local connectivity

  3. Cervical Vestibular Evoked Myogenic Potential in Hypoglossal Nerve Schwannoma: A Case Report.

    Science.gov (United States)

    Rajasekaran, Aravind Kumar; Savardekar, Amey Rajan; Shivashankar, Nagaraja Rao

    2018-02-01

    Schwannoma of the hypoglossal nerve is rare. This case report documents an atypical abnormality of the cervical vestibular evoked myogenic potential (cVEMP) in a patient with schwannoma of the hypoglossal nerve. The observed abnormality was attributed to the proximity of the hypoglossal nerve to the spinal accessory nerve in the medullary cistern and base of the skull. To report cVEMP abnormality in a patient with hypoglossal nerve schwannoma and provide an anatomical correlation for this abnormality. Case report. A 44-yr-old woman. Pure-tone and speech audiometry, tympanometry, acoustic stapedial reflex, auditory brainstem response, and cVEMP testing were performed. The audiological test results were normal except for the absence of cVEMP on the lesion side (right). A cVEMP abnormality indicating a compromised spinal accessory nerve was observed in a patient with hypoglossal nerve schwannoma. This case report highlights the importance of recording cVEMP in relevant neurological conditions and provides clinical proof for the involvement of the spinal accessory nerve in the vestibulocollic reflex pathway. American Academy of Audiology

  4. Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level

    Science.gov (United States)

    Nanda, Arun M.; Heyer, Antonia; Krämer, Christina; Grünberger, Alexander; Kohlheyer, Dietrich

    2014-01-01

    The genome of the Gram-positive soil bacterium Corynebacterium glutamicum ATCC 13032 contains three integrated prophage elements (CGP1 to -3). Recently, it was shown that the large lysogenic prophage CGP3 (∼187 kbp) is excised spontaneously in a small number of cells. In this study, we provide evidence that a spontaneously induced SOS response is partly responsible for the observed spontaneous CGP3 induction. Whereas previous studies focused mainly on the induction of prophages at the population level, we analyzed the spontaneous CGP3 induction at the single-cell level using promoters of phage genes (Pint2 and Plysin) fused to reporter genes encoding fluorescent proteins. Flow-cytometric analysis revealed a spontaneous CGP3 activity in about 0.01 to 0.08% of the cells grown in standard minimal medium, which displayed a significantly reduced viability. A PrecA-eyfp promoter fusion revealed that a small fraction of C. glutamicum cells (∼0.2%) exhibited a spontaneous induction of the SOS response. Correlation of PrecA to the activity of downstream SOS genes (PdivS and PrecN) confirmed a bona fide induction of this stress response rather than stochastic gene expression. Interestingly, the reporter output of PrecA and CGP3 promoter fusions displayed a positive correlation at the single-cell level (ρ = 0.44 to 0.77). Furthermore, analysis of the PrecA-eyfp/Pint2-e2-crimson strain during growth revealed the highest percentage of spontaneous PrecA and Pint2 activity in the early exponential phase, when fast replication occurs. Based on these studies, we postulate that spontaneously occurring DNA damage induces the SOS response, which in turn triggers the induction of lysogenic prophages. PMID:24163339

  5. Spontaneous intracranial hypotension.

    LENUS (Irish Health Repository)

    Fullam, L

    2012-01-31

    INTRODUCTION: Spontaneous\\/primary intracranial hypotension is characterised by orthostatic headache and is associated with characteristic magnetic resonance imaging findings. CASE REPORT: We present a case report of a patient with typical symptoms and classical radiological images. DISCUSSION: Spontaneous intracranial hypotension is an under-recognised cause of headache and can be diagnosed by history of typical orthostatic headache and findings on MRI brain.

  6. Observation of new spontaneous fission activities from elements 100 to 105

    International Nuclear Information System (INIS)

    Somerville, L.P.

    1982-03-01

    Several new Spontaneous Fission (SF) activities have been found. No definite identification could be made for any of the new SF activities; however, half-lives and possible assignments to element-104 isotopes consistent with several cross bombardments include 257 Rf(3.8 s, 14% SF), 258 Rf(13 ms), 259 Rf(approx. 3 s, 8% SF), 260 Rf(approx. 20 ms), and 262 Rf(approx. 50 ms). The 80-ms SF activity claimed by the Dubna group for the discovery of element 104 ( 260 104) was not observed. A difficulty exists in the interpretation that 260 Rf is a approx. 20-ms SF activity: in order to be correct, for example, the SF activities with half-lives between 14 and 24 ms produced in the reactions 109- to 119-MeV 18 O + 248 Cm, 88- to 100-MeV 15 N + 249 Bk, and 96-MeV 18 O + 249 Cf must be other nuclides due to their large production cross sections, or the cross sections for production of 260 Rf must be enhanced by unknown mechanisms. Based on calculated total production cross sections a possible approx. 1% electron-capture branch in 258 Lr(4.5 s) to the SF emitter 258 No(1.2 ms) and an upper limit of 0.05% for SF branching in 254 No(55 s) were determined. Other measured half-lives from unknown nuclides produced in respective reactions include approx. 1.6 s ( 18 O + 248 CM), indications of a approx. 47-s SF activity (75-MeV 12 C + 249 Cf), and two or more SF activities with 3 s less than or equal to T/sub 1/2/ less than or equal to 60 s ( 18 O + 249 Bk). The most exciting conclusion of this work is that if the tentative assignments to even-even element 104 isotopes are correct, there would be a sudden change in the SF half-life systematics at element 104 which has been predicted theoretically and attributed to the disappearance of the second hump of the double-humped fission barrier

  7. The perception of musical spontaneity in improvised and imitated jazz performances

    Directory of Open Access Journals (Sweden)

    Annerose eEngel

    2011-05-01

    Full Text Available The ability to evaluate spontaneity in human behavior is called upon in the aesthetic appreciation of dramatic arts and music. The current study addresses the behavioral and brain mechanisms that mediate the perception of spontaneity in music performance. In a functional Magnetic Resonance Imaging experiment, 22 jazz musicians listened to piano melodies and judged whether they were improvised or imitated. Judgment accuracy (mean 55%; range 44-65%, which was low but above chance, was positively correlated with musical experience and empathy. Analysis of listeners’ hemodynamic responses revealed that amygdala activation was stronger for improvisations than imitations. This activation correlated with the variability of performance timing and intensity (loudness in the melodies, suggesting that the amygdala is involved in the detection of behavioral uncertainty. An analysis based on the subjective classification of melodies according to listeners’ judgments revealed that a network including the pre-supplementary motor area, frontal operculum, and anterior insula was most strongly activated for melodies judged to be improvised. This may reflect the increased engagement of an action simulation network when melodic predictions are rendered challenging due to perceived instability in the performer’s actions. Taken together, our results suggest that, while certain brain regions in skilled individuals may be generally sensitive to objective cues to spontaneity in human behavior, the ability to evaluate spontaneity accurately depends upon whether an individual’s action-related experience and perspective taking skills enable faithful internal simulation of the given behavior.

  8. The perception of musical spontaneity in improvised and imitated jazz performances.

    Science.gov (United States)

    Engel, Annerose; Keller, Peter E

    2011-01-01

    The ability to evaluate spontaneity in human behavior is called upon in the esthetic appreciation of dramatic arts and music. The current study addresses the behavioral and brain mechanisms that mediate the perception of spontaneity in music performance. In a functional magnetic resonance imaging experiment, 22 jazz musicians listened to piano melodies and judged whether they were improvised or imitated. Judgment accuracy (mean 55%; range 44-65%), which was low but above chance, was positively correlated with musical experience and empathy. Analysis of listeners' hemodynamic responses revealed that amygdala activation was stronger for improvisations than imitations. This activation correlated with the variability of performance timing and intensity (loudness) in the melodies, suggesting that the amygdala is involved in the detection of behavioral uncertainty. An analysis based on the subjective classification of melodies according to listeners' judgments revealed that a network including the pre-supplementary motor area, frontal operculum, and anterior insula was most strongly activated for melodies judged to be improvised. This may reflect the increased engagement of an action simulation network when melodic predictions are rendered challenging due to perceived instability in the performer's actions. Taken together, our results suggest that, while certain brain regions in skilled individuals may be generally sensitive to objective cues to spontaneity in human behavior, the ability to evaluate spontaneity accurately depends upon whether an individual's action-related experience and perspective taking skills enable faithful internal simulation of the given behavior.

  9. Optimization of an NLEO-based algorithm for automated detection of spontaneous activity transients in early preterm EEG

    International Nuclear Information System (INIS)

    Palmu, Kirsi; Vanhatalo, Sampsa; Stevenson, Nathan; Wikström, Sverre; Hellström-Westas, Lena; Palva, J Matias

    2010-01-01

    We propose here a simple algorithm for automated detection of spontaneous activity transients (SATs) in early preterm electroencephalography (EEG). The parameters of the algorithm were optimized by supervised learning using a gold standard created from visual classification data obtained from three human raters. The generalization performance of the algorithm was estimated by leave-one-out cross-validation. The mean sensitivity of the optimized algorithm was 97% (range 91–100%) and specificity 95% (76–100%). The optimized algorithm makes it possible to systematically study brain state fluctuations of preterm infants. (note)

  10. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Velkey, Bálint; Vitális, Eszter; Vitális, Zsuzsanna

    2017-01-01

    Spontaneous bacterial peritonitis occurs most commonly in cirrhotic patients with ascites. Pathogens get into the circulation by intestinal translocation and colonize in peritoneal fluid. Diagnosis of spontaneous bacterial peritonitis is based on elevated polymorphonuclear leukocyte count in the ascites (>0,25 G/L). Ascites culture is often negative but aids to get information about antibiotic sensitivity in positive cases. Treatment in stable patient can be intravenous then orally administrated ciprofloxacin or amoxicillin/clavulanic acid, while in severe cases intravenous III. generation cephalosporin. Nosocomial spontaneous bacterial peritonitis often caused by Gram-positive bacteria and multi-resistant pathogens can also be expected thus carbapenem should be the choice of the empiric treatment. Antibiotic prophylaxis should be considered. Norfloxacin is used most commonly, but changes are expected due to increase in quinolone resistance. As a primary prophylaxis, a short-term antibiotic treatment is recommended after gastrointestinal bleeding for 5 days, while long-term prophylaxis is for patients with low ascites protein, and advanced disease (400 mg/day). Secondary prophylaxis is recommended for all patients recovered from spontaneous bacterial peritonitis. Due to increasing antibiotic use of antibiotics prophylaxis is debated to some degree. Orv. Hetil., 2017, 158(2), 50-57.

  11. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter

    Science.gov (United States)

    Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya

    2018-02-01

    Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.

  12. Kv1.1 knock-in ataxic mice exhibit spontaneous myokymic activity exacerbated by fatigue, ischemia and low temperature.

    Science.gov (United States)

    Brunetti, Orazio; Imbrici, Paola; Botti, Fabio Massimo; Pettorossi, Vito Enrico; D'Adamo, Maria Cristina; Valentino, Mario; Zammit, Christian; Mora, Marina; Gibertini, Sara; Di Giovanni, Giuseppe; Muscat, Richard; Pessia, Mauro

    2012-09-01

    Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder characterized by myokymia and attacks of ataxic gait often precipitated by stress. Several genetic mutations have been identified in the Shaker-like K(+) channel Kv1.1 (KCNA1) of EA1 individuals, including V408A, which result in remarkable channel dysfunction. By inserting the heterozygous V408A, mutation in one Kv1.1 allele, a mouse model of EA1 has been generated (Kv1.1(V408A/+)). Here, we investigated the neuromuscular transmission of Kv1.1(V408A/+) ataxic mice and their susceptibility to physiologically relevant stressors. By using in vivo preparations of lateral gastrocnemius (LG) nerve-muscle from Kv1.1(+/+) and Kv1.1(V408A/+) mice, we show that the mutant animals exhibit spontaneous myokymic discharges consisting of repeated singlets, duplets or multiplets, despite motor nerve axotomy. Two-photon laser scanning microscopy from the motor nerve, ex vivo, revealed spontaneous Ca(2+) signals that occurred abnormally only in preparations dissected from Kv1.1(V408A/+) mice. Spontaneous bursting activity, as well as that evoked by sciatic nerve stimulation, was exacerbated by muscle fatigue, ischemia and low temperatures. These stressors also increased the amplitude of compound muscle action potential. Such abnormal neuromuscular transmission did not alter fiber type composition, neuromuscular junction and vascularization of LG muscle, analyzed by light and electron microscopy. Taken together these findings provide direct evidence that identifies the motor nerve as an important generator of myokymic activity, that dysfunction of Kv1.1 channels alters Ca(2+) homeostasis in motor axons, and also strongly suggest that muscle fatigue contributes more than PNS fatigue to exacerbate the myokymia/neuromyotonia phenotype. More broadly, this study points out that juxtaparanodal K(+) channels composed of Kv1.1 subunits exert an important role in dampening the excitability of motor nerve axons during

  13. Genetics Home Reference: primary spontaneous pneumothorax

    Science.gov (United States)

    ... Home Health Conditions Primary spontaneous pneumothorax Primary spontaneous pneumothorax Printable PDF Open All Close All Enable Javascript ... view the expand/collapse boxes. Description Primary spontaneous pneumothorax is an abnormal accumulation of air in the ...

  14. Reduced spontaneous neuronal activity in the insular cortex and thalamus in healthy adults with insomnia symptoms.

    Science.gov (United States)

    Liu, Chun-Hong; Liu, Cun-Zhi; Zhang, Jihui; Yuan, Zhen; Tang, Li-Rong; Tie, Chang-Le; Fan, Jin; Liu, Qing-Quan

    2016-10-01

    Poor sleep and insomnia have been recognized to be strongly correlated with the development of depression. The exploration of the basic mechanism of sleep disturbance could provide the basis for improved understanding and treatment of insomnia and prevention of depression. In this study, 31 subjects with insomnia symptoms as measured by the Hamilton Rating Scale for Depression (HAMD-17) and 71 age- and gender-matched subjects without insomnia symptoms were recruited to participate in a clinical trial. Using resting-state functional magnetic resonance imaging (rs-fMRI), we examined the alterations in spontaneous brain activity between the two groups. Correlations between the fractional amplitude of low frequency fluctuations (fALFF) and clinical measurements (e.g., insomnia severity and Hamilton Depression Rating Scale [HAMD] scores) were also tested in all subjects. Compared to healthy participants without insomnia symptoms, participants with insomnia symptoms showed a decreased fALFF in the left ventral anterior insula, bilateral posterior insula, left thalamus, and pons but an increased fALFF in the bilateral middle occipital gyrus and right precentral gyrus. More specifically, a significant, negative correlation of fALFF in the left thalamus with early morning awakening scores and HAMD scores in the overall sample was identified. These results suggest that insomnia symptoms are associated with altered spontaneous activity in the brain regions of several important functional networks, including the insular cortex of the salience and the thalamus of the hyperarousal network. The altered fALFF in the left thalamus supports the "hyperarousal theory" of insomnia symptoms, which could serve as a biomarker for insomnia. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Ziprasidone-induced spontaneous orgasm.

    Science.gov (United States)

    Boora, K; Chiappone, K; Dubovsky, S; Xu, J

    2010-06-01

    Neuroleptic treatment in schizophrenic patients has been associated with sexual dysfunction, including impotence and decreased libido. Spontaneous ejaculation without sexual arousal during typical antipsychotic treatment is a rare condition that has been described with zuclopentixol, trifluoperazine, and thiothixene. Here, we are reporting a case of spontaneous orgasm with ziprasidone in a bipolar patient. This patient began to repeatedly experience spontaneous sexual arousal and orgasm, which she had never experienced in the past. Ziprasidone might be causing an increase in sexual orgasm by 5-HT2 receptor antagonism, which preclinical evidence suggests that it facilitates dopamine release in the cortex.

  16. Nociception contributes to the formation of myogenic contracture in the early phase of adjuvant-induced arthritis in a rat knee.

    Science.gov (United States)

    Kaneguchi, Akinori; Ozawa, Junya; Moriyama, Hideki; Yamaoka, Kaoru

    2017-07-01

    It is unknown how joint contracture is generated in inflamed joints. This study aimed to clarify the role of nociception on the formation of joint contracture secondary to arthritis. Monoarthritis was induced by intra-articular injections of complete Freund's adjuvant (CFA) into rat knees. On day 5 after CFA injection, the passive extension range of motion (ROM) of knee joints were measured, both before and after myotomy of knee flexors, to evaluate the extent of muscular contribution to CFA-induced joint contracture. The steroidal anti-inflammatory drug dexamethasone could prevent ROM restrictions completely, both before and after myotomy. On the other hand, the opioid analgesic drug morphine did not prevent the development of restricted ROM observed after myotomy, while it did before myotomy. This indicates that nociception contributes to joint contracture through alterations in muscular structure (myogenic factors). Next, we tested the hypothesis that nociception-induced reflexive flexor muscle contractions cause myogenic contracture in arthritic joints. To do this, chemical denervation was performed by Botulinum toxin type A (BTX-A) injections into knee flexor muscles, simultaneously with CFA injections into the knee. As expected, BTX-A could alleviate ROM restrictions observed before myotomy. These findings suggest that nociceptive-related muscle contractions play an essential role in the formation of joint contracture. Thus, our study indicates that analgesic management during an early stage of joint arthritis is an essential mean to prevent the formation of joint contracture. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1404-1413, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Translational Science: How experimental research has contributed to the understanding of spontaneous Physical Activity and Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Izabelle D Benfato

    2017-05-01

    Full Text Available Abstract Spontaneous physical activity (SPA consists of all daily living activities other than volitional exercise (e.g. sports and fitness-related activities. SPA is an important component of energy expenditure and may protect from overweight and obesity. Little is known about the biological regulation of SPA, but animal researchhas contributedsignificantly to expand our knowledge in this field. Studies in rodents have shown that SPA is influenced by nutrients and volitional exercise. High-fat diet seems to decrease SPA, which contributes to weigh gain. Volitional exercisemayalso reduce SPA, helping to explain the commonly reported low efficiency of exercise to cause weight loss, and highlighting the need to finda volume/intensity of exercise to maximize total daily energy expenditure. Animal studieshave also allowed for the identification of some brain areas and chemical mediatorsinvolved in SPA regulation. These discoveries could enable the development of new therapeutics aiming to enhance SPA.

  18. Regulation of Spontaneous Eosinophil Apoptosis—A Neglected Area of Importance

    Directory of Open Access Journals (Sweden)

    Pinja Ilmarinen

    2014-01-01

    Full Text Available Asthma is characterized by the accumulation of eosinophils in the airways in most phenotypes. Eosinophils are inflammatory cells that require an external survival-prolonging stimulus such as granulocyte macrophage-colony-stimulating factor (GM-CSF, interleukin (IL-5, or IL-3 for survival. In their absence, eosinophils are programmed to die by spontaneous apoptosis in a few days. Eosinophil apoptosis can be accelerated by Fas ligation or by pharmacological agents such as glucocorticoids. Evidence exists for the relevance of these survival-prolonging and pro-apoptotic agents in the regulation of eosinophilic inflammation in inflamed airways. Much less is known about the physiological significance and mechanisms of spontaneous eosinophil apoptosis even though it forms the basis of regulation of eosinophil longevity by pathophysiological factors and pharmacological agents. This review concentrates on discussing the mechanisms of spontaneous eosinophil apoptosis compared to those of glucocorticoid- and Fas-induced apoptosis. We aim to answer the question whether the external apoptotic stimuli only augment the ongoing pathway of spontaneous apoptosis or truly activate a specific pathway.

  19. Spontaneous stress fractures of the femoral neck

    International Nuclear Information System (INIS)

    Dorne, H.L.; Lander, P.H.

    1985-01-01

    The diagnosis of spontaneous stress fractures of the femoral neck, a form of insufficiency stress fracture, can be missed easily. Patients present with unremitting hip pain without a history of significant trauma or unusual increase in daily activity. The initial radiographic features include osteoporosis, minor alterations of trabecular alignment, minimal extracortical or endosteal reaction, and lucent fracture lines. Initial scintigraphic examinations performed in three of four patients showed focal increased radionuclide uptake in two and no focal abnormality in one. Emphasis is placed on the paucity of early findings. Evaluation of patients with persistent hip pain requires a high degree of clinical suspicion and close follow-up; the sequelae of undetected spontaneous fractures are subcapital fracture with displacement, angular deformity, and a vascular necrosis of the femoral head

  20. Involvement of cyclic nucleotide-gated channels in spontaneous activity generated in isolated interstitial cells of Cajal from the rabbit urethra.

    Science.gov (United States)

    Sancho, Maria; Bradley, Eamonn; Garcia-Pascual, Angeles; Triguero, Domingo; Thornbury, Keith D; Hollywood, Mark A; Sergeant, Gerard P

    2017-11-05

    Cyclic nucleotide-gated (CNG) channels are non-selective cation channels that mediate influx of extracellular Na + and Ca 2+ in various cell types. L-cis-Diltiazem, a CNG channel blocker, inhibits contraction of urethral smooth muscle (USM), however the mechanisms underlying this effect are still unclear. We investigated the possibility that CNG channels contribute to spontaneous pacemaker activity in freshly isolated interstitial cells of Cajal (ICC) isolated from the rabbit urethra (RUICC). Using immunocytochemistry, we found intense CNG1-immunoreactivity in vimentin-immunoreactive RUICC, mainly within patches of the cellular body and processes. In contrast, α-actin immunoreactive smooth muscle cells (SMC) did not show significant reactivity to a specific CNGA1 antibody. Freshly isolated RUICC, voltage clamped at -60mV, developed spontaneous transient inward currents (STICs) that were inhibited by L-cis-Diltiazem (50µM). Similarly, L-cis-Diltiazem (50µM) also inhibited Ca 2+ waves in isolated RUICC, recorded using a Nipkow spinning disk confocal microscope. L-cis-Diltiazem (50µM) did not affect caffeine (10mM)-induced Ca 2+ transients, but significantly reduced phenylephrine-evoked Ca 2+ oscillations and inward currents in in RUICC. L-type Ca 2+ current amplitude in isolated SMC was reduced by ~18% in the presence of L-cis-Diltiazem (50µM), however D-cis-Diltiazem, a recognised L-type Ca 2+ channel blocker, abolished L-type Ca 2+ current but did not affect Ca 2+ waves or STICs in RUICC. These results indicate that the effects of L-cis-diltiazem on rabbit USM could be mediated by inhibition of CNG1 channels that are present in urethral ICC and therefore CNG channels contribute to spontaneous activity in these cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Being Spontaneous: The Future of Telehealth Implementation?

    Science.gov (United States)

    Mars, Maurice; Scott, Richard E

    2017-09-01

    The smartphone simplifies interprofessional communication, and smartphone applications can facilitate telemedicine activity. Much has been written about the steps that need to be followed to implement and establish a successful telemedicine service that is integrated into everyday clinical practice. A traditional and systematic approach has evolved incorporating activities such as strategy development, needs assessment, business cases and plans, readiness assessment, implementation plans, change management interventions, and ongoing monitoring and evaluation. This "best practice" has been promoted in the telehealth literature for many years. In contrast, several recent initiatives have arisen without any such formal undertakings. This article describes the strengths and weaknesses of two "spontaneous" telemedicine services in dermatology and burn management that have evolved in South Africa. Two spontaneous services were identified and reviewed. In one unsolicited service, doctors at rural referring hospitals have been taking photographs of skin lesions and sending them with a brief text message history to dermatologists using the instant messaging smartphone app, WhatsApp. In the other, burns service, admissions to the burns unit or the clinic were triaged by telephonic description of the case and completion of a preadmission questionnaire. More recently, management and referral decisions are made only after completion of the questionnaire and subsequent submission of photographs of the burn sent by WhatsApp, with the decision transmitted by text message. Although efficient and effective, potential legal and ethical shortcomings have been identified. These "spontaneous" telehealth services challenge traditional best practice, yet appear to lead to truly integrated practice and, therefore, are successful and warrant further study.

  2. Spontaneous fragmentation of an alpha-active ceramic: a mechanism for dispersion of solid waste

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.; Rohr, D.L.

    1980-01-01

    Studies underway to characterize spontaneous fragmentation in 238 PuO 2 and to determine the mechanism(s) responsible are reported. Results reported here show that: spontaneous fragmentation of 238 PuO 2 generates a wide range of particle sizes, from a few mm to 1000 A or less; the phenomenon may continue with time or may saturate, depending on starting material; the magnitude of the effect is dependent on storage environment. Neither thermal stresses nor lattice damage appear to be solely responsible for fragmentation, but radiolysis of the environment could play an important role. Work is continuing in an effort to identify the controlling factors in this phenomenon

  3. Liver transplantation nearly normalizes brain spontaneous activity and cognitive function at 1 month: a resting-state functional MRI study.

    Science.gov (United States)

    Cheng, Yue; Huang, Lixiang; Zhang, Xiaodong; Zhong, Jianhui; Ji, Qian; Xie, Shuangshuang; Chen, Lihua; Zuo, Panli; Zhang, Long Jiang; Shen, Wen

    2015-08-01

    To investigate the short-term brain activity changes in cirrhotic patients with Liver transplantation (LT) using resting-state functional MRI (fMRI) with regional homogeneity (ReHo) method. Twenty-six cirrhotic patients as transplant candidates and 26 healthy controls were included in this study. The assessment was repeated for a sub-group of 12 patients 1 month after LT. ReHo values were calculated to evaluate spontaneous brain activity and whole brain voxel-wise analysis was carried to detect differences between groups. Correlation analyses were performed to explore the relationship between the change of ReHo with the change of clinical indexes pre- and post-LT. Compared to pre-LT, ReHo values increased in the bilateral inferior frontal gyrus (IFG), right inferior parietal lobule (IPL), right supplementary motor area (SMA), right STG and left middle frontal gyrus (MFG) in patients post-LT. Compared to controls, ReHo values of post-LT patients decreased in the right precuneus, right SMA and increased in bilateral temporal pole, left caudate, left MFG, and right STG. The changes of ReHo in the right SMA, STG and IFG were correlated with change of digit symbol test (DST) scores (P brain activity of most brain regions with decreased ReHo in pre-LT was substantially improved and nearly normalized, while spontaneous brain activity of some brain regions with increased ReHo in pre-LT continuously increased. ReHo may provide information on the neural mechanisms of LT' effects on brain function.

  4. PKR is a novel functional direct player that coordinates skeletal muscle differentiation via p38MAPK/AKT pathways.

    Science.gov (United States)

    Alisi, A; Spaziani, A; Anticoli, S; Ghidinelli, M; Balsano, C

    2008-03-01

    Myogenic differentiation is a highly orchestrated multistep process controlled by extracellular growth factors that modulate largely unknown signals into the cell affecting the muscle-transcription program. P38MAPK-dependent signalling, as well as PI3K/Akt pathway, has a key role in the control of muscle gene expression at different stages during the myogenic process. P38MAPK affects the activities of transcription factors, such as MyoD and myogenin, and contributes, together with PI3K/Akt pathway, to control the early and late steps of myogenic differentiation. The aim of our work was to better define the role of PKR, a dsRNA-activated protein kinase, as potential component in the differentiation program of C2C12 murine myogenic cells and to correlate its activity with p38MAPK and PI3K/Akt myogenic regulatory pathways. Here, we demonstrate that PKR is an essential component of the muscle development machinery and forms a functional complex with p38MAPK and/or Akt, contributing to muscle differentiation of committed myogenic cells in vitro. Inhibition of endogenous PKR activity by a specific (si)RNA and a PKR dominant-negative interferes with the myogenic program of C2C12 cells, causing a delay in activation of myogenic specific genes and inducing the formation of thinner myofibers. In addition, the construction of three PKR mutants allowed us to demonstrate that both N and C-terminal regions of PKR are critical for the interaction with p38MAPK and Akt. The novel discovered complex permits PKR to timely regulate the inhibition/activation of p38MAPK and Akt, controlling in this way the different steps characterizing skeletal muscle differentiation.

  5. Spontaneous arylation of activated carbon from aminobenzene organic acids as source of diazonium ions in mild conditions

    International Nuclear Information System (INIS)

    Lebègue, Estelle; Brousse, Thierry; Gaubicher, Joël; Cougnon, Charles

    2013-01-01

    Activated carbon products modified with benzoic, benzenesulfonic and benzylphosphonic acid groups were prepared by spontaneous reduction of aryldiazonium ions in situ generated in water from the corresponding aminobenzene organic acids without addition of an external acid. Electrochemistry and NMR studies show that the advancement of the diazotization reaction depends both on the acidity and the electronic effect of the organic acid substituent, giving a mixture of diazonium, amine and triazene functionalities. Carbon products prepared by reaction of activated carbon Norit with 4-aminobenzenecarboxylic acid, 4-aminobenzenesulfonic acid and (4-aminobenzyl)phosphonic acid were analyzed by chemical elemental analysis and X-ray photoelectron spectroscopy experiments. Results show that this strategy is well suited for the chemical functionalization, giving a maximized grafting yield due to a chemical cooperation of amine and diazonium functionalities

  6. Population calcium imaging of spontaneous respiratory and novel motor activity in the facial nucleus and ventral brainstem in newborn mice

    DEFF Research Database (Denmark)

    Persson, Karin; Rekling, Jens C

    2011-01-01

    The brainstem contains rhythm and pattern forming circuits, which drive cranial and spinal motor pools to produce respiratory and other motor patterns. Here we used calcium imaging combined with nerve recordings in newborn mice to reveal spontaneous population activity in the ventral brainstem...... and in the facial nucleus. In Fluo-8AM loaded brainstem-spinal cord preparations, respiratory activity on cervical nerves was synchronized with calcium signals at the ventrolateral brainstem surface. Individual ventrolateral neurons at the level of the parafacial respiratory group showed perfect or partial...... synchrony with respiratory nerve bursts. In brainstem-spinal cord preparations, cut at the level of the mid-facial nucleus, calcium signals were recorded in the dorsal, lateral and medial facial subnuclei during respiratory activity. Strong activity initiated in the dorsal subnucleus, followed by activity...

  7. The changes of spontaneous motility in chick embryos after blockade of NO-synthase.

    Science.gov (United States)

    Sedlácek, J

    1996-01-01

    The consequences of the blockade of NO-synthase (NOS) for the development, frequency and reactivity of spontaneous motility were investigated in chick embryos aged 4-19 day of incubation. 1. Acute NOS blockade evoked by N-nitro-L-arginine- methylester (L-NAME) (20 mg/kg egg weight-e.w.) caused on day 17 of incubation the short-lasting depression of spontaneous motility to 50% of resting motor activity. L-NAME was in spinal embryos without any effect. Chronic application of L-NAME (1.70 mg/kg e.w./24 h) from day 4 of incubation led after the first 4 days of continual supply to the development of reduced spontaneous motility on one hand, on the other hand it changed the efficacy of central activatory (NMDA, pentylenetetrazole) and inhibitory drugs (ketamine, glycine). L-NAME and L-arginine in different mutual combinations manifested in 17-day-old embryos their typical effect, though the depressory effect of L-NAME took a swifter course than the activatory effect of L-arginine. 2. Aminoguanidine (AmG) (9.8 and 20 mg/kg e.w.) evoked from day 17 of incubation the significant biphasic change of spontaneous motility only: initial depression was replaced by later activation. AmG was in spinal embryos without effect again. Chronic application of AmG (5.29 +/- 0.51 mg/kg e.w./24 h) showed in 17-day-old embryos a reduction of resting motility dependent on the duration of AmG influence during incubation. Another expression was the changed reactivity of spontaneous motility to some centrally effective drugs (ketamine, NMDA, D-cycloserine, glycine, pentylenetetrazole). 3. 7-nitroindazole (7-NIZ) (15 and 30 mg/kg e.w.) caused the significant decrease of spontaneous motility in chick embryos already from day 15 of incubation; the depression after the lower dosis had an interrupted course, whereas after the higher dosis it was a continuous one. 7-NIZ blocked in 17-day-old embryos the activatory effect of L-arginine, reduced the paroxysmal activation of motility evoked by NMDA and

  8. Locomotor activity and catecholamine receptor binding in adult normotensive and spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Hellstrand, K.; Engel, J.

    1980-01-01

    The binding of 3 H-WB 4101, an α 1 -adrenoceptor antagonist, the membranes of the cerebral cortex, the hypothalamus, and the lower brainstem was examined in adult spontaneously hypertensive (SH) rats and in normotensive Wistar Kyoto (WK) controls. The specific binding of 3 H-WB 4101 (0.33 nM) was significantly higher in homogenates from the cerebral cortex of SH rats as compared to WK rats. No differences were detected between SH and WK rats in the specific binding of 3 H-spiroperidol (0.25 nM), a dopamine receptor antagonist, to membranes from the corpus striatum and the limbic forebrain. The locomotor activity was significantly higher in SH rats as compared to WK controls, in all probability due to a lack of habituation to environmental change. It is suggested that the high reactivity of SH rats is related to a disfunction in the noradrenergic neurons in the central nervous system. (author)

  9. MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation

    Science.gov (United States)

    Agarwal, Noopur; Hardt, Tanja; Brero, Alessandro; Nowak, Danny; Rothbauer, Ulrich; Becker, Annette; Leonhardt, Heinrich; Cardoso, M. Cristina

    2007-01-01

    There is increasing evidence of crosstalk between epigenetic modifications such as histone and DNA methylation, recognized by HP1 and methyl CpG-binding proteins, respectively. We have previously shown that the level of methyl CpG-binding proteins increased dramatically during myogenesis leading to large-scale heterochromatin reorganization. In this work, we show that the level of HP1 isoforms did not change significantly throughout myogenic differentiation but their localization did. In particular, HP1γ relocalization to heterochromatin correlated with MeCP2 presence. Using co-immunoprecipitation assays, we found that these heterochromatic factors interact in vivo via the chromo shadow domain of HP1 and the first 55 amino acids of MeCP2. We propose that this dynamic interaction of HP1 and MeCP2 increases their concentration at heterochromatin linking two major gene silencing pathways to stabilize transcriptional repression during differentiation. PMID:17698499

  10. Localization of spontaneous bursting neuronal activity in the preterm human brain with simultaneous EEG-fMRI.

    Science.gov (United States)

    Arichi, Tomoki; Whitehead, Kimberley; Barone, Giovanni; Pressler, Ronit; Padormo, Francesco; Edwards, A David; Fabrizi, Lorenzo

    2017-09-12

    Electroencephalographic recordings from the developing human brain are characterized by spontaneous neuronal bursts, the most common of which is the delta brush. Although similar events in animal models are known to occur in areas of immature cortex and drive their development, their origin in humans has not yet been identified. Here, we use simultaneous EEG-fMRI to localise the source of delta brush events in 10 preterm infants aged 32-36 postmenstrual weeks. The most frequent patterns were left and right posterior-temporal delta brushes which were associated in the left hemisphere with ipsilateral BOLD activation in the insula only; and in the right hemisphere in both the insular and temporal cortices. This direct measure of neural and hemodynamic activity shows that the insula, one of the most densely connected hubs in the developing cortex, is a major source of the transient bursting events that are critical for brain maturation.

  11. Role of spontaneous physical activity in prediction of susceptibility to activity based anorexia in male and female rats.

    Science.gov (United States)

    Perez-Leighton, Claudio E; Grace, Martha; Billington, Charles J; Kotz, Catherine M

    2014-08-01

    Anorexia nervosa (AN) is a chronic eating disorder affecting females and males, defined by body weight loss, higher physical activity levels and restricted food intake. Currently, the commonalities and differences between genders in etiology of AN are not well understood. Animal models of AN, such as activity-based anorexia (ABA), can be helpful in identifying factors determining individual susceptibility to AN. In ABA, rodents are given an access to a running wheel while food restricted, resulting in paradoxical increased physical activity levels and weight loss. Recent studies suggest that different behavioral traits, including voluntary exercise, can predict individual weight loss in ABA. A higher inherent drive for movement may promote development and severity of AN, but this hypothesis remains untested. In rodents and humans, drive for movement is defined as spontaneous physical activity (SPA), which is time spent in low-intensity, non-volitional movements. In this paper, we show that a profile of body weight history and behavioral traits, including SPA, can predict individual weight loss caused by ABA in male and female rats with high accuracy. Analysis of the influence of SPA on ABA susceptibility in males and females rats suggests that either high or low levels of SPA increase the probability of high weight loss in ABA, but with larger effects in males compared to females. These results suggest that the same behavioral profile can identify individuals at-risk of AN for both male and female populations and that SPA has predictive value for susceptibility to AN. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Spontaneous rib fractures.

    Science.gov (United States)

    Katrancioglu, Ozgur; Akkas, Yucel; Arslan, Sulhattin; Sahin, Ekber

    2015-07-01

    Other than trauma, rib fracture can occur spontaneously due to a severe cough or sneeze. In this study, patients with spontaneous rib fractures were analyzed according to age, sex, underlying pathology, treatment, and complications. Twelve patients who presented between February 2009 and February 2011 with spontaneous rib fracture were reviewed retrospectively. The patients' data were evaluated according to anamnesis, physical examination, and chest radiographs. The ages of the patients ranged from 34 to 77 years (mean 55.91 ± 12.20 years), and 7 (58.4%) were male. All patients had severe cough and chest pain. The fractures were most frequently between 4th and 9th ribs; multiple rib fractures were detected in 5 (41.7%) patients. Eight (66.7%) patients had chronic obstructive pulmonary disease, 2 (16.7%) had bronchial asthma, and 2 (16.7%) had osteoporosis. Bone densitometry revealed a high risk of bone fracture in all patients. Patients with chronic obstructive pulmonary disease or bronchial asthma had been treated with high-dose steroids for over a year. Spontaneous rib fracture due to severe cough may occur in patients with osteoporosis, chronic obstructive pulmonary disease, or bronchial asthma, receiving long-term steroid therapy. If these patients have severe chest pain, chest radiography should be performed to check for bone lesions. © The Author(s) 2015.

  13. Spontaneous and visually-driven high-frequency oscillations in the occipital cortex: Intracranial recording in epileptic patients

    Science.gov (United States)

    Nagasawa, Tetsuro; Juhász, Csaba; Rothermel, Robert; Hoechstetter, Karsten; Sood, Sandeep; Asano, Eishi

    2011-01-01

    SUMMARY High-frequency oscillations (HFOs) at ≧80 Hz of nonepileptic nature spontaneously emerge from human cerebral cortex. In 10 patients with extra-occipital lobe epilepsy, we compared the spectral-spatial characteristics of HFOs spontaneously arising from the nonepileptic occipital cortex with those of HFOs driven by a visual task as well as epileptogenic HFOs arising from the extra-occipital seizure focus. We identified spontaneous HFOs at ≧80 Hz with a mean duration of 330 msec intermittently emerging from the occipital cortex during interictal slow-wave sleep. The spectral frequency band of spontaneous occipital HFOs was similar to that of visually-driven HFOs. Spontaneous occipital HFOs were spatially sparse and confined to smaller areas, whereas visually-driven HFOs involved the larger areas including the more rostral sites. Neither spectral frequency band nor amplitude of spontaneous occipital HFOs significantly differed from those of epileptogenic HFOs. Spontaneous occipital HFOs were strongly locked to the phase of delta activity, but the strength of delta-phase coupling decayed from 1 to 3 Hz. Conversely, epileptogenic extra-occipital HFOs were locked to the phase of delta activity about equally in the range from 1 to 3 Hz. The occipital cortex spontaneously generates physiological HFOs which may stand out on electrocorticography traces as prominently as pathological HFOs arising from elsewhere; this observation should be taken into consideration during presurgical evaluation. Coupling of spontaneous delta and HFOs may increase the understanding of significance of delta-oscillations during slow-wave sleep. Further studies are warranted to determine whether delta-phase coupling distinguishes physiological from pathological HFOs or simply differs across anatomical locations. PMID:21432945

  14. Body Mass Index and spontaneous miscarriage.

    LENUS (Irish Health Repository)

    Turner, Michael J

    2012-02-01

    OBJECTIVE: We compared the incidence of spontaneous miscarriage in women categorised as obese, based on a Body Mass Index (BMI) >29.9 kg\\/m(2), with women in other BMI categories. STUDY DESIGN: In a prospective observational study conducted in a university teaching hospital, women were enrolled at their convenience in the first trimester after a sonogram confirmed an ongoing singleton pregnancy with fetal heart activity present. Maternal height and weight were measured digitally and BMI calculated. Maternal body composition was measured by advanced bioelectrical impedance analysis. RESULTS: In 1200 women, the overall miscarriage rate was 2.8% (n=33). The mean gestational age at enrolment was 9.9 weeks. In the obese category (n=217), the miscarriage rate was 2.3% compared with 3.3% in the overweight category (n=329), and 2.3% in the normal BMI group (n=621). There was no difference in the mean body composition parameters, particularly fat mass parameters, between those women who miscarried and those who did not. CONCLUSIONS: In women with sonographic evidence of fetal heart activity in the first trimester, the rate of spontaneous miscarriage is low and is not increased in women with BMI>29.9 kg\\/m(2) compared to women in the normal BMI category.

  15. Spontaneous regression of retinopathy of prematurity:incidence and predictive factors

    Directory of Open Access Journals (Sweden)

    Rui-Hong Ju

    2013-08-01

    Full Text Available AIM:To evaluate the incidence of spontaneous regression of changes in the retina and vitreous in active stage of retinopathy of prematurity(ROP and identify the possible relative factors during the regression.METHODS: This was a retrospective, hospital-based study. The study consisted of 39 premature infants with mild ROP showed spontaneous regression (Group A and 17 with severe ROP who had been treated before naturally involuting (Group B from August 2008 through May 2011. Data on gender, single or multiple pregnancy, gestational age, birth weight, weight gain from birth to the sixth week of life, use of oxygen in mechanical ventilation, total duration of oxygen inhalation, surfactant given or not, need for and times of blood transfusion, 1,5,10-min Apgar score, presence of bacterial or fungal or combined infection, hyaline membrane disease (HMD, patent ductus arteriosus (PDA, duration of stay in the neonatal intensive care unit (NICU and duration of ROP were recorded.RESULTS: The incidence of spontaneous regression of ROP with stage 1 was 86.7%, and with stage 2, stage 3 was 57.1%, 5.9%, respectively. With changes in zone Ⅲ regression was detected 100%, in zoneⅡ 46.2% and in zoneⅠ 0%. The mean duration of ROP in spontaneous regression group was 5.65±3.14 weeks, lower than that of the treated ROP group (7.34±4.33 weeks, but this difference was not statistically significant (P=0.201. GA, 1min Apgar score, 5min Apgar score, duration of NICU stay, postnatal age of initial screening and oxygen therapy longer than 10 days were significant predictive factors for the spontaneous regression of ROP (P<0.05. Retinal hemorrhage was the only independent predictive factor the spontaneous regression of ROP (OR 0.030, 95%CI 0.001-0.775, P=0.035.CONCLUSION:This study showed most stage 1 and 2 ROP and changes in zone Ⅲ can spontaneously regression in the end. Retinal hemorrhage is weakly inversely associated with the spontaneous regression.

  16. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory.

    Science.gov (United States)

    Bui, Anh D; Nguyen, Theresa M; Limouse, Charles; Kim, Hannah K; Szabo, Gergely G; Felong, Sylwia; Maroso, Mattia; Soltesz, Ivan

    2018-02-16

    Temporal lobe epilepsy (TLE) is characterized by debilitating, recurring seizures and an increased risk for cognitive deficits. Mossy cells (MCs) are key neurons in the hippocampal excitatory circuit, and the partial loss of MCs is a major hallmark of TLE. We investigated how MCs contribute to spontaneous ictal activity and to spatial contextual memory in a mouse model of TLE with hippocampal sclerosis, using a combination of optogenetic, electrophysiological, and behavioral approaches. In chronically epileptic mice, real-time optogenetic modulation of MCs during spontaneous hippocampal seizures controlled the progression of activity from an electrographic to convulsive seizure. Decreased MC activity is sufficient to impede encoding of spatial context, recapitulating observed cognitive deficits in chronically epileptic mice. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Kölliker’s Organ and the Development of Spontaneous Activity in the Auditory System: Implications for Hearing Dysfunction

    Directory of Open Access Journals (Sweden)

    M. W. Nishani Dayaratne

    2014-01-01

    Full Text Available Prior to the “onset of hearing,” developing cochlear inner hair cells (IHCs and primary auditory neurons undergo experience-independent activity, which is thought to be important in retaining and refining neural connections in the absence of sound. One of the major hypotheses regarding the origin of such activity involves a group of columnar epithelial supporting cells forming Kölliker’s organ, which is only present during this critical period of auditory development. There is strong evidence for a purinergic signalling mechanism underlying such activity. ATP released through connexin hemichannels may activate P2 purinergic receptors in both Kölliker’s organ and the adjacent IHCs, leading to generation of electrical activity throughout the auditory system. However, recent work has suggested an alternative origin, by demonstrating the ability of IHCs to generate this spontaneous activity without activation by ATP. Regardless, developmental abnormalities of Kölliker’s organ may lead to congenital hearing loss, considering that mutations in ion channels (hemichannels, gap junctions, and calcium channels involved in Kölliker’s organ activity share strong links with such types of deafness.

  18. Spontaneous tension haemopneumothorax.

    Science.gov (United States)

    Patterson, Benjamin Oliver; Itam, Sarah; Probst, Fey

    2008-10-31

    We present a patient with sudden onset progressive shortness of breath and no history of trauma, who rapidly became haemodynamically compromised with a pneumothorax and pleural effusion seen on chest radiograph. He was treated for spontaneous tension pneumothorax but this was soon revealed to be a tension haemopneumothorax. He underwent urgent thoracotomy after persistent bleeding to explore an apical vascular abnormality seen on CT scanning. To our knowledge this is the first such case reported.Aetiology and current approach to spontaneous haemothorax are discussed briefly.

  19. Spontaneous locomotor activity correlates with the degranulation of mast cells in the meninges rather than in the thalamus: disruptive effect of cocaine.

    Science.gov (United States)

    Larson, Alice A; Thomas, Mark J; McElhose, Alex; Kovács, Katalin J

    2011-06-13

    Mast cells are located in the central nervous system (CNS) of many mammals and stress induces their degranulation. We postulated that mast cells are associated with wakefulness and stimulatory tone in the CNS, as reflected by spontaneous motor activity. Because stress also precipitates drug-seeking behavior in cocaine addicts, we also postulated that cocaine manifests its effects through this relationship. We investigated the influence of single and repeated injections of cocaine on circulating corticosterone, motor activity and degranulation of mast cells in both the thalamus and meninges of mice. Mice were subjected to 5 consecutive days of cocaine or saline followed by a single injection of cocaine or saline 11 days later. Spontaneous locomotor activity was measure for 1h after the final injection before death. Neither a single injection nor prior treatment with cocaine increased motor activity compared to saline-injected controls, however, repeated administration of cocaine induced a significant sensitization to its behavioral effect when delivered 11 days later. In mice that received only saline, motor activity correlated positively with mast cell degranulation in the meninges but not in the thalamus. Cocaine, regardless of the treatment schedule, disrupted this correlation. The concentration of corticosterone did not differ amongst groups and did not correlate with either behavior or mast cell parameters in any group. The correlation between behavioral activity and the mast cell degranulation in the meninges suggests that these parameters are linked. The disruptive effect of cocaine on this relationship indicates a role downstream from mast cells in the regulation of motor activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Intake of probiotic food and risk of spontaneous preterm delivery123

    Science.gov (United States)

    Myhre, Ronny; Brantsæter, Anne Lise; Myking, Solveig; Gjessing, Håkon Kristian; Sengpiel, Verena; Meltzer, Helle Margrete; Haugen, Margaretha; Jacobsson, Bo

    2011-01-01

    Background: Preterm delivery represents a substantial problem in perinatal medicine worldwide. Current knowledge on potential influences of probiotics in food on pregnancy complications caused by microbes is limited. Objective: We hypothesized that intake of food with probiotics might reduce pregnancy complications caused by pathogenic microorganisms and, through this, reduce the risk of spontaneous preterm delivery. Design: This study was performed in the Norwegian Mother and Child Cohort on the basis of answers to a food-frequency questionnaire. We studied intake of milk-based products containing probiotic lactobacilli and spontaneous preterm delivery by using a prospective cohort study design (n = 950 cases and 17,938 controls) for the pregnancy outcome of spontaneous preterm delivery (<37 gestational weeks). Analyses were adjusted for the covariates of parity, maternal educational level, and physical activity. Results: Pregnancies that resulted in spontaneous preterm delivery were associated with any intake of milk-based probiotic products in an adjusted model [odds ratio (OR): 0.857; 95% CI: 0.741, 0.992]. By categorizing intake into none, low, and high intakes of the milk-based probiotic products, a significant association was observed for high intake (OR: 0.820; 95% CI: 0.681, 0.986). Conclusion: Women who reported habitual intake of probiotic dairy products had a reduced risk of spontaneous preterm delivery. PMID:20980489

  1. Contributions of biarticular myogenic components to the limitation of the range of motion after immobilization of rat knee joint

    Science.gov (United States)

    2014-01-01

    Background Muscle atrophy caused by immobilization in the shortened position is characterized by a decrease in the size or cross-sectional area (CSA) of myofibers and decreased muscle length. Few studies have addressed the relationship between limitation of the range of motion (ROM) and the changes in CSA specifically in biarticular muscles after atrophy because of immobilization. We aimed to determine the contribution of 2 distinct muscle groups, the biarticular muscles of the post thigh (PT) and those of the post leg (PL), to the limitation of ROM as well as changes in the myofiber CSAs after joint immobilization surgery. Methods Male Wistar rats (n = 40) were randomly divided into experimental and control groups. In the experimental group, the left knee was surgically immobilized by external fixation for 1, 2, 4, 8, or 16 weeks (n = 5 each) and sham surgery was performed on the right knee. The rats in the control groups (n = 3 per time point) did not undergo surgery. After the indicated immobilization periods, myotomy of the PT or PL biarticular muscles was performed and the ROM was measured. The hamstrings and gastrocnemius muscles from the animals operated for 1 or 16 weeks were subjected to morphological analysis. Results In immobilized knees, the relative contribution of the PT biarticular myogenic components to the total restriction reached 80% throughout the first 4 weeks and decreased thereafter. The relative contribution of the PL biarticular myogenic components remained contracture did not significantly change during the experimental period. However, the ratio of hamstrings CSAs to the sham side was larger than the ratio of medial gastrocnemius CSAs to the sham side after complete atrophy because of immobilization. PMID:25001065

  2. Inhibin A and B in adolescents and young adults with Turner's syndrome and no sign of spontaneous puberty

    DEFF Research Database (Denmark)

    Gravholt, C.H.; Næraa, R.W.; Andersson, A.M.

    2002-01-01

    The aim of this study was to assess levels of inhibin A and B, FSH and LH in Turner's syndrome (TS) without signs of spontaneous ovarian activity.......The aim of this study was to assess levels of inhibin A and B, FSH and LH in Turner's syndrome (TS) without signs of spontaneous ovarian activity....

  3. Potential of Lactobacillus reuteri from Spontaneous Sourdough as a Starter Additive for Improving Quality Parameters of Bread

    Directory of Open Access Journals (Sweden)

    Lina Vaičiulytė-Funk

    2016-01-01

    Full Text Available Retardation of microbial spoilage of bread can be achieved by the use of spontaneous sourdough with an antimicrobial activity. This study was undertaken to identify lactic acid bacteria naturally occurring in spontaneous sourdough and use them for quality improvement and prolonging shelf life of rye, wheat and rye with wheat bread. Identification of isolates from spontaneous sourdough by pyrosequencing assay showed that Lactobacillus reuteri were dominant lactic acid bacteria. The isolates showed a wide range of antimicrobial activity and displayed a synergistic activity against other lactobacilli, some lactococci and foodborne yeasts. The best application of spontaneous sourdough was noticed in the rye bread with the lowest crumb fi rmness of the fi nal product, although the sensory results of wheat and rye with wheat bread did not statistically diff er from control bread. L. reuteri showed a high preserving capacity against fungi during storage. This may be due to bacteriocins and various fatty acids secreted into the growth medium that were identified by agar well diffusion assay and gas chromatography. L. reuteri showing high antimicrobial activity have the potential to be used as a starter additive that could improve safety and/or shelf life of bread.

  4. Spontaneous tension haemopneumothorax

    Directory of Open Access Journals (Sweden)

    Itam Sarah

    2008-10-01

    Full Text Available Abstract We present a patient with sudden onset progressive shortness of breath and no history of trauma, who rapidly became haemodynamically compromised with a pneumothorax and pleural effusion seen on chest radiograph. He was treated for spontaneous tension pneumothorax but this was soon revealed to be a tension haemopneumothorax. He underwent urgent thoracotomy after persistent bleeding to explore an apical vascular abnormality seen on CT scanning. To our knowledge this is the first such case reported. Aetiology and current approach to spontaneous haemothorax are discussed briefly.

  5. Spontaneous compactification to homogeneous spaces

    International Nuclear Information System (INIS)

    Mourao, J.M.

    1988-01-01

    The spontaneous compactification of extra dimensions to compact homogeneous spaces is studied. The methods developed within the framework of coset space dimensional reduction scheme and the most general form of invariant metrics are used to find solutions of spontaneous compactification equations

  6. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-β- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures

    International Nuclear Information System (INIS)

    Kamanga-Sollo, E.; Pampusch, M.S.; White, M.E.; Hathaway, M.R.; Dayton, W.R.

    2005-01-01

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-β superfamily members myostatin and TGF-β 1 have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-β 1 or myostatin significantly (P 1 and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P 1 or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-β 1 or myostatin treatment (P 1 or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-β and myostatin to suppress proliferation of PEMC

  7. Case of spontaneous ventriculocisternostomy

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Kanji; Yoshimoto, Hisanori; Harada, Kiyoshi; Uozumi, Tohru [Hiroshima Univ. (Japan). School of Medicine; Kuwabara, Satoshi

    1983-05-01

    The authors experienced a case of spontaneous ventriculocisternostomy diagnosed by CT scan with metrizamide and Conray. Patient was 23-year-old male who had been in good health until one month before admission, when he began to have headache and tinnitus. He noticed bilateral visual acuity was decreased about one week before admission and vomiting appeared two days before admission. He was admitted to our hospital because of bilateral papilledema and remarkable hydrocephalus diagnosed by CT scan. On admission, no abnormal neurological signs except for bilateral papilledema were noted. Immediately, right ventricular drainage was performed. Pressure of the ventricle was over 300mmH/sub 2/O and CSF was clear. PVG and PEG disclosed an another cavity behind the third ventricle, which was communicated with the third ventricle, and occlusion of aqueduct of Sylvius. Metrizamide CT scan and Conray CT scan showed a communication between this cavity and quadrigeminal and supracerebellar cisterns. On these neuroradiological findings, the diagnosis of obstructive hydrocephalus due to benign aqueduct stenosis accompanied with spontaneous ventriculocisternostomy was obtained. Spontaneous ventriculocisternostomy was noticed to produce arrest of hydrocephalus, but with our case, spontaneous regression of such symptoms did not appeared. By surgical ventriculocisternostomy (method by Torkildsen, Dandy, or Scarff), arrest of hydrocephalus was seen in about 50 to 70 per cent, which was the same results as those of spontaneous ventriculocisternostomy. It is concluded that VP shunt or VA shunt is thought to be better treatment of obstructive hydrocephalus than the various kinds of surgical ventriculocisternostomy.

  8. Spontaneous Intracranial Hypotension without Orthostatic Headache

    Directory of Open Access Journals (Sweden)

    Tülay Kansu

    2009-03-01

    Full Text Available We report 2 cases of spontaneous intracranial hypotension that presented with unilateral abducens nerve palsy, without orthostatic headache. While sixth nerve palsies improved without any intervention, subdural hematoma was detected with magnetic resonance imaging. We conclude that headache may be absent in spontaneous intracranial hypotension and spontaneous improvement of sixth nerve palsy can occur, even after the development of a subdural hematoma

  9. Spontaneous intraorbital hematoma: case report

    Directory of Open Access Journals (Sweden)

    Vinodan Paramanathan

    2010-12-01

    Full Text Available Vinodan Paramanathan, Ardalan ZolnourianQueen's Hospital NHS Foundation Trust, Burton on Trent, Staffordshire DE13 0RB, UKAbstract: Spontaneous intraorbital hematoma is an uncommon clinical entity seen in ophthalmology practice. It is poorly represented in the literature. Current evidence attributes it to orbital trauma, neoplasm, vascular malformations, acute sinusitis, and systemic abnormalities. A 65-year-old female presented with spontaneous intraorbital hematoma manifesting as severe ocular pains, eyelid edema, proptosis, and diplopia, without a history of trauma. Computer tomography demonstrated a fairly well defined extraconal lesion with opacification of the paranasal sinuses. The principal differential based on all findings was that of a spreading sinus infection and an extraconal tumor. An unprecedented finding of a spontaneous orbital hematoma was discovered when the patient was taken to theater. We discuss the rarity of this condition and its management.Keywords: hemorrhage, ophthalmology, spontaneous, intra-orbital, hematoma

  10. Blockade of persistent sodium currents contributes to the riluzole-induced inhibition of spontaneous activity and oscillations in injured DRG neurons.

    Directory of Open Access Journals (Sweden)

    Rou-Gang Xie

    Full Text Available In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (I(NaP. The I(NaP is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG is the gateway for ectopic impulses that originate in pathological pain signals from the periphery. However, the role of I(NaP in DRG neurons remains unclear, particularly in neuropathic pain states. Using in vivo recordings from single medium- and large-diameter fibers isolated from the compressed DRG in Sprague-Dawley rats, we show that local application of riluzole, which blocks the I(NaP, also inhibits the spontaneous activity of A-type DRG neurons in a dose-dependent manner. Significantly, riluzole also abolished subthreshold membrane potential oscillations (SMPOs, although DRG neurons still responded to intracellular current injection with a single full-sized spike. In addition, the I(NaP was enhanced in medium- and large-sized neurons of the compressed DRG, while bath-applied riluzole significantly inhibited the I(NaP without affecting the transient sodium current (I(NaT. Taken together, these results demonstrate for the first time that the I(NaP blocker riluzole selectively inhibits I(NaP and thereby blocks SMPOs and the ectopic spontaneous activity of injured A-type DRG neurons. This suggests that the I(NaP of DRG neurons is a potential target for treating neuropathic pain at the peripheral level.

  11. Blockade of persistent sodium currents contributes to the riluzole-induced inhibition of spontaneous activity and oscillations in injured DRG neurons.

    Science.gov (United States)

    Xie, Rou-Gang; Zheng, Da-Wei; Xing, Jun-Ling; Zhang, Xu-Jie; Song, Ying; Xie, Ya-Bin; Kuang, Fang; Dong, Hui; You, Si-Wei; Xu, Hui; Hu, San-Jue

    2011-04-25

    In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (I(NaP)). The I(NaP) is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG) is the gateway for ectopic impulses that originate in pathological pain signals from the periphery. However, the role of I(NaP) in DRG neurons remains unclear, particularly in neuropathic pain states. Using in vivo recordings from single medium- and large-diameter fibers isolated from the compressed DRG in Sprague-Dawley rats, we show that local application of riluzole, which blocks the I(NaP), also inhibits the spontaneous activity of A-type DRG neurons in a dose-dependent manner. Significantly, riluzole also abolished subthreshold membrane potential oscillations (SMPOs), although DRG neurons still responded to intracellular current injection with a single full-sized spike. In addition, the I(NaP) was enhanced in medium- and large-sized neurons of the compressed DRG, while bath-applied riluzole significantly inhibited the I(NaP) without affecting the transient sodium current (I(NaT)). Taken together, these results demonstrate for the first time that the I(NaP) blocker riluzole selectively inhibits I(NaP) and thereby blocks SMPOs and the ectopic spontaneous activity of injured A-type DRG neurons. This suggests that the I(NaP) of DRG neurons is a potential target for treating neuropathic pain at the peripheral level.

  12. Spontaneous mentalizing during an interactive real world task: an fMRI study.

    Science.gov (United States)

    Spiers, Hugo J; Maguire, Eleanor A

    2006-01-01

    There are moments in everyday life when we need to consider the thoughts and intentions of other individuals in order to act in a socially appropriate manner. Most of this mentalizing occurs spontaneously as we go about our business in the complexity of the real world. As such, studying the neural basis of spontaneous mentalizing has been virtually impossible. Here we devised a means to achieve this by employing a unique combination of functional magnetic resonance imaging (fMRI), a detailed and interactive virtual reality simulation of a bustling familiar city, and a retrospective verbal report protocol. We were able to provide insights into the content of spontaneous mentalizing events and identify the brain regions that underlie them. We found increased activity in a number of regions, namely the right posterior superior temporal sulcus, the medial prefrontal cortex and the right temporal pole associated with spontaneous mentalizing. Furthermore, we observed the right posterior superior temporal sulcus to be consistently active during several different subtypes of mentalizing events. By contrast, medial prefrontal cortex seemed to be particularly involved in thinking about agents that were visible in the environment. Our findings show that it is possible to investigate the neural basis of mentalizing in a manner closer to its true context, the real world, opening up intriguing possibilities for making comparisons with those who have mentalizing problems.

  13. Myogenic activation and calcium sensitivity of cannulated rat mesenteric small arteries

    NARCIS (Netherlands)

    VanBavel, E.; Wesselman, J. P.; Spaan, J. A.

    1998-01-01

    Pressure-induced activation of vascular smooth muscle may involve electromechanical as well as nonelectromechanical coupling mechanisms. We compared calcium-tone relations of cannulated rat mesenteric small arteries during pressure-induced activation, depolarization (16 to 46 mmol/L K+), and

  14. Screening for spontaneous preterm birth

    NARCIS (Netherlands)

    van Os, M.A.; van Dam, A.J.E.M.

    2015-01-01

    Preterm birth is the most important cause of perinatal morbidity and mortality worldwide. In this thesis studies on spontaneous preterm birth are presented. The main objective was to investigate the predictive capacity of mid-trimester cervical length measurement for spontaneous preterm birth in a

  15. Genetic Effects of Polymorphisms in Myogenic Regulatory Factors on Chicken Muscle Fiber Traits

    Directory of Open Access Journals (Sweden)

    Zhi-Qin Yang

    2015-06-01

    Full Text Available The myogenic regulatory factors is a family of transcription factors that play a key role in the development of skeletal muscle fibers, which are the main factors to affect the meat taste and texture. In the present study, we performed candidate gene analysis to identify single-nucleotide polymorphisms in the MyoD, Myf5, MyoG, and Mrf4 genes using polymerase chain reaction-single strand conformation polymorphism in 360 Erlang Mountain Chickens from three different housing systems (cage, pen, and free-range. The general linear model procedure was used to estimate the statistical significance of association between combined genotypes and muscle fiber traits of chickens. Two polymorphisms (g.39928301T>G and g.11579368C>T were detected in the Mrf4 and MyoD gene, respectively. The diameters of thigh and pectoralis muscle fibers were higher in birds with the combined genotypes of GG-TT and TT-CT (p0.05. Our findings suggest that the combined genotypes of TT-CT and GG-TT might be advantageous for muscle fiber traits, and could be the potential genetic markers for breeding program in Erlang Mountain Chickens.

  16. Early pregnancy angiogenic markers and spontaneous abortion

    DEFF Research Database (Denmark)

    Andersen, Louise B; Dechend, Ralf; Karumanchi, S Ananth

    2016-01-01

    BACKGROUND: Spontaneous abortion is the most commonly observed adverse pregnancy outcome. The angiogenic factors soluble Fms-like kinase 1 and placental growth factor are critical for normal pregnancy and may be associated to spontaneous abortion. OBJECTIVE: We investigated the association between...... maternal serum concentrations of soluble Fms-like kinase 1 and placental growth factor, and subsequent spontaneous abortion. STUDY DESIGN: In the prospective observational Odense Child Cohort, 1676 pregnant women donated serum in early pregnancy, gestational week ..., interquartile range 71-103). Concentrations of soluble Fms-like kinase 1 and placental growth factor were determined with novel automated assays. Spontaneous abortion was defined as complete or incomplete spontaneous abortion, missed abortion, or blighted ovum

  17. Spontaneous calcium transients in human neural progenitor cells mediated by transient receptor potential channels.

    Science.gov (United States)

    Morgan, Peter J; Hübner, Rayk; Rolfs, Arndt; Frech, Moritz J

    2013-09-15

    Calcium signals affect many developmental processes, including proliferation, migration, survival, and apoptosis, processes that are of particular importance in stem cells intended for cell replacement therapies. The mechanisms underlying Ca(2+) signals, therefore, have a role in determining how stem cells respond to their environment, and how these responses might be controlled in vitro. In this study, we examined the spontaneous Ca(2+) activity in human neural progenitor cells during proliferation and differentiation. Pharmacological characterization indicates that in proliferating cells, most activity is the result of transient receptor potential (TRP) channels that are sensitive to Gd(3+) and La(3+), with the more subtype selective antagonist Ruthenium red also reducing activity, suggesting the involvement of transient receptor potential vanilloid (TRPV) channels. In differentiating cells, Gd(3+) and La(3+)-sensitive TRP channels also appear to underlie the spontaneous activity; however, no sub-type-specific antagonists had any effect. Protein levels of TRPV2 and TRPV3 decreased in differentiated cells, which is demonstrated by western blot. Thus, it appears that TRP channels represent the main route of Ca(2+) entry in human neural progenitor cells (hNPCs), but the responsible channel types are subject to substitution under differentiating conditions. The level of spontaneous activity could be increased and decreased by lowering and raising the extracellular K(+) concentration. Proliferating cells in low K(+) slowed the cell cycle, with a disproportionate increased percentage of cells in G1 phase and a reduction in S phase. Taken together, these results suggest a link between external K(+) concentration, spontaneous Ca(2+) transients, and cell cycle distribution, which is able to influence the fate of stem and progenitor cells.

  18. Spontaneous emission by moving atoms

    International Nuclear Information System (INIS)

    Meystre, P.; Wilkens, M.

    1994-01-01

    It is well known that spontaneous emission is not an intrinsic atomic property, but rather results from the coupling of the atom to the vacuum modes of the electromagnetic field. As such, it can be modified by tailoring the electromagnetic environment into which the atom can radiate. This was already realized by Purcell, who noted that the spontaneous emission rate can be enhanced if the atom placed inside a cavity is resonant with one of the cavity is resonant with one of the cavity modes, and by Kleppner, who discussed the opposite case of inhibited spontaneous emission. It has also been recognized that spontaneous emission need not be an irreversible process. Indeed, a system consisting of a single atom coupled to a single mode of the electromagnetic field undergoes a periodic exchange of excitation between the atom and the field. This periodic exchange remains dominant as long as the strength of the coupling between the atom and a cavity mode is itself dominant. 23 refs., 6 figs

  19. A Case of Multiple Spontaneous Keloid Scars

    Directory of Open Access Journals (Sweden)

    Abdulhadi Jfri

    2015-07-01

    Full Text Available Keloid scars result from an abnormal healing response to cutaneous injury or inflammation that extends beyond the borders of the original wound. Spontaneous keloid scars forming in the absence of any previous trauma or surgical procedure are rare. Certain syndromes have been associated with this phenomenon, and few reports have discussed the evidence of single spontaneous keloid scar, which raises the question whether they are really spontaneous. Here, we present a 27-year-old mentally retarded single female with orbital hypertelorism, broad nasal bridge, repaired cleft lip and high-arched palate who presented with progressive multiple spontaneous keloid scars in different parts of her body which were confirmed histologically by the presence of typical keloidal collagen. This report supports the fact that keloid scars can appear spontaneously and are possibly linked to a genetic factor. Furthermore, it describes a new presentation of spontaneous keloid scars in the form of multiple large lesions in different sites of the body.

  20. Spontaneous NF-κB activation by autocrine TNFα signaling: a computational analysis.

    Directory of Open Access Journals (Sweden)

    Jakub Pękalski

    Full Text Available NF-κB is a key transcription factor that regulates innate immune response. Its activity is tightly controlled by numerous feedback loops, including two negative loops mediated by NF-κB inducible inhibitors, IκBα and A20, which assure oscillatory responses, and by positive feedback loops arising due to the paracrine and autocrine regulation via TNFα, IL-1 and other cytokines. We study the NF-κB system of interlinked negative and positive feedback loops, combining bifurcation analysis of the deterministic approximation with stochastic numerical modeling. Positive feedback assures the existence of limit cycle oscillations in unstimulated wild-type cells and introduces bistability in A20-deficient cells. We demonstrated that cells of significant autocrine potential, i.e., cells characterized by high secretion of TNFα and its receptor TNFR1, may exhibit sustained cytoplasmic-nuclear NF-κB oscillations which start spontaneously due to stochastic fluctuations. In A20-deficient cells even a small TNFα expression rate qualitatively influences system kinetics, leading to long-lasting NF-κB activation in response to a short-pulsed TNFα stimulation. As a consequence, cells with impaired A20 expression or increased TNFα secretion rate are expected to have elevated NF-κB activity even in the absence of stimulation. This may lead to chronic inflammation and promote cancer due to the persistent activation of antiapoptotic genes induced by NF-κB. There is growing evidence that A20 mutations correlate with several types of lymphomas and elevated TNFα secretion is characteristic of many cancers. Interestingly, A20 loss or dysfunction also leaves the organism vulnerable to septic shock and massive apoptosis triggered by the uncontrolled TNFα secretion, which at high levels overcomes the antiapoptotic action of NF-κB. It is thus tempting to speculate that some cancers of deregulated NF-κB signaling may be prone to the pathogen-induced apoptosis.

  1. Signals of Ezh2, Src, and Akt Involve in Myostatin-Pax7 Pathways Regulating the Myogenic Fate Determination during the Sheep Myoblast Proliferation and Differentiation

    Science.gov (United States)

    Li, Li; Liu, Ruizao; Zhang, Li; Zhao, Fuping; Lu, Jian; Zhang, Xiaoning; Du, Lixin

    2015-01-01

    Myostatin and Pax7 have been well documented individually, however, the mechanism by which Myostatin regulates Pax7 is seldom reported. Here, based on muscle transcriptome analysis in Texel (Myostatin mutant) and Ujumqin (wild type) sheep across the five fetal stages, we constructed and examined the Myostatin-Pax7 pathways in muscle. Then we validated the signals by RNAi in the proliferating and differentiating sheep myoblasts in vitro at mRNA, protein, and cell morphological levels. We reveal that Myostatin signals to Pax7 at least through Ezh2, Src, and Akt during the sheep myoblast proliferation and differentiation. Other signals such as p38MAPK, mTOR, Erk1/2, Wnt, Bmp2, Smad, Tgfb1, and p21 are most probably involved in the Myostatin-affected myogenic events. Myostatin knockdown significantly reduces the counts of nucleus and myotube, but not the fusion index of myoblasts during cell differentiation. In addition, findings also indicate that Myostatin is required for normal myogenic differentiation of the sheep myoblasts, which is different from the C2C12 myoblasts. We expand the regulatory network of Myostatin-Pax7 pathways and first illustrate that Myostatin as a global regulator participates in the epigenetic events involved in myogenesis, which contributes to understand the molecular mechanism of Myostatin in regulation of myogenesis. PMID:25811841

  2. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line.

    Science.gov (United States)

    Faggi, Fiorella; Codenotti, Silvia; Poliani, Pietro Luigi; Cominelli, Manuela; Chiarelli, Nicola; Colombi, Marina; Vezzoli, Marika; Monti, Eugenio; Bono, Federica; Tulipano, Giovanni; Fiorentini, Chiara; Zanola, Alessandra; Lo, Harriet P; Parton, Robert G; Keller, Charles; Fanzani, Alessandro

    2015-01-01

    The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.

  3. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line.

    Directory of Open Access Journals (Sweden)

    Fiorella Faggi

    Full Text Available The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3 in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS, an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.

  4. Hepatic Rupture Induced by Spontaneous Intrahepatic Hematoma

    Directory of Open Access Journals (Sweden)

    Jin-bao Zhou

    2018-01-01

    Full Text Available The etiology of hepatic rupture is usually secondary to trauma, and hepatic rupture induced by spontaneous intrahepatic hematoma is clinically rare. We describe here a 61-year-old female patient who was transferred to our hospital with hepatic rupture induced by spontaneous intrahepatic hematoma. The patient had no history of trauma and had a history of systemic lupus erythematosus for five years, taking a daily dose of 5 mg prednisone for treatment. The patients experienced durative blunt acute right upper abdominal pain one day after satiation, which aggravated in two hours, accompanied by dizziness and sweating. Preoperative diagnosis was rupture of the liver mass. Laparotomy revealed 2500 mL fluid consisting of a mixture of blood and clot in the peritoneal cavity. A 3.5 cm × 2.5 cm rupture was discovered on the hepatic caudate lobe near the vena cava with active arterial bleeding, and a 5  × 6 cm hematoma was reached on the right posterior lobe of the liver. Abdominal computed tomography (CT and laparotomy revealed spontaneous rupture of intrahepatic hematoma with hemorrhagic shock. The patient was successfully managed by suturing the rupture of the hepatic caudate lobe and clearing part of the hematoma. The postoperative course was uneventful, and the patient was discharged after two weeks of hospitalization.

  5. Potential of Lactobacillus reuteri from Spontaneous 
Sourdough as a Starter Additive for Improving Quality Parameters of Bread

    Science.gov (United States)

    Vaičiulytė-Funk, Lina; Šalomskienė, Joana; Alenčikienė, Gitana; Mieželienė, Aldona

    2016-01-01

    Summary Retardation of microbial spoilage of bread can be achieved by the use of spontaneous sourdough with an antimicrobial activity. This study was undertaken to identify lactic acid bacteria naturally occurring in spontaneous sourdough and use them for quality improvement and prolonging shelf life of rye, wheat and rye with wheat bread. Identification of isolates from spontaneous sourdough by pyrosequencing assay showed that Lactobacillus reuteri were dominant lactic acid bacteria. The isolates showed a wide range of antimicrobial activity and displayed a synergistic activity against other lactobacilli, some lactococci and foodborne yeasts. The best application of spontaneous sourdough was noticed in the rye bread with the lowest crumb firmness of the final product, although the sensory results of wheat and rye with wheat bread did not statistically differ from control bread. L. reuteri showed a high preserving capacity against fungi during storage. This may be due to bacteriocins and various fatty acids secreted into the growth medium that were identified by agar well diffusion assay and gas chromatography. L. reuteri showing high antimicrobial activity have the potential to be used as a starter additive that could improve safety and/or shelf life of bread. PMID:27956866

  6. Differential neurotoxic effects of in utero and lactational exposure to hydroxylated polychlorinated biphenyl (OH-PCB 106) on spontaneous locomotor activity and motor coordination in young adult male mice.

    Science.gov (United States)

    Haijima, Asahi; Lesmana, Ronny; Shimokawa, Noriaki; Amano, Izuki; Takatsuru, Yusuke; Koibuchi, Noriyuki

    2017-01-01

    We investigated whether in utero or lactational exposure to 4-hydroxy-2',3,3',4',5'-pentachlorobiphenyl (OH-PCB 106) affects spontaneous locomotor activity and motor coordination in young adult male mice. For in utero exposure, pregnant C57BL/6J mice received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from gestational day 10 to 18. For lactational exposure, the different groups of dams received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from postpartum day 3 to 13. At 6-7 weeks of age, the spontaneous locomotor activities of male offspring were evaluated for a 24-hr continuous session in a home cage and in an open field for 30-min. Motor coordination function on an accelerating rotarod was also measured. Mice exposed prenatally to OH-PCB 106 showed increased spontaneous locomotor activities during the dark phase in the home cage and during the first 10-min in the open field compared with control mice. Mice exposed lactationally to OH-PCB 106, however, did not show a time-dependent decrease in locomotor activity in the open field. Instead, their locomotor activity increased significantly during the second 10-min block. In addition, mice exposed lactationally to OH-PCB 106 displayed impairments in motor coordination in the rotarod test. These results suggest that perinatal exposure to OH-PCB 106 affects motor behaviors in young adult male mice. Depending on the period of exposure, OH-PCB 106 may have different effects on neurobehavioral development.

  7. Low temperature oxidation and spontaneous combustion characteristics of upgraded low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.K.; Kim, S.D.; Yoo, J.H.; Chun, D.H.; Rhim, Y.J.; Lee, S.H. [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2013-07-01

    The low temperature oxidation and spontaneous combustion characteristics of dried coal produced from low rank coal using the upgraded brown coal (UBC) process were investigated. To this end, proximate properties, crossing-point temperature (CPT), and isothermal oxidation characteristics of the coal were analyzed. The isothermal oxidation characteristics were estimated by considering the formation rates of CO and CO{sub 2} at low temperatures. The upgraded low rank coal had higher heating values than the raw coal. It also had less susceptibility to low temperature oxidation and spontaneous combustion. This seemed to result from the coating of the asphalt on the surface of the coal, which suppressed the active functional groups from reacting with oxygen in the air. The increasing upgrading pressure negatively affected the low temperature oxidation and spontaneous combustion.

  8. Spontaneous pneumothorax in silicotuberculosis of lung

    International Nuclear Information System (INIS)

    Kolenic, J.; Jurgova, T.; Zimacek, J.; Vajo, J.; Krchnavy, M.

    1995-01-01

    The authors describe the case of 62 years old man with the appearance of spontaneous pneumothorax, in whom the basic pulmonary disease was silicotuberculosis of the lung. At clinic of occupational diseases in Kosice have been evidence 965 cases of silicosis and silicotuberculosis. From 1971 they have now the first case of spontaneous pneumothorax. The authors make discussion about possible mechanical and biochemical factors, which cause relatively low incidence of spontaneous pneumothorax in silicosis of the lung. (authors)

  9. Altered spontaneous brain activity in adolescent boys with pure conduct disorder revealed by regional homogeneity analysis.

    Science.gov (United States)

    Wu, Qiong; Zhang, Xiaocui; Dong, Daifeng; Wang, Xiang; Yao, Shuqiao

    2017-07-01

    Functional magnetic resonance imaging (fMRI) studies have revealed abnormal neural activity in several brain regions of adolescents with conduct disorder (CD) performing various tasks. However, little is known about the spontaneous neural activity in people with CD in a resting state. The aims of this study were to investigate CD-associated regional activity abnormalities and to explore the relationship between behavioral impulsivity and regional activity abnormalities. Resting-state fMRI (rs-fMRI) scans were administered to 28 adolescents with CD and 28 age-, gender-, and IQ-matched healthy controls (HCs). The rs-fMRI data were subjected to regional homogeneity (ReHo) analysis. ReHo can demonstrate the temporal synchrony of regional blood oxygen level-dependent signals and reflect the coordination of local neuronal activity facilitating similar goals or representations. Compared to HCs, the CD group showed increased ReHo bilaterally in the insula as well as decreased ReHo in the right inferior parietal lobule, right middle temporal gyrus and right fusiform gyrus, left anterior cerebellum anterior, and right posterior cerebellum. In the CD group, mean ReHo values in the left and the right insula correlated positively with Barratt Impulsivity Scale (BIS) total scores. The results suggest that CD is associated with abnormal intrinsic brain activity, mainly in the cerebellum and temporal-parietal-limbic cortices, regions that are related to emotional and cognitive processing. BIS scores in adolescents with CD may reflect severity of abnormal neuronal synchronization in the insula.

  10. Spontaneous activity in the developing mammalian retina: Form and function

    Science.gov (United States)

    Butts, Daniel Allison

    Spontaneous neuronal activity is present in the immature mammalian retina during the initial stages of visual system development, before the retina is responsive to light. This activity consists of bursts of action potentials fired by retinal ganglion cells, and propagates in a wavelike manner across the inner plexiform layer of the retina. Unlike waves in other neural systems, retinal waves have large variability in both their rate and direction of propagation, and individual waves only propagate across small regions of the retina. The unique properties of retinal activity arise from dynamic processes within the developing retina, and produce characteristic spatiotemporal properties. These spatiotemporal properties are of particular interest, since they are believed to play a role in visual system development. This dissertation addresses the complex spatiotemporal patterning of the retinal waves from two different perspectives. First, it proposes how the immature circuitry of the developing retina generates these patterns of activity. In order to reproduce the distinct spatiotemporal properties observed in experiments, a model of the immature retinal circuitry must meet certain requirements, which are satisfied by a coarse-grained model of the developing retina that we propose. Second, this dissertation addresses how the particular spatiotemporal patterning of the retinal waves provides information to the rest of the visual system and, as a result, can be used to guide visual system development. By measuring the properties of this information, we place constraints on the developmental mechanisms that use this activity, and show how the particular spatiotemporal properties of the retinal waves provide this information. Together, this dissertation demonstrates how the apparent complexity of retinal wave patterning can be understood both through the immature circuitry that generates it, and through the developmental mechanisms that may use it. The first three

  11. Spontaneous body movements in spatial cognition

    Directory of Open Access Journals (Sweden)

    Sergiu eTcaci Popescu

    2012-05-01

    Full Text Available People often perform spontaneous body movements during spatial tasks such as giving complex directions or orienting themselves on maps. How are these spontaneous gestures related to spatial problem-solving? We measured spontaneous movements during a perspective-taking task inspired by map reading. Analyzing the motion data to isolate rotation and translation components of motion in specific geometric relation to the task, we found out that most participants executed spontaneous miniature rotations of the head that were significantly related to the main task parameter. These head rotations were as if participants were trying to align themselves with the orientation on the map either in the image plane or on the ground plane, but with tiny amplitudes, typically below 1% of the actual movements. Our results are consistent with a model of sensorimotor prediction driving spatial reasoning. The efference copy of planned movements triggers this prediction mechanism. The movements themselves may then be mostly inhibited; the small spontaneous gestures that we measure are the visible traces of these planned but inhibited actions.

  12. Spontaneous pneumothorax in diffuse cystic lung diseases.

    Science.gov (United States)

    Cooley, Joseph; Lee, Yun Chor Gary; Gupta, Nishant

    2017-07-01

    Diffuse cystic lung diseases (DCLDs) are a heterogeneous group of disorders with varying pathophysiologic mechanisms that are characterized by the presence of air-filled lung cysts. These cysts are prone to rupture, leading to the development of recurrent spontaneous pneumothoraces. In this article, we review the epidemiology, clinical features, and management DCLD-associated spontaneous pneumothorax, with a focus on lymphangioleiomyomatosis, Birt-Hogg-Dubé syndrome, and pulmonary Langerhans cell histiocytosis. DCLDs are responsible for approximately 10% of apparent primary spontaneous pneumothoraces. Computed tomography screening for DCLDs (Birt-Hogg-Dubé syndrome, lymphangioleiomyomatosis, and pulmonary Langerhans cell histiocytosis) following the first spontaneous pneumothorax has recently been shown to be cost-effective and can help facilitate early diagnosis of the underlying disorders. Patients with DCLD-associated spontaneous pneumothorax have a very high rate of recurrence, and thus pleurodesis should be considered following the first episode of spontaneous pneumothorax in these patients, rather than waiting for a recurrent episode. Prior pleurodesis is not a contraindication to future lung transplant. Although DCLDs are uncommon, spontaneous pneumothorax is often the sentinel event that provides an opportunity for diagnosis. By understanding the burden and implications of pneumothoraces in DCLDs, clinicians can facilitate early diagnosis and appropriate management of the underlying disorders.

  13. Acute Abdomen Due to Uncontrolled Use of Warfarin: Spontaneous Intra-abdominal

    Directory of Open Access Journals (Sweden)

    Fatih Dal

    2017-12-01

    Full Text Available Warfarin is an oral anticoagulant, which is commonly used in the treatment and prophylaxis of thromboembolic conditions. Bleeding is the primary adverse effect associated with warfarin. The majority of warfarin-related bleedings are spontaneous minor hemorrhages occurring in the subcutaneous or intramuscular tissues and can be treated by decreasing the dose of oral anticoagulants. However, although rare, it is possible to encounter spontaneous major bleedings with increased risk of mortality. Conservative approach is the preferred initial therapy for hemodynamically stable patients with major intra-abdominal hemorrhages that we define as the intermediate group patients. Nevertheless, surgery is required for hemodynamically unstable patients with acute abdominal pain in cases of ongoing active hemorrhage, generalized peritonitis, obstruction, acute abdomen, intestinal ischemia, and perforation. In this article, we present a rare case of acute abdomen and spontaneous intra-abdominal hemorrhage resulting from uncontrolled use of warfarin and a new classification requirement.

  14. FEL gain optimisation and spontaneous radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bali, L.M.; Srivastava, A.; Pandya, T.P. [Lucknow Univ. (India)] [and others

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  15. Characteristics of myogenic response and ankle torque recovery after lengthening contraction-induced rat gastrocnemius injury

    Directory of Open Access Journals (Sweden)

    Song Hongsun

    2012-10-01

    Full Text Available Abstract Background Although muscle dysfunction caused by unfamiliar lengthening contraction is one of most important issues in sports medicine, there is little known about the molecular events on regeneration process. The purpose of this study was to investigate the temporal and spatial expression patterns of myogenin, myoD, pax7, and myostatin after acute lengthening contraction (LC-induced injury in the rat hindlimb. Methods We employed our originally developed device with LC in rat gastrocnemius muscle (n = 24. Male Wistar rats were anesthetized with isoflurane (aspiration rate, 450 ml/min, concentration, 2.0%. The triceps surae muscle of the right hindlimb was then electrically stimulated with forced isokinetic dorsi-flexion (180°/sec and from 0 to 45°. Tissue contents of myoD, myogenin, pax7, myostatin were measured by western blotting and localizations of myoD and pax7 was measured by immunohistochemistry. After measuring isometric tetanic torque, a single bout of LC was performed in vivo. Results The torque was significantly decreased on days 2 and 5 as compared to the pre-treatment value, and recovered by day 7. The content of myoD and pax7 showed significant increases on day 2. Myogenin showed an increase from day 2 to 5. Myostatin on days 5 and 7 were significantly increased. Immunohistochemical analysis showed that myoD-positive/pax7-positive cells increased on day 2, suggesting that activated satellite cells play a role in the destruction and the early recovery phases. Conclusion We, thus, conclude that myogenic events associate with torque recovery after LC-induced injury.

  16. Spontaneous Bacterial Peritonitis in Subclinical Hypothyroidism

    Directory of Open Access Journals (Sweden)

    Dalip Gupta

    2013-11-01

    Full Text Available Hypothyroidism is an uncommon cause of ascites. Here we describe a case of a 75 year-old female patient with spontaneous bacterial peritonitis and subclinical hypothyroidism that resolved with thyroid replacement and antibiotic therapy respectively. Ascitic fluid analysis revealed a gram-positive bacterium on gram staining. A review of the literature revealed just one other reported case of myxoedema ascites with concomitant spontaneous bacterial peritonitis and no case has till been reported of spontaneous bacterial peritonitis in subclinical hypothyroidism.

  17. Spontaneous mutation rates and the rate-doubling dose

    International Nuclear Information System (INIS)

    Von Borstel, R.C.; Moustaccki, E.; Latarjet, R.

    1978-01-01

    The amount of radiation required to double the frequency of mutations or tumours over the rate of those that occur spontaneously is called the rate-doubling dose. An equivalent concept has been proposed for exposure to other environmental mutagens. The doubling dose concept is predicated on the assumption that all human populations have the same spontaneous mutation rate, and that this spontaneous mutation rate is known. It is now established for prokaryotes and lower eukaryotes that numerous genes control the spontaneous mutation rate, and it is likely that the same is true for human cells as well. Given that the accepted mode of evolution of human populatons is from small, isolated groups of individuals, it seems likely that each population would have a different spontaneous mutation rate. Given that a minimum of twenty genes control or affect the spontaneous mutation rate, and that each of these in turn is susceptible to spontaneously arising or environmentally induced mutations, it seems likely that every individual within a population (except for siblings from identical multiple births) will have a unique spontaneous mutation rate. If each individual in a population does have a different spontaneous mutation rate, the doubling dose concept, in rigorous terms, is fallacious. Therefore, as with other concepts of risk evaluation, the doubling dose concept is subject to criticism. Nevertheless, until we know individual spontaneous mutation rates with precision, and can evaluate risks based on this information, the doubling dose concept has a heuristic value and is needed for practical assessment of risks for defined populations. (author)

  18. Spontaneous quasi single helicity regimes in EXTRAP T2R reversed-field pinch

    Science.gov (United States)

    Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Menmuir, S.; Cecconello, M.

    2007-11-01

    In recent years, good progress toward a better understanding and control of the plasma performance in reversed-field pinch devices has been made. These improvements consist both of the discovery of spontaneous plasma regimes, termed the quasi single helicity (QSH) regime, in which part of the plasma core is no longer stochastic, and of the development of techniques for active control of plasma instabilities. In this paper, a systematic study of spontaneous QSH in the EXTRAP T2R device [P. R. Brunsell, H. Bergsaker, M. Cecconello et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] is presented. In this device, QSH states can occur spontaneously and it is associated with magnetic and thermal structures. A statistical analysis to determine the most favorable experimental conditions to have a transition to the QSH regime will be presented. The results described here are useful to understand the underlying properties of QSH regimes in view of future applications of the QSH active control in EXTRAP T2R; they are also important to have a comparison with the QSH studied in other devices.

  19. Disturbed spontaneous brain activity pattern in patients with primary angle-closure glaucoma using amplitude of low-frequency fluctuation: a fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2015-07-01

    Full Text Available Xin Huang,1,* Yu-Lin Zhong,1,* Xian-Jun Zeng,2 Fuqing Zhou,2 Xin-Hua Liu,1 Pei-Hong Hu,1 Chong-Gang Pei,1 Yi Shao,1 Xi-Jian Dai21Department of Ophthalmology, 2Department of Radiology, The First Affiliated Hospital of Nanchang University, Nangchang, Jiangxi, People’s Republic of China*These authors contributed equally to this workObjective: The aim of this study is to use amplitude of low-frequency fluctuation (ALFF as a method to explore the local features of spontaneous brain activity in patients with primary angle -closure glaucoma (PACG and ALFFs relationship with the behavioral performances.Methods: A total of twenty one patients with PACG (eight males and 13 females, and twenty one healthy subjects (nine males and twelve females closely matched in age, sex, and education, each underwent a resting-state functional magnetic resonance imaging scan. The ALFF method was used to assess the local features of spontaneous brain activity. The correlation analysis was used to explore the relationships between the observed mean ALFF signal values of the different areas in PACG patients and the thickness of the retinal nerve fiber layer (RNFL. Results: Compared with the healthy subjects, patients with PACG had significant lower ALFF areas in the left precentral gyrus, bilateral middle frontal gyrus, bilateral superior frontal gyrus, right precuneus, and right angular gyrus, and higher areas in the right precentral gyrus. In the PACG group, there were significant negative correlations between the mean ALFF signal value of the right middle frontal gyrus and the left mean RNFL thickness (r=-0.487, P=0.033, and between the mean ALFF signal value of the left middle frontal gyrus and the right mean RNFL thickness (r=-0.504, P=0.020. Conclusion: PACG mainly involved in the dysfunction in the frontal lobe, which may reflect the underlying pathologic mechanism of PACG.Keywords: angle-closure glaucoma, amplitude of low-frequency fluctuation, functional

  20. Hypotensive and Angiotensin-Converting Enzyme Inhibitory Activities of Eisenia fetida Extract in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Shumei Mao

    2015-01-01

    Full Text Available Objectives. This study aimed to investigate the antihypertensive effects of an Eisenia fetida extract (EFE and its possible mechanisms in spontaneously hypertensive rats (SHR rats. Methods. Sixteen-week-old SHR rats and Wistar-Kyoto rats (WKY rats were used in this study. Rats were, respectively, given EFE (EFE group, captopril (captopril group, or phosphate-buffered saline (PBS (normal control group and SHR group for 4 weeks. ACE inhibitory activity of EFE in vitro was determined. The systolic blood pressure (SBP and diastolic blood pressure (DBP were measured using a Rat Tail-Cuff Blood Pressure System. Levels of angiotensin II (Ang II, aldosterone (Ald, and 6-keto-prostaglandin F1 alpha (6-keto-PGF1α in plasma were determined by radioimmunoassay, and serum nitric oxide (NO concentration was measured by Griess reagent systems. Results. EFE had marked ACE inhibitory activity in vitro (IC50 = 2.5 mg/mL. After the 4-week drug management, SHR rats in EFE group and in captopril group had lower SBP and DBP, lower levels of Ang II and Ald, and higher levels of 6-keto-PGF1α and NO than the SHR rats in SHR group. Conclusion. These results indicate that EFE has hypotensive effects in SHR rats and its effects might be associated with its ACE inhibitory activity.

  1. Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist

    Science.gov (United States)

    Huys, Raoul; Jirsa, Viktor K.; Darokhan, Ziauddin; Valentiniene, Sonata; Roland, Per E.

    2016-01-01

    Neurons in the primary visual cortex spontaneously spike even when there are no visual stimuli. It is unknown whether the spiking evoked by visual stimuli is just a modification of the spontaneous ongoing cortical spiking dynamics or whether the spontaneous spiking state disappears and is replaced by evoked spiking. This study of laminar recordings of spontaneous spiking and visually evoked spiking of neurons in the ferret primary visual cortex shows that the spiking dynamics does not change: the spontaneous spiking as well as evoked spiking is controlled by a stable and persisting fixed point attractor. Its existence guarantees that evoked spiking return to the spontaneous state. However, the spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively different and are separated by a threshold (separatrix). The functional advantage of this organization is that it avoids the need for a system reorganization following visual stimulation, and impedes the transition of spontaneous spiking to evoked spiking and the propagation of spontaneous spiking from layer 4 to layers 2–3. PMID:26778982

  2. Supplementary Motor Area Activation in Disfluency Perception : An fMRI Study of Listener Neural Responses to Spontaneously Produced Unfilled and Filled Pauses

    OpenAIRE

    Eklund, Robert; Ingvar, Martin

    2016-01-01

    Spontaneously produced Unfilled Pauses (UPs) and Filled Pauses (FPs) were played to subjects in an fMRI experiment. For both stimuli increased activity was observed in the Primary Auditory Cortex (PAC). However, FPs, but not UPs, elicited modulation in the Supplementary Motor Area (SMA), Brodmann Area 6. Our results provide neurocognitive confirmation of the alleged difference between FPs and other kinds of speech disfluency and could also provide a partial explanation for the previously repo...

  3. Peritonitis - spontaneous bacterial

    Science.gov (United States)

    Spontaneous bacterial peritonitis (SBP); Ascites - peritonitis; Cirrhosis - peritonitis ... who are on peritoneal dialysis for kidney failure. Peritonitis may have other causes . These include infection from ...

  4. Search for spontaneous fission of 226Ra and systematics of the spontaneous fission, α-decay and cluster decay probabilities

    International Nuclear Information System (INIS)

    Mikheev, V.L.; Tret'yakova, S.P.; Golovchenko, A.N.; Timofeeva, O.V.; Hussonnois, M.; Le Naour, C.

    1998-01-01

    The low limit of the 226 Ra spontaneous fission half-life corresponding to T 1/2 ≥ 4 · 10 18 years is measured. The 226 Ra spontaneous fission probability proved to be about 50 times less than the value expected from the known systematics, connecting the ratios of theα-decay and spontaneous fission probabilities with the fissility parameter Z 2 /A. It is shown that the probabilities of spontaneous fission, α-decay and cluster decay can be systematized in the same way according to the difference between the decay products Coulomb energy near the scission point and decay energy Q

  5. Maternal smoking predicts the risk of spontaneous abortion

    DEFF Research Database (Denmark)

    Nielsen, Ann; Hannibal, Charlotte Gerd; Lindekilde, Bodil Eriksen

    2006-01-01

    BACKGROUND: Few studies have examined smoking prior to pregnancy and the occurrence of spontaneous abortion, as most studies have addressed the risk of spontaneous abortion in relation to smoking during pregnancy. However, results are not entirely consistent. The aim of the present study...... was to assess the risk of spontaneous abortion considering smoking prior to pregnancy. METHODS: We performed a nested case-control study using prospective data from a population-based cohort comprising 11,088 women aged 20-29 years. From this cohort, women who experienced either a spontaneous abortion (n=343......) or who gave birth (n=1,578) during follow-up were selected. Associations between self-reported smoking at enrollment and subsequent spontaneous abortion were analyzed by means of multiple logistic regression. RESULTS: The risk of spontaneous abortion in relation to pre-pregnancy smoking showed a clear...

  6. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation

    International Nuclear Information System (INIS)

    Capkovic, Katie L.; Stevenson, Severin; Johnson, Marc C.; Thelen, Jay J.; Cornelison, D.D.W.

    2008-01-01

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression

  7. Aspirin-induced AMP-activated protein kinase activation regulates the proliferation of vascular smooth muscle cells from spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Sung, Jin Young; Choi, Hyoung Chul

    2011-01-01

    Highlights: → Aspirin-induced AMPK phosphorylation was greater in VSMC from SHR than WKY. → Aspirin-induced AMPK phosphorylation inhibited proliferation of VSMC from SHR. → Low basal AMPK phosphorylation in SHR elicits increased VSMC proliferation. → Inhibition of AMPK restored decreased VSMC proliferation by aspirin in SHR. → Aspirin exerts anti-proliferative effect through AMPK activation in VSMC from SHR. -- Abstract: Acetylsalicylic acid (aspirin), used to reduce risk of cardiovascular disease, plays an important role in the regulation of cellular proliferation. However, mechanisms responsible for aspirin-induced growth inhibition are not fully understood. Here, we investigated whether aspirin may exert therapeutic effects via AMP-activated protein kinase (AMPK) activation in vascular smooth muscle cells (VSMC) from wistar kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Aspirin increased AMPK and acetyl-CoA carboxylase phosphorylation in a time- and dose-dependent manner in VSMCs from WKY and SHR, but with greater efficacy in SHR. In SHR, a low basal phosphorylation status of AMPK resulted in increased VSMC proliferation and aspirin-induced AMPK phosphorylation inhibited proliferation of VSMCs. Compound C, an AMPK inhibitor, and AMPK siRNA reduced the aspirin-mediated inhibition of VSMC proliferation, this effect was more pronounced in SHR than in WKY. In VSMCs from SHR, aspirin increased p53 and p21 expression and inhibited the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. These results indicate that in SHR VSMCs aspirin exerts anti-proliferative effects through the induction of AMPK phosphorylation.

  8. Aspirin-induced AMP-activated protein kinase activation regulates the proliferation of vascular smooth muscle cells from spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Jin Young [Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr [Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of)

    2011-05-06

    Highlights: {yields} Aspirin-induced AMPK phosphorylation was greater in VSMC from SHR than WKY. {yields} Aspirin-induced AMPK phosphorylation inhibited proliferation of VSMC from SHR. {yields} Low basal AMPK phosphorylation in SHR elicits increased VSMC proliferation. {yields} Inhibition of AMPK restored decreased VSMC proliferation by aspirin in SHR. {yields} Aspirin exerts anti-proliferative effect through AMPK activation in VSMC from SHR. -- Abstract: Acetylsalicylic acid (aspirin), used to reduce risk of cardiovascular disease, plays an important role in the regulation of cellular proliferation. However, mechanisms responsible for aspirin-induced growth inhibition are not fully understood. Here, we investigated whether aspirin may exert therapeutic effects via AMP-activated protein kinase (AMPK) activation in vascular smooth muscle cells (VSMC) from wistar kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Aspirin increased AMPK and acetyl-CoA carboxylase phosphorylation in a time- and dose-dependent manner in VSMCs from WKY and SHR, but with greater efficacy in SHR. In SHR, a low basal phosphorylation status of AMPK resulted in increased VSMC proliferation and aspirin-induced AMPK phosphorylation inhibited proliferation of VSMCs. Compound C, an AMPK inhibitor, and AMPK siRNA reduced the aspirin-mediated inhibition of VSMC proliferation, this effect was more pronounced in SHR than in WKY. In VSMCs from SHR, aspirin increased p53 and p21 expression and inhibited the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. These results indicate that in SHR VSMCs aspirin exerts anti-proliferative effects through the induction of AMPK phosphorylation.

  9. Osteonecrosis or spontaneous fractures following renal transplantation

    International Nuclear Information System (INIS)

    Andresen, J.; Nielsen, H.E.; Aarhus Univ.

    1981-01-01

    31 renal transplant recipients with posttransplant development of osteonecrosis or spontaneous fractures were evaluated with regard to age, duration of dialysis before transplantation. Determination of metacarpal bone mass at the time of transplantation and registration of bone resorption and soft tissue calcification at the time of transplantation and at the time of onset of osteonecrosis and spontaneous fractures were made. Apart from the increased mean age in patients with spontaneous fractures no difference was seen between the groups. Osteonecrosis and spontaneous fractures occurred in areas of trabecular bone. It seems most likely that after renal transplantation the patients show bone complications of different localization. (orig.) [de

  10. Promoting Spontaneous Second Harmonic Generation through Organogelation.

    Science.gov (United States)

    Marco, A Belén; Aparicio, Fátima; Faour, Lara; Iliopoulos, Konstantinos; Morille, Yohann; Allain, Magali; Franco, Santiago; Andreu, Raquel; Sahraoui, Bouchta; Gindre, Denis; Canevet, David; Sallé, Marc

    2016-07-27

    An organogelator based on the Disperse Red nonlinear optical chromophore was synthesized according to a simple and efficient three-step procedure. The supramolecular gel organization leads to xerogels which display a spontaneous second harmonic generation (SHG) response without any need for preprocessing, and this SHG activity appears to be stable over several months. These findings, based on an intrinsic structural approach, are supported by favorable intermolecular supramolecular interactions, which promote a locally non-centrosymmetric NLO-active organization. This is in sharp contrast with most materials designed for SHG purposes, which generally require the use of expensive or heavy-to-handle external techniques for managing the dipoles' alignment.

  11. A Case of Spontaneously Resolved Bilateral Primary Spontaneous Pneumothorax

    Directory of Open Access Journals (Sweden)

    Hasan Kahraman

    2014-03-01

    Full Text Available A condition of intrapleural air-space accumulation in individuals without any history of trauma or lung disease is called as primary spontaneous pneumothorax (PSP. Sixteen-years-old male patient admitted with complains of chest pain and dyspnea beginning 3 day ago. On physical examination, severity of breath sounds decreased on right side. Chest radiograph was taken and right-sided pneumothorax was detected and tube thoracostomy was inserted. Two months ago the patient referred to a doctor with similar complaints and physical examination and chest radiograph were reported as normal. The radiograph was retrospectively examined and bilateral PSP was detected. We presented the case duo to spontaneous recovery of bilateral PSP is seen very rarely and so contributes data to the literature. In patients admitted to the clinic with chest pain and shortness of breath, pneumothorax should be considered at differential diagnosis.

  12. Maternal underweight and the risk of spontaneous abortion

    DEFF Research Database (Denmark)

    Helgstrand, Stine; Andersen, Anne-Marie Nybo

    2005-01-01

    BACKGROUND: To evaluate the risk of spontaneous abortion in relation to maternal pre-pregnant underweight. METHODS: The study was designed as a cohort study within the framework of the Danish National Birth Cohort (DNBC). The participants were a total of 23 821 women recruited consecutively...... spontaneous abortion. Relative risk of spontaneous abortion was calculated as Hazard Ratios using Cox regression with delayed entry. RESULTS: The outcome measure was spontaneous abortion. The hazard ratio for spontaneous abortion in women with a pre-pregnant body mass index (BMI) below 18.5 was 1.24 (95......% confidence limits 0.95-1.63) compared to women with pre-pregnant BMI 18.5-24.9. Women with a BMI of 25 or more had a smaller increase in risk of spontaneous abortion. Adjustment for maternal age, parity, previous miscarriages, and lifestyle factors did not affect the estimates substantially, neither did...

  13. An N-methyl-D-aspartate receptor mediated large, low-frequency, spontaneous excitatory postsynaptic current in neonatal rat spinal dorsal horn neurons.

    Science.gov (United States)

    Thomson, L M; Zeng, J; Terman, G W

    2006-09-01

    Examples of spontaneous oscillating neural activity contributing to both pathological and physiological states are abundant throughout the CNS. Here we report a spontaneous oscillating intermittent synaptic current located in lamina I of the neonatal rat spinal cord dorsal horn. The spontaneous oscillating intermittent synaptic current is characterized by its large amplitude, slow decay time, and low-frequency. We demonstrate that post-synaptic N-methyl-D-aspartate receptors (NMDARs) mediate the spontaneous oscillating intermittent synaptic current, as it is inhibited by magnesium, bath-applied d-2-amino-5-phosphonovalerate (APV), or intracellular MK-801. The NR2B subunit of the NMDAR appears important to this phenomenon, as the NR2B subunit selective NMDAR antagonist, alpha-(4-hydroxphenyl)-beta-methyl-4-benzyl-1-piperidineethanol tartrate (ifenprodil), also partially inhibited the spontaneous oscillating intermittent synaptic current. Inhibition of spontaneous glutamate release by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or the mu-opioid receptor agonist [D-Ala2, N-Me-Phe4, Gly5] enkephalin-ol (DAMGO) inhibited the spontaneous oscillating intermittent synaptic current frequency. Marked inhibition of spontaneous oscillating intermittent synaptic current frequency by tetrodotoxin (TTX), but not post-synaptic N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314), suggests that the glutamate release important to the spontaneous oscillating intermittent synaptic current is dependent on active neural processes. Conversely, increasing dorsal horn synaptic glutamate release by GABAA or glycine inhibition increased spontaneous oscillating intermittent synaptic current frequency. Moreover, inhibiting glutamate transporters with threo-beta-benzyloxyaspartic acid (DL-TBOA) increased spontaneous oscillating intermittent synaptic current frequency and decay time. A possible functional role of this spontaneous NMDAR

  14. Altered spontaneous brain activity pattern in patients with high myopia using amplitude of low-frequency fluctuation: a resting-state fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2016-11-01

    Full Text Available Xin Huang,1,2,* Fu-Qing Zhou,3,* Yu-Xiang Hu,1 Xiao-Xuan Xu,1 Xiong Zhou,4 Yu-Lin Zhong,1 Jun Wang,4 Xiao-Rong Wu1 1Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 2Department of Ophthalmology, The First People’s Hospital of Jiujiang City, Jiujiang, 3Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, 4Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, People’s Republic of China *These authors contributed equally to this work Objective: Many previous reports have demonstrated significant neural anatomy changes in the brain of high myopic (HM patients, whereas the spontaneous brain activity changes in the HM patients at rest are not well studied. Our objective was to use amplitude of low-frequency fluctuation (ALFF method to investigate the changes in spontaneous brain activity in HM patients and their relationships with clinical features. Methods: A total of 38 patients with HM (17 males and 21 females and 38 healthy controls (HCs (17 males and 21 females closely matched in age, sex, and education underwent resting-state functional magnetic resonance imaging scans. The ALFF method was used to assess local features of spontaneous brain activity. The relationship between the mean ALFF signal values in many brain regions and the clinical features in HM patients was calculated by correlation analysis. Results: Compared with HCs, the HM patients had significantly lower ALFF in the right inferior and middle temporal gyrus, left middle temporal gyrus, left inferior frontal gyrus/putamen, right inferior frontal gyrus/putamen/insula, right middle frontal gyrus, and right inferior parietal lobule and higher ALFF values in the bilateral midcingulate cortex, left postcentral gyrus, and left precuneus/inferior parietal lobule. However, no relationship was found between the mean ALFF

  15. Carbon monoxide oxidation on a Au(111 surface modified by spontaneously deposited Ru

    Directory of Open Access Journals (Sweden)

    ROLF-JÜRGEN BEHM

    2001-04-01

    Full Text Available The spontaneous deposition of Ru on Au(111 was performed in 10-3 M RuCl3 + 0.5 M H2SO4 solution. The obtained surface was characterized by STM under potential control in 0.5 M H2SO4 solution. The coverage of the Au(111 terraces by deposited Ru was estimated by STM to be 0.02 ML. Step decoration could be noticed in the STM images, which indicates that the steps, as lined defects, are active sites for the nucleation of Ru monolayer islands, while the random distribution of Ru nuclei, observed on the terraces indicates point defects as active sites. The electrocatalytic activity of Au(111 surface modified by spontaneously deposited Ru was studied towards CO oxidation. The significant enhancement in the reaction rate compared to CO oxidation on a pure Au(111 surface, indicated that the edges of the deposited Ru islands were the active sites for the reaction.

  16. Spontaneous deregulation

    NARCIS (Netherlands)

    Edelman, Benjamin; Geradin, Damien

    Platform businesses such as Airbnb and Uber have risen to success partly by sidestepping laws and regulations that encumber their traditional competitors. Such rule flouting is what the authors call “spontaneous private deregulation,” and it’s happening in a growing number of industries. The authors

  17. Spontaneous and α-adrenoceptor-induced contractility in human collecting lymphatic vessels require chloride

    DEFF Research Database (Denmark)

    Mohanakumar, Sheyanth; Majgaard, Jens; Telinius, Niklas

    2018-01-01

    - with the impermeant anion aspartate and inhibition of Cl- transport and channels with the clinical diuretics furosemide and bendroflumethiazide, as well as DIDS and NPPB. The molecular expression of calcium-activated chloride channels was investigated by RT-PCR and proteins localized using immunoreactivity....... Spontaneous and norepinephrine-induced contractility in human lymphatic vessels was highly abrogated after Cl- substitution with aspartate. 100‒300µM DIDS or NPPB inhibited spontaneous contractile behavior. Norepinephrine-stimulated tone was furthermore markedly abrogated by 200µM DIDS. Furosemide lowered...

  18. Spontaneous motor activity during the development and maintenance of diet-induced obesity in the rat.

    Science.gov (United States)

    Levin, B E

    1991-09-01

    More than 80% of most daily spontaneous activities (assessed in an Omnitech activity monitor) occurred during the last hour of light and 12 h of the dark phase in 8 chow-fed male Sprague-Dawley rats. Thirty additional rats were, therefore, monitored over this 13-h period to assess the relationship of activity to the development and maintenance of diet-induced obesity (DIO) on a diet high in energy, fat and sucrose (CM diet). Nine of 20 rats became obese after 3 months on the CM diet, with 71% greater weight gain than 10 chow-fed controls. Eleven of 20 rats were diet resistant (DR), gaining the same amount of weight as chow-fed rats. Neither initial activity levels nor initial body weights on chow (Period I) differed significantly across retrospectively identified groups. After 3 months on CM diet or chow (Period II), as well as after an additional 3 months after CM diet-fed rats returned to chow (Period III), there were significant inverse correlations (r = -.606 to -.370) between body weight at the time of testing and various measures of movement in the horizontal plane. There was no relationship to dietary content nor consistent correlations of body weight or diet group to vertical movements, an indirect measure of ingestive behavior. Patterns of time spent in the vertical position were significantly different for DIO vs. DR rats in Period III, however. Thus, differences in food intake and metabolic efficiency, rather than differences in nocturnal activity, are probably responsible for the greater weight gain in DIO-prone rats placed on CM diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Therapeutic actions of an insulin receptor activator and a novel peroxisome proliferator-activated receptor gamma agonist in the spontaneously hypertensive obese rat model of metabolic syndrome X.

    Science.gov (United States)

    Velliquette, Rodney A; Friedman, Jacob E; Shao, J; Zhang, Bei B; Ernsberger, Paul

    2005-07-01

    Insulin resistance clusters with hyperlipidemia, impaired glucose tolerance, and hypertension as metabolic syndrome X. We tested a low molecular weight insulin receptor activator, demethylasterriquinone B-1 (DMAQ-B1), and a novel indole peroxisome proliferator-activated receptor gamma agonist, 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (PPEIA), in spontaneously hypertensive obese rats (SHROB), a genetic model of syndrome X. Agents were given orally for 19 days. SHROB showed fasting normoglycemia but impaired glucose tolerance after an oral load, as shown by increased glucose area under the curve (AUC) [20,700 mg x min/ml versus 8100 in lean spontaneously hypertensive rats (SHR)]. Insulin resistance was indicated by 20-fold excess fasting insulin and increased insulin AUC (6300 ng x min/ml versus 990 in SHR). DMAQ-B1 did not affect glucose tolerance (glucose AUC = 21,300) but reduced fasting insulin 2-fold and insulin AUC (insulin AUC = 4300). PPEIA normalized glucose tolerance (glucose AUC = 9100) and reduced insulin AUC (to 3180) without affecting fasting insulin. PPEIA also increased food intake, fat mass, and body weight gain (81 +/- 12 versus 45 +/- 8 g in untreated controls), whereas DMAQ-B1 had no effect on body weight but reduced subscapular fat mass. PPEIA but not DMAQ-B1 reduced blood pressure. In skeletal muscle, insulin-stimulated phosphorylation of the insulin receptor and insulin receptor substrate protein 1-associated phosphatidylinositol 3-kinase activity were decreased by 40 to 55% in SHROB relative to lean SHR. PPEIA, but not DMAQ-B1, enhanced both insulin actions. SHROB also showed severe hypertriglyceridemia (355 +/- 42 mg/dl versus 65 +/- 3 in SHR) attenuated by both agents (DMAQ-B1, 228 +/- 18; PPEIA, 79 +/- 3). Both these novel antidiabetic agents attenuate insulin resistance and hypertriglyceridemia associated with metabolic syndrome but via distinct mechanisms.

  20. A case of spontaneous ventriculocisternostomy

    International Nuclear Information System (INIS)

    Yamane, Kanji; Yoshimoto, Hisanori; Harada, Kiyoshi; Uozumi, Tohru; Kuwabara, Satoshi.

    1983-01-01

    The authors experienced a case of spontaneous ventriculocisternostomy diagnosed by CT scan with metrizamide and Conray. Patient was 23-year-old male who had been in good health until one month before admission, when he began to have headache and tinnitus. He noticed bilateral visual acuity was decreased about one week before admission and vomiting appeared two days before admission. He was admitted to our hospital because of bilateral papilledema and remarkable hydrocephalus diagnosed by CT scan. On admission, no abnormal neurological signs except for bilateral papilledema were noted. Immediately, right ventricular drainage was performed. Pressure of the ventricle was over 300mmH 2 O and CSF was clear. PVG and PEG disclosed an another cavity behind the third ventricle, which was communicated with the third ventricle, and occlusion of aqueduct of Sylvius. Metrizamide CT scan and Conray CT scan showed a communication between this cavity and quadrigeminal and supracerebellar cisterns. On these neuroradiological findings, the diagnosis of obstructive hydrocephalus due to benign aqueduct stenosis accompanied with spontaneous ventriculocisternostomy was obtained. Spontaneous ventriculocisternostomy was noticed to produce arrest of hydrocephalus, but with our case, spontaneous regression of such symptoms did not appeared. By surgical ventriculocisternostomy (method by Torkildsen, Dandy, or Scarff), arrest of hydrocephalus was seen in about 50 to 70 per cent, which was the same results as those of spontaneous ventriculocisternostomy. It is concluded that VP shunt or VA shunt is thought to be better treatment of obstructive hydrocephalus than the various kinds of surgical ventriculocisternostomy. (J.P.N.)

  1. Fine-tuning the onset of myogenesis by homeobox proteins that interact with the Myf5 limb enhancer

    Directory of Open Access Journals (Sweden)

    Philippe Daubas

    2015-12-01

    Full Text Available Skeletal myogenesis in vertebrates is initiated at different sites of skeletal muscle formation during development, by activation of specific control elements of the myogenic regulatory genes. In the mouse embryo, Myf5 is the first myogenic determination gene to be expressed and its spatiotemporal regulation requires multiple enhancer sequences, extending over 120 kb upstream of the Mrf4-Myf5 locus. An enhancer, located at −57/−58 kb from Myf5, is responsible for its activation in myogenic cells derived from the hypaxial domain of the somite, that will form limb muscles. Pax3 and Six1/4 transcription factors are essential activators of this enhancer, acting on a 145-bp core element. Myogenic progenitor cells that will form the future muscle masses of the limbs express the factors necessary for Myf5 activation when they delaminate from the hypaxial dermomyotome and migrate into the forelimb bud, however they do not activate Myf5 and the myogenic programme until they have populated the prospective muscle masses. We show that Msx1 and Meox2 homeodomain-containing transcription factors bind in vitro and in vivo to specific sites in the 145-bp element, and are implicated in fine-tuning activation of Myf5 in the forelimb. Msx1, when bound between Pax and Six sites, prevents the binding of these key activators, thus inhibiting transcription of Myf5 and consequent premature myogenic differentiation. Meox2 is required for Myf5 activation at the onset of myogenesis via direct binding to other homeodomain sites in this sequence. Thus, these homeodomain factors, acting in addition to Pax3 and Six1/4, fine-tune the entry of progenitor cells into myogenesis at early stages of forelimb development.

  2. Fine-tuning the onset of myogenesis by homeobox proteins that interact with the Myf5 limb enhancer

    Science.gov (United States)

    Daubas, Philippe; Duval, Nathalie; Bajard, Lola; Langa Vives, Francina; Robert, Benoît; Mankoo, Baljinder S.; Buckingham, Margaret

    2015-01-01

    ABSTRACT Skeletal myogenesis in vertebrates is initiated at different sites of skeletal muscle formation during development, by activation of specific control elements of the myogenic regulatory genes. In the mouse embryo, Myf5 is the first myogenic determination gene to be expressed and its spatiotemporal regulation requires multiple enhancer sequences, extending over 120 kb upstream of the Mrf4-Myf5 locus. An enhancer, located at −57/−58 kb from Myf5, is responsible for its activation in myogenic cells derived from the hypaxial domain of the somite, that will form limb muscles. Pax3 and Six1/4 transcription factors are essential activators of this enhancer, acting on a 145-bp core element. Myogenic progenitor cells that will form the future muscle masses of the limbs express the factors necessary for Myf5 activation when they delaminate from the hypaxial dermomyotome and migrate into the forelimb bud, however they do not activate Myf5 and the myogenic programme until they have populated the prospective muscle masses. We show that Msx1 and Meox2 homeodomain-containing transcription factors bind in vitro and in vivo to specific sites in the 145-bp element, and are implicated in fine-tuning activation of Myf5 in the forelimb. Msx1, when bound between Pax and Six sites, prevents the binding of these key activators, thus inhibiting transcription of Myf5 and consequent premature myogenic differentiation. Meox2 is required for Myf5 activation at the onset of myogenesis via direct binding to other homeodomain sites in this sequence. Thus, these homeodomain factors, acting in addition to Pax3 and Six1/4, fine-tune the entry of progenitor cells into myogenesis at early stages of forelimb development. PMID:26538636

  3. Relationship of spontaneous pneumothorax cases seen in Eastern Black Sea region with meteorological changes

    Science.gov (United States)

    Yamac, Mustafa Esat; Karapolat, Sami; Turkyilmaz, Atila; Seyis, Kubra Nur; Tekinbas, Celal

    2017-08-01

    The relationship of climate changes or weather conditions with the incidence of pneumothorax has been explored for many years. We aimed at revealing the effects of meteorological changes on the incidence of pneumothorax in the Eastern Black Sea region where spontaneous pneumothorax cases are seen relatively more frequently. The records of 195 subjects (179 males and 16 females) who had been monitored and treated due to spontaneous pneumothorax between January 2006 and December 2012 at our clinic were reviewed retrospectively, and their relationship was investigated with the meteorological data obtained by going through the database archive records of the 11th Regional Meteorology Directorate for the years between 2006 and 2012. Wind velocity was observed to be less in the days of having spontaneous pneumothorax than in the days of having no spontaneous pneumothorax, and the difference was found statistically significant ( P = 0.026). The people of our region whose active lifestyle is reflected in their working life, social life, and even in their folk dances usually take a rest in the days of slower wind speed. We think that this state of resting leads to an increase in the frequency of spontaneous pneumothorax.

  4. BNU-LSVED: a multimodal spontaneous expression database in educational environment

    Science.gov (United States)

    Sun, Bo; Wei, Qinglan; He, Jun; Yu, Lejun; Zhu, Xiaoming

    2016-09-01

    In the field of pedagogy or educational psychology, emotions are treated as very important factors, which are closely associated with cognitive processes. Hence, it is meaningful for teachers to analyze students' emotions in classrooms, thus adjusting their teaching activities and improving students ' individual development. To provide a benchmark for different expression recognition algorithms, a large collection of training and test data in classroom environment has become an acute problem that needs to be resolved. In this paper, we present a multimodal spontaneous database in real learning environment. To collect the data, students watched seven kinds of teaching videos and were simultaneously filmed by a camera. Trained coders made one of the five learning expression labels for each image sequence extracted from the captured videos. This subset consists of 554 multimodal spontaneous expression image sequences (22,160 frames) recorded in real classrooms. There are four main advantages in this database. 1) Due to recorded in the real classroom environment, viewer's distance from the camera and the lighting of the database varies considerably between image sequences. 2) All the data presented are natural spontaneous responses to teaching videos. 3) The multimodal database also contains nonverbal behavior including eye movement, head posture and gestures to infer a student ' s affective state during the courses. 4) In the video sequences, there are different kinds of temporal activation patterns. In addition, we have demonstrated the labels for the image sequences are in high reliability through Cronbach's alpha method.

  5. Visual learning alters the spontaneous activity of the resting human brain: an fNIRS study.

    Science.gov (United States)

    Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan

    2014-01-01

    Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning.

  6. Effects of an environmentally-relevant mixture of pyrethroid insecticides on spontaneous activity in primary cortical networks on microelectrode arrays.

    Science.gov (United States)

    Johnstone, Andrew F M; Strickland, Jenna D; Crofton, Kevin M; Gennings, Chris; Shafer, Timothy J

    2017-05-01

    Pyrethroid insecticides exert their insecticidal and toxicological effects primarily by disrupting voltage-gated sodium channel (VGSC) function, resulting in altered neuronal excitability. Numerous studies of individual pyrethroids have characterized effects on mammalian VGSC function and neuronal excitability, yet studies examining effects of complex pyrethroid mixtures in mammalian neurons, especially in environmentally relevant mixture ratios, are limited. In the present study, concentration-response functions were characterized for five pyrethroids (permethrin, deltamethrin, cypermethrin, β-cyfluthrin and esfenvalerate) in an in vitro preparation containing cortical neurons and glia. As a metric of neuronal network activity, spontaneous mean network firing rates (MFR) were measured using microelectorde arrays (MEAs). In addition, the effect of a complex and exposure relevant mixture of the five pyrethroids (containing 52% permethrin, 28.8% cypermethrin, 12.9% β-cyfluthrin, 3.4% deltamethrin and 2.7% esfenvalerate) was also measured. Data were modeled to determine whether effects of the pyrethroid mixture were predicted by dose-addition. At concentrations up to 10μM, all compounds except permethrin reduced MFR. Deltamethrin and β-cyfluthrin were the most potent and reduced MFR by as much as 60 and 50%, respectively, while cypermethrin and esfenvalerate were of approximately equal potency and reduced MFR by only ∼20% at the highest concentration. Permethrin caused small (∼24% maximum), concentration-dependent increases in MFR. Effects of the environmentally relevant mixture did not depart from the prediction of dose-addition. These data demonstrate that an environmentally relevant mixture caused dose-additive effects on spontaneous neuronal network activity in vitro, and is consistent with other in vitro and in vivo assessments of pyrethroid mixtures. Published by Elsevier B.V.

  7. Quantifying emissions from spontaneous combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-01

    Spontaneous combustion can be a significant problem in the coal industry, not only due to the obvious safety hazard and the potential loss of valuable assets, but also with respect to the release of gaseous pollutants, especially CO2, from uncontrolled coal fires. This report reviews methodologies for measuring emissions from spontaneous combustion and discusses methods for quantifying, estimating and accounting for the purpose of preparing emission inventories.

  8. A contribution to the study of spontaneous and evoked electrical activities of the adult rabbit hypothalamus and application of digital analysis

    International Nuclear Information System (INIS)

    Lasmoles, Francoise

    1974-01-01

    The spontaneous and evoked electrical activities of the hypothalamus were studied in 18 adult rabbits chronically implanted with electrodes. The graphic study of the EEG was completed by digital analyses of the signal considered as a random process and processed both by statistical analysis in order to know the distribution function of the signal amplitude and harmonic analysis allowing classification of power density spectra by the calculation of the autocorrelation function and its Fourier transform. Absolute values and percentage of energy distribution were obtained from 0 to 40 Hz for each frequency rate (0.25 Hz) and in various frequency bands (0-3, 3-6, 7-9, 9-15, 15-20, 20-30 and 30-40 Hz). The experimental methods (electrode implantation, data acquisition and processing) are described: 240 sequences corresponding to stable physiological states were analyzed after analogical-digital conversion (sampling rate: 10 ms, period of integration: 20 s). Whatever the state of vigilance, the hypothalamus had a fairly homogeneous function different from the spontaneous electrical activity of the cortex. The signal characteristics both in amplitude and frequency allowed to distinguish the hypothalamic areas studied (supra-optic area, mammillary body, postero-lateral hypothalamus). The results were reproducible and verified the information supplied by visual examination of the EEG. Following light stimulus, the evoked potentials were collected in the hypothalamus; there should therefore be convergence, yet since the answers are unstable and long latent, the neuronal paths followed by the impulse must not be direct. (author) [fr

  9. Spontaneous eye blinks are entrained by finger tapping.

    Science.gov (United States)

    Cong, D-K; Sharikadze, M; Staude, G; Deubel, H; Wolf, W

    2010-02-01

    We studied the mutual cross-talk between spontaneous eye blinks and continuous, self-paced unimanual and bimanual tapping. Both types of motor activities were analyzed with regard to their time-structure in synchronization-continuation tapping tasks which involved different task instructions, namely "standard" finger tapping (Experiment 1), "strong" tapping (Experiment 2) requiring more forceful finger movements, and "impulse-like" tapping (Experiment 3) where upward-downward finger movements had to be very fast. In a further control condition (Experiment 4), tapping was omitted altogether. The results revealed a prominent entrainment of spontaneous blink behavior by the manual tapping, with bimanual tapping being more effective than unimanual tapping, and with the "strong" and "impulse-like" tapping showing the largest effects on blink timing. Conversely, we found no significant effects of the tapping on the timing of the eye blinks across all experiments. The findings suggest a functional overlap of the motor control structures responsible for voluntary, rhythmic finger movements and eye blinking behavior.

  10. Implementation-intention encoding in a prospective memory task enhances spontaneous retrieval of intentions.

    Science.gov (United States)

    Rummel, Jan; Einstein, Gilles O; Rampey, Hilary

    2012-01-01

    Although forming implementation intentions (Gollwitzer, 1999) has been demonstrated to generally improve prospective memory, the underlying cognitive mechanisms are not completely understood. It has been proposed that implementation-intention encoding encourages spontaneous retrieval (McDaniel & Scullin, 2010). Alternatively one could assume the positive effect of implementation-intention encoding is caused by increased or more efficient monitoring for target cues. To test these alternative explanations and to further investigate the cognitive mechanisms underlying implementation-intention benefits, in two experiments participants formed the intention to respond to specific target cues in a lexical decision task with a special key, but then had to suspend this intention during an intervening word-categorisation task. Response times on trials directly following the occurrence of target cues in the intervening task were significantly slower with implementation-intention encoding than with standard encoding, indicating that spontaneous retrieval was increased (Experiment 1). However, when activation of the target cues was controlled for, similar slowing was found with both standard and implementation-intention encoding (Experiment 2). The results imply that implementation-intention encoding as well as increased target-cue activation foster spontaneous retrieval processes.

  11. A Qualitative Analysis of the Spontaneous Volunteer Response to the 2013 Sudan Floods: Changing the Paradigm.

    Science.gov (United States)

    Albahari, Amin; Schultz, Carl H

    2017-06-01

    Introduction While the concept of community resilience is gaining traction, the role of spontaneous volunteers during the initial response to disasters remains controversial. In an attempt to resolve some of the debate, investigators examined the activities of a spontaneous volunteer group called Nafeer after the Sudan floods around the city of Khartoum in August of 2013. Hypothesis Can spontaneous volunteers successfully initiate, coordinate, and deliver sustained assistance immediately after a disaster? This retrospective, descriptive case study involved: (1) interviews with Nafeer members that participated in the disaster response to the Khartoum floods; (2) examination of documents generated during the event; and (3) subsequent benchmarking of their efforts with the Sphere Handbook. Members who agreed to participate were requested to provide all documents in their possession relating to Nafeer. The response by Nafeer was then benchmarked to the Sphere Handbook's six core standards, as well as the 11 minimum standards in essential health services. A total of 11 individuals were interviewed (six from leadership and five from active members). Nafeer's activities included: food provision; delivery of basic health care; environmental sanitation campaigns; efforts to raise awareness; and construction and strengthening of flood barricades. Its use of electronic platforms and social media to collect data and coordinate the organization's response was effective. Nafeer adopted a flat-management structure, dividing itself into 14 committees. A Coordination Committee was in charge of liaising between all committees. The Health and Sanitation Committee supervised two health days which included mobile medical and dentistry clinics supported by a mobile laboratory and pharmacy. The Engineering Committee managed to construct and maintain flood barricades. Nafeer used crowd-sourcing to fund its activities, receiving donations locally and internationally using supporters

  12. Abnormal Spontaneous Neural Activity in Obsessive-Compulsive Disorder: A Resting-State Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Ping, Li; Su-Fang, Li; Hai-Ying, Han; Zhang-Ye, Dong; Jia, Luo; Zhi-Hua, Guo; Hong-Fang, Xiong; Yu-Feng, Zang; Zhan-Jiang, Li

    2013-01-01

    Neuroimaging studies of obsessive-compulsive disorder have found abnormalities in orbitofronto-striato-thalamic circuitry, including the orbitofrontal cortex, anterior cingulate cortex, caudate, and thalamus, but few studies have explored abnormal intrinsic or spontaneous brain activity in the resting state. We investigated both intra- and inter-regional synchronized activity in twenty patients with obsessive-compulsive disorder and 20 healthy controls using resting-state functional magnetic resonance imaging. Regional homogeneity (ReHo) and functional connectivity methods were used to analyze the intra- and inter-regional synchronized activity, respectively. Compared with healthy controls, patients with obsessive-compulsive disorder showed significantly increased ReHo in the orbitofrontal cortex, cerebellum, and insula, and decreased ReHo in the ventral anterior cingulate cortex, caudate, and inferior occipital cortex. Based on ReHo results, we determined functional connectivity differences between the orbitofrontal cortex and other brain regions in both patients with obsessive-compulsive disorder and controls. We found abnormal functional connectivity between the orbitofrontal cortex and ventral anterior cingulate cortex in patients with obsessive-compulsive disorder compared with healthy controls. Moreover, ReHo in the orbitofrontal cortex was correlated with the duration of obsessive-compulsive disorder. These findings suggest that increased intra- and inter-regional synchronized activity in the orbitofrontal cortex may have a key role in the pathology of obsessive-compulsive disorder. In addition to orbitofronto-striato-thalamic circuitry, brain regions such as the insula and cerebellum may also be involved in the pathophysiology of obsessive-compulsive disorder.

  13. Evidence for spontaneous serial refreshing in verbal working memory?

    Science.gov (United States)

    Vergauwe, Evie; Langerock, Naomi; Cowan, Nelson

    2018-04-01

    Working memory (WM) keeps information temporarily accessible for ongoing cognition. One proposed mechanism to keep information active in WM is refreshing. This mechanism is assumed to operate by bringing memory items into the focus of attention, thereby serially refreshing the content of WM. We report two experiments in which we examine evidence for the spontaneous occurrence of serial refreshing in verbal WM. Participants had to remember series of red letters, while black probe letters were presented between these memory items, with each probe to be judged present in or absent from the list presented so far, as quickly as possible (i.e., the probe-span task). Response times to the probes were used to infer the status of the representations in WM and, in particular, to examine whether the content of the focus of attention changed over time, as would be expected if serial refreshing occurs spontaneously during inter-item pauses. In sharp contrast with this hypothesis, our results indicate that the last-presented memory item remained in the focus of attention during the inter-item pauses of the probe-span task. We discuss how these findings help to define the boundary conditions of spontaneous refreshing of verbal material in WM, and discuss implications for verbal WM maintenance and forgetting.

  14. Spontaneous calf haematoma: case report.

    Science.gov (United States)

    Zubaidah, N H; Liew, N C

    2014-02-01

    Spontaneous calf haematoma is a rare condition and few case reports have been published in the English literature. Common conditions like deep vein thrombosis and traumatic gastrocnemius muscle tear need to be considered when a patient presents with unilateral calf swelling and tenderness. Ultrasound and Magnetic Resonance Imaging are essential for confirmation of diagnosis. The purpose of this paper is to report on a rare case of spontaneous calf hematoma and its diagnosis and management.

  15. F. VON HAYEK’S THEORY OF SPONTANEOUS ORDER

    Directory of Open Access Journals (Sweden)

    О. Nesterenko

    2013-04-01

    Full Text Available The essence and the genesis of spontaneous order are disclosed in the context of critical analysis of constructivism. The author’s approach to the definition of the characteristic features of the spontaneous order is proposed. The dichotomy of the order is revealed towards the economic sphere in form of spontaneous order and organization.

  16. Spontaneous pneumomediastinum after bench press training.

    Science.gov (United States)

    Nishino, Tomoya

    2017-04-01

    Spontaneous pneumomediastinum is often associated with asthma and mainly affects adolescent males with a tall, thin body habitus. A 17-year-old man complained of chest and pharyngeal pain after bench press training and spontaneous pneumomediastinum was diagnosed. It should be considered in the differential diagnosis of chest pain of uncertain cause.

  17. Spontaneous cooperation for prosocials, but not for proselfs: Social value orientation moderates spontaneous cooperation behavior

    Science.gov (United States)

    Mischkowski, Dorothee; Glöckner, Andreas

    2016-01-01

    Cooperation is essential for the success of societies and there is an ongoing debate whether individuals have therefore developed a general spontaneous tendency to cooperate or not. Findings that cooperative behavior is related to shorter decision times provide support for the spontaneous cooperation effect, although contrary results have also been reported. We show that cooperative behavior is better described as person × situation interaction, in that there is a spontaneous cooperation effect for prosocial but not for proself persons. In three studies, one involving population representative samples from the US and Germany, we found that cooperation in a public good game is dependent on an interaction between individuals’ social value orientation and decision time. Increasing deliberation about the dilemma situation does not affect persons that are selfish to begin with, but it is related to decreasing cooperation for prosocial persons that gain positive utility from outcomes of others and score high on the related general personality trait honesty/humility. Our results demonstrate that the spontaneous cooperation hypothesis has to be qualified in that it is limited to persons with a specific personality and social values. Furthermore, they allow reconciling conflicting previous findings by identifying an important moderator for the effect. PMID:26876773

  18. Pharmacological targeting of the ephrin receptor kinase signalling by GLPG1790 in vitro and in vivo reverts oncophenotype, induces myogenic differentiation and radiosensitizes embryonal rhabdomyosarcoma cells

    Directory of Open Access Journals (Sweden)

    Francesca Megiorni

    2017-10-01

    Full Text Available Abstract Background EPH (erythropoietin-producing hepatocellular receptors are clinically relevant targets in several malignancies. This report describes the effects of GLPG1790, a new potent pan-EPH inhibitor, in human embryonal rhabdomyosarcoma (ERMS cell lines. Methods EPH-A2 and Ephrin-A1 mRNA expression was quantified by real-time PCR in 14 ERMS tumour samples and in normal skeletal muscle (NSM. GLPG1790 effects were tested in RD and TE671 cell lines, two in vitro models of ERMS, by performing flow cytometry analysis, Western blotting and immunofluorescence experiments. RNA interfering experiments were performed to assess the role of specific EPH receptors. Radiations were delivered using an x-6 MV photon linear accelerator. GLPG1790 (30 mg/kg in vivo activity alone or in combination with irradiation (2 Gy was determined in murine xenografts. Results Our study showed, for the first time, a significant upregulation of EPH-A2 receptor and Ephrin-A1 ligand in ERMS primary biopsies in comparison to NSM. GLPG1790 in vitro induced G1-growth arrest as demonstrated by Rb, Cyclin A and Cyclin B1 decrease, as well as by p21 and p27 increment. GLPG1790 reduced migratory capacity and clonogenic potential of ERMS cells, prevented rhabdosphere formation and downregulated CD133, CXCR4 and Nanog stem cell markers. Drug treatment committed ERMS cells towards skeletal muscle differentiation by inducing a myogenic-like phenotype and increasing MYOD1, Myogenin and MyHC levels. Furthermore, GLPG1790 significantly radiosensitized ERMS cells by impairing the DNA double-strand break repair pathway. Silencing of both EPH-A2 and EPH-B2, two receptors preferentially targeted by GLPG1790, closely matched the effects of the EPH pharmacological inhibition. GLPG1790 and radiation combined treatments reduced tumour mass by 83% in mouse TE671 xenografts. Conclusions Taken together, our data suggest that altered EPH signalling plays a key role in ERMS development and that

  19. An adolescent with prolapsed omentum per rectum: Spontaneous rectal perforation managed laparoscopically

    Directory of Open Access Journals (Sweden)

    Ameet Kumar

    2017-01-01

    Full Text Available Spontaneous rupture of the rectum is a rare occurrence. A total laparoscopic approach to rectal perforation has only occasionally been reported. We report an unusual case of a young boy who developed a spontaneous rupture of the rectum following a trivial fall. A magnetic resonance imaging revealed a tear in the rectum at the peritoneal reflection with the omentum plugging it. He denied any history of rectal instrumentation or abnormal sexual activity. He had no history of constipation or rectal prolapse. The tear was repaired laparoscopically and a covering loop sigmoid colostomy was added. He made an uneventful post-operative recovery. Spontaneous rupture of the rectum can occur in younger age groups and even in the absence of significant trauma. One needs to diligently bring out a history of rectal trauma. Equally important is to rule out any underlying pathological condition. A laparoscopic approach is feasible, especially in early cases.

  20. Evaluation of pro-convulsant risk in the rat: spontaneous and provoked convulsions.

    Science.gov (United States)

    Esneault, Elise; Peyon, Guillaume; Froger-Colléaux, Christelle; Castagné, Vincent

    2015-01-01

    The aim of the present study was to evaluate the utility of different tests performed in the absence or presence of factors promoting seizures in order to evaluate the pro-convulsant effects of drugs. We studied the effects of theophylline in the rat since this is a well-known pro-convulsant substance in humans. The occurrence of spontaneous convulsions following administration of theophylline was evaluated by observation in the Irwin Test and by measuring brain activity using video-EEG recording in conscious telemetered animals. Theophylline was also tested in the electroconvulsive shock (ECS) threshold and pentylenetetrazole (PTZ)-induced convulsions tests, two commonly used models of provoked convulsions. In the Irwin test, theophylline induced convulsions in 1 out of 6 rats at 128 mg/kg. Paroxysmal/seizure activity was also observed by video-EEG recording in 4 out of the 12 animals tested at 128 mg/kg, in presence of clonic convulsions in 3 out of the 4 rats. Paroxysmal activity was observed in two rats in the absence of clear behavioral symptoms, indicating that some precursor signs can be detected using video-EEG. Clear pro-convulsant activity was shown over the dose-range 32-128 mg/kg in the ECS threshold and PTZ-induced convulsions tests. Evaluation of spontaneous convulsions provides information on the therapeutic window of a drug and the translational value of the approach is increased by the use of video-EEG. Tests based on provoked convulsions further complement the evaluation since they try to mimic high risk situations. Measurement of both spontaneous and provoked convulsions improves the evaluation of the pro-convulsant risk of novel pharmacological substances. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Spontaneous ischaemic stroke in dogs

    DEFF Research Database (Denmark)

    Gredal, Hanne Birgit; Skerritt, G. C.; Gideon, P.

    2013-01-01

    Translation of experimental stroke research into the clinical setting is often unsuccessful. Novel approaches are therefore desirable. As humans, pet dogs suffer from spontaneous ischaemic stroke and may hence offer new ways of studying genuine stroke injury mechanisms.......Translation of experimental stroke research into the clinical setting is often unsuccessful. Novel approaches are therefore desirable. As humans, pet dogs suffer from spontaneous ischaemic stroke and may hence offer new ways of studying genuine stroke injury mechanisms....

  2. Spontaneity and international marketing performance

    OpenAIRE

    Souchon, Anne L.; Hughes, Paul; Farrell, Andrew M.; Nemkova, Ekaterina; Oliveira, Joao S.

    2016-01-01

    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link. Purpose – The purpose of this paper is to ascertain how today’s international marketers can perform better on the global scene by harnessing spontaneity. Design/methodology/approach – The authors draw on contingency theory to develop a model of the spontaneity – international marketing performance relationship, and identify three potential m...

  3. Angiotensin I converting enzyme inhibitory activity and antihypertensive effect in spontaneously hypertensive rats of cobia (Rachycentron canadum) head papain hydrolysate.

    Science.gov (United States)

    Yang, Ping; Jiang, Yuchuan; Hong, Pengzhi; Cao, Wenhong

    2013-06-01

    Cobia head protein hydrolysate (CHPH) with angiotensin I converting enzyme (ACE) inhibitory activity was prepared with papain. The 3 kDa ultrafiltration filtrate CHPH-IV of the hydrolysate exerted a potent ACE inhibitory activity with IC50 being 0.24 mg/mL. The fractions with molecular weight located between 1749 Da and 173 Da represented up 66.96% of CHPH-IV, and those between 494 Da and 173 Da represented up 31.37% of CHPH-IV. It was found that the ACE inhibitory activity of CHPH-IV was intensified from IC50 0.24 mg/mL to 0.17 mg/mL after incubation with gastrointestinal proteases. The CHPH-IV significantly decreased the systolic blood pressure in a dose-dependent manner after oral administration to spontaneously hypertensive rats (SHR) at dose of 150 mg/kg, 600 mg/kg and 1200 mg/kg body weight. These results suggested that CHPH-IV from cobia head protein hydrolysate by papain could serve as a source of peptides with antihypertensive activity in functional food industry.

  4. Electroacupuncture Delays Hypertension Development through Enhancing NO/NOS Activity in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Hye Suk Hwang

    2011-01-01

    Full Text Available Using spontaneously hypertensive rats (SHR, this study investigated whether electroacupuncture (EA could reduce early stage hypertension by examining nitric oxide (NO levels in plasma and nitric oxide synthase (NOS levels in the mesenteric resistance artery. EA was applied to the acupuncture point Governor Vessel 20 (GV20 or to a non-acupuncture point in the tail twice weekly for 3 weeks under anesthesia. In conscious SHR and normotensive Wistar Kyoto (WKY rats, blood pressure was determined the day after EA treatment by the tail-cuff method. We measured plasma NO concentration, and evaluated endothelial NO syntheses (eNOS and neuronal NOS (nNOS protein expression in the mesenteric artery. Systolic blood pressure (SBP and diastolic blood pressure (DBP were lower after 3 weeks of GV20 treatment than EA at non-acupuncture point and no treatment control in SHR. nNOS expression by EA was significantly different between both WKY and no treatment SHR control, and EA at GV20 in SHR. eNOS expression was significantly high in EA at GV 20 compared with no treatment control. In conclusion, EA could attenuate the blood pressure elevation of SHR, along with enhancing NO/NOS activity in the mesenteric artery in SHR.

  5. Effects of taurine on resting-state fMRI activity in spontaneously hypertensive rats.

    Science.gov (United States)

    Chen, Vincent Chin-Hung; Hsu, Tsai-Ching; Chen, Li-Jeng; Chou, Hong-Chun; Weng, Jun-Cheng; Tzang, Bor-Show

    2017-01-01

    Attention deficit hyperactivity disorder (ADHD) is a global behavior illness among children and adults. To investigate the effects of taurine on resting-state fMRI activity in ADHD, a spontaneously hypertensive rat (SHR) animal model was adopted. Significantly decreased serum C-reactive protein (CRP) was detected in rats of Wistar Kyoto (WKY) high-taurine group and significantly decreased interleukin (IL)-1β and CRP were detected in rats of SHR low-taurine and high-taurine groups. Moreover, significantly higher horizontal locomotion was detected in rats of WKY low-taurine and SHR low-taurine groups than in those of controls. In contrast, significantly lower horizontal locomotion was detected in rats of the SHR high-taurine group than in those of the SHR control group. Additionally, significantly lower functional connectivity (FC) and mean amplitude of low-frequency fluctuation (mALFF) in the bilateral hippocampus in rats of WKY high-taurine and SHR high-taurine groups was detected. Notably, the mALFF in rats of the SHR low-taurine and high-taurine groups was significantly lower than in those of the SHR control group. These findings suggest that the administration of a high-dose taurine probably improves hyperactive behavior in SHR rats by ameliorating the inflammatory cytokines and modulating brain functional signals in SHR rats.

  6. Analysis of the Spontaneous Abortion in Chinese Married Women

    Institute of Scientific and Technical Information of China (English)

    高尔生; 邓新清; 何更生; 方可娟; 唐威; 楼超华

    1994-01-01

    The spontaneous abortion is a common type of pregnant outcomes. The spontaneous abortion rate can be used to indicate the women's fecundity and the level of the reproductive health. It is also a sensitive indicator for determing the social, economic, and health status and prenatal care. To explore the preventive method for spontaneous abortion and improve women's health level, it is important to evaluate the status of spontaneous abortion and to determine the factors affecting

  7. Situation and person attributions under spontaneous and intentional instructions: an fMRI study.

    Science.gov (United States)

    Kestemont, Jenny; Vandekerckhove, Marie; Ma, Ning; Van Hoeck, Nicole; Van Overwalle, Frank

    2013-06-01

    This functional magnetic resonance imaging (fMRI) research explores how observers make causal beliefs about an event in terms of the person or situation. Thirty-four participants read various short descriptions of social events that implied either the person or the situation as the cause. Half of them were explicitly instructed to judge whether the event was caused by something about the person or the situation (intentional inferences), whereas the other half was instructed simply to read the material carefully (spontaneous inferences). The results showed common activation in areas related to mentalizing, across all types of causes or instructions (posterior superior temporal sulcus, temporo-parietal junction, precuneus). However, the medial prefrontal cortex was activated only under spontaneous instructions, but not under intentional instruction. This suggests a bias toward person attributions (e.g. fundamental attribution bias). Complementary to this, intentional situation attributions activated a stronger and more extended network compared to intentional person attributions, suggesting that situation attributions require more controlled, extended and broader processing of the information.

  8. Slow spontaneous [Ca2+]i oscillations reflect nucleotide release from renal epithelia

    DEFF Research Database (Denmark)

    Geyti, Christine Stride; Odgaard, Elvin V. P.; Overgaard, Morten Thaarup

    2008-01-01

    Renal epithelia can be provoked mechanically to release nucleotides, which subsequently increases the intracellular Ca(2+) concentration [Ca(2+)](i) through activation of purinergic (P2) receptors. Cultured cells often show spontaneous [Ca(2+)](i) oscillations, a feature suggested to involve nucl...

  9. Spontaneous motor unit behavior in human thenar muscles after spinal cord injury

    NARCIS (Netherlands)

    Zijdewind, Inge; Thomas, CK

    Our first aim was to characterize spontaneous motor unit activity in thenar muscles influenced by chronic cervical spinal cord injury. Thenar surface electromyography (EMG), intramuscular EMG, and abduction and flexion forces were recorded. Subjects were instructed to relax for 2 min. Units still

  10. Scaffold protein enigma homolog 1 overcomes the repression of myogenesis activation by inhibitor of DNA binding 2

    Energy Technology Data Exchange (ETDEWEB)

    Nakatani, Miyuki [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Ito, Jumpei [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Japan Society for the Promotion of Science, Tokyo, 102-0083 (Japan); Koyama, Riko [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Iijima, Masumi; Yoshimoto, Nobuo [The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan); Niimi, Tomoaki [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Kuroda, Shun' ichi [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan); Maturana, Andrés D., E-mail: maturana@agr.nagoya-u.ac.jp [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan)

    2016-05-27

    Enigma Homolog 1 (ENH1) is a scaffold protein for signaling proteins and transcription factors. Previously, we reported that ENH1 overexpression promotes the differentiation of C2C12 myoblasts. However, the molecular mechanism underlying the role of ENH1 in the C2C12 cells differentiation remains elusive. ENH1 was shown to inhibit the proliferation of neuroblastoma cells by sequestering Inhibitor of DNA binding protein 2 (Id2) in the cytosol. Id2 is a repressor of basic Helix-Loop-Helix transcription factors activity and prevents myogenesis. Here, we found that ENH1 overcome the Id2 repression of C2C12 cells myogenic differentiation and that ENH1 overexpression promotes mice satellite cells activation, the first step toward myogenic differentiation. In addition, we show that ENH1 interacted with Id2 in C2C12 cells and mice satellite cells. Collectively, our results suggest that ENH1 plays an important role in the activation of myogenesis through the repression of Id2 activity. -- Highlights: •Enigma Homolog 1 (ENH1) is a scaffold protein. •ENH1 binds to inhibitor of DNA binding 2 (Id2) in myoblasts. •ENH1 overexpression overcomes the Id2's repression of myogenesis. •The Id2-ENH1 complex play an important role in the activation of myogenesis.

  11. Spontaneous Vesicle Recycling in the Synaptic Bouton

    Directory of Open Access Journals (Sweden)

    Sven eTruckenbrodt

    2014-12-01

    Full Text Available The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover.

  12. Spontaneous Atraumatic Mediastinal Hemorrhage

    Directory of Open Access Journals (Sweden)

    Morkos Iskander BSc, BMBS, MRCS, PGCertMedEd

    2013-04-01

    Full Text Available Spontaneous atraumatic mediastinal hematomas are rare. We present a case of a previously fit and well middle-aged lady who presented with acute breathlessness and an increasing neck swelling and spontaneous neck bruising. On plain chest radiograph, widening of the mediastinum was noted. The bruising was later confirmed to be secondary to mediastinal hematoma. This life-threatening diagnostic conundrum was managed conservatively with a multidisciplinary team approach involving upper gastrointestinal and thoracic surgeons, gastroenterologists, radiologists, intensivists, and hematologists along with a variety of diagnostic modalities. A review of literature is also presented to help surgeons manage such challenging and complicated cases.

  13. Spontaneous Retropharyngeal Emphysema: A Case Report | Chi ...

    African Journals Online (AJOL)

    ... is a rare clinical condition in pediatric otolaryngology. The predominant symptoms are sore throat, odynophagia, dysphagia, and neck pain. Here, we report a case of spontaneous retropharyngeal emphysema. Keywords: Iatrogenic injury, retropharyngeal emphysema, spontaneous retropharyngeal emphysem, trauma ...

  14. Pregnancy causes diminished myogenic tone and outward hypotrophic remodeling of the cerebral vein of Galen.

    Science.gov (United States)

    van der Wijk, Anne-Eva; Schreurs, Malou P H; Cipolla, Marilyn J

    2013-04-01

    Pregnancy increases the risk of several complications associated with the cerebral veins, including thrombosis and hemorrhage. In contrast to the cerebral arteries and arterioles, few studies have focused on the effect of pregnancy on the cerebral venous side. Here, we investigated for the first time the effect of pregnancy on the function and structure of the cerebral vein of Galen in rats. Our major finding was that cerebral veins from late-pregnant (LP, n=11) rats had larger lumen diameters and thinner walls than veins from nonpregnant (NP, n=13) rats, indicating that pregnancy caused outward hypotrophic remodeling of the vein of Galen. Moreover, veins from NP animals had a small amount of myogenic tone at 10 mm Hg (3.9±1.0%) that was diminished in veins during pregnancy (0.8±0.3%; Ppregnancy. Using immunohistochemistry, we show that the vein of Galen receives perivascular innervation, and that serotonergic innervation of cerebral veins is significantly higher in veins from LP animals. Outward hypotrophic remodeling and diminished tone of cerebral veins during pregnancy may contribute to the development of venous pathology through elevated wall tension and wall stress, and possibly by promoting venous blood stasis.

  15. Spontaneous regression of pulmonary bullae

    International Nuclear Information System (INIS)

    Satoh, H.; Ishikawa, H.; Ohtsuka, M.; Sekizawa, K.

    2002-01-01

    The natural history of pulmonary bullae is often characterized by gradual, progressive enlargement. Spontaneous regression of bullae is, however, very rare. We report a case in which complete resolution of pulmonary bullae in the left upper lung occurred spontaneously. The management of pulmonary bullae is occasionally made difficult because of gradual progressive enlargement associated with abnormal pulmonary function. Some patients have multiple bulla in both lungs and/or have a history of pulmonary emphysema. Others have a giant bulla without emphysematous change in the lungs. Our present case had treated lung cancer with no evidence of local recurrence. He had no emphysematous change in lung function test and had no complaints, although the high resolution CT scan shows evidence of underlying minimal changes of emphysema. Ortin and Gurney presented three cases of spontaneous reduction in size of bulla. Interestingly, one of them had a marked decrease in the size of a bulla in association with thickening of the wall of the bulla, which was observed in our patient. This case we describe is of interest, not only because of the rarity with which regression of pulmonary bulla has been reported in the literature, but also because of the spontaneous improvements in the radiological picture in the absence of overt infection or tumor. Copyright (2002) Blackwell Science Pty Ltd

  16. Potenciais miogênicos evocados vestibulares: metodologias de registro em homens e cobaias Vestibular evoked myogenic potential: recording methods in humans and guinea pigs

    Directory of Open Access Journals (Sweden)

    Aline Cabral de Oliveira

    2008-10-01

    Full Text Available O potencial miogênico evocado vestibular (VEMP é um teste clínico que avalia a função vestibular através de um reflexo vestíbulo-cervical inibitório captado nos músculos do corpo em resposta à estimulação acústica de alta intensidade. OBJETIVO: Verificar e analisar os diversos métodos de registro dos potenciais miogênicos evocados vestibulares no homem e em cobaias. MATERIAL E MÉTODO: Realizou-se busca eletrônica nas bases de dados MEDLINE, LILACS, SCIELO e COCHRANE. RESULTADOS: Foram verificadas divergências quanto às formas de registro dos potenciais miogênicos evocados vestibulares, relacionadas com os seguintes fatores: posição do paciente no momento do registro, tipo de estímulo sonoro utilizado (clicks ou tone bursts, parâmetros para a promediação dos estímulos (intensidade, freqüência, tempo de apresentação, filtros, ganho de amplificação das respostas e janelas para captação dos estímulos, tipo de fone utilizado e forma de apresentação dos estímulos (monoaural ou binaural, ipsi ou contralateral. CONCLUSÃO: Não existe consenso na literatura quanto ao melhor método de registro dos potenciais evocados miogênicos vestibulares, havendo necessidade de pesquisas mais específicas para comparação entre estes registros e a definição de um modelo padrão para a utilização na prática clínica.The vestibular evoked myogenic potential (VEMP is a clinical test that assess the vestibular function by means of an inhibitory vestibulo-neck reflex, recorded in body muscles in response to high intensity acoustic stimuli. AIM: To check and analyze the different methods used to record VEMPs in humans and in guinea pigs. MATERIALS AND METHODS: We researched the following databases: MEDLINE, LILACS, SCIELO and COCHRANE. RESULTS: we noticed discrepancies in relation to the ways used to record the vestibular evoked myogenic potentials in relation to the following factors: patient position at the time of recording

  17. Spontaneous disappearance of two asymptomatic arachnoid cysts in two different locations.

    Science.gov (United States)

    Cokluk, C; Senel, A; Celik, F; Ergür, H

    2003-04-01

    We report two children with asymptomatic arachnoid cysts which resolved spontaneously without any surgical intervention and history of major head and body trauma. The first child was a 10-year-old boy with an arachnoid cyst in the right sylvian fissure. The second child was a 1-year-old girl with a right cerebral convexity arachnoid cyst. Both of them were asymptomatic. Arachnoid cysts spontaneously disappeared within 2 years following initial diagnosing. There was no major head and body trauma except usual home, school and sports activity. We speculated that the cysts ruptured into cerebrospinal fluid circulation by the mechanical effects of some forced activities to the brain tissue and cyst, such as excessive breathing, coughing and sport activities. These factors may change the balance between intracystic and pericystic pressure and facilitate the rupturing of the cyst into subdural, subarachnoid and intraventricular spaces. These cases demonstrate that neurosurgical intervention of asymptomatic arachnoid cysts is not absolutely indicated in the paediatric age group. Close follow up with computerized tomography (CT) and magnetic resonance imaging (MRI) is a treatment option in the patient with arachnoid cysts located in the middle cranial fossa and cerebral convexity.

  18. Video-assisted thoracoscopy treatment of spontaneous pneumothorax

    International Nuclear Information System (INIS)

    Chen Haitao; Ren Jian; Che Jiaming; Hang Junbiao; Qiu Weicheng; Chen Zhongyuan

    2002-01-01

    Objective: To propose a treatment protocol by video thoracoscopy in spontaneous pneumothorax. Methods: One hundred and three patients underwent Video-assisted thoracoscopy (VATS) treatment of spontaneous pneumothorax and hemothorax. Indications included recurrent pneumothorax, persistent air leakage following conservative therapy, complicated hemothorax and CT scan identified bullae formation. Results: No operative deaths occurred, conversion rate was 2.91%, recurrence rate was 0.97%, complication rate was 3.81% and mean postoperative hospital stay was 5.6 days. Conclusions: VATS treatment of spontaneous pneumothorax is better than open chest surgery and also superior than conservative therapy

  19. Spontaneous Dissection of the Superior Mesenteric Artery

    International Nuclear Information System (INIS)

    Sheldon, Patrick J.; Esther, James B.; Sheldon, Elana L.; Sparks, Steven R.; Brophy, David P.; Oglevie, Steven B.

    2001-01-01

    Spontaneous dissection of the superior mesenteric artery (SMA) is a rare occurrence, especially when not associated with aortic dissection. Currently, only 28 cases appear to have been reported. Due to the scarcity of cases in the literature, the natural history of isolated, spontaneous SMA dissection is unclear. CT has been reported to be useful for the initial diagnosis of SMA dissection [2-5]. We present two recent cases of spontaneous SMA dissection in which enhanced spiral CT was instrumental in following the disease process and guiding clinical decision making

  20. Reduction in spontaneous firing of mouse excitatory layer 4 cortical neurons following visual classical conditioning

    Science.gov (United States)

    Bekisz, Marek; Shendye, Ninad; Raciborska, Ida; Wróbel, Andrzej; Waleszczyk, Wioletta J.

    2017-08-01

    The process of learning induces plastic changes in neuronal network of the brain. Our earlier studies on mice showed that classical conditioning in which monocular visual stimulation was paired with an electric shock to the tail enhanced GABA immunoreactivity within layer 4 of the monocular part of the primary visual cortex (V1), contralaterally to the stimulated eye. In the present experiment we investigated whether the same classical conditioning paradigm induces changes of neuronal excitability in this cortical area. Two experimental groups were used: mice that underwent 7-day visual classical conditioning and controls. Patch-clamp whole-cell recordings were performed from ex vivo slices of mouse V1. The slices were perfused with the modified artificial cerebrospinal fluid, the composition of which better mimics the brain interstitial fluid in situ and induces spontaneous activity. The neuronal excitability was characterized by measuring the frequency of spontaneous action potentials. We found that layer 4 star pyramidal cells located in the monocular representation of the "trained" eye in V1 had lower frequency of spontaneous activity in comparison with neurons from the same cortical region of control animals. Weaker spontaneous firing indicates decreased general excitability of star pyramidal neurons within layer 4 of the monocular representation of the "trained" eye in V1. Such effect could result from enhanced inhibitory processes accompanying learning in this cortical area.

  1. Endometriosis-related spontaneous diaphragmatic rupture.

    Science.gov (United States)

    Triponez, Frédéric; Alifano, Marco; Bobbio, Antonio; Regnard, Jean-François

    2010-10-01

    Non-traumatic, spontaneous diaphragmatic rupture is a rare event whose pathophysiology is not known. We report the case of endometriosis-related spontaneous rupture of the right diaphragm with intrathoracic herniation of the liver, gallbladder and colon. We hypothesize that the invasiveness of endometriotic tissue caused diaphragm fragility, which finally lead to its complete rupture without traumatic event. The treatment consisted of a classical management of diaphragmatic rupture, with excision of the endometriotic nodule followed by medical ovarian suppression for six months.

  2. Fracture of maternal sternum during spontaneous delivery.

    Science.gov (United States)

    Stubert, J; Gerber, B

    2009-12-01

    We report of a maternal sternal fracture during a spontaneous delivery in a 31-year-old primipara without a suitable trauma. The putative mechanism of fracture was strong hyperflexion of the thoracic spine and additional cervical flexion with pushing the chin to the thorax due to active management of labour. The history of the healthy woman was free of related risk factors. A possible promoting factor might be pregnancy-induced bone loss. Although there were clear symptoms, the diagnosis of the fracture was delayed by a week because nobody took account of such a possibility.

  3. SWAP-70 contributes to spontaneous transformation of mouse embryo fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yu-Tzu; Shu, Chung-Li; Lai, Jing-Yang; Lin, Ching-Yu; Chuu, Chih-Pin [Institute of Cellular and System Medicine National Health Research Institute, Zhunan Town 35053, Miaoli County, Taiwan, ROC (China); Morishita, Kazuhiro; Ichikawa, Tomonaga [Division of Tumor and Cellular Biochemistry Department of Medical Sciences Faculty of Medicine University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-shi, Miyazaki 889-1692 Japan (Japan); Jessberger, Rolf [Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Dresden University of Technology, Dresden (Germany); Fukui, Yasuhisa, E-mail: 990412@nhri.org.tw [Institute of Cellular and System Medicine National Health Research Institute, Zhunan Town 35053, Miaoli County, Taiwan, ROC (China)

    2016-07-15

    Mouse embryo fibroblasts (MEFs) grow slowly after cultivation from animals, however, after an extended period of cultivation, their growth accelerates. We found that SWAP-70 deficient MEFs failed to increase growth rates. They maintain normal growth rates and proliferation cycles for at least 5 years. Complementing SWAP-70 deficiency in one of these MEF clones, MEF1F2, by expressing human SWAP-70 resulted in fast growth of the cells after further cultivation for a long period. The resulting cells show a transformation phenotype, since they grow on top of each other and do not show contact inhibition. This phenotype was reverted when sanguinarine, a putative SWAP-70 inhibitor, was added. Two SWAP-70 expressing clones were examined in detail. Even after cell density became very high their cdc2 and NFκB were still activated suggesting that they do not stop growing. One of the clones formed colonies in soft agar and formed tumors in nude mice. Lately, one more clone became transformed being able to make colonies in soft agar. We maintain 4 human SWAP-70 expressing MEF1F2 cell lines. Three out of 4 clones exhibited transforming phenotypes. The mouse SWAP-70 gene also promoted transformation of MEFs. Taken together our data suggest that SWAP-70 is not a typical oncogene, but is required for spontaneous transformation of MEFs. - Highlights: • Mouse embryo fibroblasts (MEFs) lacking SWAP-70 do not cause spontaneous transform. • Adding back of SWAP-70 to SWAP-70-deficient MEFs induces spontaneous transformation. • SWAP-70 is required for spontaneous transformation of MEFs.

  4. Spontaneous Scalarization: Dead or Alive?

    Science.gov (United States)

    Berti, Emanuele; Crispino, Luis; Gerosa, Davide; Gualtieri, Leonardo; Horbatsch, Michael; Macedo, Caio; Okada da Silva, Hector; Pani, Paolo; Sotani, Hajime; Sperhake, Ulrich

    2015-04-01

    In 1993, Damour and Esposito-Farese showed that a wide class of scalar-tensor theories can pass weak-field gravitational tests and exhibit nonperturbative strong-field deviations away from General Relativity in systems involving neutron stars. These deviations are possible in the presence of ``spontaneous scalarization,'' a phase transition similar in nature to spontaneous magnetization in ferromagnets. More than twenty years after the original proposal, binary pulsar experiments have severely constrained the possibility of spontaneous scalarization occurring in nature. I will show that these experimental constraints have important implications for the torsional oscillation frequencies of neutron stars and for the so-called ``I-Love-Q'' relations in scalar-tensor theories. I will also argue that there is still hope to observe strong scalarization effects, despite the strong experimental bounds on the original mechanism. In particular, I will discuss two mechanisms that could produce strong scalarization in neutron stars: anisotropy and multiscalarization. This work was supported by NSF CAREER Award PHY-1055103.

  5. Detection of target phonemes in spontaneous and read speech.

    Science.gov (United States)

    Mehta, G; Cutler, A

    1988-01-01

    Although spontaneous speech occurs more frequently in most listeners' experience than read speech, laboratory studies of human speech recognition typically use carefully controlled materials read from a script. The phonological and prosodic characteristics of spontaneous and read speech differ considerably, however, which suggests that laboratory results may not generalise to the recognition of spontaneous speech. In the present study listeners were presented with both spontaneous and read speech materials, and their response time to detect word-initial target phonemes was measured. Responses were, overall, equally fast in each speech mode. However, analysis of effects previously reported in phoneme detection studies revealed significant differences between speech modes. In read speech but not in spontaneous speech, later targets were detected more rapidly than targets preceded by short words. In contrast, in spontaneous speech but not in read speech, targets were detected more rapidly in accented than in unaccented words and in strong than in weak syllables. An explanation for this pattern is offered in terms of characteristic prosodic differences between spontaneous and read speech. The results support claims from previous work that listeners pay great attention to prosodic information in the process of recognising speech.

  6. Infusion of adrenergic receptor agonists and antagonists into the locus coeruleus and ventricular system of the brain. Effects on swim-motivated and spontaneous motor activity.

    Science.gov (United States)

    Weiss, J M; Simson, P G; Hoffman, L J; Ambrose, M J; Cooper, S; Webster, A

    1986-04-01

    These studies examined how pharmacological stimulation and blockade of alpha receptors would affect active motor behavior in rats. In experiment I, alpha-2 receptor antagonists (piperoxane, yohimbine) and agonists [clonidine, norepinephrine (NE)] were infused into various locations in the ventricular system of the brain, including the locus coeruleus region, and motor activity was measured. Activity was measured principally in a swim test but spontaneous (ambulatory) activity was also recorded while drugs were being infused. When infused into the locus coeruleus region, small doses of the antagonists piperoxane and yohimbine depressed activity in the swim test while infusion of the agonists clonidine and NE had the opposite effect of stimulating activity. These effects were highly specific to the region of the locus coeruleus, since infusions of these drugs into other nearby locations in the ventricular system or use of larger doses had different, often opposite effects. This was especially true of clonidine and NE which profoundly depressed activity when infused posterior to the locus coeruleus, particularly over the dorsal vagal complex. Infusion of small doses of these drugs into the lateral ventricle had effects similar to infusion into the locus coeruleus region, though less pronounced. Changes in spontaneous motor activity were also observed, but this measure differentiated the groups less well than did the swim test. In experiment II, the predominantly postsynaptic receptor agonists isoproterenol (beta agonist) and phenylephrine (alpha-1 agonist) were infused into the ventricular system. Since infusions of piperoxane and yohimbine into the locus coeruleus that decreased activity in experiment I increase the release of NE by blocking alpha-2 inhibitory receptors on cell bodies and dendrites of the locus coeruleus, experiment II tested whether ventricular infusion of predominantly postsynaptic receptor agonists would also decrease activity in the swim test

  7. Spontaneous CP violation on the lattice

    CERN Document Server

    Laine, Mikko

    2000-01-01

    At finite temperatures around the electroweak phase transition, the thermodynamics of the MSSM can be described by a three-dimensional two Higgs doublet effective theory. This effective theory has a phase where CP is spontaneously violated. We study spontaneous CP violation with non-perturbative lattice simulations, and analyse whether one could end up in this phase for any physical MSSM parameter values.

  8. Spontaneous pneumothorax associated with lung cancer

    International Nuclear Information System (INIS)

    Sung, Dong Wook; Jung, Seung Hyae; Yoon, Yup; Lim, Jae Hoon; Cho, Kyu Soek; Yang, Moon Ho

    1991-01-01

    Spontaneous pneumothorax is a rare manifestation of lung cancer. Eight cases of pneumothorax found in 1648 patients with lung cancer from 1979-1990 are reported. Histopathologic types of cancer were adenocarcinoma in three cases, squamous cell carcinoma in two cases, bronchioloalveolar carcinoma in two cases, and metastatic renal cell carcinoma in one case. The primary tumor mass was not found even after thoracotomy in two cases. Spontaneous pneumothorax occurred on the ipsilateral side of the cancer. All the patients were more than 40 years old with a history of smoking 1-2 packs a day for 20 to 50 years, and had chronic lung diseases. The authors emphasize that bronchogenic carcinoma may be one of the causes of spontaneous pneumothorax in appropriate clinical settings

  9. Spontaneous soft tissue hematomas.

    Science.gov (United States)

    Dohan, A; Darnige, L; Sapoval, M; Pellerin, O

    2015-01-01

    Spontaneous muscle hematomas are a common and serious complication of anticoagulant treatment. The incidence of this event has increased along with the rise in the number of patients receiving anticoagulants. Radiological management is both diagnostic and interventional. Computed tomography angiography (CTA) is the main tool for the detection of hemorrhage to obtain a positive, topographic diagnosis and determine the severity. Detection of an active leak of contrast material during the arterial or venous phase is an indication for the use of arterial embolization. In addition, the interventional radiological procedure can be planned with CTA. Arterial embolization of the pedicles that are the source of the bleeding is an effective technique. The rate of technical and clinical success is 90% and 86%, respectively. Copyright © 2015 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  10. Spontaneous generation in medieval Jewish philosophy and theology.

    Science.gov (United States)

    Gaziel, Ahuva

    2012-01-01

    The concept of life forms emerging from inanimate matter--spontaneous generation--was widely accepted until the nineteenth century. Several medieval Jewish scholars acknowledged this scientific theory in their philosophical and religious contemplations. Quite interestingly, it served to reinforce diverse, or even opposite, theological conclusions. One approach excluded spontaneously-generated living beings form the biblical account of creation or the story of the Deluge. Underlying this view is an understanding that organisms that generate spontaneously evolve continuously in nature and, therefore, do not require divine intervention in their formation or survival during disastrous events. This naturalistic position reduces the miraculous dimension of reality. Others were of the opinion that spontaneous generation is one of the extraordinary marvels exhibited in this world and, accordingly, this interpretation served to accentuate the divine aspect of nature. References to spontaneous generation also appear in legal writings, influencing practical applications such as dietary laws and actions forbidden on the Sabbath.

  11. Spontaneous low-frequency oscillations in cerebral vessels

    DEFF Research Database (Denmark)

    Schytz, Henrik W; Hansson, Andreas; Phillip, Dorte

    2010-01-01

    ). Analysis of CA by measurement of spontaneous oscillations in the low-frequency spectrum in cerebral vessels might be a useful tool for assessing risk and investigating different treatment strategies in carotid artery disease (CAD) and stroke. We reviewed studies exploring spontaneous oscillations...

  12. An Evolutionary Game Theory Model of Spontaneous Brain Functioning.

    Science.gov (United States)

    Madeo, Dario; Talarico, Agostino; Pascual-Leone, Alvaro; Mocenni, Chiara; Santarnecchi, Emiliano

    2017-11-22

    Our brain is a complex system of interconnected regions spontaneously organized into distinct networks. The integration of information between and within these networks is a continuous process that can be observed even when the brain is at rest, i.e. not engaged in any particular task. Moreover, such spontaneous dynamics show predictive value over individual cognitive profile and constitute a potential marker in neurological and psychiatric conditions, making its understanding of fundamental importance in modern neuroscience. Here we present a theoretical and mathematical model based on an extension of evolutionary game theory on networks (EGN), able to capture brain's interregional dynamics by balancing emulative and non-emulative attitudes among brain regions. This results in the net behavior of nodes composing resting-state networks identified using functional magnetic resonance imaging (fMRI), determining their moment-to-moment level of activation and inhibition as expressed by positive and negative shifts in BOLD fMRI signal. By spontaneously generating low-frequency oscillatory behaviors, the EGN model is able to mimic functional connectivity dynamics, approximate fMRI time series on the basis of initial subset of available data, as well as simulate the impact of network lesions and provide evidence of compensation mechanisms across networks. Results suggest evolutionary game theory on networks as a new potential framework for the understanding of human brain network dynamics.

  13. Spontaneous rupture of vaginal enterocele

    DEFF Research Database (Denmark)

    Svendsen, J H; Galatius, H; Hansen, P K

    1985-01-01

    Spontaneous rupture of an enterocele is a rare complication. Only 24 cases including the present case have been reported in the literature. The patients were elderly and had had at least one vaginal operation. The patients were remarkably unaffected symptomatically on admission.......Spontaneous rupture of an enterocele is a rare complication. Only 24 cases including the present case have been reported in the literature. The patients were elderly and had had at least one vaginal operation. The patients were remarkably unaffected symptomatically on admission....

  14. Spontaneous emission spectra and simulating multiple spontaneous generation coherence in a five-level atomic medium

    International Nuclear Information System (INIS)

    Li Jiahua; Liu Jibing; Qi Chunchao; Chen Aixi

    2006-01-01

    We investigate the features of the spontaneous emission spectra in a coherently driven cold five-level atomic system by means of a radio frequency (rf) or microwave field driving a hyperfine transition within the ground state. It is shown that a few interesting phenomena such as spectral-line narrowing, spectral-line enhancement, spectral-line suppression, and spontaneous emission quenching can be realized by modulating the frequency and intensity of the rf-driving field in our system. In the dressed-state picture of the coupling and rf-driving fields, we find that this coherently driven atomic system has three close-lying levels so that multiple spontaneously generated coherence (SGC) arises. Our considered atomic model can be found in real atoms, such as rubidium or sodium, so a corresponding experiment can be done to observe the expected phenomena related to SGC reported by Fountoulakis et al. [Phys. Rev. A 73, 033811 (2006)], since no rigorous conditions are required

  15. Growth on elastic silicone substrate elicits a partial myogenic response in periodontal ligament derived stem cells

    Directory of Open Access Journals (Sweden)

    Daniel Pelaez

    2016-12-01

    Full Text Available The processes of cellular differentiation and phenotypic maintenance can be influenced by stimuli from a variety of different factors. One commonly overlooked factor is the mechanical properties of the growth substrate in which stem cells are maintained or differentiated down various lineages. Here we explored the effect that growth on an elastic silicone substrate had on the myogenic expression and cytoskeletal morphology of periodontal ligament derived stem cells. Cells were grown on either collagen I coated tissue culture polystyrene plates or collagen I coated elastic silicone membranes for a period of 4 days without further induction from soluble factors in the culture media. Following the 4-day growth, gene expression and immunohistochemical analysis for key cardiomyogenic markers was performed along with a morphological assessment of cytoskeletal organization. Results show that cells grown on the elastic substrate significantly upregulate key markers associated with contractile activity in muscle tissues. Namely, the myosin light chain polypeptides 2 and 7, as well as the myosin heavy chain polypeptide 7 genes underwent a statistically significant upregulation in the cells grown on elastic silicone membranes. Similarly, the cells on the softer elastic substrate stained positive for both sarcomeric actin and cardiac troponin t proteins following just 4 days of growth on the softer material. Cytoskeletal analysis showed that substrate stiffness had a marked effect on the organization and distribution of filamentous actin fibers within the cell body. Growth on silicone membranes produced flatter and shorter cellular morphologies with filamentous actin fibers projecting anisotropically throughout the cell body. These results demonstrate how crucial the mechanical properties of the growth substrate of cells can be on the ultimate cellular phenotype. These observations highlight the need to further optimize differentiation protocols to enhance

  16. Are human spontaneous otoacoustic emissions generated by a chain of coupled nonlinear oscillators?

    NARCIS (Netherlands)

    Wit, Hero P.; van Dijk, Pim

    Spontaneous otoacoustic emissions (SOAEs) are generated by self-sustained cochlear oscillators. Properties of a computational model for a linear array of active oscillators with nearest neighbor coupling are investigated. The model can produce many experimentally well-established properties of

  17. Mechanisms underlying odorant-induced and spontaneous calcium signals in olfactory receptor neurons of spiny lobsters, Panulirus argus.

    Science.gov (United States)

    Tadesse, Tizeta; Derby, Charles D; Schmidt, Manfred

    2014-01-01

    We determined if a newly developed antennule slice preparation allows studying chemosensory properties of spiny lobster olfactory receptor neurons under in situ conditions with Ca(2+) imaging. We show that chemical stimuli reach the dendrites of olfactory receptor neurons but not their somata, and that odorant-induced Ca(2+) signals in the somata are sufficiently stable over time to allow stimulation with a substantial number of odorants. Pharmacological manipulations served to elucidate the source of odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons. Both Ca(2+) signals are primarily mediated by an influx of extracellular Ca(2+) through voltage-activated Ca(2+) channels that can be blocked by CoCl2 and the L-type Ca(2+) channel blocker verapamil. Intracellular Ca(2+) stores contribute little to odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations. The odorant-induced Ca(2+) transients as well as the spontaneous Ca(2+) oscillations depend on action potentials mediated by Na(+) channels that are largely TTX-insensitive but blocked by the local anesthetics tetracaine and lidocaine. Collectively, these results corroborate the conclusion that odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons closely reflect action potential activity associated with odorant-induced phasic-tonic responses and spontaneous bursting, respectively. Therefore, both types of Ca(2+) signals represent experimentally accessible proxies of spiking.

  18. Spontaneous brain network activity: Analysis of its temporal complexity

    Directory of Open Access Journals (Sweden)

    Mangor Pedersen

    2017-06-01

    Full Text Available The brain operates in a complex way. The temporal complexity underlying macroscopic and spontaneous brain network activity is still to be understood. In this study, we explored the brain’s complexity by combining functional connectivity, graph theory, and entropy analyses in 25 healthy people using task-free functional magnetic resonance imaging. We calculated the pairwise instantaneous phase synchrony between 8,192 brain nodes for a total of 200 time points. This resulted in graphs for which time series of clustering coefficients (the “cliquiness” of a node and participation coefficients (the between-module connectivity of a node were estimated. For these two network metrics, sample entropy was calculated. The procedure produced a number of results: (1 Entropy is higher for the participation coefficient than for the clustering coefficient. (2 The average clustering coefficient is negatively related to its associated entropy, whereas the average participation coefficient is positively related to its associated entropy. (3 The level of entropy is network-specific to the participation coefficient, but not to the clustering coefficient. High entropy for the participation coefficient was observed in the default-mode, visual, and motor networks. These results were further validated using an independent replication dataset. Our work confirms that brain networks are temporally complex. Entropy is a good candidate metric to explore temporal network alterations in diseases with paroxysmal brain disruptions, including schizophrenia and epilepsy. In recent years, connectomics has provided significant insights into the topological complexity of brain networks. However, the temporal complexity of brain networks still remains somewhat poorly understood. In this study we used entropy analysis to demonstrate that the properties of network segregation (the clustering coefficient and integration (the participation coefficient are temporally complex

  19. A new class of spontaneously polarized materials

    DEFF Research Database (Denmark)

    Field, David; Plekan, Oksana; Cassidy, Andrew

    2011-01-01

    Very large electric fields form spontaneously within films of seemingly prosaic chemicals such as nitrous oxide or propane.We describe how the discovery of this unexpected phenomenon took place and how we attempt to understand the nature of the new class of spontaneously polarized materials...

  20. Spontaneous rupture of choledochal cyst: case report

    International Nuclear Information System (INIS)

    Shin, Ho Seob; Nam, Kyung Jin; Lee, Jin Hwa; Kim, Chan Sung; Choi, Jong Cheol; Oh, Jong Young

    2002-01-01

    Spontaneous rupture of a choledochal cyst leading to biliary peritonitis is a rare complication which can be fatal if not promptly diagnosed. The authors report the ultrasound and CT findings of two cases of spontaneous choledochal cystic rupture and the biliary peritonitis which ensued

  1. Spontaneous rupture of choledochal cyst: case report

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ho Seob; Nam, Kyung Jin; Lee, Jin Hwa; Kim, Chan Sung; Choi, Jong Cheol; Oh, Jong Young [Dong-a University College of Medicine, Pusan (Korea, Republic of)

    2002-11-01

    Spontaneous rupture of a choledochal cyst leading to biliary peritonitis is a rare complication which can be fatal if not promptly diagnosed. The authors report the ultrasound and CT findings of two cases of spontaneous choledochal cystic rupture and the biliary peritonitis which ensued.

  2. Energy expenditure, spontaneous physical activity and with weight gain in kidney transplant recipients.

    Science.gov (United States)

    Heng, Anne-Elisabeth; Montaurier, Christophe; Cano, Noël; Caillot, Nicolas; Blot, A; Meunier, Nathalie; Pereira, Bruno; Marceau, Geoffroy; Sapin, Vincent; Jouve, Christelle; Boirie, Yves; Deteix, Patrice; Morio, Beatrice

    2015-06-01

    Alterations in energy metabolism could trigger weight gain after renal transplantation. Nineteen transplanted non-diabetic men, 53 ± 1.6 years old, receiving calcineurin inhibitors but no corticosteroids were studied. They were compared with nine healthy men matched for height, age and lean body mass. Daily energy expenditure and its components (sleeping, basal and absorptive metabolic rates) were analyzed for 24 h in calorimetric chambers and for 4 days in free living conditions using calibrated accelerometry. Other variables known to influence energy expenditure were assessed: body composition, physical activity, 4-day food intake, drug consumption, serum C-reactive protein, interleukin-6, thyroid and parathyroid hormones, and epinephrine. Transplant recipients who gained more than 5% body weight after transplantation (n = 11, +11.0 ± 1.5 kg) were compared with those who did not (n = 8) and with the controls. Weight gain compared with non-weight gain patients and controls exhibited higher fat mass without change in lean body mass. Daily, sleeping and resting energy expenditure adjusted for lean body mass was significantly higher in non-weight gain (167.1 ± 4.2 kJ/kg/lean body mass/24 h, P controls (146.1 ± 4.6). Weight gain compared with controls and non-weight gain subjects had lower free living physical activity and a higher consumption of antihypertensive drugs and β-blockers. After kidney transplantation, weight gain patients were characterized by lower adjusted energy expenditure, reduced spontaneous physical activity but a more sedentary life style and a trend toward a higher energy intake explaining the reason they gained weight. The nWG KTR had increased resting and sleeping EE which protected them from weight gain. Such hypermetabolism was also observed in 24-h EE measurements. By comparison with the nWG patients, the WG transplant recipients were characterized by higher β-blocker consumption. These data could be helpful in the prevention of weight

  3. Spontaneous symmetry breaking and its cosmological consequences

    International Nuclear Information System (INIS)

    Kobzarev, I.Yu.

    1975-01-01

    The concept of symmetry and of the spontaneous symmetry breaking are presented in popular form as applied to quantum physics. Though the presence of the spontaneous symmetry breaking is not proved directly for interactions of elementary particles, on considering the hypothesis of its presence as applied to the hot Universe theory a possibility of obtaining rather uncommon cosmological consequences is discussed. In particular, spontaneous symmetry breaking of vacuum and the rather hot Universe lead necessarily to the presence of the domain structure of the Universe with the surfase energy at the domain interface in the form of a real physical object

  4. A Role for the Inflammasome in Spontaneous Labor at Term with Acute Histologic Chorioamnionitis.

    Science.gov (United States)

    Gomez-Lopez, Nardhy; Romero, Roberto; Xu, Yi; Plazyo, Olesya; Unkel, Ronald; Than, Nandor Gabor; Chaemsaithong, Piya; Chaiworapongsa, Tinnakorn; Dong, Zhong; Tarca, Adi L; Abrahams, Vikki M; Yeo, Lami; Hassan, Sonia S

    2017-06-01

    Inflammasomes are cytosolic signaling platforms that regulate the activation of caspase (CASP)-1, which induces the maturation of interleukin (IL)-1β and IL-18. Herein, we determined whether the chorioamniotic membranes from women in spontaneous labor at term with acute histologic chorioamnionitis express major inflammasome components and whether these changes are associated with the activation of CASP-1 and CASP-4 and the release of mature IL-1β and IL-18. When comparing the chorioamniotic membranes from women in spontaneous labor at term with acute histologic chorioamnionitis to those without this placental lesion, we found that (1) the messenger RNA (mRNA) abundance of NLR family pyrin domain containing 3 ( NLRP3), NLR family CARD domain containing 4 ( NLRC4), absent in melanoma 2 ( AIM2), and nucleotide binding oligomerization domain 2 ( NOD2) was higher; (2) the NLRP3 and NLRC4 protein quantities were increased; (3) the mRNA and protein expressions of CASP-1 and its active forms were greater; (4) CASP-4 was increased at the mRNA level only; (5) the mRNA and protein expressions of IL-1β and its mature form were higher; and (6) a modest increase in the total protein concentration and abundance of the mature form of IL-18 was observed. In vitro incubation of the chorioamniotic membranes with the CASP-1 inhibitor, VX765, decreased the release of endotoxin-induced IL-1β and IL-18 (2-fold) but not IL-6 or tumor necrosis factor α. In conclusion, spontaneous labor at term with acute histologic chorioamnionitis is characterized by an upregulation of inflammasome components which, in turn, may participate in the activation of CASP-1 and lead to the release of mature IL-1β by the chorioamniotic membranes. These results support a role for the inflammasome in the mechanisms responsible for spontaneous labor at term with acute histologic chorioamnionitis.

  5. Shared risk aversion in spontaneous and induced abortion.

    Science.gov (United States)

    Catalano, Ralph; Bruckner, Tim A; Karasek, Deborah; Adler, Nancy E; Mortensen, Laust H

    2016-05-01

    Does the incidence of spontaneous abortion correlate positively over conception cohorts with the incidence of non-clinically indicated induced abortion as predicted by shared risk aversion? We find that the number of spontaneous and non-clinically indicated induced abortions correlates in conception cohorts, suggesting that risk aversion affects both the conscious and non-conscious mechanisms that control parturition. Much literature speculates that natural selection conserved risk aversion because the trait enhanced Darwinian fitness. Risk aversion, moreover, supposedly influences all decisions including those that individuals can and cannot report making. We argue that these circumstances, if real, would manifest in conscious and non-conscious decisions to invest in prospective offspring, and therefore affect incidence of induced and spontaneous abortion over time. Using data from Denmark, we test the hypothesis that monthly conception cohorts yielding unexpectedly many non-clinically indicated induced abortions also yield unexpectedly many spontaneous abortions. The 180 month test period (January 1995 through December 2009), yielded 1 351 800 gestations including 156 780 spontaneous as well as 233 280 induced abortions 9100 of which were clinically indicated. We use Box-Jenkins transfer functions to adjust the incidence of spontaneous and non-clinically indicated induced abortions for autocorrelation (including seasonality), cohort size, and fetal as well as gestational anomalies over the 180-month test period. We use cross-correlation to test our hypothesized association. We find a positive association between spontaneous and non-clinically indicated induced abortions. This suggests, consistent with our theory, that mothers of conception cohorts that yielded more spontaneous abortions than expected opted more frequently than expected for non-clinically indicated induced abortion. Limitations of our work include that even the world's best registration system

  6. ISOLATION AND IDENTIFICATION OF MICROORGANISMS DURING SPONTANEOUS FERMENTATION OF MAIZE [Isolasi dan Identifikasi Mikroorganisme pada Fermentasi Spontan Jagung

    Directory of Open Access Journals (Sweden)

    Rahmawati1,2

    2013-06-01

    Full Text Available Maize was traditionally the second most common staple food in Indonesia. Conversion to maize flour has been accomplished to improve its convenience. Traditionally, maize flour is produced by soaking the kernels in water followed by grinding. It was reported that final physicochemical characteristics of the maize flour were influenced by spontaneous fermentation which occurred during soaking. This research aimed to isolate and identify important microorganisms that grew during fermentation thus a standardized starter culture can be developed for a more controlled fermentation process. Soaking of maize grits was conducted in sterile water (grits:water=1:2, w/v in a closed container at room temperature (±28ºC for 72 hours. After 0, 4, 12, 24, 36, 48, 72 hours, water and maize grits were sampled and tested for the presence of mold, yeast, and lactic acid bacteria (LAB. Isolates obtained from the spontaneous fermentation were reinoculated into the appropriate media containing starch to observe their amylolytic activity. Individual isolate was then identified; mold by slide culture method, while yeast and LAB by biochemical rapid kits, i.e. API 20C AUX and API CH50, respectively. The number of each microorganism was plotted against time to obtain the growth curve of the microorganisms during spontaneous fermentation. The microorganisms were identified as Penicillium chrysogenum, P. citrinum, A. flavus, A. niger, Rhizopus stolonifer, R.oryzae, Fusarium oxysporum, Acremonium strictum, Candida famata, Kodamaea ohmeri, Candida krusei/incospicua, Lactobacillus plantarum 1a, Pediococcus pentosaceus, L. brevis 1, L. plantarum 1b, and L. paracasei ssp paracasei 3. Four molds and one yeast were amylolytic while none of the LAB was capable of starch hydrolysis. The growth curve suggested that the amylolitic mold and yeast grew to hydrolyze starch during the course of fermentation, while the LABs benefited from the hydrolyzed products and dominated the later

  7. Concanavalin A-induced and spontaneous suppressor cell activities in peripheral blood lymphocytes and spleen cells from gastric cancer patients.

    Science.gov (United States)

    Toge, T; Hamamoto, S; Itagaki, E; Yajima, K; Tanada, M; Nakane, H; Kohno, H; Nakanishi, K; Hattori, T

    1983-11-01

    In 173 gastric cancer patients, activities of Concanavalin-A-induced suppressor cells (Con-AS) and spontaneous suppressor cells (SpS) in peripheral blood lymphocytes (PBL), splenic vein lymphocytes (SVL), and spleen cells (SCs) were investigated. Suppressions by Con-AS in PBL were significantly effective in patients of Stages III and IV, while suppressions by SpS were effective in patients with recurrent tumors. Thus, in PBLs of cancer patients, suppressor precursors, which are considered to be activated in vitro by Concanavalin-A, seemed to appear with the advances of the disease, and SpS activities, which could be already activated in vivo, seemed to increase in the terminal stage. In SCs, increased activities of Con-AS, but normal activities of SpS, were observed, and these suppressor-cell populations consisted of glass nonadherent cells. Suppressor activities of SCs would be due to suppressor T-cells, not to other types of cells. Furthermore, Con-AS existed in the medium-sized lymphocytes, which were fractionated on the basis of cell size, while SpS in the large-sized lymphocytes. A higher proportion of T-cells, bearing Fc receptors for IgG, was observed in the larger-sized lymphocyte fractions. Cell numbers in the large-sized lymphocyte fraction tended to increase with the advances of tumors. From these results, it is suggested that higher presence of suppressor precursors and the increase of SpS activities may occur in cancer patients, depending on the tumor advancing.

  8. Group theory of spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Ghaboussi, F.

    1987-01-01

    The connection between the minimality of the Higgs field potential and the maximal little groups of its representation obtained by spontaneous symmetry breaking is analyzed. It is shown that for several representations the lowest minimum of the potential is related to the maximal little group of those representations. Furthermore, a practical necessity criterion is given for the representation of the Higgs field needed for spontaneous symmetry breaking

  9. Spontaneous polyploidization in cucumber.

    Science.gov (United States)

    Ramírez-Madera, Axel O; Miller, Nathan D; Spalding, Edgar P; Weng, Yiqun; Havey, Michael J

    2017-07-01

    This is the first quantitative estimation of spontaneous polyploidy in cucumber and we detected 2.2% polyploids in a greenhouse study. We provide evidence that polyploidization is consistent with endoreduplication and is an on-going process during plant growth. Cucumber occasionally produces polyploid plants, which are problematic for growers because these plants produce misshaped fruits with non-viable seeds. In this study, we undertook the first quantitative study to estimate the relative frequency of spontaneous polyploids in cucumber. Seeds of recombinant inbred lines were produced in different environments, plants were grown in the field and greenhouse, and flow cytometry was used to establish ploidies. From 1422 greenhouse-grown plants, the overall relative frequency of spontaneous polyploidy was 2.2%. Plants possessed nuclei of different ploidies in the same leaves (mosaic) and on different parts of the same plant (chimeric). Our results provide evidence of endoreduplication and polysomaty in cucumber, and that it is an on-going and dynamic process. There was a significant effect (p = 0.018) of seed production environment on the occurrence of polyploid plants. Seed and seedling traits were not accurate predictors of eventual polyploids, and we recommend that cucumber producers rogue plants based on stature and leaf serration to remove potential polyploids.

  10. Green asparagus (Asparagus officinalis) prevented hypertension by an inhibitory effect on angiotensin-converting enzyme activity in the kidney of spontaneously hypertensive rats.

    Science.gov (United States)

    Sanae, Matsuda; Yasuo, Aoyagi

    2013-06-12

    Green asparagus (Asparagus officinalis) is known to be rich in functional components. In the present study, spontaneously hypertensive rats (SHR) were used to clarify whether green asparagus prevents hypertension by inhibition of angiotensin-converting enzyme (ACE) activity. Six-week-old male SHR were fed a diet with (AD group) or without (ND group) 5% asparagus for 10 weeks. Systolic blood pressure (SBP) (AD: 159 ± 4.8 mmHg, ND: 192 ± 14.7 mmHg), urinary protein excretion/creatinine excretion, and ACE activity in the kidney were significantly lower in the AD group compared with the ND group. Creatinine clearance was significantly higher in the AD group compared with the ND group. In addition, ACE inhibitory activity was observed in a boiling water extract of asparagus. The ACE inhibitor purified and isolated from asparagus was identified as 2″-hydroxynicotianamine. In conclusion, 2″-hydroxynicotianamine in asparagus may be one of the factors inhibiting ACE activity in the kidney, thus preventing hypertension and preserving renal function.

  11. Are human spontaneous otoacoustic emissions generated by a chain of coupled nonlinear oscillators?

    Science.gov (United States)

    Wit, Hero P; van Dijk, Pim

    2012-08-01

    Spontaneous otoacoustic emissions (SOAEs) are generated by self-sustained cochlear oscillators. Properties of a computational model for a linear array of active oscillators with nearest neighbor coupling are investigated. The model can produce many experimentally well-established properties of SOAEs.

  12. Differential expression of FGF receptors and of myogenic regulatory factors in primary cultures of satellite cells originating from fast (EDL) and slow (Soleus) twitch rat muscles.

    Science.gov (United States)

    Martelly, I; Soulet, L; Bonnavaud, S; Cebrian, J; Gautron, J; Barritault, D

    2000-11-01

    In the rat, the fast and slow twitch muscles respectively Extensor digitorum longus (EDL) and Soleus present differential characteristics during regeneration. This suggests that their satellite cells responsible for muscle growth and repair represent distinct cellular populations. We have previously shown that satellite cells dissociated from Soleus and grown in vitro proliferate more readily than those isolated from EDL muscle. Fibroblast growth factors (FGFs) are known as regulators of myoblast proliferation and several studies have revealed a relationship between the response of myoblasts to FGF and the expression of myogenic regulatory factors (MRF) of the MyoD family by myoblasts. Therefore, we presently examined the possibility that the satellite cells isolated from EDL and Soleus muscles differ in the expression of FGF receptors (FGF-R) and of MRF expression. FGF-R1 and -R4 were strongly expressed in proliferating cultures whereas FGF-R2 and R3 were not detected in these cultures. In differentiating cultures, only -R1 was present in EDL satellite cells while FGF-R4 was also still expressed in Soleus cells. Interestingly, the unconventional receptor for FGF called cystein rich FGF receptor (CFR), of yet unknown function, was mainly detected in EDL satellite cell cultures. Soleus and EDL satellite cell cultures also differed in the expression MRFs. These results are consistent with the notion that satellite cells from fast and slow twitch muscles belong to different types of myogenic cells and suggest that satellite cells might play distinct roles in the formation and diversification of fast and slow fibres.

  13. Spontaneous sleep-like brain state alternations and breathing characteristics in urethane anesthetized mice.

    Directory of Open Access Journals (Sweden)

    Silvia Pagliardini

    Full Text Available Brain state alternations resembling those of sleep spontaneously occur in rats under urethane anesthesia and they are closely linked with sleep-like respiratory changes. Although rats are a common model for both sleep and respiratory physiology, we sought to determine if similar brain state and respiratory changes occur in mice under urethane. We made local field potential recordings from the hippocampus and measured respiratory activity by means of EMG recordings in intercostal, genioglossus, and abdominal muscles. Similar to results in adult rats, urethane anesthetized mice displayed quasi-periodic spontaneous forebrain state alternations between deactivated patterns resembling slow wave sleep (SWS and activated patterns resembling rapid eye movement (REM sleep. These alternations were associated with an increase in breathing rate, respiratory variability, a depression of inspiratory related activity in genioglossus muscle and an increase in expiratory-related abdominal muscle activity when comparing deactivated (SWS-like to activated (REM-like states. These results demonstrate that urethane anesthesia consistently induces sleep-like brain state alternations and correlated changes in respiratory activity across different rodent species. They open up the powerful possibility of utilizing transgenic mouse technology for the advancement and translation of knowledge regarding sleep cycle alternations and their impact on respiration.

  14. Spontaneous Achilles tendon rupture in alkaptonuria | Mohammed ...

    African Journals Online (AJOL)

    Spontaneous Achilles tendon ruptures are uncommon. We present a 46-year-old man with spontaneous Achilles tendon rupture due to ochronosis. To our knowledge, this has not been previously reported in Sudan literature. The tendon of the reported patient healed well after debridement and primary repairs.

  15. Spontaneous magnetization in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constanca

    2015-01-01

    It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous magnet...

  16. Children's Spontaneous Vocalisations during Play: Aesthetic Dimensions

    Science.gov (United States)

    Countryman, June; Gabriel, Martha; Thompson, Katherine

    2016-01-01

    This paper explores the phenomenon of spontaneous vocalisations in the self-chosen, unstructured outdoor play of children aged 3-12. Spontaneous vocalisations encompass the whole range of children's unprompted, natural, expressive vocal soundings beyond spoken language. Non-participant observations at childcare centres and on elementary school…

  17. Spontaneous baryogenesis from asymmetric inflaton

    International Nuclear Information System (INIS)

    Takahashi, Fuminobu

    2015-10-01

    We propose a variant scenario of spontaneous baryogenesis from asymmetric inflaton based on current-current interactions between the inflaton and matter fields with a non-zero B-L charge. When the inflaton starts to oscillate around the minimum after inflation, it may lead to excitation of a CP-odd component, which induces an effective chemical potential for the B-L number through the current-current interactions. We study concrete inflation models and show that the spontaneous baryogenesis scenario can be naturally implemented in the chaotic inflation in supergravity.

  18. Radiologic findings of acute spontaneous subdural hematomas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jung; Bae, Won Kyong; Gyu, Cha Jang; Kim, Gun Woo; Cho, Won Su; Kim, Il Young; Lee, Kyung Suk [Soonchunhyang University, Chonan (Korea, Republic of). Chonan Hospital

    1998-03-01

    To evaluate the characteristic CT and cerebral angiographic findings in patients with acute spontaneous subdural hematomas and correlate these imaging findings with causes of bleeding and clinical outcome. Twenty-one patients with nontraumatic acute spontaneous subdural hematoma presenting during the last five years underwent CT scanning and cerebral angiography was performed in twelve. To determine the cause of bleedings, CT and angiographic findings were retrospectively analysed. Clinical history, laboratory and operative findings, and final clinical outcome were reviewed. Acute spontaneous subdural hematoma is a rare condition, and the mortality rate is high. In patients with acute spontaneous subdural hematoma, as seen on CT, associated subarachnoid or intracerebral hemorrhage is strongly indicative of intracerebral vascular abnormalities such as aneurysm and arteriovenous malformation, and cerebral angiography is necessary. To ensure proper treatment and thus markedly reduce mortality, the causes of bleedings should be prompty determined by means of cerebral angiography. (author). 20 refs., 1 tab., 4 figs.

  19. Spontaneous third ventriculostomy 8 years after diagnosis of obstructive hydrocephalus.

    Science.gov (United States)

    Öğrenci, Ahmet; Ekşi, Murat Şakir; Koban, Orkun

    2016-09-01

    Spontaneous ventriculostomy is spontaneous rupture of membranes separating the ventricular system from the subarachnoid space in patients with chronic obstructive hydrocephalus that ends with resolution of symptoms. We present a case of spontaneous third ventriculostomy occurred in a 19-year-old girl 8 years after the initial diagnosis of hydrocephalus. An 11-year-old girl applied to the clinic with intermittent headaches. She was neurologically stable with no visual problems. On her brain MRI, obstructive hydrocephalus was observed. Cerebrospinal fluid diversion procedures were recommended, yet the family denied any interventional procedure. She had routine follow-ups with occasional clinical admissions because of ongoing intermittent headaches. On her last clinical visit, 8 years after the first one, she was in well condition with improvement in her headache in the last 4 months. Her new brain MRI showed an active CSF flow between the basal cistern and the third ventricle. In patients with aqueductal stenosis and without any other mass lesion, wait and see protocol might be conveyed in case of mild symptoms of hydrocephalus. However, there is need for large-scaled studies to make a more comprehensive statement for benign obstructive hydrocephalus cases.

  20. Spontaneous baroreflex sensitivity estimates during graded bicycle exercise: a comparative study

    International Nuclear Information System (INIS)

    Vallais, Frederic; Baselli, Giuseppe; Lucini, Daniela; Pagani, Massimo; Porta, Alberto

    2009-01-01

    In the literature, several methods have been proposed for the assessment of the baroreflex sensitivity from spontaneous variability of heart period and systolic arterial pressure. The present study compares the most utilized approaches for the evaluation of the spontaneous baroreflex sensitivity (i.e. sequence-based, spectral, cross-spectral and model-based techniques) over a protocol capable of inducing a progressive decrease of the baroreflex sensitivity in the presence of a relevant respiratory drive (i.e. a stepwise dynamic bicycle exercise at 10%, 20% and 30% of the maximum nominal individual effort) in 16 healthy humans. Results demonstrated that the degree of correlation among the estimates is related to the structure of the model explicitly or implicitly assumed by the method and depends on the experimental condition (i.e. on the physiological mechanisms contemporaneously active with baroreflex, e.g. cardiopulmonary reflexes). However, even in the presence of a significant correlation, proportional and/or constant biases can be present, thus rendering spontaneous baroreflex estimates not interchangeable. We suggest that the comparison among different baroreflex sensitivity estimates might elucidate physiological mechanisms responsible for the relationship between heart period and systolic arterial pressure

  1. Spontaneous improvement in randomised clinical trials: meta-analysis of three-armed trials comparing no treatment, placebo and active intervention

    DEFF Research Database (Denmark)

    Krogsbøll, Lasse Theis; Hróbjartsson, Asbjørn; Gøtzsche, Peter C

    2009-01-01

    were psychological in 17 trials, physical in 15 trials, and pharmacological in 5 trials. Overall, across all conditions and interventions, there was a statistically significant change from baseline in all three arms. The standardized mean difference (SMD) for change from baseline was -0.24 (95...... uncertainty, as indicated by the confidence intervals for the three SMDs. The conditions that had the most pronounced spontaneous improvement were nausea (45%), smoking (40%), depression (35%), phobia (34%) and acute pain (25%). CONCLUSION: Spontaneous improvement and effect of placebo contributed importantly...

  2. Spontaneous onset of Complex Regional Pain Syndrome

    NARCIS (Netherlands)

    de Rooij, A.M.; Perez, R.S.G.M.; Huygen, F.J.; van Eijs, F.; van Kleef, M.; Bauer, M.C.R.; van Hilten, J.J.; Marinus, J.

    2010-01-01

    Complex Regional Pain Syndrome (CRPS) usually develops after a noxious event, but spontaneous onsets have been described in 3-11% of the cases. The existence of spontaneous-onset CRPS is highly debated and the aim of the present study was therefore to compare the phenotypic characteristics of CRPS

  3. Functioning of spontaneous and induced Con A regulators of T-cell proliferation. Modifying factors

    International Nuclear Information System (INIS)

    Kuz'mina, E.G.

    1989-01-01

    It is shown that active spontaneous non-specific regulators of T-cell proliferation are activated in peripheral blood ''in vivo'' by endogenous metabolites; non-specific regulator action can be induced ''in vitro'' by Con A, FGA. Non-specific regulators suppress and increase lymphocyte proliferation. Cyclic character of their functioning is revealed. 4 refs.; 1 tab

  4. Socioeconomic position and the risk of spontaneous abortion

    DEFF Research Database (Denmark)

    Norsker, Filippa Nyboe; Espenhain, Laura; rogvi, Sofie

    2012-01-01

    To investigate the relationship between different indicators of socioeconomic position and the risk of spontaneous abortion.......To investigate the relationship between different indicators of socioeconomic position and the risk of spontaneous abortion....

  5. An interactive activation and competition model of person knowledge, suggested by proactive interference by traits spontaneously inferred from behaviours.

    Science.gov (United States)

    Wang, Yuanbo E; Higgins, Nancy C; Uleman, James S; Michaux, Aaron; Vipond, Douglas

    2016-03-01

    People unconsciously and unintentionally make inferences about others' personality traits based on their behaviours. In this study, a classic memory phenomenon--proactive interference (PI)--is for the first time used to detect spontaneous trait inferences. PI should occur when lists of behaviour descriptions, all implying the same trait, are to be remembered. Switching to a new trait should produce 'release' from proactive interference (or RPI). Results from two experiments supported these predictions. PI and RPI effects are consistent with an interactive activation and competition model of person perception (e.g., McNeill & Burton, 2002, J. Exp. Psychol., 55A, 1141), which predicts categorical organization of social behaviours based on personality traits. Advantages of this model are discussed. © 2015 The British Psychological Society.

  6. Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception.

    Science.gov (United States)

    Megumi, Fukuda; Bahrami, Bahador; Kanai, Ryota; Rees, Geraint

    2015-02-15

    The neural mechanisms underlying conscious visual perception have been extensively investigated using bistable perception paradigms. Previous functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) studies suggest that the right anterior superior parietal (r-aSPL) and the right posterior superior parietal lobule (r-pSPL) have opposite roles in triggering perceptual reversals. It has been proposed that these two areas are part of a hierarchical network whose dynamics determine perceptual switches. However, how these two parietal regions interact with each other and with the rest of the brain during bistable perception is not known. Here, we investigated such a model by recording brain activity using fMRI while participants viewed a bistable structure-from-motion stimulus. Using dynamic causal modeling (DCM), we found that resolving such perceptual ambiguity was specifically associated with reciprocal interactions between these parietal regions and V5/MT. Strikingly, the strength of bottom-up coupling between V5/MT to r-pSPL and from r-pSPL to r-aSPL predicted individual mean dominance duration. Our findings are consistent with a hierarchical predictive coding model of parietal involvement in bistable perception and suggest that visual information processing underlying spontaneous perceptual switches can be described as changes in connectivity strength between parietal and visual cortical regions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. A Semi-analytic Criterion for the Spontaneous Initiation of Carbon Detonations in White Dwarfs

    International Nuclear Information System (INIS)

    Garg, Uma; Chang, Philip

    2017-01-01

    Despite over 40 years of active research, the nature of the white dwarf progenitors of SNe Ia remains unclear. However, in the last decade, various progenitor scenarios have highlighted the need for detonations to be the primary mechanism by which these white dwarfs are consumed, but it is unclear how these detonations are triggered. In this paper we study how detonations are spontaneously initiated due to temperature inhomogeneities, e.g., hotspots, in burning nuclear fuel in a simplified physical scenario. Following the earlier work by Zel’Dovich, we describe the physics of detonation initiation in terms of the comparison between the spontaneous wave speed and the Chapman–Jouguet speed. We develop an analytic expression for the spontaneous wave speed and utilize it to determine a semi-analytic criterion for the minimum size of a hotspot with a linear temperature gradient between a peak and base temperature for which detonations in burning carbon–oxygen material can occur. Our results suggest that spontaneous detonations may easily form under a diverse range of conditions, likely allowing a number of progenitor scenarios to initiate detonations that burn up the star.

  8. A Semi-analytic Criterion for the Spontaneous Initiation of Carbon Detonations in White Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Uma; Chang, Philip, E-mail: umagarg@uwm.edu, E-mail: chang65@uwm.edu [Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211 (United States)

    2017-02-20

    Despite over 40 years of active research, the nature of the white dwarf progenitors of SNe Ia remains unclear. However, in the last decade, various progenitor scenarios have highlighted the need for detonations to be the primary mechanism by which these white dwarfs are consumed, but it is unclear how these detonations are triggered. In this paper we study how detonations are spontaneously initiated due to temperature inhomogeneities, e.g., hotspots, in burning nuclear fuel in a simplified physical scenario. Following the earlier work by Zel’Dovich, we describe the physics of detonation initiation in terms of the comparison between the spontaneous wave speed and the Chapman–Jouguet speed. We develop an analytic expression for the spontaneous wave speed and utilize it to determine a semi-analytic criterion for the minimum size of a hotspot with a linear temperature gradient between a peak and base temperature for which detonations in burning carbon–oxygen material can occur. Our results suggest that spontaneous detonations may easily form under a diverse range of conditions, likely allowing a number of progenitor scenarios to initiate detonations that burn up the star.

  9. Spontaneous indices are inconsistent with arterial baroreflex gain.

    Science.gov (United States)

    Lipman, Ruth D; Salisbury, Julie K; Taylor, J Andrew

    2003-10-01

    Spontaneously occurring, parallel fluctuations in arterial pressure and heart period are frequently used as indices of baroreflex function. Despite the convenience of spontaneous indices, their relation to the arterial baroreflex remains unclear. Therefore, in 97 volunteers, we derived 5 proposed indices (sequence method, alpha-index, transfer function, low-frequency transfer function, and impulse response function), compared them with arterial baroreflex gain (by the modified Oxford pharmacologic technique), and examined their relation to carotid distensibility and respiratory sinus arrhythmia. The subjects comprised men and women (n=41) aged 25 to 86 years, 30% of whom had established coronary artery disease. Generally, the indices were correlated with each other (except alpha-index and low-frequency transfer function) and with baroreflex gain. However, the Bland-Altman method demonstrated that the spontaneous indices had limits of agreement as large as the baroreflex gain itself. Even in individuals within the lowest tertile of baroreflex gain for whom baroreflex gain appears to be the most clinically relevant, spontaneous indices failed to relate to baroreflex gain. In fact, for these individuals, there was no correlation between any index and baroreflex gain. Forward stepwise linear regression showed that all spontaneous indices and baroreflex gain were related to respiratory sinus arrhythmia, but only baroreflex gain was related to carotid distensibility. Therefore, these data suggest that spontaneous indices are inadequate estimates of gain and are inconsistent with arterial baroreflex function.

  10. Learning to modulate one's own brain activity: The effect of spontaneous mental strategies

    Directory of Open Access Journals (Sweden)

    Silvia Erika Kober

    2013-10-01

    Full Text Available Using neurofeedback (NF, individuals can learn to modulate their own brain activity, in most cases electroencephalographic (EEG rhythms. Although a large body of literature reports positive effects of NF training on behavior and cognitive functions, there are hardly any reports on how participants can successfully learn to gain control over their own brain activity. About one third of people fail to gain significant control over their brain signals even after repeated training sessions. The reasons for this failure are still largely unknown. In this context, we investigated the effects of spontaneous mental strategies on NF performance. Twenty healthy participants performed either a SMR (sensorimotor rhythm, 12-15 Hz based or a Gamma (40-43 Hz based NF training over ten sessions. After the first and the last training session, they were asked to write down which mental strategy they have used for self-regulating their EEG. After the first session, all participants reported the use of various types of mental strategies such as visual strategies, concentration, or relaxation. After the last NF training session, four participants of the SMR group reported to employ no specific strategy. These four participants showed linear improvements in NF performance over the ten training sessions. In contrast, participants still reporting the use of specific mental strategies in the last NF session showed no changes in SMR based NF performance over the ten sessions. This effect could not be observed in the Gamma group. The Gamma group showed no prominent changes in Gamma power over the NF training sessions, regardless of the mental strategies used. These results indicate that successful SMR based NF performance is associated with implicit learning mechanisms. Participants stating vivid reports on strategies to control their SMR probably overload cognitive resources, which might be counterproductive in terms of increasing SMR power.

  11. Alteration in gene expression in Nile tilapia (Oreochromis niloticus) juveniles submitted to fasting and refeeding.

    Science.gov (United States)

    One of the most important biological processes in living organisms that are affected by environmental fluctuations is growth, and the skeletal muscle growth in fish is dependent on proliferation and differentiation of myogenic precursor cells that are activated by Myogenic Regulatory Factors or inhi...

  12. Situation and person attributions under spontaneous and intentional instructions: an fMRI study

    Science.gov (United States)

    Kestemont, Jenny; Vandekerckhove, Marie; Ma, Ning; Van Hoeck, Nicole

    2013-01-01

    This functional magnetic resonance imaging (fMRI) research explores how observers make causal beliefs about an event in terms of the person or situation. Thirty-four participants read various short descriptions of social events that implied either the person or the situation as the cause. Half of them were explicitly instructed to judge whether the event was caused by something about the person or the situation (intentional inferences), whereas the other half was instructed simply to read the material carefully (spontaneous inferences). The results showed common activation in areas related to mentalizing, across all types of causes or instructions (posterior superior temporal sulcus, temporo-parietal junction, precuneus). However, the medial prefrontal cortex was activated only under spontaneous instructions, but not under intentional instruction. This suggests a bias toward person attributions (e.g. fundamental attribution bias). Complementary to this, intentional situation attributions activated a stronger and more extended network compared to intentional person attributions, suggesting that situation attributions require more controlled, extended and broader processing of the information. PMID:22345370

  13. Distinct spontaneous shrinkage of a sporadic vestibular schwannoma

    DEFF Research Database (Denmark)

    Huang, Xiaowen; Cayé-Thomasen, Per; Stangerup, Sven-Eric

    2013-01-01

    on "shrinkage" or "negative growth" or "regression" or "involution" of the tumor were selected, and the contents on the rate, extent and mechanism of spontaneous tumor shrinkage were extracted and reviewed. The reported rate of spontaneous shrinkage of vestibular schwannoma is 5-10% of patients managed......We present a case with outspoken spontaneous vestibular schwannoma shrinkage and review the related literature. The patient was initially diagnosed with a left-sided, intrameatal vestibular schwannoma, which subsequently grew into the cerebello-pontine angle (CPA), followed by total shrinkage...... of the CPA component without any intervention over a 12-year observation period. The literature on spontaneous tumor shrinkage was retrieved by searching the subject terms "vestibular schwannoma, conservative management" in PubMed/MEDLINE database, without a time limit. Of the published data, the articles...

  14. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury.

    Science.gov (United States)

    Yoshida, Takeshi; Uchiyama, Akinori; Matsuura, Nariaki; Mashimo, Takashi; Fujino, Yuji

    2012-05-01

    We investigated whether potentially injurious transpulmonary pressure could be generated by strong spontaneous breathing and exacerbate lung injury even when plateau pressure is limited to ventilation, each combined with weak or strong spontaneous breathing effort. Inspiratory pressure for low tidal volume ventilation was set at 10 cm H2O and tidal volume at 6 mL/kg. For moderate tidal volume ventilation, the values were 20 cm H2O and 7-9 mL/kg. The groups were: low tidal volume ventilation+spontaneous breathingweak, low tidal volume ventilation+spontaneous breathingstrong, moderate tidal volume ventilation+spontaneous breathingweak, and moderate tidal volume ventilation+spontaneous breathingstrong. Each group had the same settings for positive end-expiratory pressure of 8 cm H2O. Respiratory variables were measured every 60 mins. Distribution of lung aeration and alveolar collapse were histologically evaluated. Low tidal volume ventilation+spontaneous breathingstrong showed the most favorable oxygenation and compliance of respiratory system, and the best lung aeration. By contrast, in moderate tidal volume ventilation+spontaneous breathingstrong, the greatest atelectasis with numerous neutrophils was observed. While we applied settings to maintain plateau pressure at ventilation+spontaneous breathingstrong, transpulmonary pressure rose >33 cm H2O. Both minute ventilation and respiratory rate were higher in the strong spontaneous breathing groups. Even when plateau pressure is limited to mechanical ventilation, transpulmonary pressure and tidal volume should be strictly controlled to prevent further lung injury.

  15. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues.

    Science.gov (United States)

    Nassari, Sonya; Duprez, Delphine; Fournier-Thibault, Claire

    2017-01-01

    Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.

  16. Molecular and biochemical analyses of spontaneous and X-ray-induced mutants in human lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Liber, H L; Call, K M; Little, J B

    1987-05-01

    The authors have isolated a series of 14 spontaneously arising and 28 X-ray-induced mutants at the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus in human lymphoblastoid cells. Among the spontaneous mutants, 5/14 (36%) had detectable alterations in their restriction fragment pattern after hybridization with a human cDNA probe for hgprt. Of the 10 remaining mutants, 4 had partial HGPRT enzyme activity, which suggested that they contained point mutations. Among the 28 mutants induced by 150 rad of X-rays, 15 (54%) had deletions of part or all of the hgprt gene. Of the remaining 13 (18% overall) 5 had partial HGPRT enzyme activity, which suggested that they contained point mutations. These data imply that in this human cell system, X-rays induce both point mutants which have residual enzyme activity as well as mutations involving relatively large deletions of DNA. 48 reference, 1 figure, 4 tables.

  17. Analysis of Spontaneous and Nerve-Evoked Calcium Transients in Intact Extraocular Muscles in Vitro

    Science.gov (United States)

    Feng, Cheng-Yuan; Hennig, Grant W.; Corrigan, Robert D.; Smith, Terence K.; von Bartheld, Christopher S.

    2012-01-01

    Extraocular muscles (EOMs) have unique calcium handling properties, yet little is known about the dynamics of calcium events underlying ultrafast and tonic contractions in myofibers of intact EOMs. Superior oblique EOMs of juvenile chickens were dissected with their nerve attached, maintained in oxygenated Krebs buffer, and loaded with fluo-4. Spontaneous and nerve stimulation-evoked calcium transients were recorded and, following calcium imaging, some EOMs were double-labeled with rhodamine-conjugated alpha-bungarotoxin (rhBTX) to identify EOM myofiber types. EOMs showed two main types of spontaneous calcium transients, one slow type (calcium waves with 1/2max duration of 2–12 s, velocity of 25–50 μm/s) and two fast “flash-like” types (Type 1, 30–90 ms; Type 2, 90–150 ms 1/2max duration). Single pulse nerve stimulation evoked fast calcium transients identical to the fast (Type 1) calcium transients. Calcium waves were accompanied by a local myofiber contraction that followed the calcium transient wavefront. The magnitude of calcium-wave induced myofiber contraction far exceeded those of movement induced by nerve stimulation and associated fast calcium transients. Tetrodotoxin eliminated nerve-evoked transients, but not spontaneous transients. Alpha-bungarotoxin eliminated both spontaneous and nerve-evoked fast calcium transients, but not calcium waves, and caffeine increased wave activity. Calcium waves were observed in myofibers lacking spontaneous or evoked fast transients, suggestive of multiply-innervated myofibers, and this was confirmed by double-labeling with rhBTX. We propose that the abundant spontaneous calcium transients and calcium waves with localized contractions that do not depend on innervation may contribute to intrinsic generation of tonic functions of EOMs. PMID:22579493

  18. Myogenic temporomandibular disorders: Clinical systemic comorbidities in a female population sample.

    Science.gov (United States)

    de-Pedro-Herráez, M; Mesa-Jiménez, J; Fernández-de-Las-Peñas, C; de-la-Hoz-Aizpurua, J-L

    2016-11-01

    Myogenic temporomandibular disorders (MTMD) frequently coexist with other clinical conditions in the same individual. In the last decades, several authors have analyzed these comorbidities looking for the origin of this overlapping. Objetives: The aim of this study was to perform a comparative anaylisis between a group of patients with MTMD and a control group of dental patients without dysfunctional pathology to assess whether there are significant differences in the presence of systemic medical comorbidities between the two groups. Restrospective epidemiological analysis, based on medical questionnaires in a group of 31 patients, women, aged from 24 to 58 (average 39.96 years), diagnosed with MTMD (Masticatory Myofascial Pain), with a control group with the same number of individuals, gender and age range to evaluate if there is a significant statistical difference in the presence of medical comorbidities in this group of patients with MTMD and if they are in a higher risk of suffering different pathological conditions. It was found that the group affected by MTMD presented many more associated medical conditions than the control group: health changes during the last year, medical evaluations and treatments, presence of pain, sinus disease, tinnitus, headache, joint pain, ocular disorders, fatigue, dizziness, genitourinary disorders and xerostomia among others; and they were also in a higher risk to suffer other pathological entities as headaches and articular pain. These results reinforce our hypothesis that MTMD belong to a group of medical conditions triggered by a loss of equilibrium of the individual's Psycho-Neuro-Endocrine-Immune (PNEI) Axis that produces alterations in the response against external stimuli in some genetically predisposed individuals. It is, therefore, necessary to change the way of diagnosing and managing these individual's medical conditions, being mandatory to look from a more multidisciplinary perspective than the one we are currently

  19. Cigarette, alcohol, and caffeine consumption: risk factors for spontaneous abortion

    DEFF Research Database (Denmark)

    Rasch, Vibeke

    2003-01-01

    OBJECTIVE: To study the association between cigarette, alcohol, and caffeine consumption and the occurrence of spontaneous abortion. METHODS: The study population consisted of 330 women with spontaneous abortion and 1168 pregnant women receiving antenatal care. A case-control design was utilized;...... units alcohol per week and 375 mg or more caffeine per day during pregnancy may increase the risk of spontaneous abortion.......OBJECTIVE: To study the association between cigarette, alcohol, and caffeine consumption and the occurrence of spontaneous abortion. METHODS: The study population consisted of 330 women with spontaneous abortion and 1168 pregnant women receiving antenatal care. A case-control design was utilized......; cases were defined as women with a spontaneous abortion in gestational week 6-16 and controls as women with a live fetus in gestational week 6-16. The variables studied comprise age, parity, occupational situation, cigarette, alcohol, and caffeine consumption. The association between cigarette, alcohol...

  20. Spontaneous Hedonic Reactions to Social Media Cues.

    Science.gov (United States)

    van Koningsbruggen, Guido M; Hartmann, Tilo; Eden, Allison; Veling, Harm

    2017-05-01

    Why is it so difficult to resist the desire to use social media? One possibility is that frequent social media users possess strong and spontaneous hedonic reactions to social media cues, which, in turn, makes it difficult to resist social media temptations. In two studies (total N = 200), we investigated less-frequent and frequent social media users' spontaneous hedonic reactions to social media cues using the Affect Misattribution Procedure-an implicit measure of affective reactions. Results demonstrated that frequent social media users showed more favorable affective reactions in response to social media (vs. control) cues, whereas less-frequent social media users' affective reactions did not differ between social media and control cues (Studies 1 and 2). Moreover, the spontaneous hedonic reactions to social media (vs. control) cues were related to self-reported cravings to use social media and partially accounted for the link between social media use and social media cravings (Study 2). These findings suggest that frequent social media users' spontaneous hedonic reactions in response to social media cues might contribute to their difficulties in resisting desires to use social media.