WorldWideScience

Sample records for spontaneous membrane curvature

  1. The effect of spontaneous curvature on a two-phase vesicle

    International Nuclear Information System (INIS)

    Cox, Geoffrey; Lowengrub, John

    2015-01-01

    Vesicles are membrane-bound structures commonly known for their roles in cellular transport and the shape of a vesicle is determined by its surrounding membrane (lipid bilayer). When the membrane is composed of different lipids, it is natural for the lipids of similar molecular structure to migrate towards one another (via spinodal decomposition), creating a multi-phase vesicle. In this article, we consider a two-phase vesicle model which is driven by nature's propensity to maintain a minimal state of elastic energy. The model assumes a continuum limit, thereby treating the membrane as a closed three-dimensional surface. The main purpose of this study is to reveal the complexity of the Helfrich two-phase vesicle model with non-zero spontaneous curvature and provide further evidence to support the relevance of spontaneous curvature as a modelling parameter. In this paper, we illustrate the complexity of the Helfrich two-phase model by providing multiple examples of undocumented solutions and energy hysteresis. We also investigate the influence of spontaneous curvature on morphological effects and membrane phenomena such as budding and fusion. (paper)

  2. CURVATURE-DRIVEN MOLECULAR FLOW ON MEMBRANE SURFACE.

    Science.gov (United States)

    Mikucki, Michael; Zhou, Y C

    2017-01-01

    This work presents a mathematical model for the localization of multiple species of diffusion molecules on membrane surfaces. Morphological change of bilayer membrane in vivo is generally modulated by proteins. Most of these modulations are associated with the localization of related proteins in the crowded lipid environments. We start with the energetic description of the distributions of molecules on curved membrane surface, and define the spontaneous curvature of bilayer membrane as a function of the molecule concentrations on membrane surfaces. A drift-diffusion equation governs the gradient flow of the surface molecule concentrations. We recast the energetic formulation and the related governing equations by using an Eulerian phase field description to define membrane morphology. Computational simulations with the proposed mathematical model and related numerical techniques predict (i) the molecular localization on static membrane surfaces at locations with preferred mean curvatures, and (ii) the generation of preferred mean curvature which in turn drives the molecular localization.

  3. On ripples and rafts: Curvature induced nanoscale structures in lipid membranes

    International Nuclear Information System (INIS)

    Schmid, Friederike; Dolezel, Stefan; Meinhardt, Sebastian; Lenz, Olaf

    2014-01-01

    We develop an elastic theory that predicts the spontaneous formation of nanoscale structures in lipid bilayers which locally phase separate between two phases with different spontaneous monolayer curvature. The theory rationalizes in a unified manner the observation of a variety of nanoscale structures in lipid membranes: Rippled states in one-component membranes, lipid rafts in multicomponent membranes. Furthermore, we report on recent observations of rippled states and rafts in simulations of a simple coarse-grained model for lipid bilayers, which are compatible with experimental observations and with our elastic model

  4. The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling.

    Science.gov (United States)

    Lou, Hsin-Ya; Zhao, Wenting; Zeng, Yongpeng; Cui, Bianxiao

    2018-05-15

    Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell-probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host-implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies

  5. Curvature-Induced Instabilities of Shells

    Science.gov (United States)

    Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark P.; Bade, Abdikhalaq J.; Holmes, Douglas P.

    2018-01-01

    Induced by proteins within the cell membrane or by differential growth, heating, or swelling, spontaneous curvatures can drastically affect the morphology of thin bodies and induce mechanical instabilities. Yet, the interaction of spontaneous curvature and geometric frustration in curved shells remains poorly understood. Via a combination of precision experiments on elastomeric spherical shells, simulations, and theory, we show how a spontaneous curvature induces a rotational symmetry-breaking buckling as well as a snapping instability reminiscent of the Venus fly trap closure mechanism. The instabilities, and their dependence on geometry, are rationalized by reducing the spontaneous curvature to an effective mechanical load. This formulation reveals a combined pressurelike term in the bulk and a torquelike term in the boundary, allowing scaling predictions for the instabilities that are in excellent agreement with experiments and simulations. Moreover, the effective pressure analogy suggests a curvature-induced subcritical buckling in closed shells. We determine the critical buckling curvature via a linear stability analysis that accounts for the combination of residual membrane and bending stresses. The prominent role of geometry in our findings suggests the applicability of the results over a wide range of scales.

  6. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    Science.gov (United States)

    Ramakrishnan, N.; Sunil Kumar, P. B.; Radhakrishnan, Ravi

    2014-01-01

    description, the protein is expressed in the form of a spontaneous curvature field. The approaches include field theoretical methods limited to the small deformation regime, triangulated surfaces and particle-based computational models to investigate the large-deformation regimes observed in the natural state of many biological membranes. Applications of these methods to understand the properties of biological membranes in homogeneous and inhomogeneous environments of proteins, whose underlying curvature fields are either isotropic or anisotropic, are discussed. The diversity in the curvature fields elicits a rich variety of morphological states, including tubes, discs, branched tubes, and caveola. Mapping the thermodynamic stability of these states as a function of tuning parameters such as concentration and strength of curvature induction of the proteins is discussed. The relative stabilities of these self-organized shapes are examined through free-energy calculations. The suite of methods discussed here can be tailored to applications in specific cellular settings such as endocytosis during cargo trafficking and tubulation of filopodial structures in migrating cells, which makes these methods a powerful complement to experimental studies. PMID:25484487

  7. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, N., E-mail: ramn@seas.upenn.edu [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Bioengineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA-19104 (United States); Sunil Kumar, P.B., E-mail: sunil@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai, 600036 (India); Radhakrishnan, Ravi, E-mail: rradhak@seas.upenn.edu [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Bioengineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA-19104 (United States)

    2014-10-01

    , the protein is expressed in the form of a spontaneous curvature field. The approaches include field theoretical methods limited to the small deformation regime, triangulated surfaces and particle-based computational models to investigate the large-deformation regimes observed in the natural state of many biological membranes. Applications of these methods to understand the properties of biological membranes in homogeneous and inhomogeneous environments of proteins, whose underlying curvature fields are either isotropic or anisotropic, are discussed. The diversity in the curvature fields elicits a rich variety of morphological states, including tubes, discs, branched tubes, and caveola. Mapping the thermodynamic stability of these states as a function of tuning parameters such as concentration and strength of curvature induction of the proteins is discussed. The relative stabilities of these self-organized shapes are examined through free-energy calculations. The suite of methods discussed here can be tailored to applications in specific cellular settings such as endocytosis during cargo trafficking and tubulation of filopodial structures in migrating cells, which makes these methods a powerful complement to experimental studies.

  8. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    International Nuclear Information System (INIS)

    Ramakrishnan, N.; Sunil Kumar, P.B.; Radhakrishnan, Ravi

    2014-01-01

    , the protein is expressed in the form of a spontaneous curvature field. The approaches include field theoretical methods limited to the small deformation regime, triangulated surfaces and particle-based computational models to investigate the large-deformation regimes observed in the natural state of many biological membranes. Applications of these methods to understand the properties of biological membranes in homogeneous and inhomogeneous environments of proteins, whose underlying curvature fields are either isotropic or anisotropic, are discussed. The diversity in the curvature fields elicits a rich variety of morphological states, including tubes, discs, branched tubes, and caveola. Mapping the thermodynamic stability of these states as a function of tuning parameters such as concentration and strength of curvature induction of the proteins is discussed. The relative stabilities of these self-organized shapes are examined through free-energy calculations. The suite of methods discussed here can be tailored to applications in specific cellular settings such as endocytosis during cargo trafficking and tubulation of filopodial structures in migrating cells, which makes these methods a powerful complement to experimental studies

  9. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins.

    Science.gov (United States)

    Ramakrishnan, N; Sunil Kumar, P B; Radhakrishnan, Ravi

    2014-10-01

    description, the protein is expressed in the form of a spontaneous curvature field. The approaches include field theoretical methods limited to the small deformation regime, triangulated surfaces and particle-based computational models to investigate the large-deformation regimes observed in the natural state of many biological membranes. Applications of these methods to understand the properties of biological membranes in homogeneous and inhomogeneous environments of proteins, whose underlying curvature fields are either isotropic or anisotropic, are discussed. The diversity in the curvature fields elicits a rich variety of morphological states, including tubes, discs, branched tubes, and caveola. Mapping the thermodynamic stability of these states as a function of tuning parameters such as concentration and strength of curvature induction of the proteins is discussed. The relative stabilities of these self-organized shapes are examined through free-energy calculations. The suite of methods discussed here can be tailored to applications in specific cellular settings such as endocytosis during cargo trafficking and tubulation of filopodial structures in migrating cells, which makes these methods a powerful complement to experimental studies.

  10. Novel tilt-curvature coupling in lipid membranes

    Science.gov (United States)

    Terzi, M. Mert; Deserno, Markus

    2017-08-01

    On mesoscopic scales, lipid membranes are well described by continuum theories whose main ingredients are the curvature of a membrane's reference surface and the tilt of its lipid constituents. In particular, Hamm and Kozlov [Eur. Phys. J. E 3, 323 (2000)] have shown how to systematically derive such a tilt-curvature Hamiltonian based on the elementary assumption of a thin fluid elastic sheet experiencing internal lateral pre-stress. Performing a dimensional reduction, they not only derive the basic form of the effective surface Hamiltonian but also express its emergent elastic couplings as trans-membrane moments of lower-level material parameters. In the present paper, we argue, though, that their derivation unfortunately missed a coupling term between curvature and tilt. This term arises because, as one moves along the membrane, the curvature-induced change of transverse distances contributes to the area strain—an effect that was believed to be small but nevertheless ends up contributing at the same (quadratic) order as all other terms in their Hamiltonian. We illustrate the consequences of this amendment by deriving the monolayer and bilayer Euler-Lagrange equations for the tilt, as well as the power spectra of shape, tilt, and director fluctuations. A particularly curious aspect of our new term is that its associated coupling constant is the second moment of the lipid monolayer's lateral stress profile—which within this framework is equal to the monolayer Gaussian curvature modulus, κ¯ m. On the one hand, this implies that many theoretical predictions now contain a parameter that is poorly known (because the Gauss-Bonnet theorem limits access to the integrated Gaussian curvature); on the other hand, the appearance of κ¯ m outside of its Gaussian curvature provenance opens opportunities for measuring it by more conventional means, for instance by monitoring a membrane's undulation spectrum at short scales.

  11. Amphipathic motifs in BAR domains are essential for membrane curvature sensing

    DEFF Research Database (Denmark)

    Bhatia, Vikram K; Madsen, Kenneth L; Bolinger, Pierre-Yves

    2009-01-01

    BAR (Bin/Amphiphysin/Rvs) domains and amphipathic alpha-helices (AHs) are believed to be sensors of membrane curvature thus facilitating the assembly of protein complexes on curved membranes. Here, we used quantitative fluorescence microscopy to compare the binding of both motifs on single...... nanosized liposomes of different diameters and therefore membrane curvature. Characterization of members of the three BAR domain families showed surprisingly that the crescent-shaped BAR dimer with its positively charged concave face is not able to sense membrane curvature. Mutagenesis on BAR domains showed...... that membrane curvature sensing critically depends on the N-terminal AH and furthermore that BAR domains sense membrane curvature through hydrophobic insertion in lipid packing defects and not through electrostatics. Consequently, amphipathic motifs, such as AHs, that are often associated with BAR domains...

  12. Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature

    Directory of Open Access Journals (Sweden)

    Philip P. Cheney

    2017-03-01

    Full Text Available The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE and hexadecanoic acid (HDA, using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed.

  13. Quantifying the Relationship Between Curvature and Electric Potential in Lipid Bilayers

    DEFF Research Database (Denmark)

    Bruhn, Dennis Skjøth; Lomholt, Michael Andersen; Khandelia, Himanshu

    2016-01-01

    Cellular membranes mediate vital cellular processes by being subject to curvature and transmembrane electrical potentials. Here we build upon the existing theory for flexoelectricity in liquid crystals to quantify the coupling between lipid bilayer curvature and membrane potentials. Using molecular...... dynamics simulations, we show that head group dipole moments, the lateral pressure profile across the bilayer and spontaneous curvature all systematically change with increasing membrane potentials. In particu- lar, there is a linear dependence between the bending moment (the product of bending rigidity...

  14. Curvature of double-membrane organelles generated by changes in membrane size and composition.

    Directory of Open Access Journals (Sweden)

    Roland L Knorr

    Full Text Available Transient double-membrane organelles are key players in cellular processes such as autophagy, reproduction, and viral infection. These organelles are formed by the bending and closure of flat, double-membrane sheets. Proteins are believed to be important in these morphological transitions but the underlying mechanism of curvature generation is poorly understood. Here, we describe a novel mechanism for this curvature generation which depends primarily on three membrane properties: the lateral size of the double-membrane sheets, the molecular composition of their highly curved rims, and a possible asymmetry between the two flat faces of the sheets. This mechanism is evolutionary advantageous since it does not require active processes and is readily available even when resources within the cell are restricted as during starvation, which can induce autophagy and sporulation. We identify pathways for protein-assisted regulation of curvature generation, organelle size, direction of bending, and morphology. Our theory also provides a mechanism for the stabilization of large double-membrane sheet-like structures found in the endoplasmic reticulum and in the Golgi cisternae.

  15. Measuring the composition-curvature coupling in binary lipid membranes by computer simulations

    International Nuclear Information System (INIS)

    Barragán Vidal, I. A.; Müller, M.; Rosetti, C. M.; Pastorino, C.

    2014-01-01

    The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated

  16. Measuring the composition-curvature coupling in binary lipid membranes by computer simulations

    Energy Technology Data Exchange (ETDEWEB)

    Barragán Vidal, I. A., E-mail: vidal@theorie.physik.uni-goettingen.de; Müller, M., E-mail: mmueller@theorie.physik.uni-goettingen.de [Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Rosetti, C. M., E-mail: carla@dqb.fcq.unc.edu.ar [Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba (Argentina); Pastorino, C., E-mail: pastor@cnea.gov.ar [Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, CNEA/CONICET, Av. Gral. Paz 1499, 1650 Pcia. de Buenos Aires (Argentina)

    2014-11-21

    The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated.

  17. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases

    DEFF Research Database (Denmark)

    Larsen, Jannik Bruun; Jensen, Martin Borch; Bhatia, Vikram Kjøller

    2015-01-01

    Trafficking and sorting of membrane-anchored Ras GTPases are regulated by partitioning between distinct membrane domains. Here, in vitro experiments and microscopic molecular theory reveal membrane curvature as a new modulator of N-Ras lipid anchor and palmitoyl chain partitioning. Membrane...

  18. Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair

    DEFF Research Database (Denmark)

    Boye, Theresa Louise; Maeda, Kenji; Pezeshkian, Weria

    2017-01-01

    Efficient cell membrane repair mechanisms are essential for maintaining membrane integrity and thus for cell life. Here we show that the Ca2+- and phospholipid-binding proteins annexin A4 and A6 are involved in plasma membrane repair and needed for rapid closure of micron-size holes. We demonstrate...... that annexin A4 binds to artificial membranes and generates curvature force initiated from free edges, whereas annexin A6 induces constriction force. In cells, plasma membrane injury and Ca2+ influx recruit annexin A4 to the vicinity of membrane wound edges where its homo-trimerization leads to membrane...... that induction of curvature force around wound edges is an early key event in cell membrane repair....

  19. A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins

    DEFF Research Database (Denmark)

    Bhatia, Vikram Kjøller; Hatzakis, Nikos; Stamou, Dimitrios

    2010-01-01

    itself. We thus anticipate that membrane curvature will promote the redistribution of proteins that are anchored in membranes through any type of hydrophobic moiety, a thesis that broadens tremendously the implications of membrane curvature for protein sorting, trafficking and signaling in cell biology....

  20. Protein shape and crowding drive domain formation and curvature in biological membranes

    NARCIS (Netherlands)

    Frese, R.N.; Pamies, Josep C.; Olsen, John D.; Bahatyrova, S.; van der Weij-de Wit, Chantal D.; Aartsma, Thijs J.; Otto, Cornelis; Hunter, C. Neil; Frenkel, Daan; van Grondelle, Rienk

    2007-01-01

    Folding, curvature, and domain formation are characteristics of many biological membranes. Yet the mechanisms that drive both curvature and the formation of specialized domains enriched in particular protein complexes are unknown. For this reason, studies in membranes whose shape and organization

  1. The homeodomain derived peptide Penetratin induces curvature of fluid membrane domains.

    Directory of Open Access Journals (Sweden)

    Antonin Lamazière

    Full Text Available BACKGROUND: Protein membrane transduction domains that are able to cross the plasma membrane are present in several transcription factors, such as the homeodomain proteins and the viral proteins such as Tat of HIV-1. Their discovery resulted in both new concepts on the cell communication during development, and the conception of cell penetrating peptide vectors for internalisation of active molecules into cells. A promising cell penetrating peptide is Penetratin, which crosses the cell membranes by a receptor and metabolic energy-independent mechanism. Recent works have claimed that Penetratin and similar peptides are internalized by endocytosis, but other endocytosis-independent mechanisms have been proposed. Endosomes or plasma membranes crossing mechanisms are not well understood. Previously, we have shown that basic peptides induce membrane invaginations suggesting a new mechanism for uptake, "physical endocytosis". METHODOLOGY/PRINCIPAL FINDINGS: Herein, we investigate the role of membrane lipid phases on Penetratin induced membrane deformations (liquid ordered such as in "raft" microdomains versus disordered fluid "non-raft" domains in membrane models. Experimental data show that zwitterionic lipid headgroups take part in the interaction with Penetratin suggesting that the external leaflet lipids of cells plasma membrane are competent for peptide interaction in the absence of net negative charges. NMR and X-ray diffraction data show that the membrane perturbations (tubulation and vesiculation are associated with an increase in membrane negative curvature. These effects on curvature were observed in the liquid disordered but not in the liquid ordered (raft-like membrane domains. CONCLUSIONS/SIGNIFICANCE: The better understanding of the internalisation mechanisms of protein transduction domains will help both the understanding of the mechanisms of cell communication and the development of potential therapeutic molecular vectors. Here we

  2. Manipulating lipid membrane architecture by liquid crystal-analog curvature elasticity (Presentation Recording)

    Science.gov (United States)

    Lee, Sin-Doo

    2015-10-01

    Soft matters such as liquid crystals and biological molecules exhibit a variety of interesting physical phenomena as well as new applications. Recently, in mimicking biological systems that have the ability to sense, regulate, grow, react, and regenerate in a highly responsive and self-adaptive manner, the significance of the liquid crystal order in living organisms, for example, a biological membrane possessing the lamellar order, is widely recognized from the viewpoints of physics and chemistry of interfaces and membrane biophysics. Lipid bilayers, resembling cell membranes, provide primary functions for the transport of biological components of ions and molecules in various cellular activities, including vesicle budding and membrane fusion, through lateral organization of the membrane components such as proteins. In this lecture, I will describe how the liquid crystal-analog curvature elasticity of a lipid bilayer plays a critical role in developing a new platform for understanding diverse biological functions at a cellular level. The key concept is to manipulate the local curvature at an interface between a solid substrate and a model membrane. Two representative examples will be demonstrated: one of them is the topographic control of lipid rafts in a combinatorial array where the ligand-receptor binding event occurs and the other concerns the reconstitution of a ring-type lipid raft in bud-mimicking architecture within the framework of the curvature elasticity.

  3. BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature

    DEFF Research Database (Denmark)

    Madsen, Kenneth Lindegaard; Bhatia, V K; Gether, U

    2010-01-01

    /ensemble liposome samples of different mean diameter. Next, we describe two different MCS protein motifs (amphipathic helices and BAR domains) and suggest that in both cases curvature sensitive membrane binding results from asymmetric insertion of hydrophobic amino acids in the lipid membrane. This mechanism can...

  4. Effective tension and fluctuations in active membranes.

    Science.gov (United States)

    Loubet, Bastien; Seifert, Udo; Lomholt, Michael Andersen

    2012-03-01

    We calculate the fluctuation spectrum of the shape of a lipid vesicle or cell exposed to a nonthermal source of noise. In particular, we take constraints on the membrane area and the volume of fluid that it encapsulates into account when obtaining expressions for the dependency of the membrane tension on the noise. We then investigate three possible origins of the nonthermal noise taken from the literature: A direct force, which models an external medium pushing on the membrane, a curvature force, which models a fluctuating spontaneous curvature, and a permeation force coming from an active transport of fluid through the membrane. For the direct force and curvature force cases, we compare our results to existing experiments on active membranes.

  5. Influence of Global and Local Membrane Curvature on Mechanosensitive Ion Channels: A Finite Element Approach

    Directory of Open Access Journals (Sweden)

    Omid Bavi

    2016-02-01

    Full Text Available Mechanosensitive (MS channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. MS channels are also proposed to be molecular curvature sensors gating in response to bending in their local environment. One of the main mechanisms to functionally study these channels is the patch clamp technique. However, the patch of membrane surveyed using this methodology is far from physiological. Here we use continuum mechanics to probe the question of how curvature, in a standard patch clamp experiment, at different length scales (global and local affects a model MS channel. Firstly, to increase the accuracy of the Laplace’s equation in tension estimation in a patch membrane and to be able to more precisely describe the transient phenomena happening during patch clamping, we propose a modified Laplace’s equation. Most importantly, we unambiguously show that the global curvature of a patch, which is visible under the microscope during patch clamp experiments, is of negligible energetic consequence for activation of an MS channel in a model membrane. However, the local curvature (RL < 50 and the direction of bending are able to cause considerable changes in the stress distribution through the thickness of the membrane. Not only does local bending, in the order of physiologically relevant curvatures, cause a substantial change in the pressure profile but it also significantly modifies the stress distribution in response to force application. Understanding these stress variations in regions of high local bending is essential for a complete understanding of the effects of curvature on MS channels.

  6. Cationic membranes complexed with oppositely charged microtubules: hierarchical self-assembly leading to bio-nanotubes

    International Nuclear Information System (INIS)

    Raviv, Uri; Needleman, Daniel J; Safinya, Cyrus R

    2006-01-01

    The self-assembly of microtubules and charged membranes has been studied, using x-ray diffraction and electron microscopy. Polyelectrolyte lipid complexes usually form structures templated by the lipid phase, when the polyelectrolyte curvature is much larger than the membrane spontaneous curvature. When the polyelectrolyte curvature approaches the membrane spontaneous curvature, as in microtubules, two types of new structures emerge. Depending on the conditions, vesicles either adsorb onto the microtubule, forming a 'beads on a rod' structure, or coat the microtubule, which now forms the template. Tubulin oligomers then coat the external lipid layer, forming a lipid protein nanotube. The tubulin oligomer coverage at the external layer is determined by the membrane charge density. The energy barrier between the beads on a rod and the lipid-protein nanotube states depends on the membrane bending rigidity and membrane charge density. By controlling the lipid/tubulin stoichiometry we can switch between lipid-protein nanotubes with open ends to lipid-protein nanotubes with closed end with lipid cups. This forms the basis for controlled drug encapsulation and release

  7. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.

    Science.gov (United States)

    Pankov, R; Markovska, T; Antonov, P; Ivanova, L; Momchilova, A

    2006-09-01

    Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.

  8. NMR Determination of Protein Partitioning into Membrane Domains with Different Curvatures and Application to the Influenza M2 Peptide

    Science.gov (United States)

    Wang, Tuo; Cady, Sarah D.; Hong, Mei

    2012-01-01

    The M2 protein of the influenza A virus acts both as a drug-sensitive proton channel and mediates virus budding through membrane scission. The segment responsible for causing membrane curvature is an amphipathic helix in the cytoplasmic domain of the protein. Here, we use 31P and 13C solid-state NMR to examine M2-induced membrane curvature. M2(22–46), which includes only the transmembrane (TM) helix, and M2(21–61), which contains an additional amphipathic helix, are studied. 31P chemical shift lineshapes indicate that M2(21–61) causes a high-curvature isotropic phase to both cholesterol-rich virus-mimetic membranes and 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayers, whereas M2(22–46) has minimal effect. The lamellar and isotropic domains have distinct 31P isotropic chemical shifts, indicating perturbation of the lipid headgroup conformation by the amphipathic helix. 31P- and 13C-detected 1H T2 relaxation and two-dimensional peptide-lipid correlation spectra show that M2(21–61) preferentially binds to the high-curvature domain. 31P linewidths indicate that the isotropic vesicles induced by M2(21–61) are 10–35 nm in diameter, and the virus-mimetic vesicles are smaller than the 1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles. A strong correlation is found between high membrane curvature and weak drug-binding ability of the TM helix. Thus, the M2 amphipathic helix causes membrane curvature, which in turn perturbs the TM helix conformation, abolishing drug binding. These NMR experiments are applicable to other curvature-inducing membrane proteins such as fusion proteins and antimicrobial peptides. PMID:22385849

  9. 2,2'-Bis(monoacylglycero) PO4 (BMP), but Not 3,1'-BMP, increases membrane curvature stress to enhance α-tocopherol transfer protein binding to membranes.

    Science.gov (United States)

    Baptist, Matilda; Panagabko, Candace; Nickels, Jonathan D; Katsaras, John; Atkinson, Jeffrey

    2015-03-01

    Previous work revealed that α-tocopherol transfer protein (α-TTP) co-localizes with bis(monoacylglycero)phosphate (BMP) in late endosomes. BMP is a lipid unique to late endosomes and is believed to induce membrane curvature and support the multivesicular nature of this organelle. We examined the effect of BMP on α-TTP binding to membranes using dual polarization interferometry and vesicle-binding assay. α-TTP binding to membranes is increased by the curvature-inducing lipid BMP. α-TTP binds to membranes with greater affinity when they contain the 2,2'-BMP versus 3,1'-BMP isomers.

  10. Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar.; Davis, Ryan Wesley; Sasaki, Darryl Y

    2013-10-01

    Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.

  11. An Amphipathic Helix Directs Cellular Membrane Curvature Sensing and Function of the BAR Domain Protein PICK1.

    Science.gov (United States)

    Herlo, Rasmus; Lund, Viktor K; Lycas, Matthew D; Jansen, Anna M; Khelashvili, George; Andersen, Rita C; Bhatia, Vikram; Pedersen, Thomas S; Albornoz, Pedro B C; Johner, Niklaus; Ammendrup-Johnsen, Ina; Christensen, Nikolaj R; Erlendsson, Simon; Stoklund, Mikkel; Larsen, Jannik B; Weinstein, Harel; Kjærulff, Ole; Stamou, Dimitrios; Gether, Ulrik; Madsen, Kenneth L

    2018-05-15

    BAR domains are dimeric protein modules that sense, induce, and stabilize lipid membrane curvature. Here, we show that membrane curvature sensing (MCS) directs cellular localization and function of the BAR domain protein PICK1. In PICK1, and the homologous proteins ICA69 and arfaptin2, we identify an amphipathic helix N-terminal to the BAR domain that mediates MCS. Mutational disruption of the helix in PICK1 impaired MCS without affecting membrane binding per se. In insulin-producing INS-1E cells, super-resolution microscopy revealed that disruption of the helix selectively compromised PICK1 density on insulin granules of high curvature during their maturation. This was accompanied by reduced hormone storage in the INS-1E cells. In Drosophila, disruption of the helix compromised growth regulation. By demonstrating size-dependent binding on insulin granules, our finding highlights the function of MCS for BAR domain proteins in a biological context distinct from their function, e.g., at the plasma membrane during endocytosis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. No Evidence for Spontaneous Lipid Transfer at ER-PM Membrane Contact Sites.

    Science.gov (United States)

    Merklinger, Elisa; Schloetel, Jan-Gero; Spitta, Luis; Thiele, Christoph; Lang, Thorsten

    2016-04-01

    Non-vesicular lipid transport steps play a crucial role in lipid trafficking and potentially include spontaneous exchange. Since membrane contact facilitates this lipid transfer, it is most likely to occur at membrane contact sites (MCS). However, to date it is unknown whether closely attached biological membranes exchange lipids spontaneously. We have set up a system for studying the exchange of lipids at MCS formed between the endoplasmic reticulum (ER) and the plasma membrane. Contact sites were stably anchored and the lipids cholesterol and phosphatidylcholine (PC) were not capable of transferring spontaneously into the opposed bilayer. We conclude that physical contact between two associated biological membranes is not sufficient for transfer of the lipids PC and cholesterol.

  13. Spontaneous Pre-Labour Rupture of Membranes at Term ...

    African Journals Online (AJOL)

    BACKGROUND: Spontaneous pre-labour rupture of membranes (SPROM) at term is one of the most common complications of pregnancy. It is an important cause of perinatal morbidity and mortality, particularly because it is associated with a latency period from membrane rupture to delivery. OBJECTIVE: To compare the ...

  14. The N-terminal amphipathic helix of the topological specificity factor MinE is associated with shaping membrane curvature.

    Directory of Open Access Journals (Sweden)

    Yu-Ling Shih

    Full Text Available Pole-to-pole oscillations of the Min proteins in Escherichia coli are required for the proper placement of the division septum. Direct interaction of MinE with the cell membrane is critical for the dynamic behavior of the Min system. In vitro, this MinE-membrane interaction led to membrane deformation; however, the underlying mechanism remained unclear. Here we report that MinE-induced membrane deformation involves the formation of an amphipathic helix of MinE(2-9, which, together with the adjacent basic residues, function as membrane anchors. Biochemical evidence suggested that the membrane association induces formation of the helix, with the helical face, consisting of A2, L3, and F6, inserted into the membrane. Insertion of this helix into the cell membrane can influence local membrane curvature and lead to drastic changes in membrane topology. Accordingly, MinE showed characteristic features of protein-induced membrane tubulation and lipid clustering in in vitro reconstituted systems. In conclusion, MinE shares common protein signatures with a group of membrane trafficking proteins in eukaryotic cells. These MinE signatures appear to affect membrane curvature.

  15. Spontaneous insertion of GPI anchors into cholesterol-rich membrane domains

    Directory of Open Access Journals (Sweden)

    Jing Li

    2018-05-01

    Full Text Available GPI-Anchored proteins (GPI-APs can be exogenously transferred onto bilayer membranes both in vivo and in vitro, while the mechanism by which this transfer process occurs is unknown. In this work, we used atomistic molecular dynamics simulations and free energy calculations to characterize the essential influence of cholesterol on insertion of the GPI anchors into plasma membranes. We demonstrate, both dynamically and energetically, that in the presence of cholesterol, the tails of GPI anchors are able to penetrate inside the core of the lipid membrane spontaneously with a three-step mechanism, while in the absence of cholesterol no spontaneous insertion was observed. We ascribe the failure of insertion to the strong thermal fluctuation of lipid molecules in cholesterol-free bilayer, which generates a repulsive force in entropic origin. In the presence of cholesterol, however, the fluctuation of lipids is strongly reduced, thus decreasing the barrier for the anchor insertion. Based on this observation, we propose a hypothesis that addition of cholesterol creates vertical creases in membranes for the insertion of acyl chains. Moreover, we find that the GPI anchor could also spontaneously inserted into the boundary between cholesterol-rich and cholesterol-depleted domains. Our results shed light on the mechanism of cholesterol-mediated interaction between membrane proteins with acyl chain and plasma membranes in living cells.

  16. Spontaneous insertion of GPI anchors into cholesterol-rich membrane domains

    Science.gov (United States)

    Li, Jing; Liu, Xiuhua; Tian, Falin; Yue, Tongtao; Zhang, Xianren; Cao, Dapeng

    2018-05-01

    GPI-Anchored proteins (GPI-APs) can be exogenously transferred onto bilayer membranes both in vivo and in vitro, while the mechanism by which this transfer process occurs is unknown. In this work, we used atomistic molecular dynamics simulations and free energy calculations to characterize the essential influence of cholesterol on insertion of the GPI anchors into plasma membranes. We demonstrate, both dynamically and energetically, that in the presence of cholesterol, the tails of GPI anchors are able to penetrate inside the core of the lipid membrane spontaneously with a three-step mechanism, while in the absence of cholesterol no spontaneous insertion was observed. We ascribe the failure of insertion to the strong thermal fluctuation of lipid molecules in cholesterol-free bilayer, which generates a repulsive force in entropic origin. In the presence of cholesterol, however, the fluctuation of lipids is strongly reduced, thus decreasing the barrier for the anchor insertion. Based on this observation, we propose a hypothesis that addition of cholesterol creates vertical creases in membranes for the insertion of acyl chains. Moreover, we find that the GPI anchor could also spontaneously inserted into the boundary between cholesterol-rich and cholesterol-depleted domains. Our results shed light on the mechanism of cholesterol-mediated interaction between membrane proteins with acyl chain and plasma membranes in living cells.

  17. Substrate curvature gradient drives rapid droplet motion.

    Science.gov (United States)

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-11

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42  m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100  m/s on tapered surfaces.

  18. Membrane curvature stress and antibacterial activity of lactoferricin derivatives.

    Science.gov (United States)

    Zweytick, Dagmar; Tumer, Sabine; Blondelle, Sylvie E; Lohner, Karl

    2008-05-02

    We have studied correlation of non-lamellar phase formation and antimicrobial activity of two cationic amphipathic peptides, termed VS1-13 and VS1-24 derived from a fragment (LF11) of human lactoferricin on Escherichia coli total lipid extracts. Compared to LF11, VS1-13 exhibits minor, but VS1-24 significantly higher antimicrobial activity. X-ray experiments demonstrated that only VS1-24 decreased the onset of cubic phase formation of dispersions of E. coli lipid extracts, significantly, down to physiological relevant temperatures. Cubic structures were identified to belong to the space groups Pn3m and Im3m. Formation of latter is enhanced in the presence of VS1-24. Additionally, the presence of this peptide caused membrane thinning in the fluid phase, which may promote cubic phase formation. VS1-24 containing a larger hydrophobic volume at the N-terminus than its less active counterpart VS1-13 seems to increase curvature stress in the bilayer and alter the behaviour of the membrane significantly enhancing disruption.

  19. Cholera toxin B subunit induces local curvature on lipid bilayers

    DEFF Research Database (Denmark)

    Pezeshkian, Weria; Nåbo, Lina J.; Ipsen, John H.

    2017-01-01

    B induces a local membrane curvature that is essential for its clathrin-independent uptake. Using all-atom molecular dynamics, we show that CTxB induces local curvature, with the radius of curvature around 36 nm. The main feature of the CTxB molecular structure that causes membrane bending is the protruding...... alpha helices in the middle of the protein. Our study points to a generic protein design principle for generating local membrane curvature through specific binding to their lipid anchors....

  20. Membrane Stored Curvature Elastic Stress Modulates Recruitment of Maintenance Proteins PspA and Vipp1.

    Science.gov (United States)

    McDonald, Christopher; Jovanovic, Goran; Ces, Oscar; Buck, Martin

    2015-09-01

    Phage shock protein A (PspA), which is responsible for maintaining inner membrane integrity under stress in enterobacteria, and vesicle-inducting protein in plastids 1 (Vipp1), which functions for membrane maintenance and thylakoid biogenesis in cyanobacteria and plants, are similar peripheral membrane-binding proteins. Their homologous N-terminal amphipathic helices are required for membrane binding; however, the membrane features recognized and required for expressing their functionalities have remained largely uncharacterized. Rigorously controlled, in vitro methodologies with lipid vesicles and purified proteins were used in this study and provided the first biochemical and biophysical characterizations of membrane binding by PspA and Vipp1. Both proteins are found to sense stored curvature elastic (SCE) stress and anionic lipids within the membrane. PspA has an enhanced sensitivity for SCE stress and a higher affinity for the membrane than Vipp1. These variations in binding may be crucial for some of the proteins' differing roles in vivo. Assays probing the transcriptional regulatory function of PspA in the presence of vesicles showed that a relief of transcription inhibition occurs in an SCE stress-specific manner. This in vitro recapitulation of membrane stress-dependent transcription control suggests that the Psp response may be mounted in vivo when a cell's inner membrane experiences increased SCE stress. All cell types maintain the integrity of their membrane systems. One widely distributed membrane stress response system in bacteria is the phage shock protein (Psp) system. The central component, peripheral membrane protein PspA, which mitigates inner membrane stress in bacteria, has a counterpart, Vipp1, which functions for membrane maintenance and thylakoid biogenesis in plants and photosynthetic bacteria. Membrane association of both these proteins is accepted as playing a pivotal role in their functions. Here we show that direct membrane binding by

  1. Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.

    Science.gov (United States)

    Smith, Alyson S; Nowak, Roberta B; Zhou, Sitong; Giannetto, Michael; Gokhin, David S; Papoin, Julien; Ghiran, Ionita C; Blanc, Lionel; Wan, Jiandi; Fowler, Velia M

    2018-05-08

    The biconcave disk shape and deformability of mammalian RBCs rely on the membrane skeleton, a viscoelastic network of short, membrane-associated actin filaments (F-actin) cross-linked by long, flexible spectrin tetramers. Nonmuscle myosin II (NMII) motors exert force on diverse F-actin networks to control cell shapes, but a function for NMII contractility in the 2D spectrin-F-actin network of RBCs has not been tested. Here, we show that RBCs contain membrane skeleton-associated NMIIA puncta, identified as bipolar filaments by superresolution fluorescence microscopy. MgATP disrupts NMIIA association with the membrane skeleton, consistent with NMIIA motor domains binding to membrane skeleton F-actin and contributing to membrane mechanical properties. In addition, the phosphorylation of the RBC NMIIA heavy and light chains in vivo indicates active regulation of NMIIA motor activity and filament assembly, while reduced heavy chain phosphorylation of membrane skeleton-associated NMIIA indicates assembly of stable filaments at the membrane. Treatment of RBCs with blebbistatin, an inhibitor of NMII motor activity, decreases the number of NMIIA filaments associated with the membrane and enhances local, nanoscale membrane oscillations, suggesting decreased membrane tension. Blebbistatin-treated RBCs also exhibit elongated shapes, loss of membrane curvature, and enhanced deformability, indicating a role for NMIIA contractility in promoting membrane stiffness and maintaining RBC biconcave disk cell shape. As structures similar to the RBC membrane skeleton exist in many metazoan cell types, these data demonstrate a general function for NMII in controlling specialized membrane morphology and mechanical properties through contractile interactions with short F-actin in spectrin-F-actin networks.

  2. Spontaneous Membranous Dysmenorrhea in an Adolescent Girl: A Case Report and Literature Review.

    Science.gov (United States)

    Topçu, Hasan Onur; Topçu, Seda; Kokanalı, Demet; Memur, Tuba; Doğanay, Melike

    2015-10-01

    Membranous dysmenorrhea is a rare entity. It involves the sloughing of the endometrium in 1 cylindrical or membranous piece, retaining the shape of the uterine cavity. Herein, we report the first case of spontaneous membranous dysmenorrhea in an adolescent girl. A 17-year-old girl was admitted to the emergency clinic with severe painful menstrual bleeding and passage of tissue via the vagina. Bloody endometrial tissue resembling the endometrial cavity expulsed from the vagina was seen on inspection. The pathologic diagnosis of the mass was membranous dysmenorrhea. To our knowledge, this is the first case of the spontaneous occurrence of membranous dysmenorrhea. The relationship between membranous dysmenorrhea and endogenous or exogenous progesterone should be investigated further. A review of the literature on membranous dysmenorrhea is presented. Copyright © 2015 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  3. On the membrane paradigm and spontaneous breaking of horizon BMS symmetries

    International Nuclear Information System (INIS)

    Eling, Christopher; Oz, Yaron

    2016-01-01

    We consider a BMS-type symmetry action on isolated horizons in asymptotically flat spacetimes. From the viewpoint of the non-relativistic field theory on a horizon membrane, supertranslations shift the field theory spatial momentum. The latter is related by a Ward identity to the particle number symmetry current and is spontaneously broken. The corresponding Goldstone boson shifts the horizon angular momentum and can be detected quantum mechanically. Similarly, area preserving superrotations are spontaneously broken on the horizon membrane and we identify the corresponding gapless modes. In asymptotically AdS spacetimes we study the BMS-type symmetry action on the horizon in a holographic superfluid dual. We identify the horizon supertranslation Goldstone boson as the holographic superfluid Goldstone mode.

  4. The effect of curvature on the undulation spectrum of Red Blood Cell membranes

    Science.gov (United States)

    Kuriabova, Tatiana; Henle, Mark L.; Levine, Alex J.

    2009-03-01

    The human red blood cell (RBC) membrane has a composite structure of a fluid lipid bilayer tethered to an elastic 2D spectrin network. The study of the mechanical properties of RBCs is crucial to our understanding of their ability withstand large amplitude deformations during their passage through the microvasculature. The linear mechanical response of this composite membrane can be measured by observing its undulatory dynamics in thermal equilibrium, i.e. microrheology. Previous models of these dynamics postulated an effective surface tension. In this talk, we show that surface tension is not necessary. Rather, the coupling of membrane bending to spectrin network compression by curvature can account for the observed dynamics. We use a simplified theoretical model to describe the undulatory dynamics of RBCs, measured experimentally by the Popescu group.ootnotetextG. Popescu et al. ``Imaging red blood cell dynamics by quantitative phase microscopy, Blood Cells, Molecules, and Diseases, (2008), in print'' Analyzing their data using our model, we observe dramatic changes in RBC membrane elasticity associated with cells' morphological transition from discocytes to echinocyte to spherocyte.

  5. Modeling curvature-dependent subcellular localization of a small sporulation protein in Bacillus subtilis

    Science.gov (United States)

    Wasnik, Vaibhav; Wingreen, Ned; Mukhopadhyay, Ranjan

    2012-02-01

    Recent experiments suggest that in the bacterium, B. subtilis, the cue for the localization of small sporulation protein, SpoVM, that plays a central role in spore coat formation, is curvature of the bacterial plasma membrane. This curvature-dependent localization is puzzling given the orders of magnitude difference in lengthscale of an individual protein and radius of curvature of the membrane. Here we develop a minimal model to study the relationship between curvature-dependent membrane absorption of SpoVM and clustering of membrane-associated SpoVM and compare our results with experiments.

  6. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    Science.gov (United States)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  7. Generalization of the swelling method to measure the intrinsic curvature of lipids

    Science.gov (United States)

    Barragán Vidal, I. A.; Müller, M.

    2017-12-01

    Via computer simulation of a coarse-grained model of two-component lipid bilayers, we compare two methods of measuring the intrinsic curvatures of the constituting monolayers. The first one is a generalization of the swelling method that, in addition to the assumption that the spontaneous curvature linearly depends on the composition of the lipid mixture, incorporates contributions from its elastic energy. The second method measures the effective curvature-composition coupling between the apposing leaflets of bilayer structures (planar bilayers or cylindrical tethers) to extract the spontaneous curvature. Our findings demonstrate that both methods yield consistent results. However, we highlight that the two-leaflet structure inherent to the latter method has the advantage of allowing measurements for mixed lipid systems up to their critical point of demixing as well as in the regime of high concentration (of either species).

  8. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress

    International Nuclear Information System (INIS)

    Rand, R.P.; Fuller, N.L.; Gruner, S.M.; Parsegian, V.A.

    1990-01-01

    Amphiphiles respond both to polar and to nonpolar solvents. In this paper X-ray diffraction and osmotic stress have been used to examine the phase behavior, the structural dimensions, and the work of deforming the monolayer-lined aqueous cavities formed by mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) as a function of the concentration of two solvents, water and tetradecane (td). In the absence of td, most PE/PC mixtures show only lamellar phases in excess water; all of these become single reverse hexagonal (H II ) phases with addition of excess td. The spontaneous radius of curvature R 0 of lipid monolayers, as expressed in these H II phases, is allowed by the relief of hydrocarbon chain stress by td; R 0 increases with the ratio DOPC/DOPE. Single H II phases stressed by limited water or td show several responses. (a) the molecular area is compressed at the polar end of the molecule and expanded at the hydrocarbon ends. (b) For circularly symmetrical water cylinders, the degrees of hydrocarbon chain splaying and polar group compression are different for molecules aligned in different directions around the water cylinder. (c) A pivotal position exists along the length of the phospholipid molecule where little area change occurs as the monolayer is bent to increasing curvatures. (d) By defining R 0 at the pivotal position, the authors find that measured energies are well fit by a quadratic bending energy. (e) For lipid mixtures, enforced deviation of the H II monolayer from R 0 is sufficiently powerful to cause demixing of the phospholipids in a way suggesting that the DOPE/DOPC ratio self-adjusts so that its R 0 matches the amount of td or water available, i.e., that curvature energy is minimized

  9. Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Heidi Koldsø

    2014-10-01

    Full Text Available Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2, in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.

  10. Acute otitis media with spontaneous tympanic membrane perforation.

    Science.gov (United States)

    Principi, N; Marchisio, P; Rosazza, C; Sciarrabba, C S; Esposito, S

    2017-01-01

    The principal aim of this review is to present the current knowledge regarding acute otitis media (AOM) with spontaneous tympanic membrane perforation (STMP) and to address the question of whether AOM with STMP is a disease with specific characteristics or a severe case of AOM. PubMed was used to search for all studies published over the past 15 years using the key words "acute otitis media" and "othorrea" or "spontaneous tympanic membrane perforation". More than 250 articles were found, but only those published in English and providing data on aspects related to perforation of infectious origin were considered. Early Streptococcus pneumoniae infection due to invasive pneumococcal strains, in addition to coinfections and biofilm production due mainly to non-typeable Haemophilus influenzae, seem to be precursors of STMP. However, it is unclear why some children have several STMP episodes during the first years of life that resolve without complications in adulthood, whereas other children develop chronic suppurative otitis media. Although specific aetiological agents appear to be associated with an increased risk of AOM with STMP, further studies are needed to determine whether AOM with STMP is a distinct disease with specific aetiological, clinical and prognostic characteristics or a more severe case of AOM than the cases that occur without STMP. Finally, it is important to identify preventive methods that are useful not only in otitis-prone children with uncomplicated AOM, but also in children with recurrent AOM and those who experience several episodes with STMP.

  11. Salt Bridge Formation between the I-BAR Domain and Lipids Increases Lipid Density and Membrane Curvature.

    Science.gov (United States)

    Takemura, Kazuhiro; Hanawa-Suetsugu, Kyoko; Suetsugu, Shiro; Kitao, Akio

    2017-07-28

    The BAR domain superfamily proteins sense or induce curvature in membranes. The inverse-BAR domain (I-BAR) is a BAR domain that forms a straight "zeppelin-shaped" dimer. The mechanisms by which IRSp53 I-BAR binds to and deforms a lipid membrane are investigated here by all-atom molecular dynamics simulation (MD), binding energy analysis, and the effects of mutation experiments on filopodia on HeLa cells. I-BAR adopts a curved structure when crystallized, but adopts a flatter shape in MD. The binding of I-BAR to membrane was stabilized by ~30 salt bridges, consistent with experiments showing that point mutations of the interface residues have little effect on the binding affinity whereas multiple mutations have considerable effect. Salt bridge formation increases the local density of lipids and deforms the membrane into a concave shape. In addition, the point mutations that break key intra-molecular salt bridges within I-BAR reduce the binding affinity; this was confirmed by expressing these mutants in HeLa cells and observing their effects. The results indicate that the stiffness of I-BAR is important for membrane deformation, although I-BAR does not act as a completely rigid template.

  12. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis

    Science.gov (United States)

    Szwedziak, Piotr; Wong, Felix; Schaefer, Kaitlin; Izoré, Thierry; Renner, Lars D; Holmes, Matthew J; Sun, Yingjie; Bisson-Filho, Alexandre W; Walker, Suzanne; Amir, Ariel; Löwe, Jan

    2018-01-01

    MreB is essential for rod shape in many bacteria. Membrane-associated MreB filaments move around the rod circumference, helping to insert cell wall in the radial direction to reinforce rod shape. To understand how oriented MreB motion arises, we altered the shape of Bacillus subtilis. MreB motion is isotropic in round cells, and orientation is restored when rod shape is externally imposed. Stationary filaments orient within protoplasts, and purified MreB tubulates liposomes in vitro, orienting within tubes. Together, this demonstrates MreB orients along the greatest principal membrane curvature, a conclusion supported with biophysical modeling. We observed that spherical cells regenerate into rods in a local, self-reinforcing manner: rapidly propagating rods emerge from small bulges, exhibiting oriented MreB motion. We propose that the coupling of MreB filament alignment to shape-reinforcing peptidoglycan synthesis creates a locally-acting, self-organizing mechanism allowing the rapid establishment and stable maintenance of emergent rod shape. PMID:29469806

  13. New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories.

    Science.gov (United States)

    Doneva, Daniela D; Yazadjiev, Stoytcho S

    2018-03-30

    In the present Letter, we consider a class of extended scalar-tensor-Gauss-Bonnet (ESTGB) theories for which the scalar degree of freedom is excited only in the extreme curvature regime. We show that in the mentioned class of ESTGB theories there exist new black-hole solutions that are formed by spontaneous scalarization of the Schwarzschild black holes in the extreme curvature regime. In this regime, below certain mass, the Schwarzschild solution becomes unstable and a new branch of solutions with a nontrivial scalar field bifurcates from the Schwarzschild one. As a matter of fact, more than one branch with a nontrivial scalar field can bifurcate at different masses, but only the first one is supposed to be stable. This effect is quite similar to the spontaneous scalarization of neutron stars. In contrast to the standard spontaneous scalarization of neutron stars, which is induced by the presence of matter, in our case, the scalarization is induced by the curvature of the spacetime.

  14. Spontaneous Absorption of Extensive Subinternal Limiting Membrane Hemorrhage in Shaken Baby Syndrome

    Directory of Open Access Journals (Sweden)

    Tatiana Tarules Azzi

    2014-01-01

    Full Text Available The Shaken Baby Syndrome (SBS is characterized by subdural hematomas (SH, retinal hemorrhages (RH, and multiple fractures of long bones without external evidence of head trauma. Subinternal limiting membrane (ILM hemorrhage, also known as macular schisis, is a characteristic finding of this entity. There is no guideline on the right time to indicate surgical treatment. This report describes an abused child with massive sub-ILM hemorrhage, which showed spontaneous absorption after less than two months of follow-up. Due to the possible spontaneous resolution, we suggest an initial conservative treatment in cases of sub-ILM hemorrhage related to SBS.

  15. Chemically triggered ejection of membrane tubules controlled by intermonolayer friction.

    Science.gov (United States)

    Fournier, J-B; Khalifat, N; Puff, N; Angelova, M I

    2009-01-09

    We report a chemically driven membrane shape instability that triggers the ejection of a tubule growing exponentially toward a chemical source. The instability is initiated by a dilation of the exposed monolayer, which is coupled to the membrane spontaneous curvature and slowed down by intermonolayer friction. Our experiments are performed by local delivery of a basic pH solution to a giant vesicle. Quantitative fits of the data give an intermonolayer friction coefficient b approximately 2x10;{9} J s/m;{4}. The exponential growth of the tubule may be explained by a Marangoni stress yielding a pulling force proportional to its length.

  16. Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide

    Science.gov (United States)

    Wang, Yukun; Chen, Charles H.; Hu, Dan; Ulmschneider, Martin B.; Ulmschneider, Jakob P.

    2016-11-01

    Many antimicrobial peptides (AMPs) selectively target and form pores in microbial membranes. However, the mechanisms of membrane targeting, pore formation and function remain elusive. Here we report an experimentally guided unbiased simulation methodology that yields the mechanism of spontaneous pore assembly for the AMP maculatin at atomic resolution. Rather than a single pore, maculatin forms an ensemble of structurally diverse temporarily functional low-oligomeric pores, which mimic integral membrane protein channels in structure. These pores continuously form and dissociate in the membrane. Membrane permeabilization is dominated by hexa-, hepta- and octamers, which conduct water, ions and small dyes. Pores form by consecutive addition of individual helices to a transmembrane helix or helix bundle, in contrast to current poration models. The diversity of the pore architectures--formed by a single sequence--may be a key feature in preventing bacterial resistance and could explain why sequence-function relationships in AMPs remain elusive.

  17. Quark potential of spontaneous strings

    International Nuclear Information System (INIS)

    German, G.; Kleinert, H.

    1989-01-01

    The authors present some recent developments in string models with an extrinsic curvature term in action. Particular emphasis is placed upon the static quark potential and on the thermal deconfinement properties of spontaneous strings

  18. Gaussian curvature elasticity determined from global shape transformations and local stress distributions: a comparative study using the MARTINI model.

    Science.gov (United States)

    Hu, Mingyang; de Jong, Djurre H; Marrink, Siewert J; Deserno, Markus

    2013-01-01

    We calculate the Gaussian curvature modulus kappa of a systematically coarse-grained (CG) one-component lipid membrane by applying the method recently proposed by Hu et al. [Biophys. J., 2012, 102, 1403] to the MARTINI representation of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). We find the value kappa/kappa = -1.04 +/- 0.03 for the elastic ratio between the Gaussian and the mean curvature modulus and deduce kappa(m)/kappa(m) = -0.98 +/- 0.09 for the monolayer elastic ratio, where the latter is based on plausible assumptions for the distance z0 of the monolayer neutral surface from the bilayer midplane and the spontaneous lipid curvature K(0m). By also analyzing the lateral stress profile sigma0(z) of our system, two other lipid types and pertinent data from the literature, we show that determining K(0m) and kappa through the first and second moment of sigma0(z) gives rise to physically implausible values for these observables. This discrepancy, which we previously observed for a much simpler CG model, suggests that the moment conditions derived from simple continuum assumptions miss the effect of physically important correlations in the lipid bilayer.

  19. Phases of a stack of membranes in a large number of dimensions of configuration space

    Science.gov (United States)

    Borelli, M. E.; Kleinert, H.

    2001-05-01

    The phase diagram of a stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is calculated exactly in a large number of dimensions of configuration space. At low temperatures, the system forms a lamellar phase with spontaneously broken translational symmetry in the vertical direction. At a critical temperature, the stack disorders vertically in a meltinglike transition. The critical temperature is determined as a function of the interlayer separation l.

  20. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  1. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure...... that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature...... can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics...

  2. Trans-membrane area asymmetry controls the shape of cellular organelles

    NARCIS (Netherlands)

    Beznoussenko, Galina V; Pilyugin, Sergei S; Geerts, Willie J C; Kozlov, Michael M; Burger, Koert N J; Luini, Alberto; Derganc, Jure; Mironov, Alexander A

    2015-01-01

    Membrane organelles often have complicated shapes and differ in their volume, surface area and membrane curvature. The ratio between the surface area of the cytosolic and luminal leaflets (trans-membrane area asymmetry (TAA)) determines the membrane curvature within different sites of the organelle.

  3. Supported lipid bilayers with controlled curvature via colloidal lithography

    DEFF Research Database (Denmark)

    Sundh, Maria; Manandhar, Michal; Svedhem, Sofia

    2011-01-01

    Supported lipid bilayers (SLBs) at surfaces provide a route to quantitatively study molecular interactions with and at lipid membranes via different surface-based analytical techniques. Here, a method to fabricate SLBs with controlled curvatures, in the nanometer regime over large areas, is prese...

  4. Fusion Pore Diameter Regulation by Cations Modulating Local Membrane Anisotropy

    Directory of Open Access Journals (Sweden)

    Doron Kabaso

    2012-01-01

    Full Text Available The fusion pore is an aqueous channel that is formed upon the fusion of the vesicle membrane with the plasma membrane. Once the pore is open, it may close again (transient fusion or widen completely (full fusion to permit vesicle cargo discharge. While repetitive transient fusion pore openings of the vesicle with the plasma membrane have been observed in the absence of stimulation, their frequency can be further increased using a cAMP-increasing agent that drives the opening of nonspecific cation channels. Our model hypothesis is that the openings and closings of the fusion pore are driven by changes in the local concentration of cations in the connected vesicle. The proposed mechanism of fusion pore dynamics is considered as follows: when the fusion pore is closed or is extremely narrow, the accumulation of cations in the vesicle (increased cation concentration likely leads to lipid demixing at the fusion pore. This process may affect local membrane anisotropy, which reduces the spontaneous curvature and thus leads to the opening of the fusion pore. Based on the theory of membrane elasticity, we used a continuum model to explain the rhythmic opening and closing of the fusion pore.

  5. Induction of Highly Curved Structures in Relation to Membrane Permeabilization and Budding by the Triterpenoid Saponins, α- and δ-Hederin

    Science.gov (United States)

    Lorent, Joseph; Le Duff, Cécile S.; Quetin-Leclercq, Joelle; Mingeot-Leclercq, Marie-Paule

    2013-01-01

    The interactions of triterpenoid monodesmosidic saponins, α-hederin and δ-hederin, with lipid membranes are involved in their permeabilizing effect. Unfortunately, the interactions of these saponins with lipid membranes are largely unknown, as are the roles of cholesterol or the branched sugar moieties (two for α-hederin and one for δ-hederin) on the aglycone backbone, hederagenin. The differences in sugar moieties are responsible for differences in the molecular shape of the saponins and the effects on membrane curvature that should be the most positive for α-hederin in a transbilayer direction. In large unilamellar vesicles and monocyte cells, we showed that membrane permeabilization was dependent on the presence of membrane cholesterol and saponin sugar chains, being largest for α-hederin and smallest for hederagenin. In the presence of cholesterol, α-hederin induced the formation of nonbilayer phases with a higher rate of Brownian tumbling or lateral diffusion. A reduction of Laurdan's generalized polarization in relation to change in order of the polar heads of phospholipids was observed. Using giant unilamellar vesicles, we visualized the formation of wrinkled borders, the decrease in liposome size, budding, and the formation of macroscopic pores. All these processes are highly dependent on the sugars linked to the aglycone, with α-hederin showing a greater ability to induce pore formation and δ-hederin being more efficient in inducing budding. Hederagenin induced intravesicular budding but no pore formation. Based on these results, a curvature-driven permeabilization mechanism dependent on the interaction between saponin and sterols and on the molecular shape of the saponin and its ability to induce local spontaneous curvature is proposed. PMID:23530040

  6. Zero curvature-surface driven small objects

    Science.gov (United States)

    Dou, Xiaoxiao; Li, Shanpeng; Liu, Jianlin

    2017-08-01

    In this study, we investigate the spontaneous migration of small objects driven by surface tension on a catenoid, formed by a layer of soap constrained by two rings. Although the average curvature of the catenoid is zero at each point, the small objects always migrate to the position near the ring. The force and energy analyses have been performed to uncover the mechanism, and it is found that the small objects distort the local shape of the liquid film, thus making the whole system energetically favorable. These findings provide some inspiration to design microfluidics, aquatic robotics, and miniature boats.

  7. The role of curvature in silica mesoporous crystals

    KAUST Repository

    Miyasaka, Keiichi

    2012-02-08

    Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.

  8. The role of curvature in silica mesoporous crystals

    KAUST Repository

    Miyasaka, Keiichi; Bennett, Alfonso Garcia; Han, Lu; Han, Yu; Xiao, Changhong; Fujita, Nobuhisa; Castle, Toen; Sakamoto, Yasuhiro; Che, Shunai; Terasaki, Osamu

    2012-01-01

    Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.

  9. Changes in plasma membrane state of thymocytes during spontaneous and radiation-induced leukemogenesis

    International Nuclear Information System (INIS)

    Gonta-Grabiec, K.

    1984-01-01

    Changes in plasma membrane properties characteristic for malignant cells were reviewed. Investigations of spontaneous (in AKR mice) and radiation-induced (in C57Bl) leukemogenesis were carried out; changes in properties of Na + , K + ATPase and alkaline phosphatase were characterized. On the basis of the results reported a pre-leukemic stage was distinguished, corresponding to the following features at the cellular level: increase in activity of alkaline phosphatase; decrease in relative activity of Na + , K + ATPase; decrease in efficiency of the Na + K + pump; decrease in cAMP content. 473 refs. (author)

  10. Studying biomolecule localization by engineering bacterial cell wall curvature.

    Directory of Open Access Journals (Sweden)

    Lars D Renner

    Full Text Available In this article we describe two techniques for exploring the relationship between bacterial cell shape and the intracellular organization of proteins. First, we created microchannels in a layer of agarose to reshape live bacterial cells and predictably control their mean cell wall curvature, and quantified the influence of curvature on the localization and distribution of proteins in vivo. Second, we used agarose microchambers to reshape bacteria whose cell wall had been chemically and enzymatically removed. By combining microstructures with different geometries and fluorescence microscopy, we determined the relationship between bacterial shape and the localization for two different membrane-associated proteins: i the cell-shape related protein MreB of Escherichia coli, which is positioned along the long axis of the rod-shaped cell; and ii the negative curvature-sensing cell division protein DivIVA of Bacillus subtilis, which is positioned primarily at cell division sites. Our studies of intracellular organization in live cells of E. coli and B. subtilis demonstrate that MreB is largely excluded from areas of high negative curvature, whereas DivIVA localizes preferentially to regions of high negative curvature. These studies highlight a unique approach for studying the relationship between cell shape and intracellular organization in intact, live bacteria.

  11. DNA release from lipoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tarahovsky, Yury S.; Koynova, Rumiana; MacDonald, Robert C. (Northwestern)

    2010-01-18

    DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugal separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells.

  12. Convective mass transfer in helical pipes: effect of curvature and torsion

    Energy Technology Data Exchange (ETDEWEB)

    Litster, S.; Djilali, N. [University of Victoria, Department of Mechanical Engineering, Victoria, BC (Canada); Pharoah, J.G. [University of Victoria, Department of Mechanical Engineering, Victoria, BC (Canada); Queen' s University at Kingston, Department of Mechanical Engineering, Kingston, ON (Canada)

    2006-03-01

    A 3D numerical analysis of the flow and mass transfer in helical pipes is presented. The interpretation of the flow patterns and their impact on mass transfer is shown to require a non-orthogonal pseudo-stream function based visualization. The strong coupling between torsion and curvature effects, and the resulting secondary flow regimes are well characterized by a parameter combining both the Dean (Dn) and Germano numbers (Gn). For membrane separation applications, helical modules combining high curvature with low torsion would alleviate concentration polarization and yield appreciable flux improvement. (orig.)

  13. Spheres of influence: Porphyromonas gingivalis outer membrane vesicles.

    Science.gov (United States)

    Gui, M J; Dashper, S G; Slakeski, N; Chen, Y-Y; Reynolds, E C

    2016-10-01

    Outer membrane vesicles (OMVs) are asymmetrical single bilayer membranous nanostructures produced by Gram-negative bacteria important for bacterial interaction with the environment. Porphyromonas gingivalis, a keystone pathogen associated with chronic periodontitis, produces OMVs that act as a virulence factor secretion system contributing to its pathogenicity. Despite their biological importance, the mechanisms of OMV biogenesis have not been fully elucidated. The ~14 times more curvature of the OMV membrane than cell outer membrane (OM) indicates that OMV biogenesis requires energy expenditure for significant curvature of the OMV membrane. In P. gingivalis, we propose that this may be achieved by upregulating the production of certain inner or outer leaflet lipids, which causes localized outward curvature of the OM. This results in selection of anionic lipopolysaccharide (A-LPS) and associated C-terminal domain (CTD) -family proteins on the outer surface due to their ability to accommodate the curvature. Deacylation of A-LPS may further enable increased curvature leading to OMV formation. Porphyromonas gingivalis OMVs that are selectively enriched in CTD-family proteins, largely the gingipains, can support bacterial coaggregation, promote biofilm development and act as an intercessor for the transport of non-motile bacteria by motile bacteria. The P. gingivalis OMVs are also believed to contribute to host interaction and colonization, evasion of immune defense mechanisms, and destruction of periodontal tissues. They may be crucial for both micro- and macronutrient capture, especially heme and probably other assimilable compounds for its own benefit and that of the wider biofilm community. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Collective cell behavior on basement membranes floating in space

    Science.gov (United States)

    Ellison, Sarah; Bhattacharjee, Tapomoy; Morley, Cameron; Sawyer, W.; Angelini, Thomas

    The basement membrane is an essential part of the polarity of endothelial and epithelial tissues. In tissue culture and organ-on-chip devices, monolayer polarity can be established by coating flat surfaces with extracellular matrix proteins and tuning the trans-substrate permeability. In epithelial 3D culture, spheroids spontaneously establish inside-out polarity, morphing into hollow shell-like structures called acini, generating their own basement membrane on the inner radius of the shell. However, 3D culture approaches generally lack the high degree of control provided by the 2D culture plate or organ-on-chip devices, making it difficult to create more faithful in vitro tissue models with complex surface curvature and morphology. Here we present a method for 3D printing complex basement membranes covered in cells. We 3D print collagen-I and Matrigel into a 3D growth medium made from jammed microgels. This soft, yielding material allows extracellular matrix to be formed as complex surfaces and shapes, floating in space. We then distribute MCF10A epithelial cells across the polymerized surface. We envision employing this strategy to study 3D collective cell behavior in numerous model tissue layers, beyond this simple epithelial model.

  15. Pointlike Inclusion Interactions in Tubular Membranes

    NARCIS (Netherlands)

    Vahid Belarghou, A.; Idema, T.

    2016-01-01

    Membrane tubes and tubular networks are ubiquitous in living cells. Inclusions like proteins are vital for both the stability and the dynamics of such networks. These inclusions interact via the curvature deformations they impose on the membrane. We analytically study the resulting membrane

  16. Engineering single-polymer micelle shape using nonuniform spontaneous surface curvature

    Science.gov (United States)

    Moths, Brian; Witten, T. A.

    2018-03-01

    Conventional micelles, composed of simple amphiphiles, exhibit only a few standard morphologies, each characterized by its mean surface curvature set by the amphiphiles. Here we demonstrate a rational design scheme to construct micelles of more general shape from polymeric amphiphiles. We replace the many amphiphiles of a conventional micelle by a single flexible, linear, block copolymer chain containing two incompatible species arranged in multiple alternating segments. With suitable segment lengths, the chain exhibits a condensed spherical configuration in solution, similar to conventional micelles. Our design scheme posits that further shapes are attained by altering the segment lengths. As a first study of the power of this scheme, we demonstrate the capacity to produce long-lived micelles of horseshoe form using conventional bead-spring simulations in two dimensions. Modest changes in the segment lengths produce smooth changes in the micelle's shape and stability.

  17. Effects of membrane curvature and pH on proton pumping activity of single cytochrome bo3 enzymes

    DEFF Research Database (Denmark)

    Li, Mengqiu; Khan, Sanobar; Rong, Honglin

    2017-01-01

    The molecular mechanism of proton pumping by heme-copper oxidases (HCO) has intrigued the scientific community since it was first proposed. We have recently reported a novel technology that enables the continuous characterisation of proton transport activity of a HCO and ubiquinol oxidase from...... Escherichia coli, cytochrome bo3, for hundreds of seconds on the single enzyme level (Li et al. J Am Chem Soc 137 (2015) 16055–16063). Here, we have extended these studies by additional experiments and analyses of the proton transfer rate as a function of proteoliposome size and pH at the N- and P......-side of single HCOs. Proton transport activity of cytochrome bo3 was found to decrease with increased curvature of the membrane. Furthermore, proton uptake at the N-side (proton entrance) was insensitive to pH between pH 6.4–8.4, while proton release at the P-side had an optimum pH of ~ 7.4, suggesting...

  18. Structure of the vitreoretinal border region in spontaneously hypertensive rats (SHR rats)

    DEFF Research Database (Denmark)

    Heegaard, Steffen

    1993-01-01

    Øjenpatologi, vitreoretinal border region, inner limiting membrane of the retina, spontaneously hypertensive rats, SHR rats, ultrastructure......Øjenpatologi, vitreoretinal border region, inner limiting membrane of the retina, spontaneously hypertensive rats, SHR rats, ultrastructure...

  19. Clustering on Membranes

    DEFF Research Database (Denmark)

    Johannes, Ludger; Pezeshkian, Weria; Ipsen, John H

    2018-01-01

    Clustering of extracellular ligands and proteins on the plasma membrane is required to perform specific cellular functions, such as signaling and endocytosis. Attractive forces that originate in perturbations of the membrane's physical properties contribute to this clustering, in addition to direct...... protein-protein interactions. However, these membrane-mediated forces have not all been equally considered, despite their importance. In this review, we describe how line tension, lipid depletion, and membrane curvature contribute to membrane-mediated clustering. Additional attractive forces that arise...... from protein-induced perturbation of a membrane's fluctuations are also described. This review aims to provide a survey of the current understanding of membrane-mediated clustering and how this supports precise biological functions....

  20. Regulation of membrane protein function by lipid bilayer elasticity—a single molecule technology to measure the bilayer properties experienced by an embedded protein

    DEFF Research Database (Denmark)

    Lundbæk, Jens August

    2008-01-01

    , regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes......-dependent sodium channels, N-type calcium channels and GABAA receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic...... properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established....

  1. A Theoretical Characterization of Curvature Controlled Adhesive Properties of Bio-Inspired Membranes

    DEFF Research Database (Denmark)

    Afferante, Luciano; Heepe, Lars; Casdorff, Kirstin

    2016-01-01

    Some biological systems, such as the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima, have developed the ability to control adhesion by changing the curvature of their pads. Active control systems of adhesion inspired by these biological models can be very attractive...

  2. Peripheral Protein Unfolding Drives Membrane Bending.

    Science.gov (United States)

    Siaw, Hew Ming Helen; Raghunath, Gokul; Dyer, R Brian

    2018-06-20

    Dynamic modulation of lipid membrane curvature can be achieved by a number of peripheral protein binding mechanisms such as hy-drophobic insertion of amphipathic helices and membrane scaffolding. Recently, an alternative mechanism was proposed in which crowding of peripherally bound proteins induces membrane curvature through steric pressure generated by lateral collisions. This effect was enhanced using intrinsically disordered proteins that possess high hydrodynamic radii, prompting us to explore whether membrane bending can be triggered by the folding-unfolding transition of surface-bound proteins. We utilized histidine-tagged human serum albumin bound to Ni-NTA-DGS containing liposomes as our model system to test this hypothesis. We found that reduction of the disulfide bonds in the protein resulted in unfolding of HSA, which subsequently led to membrane tubule formation. The frequency of tubule formation was found to be significantly higher when the proteins were unfolded while being localized to a phase-separated domain as opposed to randomly distributed in fluid phase liposomes, indicating that the steric pressure generated from protein unfolding is directly responsible for membrane deformation. Our results are critical for the design of peripheral membrane protein-immobilization strategies and open new avenues for exploring mechanisms of membrane bending driven by conformational changes of peripheral membrane proteins.

  3. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain.

    Science.gov (United States)

    Yao, Hongwei; Lee, Myungwoon; Liao, Shu-Yu; Hong, Mei

    2016-12-13

    The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance. These studies provide structural information about the two domains when they are spatially well separated in the fusion process. To investigate how these two domains are structured relative to each other in the postfusion state, when the ectodomain forms a six-helix bundle that is thought to force the FP and TMD together in the membrane, we have now expressed and purified a chimera of the FP and TMD, connected by a Gly-Lys linker, and measured the chemical shifts and interdomain contacts of the protein in several lipid membranes. The FP-TMD chimera exhibits α-helical chemical shifts in all the membranes examined and does not cause strong curvature of lamellar membranes or membranes with negative spontaneous curvature. These properties differ qualitatively from those of the separate peptides, indicating that the FP and TMD interact with each other in the lipid membrane. However, no 13 C- 13 C cross peaks are observed in two-dimensional correlation spectra, suggesting that the two helices are not tightly associated. These results suggest that the ectodomain six-helix bundle does not propagate into the membrane to the two hydrophobic termini. However, the loosely associated FP and TMD helices are found to generate significant negative Gaussian curvature to membranes that possess spontaneous positive curvature, consistent with the notion that the FP-TMD assembly may

  4. Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties

    Science.gov (United States)

    Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.

    2014-04-01

    Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.

  5. The correlation between histologic placentitis and amnionitis and the amnioniotic fluid's inflammatory cytokines in case of spontaneous pre-term labor with intact membrane

    Directory of Open Access Journals (Sweden)

    Agus Abadi

    2001-12-01

    Full Text Available Pre-term labor is presumed to result from spreading of lower genital infection to upper part, subsequently to decidual and choioamniotic tissues. Host response to this injury include the expression of protein which is responsible to the inflammatory reactions. The expression of the inflammatory cytokines such as IL-1β, IL-6, IL-8 and TNF-α increase in case of infection.These cytokines may play an essential role in the pathophysiology of spontaneous pretem labor with intact membrane.An observational analytic cohort study was caried out on cases of spontaneous pre-tefln labor with intact membrane. The objectives of this study are to examine the relationship between l the histologic amnionitis and placentitis and the incidence of preterm delivery,2 the expression of amniotic fluid's IL-1β, IL-6, IL-8 and TNF-α and the incidence of preterm delivery, 3 the level of amniotic fluid's IL-1β, IL-6, IL-8 and TNF-α and the grade of histologic amnionitis and placentitis in case of pre-term labor with intact membrane. Cases of spontaneous Pre'teftn labor with intact membrane which underwent transabdominal amniocentesis at admission and managed as standard procedure for pre-term labor with intact membrane. Atl of the cases were observed until the delivery of the baby, eithir preterm or term. The membrane and the placentawere cut postnatally and then the histologic acute inflammation eyaluated based on the criteria of Salafia.The level of amniotic fluid IL-1β, IL-6, IL-8 and TNF-α were analyzed quantitatively by Elisa method. This study showed thet the degree of histologic amnionitis and placentitis, and the level of amniotic fluid's IL-1β, IL-6, IL-8 and TNF-α were significantly higher in pre-term compared to terrn deliveries (p<0.05 and lhere were a positive correlation between the grade of histoLogic inflammation and the level of amniotic fluid's cytokines (Spearmann Rank Conelation test; p<0,05 in cases of preterm labor with intact membrane. The

  6. Electrodiffusion of Lipids on Membrane Surfaces

    OpenAIRE

    Zhou, Y. C.

    2011-01-01

    Random lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when this lateral random diffusion is mediated by the electrostatic interactions and membrane curvature. Though the lateral diffusion rates of lipids on membrane of various compositions are measured and the electrostatic free energies of predetermined protein-membrane-lipid systems can be computed, the process of the aggregati...

  7. The curvature coordinate system

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2007-01-01

    The paper describes a concept for a curvature coordinate system on regular curved surfaces from which faceted surfaces with plane quadrangular facets can be designed. The lines of curvature are used as parametric lines for the curvature coordinate system on the surface. A new conjugate set of lin...

  8. Spontaneously broken continuous symmetries in hyperbolic (or open) de Sitter spacetime

    International Nuclear Information System (INIS)

    Ratra, B.

    1994-01-01

    The functional Schroedinger approach is used to study scalar field theory in hyperbolic (or open) de Sitter spacetime. While on intermediate length scales (small compared to the spatial curvature length scale) the massless minimally coupled scalar field two-point correlation function does have a term that varies logarithmically with scale, as in flat and closed de Sitter spacetime, the spatial curvature tames the infrared behavior of this correlation function at larger scales in the open model. As a result, and contrary to what happens in flat and closed de Sitter spacetime, spontaneously broken continuous symmetries are not restored in open de Sitter spacetime (with more than one spatial dimension)

  9. The hemifusion structure induced by influenza virus haemagglutinin is determined by physical properties of the target membranes.

    Science.gov (United States)

    Chlanda, Petr; Mekhedov, Elena; Waters, Hang; Schwartz, Cindi L; Fischer, Elizabeth R; Ryham, Rolf J; Cohen, Fredric S; Blank, Paul S; Zimmerberg, Joshua

    2016-04-18

    Influenza A virus haemagglutinin conformational change drives the membrane fusion of viral and endosomal membranes at low pH. Membrane fusion proceeds through an intermediate called hemifusion(1,2). For viral fusion, the hemifusion structures are not determined(3). Here, influenza virus-like particles(4) carrying wild-type haemagglutinin or haemagglutinin hemifusion mutant G1S(5) and liposome mixtures were studied at low pH by Volta phase plate cryo-electron tomography, which improves the signal-to-noise ratio close to focus. We determined two distinct hemifusion structures: a hemifusion diaphragm and a novel structure termed a 'lipidic junction'. Liposomes with lipidic junctions were ruptured with membrane edges stabilized by haemagglutinin. The rupture frequency and hemifusion diaphragm diameter were not affected by G1S mutation, but decreased when the cholesterol level in the liposomes was close to physiological concentrations. We propose that haemagglutinin induces a merger between the viral and target membranes by one of two independent pathways: a rupture-insertion pathway leading to the lipidic junction and a hemifusion-stalk pathway leading to a fusion pore. The latter is relevant under the conditions of influenza virus infection of cells. Cholesterol concentration functions as a pathway switch because of its negative spontaneous curvature in the target bilayer, as determined by continuum analysis.

  10. On Gauss-Bonnet Curvatures

    Directory of Open Access Journals (Sweden)

    Mohammed Larbi Labbi

    2007-12-01

    Full Text Available The $(2k$-th Gauss-Bonnet curvature is a generalization to higher dimensions of the $(2k$-dimensional Gauss-Bonnet integrand, it coincides with the usual scalar curvature for $k = 1$. The Gauss-Bonnet curvatures are used in theoretical physics to describe gravity in higher dimensional space times where they are known as the Lagrangian of Lovelock gravity, Gauss-Bonnet Gravity and Lanczos gravity. In this paper we present various aspects of these curvature invariants and review their variational properties. In particular, we discuss natural generalizations of the Yamabe problem, Einstein metrics and minimal submanifolds.

  11. Implementing quantum Ricci curvature

    Science.gov (United States)

    Klitgaard, N.; Loll, R.

    2018-05-01

    Quantum Ricci curvature has been introduced recently as a new, geometric observable characterizing the curvature properties of metric spaces, without the need for a smooth structure. Besides coordinate invariance, its key features are scalability, computability, and robustness. We demonstrate that these properties continue to hold in the context of nonperturbative quantum gravity, by evaluating the quantum Ricci curvature numerically in two-dimensional Euclidean quantum gravity, defined in terms of dynamical triangulations. Despite the well-known, highly nonclassical properties of the underlying quantum geometry, its Ricci curvature can be matched well to that of a five-dimensional round sphere.

  12. Spontaneous formation of small unilamellar vesicles by pH jump: A pH gradient across the bilayer membrane as the driving force

    International Nuclear Information System (INIS)

    Hauser, H.; Mantsch, H.H.; Casal, H.L.

    1990-01-01

    31 P NMR and infrared spectroscopic methods have been used to study the formation of small unilamellar vesicles by the pH-jump method. It is shown that increasing the pH of different lamellar phospholipid dispersions (phosphatidic acids and phosphatidylserines) induces a pH gradient. This pH gradient is estimated to be 4 ± 1 pH units, and its direction is such that the inner monolayer of the vesicles is at lower pH. There is spectroscopic evidence for tighter packing of the lipid hydrocarbon chains in the inner monolayer, probably due to the constraints imposed by the high curvature of the small vesicles formed. These results are discussed in terms of the driving force of the spontaneous vesiculation

  13. Lectures on mean curvature flows

    CERN Document Server

    Zhu, Xi-Ping

    2002-01-01

    "Mean curvature flow" is a term that is used to describe the evolution of a hypersurface whose normal velocity is given by the mean curvature. In the simplest case of a convex closed curve on the plane, the properties of the mean curvature flow are described by Gage-Hamilton's theorem. This theorem states that under the mean curvature flow, the curve collapses to a point, and if the flow is diluted so that the enclosed area equals \\pi, the curve tends to the unit circle. In this book, the author gives a comprehensive account of fundamental results on singularities and the asymptotic behavior of mean curvature flows in higher dimensions. Among other topics, he considers in detail Huisken's theorem (a generalization of Gage-Hamilton's theorem to higher dimension), evolution of non-convex curves and hypersurfaces, and the classification of singularities of the mean curvature flow. Because of the importance of the mean curvature flow and its numerous applications in differential geometry and partial differential ...

  14. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  15. Van der Waals interactions between planar substrate and tubular lipid membranes undergoing pearling instability

    Science.gov (United States)

    Valchev, G. S.; Djondjorov, P. A.; Vassilev, V. M.; Dantchev, D. M.

    2017-10-01

    In the current article we study the behavior of the van der Waals force between a planar substrate and an axisymmetric bilayer lipid membrane undergoing pearling instability, caused by uniform hydrostatic pressure difference. To do so, the recently suggested "surface integration approach" is used, which can be considered a generalization of the well known and widely used Derjaguin approximation. The static equilibrium shape after the occurrence of the instability is described in the framework of Helfrich's spontaneous curvature model. Some specific classes of exact analytical solutions to the corresponding shape equation are considered, and the components of the respective position vectors given in terms of elliptic integrals and Jacobi elliptic functions. The mutual orientation between the interacting objects is chosen such that the axis of revolution of the distorted cylinder be parallel to the plane bounding the substrate. Based on the discussed models and approaches we made some estimations for the studied force in real experimentally realizable systems, thus showing the possibility of pearling as an useful technique for reduction of the adhesion in variety of industrial processes using lipid membranes as carriers.

  16. Some Inequalities for the -Curvature Image

    Directory of Open Access Journals (Sweden)

    Daijun Wei

    2009-01-01

    Full Text Available Lutwak introduced the notion of -curvature image and proved an inequality for the volumes of convex body and its -curvature image. In this paper, we first give an monotonic property of -curvature image. Further, we establish two inequalities for the -curvature image and its polar, respectively. Finally, an inequality for the volumes of -projection body and -curvature image is obtained.

  17. Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors

    Science.gov (United States)

    Leal-Junior, Arnaldo G.; Frizera, Anselmo; José Pontes, Maria

    2018-03-01

    Polymer optical fibers (POFs) are suitable for applications such as curvature sensors, strain, temperature, liquid level, among others. However, for enhancing sensitivity, many polymer optical fiber curvature sensors based on intensity variation require a lateral section. Lateral section length, depth, and surface roughness have great influence on the sensor sensitivity, hysteresis, and linearity. Moreover, the sensor curvature radius increase the stress on the fiber, which leads on variation of the sensor behavior. This paper presents the analysis relating the curvature radius and lateral section length, depth and surface roughness with the sensor sensitivity, hysteresis and linearity for a POF curvature sensor. Results show a strong correlation between the decision parameters behavior and the performance for sensor applications based on intensity variation. Furthermore, there is a trade-off among the sensitive zone length, depth, surface roughness, and curvature radius with the sensor desired performance parameters, which are minimum hysteresis, maximum sensitivity, and maximum linearity. The optimization of these parameters is applied to obtain a sensor with sensitivity of 20.9 mV/°, linearity of 0.9992 and hysteresis below 1%, which represent a better performance of the sensor when compared with the sensor without the optimization.

  18. Brane cosmology with curvature corrections

    International Nuclear Information System (INIS)

    Kofinas, Georgios; Maartens, Roy; Papantonopoulos, Eleftherios

    2003-01-01

    We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. The combined effect of these curvature corrections to the action removes the infinite-density big bang singularity, although the curvature can still diverge for some parameter values. A radiation brane undergoes accelerated expansion near the minimal scale factor, for a range of parameters. This acceleration is driven by the geometric effects, without an inflation field or negative pressures. At late times, conventional cosmology is recovered. (author)

  19. Membrane morphology is actively transformed by covalent binding of the protein Atg8 to PE-lipids.

    Directory of Open Access Journals (Sweden)

    Roland L Knorr

    Full Text Available Autophagy is a cellular degradation pathway involving the shape transformation of lipid bilayers. During the onset of autophagy, the water-soluble protein Atg8 binds covalently to phosphatdylethanolamines (PEs in the membrane in an ubiquitin-like reaction coupled to ATP hydrolysis. We reconstituted the Atg8 conjugation system in giant and nm-sized vesicles with a minimal set of enzymes and observed that formation of Atg8-PE on giant vesicles can cause substantial tubulation of membranes even in the absence of Atg12-Atg5-Atg16. Our findings show that ubiquitin-like processes can actively change properties of lipid membranes and that membrane crowding by proteins can be dynamically regulated in cells. Furthermore we provide evidence for curvature sorting of Atg8-PE. Curvature generation and sorting are directly linked to organelle shapes and, thus, to biological function. Our results suggest that a positive feedback exists between the ubiquitin-like reaction and the membrane curvature, which is important for dynamic shape changes of cell membranes, such as those involved in the formation of autophagosomes.

  20. Cosmic curvature tested directly from observations

    Science.gov (United States)

    Denissenya, Mikhail; Linder, Eric V.; Shafieloo, Arman

    2018-03-01

    Cosmic spatial curvature is a fundamental geometric quantity of the Universe. We investigate a model independent, geometric approach to measure spatial curvature directly from observations, without any derivatives of data. This employs strong lensing time delays and supernova distance measurements to measure the curvature itself, rather than just testing consistency with flatness. We define two curvature estimators, with differing error propagation characteristics, that can crosscheck each other, and also show how they can be used to map the curvature in redshift slices, to test constancy of curvature as required by the Robertson-Walker metric. Simulating realizations of redshift distributions and distance measurements of lenses and sources, we estimate uncertainties on the curvature enabled by next generation measurements. The results indicate that the model independent methods, using only geometry without assuming forms for the energy density constituents, can determine the curvature at the ~6×10‑3 level.

  1. Spontaneous Vesicle Recycling in the Synaptic Bouton

    Directory of Open Access Journals (Sweden)

    Sven eTruckenbrodt

    2014-12-01

    Full Text Available The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover.

  2. Spontaneous Regression of Choroidal Neovascularization in a Patient with Pattern Dystrophy

    Directory of Open Access Journals (Sweden)

    Anastasios Anastasakis

    2016-01-01

    Full Text Available Purpose. To present a case of a patient with pattern dystrophy (PD associated choroidal neovascularization (CNV that resolved spontaneously without treatment. Methods. A 69-year-old male patient was referred to our unit, for evaluation of a recent visual loss (metamorphopsias in his left eye. Fundus examination, fundus autofluorescence imaging, and fluorescein angiography showed a choroidal neovascular membrane in his left eye. Since visual acuity was satisfactory the patient elected observation. Clinical examination and OCT testing were repeated at 6 and 12 months after presentation. Results. Visual acuity remained stable at the level of 0.9 (baseline BCVA during the follow-up period (12 months. Repeat OCT testing showed complete spontaneous regression of the choroidal neovascular membrane without evidence of intra- or subretinal fluid in both follow-up visits. Conclusions. Spontaneous regression of choroidal neovascularization can occur in patients with retinal dystrophies and associated choroidal neovascular membranes. The decision to treat or observe these patients relies strongly on the presenting visual acuity, since, in isolated instances, spontaneous resolution of choroidal neovascularization may occur.

  3. Regularized strings with extrinsic curvature

    International Nuclear Information System (INIS)

    Ambjoern, J.; Durhuus, B.

    1987-07-01

    We analyze models of discretized string theories, where the path integral over world sheet variables is regularized by summing over triangulated surfaces. The inclusion of curvature in the action is a necessity for the scaling of the string tension. We discuss the physical properties of models with extrinsic curvature terms in the action and show that the string tension vanishes at the critical point where the bare extrinsic curvature coupling tends to infinity. Similar results are derived for models with intrinsic curvature. (orig.)

  4. Modulation by endothelin-1 of spontaneous activity and membrane currents of atrioventricular node myocytes from the rabbit heart.

    Directory of Open Access Journals (Sweden)

    Stéphanie C Choisy

    Full Text Available The atrioventricular node (AVN is a key component of the cardiac pacemaker-conduction system. Although it is known that receptors for the peptide hormone endothelin-1 (ET-1 are expressed in the AVN, there is very little information available on the modulatory effects of ET-1 on AVN electrophysiology. This study characterises for the first time acute modulatory effects of ET-1 on AVN cellular electrophysiology.Electrophysiological experiments were conducted in which recordings were made from rabbit isolated AVN cells at 35-37°C using the whole-cell patch clamp recording technique.Application of ET-1 (10 nM to spontaneously active AVN cells led rapidly (within ~13 s to membrane potential hyperpolarisation and cessation of spontaneous action potentials (APs. This effect was prevented by pre-application of the ET(A receptor inhibitor BQ-123 (1 µM and was not mimicked by the ET(B receptor agonist IRL-1620 (300 nM. In whole-cell voltage-clamp experiments, ET-1 partially inhibited L-type calcium current (I(Ca,L and rapid delayed rectifier K(+ current (I(Kr, whilst it transiently activated the hyperpolarisation-activated current (I(f at voltages negative to the pacemaking range, and activated an inwardly rectifying current that was inhibited by both tertiapin-Q (300 nM and Ba(2+ ions (2 mM; each of these effects was sensitive to ET(A receptor inhibition. In cells exposed to tertiapin-Q, ET-1 application did not produce membrane potential hyperpolarisation or immediate cessation of spontaneous activity; instead, there was a progressive decline in AP amplitude and depolarisation of maximum diastolic potential.Acutely applied ET-1 exerts a direct modulatory effect on AVN cell electrophysiology. The dominant effect of ET-1 in this study was activation of a tertiapin-Q sensitive inwardly rectifying K(+ current via ET(A receptors, which led rapidly to cell quiescence.

  5. Quantum fluctuations and spontaneous compactification of eleven-dimensional gravity

    International Nuclear Information System (INIS)

    Nguen Van Hieu.

    1985-01-01

    The reduction of the eleven-dimensional pure gravity to the field theory in the four-dimensional Minkowski space-time by means of the spontaneous compactification of the extra dimensions is investigated. The contribution of the quantum fluctuations of the eleven-dimen-- sonal second rank symmetric tensor field to the curvatures of the space-time and the compactified space of the extra dimensions are calculated in the one-loop approximation. It is shown that there exist the values of the cosmological constant for which tachions are absent. As a result, self-consistent quantum field theory is obtained in spontaneous compactified Minkowski space M 4 xS 7 ,is where M 4 is Minkowski space-time, and S 7 is seven-dimensional sphere

  6. Fetal membrane healing after spontaneous and iatrogenic membrane rupture: A review of current evidence

    OpenAIRE

    Devlieger, R.; Millar, L. K.; Bryant-Greenwood, G.; Lewi, L.; Deprest, J. A.

    2006-01-01

    In view of the important protective role of the fetal membranes, wound sealing, tissue regeneration, or wound healing could be life saving in cases of preterm premature rupture of the membranes. Although many investigators are studying the causes of preterm premature rupture of membranes, the emphasis has not been on the wound healing capacity of the fetal membranes. In this review, the relevant literature on the pathophysiologic condition that leads to preterm premature rupture of membranes ...

  7. The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis.

    Science.gov (United States)

    Prince, Amanda L; Ma, Jun; Kannan, Paranthaman S; Alvarez, Manuel; Gisslen, Tate; Harris, R Alan; Sweeney, Emma L; Knox, Christine L; Lambers, Donna S; Jobe, Alan H; Chougnet, Claire A; Kallapur, Suhas G; Aagaard, Kjersti M

    2016-05-01

    Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality and is not uncommonly associated with chorioamnionitis. We recently have demonstrated that the placenta harbors a unique microbiome with similar flora to the oral community. We also have shown an association of these placental microbiota with PTB, history of antenatal infection, and excess maternal weight gain. On the basis of these previous observations, we hypothesized that the placental membranes would retain a microbiome community that would vary in association with preterm birth and chorioamnionitis. In the current study, we aimed to examine the differences in the placental membrane microbiome in association with PTB in both the presence and absence of chorioamnionitis and/or funisitis using state-of-the-science whole-genome shotgun metagenomics. This was a cross-sectional analysis with 6 nested spontaneous birth cohorts (n = 9-15 subjects/cohort): Term gestations without chorioamnionitis, term with chorioamnionitis, preterm without chorioamnionitis, preterm with mild chorioamnionitis, preterm with severe chorioamnionitis, and preterm with chorioamnionitis and funisitis. Histologic analysis was performed with Redline's criteria, and inflammatory cytokines were analyzed in the cord blood. DNA from placental membranes was extracted from sterile swabs collected at delivery, and whole-genome shotgun sequencing was performed on the Illumina HiSeq platform. Filtered microbial DNA sequences were annotated and analyzed with MG-RAST (ie, Metagenomic Rapid Annotations using Subsystems Technology) and R. Subjects were assigned to cohorts on the basis of gestational age at delivery and independent scoring of histologic chorioamnionitis. We found that preterm subjects with severe chorioamnionitis and funisitis had increases in cord blood inflammatory cytokines. Of interest, although the placental membrane microbiome was altered in association with severity of histologic chorioamnionitis

  8. Complex Dynamic Development of Poliovirus Membranous Replication Complexes

    Science.gov (United States)

    Nair, Vinod; Hansen, Bryan T.; Hoyt, Forrest H.; Fischer, Elizabeth R.; Ehrenfeld, Ellie

    2012-01-01

    Replication of all positive-strand RNA viruses is intimately associated with membranes. Here we utilize electron tomography and other methods to investigate the remodeling of membranes in poliovirus-infected cells. We found that the viral replication structures previously described as “vesicles” are in fact convoluted, branching chambers with complex and dynamic morphology. They are likely to originate from cis-Golgi membranes and are represented during the early stages of infection by single-walled connecting and branching tubular compartments. These early viral organelles gradually transform into double-membrane structures by extension of membranous walls and/or collapsing of the luminal cavity of the single-membrane structures. As the double-membrane regions develop, they enclose cytoplasmic material. At this stage, a continuous membranous structure may have double- and single-walled membrane morphology at adjacent cross-sections. In the late stages of the replication cycle, the structures are represented mostly by double-membrane vesicles. Viral replication proteins, double-stranded RNA species, and actively replicating RNA are associated with both double- and single-membrane structures. However, the exponential phase of viral RNA synthesis occurs when single-membrane formations are predominant in the cell. It has been shown previously that replication complexes of some other positive-strand RNA viruses form on membrane invaginations, which result from negative membrane curvature. Our data show that the remodeling of cellular membranes in poliovirus-infected cells produces structures with positive curvature of membranes. Thus, it is likely that there is a fundamental divergence in the requirements for the supporting cellular membrane-shaping machinery among different groups of positive-strand RNA viruses. PMID:22072780

  9. Delivery of a baby with severe combined immunodeficiency at 31 weeks gestation following an extreme preterm prelabour spontaneous rupture of the membranes: a case report

    Directory of Open Access Journals (Sweden)

    Watkinson Sally J

    2009-11-01

    Full Text Available Abstract Introduction If left untreated, severe combined immunodeficiency can lead to an acute susceptibility to infection. The intrauterine environment is sterile until the amniotic membranes rupture. The vaginal flora then ascends into the genital tract, thus increasing the risk of chorioamnionitis. An extremely premature and prolonged membrane rupture is associated with a dismal prognosis for an immunocompetent preterm fetus. There are no case reports to date that detail the outcome of an immunocompromised preterm baby following prolonged rupture of membranes. Case presentation We present the case of a 32-year-old Indian woman who delivered a 31-week gestational baby who had a severe combined immunodeficiency following premature prelabour prolonged rupture of the membranes at the 14th week of gestation. Conclusion Extreme preterm prelabour spontaneous rupture of membranes in an underlying condition of severe combined immunodeficiency does not necessarily lead to an unfavourable outcome.

  10. Curvature Entropy for Curved Profile Generation

    Directory of Open Access Journals (Sweden)

    Koichiro Sato

    2012-03-01

    Full Text Available In a curved surface design, the overall shape features that emerge from combinations of shape elements are important. However, controlling the features of the overall shape in curved profiles is difficult using conventional microscopic shape information such as dimension. Herein two types of macroscopic shape information, curvature entropy and quadrature curvature entropy, quantitatively represent the features of the overall shape. The curvature entropy is calculated by the curvature distribution, and represents the complexity of a shape (one of the overall shape features. The quadrature curvature entropy is an improvement of the curvature entropy by introducing a Markov process to evaluate the continuity of a curvature and to approximate human cognition of the shape. Additionally, a shape generation method using a genetic algorithm as a calculator and the entropy as a shape generation index is presented. Finally, the applicability of the proposed method is demonstrated using the side view of an automobile as a design example.

  11. Introducing quantum Ricci curvature

    Science.gov (United States)

    Klitgaard, N.; Loll, R.

    2018-02-01

    Motivated by the search for geometric observables in nonperturbative quantum gravity, we define a notion of coarse-grained Ricci curvature. It is based on a particular way of extracting the local Ricci curvature of a smooth Riemannian manifold by comparing the distance between pairs of spheres with that of their centers. The quantum Ricci curvature is designed for use on non-smooth and discrete metric spaces, and to satisfy the key criteria of scalability and computability. We test the prescription on a variety of regular and random piecewise flat spaces, mostly in two dimensions. This enables us to quantify its behavior for short lattices distances and compare its large-scale behavior with that of constantly curved model spaces. On the triangulated spaces considered, the quantum Ricci curvature has good averaging properties and reproduces classical characteristics on scales large compared to the discretization scale.

  12. Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes.

    Science.gov (United States)

    Dutta, Eryn H; Behnia, Faranak; Boldogh, Istvan; Saade, George R; Taylor, Brandie D; Kacerovský, Marian; Menon, Ramkumar

    2016-02-01

    In women with preterm premature rupture of the membranes (PPROM), increased oxidative stress may accelerate premature cellular senescence, senescence-associated inflammation and proteolysis, which may predispose them to rupture. We demonstrate mechanistic differences between preterm birth (PTB) and PPROM by revealing differences in fetal membrane redox status, oxidative stress-induced damage, distinct signaling pathways and senescence activation. Oxidative stress-associated fetal membrane damage and cell cycle arrest determine adverse pregnancy outcomes, such as spontaneous PTB and PPROM. Fetal membranes and amniotic fluid samples were collected from women with PTB and PPROM. Molecular, biochemical and histologic markers were used to document differences in oxidative stress and antioxidant enzyme status, DNA damage, secondary signaling activation by Ras-GTPase and mitogen-activated protein kinases, and activation of senescence between membranes from the two groups. Oxidative stress was higher and antioxidant enzymes were lower in PPROM compared with PTB. PTB membranes had minimal DNA damage and showed activation of Ras-GTPase and ERK/JNK signaling pathway with minimal signs of senescence. PPROM had higher numbers of cells with DNA damage, prosenescence stress kinase (p38 MAPK) activation and signs of senescence. Samples were obtained retrospectively after delivery. The markers of senescence that we tested are specific but are not sufficient to confirm senescence as the pathology in PPROM. Oxidative stress-induced DNA damage and senescence are characteristics of fetal membranes from PPROM, compared with PTB with intact membranes. PTB and PPROM arise from distinct pathophysiologic pathways. Oxidative stress and oxidative stress-induced cellular damages are likely determinants of the mechanistic signaling pathways and phenotypic outcome. This study is supported by developmental funds to Dr R. Menon from the Department of Obstetrics and Gynecology at The University of

  13. Spontaneous Lipid Flip-Flop in Membranes: A Still Unsettled Picture from Experiments and Simulations

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; Ferrarini, Alberta

    2017-01-01

    or assisted by protein transporters. It can be accelerated or inhibited by various factors, e.g., it can be induced by mechanical stresses. It was also found that flip-flop rate and mechanism strongly depend on the molecular structure of the flipping lipid and on the composition and physical state...... studies is presented, together with a summary of the state of the art of computer simulation studies, which enable a direct insight at the molecular level. The achievements and limitations of experimental and computational approaches are pointed out, as well as the challenges that remain to be addressed....... of the membrane. Yet, large discrepancies exist among the data available in the literature, and a quantitative and comprehensive understanding of this process is still missing. This chapter reviews our current knowledge of the molecular aspects of spontaneous (or passive) flip-flop. An overview of experimental...

  14. Curvature Entropy for Curved Profile Generation

    OpenAIRE

    Ujiie, Yoshiki; Kato, Takeo; Sato, Koichiro; Matsuoka, Yoshiyuki

    2012-01-01

    In a curved surface design, the overall shape features that emerge from combinations of shape elements are important. However, controlling the features of the overall shape in curved profiles is difficult using conventional microscopic shape information such as dimension. Herein two types of macroscopic shape information, curvature entropy and quadrature curvature entropy, quantitatively represent the features of the overall shape. The curvature entropy is calculated by the curvature distribu...

  15. Amniopatch treatment for spontaneous previable, preterm premature rupture of membranes associated or not with incompetent cervix.

    Science.gov (United States)

    Kwak, Hye-Min; Choi, Hyun-Jin; Cha, Hyun-Hwa; Yu, Hee-Jun; Lee, Jee-Hun; Choi, Suk-Joo; Oh, Soo-Young; Roh, Cheong-Rae; Kim, Jong-Hwa

    2013-01-01

    We reviewed women with previable spontaneous premature rupture of membranes (sPPROM) in whom an amniopatch was performed and compared their pregnancy outcomes with a conservative management group. Amniopatch, an amnioinfusion of autologous platelet concentrate followed by cryoprecipitate, was performed in 7 women with sPPROM diagnosed at 17-23 weeks' gestation, including one twin pregnancy. Three patients had incompetent cervices and the other 4 patients had sPPROM without incompetent cervices. Pregnancy outcomes of the cases were compared with the controls who were managed conservatively (n = 22). Amniopatch treatment was successful in 1 of 7 cases (14.3%), in which the ruptured membranes were completely sealed and the patient delivered a healthy baby at 39 weeks' gestation. No procedure-related complications were observed. Overall, neonatal outcome was similar in the amniopatch and conservatively managed groups, although the incidences of early neonatal sepsis and respiratory distress syndrome were lower in the amniopatch group. The overall success rate of amniopatch among our small number of cases was low. However, if successful, amniopatch may prolong a pregnancy with previable sPPROM to term. Copyright © 2012 S. Karger AG, Basel.

  16. Effective tension and fluctuations in active membranes

    OpenAIRE

    Loubet, Bastien; Seifert, Udo; Lomholt, Michael Andersen

    2011-01-01

    We calculate the fluctuation spectrum of the shape of a lipid vesicle or cell exposed to a nonthermal source of noise. In particular we take into account constraints on the membrane area and the volume of fluid that it encapsulates when obtaining expressions for the dependency of the membrane tension on the noise. We then investigate three possible origins of the non-thermal noise taken from the literature: A direct force, which models an external medium pushing on the membrane. A curvature f...

  17. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR.

    Science.gov (United States)

    Varkey, Jobin; Langen, Ralf

    2017-07-01

    The advancement in site-directed spin labeling of proteins has enabled EPR studies to expand into newer research areas within the umbrella of protein-membrane interactions. Recently, membrane remodeling by amyloidogenic and non-amyloidogenic proteins has gained a substantial interest in relation to driving and controlling vital cellular processes such as endocytosis, exocytosis, shaping of organelles like endoplasmic reticulum, Golgi and mitochondria, intracellular vesicular trafficking, formation of filopedia and multivesicular bodies, mitochondrial fusion and fission, and synaptic vesicle fusion and recycling in neurotransmission. Misregulation in any of these processes due to an aberrant protein (mutation or misfolding) or alteration of lipid metabolism can be detrimental to the cell and cause disease. Dissection of the structural basis of membrane remodeling by proteins is thus quite necessary for an understanding of the underlying mechanisms, but it remains a formidable task due to the difficulties of various common biophysical tools in monitoring the dynamic process of membrane binding and bending by proteins. This is largely since membranes generally complicate protein structure analysis and this problem is amplified for structural analysis in the presence of different types of membrane curvatures. Recent EPR studies on membrane remodeling by proteins show that a significant structural information can be generated to delineate the role of different protein modules, domains and individual amino acids in the generation of membrane curvature. These studies also show how EPR can complement the data obtained by high resolution techniques such as X-ray and NMR. This perspective covers the application of EPR in recent studies for understanding membrane remodeling by amyloidogenic and non-amyloidogenic proteins that is useful for researchers interested in using or complimenting EPR to gain better understanding of membrane remodeling. We also discuss how a single

  18. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR

    Science.gov (United States)

    Varkey, Jobin; Langen, Ralf

    2017-07-01

    The advancement in site-directed spin labeling of proteins has enabled EPR studies to expand into newer research areas within the umbrella of protein-membrane interactions. Recently, membrane remodeling by amyloidogenic and non-amyloidogenic proteins has gained a substantial interest in relation to driving and controlling vital cellular processes such as endocytosis, exocytosis, shaping of organelles like endoplasmic reticulum, Golgi and mitochondria, intracellular vesicular trafficking, formation of filopedia and multivesicular bodies, mitochondrial fusion and fission, and synaptic vesicle fusion and recycling in neurotransmission. Misregulation in any of these processes due to an aberrant protein (mutation or misfolding) or alteration of lipid metabolism can be detrimental to the cell and cause disease. Dissection of the structural basis of membrane remodeling by proteins is thus quite necessary for an understanding of the underlying mechanisms, but it remains a formidable task due to the difficulties of various common biophysical tools in monitoring the dynamic process of membrane binding and bending by proteins. This is largely since membranes generally complicate protein structure analysis and this problem is amplified for structural analysis in the presence of different types of membrane curvatures. Recent EPR studies on membrane remodeling by proteins show that a significant structural information can be generated to delineate the role of different protein modules, domains and individual amino acids in the generation of membrane curvature. These studies also show how EPR can complement the data obtained by high resolution techniques such as X-ray and NMR. This perspective covers the application of EPR in recent studies for understanding membrane remodeling by amyloidogenic and non-amyloidogenic proteins that is useful for researchers interested in using or complimenting EPR to gain better understanding of membrane remodeling. We also discuss how a single

  19. Some Inequalities for the Lp-Curvature Image

    Directory of Open Access Journals (Sweden)

    Xiang Yu

    2009-01-01

    Full Text Available Lutwak introduced the notion of Lp-curvature image and proved an inequality for the volumes of convex body and its Lp-curvature image. In this paper, we first give an monotonic property of Lp-curvature image. Further, we establish two inequalities for the Lp-curvature image and its polar, respectively. Finally, an inequality for the volumes of Lp-projection body and Lp-curvature image is obtained.

  20. Curvature bound from gravitational catalysis

    Science.gov (United States)

    Gies, Holger; Martini, Riccardo

    2018-04-01

    We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.

  1. Vertical melting of a stack of membranes

    Science.gov (United States)

    Borelli, M. E. S.; Kleinert, H.; Schakel, A. M. J.

    2001-02-01

    A stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is studied. At low temperatures, the system forms a lamellar phase. At a critical temperature, the stack disorders vertically in a melting-like transition.

  2. Fine-Tuning of Photosynthesis Requires CURVATURE THYLAKOID1-Mediated Thylakoid Plasticity

    DEFF Research Database (Denmark)

    Pribil, Mathias; Sandoval Ibáñez, Omar Alejandro; Xu, Wenteng

    2018-01-01

    ultrastructure in Arabidopsis (Arabidopsis thaliana) reduces photosynthetic efficiency and plant fitness under adverse, controlled, and natural light conditions. Plants that lack CURT1 show less adjustment of grana diameter, which compromises regulatory mechanisms like the photosystem II repair cycle and state...... transitions. Interestingly, CURT1A suffices to induce thylakoid membrane curvature in planta and thylakoid hyperbending in plants overexpressing CURT1A. We suggest that CURT1 oligomerization is regulated at the posttranslational level in a light-dependent fashion and that CURT1-mediated thylakoid plasticity...

  3. Clinical Assessment of Lamina Cribrosa Curvature in Eyes with Primary Open-Angle Glaucoma.

    Directory of Open Access Journals (Sweden)

    Yong Woo Kim

    Full Text Available Quantitative evaluation of lamina cribrosa (LC posterior bowing in primary open-angle glaucoma (POAG eyes using swept-source optical coherence tomography.Patients with POAG (n = 123 eyes and healthy individuals of a similar age (n = 92 eyes were prospectively recruited. Anterior laminar insertion depth (ALID was defined as the vertical distance between the anterior laminar insertion and a reference plane connecting the Bruch's membrane openings (BMO. The mean LC depth (mLCD was approximated by dividing the area enclosed by the anterior LC, the BMO reference plane, and the two vertical lines for ALID measurement by the length between those two vertical lines. The LC curvature index was defined as the difference between the mLCD and the ALID. The factors influencing the LC curvature index were evaluated.The ALID and mLCD were significantly larger in POAG eyes than in healthy controls (P -6 dB and moderate-to-advanced glaucoma (MD < -6 dB, P = 0.95.LC posterior bowing was increased in POAG eyes, and was significantly associated with structural optic nerve head (ONH changes but not with functional glaucoma severity. Quantitative evaluation of LC curvature can facilitate assessment of glaucomatous ONH change.

  4. A remark about the mean curvature

    International Nuclear Information System (INIS)

    Zhang Weitao.

    1992-11-01

    In this paper, we give an integral identity about the mean curvature in Sobolev space H 0 1 (Ω) intersection H 2 (Ω). Suppose the mean curvature on Γ=δΩ is positive, we prove some inequalities of the positive mean curvature and propose some open problems. (author). 4 refs

  5. Curvature-induced electron localization in developable Moebius-like nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Korte, A P; Van der Heijden, G H M, E-mail: a.korte@ucl.ac.u, E-mail: g.heijden@ucl.ac.u [Centre for Nonlinear Dynamics, University College London, Chadwick Building, Gower Street, London WC1E 6BT (United Kingdom)

    2009-12-02

    We study curvature effects and localization of non-interacting electrons confined to developable one-sided elastic sheets motivated by recent nanostructured origami techniques for creating and folding extremely thin membrane structures. The most famous one-sided sheet is the Moebius strip but the theory we develop allows for arbitrary linking number. Unlike previous work in the literature we do not assume a shape for the elastic structures. Rather, we find the shape by minimizing the elastic energy, i.e., solving the Euler-Lagrange equations for the bending energy functional. This shape varies with the aspect ratio of the sheet and affects the potential experienced by the particles. Depending on the link there is a number of singular points on the edge of the structure where the bending energy density goes to infinity, leading to deep potential wells. The inverse participation ratio is used to show that electrons are increasingly localized to the higher-curvature regions of the higher-width structures, where sharp creases radiating out from the singular points could form channels for particle transport. Our geometric formulation could be used to study transport properties of Moebius strips and other components in nanoscale devices.

  6. Curvature-induced electron localization in developable Moebius-like nanostructures

    International Nuclear Information System (INIS)

    Korte, A P; Van der Heijden, G H M

    2009-01-01

    We study curvature effects and localization of non-interacting electrons confined to developable one-sided elastic sheets motivated by recent nanostructured origami techniques for creating and folding extremely thin membrane structures. The most famous one-sided sheet is the Moebius strip but the theory we develop allows for arbitrary linking number. Unlike previous work in the literature we do not assume a shape for the elastic structures. Rather, we find the shape by minimizing the elastic energy, i.e., solving the Euler-Lagrange equations for the bending energy functional. This shape varies with the aspect ratio of the sheet and affects the potential experienced by the particles. Depending on the link there is a number of singular points on the edge of the structure where the bending energy density goes to infinity, leading to deep potential wells. The inverse participation ratio is used to show that electrons are increasingly localized to the higher-curvature regions of the higher-width structures, where sharp creases radiating out from the singular points could form channels for particle transport. Our geometric formulation could be used to study transport properties of Moebius strips and other components in nanoscale devices.

  7. Two-component fluid membranes near repulsive walls: Linearized hydrodynamics of equilibrium and nonequilibrium states.

    Science.gov (United States)

    Sankararaman, Sumithra; Menon, Gautam I; Sunil Kumar, P B

    2002-09-01

    We study the linearized hydrodynamics of a two-component fluid membrane near a repulsive wall, using a model that incorporates curvature-concentration coupling as well as hydrodynamic interactions. This model is a simplified version of a recently proposed one [J.-B. Manneville et al., Phys. Rev. E 64, 021908 (2001)] for nonequilibrium force centers embedded in fluid membranes, such as light-activated bacteriorhodopsin pumps incorporated in phospholipid egg phosphatidyl choline (EPC) bilayers. The pump-membrane system is modeled as an impermeable, two-component bilayer fluid membrane in the presence of an ambient solvent, in which one component, representing active pumps, is described in terms of force dipoles displaced with respect to the bilayer midpoint. We first discuss the case in which such pumps are rendered inactive, computing the mode structure in the bulk as well as the modification of hydrodynamic properties by the presence of a nearby wall. These results should apply, more generally, to equilibrium fluid membranes comprised of two components, in which the effects of curvature-concentration coupling are significant, above the threshold for phase separation. We then discuss the fluctuations and mode structure in the steady state of active two-component membranes near a repulsive wall. We find that proximity to the wall smoothens membrane height fluctuations in the stable regime, resulting in a logarithmic scaling of the roughness even for initially tensionless membranes. This explicitly nonequilibrium result is a consequence of the incorporation of curvature-concentration coupling in our hydrodynamic treatment. This result also indicates that earlier scaling arguments which obtained an increase in the roughness of active membranes near repulsive walls upon neglecting the role played by such couplings may need to be reevaluated.

  8. FBAR syndapin 1 recognizes and stabilizes highly curved tubular membranes in a concentration dependent manner

    DEFF Research Database (Denmark)

    Ramesh, Pradeep; Baroji, Younes F.; Seyyed Reihani, Seyyed Nader

    2013-01-01

    Syndapin 1 FBAR, a member of the Bin-amphiphysin-Rvs (BAR) domain protein family, is known to induce membrane curvature and is an essential component in biological processes like endocytosis and formation and growth of neurites. We quantify the curvature sensing of FBAR on reconstituted porcine b...

  9. Thermodynamic free energy methods to investigate shape transitions in bilayer membranes.

    Science.gov (United States)

    Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi

    2016-06-01

    The conformational free energy landscape of a system is a fundamental thermodynamic quantity of importance particularly in the study of soft matter and biological systems, in which the entropic contributions play a dominant role. While computational methods to delineate the free energy landscape are routinely used to analyze the relative stability of conformational states, to determine phase boundaries, and to compute ligand-receptor binding energies its use in problems involving the cell membrane is limited. Here, we present an overview of four different free energy methods to study morphological transitions in bilayer membranes, induced either by the action of curvature remodeling proteins or due to the application of external forces. Using a triangulated surface as a model for the cell membrane and using the framework of dynamical triangulation Monte Carlo, we have focused on the methods of Widom insertion, thermodynamic integration, Bennett acceptance scheme, and umbrella sampling and weighted histogram analysis. We have demonstrated how these methods can be employed in a variety of problems involving the cell membrane. Specifically, we have shown that the chemical potential, computed using Widom insertion, and the relative free energies, computed using thermodynamic integration and Bennett acceptance method, are excellent measures to study the transition from curvature sensing to curvature inducing behavior of membrane associated proteins. The umbrella sampling and WHAM analysis has been used to study the thermodynamics of tether formation in cell membranes and the quantitative predictions of the computational model are in excellent agreement with experimental measurements. Furthermore, we also present a method based on WHAM and thermodynamic integration to handle problems related to end-point-catastrophe that are common in most free energy methods.

  10. Membrane Curvature and Lipid Composition Synergize To Regulate N-Ras Anchor Recruitment

    DEFF Research Database (Denmark)

    Larsen, Jannik B.; Kennard, Celeste; Pedersen, Søren L.

    2017-01-01

    Proteins anchored to membranes through covalently linked fatty acids and/or isoprenoid groups play crucial roles in all forms of life. Sorting and trafficking of lipidated proteins has traditionally been discussed in the context of partitioning to membrane domains of different lipid composition. We...

  11. Discrete Curvature Theories and Applications

    KAUST Repository

    Sun, Xiang

    2016-08-25

    Discrete Di erential Geometry (DDG) concerns discrete counterparts of notions and methods in di erential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy di erent geometric or physical constraints. We study a combination of geometry and physics { the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences { a particular type of congruences de ned by linear interpolation of vertex normals. The main results are a discussion of various de nitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the

  12. Specificity and kinetics of alpha-synuclein binding to model membranes determined with fluorescent excited state intramolecular proton transfer (ESIPT) probe.

    Science.gov (United States)

    Shvadchak, Volodymyr V; Falomir-Lockhart, Lisandro J; Yushchenko, Dmytro A; Jovin, Thomas M

    2011-04-15

    Parkinson disease is characterized cytopathologically by the deposition in the midbrain of aggregates composed primarily of the presynaptic neuronal protein α-synuclein (AS). Neurotoxicity is currently attributed to oligomeric microaggregates subjected to oxidative modification and promoting mitochondrial and proteasomal dysfunction. Unphysiological binding to membranes of these and other organelles is presumably involved. In this study, we performed a systematic determination of the influence of charge, phase, curvature, defects, and lipid unsaturation on AS binding to model membranes using a new sensitive solvatochromic fluorescent probe. The interaction of AS with vesicular membranes is fast and reversible. The protein dissociates from neutral membranes upon thermal transition to the liquid disordered phase and transfers to vesicles with higher affinity. The binding of AS to neutral and negatively charged membranes occurs by apparently different mechanisms. Interaction with neutral bilayers requires the presence of membrane defects; binding increases with membrane curvature and rigidity and decreases in the presence of cholesterol. The association with negatively charged membranes is much stronger and much less sensitive to membrane curvature, phase, and cholesterol content. The presence of unsaturated lipids increases binding in all cases. These findings provide insight into the relation between membrane physical properties and AS binding affinity and dynamics that presumably define protein localization in vivo and, thereby, the role of AS in the physiopathology of Parkinson disease.

  13. Membrane shape modulates transmembrane protein distribution.

    Science.gov (United States)

    Aimon, Sophie; Callan-Jones, Andrew; Berthaud, Alice; Pinot, Mathieu; Toombes, Gilman E S; Bassereau, Patricia

    2014-01-27

    Although membrane shape varies greatly throughout the cell, the contribution of membrane curvature to transmembrane protein targeting is unknown because of the numerous sorting mechanisms that take place concurrently in cells. To isolate the effect of membrane shape, we used cell-sized giant unilamellar vesicles (GUVs) containing either the potassium channel KvAP or the water channel AQP0 to form membrane nanotubes with controlled radii. Whereas the AQP0 concentrations in flat and curved membranes were indistinguishable, KvAP was enriched in the tubes, with greater enrichment in more highly curved membranes. Fluorescence recovery after photobleaching measurements showed that both proteins could freely diffuse through the neck between the tube and GUV, and the effect of each protein on membrane shape and stiffness was characterized using a thermodynamic sorting model. This study establishes the importance of membrane shape for targeting transmembrane proteins and provides a method for determining the effective shape and flexibility of membrane proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Curvature force and dark energy

    International Nuclear Information System (INIS)

    Balakin, Alexander B; Pavon, Diego; Schwarz, Dominik J; Zimdahl, Winfried

    2003-01-01

    A curvature self-interaction of the cosmic gas is shown to mimic a cosmological constant or other forms of dark energy, such as a rolling tachyon condensate or a Chaplygin gas. Any given Hubble rate and deceleration parameter can be traced back to the action of an effective curvature force on the gas particles. This force self-consistently reacts back on the cosmological dynamics. The links between an imperfect fluid description, a kinetic description with effective antifriction forces and curvature forces, which represent a non-minimal coupling of gravity to matter, are established

  15. Gaussian curvature elasticity determined from global shape transformations and local stress distributions : a comparative study using the MARTINI model

    NARCIS (Netherlands)

    Hu, Mingyang; de Jong, Djurre H.; Marrink, Siewert J.; Deserno, Markus

    2013-01-01

    We calculate the Gaussian curvature modulus (k) over bar of a systematically coarse-grained (CG) one-component lipid membrane by applying the method recently proposed by Hu et al. [Biophys. J., 2012, 102, 1403] to the MARTINI representation of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). We

  16. Phase separation in artificial vesicles driven by light and curvature

    Science.gov (United States)

    Rinaldin, Melissa; Pomp, Wim; Schmidt, Thomas; Giomi, Luca; Kraft, Daniela; Physics of Life Processes Team; Soft; Bio Mechanics Collaboration; Self-Assembly in Soft Matter Systems Collaboration

    The role of phase-demixing in living cells, leading to the lipid-raft hypothesis, has been extensively studied. Lipid domains of higher lipid chain order are proposed to regulate protein spatial organization. Giant Unilamellar Vesicles provide an artificial model to study phase separation. So far temperature was used to initiate the process. Here we introduce a new methodology based on the induction of phase separation by light. To this aim, the composition of the lipid membrane is varied by photo-oxidation of lipids. The control of the process gained by using light allowed us to observe vesicle shape fluctuations during phase-demixing. The presence of fluctuations near the critical mixing point resembles features of a critical process. We quantitatively analyze these fluctuations using a 2d elastic model, from which we can estimate the material parameters such as bending rigidity and surface tension, demonstrating the non-equilibrium critical behaviour. Finally, I will describe recent attempts toward tuning the membrane composition by controlling the vesicle curvature.

  17. Environmental influences on DNA curvature

    DEFF Research Database (Denmark)

    Ussery, David; Higgins, C.F.; Bolshoy, A.

    1999-01-01

    DNA curvature plays an important role in many biological processes. To study environmentalinfluences on DNA curvature we compared the anomalous migration on polyacrylamide gels ofligation ladders of 11 specifically-designed oligonucleotides. At low temperatures (25 degreesC and below) most......, whilst spermine enhanced theanomalous migration of a different set of sequences. Sequences with a GGC motif exhibitedgreater curvature than predicted by the presently-used angles for the nearest-neighbour wedgemodel and are especially sensitive to Mg2+. The data have implications for models...... for DNAcurvature and for environmentally-sensitive DNA conformations in the regulation of geneexpression....

  18. Mechanical collapse of confined fluid membrane vesicles.

    Science.gov (United States)

    Rim, Jee E; Purohit, Prashant K; Klug, William S

    2014-11-01

    Compact cylindrical and spherical invaginations are common structural motifs found in cellular and developmental biology. To understand the basic physical mechanisms that produce and maintain such structures, we present here a simple model of vesicles in confinement, in which mechanical equilibrium configurations are computed by energy minimization, balancing the effects of curvature elasticity, contact of the membrane with itself and the confining geometry, and adhesion. For cylindrical confinement, the shape equations are solved both analytically and numerically by finite element analysis. For spherical confinement, axisymmetric configurations are obtained numerically. We find that the geometry of invaginations is controlled by a dimensionless ratio of the adhesion strength to the bending energy of an equal area spherical vesicle. Larger adhesion produces more concentrated curvatures, which are mainly localized to the "neck" region where the invagination breaks away from its confining container. Under spherical confinement, axisymmetric invaginations are approximately spherical. For extreme confinement, multiple invaginations may form, bifurcating along multiple equilibrium branches. The results of the model are useful for understanding the physical mechanisms controlling the structure of lipid membranes of cells and their organelles, and developing tissue membranes.

  19. Interaction of Defensins with Model Cell Membranes

    Science.gov (United States)

    Sanders, Lori K.; Schmidt, Nathan W.; Yang, Lihua; Mishra, Abhijit; Gordon, Vernita D.; Selsted, Michael E.; Wong, Gerard C. L.

    2009-03-01

    Antimicrobial peptides (AMPs) comprise a key component of innate immunity for a wide range of multicellular organisms. For many AMPs, activity comes from their ability to selectively disrupt and lyse bacterial cell membranes. There are a number of proposed models for this action, but the detailed molecular mechanism of selective membrane permeation remains unclear. Theta defensins are circularized peptides with a high degree of selectivity. We investigate the interaction of model bacterial and eukaryotic cell membranes with theta defensins RTD-1, BTD-7, and compare them to protegrin PG-1, a prototypical AMP, using synchrotron small angle x-ray scattering (SAXS). The relationship between membrane composition and peptide induced changes in membrane curvature and topology is examined. By comparing the membrane phase behavior induced by these different peptides we will discuss the importance of amino acid composition and placement on membrane rearrangement.

  20. Understanding Detergent Effects on Lipid Membranes: A Model Study of Lysolipids

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Andresen, Thomas Lars; Feldborg, Lise Nørkjær

    2010-01-01

    Lysolipids and fatty acids are the natural products formed by the hydrolysis of phospholipids. Lysolipids and fatty acids form micelles in solution and acts as detergents in the presence of lipid membranes. In this study, we investigate the detergent strength of a homologous series of lyso......-chain mismatch between LPC and POPC determines the magnitude of the membrane mechanical perturbation per LPC molecule in the membrane. Finally, the three-stage model describing detergent membrane interaction has been extended by a parameter D-MCI, which governs the membrane curvature stability in the detergent...

  1. Membrane tubulation in lipid vesicles triggered by the local application of calcium ions

    DEFF Research Database (Denmark)

    Ali Doosti, Baharan; Pezeshkian, Weria; Bruhn, Dennis Skjøth

    2017-01-01

    , generates spontaneous curvature and triggers the formation of tubular protrusions that point away from the ion source. This behavior is rationalized by strong binding of the divalent cations to the surface of the charged bilayer which effectively neutralizes the surface charge density of outer leaflet...

  2. Manifolds of positive scalar curvature

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, S [Department of Mathematics, University of Notre Dame, Notre Dame (United States)

    2002-08-15

    This lecture gives an survey on the problem of finding a positive scalar curvature metric on a closed manifold. The Gromov-Lawson-Rosenberg conjecture and its relation to the Baum-Connes conjecture are discussed and the problem of finding a positive Ricci curvature metric on a closed manifold is explained.

  3. Hamilton's equations for a fluid membrane: axial symmetry

    International Nuclear Information System (INIS)

    Capovilla, R; Guven, J; Rojas, E

    2005-01-01

    Consider a homogeneous fluid membrane, or vesicle, described by the Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is axially symmetric, this energy can be viewed as an 'action' describing the motion of a particle; the contours of equilibrium geometries are identified with particle trajectories. A novel Hamiltonian formulation of the problem is presented which exhibits the following two features: (i) the second derivatives appearing in the action through the mean curvature are accommodated in a natural phase space and (ii) the intrinsic freedom associated with the choice of evolution parameter along the contour is preserved. As a result, the phase space involves momenta conjugate not only to the particle position but also to its velocity, and there are constraints on the phase space variables. This formulation provides the groundwork for a field theoretical generalization to arbitrary configurations, with the particle replaced by a loop in space

  4. Integration of length and curvature in haptic perception.

    Science.gov (United States)

    Panday, Virjanand; Tiest, Wouter M Bergmann; Kappers, Astrid M L

    2014-01-24

    We investigated if and how length and curvature information are integrated when an object is explored in one hand. Subjects were asked to explore four types of objects between thumb and index finger. Objects differed in either length, curvature, both length and curvature correlated as in a circle, or anti-correlated. We found that when both length and curvature are present, performance is significantly better than when only one of the two cues is available. Therefore, we conclude that there is integration of length and curvature. Moreover, if the two cues are correlated in a circular cross-section instead of in an anti-correlated way, performance is better than predicted by a combination of two independent cues. We conclude that integration of curvature and length is highly efficient when the cues in the object are combined as in a circle, which is the most common combination of curvature and length in daily life.

  5. Right thoracic curvature in the normal spine

    Directory of Open Access Journals (Sweden)

    Masuda Keigo

    2011-01-01

    Full Text Available Abstract Background Trunk asymmetry and vertebral rotation, at times observed in the normal spine, resemble the characteristics of adolescent idiopathic scoliosis (AIS. Right thoracic curvature has also been reported in the normal spine. If it is determined that the features of right thoracic side curvature in the normal spine are the same as those observed in AIS, these findings might provide a basis for elucidating the etiology of this condition. For this reason, we investigated right thoracic curvature in the normal spine. Methods For normal spinal measurements, 1,200 patients who underwent a posteroanterior chest radiographs were evaluated. These consisted of 400 children (ages 4-9, 400 adolescents (ages 10-19 and 400 adults (ages 20-29, with each group comprised of both genders. The exclusion criteria were obvious chest and spinal diseases. As side curvature is minimal in normal spines and the range at which curvature is measured is difficult to ascertain, first the typical curvature range in scoliosis patients was determined and then the Cobb angle in normal spines was measured using the same range as the scoliosis curve, from T5 to T12. Right thoracic curvature was given a positive value. The curve pattern was organized in each collective three groups: neutral (from -1 degree to 1 degree, right (> +1 degree, and left ( Results In child group, Cobb angle in left was 120, in neutral was 125 and in right was 155. In adolescent group, Cobb angle in left was 70, in neutral was 114 and in right was 216. In adult group, Cobb angle in left was 46, in neutral was 102 and in right was 252. The curvature pattern shifts to the right side in the adolescent group (p Conclusions Based on standing chest radiographic measurements, a right thoracic curvature was observed in normal spines after adolescence.

  6. Deciphering the BAR code of membrane modulators.

    Science.gov (United States)

    Salzer, Ulrich; Kostan, Julius; Djinović-Carugo, Kristina

    2017-07-01

    The BAR domain is the eponymous domain of the "BAR-domain protein superfamily", a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.

  7. Curvature and torsion in growing actin networks

    International Nuclear Information System (INIS)

    Shaevitz, Joshua W; Fletcher, Daniel A

    2008-01-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque

  8. F-BAR family proteins, emerging regulators for cell membrane dynamic changes-from structure to human diseases.

    Science.gov (United States)

    Liu, Suxuan; Xiong, Xinyu; Zhao, Xianxian; Yang, Xiaofeng; Wang, Hong

    2015-05-09

    Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting

  9. Quantum statistical mechanics of nonrelativistic membranes: crumpling transition at finite temperature

    Science.gov (United States)

    Borelli, M. E. S.; Kleinert, H.; Schakel, Adriaan M. J.

    2000-03-01

    The effect of quantum fluctuations on a nearly flat, nonrelativistic two-dimensional membrane with extrinsic curvature stiffness and tension is investigated. The renormalization group analysis is carried out in first-order perturbative theory. In contrast to thermal fluctuations, which soften the membrane at large scales and turn it into a crumpled surface, quantum fluctuations are found to stiffen the membrane, so that it exhibits a Hausdorff dimension equal to two. The large-scale behavior of the membrane is further studied at finite temperature, where a nontrivial fixed point is found, signaling a crumpling transition.

  10. Collineations of the curvature tensor in general relativity

    Indian Academy of Sciences (India)

    Curvature collineations for the curvature tensor, constructed from a fundamental Bianchi Type-V metric, are studied. We are concerned with a symmetry property of space-time which is called curvature collineation, and we briefly discuss the physical and kinematical properties of the models.

  11. Haptic perception of object curvature in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Jürgen Konczak

    2008-07-01

    Full Text Available The haptic perception of the curvature of an object is essential for adequate object manipulation and critical for our guidance of actions. This study investigated how the ability to perceive the curvature of an object is altered by Parkinson's disease (PD.Eight healthy subjects and 11 patients with mild to moderate PD had to judge, without vision, the curvature of a virtual "box" created by a robotic manipulandum. Their hands were either moved passively along a defined curved path or they actively explored the curved curvature of a virtual wall. The curvature was either concave or convex (bulging to the left or right and was judged in two locations of the hand workspace--a left workspace location, where the curved hand path was associated with curved shoulder and elbow joint paths, and a right workspace location in which these joint paths were nearly linear. After exploring the curvature of the virtual object, subjects had to judge whether the curvature was concave or convex. Based on these data, thresholds for curvature sensitivity were established. The main findings of the study are: First, 9 out 11 PD patients (82% showed elevated thresholds for detecting convex curvatures in at least one test condition. The respective median threshold for the PD group was increased by 343% when compared to the control group. Second, when distal hand paths became less associated with proximal joint paths (right workspace, haptic acuity was reduced substantially in both groups. Third, sensitivity to hand trajectory curvature was not improved during active exploration in either group.Our data demonstrate that PD is associated with a decreased acuity of the haptic sense, which may occur already at an early stage of the disease.

  12. Spatial diversity of spontaneous activity in the cortex

    Directory of Open Access Journals (Sweden)

    Andrew Yong-Yi Tan

    2015-09-01

    Full Text Available The neocortex is a layered sheet across which a basic organization is thought to widely apply. The variety of spontaneous activity patterns is similar throughout the cortex, consistent with the notion of a basic cortical organization. However, the basic organization is only an outline which needs adjustments and additions to account for the structural and functional diversity across cortical layers and areas. Such diversity suggests that spontaneous activity is spatially diverse in any particular behavioral state. Accordingly, this review summarizes the laminar and areal diversity in cortical activity during fixation and slow oscillations, and the effects of attention, anesthesia and plasticity on the cortical distribution of spontaneous activity. Among questions that remain open, characterizing the spatial diversity in spontaneous membrane potential may help elucidate how differences in circuitry among cortical regions supports their varied functions. More work is also needed to understand whether cortical spontaneous activity not only reflects cortical circuitry, but also contributes to determining the outcome of plasticity, so that it is itself a factor shaping the functional diversity of the cortex.

  13. Longitudinal surface curvature effect in magnetohydrodynamics

    International Nuclear Information System (INIS)

    Bodas, N.G.

    1975-01-01

    The two-dimensional motion of an incompressible and electrically conducting fluid past an electrically insulated body surface (having curvature) is studied for a given O(1) basic flow and magnetic field, when (i) the applied magnetic field is aligned with the velocity in the basic flow, and (ii) the applied magnetic field is within the body surface. 01 and 0(Re sup(1/2)) mean the first and second order approximations respectively in an exansion scheme in powers of Resup(-1/2), Re being the Reynolds number). The technique of matched asymptotic expansions is used to solve the problem. The governing partial differential equations to 0(Resup(-1/2)) boundary layer approximation are found to give similarity solutions for a family of surface curvature and pressure gradient distributions in case (i), and for uniform basic flow with analytic surface curvature distributions in case (ii). The equations are solved numerically. In case (i) it is seen that the effect of the magnetic field on the skin-friction- correction due to the curvature is very small. Also the magnetic field at the wall is reduced by the curvature on the convex side. In case (ii) the magnetic field significantly increases the skin-friction-correction due to the curvature. The effect of the magnetic field on the O(1) and O(Resup(-1/2)) skin friction coefficients increases with the increase of the electrical conductivity of the fluid. Also, at higher values of the magnetic pressure, moderate changes in the electrical conductivity do not influence the correction to the skin-friction significantly. (Auth.)

  14. Straight-line string with curvature

    International Nuclear Information System (INIS)

    Solov'ev, L.D.

    1995-01-01

    Classical and quantum solutions for the relativistic straight-line string with arbitrary dependence on the world surface curvature are obtained. They differ from the case of the usual Nambu-Goto interaction by the behaviour of the Regge trajectory which in general can be non-linear. A regularization of the action is considered and a comparison with relativistic point with curvature is made. 5 refs

  15. Curvature of random walks and random polygons in confinement

    International Nuclear Information System (INIS)

    Diao, Y; Ernst, C; Montemayor, A; Ziegler, U

    2013-01-01

    The purpose of this paper is to study the curvature of equilateral random walks and polygons that are confined in a sphere. Curvature is one of several basic geometric properties that can be used to describe random walks and polygons. We show that confinement affects curvature quite strongly, and in the limit case where the confinement diameter equals the edge length the unconfined expected curvature value doubles from π/2 to π. To study curvature a simple model of an equilateral random walk in spherical confinement in dimensions 2 and 3 is introduced. For this simple model we derive explicit integral expressions for the expected value of the total curvature in both dimensions. These expressions are functions that depend only on the radius R of the confinement sphere. We then show that the values obtained by numeric integration of these expressions agrees with numerical average curvature estimates obtained from simulations of random walks. Finally, we compare the confinement effect on curvature of random walks with random polygons. (paper)

  16. Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins

    DEFF Research Database (Denmark)

    Varkey, Jobin; Isas, Jose Mario; Mizuno, Naoko

    2010-01-01

    Synucleins and apolipoproteins have been implicated in a number of membrane and lipid trafficking events. Lipid interaction for both types of proteins is mediated by 11 amino acid repeats that form amphipathic helices. This similarity suggests that synucleins and apolipoproteins might have...... of amphipathic helices alone. Moreover, we frequently observed that a-synuclein caused membrane structures that had the appearance of nascent budding vesicles. The ability to function as a minimal machinery for vesicle budding agrees well with recent findings that a-synuclein plays a role in vesicle trafficking...

  17. The curvature calculation mechanism based on simple cell model.

    Science.gov (United States)

    Yu, Haiyang; Fan, Xingyu; Song, Aiqi

    2017-07-20

    A conclusion has not yet been reached on how exactly the human visual system detects curvature. This paper demonstrates how orientation-selective simple cells can be used to construct curvature-detecting neural units. Through fixed arrangements, multiple plurality cells were constructed to simulate curvature cells with a proportional output to their curvature. In addition, this paper offers a solution to the problem of narrow detection range under fixed resolution by selecting an output value under multiple resolution. Curvature cells can be treated as concrete models of an end-stopped mechanism, and they can be used to further understand "curvature-selective" characteristics and to explain basic psychophysical findings and perceptual phenomena in current studies.

  18. Increase of tumor necrosis factor receptor 1 expression in women with unexplained early spontaneous abortion

    Institute of Scientific and Technical Information of China (English)

    YAN Chun-fang; YU Xue-wen; JIN Hui; LI Xu

    2004-01-01

    To investigate membrane tumor necrosis factor receptor 1 protein expression level in decidua andconcentration of soluble tumor necrosis factor receptor 1 in serum in women with unexplained early spontaneous abortion,threatened abortion, and compare the levels with healthy pregnant women. Methods: Thirty-seven women with unexplainedearly spontaneous abortion, 27 women with threatened abortion, and 34 healthy pregnant women undergoing artificial abortionof pregnancy at 6 - 10 weeks of gestation were selected. Decidual samples were collected when women were undergoing arti-ficial abortion, and blood samples were collected at the same time. The level of membrane tumor necrosis factor receptor 1 indecidua was detected by flow cytometer, and the concentration of soluble tumor necrosis factor receptor 1 in sera was mea-sured with an enzyme-linked immunosorbent assay. Results: The ercentages of membrane tumor necrosis factor receptor 1positive decidual cells were 16.42 ± 7.10 Mean ± SD for women with unexplained early spontaneous abortion and 13.14 ±6.30 for healthy pregnant women ( P < 0.05). Serum oncentration of soluble tumor necrosis factor receptor 1 was signifi-cantly higher in women with unexplained early spontaneous abortion than in healthy pregnant women and in women withthreatened abortion, and no difference was found between healthy pregnant women and women with threatened abortion.Conclusion: Women with unexplained early spontaneous abortion present significantly higher expression of tumor necrosisfactor receptor 1 than healthy pregnant women, suggesting that over-expression of tumor necrosis factor receptor 1 may cont-ribute to the development of early spontaneous abortion.

  19. Integration of length and curvature in haptic perception

    NARCIS (Netherlands)

    Panday, V.; Bergmann Tiest, W.M.; Kappers, A.M.L.

    2014-01-01

    We investigated if and how length and curvature information are integrated when an object is explored in one hand. Subjects were asked to explore four types of objects between thumb and index finger. Objects differed in either length, curvature, both length and curvature correlated as in a circle,

  20. Evolution of the curvature perturbations during warm inflation

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2009-01-01

    This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum

  1. Weyl tensors for asymmetric complex curvatures

    International Nuclear Information System (INIS)

    Oliveira, C.G.

    Considering a second rank Hermitian field tensor and a general Hermitian connection the associated complex curvature tensor is constructed. The Weyl tensor that corresponds to this complex curvature is determined. The formalism is applied to the Weyl unitary field theory and to the Moffat gravitational theory. (Author) [pt

  2. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins.

    Science.gov (United States)

    Suetsugu, Shiro; Kurisu, Shusaku; Takenawa, Tadaomi

    2014-10-01

    All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes. Copyright © 2014 the

  3. Surface meshing with curvature convergence

    KAUST Repository

    Li, Huibin; Zeng, Wei; Morvan, Jean-Marie; Chen, Liming; Gu, Xianfengdavid

    2014-01-01

    Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.

  4. Surface meshing with curvature convergence

    KAUST Repository

    Li, Huibin

    2014-06-01

    Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.

  5. Curvature constraints from the causal entropic principle

    International Nuclear Information System (INIS)

    Bozek, Brandon; Albrecht, Andreas; Phillips, Daniel

    2009-01-01

    Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The causal entropic principle (Bousso et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the causal entropic principle to predict the preferred curvature within the 'multiverse'. We have found that values larger than ρ k =40ρ m are disfavored by more than 99.99% peak value at ρ Λ =7.9x10 -123 and ρ k =4.3ρ m for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending on the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.

  6. DETRIMENTAL EFFECTS OF ACTIVE INTERNAL LIMITING MEMBRANE PEELING DURING EPIRETINAL MEMBRANE SURGERY: Microperimetric Analysis.

    Science.gov (United States)

    Deltour, Jean-Baptiste; Grimbert, Pierre; Masse, Helene; Lebreton, Olivier; Weber, Michel

    2017-03-01

    The aim of the study was to assess the microperimetric consequences of active internal limiting membrane (ILM) peeling during idiopathic epimacular membrane (IEMM) surgery. This retrospective monocentric study included 32 eyes of 31 consecutive patients who underwent IEMM surgery. Internal limiting membrane integrity was assessed by ILM Blue staining after IEMM removal: peeling was spontaneous (Group S) or active (Group A). Preprocedure and postprocedure (1 and 6 months) examinations were performed using visual acuity determination, spectral domain optical coherence tomography and microperimetry. Twenty-two eyes had an "active ILM peeling" and 10 a "spontaneous ILM peeling." Both groups had comparable and significant improvements in visual acuity 6 months after surgery (+1.82 lines [+9 letters] [Group A] and +1.51 lines [+8 letters] [Group S], P peeling has progressively become generalized in IEMM surgery to reduce recurrences. This additional procedure does not change the postoperative visual acuity but increases the development of deeper microscotomas. The real impact on the quality of vision remains unclear. Active ILM peeling in IEMM surgery may be responsible for visual impairment related to its microtraumatic effects.

  7. Regulation of membrane protein function by lipid bilayer elasticity-a single molecule technology to measure the bilayer properties experienced by an embedded protein

    International Nuclear Information System (INIS)

    Lundbaek, Jens August

    2006-01-01

    Membrane protein function is generally regulated by the molecular composition of the host lipid bilayer. The underlying mechanisms have long remained enigmatic. Some cases involve specific molecular interactions, but very often lipids and other amphiphiles, which are adsorbed to lipid bilayers, regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes, in the general regulation of membrane protein function, is unclear. This is to a large extent due to lack of a generally accepted framework in which to understand the many observations. The present review summarizes studies which have demonstrated that the hydrophobic interactions between a membrane protein and the host lipid bilayer provide an energetic coupling, whereby protein function can be regulated by the bilayer elasticity. The feasibility of this 'hydrophobic coupling mechanism' has been demonstrated using the gramicidin channel, a model membrane protein, in planar lipid bilayers. Using voltage-dependent sodium channels, N-type calcium channels and GABA A receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established

  8. 3D face recognition with asymptotic cones based principal curvatures

    KAUST Repository

    Tang, Yinhang

    2015-05-01

    The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.

  9. 3D face recognition with asymptotic cones based principal curvatures

    KAUST Repository

    Tang, Yinhang; Sun, Xiang; Huang, Di; Morvan, Jean-Marie; Wang, Yunhong; Chen, Liming

    2015-01-01

    The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.

  10. Robust estimation of adaptive tensors of curvature by tensor voting.

    Science.gov (United States)

    Tong, Wai-Shun; Tang, Chi-Keung

    2005-03-01

    Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.

  11. Higher-order curvature terms and extended inflation

    International Nuclear Information System (INIS)

    Wang Yun

    1990-01-01

    We consider higher-order curvature terms in context of the Brans-Dicke theory of gravity, and investigate the effects of these terms on extended inflationary theories. We find that the higher-order curvature terms tend to speed up inflation, although the original extended-inflation solutions are stable when these terms are small. Analytical solutions are found for two extreme cases: when the higher-order curvature terms are small, and when they dominate. A conformal transformation is employed in solving the latter case, and some of the subtleties in this technique are discussed. We note that percolation is less likely to occur when the higher-order curvature terms are present. An upper bound on α is expected if we are to avoid excessive and inadequate percolation of true-vacuum bubbles

  12. Constraining inverse curvature gravity with supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Olga; Santiago, Jose; /Fermilab; Weller, Jochen; /University Coll., London /Fermilab

    2005-10-01

    We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dark energy. If we further include constraints on the current expansion rate of the Universe from the Hubble Space Telescope and on the age of the Universe from globular clusters, we obtain that the matter content of the Universe is 0.07 {le} {omega}{sub m} {le} 0.21 (95% Confidence). Hence the inverse curvature gravity models considered can not explain the dynamics of the Universe just with a baryonic matter component.

  13. Phase separation and shape deformation of two-phase membranes

    International Nuclear Information System (INIS)

    Jiang, Y.; Lookman, T.; Saxena, A.

    2000-01-01

    Within a coupled-field Ginzburg-Landau model we study analytically phase separation and accompanying shape deformation on a two-phase elastic membrane in simple geometries such as cylinders, spheres, and tori. Using an exact periodic domain wall solution we solve for the shape and phase separating field, and estimate the degree of deformation of the membrane. The results are pertinent to preferential phase separation in regions of differing curvature on a variety of vesicles. (c) 2000 The American Physical Society

  14. Jenis dan Jumlah Mikroorganisme Aerob pada Persalinan Spontan Kurang dan Cukup Bulan tanpa Ketuban Pecah Dini

    Directory of Open Access Journals (Sweden)

    Yan O'Neil S. Meliala

    2012-03-01

    Full Text Available Preterm birth is the main cause of perinatal mortality and morbidity. Prevalence of preterm delivery which is caused by infection is 40–50%. The aim of this study was to determine that spontaneous preterm delivery without premature rupture of the membrane is initiated by chorioamnionitis and to find out the comparison of aerob microorganism species and number from spontaneous preterm and term delivery without premature rupture of the membrane. This was a comparative cross sectional study. This study was conducted in Dr. Hasan Sadikin Hospital Bandung and satelite hospital, from July to August 2009, the subjects were 53 patients. This study analyzed with chi-square and t-test to differentiate average of gestational age with p<0.05. There’s no significant difference of characteristic between two research subject groups, significant difference between two research subject groups with chorioamnionitis (p=0.004, significant difference of aerob microorganism species between two research subject groups (p=0.025 and significant difference number of aerob microorganism between two research subjects (p=0.003. In conclusions, chorioamnionitis can initiate a spontaneous preterm delivery without premature rupture of the membrane and the number of microorganism indicated the virulence of microorganism that caused chorioamnionitis which is initiated spontaneous preterm delivery without premature rupture.

  15. Quantum charged rigid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Zacatecas Zac. (Mexico); Rojas, Efrain, E-mail: cordero@esfm.ipn.mx, E-mail: amolgado@fisica.uaz.edu.mx, E-mail: efrojas@uv.mx [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2011-03-21

    The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.

  16. Quantum charged rigid membrane

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2011-01-01

    The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.

  17. General relativity with small cosmological constant from spontaneous compactification of Lovelock theory in vacuum

    International Nuclear Information System (INIS)

    Canfora, Fabrizio; Willison, Steven; Giacomini, Alex; Troncoso, Ricardo

    2009-01-01

    It is shown that Einstein gravity in four dimensions with small cosmological constant and small extra dimensions can be obtained by spontaneous compactification of Lovelock gravity in vacuum. Assuming that the extra dimensions are compact spaces of constant curvature, general relativity is recovered within a certain class of Lovelock theories possessing necessarily cubic or higher order terms in curvature. This bounds the higher dimension to at least 7. Remarkably, the effective gauge coupling and Newton constant in four dimensions are not proportional to the gravitational constant in higher dimensions, but are shifted with respect to their standard values. This effect opens up new scenarios where a maximally symmetric solution in higher dimensions could decay into the compactified spacetime either by tunneling or through a gravitational analog of ghost condensation. Indeed, this is what occurs requiring both the extra dimensions and the four-dimensional cosmological constant to be small.

  18. The curvature function in general relativity

    International Nuclear Information System (INIS)

    Hall, G S; MacNay, Lucy

    2006-01-01

    A function, here called the curvature function, is defined and which is constructed explicitly from the type (0, 4) curvature tensor. Although such a function may be defined for any manifold admitting a metric, attention is here concentrated on this function on a spacetime. Some properties of this function are explored and compared with a previous discussion of it given by Petrov

  19. Curvature of Indoor Sensor Network: Clustering Coefficient

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available We investigate the geometric properties of the communication graph in realistic low-power wireless networks. In particular, we explore the concept of the curvature of a wireless network via the clustering coefficient. Clustering coefficient analysis is a computationally simplified, semilocal approach, which nevertheless captures such a large-scale feature as congestion in the underlying network. The clustering coefficient concept is applied to three cases of indoor sensor networks, under varying thresholds on the link packet reception rate (PRR. A transition from positive curvature (“meshed” network to negative curvature (“core concentric” network is observed by increasing the threshold. Even though this paper deals with network curvature per se, we nevertheless expand on the underlying congestion motivation, propose several new concepts (network inertia and centroid, and finally we argue that greedy routing on a virtual positively curved network achieves load balancing on the physical network.

  20. Inverse curvature flows in asymptotically Robertson Walker spaces

    Science.gov (United States)

    Kröner, Heiko

    2018-04-01

    In this paper we consider inverse curvature flows in a Lorentzian manifold N which is the topological product of the real numbers with a closed Riemannian manifold and equipped with a Lorentzian metric having a future singularity so that N is asymptotically Robertson Walker. The flow speeds are future directed and given by 1 / F where F is a homogeneous degree one curvature function of class (K*) of the principal curvatures, i.e. the n-th root of the Gauss curvature. We prove longtime existence of these flows and that the flow hypersurfaces converge to smooth functions when they are rescaled with a proper factor which results from the asymptotics of the metric.

  1. Dual curvature acoustically damped concentrating collector. Semiannual technical progress report, June 1-December 1, 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-12-01

    The project's first objective is to establish, analytically, the cost and performance of design choices within the boundaries of the basic proposed concept. With these cost and performance measures as a guide, the second project objective is to design a cost-effective Dual Curvature collector module and collector field array. The third objective is to establish technical and economic concept feasibility through prototype fabrication and test. The final objective is to define the Dual Curvature collector commercialization requirements. The Dual Curvature collector uses a unique reflector module consisting of a reflective film that is tensioned on a reflector support frame. The tensioned membrane (film) surface approximates a hyperbolic paraboloid that is capable of linear focusing when the surface tracks the sun's apparent motion in one axis. The reflective film can be backed by polystyrene foam with an air space between the film and the foam surfaces. This provides damping of the reflector surface to minimize the effect of wind gusts and physical impacts. The baseline collector is intended to operate at a concentration of ten (10) or greater with a nominal absorber temperature of 150/sup 0/C (300/sup 0/F). The Component Research and Analysis tasks which lead to the selection of a baseline collector configuration are discussed. Also, some preliminary results of the Collector Module Design task are presented.

  2. Curvature driven instabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Andersson, P.

    1986-11-01

    The electromagnetic ballooning mode, the curvature driven trapped electron mode and the toroidally induced ion temperature gradient mode have been studies. Eigenvalue equations have been derived and solved both numerically and analytically. For electromagnetic ballooning modes the effects of convective damping, finite Larmor radius, higher order curvature terms, and temperature gradients have been investigated. A fully toroidal fluid ion model has been developed. It is shown that a necessary and sufficient condition for an instability below the MHD limit is the presence of an ion temperature gradient. Analytical dispersion relations giving results in good agreement with numerical solutions are also presented. The curvature driven trapped electron modes are found to be unstable for virtually all parameters with growth rates of the order of the diamagnetic drift frequency. Studies have been made, using both a gyrokinetic ion description and the fully toroidal ion model. Both analytical and numerical results are presented and are found to be in good agreement. The toroidally induced ion temperature gradients modes are found to have a behavior similar to that of the curvature driven trapped electron modes and can in the electrostatic limit be described by a simple quadratic dispersion equation. (author)

  3. Hamilton's equations for a fluid membrane: axial symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Capovilla, R [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-543, 04510 Mexico, DF (Mexico); Rojas, E [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2005-09-23

    Consider a homogeneous fluid membrane, or vesicle, described by the Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is axially symmetric, this energy can be viewed as an 'action' describing the motion of a particle; the contours of equilibrium geometries are identified with particle trajectories. A novel Hamiltonian formulation of the problem is presented which exhibits the following two features: (i) the second derivatives appearing in the action through the mean curvature are accommodated in a natural phase space and (ii) the intrinsic freedom associated with the choice of evolution parameter along the contour is preserved. As a result, the phase space involves momenta conjugate not only to the particle position but also to its velocity, and there are constraints on the phase space variables. This formulation provides the groundwork for a field theoretical generalization to arbitrary configurations, with the particle replaced by a loop in space.

  4. Statistical mechanics of paths with curvature dependent action

    International Nuclear Information System (INIS)

    Ambjoern, J.; Durhuus, B.; Jonsson, T.

    1987-01-01

    We analyze the scaling limit of discretized random paths with curvature dependent action. For finite values of the curvature coupling constant the theory belongs to the universality class of simple random walk. It is possible to define a non-trivial scaling limit if the curvature coupling tends to infinity. We compute exactly the two point function in this limit and discuss the relevance of our results for random surfaces and string theories. (orig.)

  5. GDP growth and the yield curvature

    DEFF Research Database (Denmark)

    Møller, Stig Vinther

    2014-01-01

    This paper examines the forecastability of GDP growth using information from the term structure of yields. In contrast to previous studies, the paper shows that the curvature of the yield curve contributes with much more forecasting power than the slope of yield curve. The yield curvature also...... predicts bond returns, implying a common element to time-variation in expected bond returns and expected GDP growth....

  6. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.

    Science.gov (United States)

    Platre, Matthieu Pierre; Jaillais, Yvon

    2017-02-01

    A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells.

  7. Face recognition based on depth maps and surface curvature

    Science.gov (United States)

    Gordon, Gaile G.

    1991-09-01

    This paper explores the representation of the human face by features based on the curvature of the face surface. Curature captures many features necessary to accurately describe the face, such as the shape of the forehead, jawline, and cheeks, which are not easily detected from standard intensity images. Moreover, the value of curvature at a point on the surface is also viewpoint invariant. Until recently range data of high enough resolution and accuracy to perform useful curvature calculations on the scale of the human face had been unavailable. Although several researchers have worked on the problem of interpreting range data from curved (although usually highly geometrically structured) surfaces, the main approaches have centered on segmentation by signs of mean and Gaussian curvature which have not proved sufficient in themselves for the case of the human face. This paper details the calculation of principal curvature for a particular data set, the calculation of general surface descriptors based on curvature, and the calculation of face specific descriptors based both on curvature features and a priori knowledge about the structure of the face. These face specific descriptors can be incorporated into many different recognition strategies. A system that implements one such strategy, depth template comparison, giving recognition rates between 80% and 90% is described.

  8. INVESTIGATION OF CURVES SET BY CUBIC DISTRIBUTION OF CURVATURE

    Directory of Open Access Journals (Sweden)

    S. A. Ustenko

    2014-03-01

    Full Text Available Purpose. Further development of the geometric modeling of curvelinear contours of different objects based on the specified cubic curvature distribution and setpoints of curvature in the boundary points. Methodology. We investigate the flat section of the curvilinear contour generating under condition that cubic curvature distribution is set. Curve begins and ends at the given points, where angles of tangent slope and curvature are also determined. It was obtained the curvature equation of this curve, depending on the section length and coefficient c of cubic curvature distribution. The analysis of obtained equation was carried out. As well as, it was investigated the conditions, in which the inflection points of the curve are appearing. One should find such an interval of parameter change (depending on the input data and the section length, in order to place the inflection point of the curvature graph outside the curve section borders. It was determined the dependence of tangent slope of angle to the curve at its arbitrary point, as well as it was given the recommendations to solve a system of integral equations that allow finding the length of the curve section and the coefficient c of curvature cubic distribution. Findings. As the result of curves research, it is found that the criterion for their selection one can consider the absence of inflection points of the curvature on the observed section. Influence analysis of the parameter c on the graph of tangent slope angle to the curve showed that regardless of its value, it is provided the same rate of angle increase of tangent slope to the curve. Originality. It is improved the approach to geometric modeling of curves based on cubic curvature distribution with its given values at the boundary points by eliminating the inflection points from the observed section of curvilinear contours. Practical value. Curves obtained using the proposed method can be used for geometric modeling of curvilinear

  9. Generalized Curvature-Matter Couplings in Modified Gravity

    Directory of Open Access Journals (Sweden)

    Tiberiu Harko

    2014-07-01

    Full Text Available In this work, we review a plethora of modified theories of gravity with generalized curvature-matter couplings. The explicit nonminimal couplings, for instance, between an arbitrary function of the scalar curvature R and the Lagrangian density of matter, induces a non-vanishing covariant derivative of the energy-momentum tensor, implying non-geodesic motion and, consequently, leads to the appearance of an extra force. Applied to the cosmological context, these curvature-matter couplings lead to interesting phenomenology, where one can obtain a unified description of the cosmological epochs. We also consider the possibility that the behavior of the galactic flat rotation curves can be explained in the framework of the curvature-matter coupling models, where the extra terms in the gravitational field equations modify the equations of motion of test particles and induce a supplementary gravitational interaction. In addition to this, these models are extremely useful for describing dark energy-dark matter interactions and for explaining the late-time cosmic acceleration.

  10. A curvature theory for discrete surfaces based on mesh parallelity

    KAUST Repository

    Bobenko, Alexander Ivanovich

    2009-12-18

    We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces\\' areas and mixed areas. Remarkably these notions are capable of unifying notable previously defined classes of surfaces, such as discrete isothermic minimal surfaces and surfaces of constant mean curvature. We discuss various types of natural Gauss images, the existence of principal curvatures, constant curvature surfaces, Christoffel duality, Koenigs nets, contact element nets, s-isothermic nets, and interesting special cases such as discrete Delaunay surfaces derived from elliptic billiards. © 2009 Springer-Verlag.

  11. Electrodiffusion of lipids on membrane surfaces.

    Science.gov (United States)

    Zhou, Y C

    2012-05-28

    Lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when the random lateral motion is mediated by the electrostatic interactions and membrane curvature. Although the lateral diffusion rates of lipids on membranes of various compositions are measured and the electrostatic free energies of predetermined protein-membrane-lipid systems can be computed, the process of the aggregation and the evolution to the electrostatically favorable states remain largely undetermined. Here we propose an electrodiffusion model, based on the variational principle of the free energy functional, for the self-consistent lateral drift-diffusion of multiple species of charged lipids on membrane surfaces. Finite sizes of lipids are modeled to enforce the geometrical constraint of the lipid concentration on membrane surfaces. A surface finite element method is developed to appropriate the Laplace-Beltrami operators in the partial differential equations of the model. Our model properly describes the saturation of lipids on membrane surfaces, and correctly predicts that the MARCKS peptide can consistently sequester three multivalent phosphatidylinositol 4,5-bisphosphate lipids through its basic amino acid residues, regardless of a wide range of the percentage of monovalent phosphatidylserine in the membrane.

  12. Mapping membrane activity in undiscovered peptide sequence space using machine learning.

    Science.gov (United States)

    Lee, Ernest Y; Fulan, Benjamin M; Wong, Gerard C L; Ferguson, Andrew L

    2016-11-29

    There are some ∼1,100 known antimicrobial peptides (AMPs), which permeabilize microbial membranes but have diverse sequences. Here, we develop a support vector machine (SVM)-based classifier to investigate ⍺-helical AMPs and the interrelated nature of their functional commonality and sequence homology. SVM is used to search the undiscovered peptide sequence space and identify Pareto-optimal candidates that simultaneously maximize the distance σ from the SVM hyperplane (thus maximize its "antimicrobialness") and its ⍺-helicity, but minimize mutational distance to known AMPs. By calibrating SVM machine learning results with killing assays and small-angle X-ray scattering (SAXS), we find that the SVM metric σ correlates not with a peptide's minimum inhibitory concentration (MIC), but rather its ability to generate negative Gaussian membrane curvature. This surprising result provides a topological basis for membrane activity common to AMPs. Moreover, we highlight an important distinction between the maximal recognizability of a sequence to a trained AMP classifier (its ability to generate membrane curvature) and its maximal antimicrobial efficacy. As mutational distances are increased from known AMPs, we find AMP-like sequences that are increasingly difficult for nature to discover via simple mutation. Using the sequence map as a discovery tool, we find a unexpectedly diverse taxonomy of sequences that are just as membrane-active as known AMPs, but with a broad range of primary functions distinct from AMP functions, including endogenous neuropeptides, viral fusion proteins, topogenic peptides, and amyloids. The SVM classifier is useful as a general detector of membrane activity in peptide sequences.

  13. Translating solitons to symplectic and Lagrangian mean curvature flows

    International Nuclear Information System (INIS)

    Han Xiaoli; Li Jiayu

    2007-05-01

    In this paper, we construct finite blow-up examples for symplectic mean curvature flows and we study symplectic translating solitons. We prove that there is no translating solitons with vertical bar α vertical bar ≤ α 0 to the symplectic mean curvature flow or to the almost calibrated Lagrangian mean curvature flow for some α 0 . (author)

  14. Curvature reduces bending strains in the quokka femur

    Directory of Open Access Journals (Sweden)

    Kyle McCabe

    2017-03-01

    Full Text Available This study explores how curvature in the quokka femur may help to reduce bending strain during locomotion. The quokka is a small wallaby, but the curvature of the femur and the muscles active during stance phase are similar to most quadrupedal mammals. Our hypothesis is that the action of hip extensor and ankle plantarflexor muscles during stance phase place cranial bending strains that act to reduce the caudal curvature of the femur. Knee extensors and biarticular muscles that span the femur longitudinally create caudal bending strains in the caudally curved (concave caudal side bone. These opposing strains can balance each other and result in less strain on the bone. We test this idea by comparing the performance of a normally curved finite element model of the quokka femur to a digitally straightened version of the same bone. The normally curved model is indeed less strained than the straightened version. To further examine the relationship between curvature and the strains in the femoral models, we also tested an extra-curved and a reverse-curved version with the same loads. There appears to be a linear relationship between the curvature and the strains experienced by the models. These results demonstrate that longitudinal curvature in bones may be a manipulable mechanism whereby bone can induce a strain gradient to oppose strains induced by habitual loading.

  15. Sequence periodicity in nucleosomal DNA and intrinsic curvature.

    Science.gov (United States)

    Nair, T Murlidharan

    2010-05-17

    Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.

  16. Lecture notes on mean curvature flow, barriers and singular perturbations

    CERN Document Server

    Bellettini, Giovanni

    2013-01-01

    The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen–Cahn (or Ginsburg–Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems.

  17. Organizing membrane-curving proteins: the emerging dynamical picture.

    Science.gov (United States)

    Simunovic, Mijo; Bassereau, Patricia; Voth, Gregory A

    2018-03-30

    Lipid membranes play key roles in cells, such as in trafficking, division, infection, remodeling of organelles, among others. The key step in all these processes is creating membrane curvature, typically under the control of many anchored, adhered or included proteins. However, it has become clear that the membrane itself can mediate the interactions among proteins to produce highly ordered assemblies. Computer simulations are ideally suited to investigate protein organization and the dynamics of membrane remodeling at near-micron scales, something that is extremely challenging to tackle experimentally. We review recent computational efforts in modeling protein-caused membrane deformation mechanisms, specifically focusing on coarse-grained simulations. We highlight work that exposed the membrane-mediated ordering of proteins into lines, meshwork, spirals and other assemblies, in what seems to be a very generic mechanism driven by a combination of short and long-ranged forces. Modulating the mechanical properties of membranes is an underexplored signaling mechanism in various processes deserving of more attention in the near future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Dynamic curvature sensing employing ionic-polymer–metal composite sensors

    International Nuclear Information System (INIS)

    Bahramzadeh, Yousef; Shahinpoor, Mohsen

    2011-01-01

    A dynamic curvature sensor is presented based on ionic-polymer–metal composite (IPMC) for curvature monitoring of deployable/inflatable dynamic space structures. Monitoring the curvature variation is of high importance in various engineering structures including shape monitoring of deployable/inflatable space structures in which the structural boundaries undergo a dynamic deployment process. The high sensitivity of IPMCs to the applied deformations as well as its flexibility make IPMCs a promising candidate for sensing of dynamic curvature changes. Herein, we explore the dynamic response of an IPMC sensor strip with respect to controlled curvature deformations subjected to different forms of input functions. Using a specially designed experimental setup, the voltage recovery effect, phase delay, and rate dependency of the output voltage signal of an IPMC curvature sensor are analyzed. Experimental results show that the IPMC sensor maintains the linearity, sensitivity, and repeatability required for curvature sensing. Besides, in order to describe the dynamic phenomena such as the rate dependency of the IPMC sensor, a chemo-electro-mechanical model based on the Poisson–Nernst–Planck (PNP) equation for the kinetics of ion diffusion is presented. By solving the governing partial differential equations the frequency response of the IPMC sensor is derived. The physical model is able to describe the dynamic properties of the IPMC sensor and the dependency of the signal on rate of excitations

  19. Mechanism of Shiga Toxin Clustering on Membranes

    DEFF Research Database (Denmark)

    Pezeshkian, Weria; Gao, Haifei; Arumugam, Senthil

    2017-01-01

    between them. The precise mechanism by which this clustering occurs remains poorly defined. Here, we used vesicle and cell systems and computer simulations to show that line tension due to curvature, height, or compositional mismatch, and lipid or solvent depletion cannot drive the clustering of Shiga...... toxin molecules. By contrast, in coarse-grained computer simulations, a correlation was found between clustering and toxin nanoparticle-driven suppression of membrane fluctuations, and experimentally we observed that clustering required the toxin molecules to be tightly bound to the membrane surface...... molecules (several nanometers), and persist even beyond. This force is predicted to operate between manufactured nanoparticles providing they are sufficiently rigid and tightly bound to the plasma membrane, thereby suggesting a route for the targeting of nanoparticles to cells for biomedical applications....

  20. Membrane invagination induced by Shiga toxin B-subunit

    DEFF Research Database (Denmark)

    Pezeshkian, W.; Hansen, Allan Grønhøj; Johannes, Ludger

    2016-01-01

    -atom molecular dynamics and Monte Carlo simulations we show that the molecular architecture of STxB enables the following sequence of events: the Gb3 binding sites on STxB are arranged such that tight avidity-based binding results in a small increment of local curvature. Membrane-mediated clustering of several...... toxin molecules then creates a tubular membrane invagination that drives toxin entry into the cell. This mechanism requires: (1) a precise molecular architecture of the STxB binding sites; (2) a fluid bilayer in order for the tubular invagination to form. Although, STxB binding to the membrane requires...... specific interactions with Gb3 lipids, our study points to a generic molecular design principle for clathrin-independent endocytosis of nanoparticles....

  1. Spontaneous symmetry breaking in curved space-time

    International Nuclear Information System (INIS)

    Toms, D.J.

    1982-01-01

    An approach dealing with some of the complications which arise when studying spontaneous symmetry breaking beyond the tree-graph level in situations where the effective potential may not be used is discussed. These situations include quantum field theory on general curved backgrounds or in flat space-times with non-trivial topologies. Examples discussed are a twisted scalar field in S 1 xR 3 and instabilities in an expanding universe. From these it is seen that the topology and curvature of a space-time may affect the stability of the vacuum state. There can be critical length scales or times beyond which symmetries may be broken or restored in certain cases. These features are not present in Minkowski space-time and so would not show up in the usual types of early universe calculations. (U.K.)

  2. Membrane Curvature Induced by Aggregates of LH2s and Monomeric LH1s

    OpenAIRE

    Chandler, Danielle E.; Gumbart, James; Stack, John D.; Chipot, Christophe; Schulten, Klaus

    2009-01-01

    The photosynthetic apparatus of purple bacteria is contained within organelles called chromatophores, which form as extensions of the cytoplasmic membrane. The shape of these chromatophores can be spherical (as in Rhodobacter sphaeroides), lamellar (as in Rhodopseudomonas acidophila and Phaeospirillum molischianum), or tubular (as in certain Rb. sphaeroides mutants). Chromatophore shape is thought to be influenced by the integral membrane proteins Light Harvesting Complexes I and II (LH1 and ...

  3. Continuous-Curvature Path Generation Using Fermat's Spiral

    Directory of Open Access Journals (Sweden)

    Anastasios M. Lekkas

    2013-10-01

    Full Text Available This paper proposes a novel methodology, based on Fermat's spiral (FS, for constructing curvature-continuous parametric paths in a plane. FS has a zero curvature at its origin, a property that allows it to be connected with a straight line smoothly, that is, without the curvature discontinuity which occurs at the transition point between a line and a circular arc when constructing Dubins paths. Furthermore, contrary to the computationally expensive clothoids, FS is described by very simple parametric equations that are trivial to compute. On the downside, computing the length of an FS arc involves a Gaussian hypergeometric function. However, this function is absolutely convergent and it is also shown that it poses no restrictions to the domain within which the length can be calculated. In addition, we present an alternative parametrization of FS which eliminates the parametric speed singularity at the origin, hence making the spiral suitable for path-tracking applications. A detailed description of how to construct curvature-continuous paths with FS is given.

  4. Influence of Coanda surface curvature on performance of bladeless fan

    Science.gov (United States)

    Li, Guoqi; Hu, Yongjun; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2014-10-01

    The unique Coanda surface has a great influence on the performance of bladeless fan. However, there is few studies to explain the relationship between the performance and Coanda surface curvature at present. In order to gain a qualitative understanding of effect of the curvature on the performance of bladeless fan, numerical studies are performed in this paper. Firstly, three-dimensional numerical simulation is done by Fluent software. For the purpose to obtain detailed information of the flow field around the Coanda surface, two-dimensional numerical simulation is also conducted. Five types of Coanda surfaces with different curvature are designed, and the flow behaviour and the performance of them are analyzed and compared with those of the prototype. The analysis indicates that the curvature of Coanda surface is strongly related to blowing performance, It is found that there is an optimal curvature of Coanda surfaces among the studied models. Simulation result shows that there is a special low pressure region. With increasing curvature in Y direction, several low pressure regions gradually enlarged, then begin to merge slowly, and finally form a large area of low pressure. From the analyses of streamlines and velocity angle, it is found that the magnitude of the curvature affects the flow direction and reasonable curvature can induce fluid flow close to the wall. Thus, it leads to that the curvature of the streamlines is consistent with that of Coanda surface. Meanwhile, it also causes the fluid movement towards the most suitable direction. This study will provide useful information to performance improvements of bladeless fans.

  5. Pb2+ Modulates Ca2+ Membrane Permeability In Paramecium

    Science.gov (United States)

    Bernal-Martínez, Juan; Ortega Soto, Arturo

    2004-09-01

    Intracellular recording experiments in current clamp configuration were done to evaluate whether Pb2+ modulates ionic membrane permeability in the fresh water Paramecium tetraurelia. It was found that Pb2+ triggers in a dose-dependent manner, a burst of spontaneous action potentials followed by a robust and sustained after hyper-polarization. In addition, Pb2+ increased the frequency of firing the spontaneous Ca2+-Action Potential and also, the duration of Ca2+-Action Potential, in a dose and reversibly-dependent manner. These results suggest that Pb2+ increases calcium membrane permeability of Paramecium and probably activates a calcium-dependent-potassium conductance in the ciliate.

  6. Distributed mean curvature on a discrete manifold for Regge calculus

    International Nuclear Information System (INIS)

    Conboye, Rory; Miller, Warner A; Ray, Shannon

    2015-01-01

    The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector. (paper)

  7. Distributed mean curvature on a discrete manifold for Regge calculus

    Science.gov (United States)

    Conboye, Rory; Miller, Warner A.; Ray, Shannon

    2015-09-01

    The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector.

  8. Effect of nano-scale curvature on the intrinsic blood coagulation system

    Science.gov (United States)

    Kushida, Takashi; Saha, Krishnendu; Subramani, Chandramouleeswaran; Nandwana, Vikas; Rotello, Vincent M.

    2014-11-01

    The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation `silent' surface, while nanoparticles with lower surface curvature show denaturation and concomitant coagulation.The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation `silent' surface, while nanoparticles with lower surface curvature show denaturation and concomitant coagulation. Electronic supplementary information (ESI) available: Physical properties and scanning electron micrographs (SEM) of silica NPs, intrinsic coagulation activity after 3 h. See DOI: 10.1039/c4nr04128c

  9. Effect of Plate Curvature on Blast Response of Structural Steel Plates

    Science.gov (United States)

    Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao

    2018-04-01

    In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.

  10. On Riemannian manifolds (Mn, g) of quasi-constant curvature

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1995-07-01

    A Riemannian manifold (M n , g) of quasi-constant curvature is defined. It is shown that an (M n , g) in association with other class of manifolds gives rise, under certain conditions, to a manifold of quasi-constant curvature. Some observations on how a manifold of quasi-constant curvature accounts for a pseudo Ricci-symmetric manifold and quasi-umbilical hypersurface are made. (author). 10 refs

  11. Curvature collineations for the field of gravitational waves

    International Nuclear Information System (INIS)

    Singh, K.P.; Singh, Gulab

    1981-01-01

    It has been shown that the space-times formed from a plane-fronted gravity wave and from a plane sandwich wave with constant polarisation admit proper curvature collineation in general. The curvature collineation vectors have been determined explicitly. (author)

  12. Active hippocampal networks undergo spontaneous synaptic modification.

    Directory of Open Access Journals (Sweden)

    Masako Tsukamoto-Yasui

    Full Text Available The brain is self-writable; as the brain voluntarily adapts itself to a changing environment, the neural circuitry rearranges its functional connectivity by referring to its own activity. How the internal activity modifies synaptic weights is largely unknown, however. Here we report that spontaneous activity causes complex reorganization of synaptic connectivity without any external (or artificial stimuli. Under physiologically relevant ionic conditions, CA3 pyramidal cells in hippocampal slices displayed spontaneous spikes with bistable slow oscillations of membrane potential, alternating between the so-called UP and DOWN states. The generation of slow oscillations did not require fast synaptic transmission, but their patterns were coordinated by local circuit activity. In the course of generating spontaneous activity, individual neurons acquired bidirectional long-lasting synaptic modification. The spontaneous synaptic plasticity depended on a rise in intracellular calcium concentrations of postsynaptic cells, but not on NMDA receptor activity. The direction and amount of the plasticity varied depending on slow oscillation patterns and synapse locations, and thus, they were diverse in a network. Once this global synaptic refinement occurred, the same neurons now displayed different patterns of spontaneous activity, which in turn exhibited different levels of synaptic plasticity. Thus, active networks continuously update their internal states through ongoing synaptic plasticity. With computational simulations, we suggest that with this slow oscillation-induced plasticity, a recurrent network converges on a more specific state, compared to that with spike timing-dependent plasticity alone.

  13. Remarks on the boundary curve of a constant mean curvature topological disc

    DEFF Research Database (Denmark)

    Brander, David; Lopéz, Rafael

    2017-01-01

    We discuss some consequences of the existence of the holomorphic quadratic Hopf differential on a conformally immersed constant mean curvature topological disc with analytic boundary. In particular, we derive a formula for the mean curvature as a weighted average of the normal curvature of the bo......We discuss some consequences of the existence of the holomorphic quadratic Hopf differential on a conformally immersed constant mean curvature topological disc with analytic boundary. In particular, we derive a formula for the mean curvature as a weighted average of the normal curvature...

  14. Cosmic curvature from de Sitter equilibrium cosmology.

    Science.gov (United States)

    Albrecht, Andreas

    2011-10-07

    I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.

  15. Radion stabilization in higher curvature warped spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Das, Ashmita [Indian Institute of Technology, Department of Physics, Guwahati, Assam (India); Mukherjee, Hiya; Paul, Tanmoy; SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2018-02-15

    We consider a five dimensional AdS spacetime in presence of higher curvature term like F(R) = R + αR{sup 2} in the bulk. In this model, we examine the possibility of modulus stabilization from the scalar degrees of freedom of higher curvature gravity free of ghosts. Our result reveals that the model stabilizes itself and the mechanism of modulus stabilization can be argued from a geometric point of view. We determine the region of the parametric space for which the modulus (or radion) can to be stabilized. We also show how the mass and coupling parameters of radion field are modified due to higher curvature term leading to modifications of its phenomenological implications on the visible 3-brane. (orig.)

  16. Robust modal curvature features for identifying multiple damage in beams

    Science.gov (United States)

    Ostachowicz, Wiesław; Xu, Wei; Bai, Runbo; Radzieński, Maciej; Cao, Maosen

    2014-03-01

    Curvature mode shape is an effective feature for damage detection in beams. However, it is susceptible to measurement noise, easily impairing its advantage of sensitivity to damage. To deal with this deficiency, this study formulates an improved curvature mode shape for multiple damage detection in beams based on integrating a wavelet transform (WT) and a Teager energy operator (TEO). The improved curvature mode shape, termed the WT - TEO curvature mode shape, has inherent capabilities of immunity to noise and sensitivity to damage. The proposed method is experimentally validated by identifying multiple cracks in cantilever steel beams with the mode shapes acquired using a scanning laser vibrometer. The results demonstrate that the improved curvature mode shape can identify multiple damage accurately and reliably, and it is fairly robust to measurement noise.

  17. Temperature and cholera toxin B are factors that influence formation of membrane nanotubes in RT4 and T24 urothelial cancer cell lines

    Directory of Open Access Journals (Sweden)

    Doron Kabaso

    2011-03-01

    Full Text Available Doron Kabaso1*, Maruša Lokar1*, Veronika Kralj-Iglic2, Peter Veranic3, Aleš Iglic11Laboratory of Biophysics, Faculty of Electrical Engineering, 2Laboratory of Clinical Biophysics, Faculty of Medicine, 3Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; *These two authors equally share the first authorshipAbstract: The growth of membrane nanotubes is crucial for intercellular communication in both normal development and pathological conditions. Therefore, identifying factors that influence their stability and formation are important for both basic research and in development of potential treatments of pathological states. Here we investigate the effect of cholera toxin B (CTB and temperature on two pathological model systems: urothelial cell line RT4, as a model system of a benign tumor, and urothelial cell line T24, as a model system of a metastatic tumor. In particular, the number of intercellular membrane nanotubes (ICNs; ie, membrane nanotubes that bridge neighboring cells was counted. In comparison with RT4 cells, we reveal a significantly higher number in the density of ICNs in T24 cells not derived from RT4 without treatments (P = 0.005, after 20 minutes at room temperature (P = 0.0007, and following CTB treatment (P = 0.000025. The binding of CTB to GM1–lipid complexes in membrane exvaginations or tips of membrane nanotubes may reduce the positive spontaneous (intrinsic curvature of GM1–lipid complexes, which may lead to lipid mediated attractive interactions between CTB–GM1–lipid complexes, their aggregation and consequent formation of enlarged spherical tips of nanotubes. The binding of CTB to GM1 molecules in the outer membrane leaflet of membrane exvaginations and tips of membrane nanotubes may also increase the area difference between the two leaflets and in this way facilitate the growth of membrane nanotubes.Keywords: cancer cells, membrane nanotubes, cholera toxin

  18. The speed-curvature power law of movements: a reappraisal.

    Science.gov (United States)

    Zago, Myrka; Matic, Adam; Flash, Tamar; Gomez-Marin, Alex; Lacquaniti, Francesco

    2018-01-01

    Several types of curvilinear movements obey approximately the so called 2/3 power law, according to which the angular speed varies proportionally to the 2/3 power of the curvature. The origin of the law is debated but it is generally thought to depend on physiological mechanisms. However, a recent paper (Marken and Shaffer, Exp Brain Res 88:685-690, 2017) claims that this power law is simply a statistical artifact, being a mathematical consequence of the way speed and curvature are calculated. Here we reject this hypothesis by showing that the speed-curvature power law of biological movements is non-trivial. First, we confirm that the power exponent varies with the shape of human drawing movements and with environmental factors. Second, we report experimental data from Drosophila larvae demonstrating that the power law does not depend on how curvature is calculated. Third, we prove that the law can be violated by means of several mathematical and physical examples. Finally, we discuss biological constraints that may underlie speed-curvature power laws discovered in empirical studies.

  19. Natural inflation in SUSY and gauge-mediated curvature of the flat directions

    CERN Document Server

    Dvali, Gia

    1996-01-01

    Supersymmetric theories often include the non-compact directions in the field space along which the tree level potential grows only up to a certain limited value (determined by the mass scale of the theory) and then stays constant for the arbitrarily large expectation value of the field parametrizing the direction. Above the critical value, the tree-level curvature is large and positive in the other directions. Such plateaux are natural candidates for the hybrid inflaton. The non-zero F-term density along the plateau spontaneously breaks SUSY and induces the one-loop logarithmic slope for the inflaton potential. The coupling of the inflaton to the Higgs fields in the complex representations of the gauge group, may result in a radiatively induced Fayet--Iliopoulos D-term during inflation, which destabilizes some of the squark and slepton flat directions. Corresponding soft masses can be larger than the Hubble parameter and thus, play a crucial role for the Affleck--Dine baryogenesis.

  20. Extrinsic and intrinsic curvatures in thermodynamic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Mansoori, Seyed Ali, E-mail: shossein@bu.edu [Department of Physics, Boston University, 590 Commonwealth Ave., Boston, MA 02215 (United States); Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Sharifian, Elham, E-mail: e.sharifian@ph.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-08-10

    We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.

  1. Extrinsic and intrinsic curvatures in thermodynamic geometry

    International Nuclear Information System (INIS)

    Hosseini Mansoori, Seyed Ali; Mirza, Behrouz; Sharifian, Elham

    2016-01-01

    We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.

  2. Hamilton's equations for a fluid membrane

    International Nuclear Information System (INIS)

    Capovilla, R; Guven, J; Rojas, E

    2005-01-01

    Consider a homogeneous fluid membrane described by the Helfrich-Canham energy, quadratic in the mean curvature of the membrane surface. The shape equation that determines equilibrium configurations is fourth order in derivatives and cubic in the mean curvature. We introduce a Hamiltonian formulation of this equation which dismantles it into a set of coupled first-order equations. This involves interpreting the Helfrich-Canham energy as an action; equilibrium surfaces are generated by the evolution of space curves. Two features complicate the implementation of a Hamiltonian framework. (i) The action involves second derivatives. This requires treating the velocity as a phase-space variable and the introduction of its conjugate momentum. The canonical Hamiltonian is constructed on this phase space. (ii) The action possesses a local symmetry-reparametrization invariance. The two labels we use to parametrize points on the surface are themselves physically irrelevant. This symmetry implies primary constraints, one for each label, that need to be implemented within the Hamiltonian. The two Lagrange multipliers associated with these constraints are identified as the components of the acceleration tangential to the surface. The conservation of the primary constraints implies two secondary constraints, fixing the tangential components of the momentum conjugate to the position. Hamilton's equations are derived and the appropriate initial conditions on the phase-space variables are identified. Finally, it is shown how the shape equation can be reconstructed from these equations

  3. A Role for the Inflammasome in Spontaneous Labor at Term with Acute Histologic Chorioamnionitis.

    Science.gov (United States)

    Gomez-Lopez, Nardhy; Romero, Roberto; Xu, Yi; Plazyo, Olesya; Unkel, Ronald; Than, Nandor Gabor; Chaemsaithong, Piya; Chaiworapongsa, Tinnakorn; Dong, Zhong; Tarca, Adi L; Abrahams, Vikki M; Yeo, Lami; Hassan, Sonia S

    2017-06-01

    Inflammasomes are cytosolic signaling platforms that regulate the activation of caspase (CASP)-1, which induces the maturation of interleukin (IL)-1β and IL-18. Herein, we determined whether the chorioamniotic membranes from women in spontaneous labor at term with acute histologic chorioamnionitis express major inflammasome components and whether these changes are associated with the activation of CASP-1 and CASP-4 and the release of mature IL-1β and IL-18. When comparing the chorioamniotic membranes from women in spontaneous labor at term with acute histologic chorioamnionitis to those without this placental lesion, we found that (1) the messenger RNA (mRNA) abundance of NLR family pyrin domain containing 3 ( NLRP3), NLR family CARD domain containing 4 ( NLRC4), absent in melanoma 2 ( AIM2), and nucleotide binding oligomerization domain 2 ( NOD2) was higher; (2) the NLRP3 and NLRC4 protein quantities were increased; (3) the mRNA and protein expressions of CASP-1 and its active forms were greater; (4) CASP-4 was increased at the mRNA level only; (5) the mRNA and protein expressions of IL-1β and its mature form were higher; and (6) a modest increase in the total protein concentration and abundance of the mature form of IL-18 was observed. In vitro incubation of the chorioamniotic membranes with the CASP-1 inhibitor, VX765, decreased the release of endotoxin-induced IL-1β and IL-18 (2-fold) but not IL-6 or tumor necrosis factor α. In conclusion, spontaneous labor at term with acute histologic chorioamnionitis is characterized by an upregulation of inflammasome components which, in turn, may participate in the activation of CASP-1 and lead to the release of mature IL-1β by the chorioamniotic membranes. These results support a role for the inflammasome in the mechanisms responsible for spontaneous labor at term with acute histologic chorioamnionitis.

  4. Positive spatial curvature does not falsify the landscape

    Science.gov (United States)

    Horn, B.

    2017-12-01

    We present a simple cosmological model where the quantum tunneling of a scalar field rearranges the energetics of the matter sector, sending a stable static ancestor vacuum with positive spatial curvature into an inating solution with positive curvature. This serves as a proof of principle that an observation of positive spatial curvature does not falsify the hypothesis that our current observer patch originated from false vacuum tunneling in a string or field theoretic landscape. This poster submission is a summary of the work, and was presented at the 3rd annual ICPPA held in Moscow from October 2 to 5, 2017, by Prof. Rostislav Konoplich on behalf of the author.

  5. Curvature perturbation and waterfall dynamics in hybrid inflation

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Firouzjahi, Hassan; Sasaki, Misao

    2011-01-01

    We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here

  6. Curvature perturbation and waterfall dynamics in hybrid inflation

    Energy Technology Data Exchange (ETDEWEB)

    Abolhasani, Ali Akbar [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Firouzjahi, Hassan [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Sasaki, Misao, E-mail: abolhasani@mail.ipm.ir, E-mail: firouz@mail.ipm.ir, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2011-10-01

    We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here.

  7. Influence of implant rod curvature on sagittal correction of scoliosis deformity.

    Science.gov (United States)

    Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu

    2014-08-01

    Deformation of in vivo-implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. To analyze the changes of the implant rod's angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. Twenty adolescent idiopathic scoliosis patients underwent surgery. Average age at the time of operation was 14 years. The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. Two implant rods were attached to the concave and convex side of the spinal deformity. The preoperative implant rod geometry was measured before surgical implantation. The postoperative implant rod geometry after surgery was measured by computed tomography. The implant rod angle of curvature at the sagittal plane was obtained from the implant rod geometry. The angle of curvature between the implant rod extreme ends was measured before implantation and after surgery. The sagittal curvature between the corresponding spinal levels of healthy adolescents obtained by previous studies was compared with the implant rod angle of curvature to evaluate the sagittal curve correction. The difference between the postoperative implant rod angle of curvature and normal spine sagittal curvature of the corresponding instrumented level was used to evaluate over or under correction of the sagittal deformity. The implant rods at the concave side of deformity of all patients were significantly deformed after surgery. The average degree of rod deformation Δθ at the concave and convex sides was 15.8° and 1.6°, respectively. The average preoperative and postoperative implant rod angle of curvature at the concave side was 33.6° and 17.8

  8. Discrimination of curvature from motion during smooth pursuit eye movements and fixation.

    Science.gov (United States)

    Ross, Nicholas M; Goettker, Alexander; Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R

    2017-09-01

    Smooth pursuit and motion perception have mainly been investigated with stimuli moving along linear trajectories. Here we studied the quality of pursuit movements to curved motion trajectories in human observers and examined whether the pursuit responses would be sensitive enough to discriminate various degrees of curvature. In a two-interval forced-choice task subjects pursued a Gaussian blob moving along a curved trajectory and then indicated in which interval the curve was flatter. We also measured discrimination thresholds for the same curvatures during fixation. Motion curvature had some specific effects on smooth pursuit properties: trajectories with larger amounts of curvature elicited lower open-loop acceleration, lower pursuit gain, and larger catch-up saccades compared with less curved trajectories. Initially, target motion curvatures were underestimated; however, ∼300 ms after pursuit onset pursuit responses closely matched the actual curved trajectory. We calculated perceptual thresholds for curvature discrimination, which were on the order of 1.5 degrees of visual angle (°) for a 7.9° curvature standard. Oculometric sensitivity to curvature discrimination based on the whole pursuit trajectory was quite similar to perceptual performance. Oculometric thresholds based on smaller time windows were higher. Thus smooth pursuit can quite accurately follow moving targets with curved trajectories, but temporal integration over longer periods is necessary to reach perceptual thresholds for curvature discrimination. NEW & NOTEWORTHY Even though motion trajectories in the real world are frequently curved, most studies of smooth pursuit and motion perception have investigated linear motion. We show that pursuit initially underestimates the curvature of target motion and is able to reproduce the target curvature ∼300 ms after pursuit onset. Temporal integration of target motion over longer periods is necessary for pursuit to reach the level of precision found

  9. New curvature-torsion relations through decomposition of the Bianchi identities

    International Nuclear Information System (INIS)

    Davies, J.B.

    1988-01-01

    The Bianchi Identities relating asymmetric curvature to torsion are obtained as a new set of equations governing second-order curvature tensors. The usual contribution of symmetric curvature to the gravitational field is found to be a subset of these identities though with an added contribution due to torsion gradients. The antisymmetric curvature two-tensor is shown to be related to the divergence of the torsion. Using a model of particle-antiparticle pair production, identification of certain torsion components with electroweak fields is proposed. These components obey equations, similar to Maxwell's that are subsets of these linear Bianchi identities. These results are shown to be consistent with gauge and other previous analyses

  10. Spatiotemporal analysis of endocytosis and membrane distribution of fluorescent sterols in living cells

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Faergeman, Nils J

    2008-01-01

    proximity to the cell membrane. Spatial surface intensity patterns of DHE as well as that of the lipid marker DiIC12 being assessed by statistical image analysis persisted over several minutes in cells having a constant overall curvature. Sites of sterol endocytosis appeared indistinguishable from other...

  11. Effects on Buildings of Surface Curvature Caused by Underground Coal Mining

    Directory of Open Access Journals (Sweden)

    Haifeng Hu

    2016-08-01

    Full Text Available Ground curvature caused by underground mining is one of the most obvious deformation quantities in buildings. To study the influence of surface curvature on buildings and predict the movement and deformation of buildings caused by ground curvature, a prediction model of the influence function on mining subsidence was used to establish the relationship between surface curvature and wall deformation. The prediction model of wall deformation was then established and the surface curvature was obtained from mining subsidence prediction software. Five prediction lines were set up in the wall from bottom to top and the predicted deformation of each line was used to calculate the crack positions in the wall. Thus, the crack prediction model was obtained. The model was verified by a case study from a coalmine in Shanxi, China. The results show that when the ground curvature is positive, the crack in the wall is shaped like a “V”; when the ground curvature is negative, the crack is shaped like a “∧”. The conclusion provides the basis for a damage evaluation method for buildings in coalmine areas.

  12. Spontaneous water filtration of bio-inspired membrane

    Science.gov (United States)

    Kim, Kiwoong; Kim, Hyejeong; Lee, Sang Joon

    2016-11-01

    Water is one of the most important elements for plants, because it is essential for various metabolic activities. Thus, water management systems of vascular plants, such as water collection and water filtration have been optimized through a long history. In this view point, bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. However, most of the underlying biophysical features of the optimized water management systems remain unsolved In this study, the biophysical characteristics of water filtration phenomena in the roots of mangrove are experimentally investigated. To understand water-filtration features of the mangrove, the morphological structures of its roots are analyzed. The electrokinetic properties of the root surface are also examined. Based on the quantitatively analyzed information, filtration of sodium ions in the roots are visualized. Motivated by this mechanism, spontaneous desalination mechanism in the root of mangrove is proposed by combining the electrokinetics and hydrodynamic transportation of ions. This study would be helpful for understanding the water-filtration mechanism of the roots of mangrove and developing a new bio-inspired desalination technology. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract Grant Number: 2008-0061991).

  13. Advanced Curvature Deformable Mirrors

    Science.gov (United States)

    2010-09-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) University of Hawaii ,Institute for Astronomy,640 North A‘ohoku Place, #209 , Hilo ,HI,96720-2700 8. PERFORMING...Advanced Curvature Deformable Mirrors Christ Ftaclas1,2, Aglae Kellerer2 and Mark Chun2 Institute for Astronomy, University of Hawaii

  14. Effect of nano-scale curvature on the intrinsic blood coagulation system

    Science.gov (United States)

    Kushida, Takashi; Saha, Krishnendu; Subramani, Chandramouleeswaran; Nandwana, Vikas; Rotello, Vincent M.

    2014-01-01

    The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation ‘silent’ surface, while nanoparticles with lower surface curvature shows denaturation and concomitant coagulation. PMID:25341004

  15. A geometric construction of the Riemann scalar curvature in Regge calculus

    International Nuclear Information System (INIS)

    McDonald, Jonathan R; Miller, Warner A

    2008-01-01

    The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe is it ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a new fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas

  16. A geometric construction of the Riemann scalar curvature in Regge calculus

    Science.gov (United States)

    McDonald, Jonathan R.; Miller, Warner A.

    2008-10-01

    The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe is it ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a new fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas.

  17. Model-independent Constraints on Cosmic Curvature and Opacity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guo-Jian; Li, Zheng-Xiang; Xia, Jun-Qing; Zhu, Zong-Hong [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Wei, Jun-Jie, E-mail: gjwang@mail.bnu.edu.cn, E-mail: zxli918@bnu.edu.cn, E-mail: xiajq@bnu.edu.cn, E-mail: zhuzh@bnu.edu.cn, E-mail: jjwei@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-09-20

    In this paper, we propose to estimate the spatial curvature of the universe and the cosmic opacity in a model-independent way with expansion rate measurements, H ( z ), and type Ia supernova (SNe Ia). On the one hand, using a nonparametric smoothing method Gaussian process, we reconstruct a function H ( z ) from opacity-free expansion rate measurements. Then, we integrate the H ( z ) to obtain distance modulus μ {sub H}, which is dependent on the cosmic curvature. On the other hand, distances of SNe Ia can be determined by their photometric observations and thus are opacity-dependent. In our analysis, by confronting distance moduli μ {sub H} with those obtained from SNe Ia, we achieve estimations for both the spatial curvature and the cosmic opacity without any assumptions for the cosmological model. Here, it should be noted that light curve fitting parameters, accounting for the distance estimation of SNe Ia, are determined in a global fit together with the cosmic opacity and spatial curvature to get rid of the dependence of these parameters on cosmology. In addition, we also investigate whether the inclusion of different priors for the present expansion rate ( H {sub 0}: global estimation, 67.74 ± 0.46 km s{sup −1} Mpc{sup −1}, and local measurement, 73.24 ± 1.74 km s{sup −1} Mpc{sup −1}) exert influence on the reconstructed H ( z ) and the following estimations of the spatial curvature and cosmic opacity. Results show that, in general, a spatially flat and transparent universe is preferred by the observations. Moreover, it is suggested that priors for H {sub 0} matter a lot. Finally, we find that there is a strong degeneracy between the curvature and the opacity.

  18. Long-term Results of Ventral Penile Curvature Repair in Childhood.

    Science.gov (United States)

    Golomb, Dor; Sivan, Bezalel; Livne, Pinhas M; Nevo, Amihay; Ben-Meir, David

    2018-02-01

    To assess the postpubertal outcome of ventral penile curvature repaired in infancy in terms of recurrence and aesthetics. Postpubertal patients treated for hypospadias and ventral penile curvature in infancy at a tertiary medical center were invited to undergo assessment of the quality of the repair. Findings were compared between patients with a straight penis after skin release and patients who required dorsal plication. The cohort included 27 patients of mean age 16.5 years who were reported with straight penis after surgery. Postpubertal curvature was found in 6 of 14 patients (43%) successfully treated by skin release and 10 of 13 patients (77%) who underwent dorsal plication (P = .087). Significant curvature (≥30 degrees) was found in 1 of 14 patients in the skin-release group and 4 of 13 in the dorsal plication group (P = .16). Rates of redo urethroplasty were 2 of 14 (14%) and 5 of 10 (50%), respectively. Patient satisfaction with the appearance of the penis did not differ significantly. Ventral penile curvature repaired in infancy often recurs after puberty. The need for dorsal plication has a trend-level association with recurrence of penile curvature in puberty. It might also be related to the degree of postpubertal penile curvature and the need for redo urethroplasty. Procedure type does not affect patient satisfaction with the postpubertal appearance of the penis. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The Physical Properties of Ceramides in Membranes.

    Science.gov (United States)

    Alonso, Alicia; Goñi, Félix M

    2018-05-20

    Ceramides are sphingolipids containing a sphingosine or a related base, to which a fatty acid is linked through an amide bond. When incorporated into a lipid bilayer, ceramides exhibit a number of properties not shared by almost any other membrane lipid: Ceramides ( a) are extremely hydrophobic and thus cannot exist in suspension in aqueous media; ( b) increase the molecular order (rigidity) of phospholipids in membranes; ( c) give rise to lateral phase separation and domain formation in phospholipid bilayers; ( d) possess a marked intrinsic negative curvature that facilitates formation of inverted hexagonal phases; ( e) make bilayers and cell membranes permeable to small and large (i.e., protein-size) solutes; and ( f) promote transmembrane (flip-flop) lipid motion. Unfortunately, there is hardly any link between the physical studies reviewed here and the mass of biological and clinical studies on the effects of ceramides in health and disease.

  20. Shaping of parabolic cylindrical membrane reflectors for the Dart Precision Test Bed

    Science.gov (United States)

    Morgan, R.; Agnes, Gregory S.; Dragovan, M.; Barber, D.; Marcin, M.; White, C.; Dooley, J.; Hatheway, A.

    2004-01-01

    The DART is a new telescope architecture consisting of a single aperture formed from two cylindrical parabolic reflectors. The system is ideally suited to using tensioned membranes for the reflective surfaces, owing to the zero Gaussian curvature of a cylindrical parabola. In this paper, we present experimental measurements for shaping the membranes by using curved boundary elements to achieve coarse shaping, and a pair of precision rails shaped by moments and forces at the ends, and lightly pushed into the surface, to provide fine shape control.

  1. On the scalar curvature of self-dual manifolds

    International Nuclear Information System (INIS)

    Kim, J.

    1992-08-01

    We generalize LeBrun's explicit ''hyperbolic ansatz'' construction of self-dual metrics on connected sums of conformally flat manifolds and CP 2 's through a systematic use of the theory of hyperbolic geometry and Kleinian groups. (This construction produces, for example, all self-dual manifolds with semi-free S 1 -action and with either nonnegative scalar curvature or positive-definite intersection form.) We then point out a simple criterion for determining the sign of the scalar curvature of these conformal metrics. Exploiting this, we then show that the sign of the scalar curvature can change on connected components of the moduli space of self-dual metrics, thereby answering a question raised by King and Kotschick. (author). Refs

  2. On a curvature-statistics theorem

    International Nuclear Information System (INIS)

    Calixto, M; Aldaya, V

    2008-01-01

    The spin-statistics theorem in quantum field theory relates the spin of a particle to the statistics obeyed by that particle. Here we investigate an interesting correspondence or connection between curvature (κ = ±1) and quantum statistics (Fermi-Dirac and Bose-Einstein, respectively). The interrelation between both concepts is established through vacuum coherent configurations of zero modes in quantum field theory on the compact O(3) and noncompact O(2; 1) (spatial) isometry subgroups of de Sitter and Anti de Sitter spaces, respectively. The high frequency limit, is retrieved as a (zero curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the physical significance of the vacuum energy density and the cosmological constant problem.

  3. On a curvature-statistics theorem

    Energy Technology Data Exchange (ETDEWEB)

    Calixto, M [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain); Aldaya, V [Instituto de Astrofisica de Andalucia, Apartado Postal 3004, 18080 Granada (Spain)], E-mail: Manuel.Calixto@upct.es

    2008-08-15

    The spin-statistics theorem in quantum field theory relates the spin of a particle to the statistics obeyed by that particle. Here we investigate an interesting correspondence or connection between curvature ({kappa} = {+-}1) and quantum statistics (Fermi-Dirac and Bose-Einstein, respectively). The interrelation between both concepts is established through vacuum coherent configurations of zero modes in quantum field theory on the compact O(3) and noncompact O(2; 1) (spatial) isometry subgroups of de Sitter and Anti de Sitter spaces, respectively. The high frequency limit, is retrieved as a (zero curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the physical significance of the vacuum energy density and the cosmological constant problem.

  4. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors

    Directory of Open Access Journals (Sweden)

    Carlo Ciulla

    2015-11-01

    Full Text Available This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI. Post-processing of the MRI of the human brain encompasses the following model functions: (i bivariate cubic polynomial, (ii bivariate cubic Lagrange polynomial, (iii monovariate sinc, and (iv bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i classic-curvature, (ii signal resilient to interpolation, (iii intensity-curvature measure and (iv intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional.

  5. Aging of intrauterine tissues in spontaneous preterm birth and preterm premature rupture of the membranes: A systematic review of the literature.

    Science.gov (United States)

    Polettini, J; Dutta, E H; Behnia, F; Saade, G R; Torloni, M R; Menon, R

    2015-09-01

    Many adverse pregnancy outcomes (APOs), including spontaneous preterm birth (PTB), are associated with placental dysfunction. Recent clinical and experimental evidences suggest that premature aging of the placenta may be involved in these events. Although placental aging is a well-known concept, the mechanisms of aging during normal pregnancy and premature aging in APOs are still unclear. This review was conducted to assess the knowledge on placental aging related biochemical changes leading to placental dysfunction in PTB and/or preterm premature rupture of membranes (pPROM). We performed a systematic review of studies published over the last 50 years in two electronic databases (Pubmed and Embase) on placental aging and PTB or pPROM. The search yielded 554 citations, 30 relevant studies were selected for full-text review and three were included in the review. Only one study reported oxidative stress-related aging and degenerative changes in human placental membranes and telomere length reduction in fetal cells as part of PTB and/or pPROM mechanisms. Similarly, two animal studies reported findings of decidual senescence and referred to PTB mechanisms. Placental and fetal membrane oxidative damage and telomere reduction are linked to premature aging in PTB and pPROM but the risk factors and biomolecular pathways causing this phenomenon are not established in the literature. However, no biomarkers or clinical indicators of premature aging as a pathology of PTB and pPROM have been reported. We document major knowledge gaps and propose several areas for future research to improve our understanding of premature aging linked to placental dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Statistical mechanics of surfaces with curvature dependent action

    International Nuclear Information System (INIS)

    Jonsson, T.

    1987-01-01

    We review recent results about discretized random surfaces whose action (energy) depends on the extrinsic curvature. The surface tension scales to zero at an appropriate critical point if the coupling constant of the curvature term is taken to infinity. At this critical point one expects to be able to construct a continuum theory of smooth surfaces. (orig.)

  7. Is the fluid mosaic (and the accompanying raft hypothesis a suitable model to describe fundamental features of biological membranes? What may be missing?

    Directory of Open Access Journals (Sweden)

    Luis Alberto Bagatolli

    2013-11-01

    Full Text Available The structure, dynamics, and stability of lipid bilayers are controlled by thermodynamic forces, leading to overall tensionless membranes with a distinct lateral organization and a conspicuous lateral pressure profile. Bilayers are also subject to built-in curvature-stress instabilities that may be released locally or globally in terms of morphological changes leading to the formation of non-lamellar and curved structures. A key controller of the bilayer’s propensity to form curved structures is the average molecular shape of the different lipid molecules. Via the curvature stress, molecular shape mediates a coupling to membrane-protein function and provides a set of physical mechanisms for formation of lipid domains and laterally differentiated regions in the plane of the membrane. Unfortunately, these relevant physical features of membranes are often ignored in the most popular models for biological membranes. Results from a number of experimental and theoretical studies emphasize the significance of these fundamental physical properties and call for a refinement of the fluid mosaic model (and the accompanying raft hypothesis.

  8. A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Zhu [Tianjin University, Department of Physics, Tianjin (China); Li, Wen-Du [Tianjin University, Department of Physics, Tianjin (China); Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Dai, Wu-Sheng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Nankai University and Tianjin University, LiuHui Center for Applied Mathematics, Tianjin (China)

    2017-12-15

    We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)

  9. Numerical and Theoretical Investigations Concerning the Continuous-Surface-Curvature Effect in Compressor Blades

    Directory of Open Access Journals (Sweden)

    Yin Song

    2014-12-01

    Full Text Available Though the importance of curvature continuity on compressor blade performances has been realized, there are two major questions that need to be solved, i.e., the respective effects of curvature continuity at the leading-edge blend point and the main surface, and the contradiction between the traditional theory and experimental observations in the effect of those novel leading-edge shapes with smaller curvature discontinuity and sharper nose. In this paper, an optimization method to design continuous-curvature blade profiles which deviate little from datum blades is proposed, and numerical and theoretical analysis is carried out to investigate the continuous-curvature effect on blade performances. The results show that the curvature continuity at the leading-edge blend point helps to eliminate the separation bubble, thus improving the blade performance. The main-surface curvature continuity is also beneficial, although its effects are much smaller than those of the blend-point curvature continuity. Furthermore, it is observed that there exist two factors controlling the leading-edge spike, i.e., the curvature discontinuity at the blend point which dominates at small incidences, and the nose curvature which dominates at large incidences. To the authors’ knowledge, such mechanisms have not been reported before, and they can help to solve the sharp-leading-edge paradox.

  10. Spontaneous Resolution of Optic Disc Pit Maculopathy

    OpenAIRE

    Tripathy, Koushik

    2017-01-01

    I read with interest the article reporting spontaneous resolution of optic disc pit maculopathy in a boy.1 Though the presence of an optic disc pit and associated macular involvement is undoubted in the presented case, the provided optical coherence tomography (OCT) does not clearly show typical intraretinal schisis (Figure 1B)1 at multiple retinal levels which may communicate with the pit. Instead, it shows a sub-internal limiting membrane (sub-ILM) cavity. Such cavities are known to occur f...

  11. Higher Curvature Gravity from Entanglement in Conformal Field Theories

    Science.gov (United States)

    Haehl, Felix M.; Hijano, Eliot; Parrikar, Onkar; Rabideau, Charles

    2018-05-01

    By generalizing different recent works to the context of higher curvature gravity, we provide a unifying framework for three related results: (i) If an asymptotically anti-de Sitter (AdS) spacetime computes the entanglement entropies of ball-shaped regions in a conformal field theory using a generalized Ryu-Takayanagi formula up to second order in state deformations around the vacuum, then the spacetime satisfies the correct gravitational equations of motion up to second order around the AdS background. (ii) The holographic dual of entanglement entropy in higher curvature theories of gravity is given by the Wald entropy plus a particular correction term involving extrinsic curvatures. (iii) Conformal field theory relative entropy is dual to gravitational canonical energy (also in higher curvature theories of gravity). Especially for the second point, our novel derivation of this previously known statement does not involve the Euclidean replica trick.

  12. On the curvature of transmitted intensity plots in broad beam studies

    International Nuclear Information System (INIS)

    El-Kateb, A.H.

    2000-01-01

    Transmission of a broad beam of gamma rays of 81- and 356-keV energies from 133 Ba is studied singly and dually. This study is the first to deal with the curvatures of the intensity plots. The targets are dextrose solutions of percentage concentrations up to 0.125 and soil containing water with concentrations up to 0.319. The logarithmic intensity plots are expressed in terms of a polynomial in the concentration. The curvatures of the plots are measured and calculated on the basis of the theoretical mass attenuation coefficients. The results are discussed in conjunction with buildup factors and the probability of photoelectric and Compton interactions. The curvatures show maxima when incoherent interaction prevails. This is evidently proved in case of the single 356-keV and of the dual 81- and 356-keV applied energies. Comparison is performed between the measured and calculated curvatures. The concept of curvature is applied and discussed for published results of narrow beam geometry. Correspondingly, this is the first search to introduce curvature instead of buildup as a measure for transmitted collided photons

  13. Evolution of curvature perturbation in generalized gravity theories

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2009-01-01

    Using the cosmological perturbation theory in terms of the δN formalism, we find the simple formulation of the evolution of the curvature perturbation in generalized gravity theories. Compared with the standard gravity theory, a crucial difference appears in the end-boundary of the inflationary stage, which is due to the non-ideal form of the energy-momentum tensor that depends explicitly on the curvature scalar. Recent study shows that ultraviolet-complete quantum theory of gravity (Horava-Lifshitz gravity) can be approximated by using a generalized gravity action. Our paper may give an important step in understanding the evolution of the curvature perturbation during inflation, where the energy-momentum tensor may not be given by the ideal form due to the corrections from the fundamental theory.

  14. Vibration Analysis of Circular Arch Element Using Curvature

    Directory of Open Access Journals (Sweden)

    H. Saffari

    2008-01-01

    Full Text Available In this paper, a finite element technique was used to determine the natural frequencies, and the mode shapes of a circular arch element was based on the curvature, which can fully represent the bending energy and by the equilibrium equations, the shear and axial strain energy were incorporated into the formulation. The treatment of general boundary conditions dose need a consideration when the element is incorporated by the curvature-based formula. This can be obtained by the introduction of a transformation matrix between nodal curvatures and nodal displacements. The equation of the motion for the element was obtained by the Lagrangian equation. Four examples are presented in order to verify the element formulation and its analytical capability.

  15. A major QTL controls susceptibility to spinal curvature in the curveback guppy

    Directory of Open Access Journals (Sweden)

    Dreyer Christine

    2011-01-01

    Full Text Available Abstract Background Understanding the genetic basis of heritable spinal curvature would benefit medicine and aquaculture. Heritable spinal curvature among otherwise healthy children (i.e. Idiopathic Scoliosis and Scheuermann kyphosis accounts for more than 80% of all spinal curvatures and imposes a substantial healthcare cost through bracing, hospitalizations, surgery, and chronic back pain. In aquaculture, the prevalence of heritable spinal curvature can reach as high as 80% of a stock, and thus imposes a substantial cost through production losses. The genetic basis of heritable spinal curvature is unknown and so the objective of this work is to identify quantitative trait loci (QTL affecting heritable spinal curvature in the curveback guppy. Prior work with curveback has demonstrated phenotypic parallels to human idiopathic-type scoliosis, suggesting shared biological pathways for the deformity. Results A major effect QTL that acts in a recessive manner and accounts for curve susceptibility was detected in an initial mapping cross on LG 14. In a second cross, we confirmed this susceptibility locus and fine mapped it to a 5 cM region that explains 82.6% of the total phenotypic variance. Conclusions We identify a major QTL that controls susceptibility to curvature. This locus contains over 100 genes, including MTNR1B, a candidate gene for human idiopathic scoliosis. The identification of genes associated with heritable spinal curvature in the curveback guppy has the potential to elucidate the biological basis of spinal curvature among humans and economically important teleosts.

  16. Geometry-specific scaling of detonation parameters from front curvature

    International Nuclear Information System (INIS)

    Jackson, Scott I.; Short, Mark

    2011-01-01

    It has previously been asserted that classical detonation curvature theory predicts that the critical diameter and the diameter-effect curve of a cylindrical high-explosive charge should scale with twice the thickness of an analogous two-dimensional explosive slab. The varied agreement of experimental results with this expectation have led some to question the ability of curvature-based concepts to predict detonation propagation in non-ideal explosives. This study addresses such claims by showing that the expected scaling relationship (hereafter referred to d = 2w) is not consistent with curvature-based Detonation Shock Dynamics (DSD) theory.

  17. Public and private space curvature in Robertson-Walker universes.

    Science.gov (United States)

    Rindler, W.

    1981-05-01

    The question is asked: what space curvature would a fundamental observer in an ideal Robertson-Walker universe obtain by direct local spatial measurements, i.e., without reference to the motion pattern of the other galaxies? The answer is that he obtains the curvatureK of his “private” space generated by all the geodesics orthogonal to his world line at the moment in question, and that ˜K is related to the usual curvatureK=k/R 2 of the “public” space of galaxies byK=K+H 2/c2, whereH is Hubble's parameter.

  18. [Optical coherence tomography and microperimetry after internal limiting membrane peeling for epiretinal membrane].

    Science.gov (United States)

    Grimbert, P; Lebreton, O; Weber, M

    2014-06-01

    To evaluate the anatomical and functional consequences of internal limiting membrane (ILM) peeling in epiretinal membrane (ERM) surgery. Retrospective single-center study including consecutive patients operated on for idiopathic ERM. The integrity of the ILM was assessed by ILM Blue® staining after removal of the ERM: either the peeling was spontaneous (group 1) or a complementary peeling was required (group 2). Pre- and post-operatively (1 and 6 months), all patients were analyzed using visual acuity, SD-OCT (Spectralis HRA OCT, Heidelberg, Germany) and microperimetry (OPKO/OTI, Miami, USA). Twenty-one eyes of 21 patients were included: 12 "active ILM peelings" and 9 "spontaneous peelings". In both groups, visual acuity increased significantly after surgery. Microperimetry revealed more microscotomata at 1 and 6 months for active peeling (Ppeeling is frequently performed to reduce ERM recurrence. Despite lack of effect on visual acuity, active ILM peeling increases the incidence of microscotomas related to the site where the ERM or ILM is grasped. Active ILM peeling may be responsible for postoperative visual discomfort related to microscopic trauma during peeling. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Geometric methods in the elastic theory of membranes in liquid crystal phases

    CERN Document Server

    Ji Xing Liu; Yu Zhang Xie

    1999-01-01

    This book contains a comprehensive description of the mechanical equilibrium and deformation of membranes as a surface problem in differential geometry. Following the pioneering work by W Helfrich, the fluid membrane is seen as a nematic or smectic - A liquid crystal film and its elastic energy form is deduced exactly from the curvature elastic theory of the liquid crystals. With surface variation the minimization of the energy at fixed osmotical pressure and surface tension gives a completely new surface equation in geometry that involves potential interest in mathematics. The investigations

  20. Codimension two branes and distributional curvature

    International Nuclear Information System (INIS)

    Traschen, Jennie

    2009-01-01

    In general relativity, there is a well-developed formalism for working with the approximation that a gravitational source is concentrated on a shell, or codimension one surface. In contrast, there are obstacles to concentrating sources on surfaces that have a higher codimension, for example, a string in a spacetime with a dimension greater than or equal to four. Here it is shown that, by giving up some of the generality of the codimension one case, curvature can be concentrated on submanifolds that have codimension two. A class of metrics is identified such that (1) the scalar curvature and Ricci densities exist as distributions with support on a codimension two submanifold, and (2) using the Einstein equation, the distributional curvature corresponds to a concentrated stress-energy with equation of state p = -ρ, where p is the isotropic pressure tangent to the submanifold, and ρ is the energy density. This is the appropriate stress-energy to describe a self-gravitating brane that is governed by an area action, or a braneworld deSitter cosmology. The possibility of having a different equation of state arise from a wider class of metrics is discussed.

  1. Directable weathering of concave rock using curvature estimation.

    Science.gov (United States)

    Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew

    2010-01-01

    We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.

  2. Scalar curvature in conformal geometry of Connes-Landi noncommutative manifolds

    Science.gov (United States)

    Liu, Yang

    2017-11-01

    We first propose a conformal geometry for Connes-Landi noncommutative manifolds and study the associated scalar curvature. The new scalar curvature contains its Riemannian counterpart as the commutative limit. Similar to the results on noncommutative two tori, the quantum part of the curvature consists of actions of the modular derivation through two local curvature functions. Explicit expressions for those functions are obtained for all even dimensions (greater than two). In dimension four, the one variable function shows striking similarity to the analytic functions of the characteristic classes appeared in the Atiyah-Singer local index formula, namely, it is roughly a product of the j-function (which defines the A ˆ -class of a manifold) and an exponential function (which defines the Chern character of a bundle). By performing two different computations for the variation of the Einstein-Hilbert action, we obtain deep internal relations between two local curvature functions. Straightforward verification for those relations gives a strong conceptual confirmation for the whole computational machinery we have developed so far, especially the Mathematica code hidden behind the paper.

  3. Curvature recognition and force generation in phagocytosis

    Directory of Open Access Journals (Sweden)

    Prassler Jana

    2010-12-01

    Full Text Available Abstract Background The uptake of particles by actin-powered invagination of the plasma membrane is common to protozoa and to phagocytes involved in the immune response of higher organisms. The question addressed here is how a phagocyte may use geometric cues to optimize force generation for the uptake of a particle. We survey mechanisms that enable a phagocyte to remodel actin organization in response to particles of complex shape. Results Using particles that consist of two lobes separated by a neck, we found that Dictyostelium cells transmit signals concerning the curvature of a surface to the actin system underlying the plasma membrane. Force applied to a concave region can divide a particle in two, allowing engulfment of the portion first encountered. The phagosome membrane that is bent around the concave region is marked by a protein containing an inverse Bin-Amphiphysin-Rvs (I-BAR domain in combination with an Src homology (SH3 domain, similar to mammalian insulin receptor tyrosine kinase substrate p53. Regulatory proteins enable the phagocyte to switch activities within seconds in response to particle shape. Ras, an inducer of actin polymerization, is activated along the cup surface. Coronin, which limits the lifetime of actin structures, is reversibly recruited to the cup, reflecting a program of actin depolymerization. The various forms of myosin-I are candidate motor proteins for force generation in particle uptake, whereas myosin-II is engaged only in retracting a phagocytic cup after a switch to particle release. Thus, the constriction of a phagocytic cup differs from the contraction of a cleavage furrow in mitosis. Conclusions Phagocytes scan a particle surface for convex and concave regions. By modulating the spatiotemporal pattern of actin organization, they are capable of switching between different modes of interaction with a particle, either arresting at a concave region and applying force in an attempt to sever the particle

  4. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Collingwood, S.A.; Ingolfsson, H.I.

    2010-01-01

    with collective physical properties (e.g. thickness, intrinsic monolayer curvature or elastic moduli). Studies in physico-chemical model systems have demonstrated that changes in bilayer physical properties can regulate membrane protein function by altering the energetic cost of the bilayer deformation associated...... with a protein conformational change. This type of regulation is well characterized, and its mechanistic elucidation is an interdisciplinary field bordering on physics, chemistry and biology. Changes in lipid composition that alter bilayer physical properties (including cholesterol, polyunsaturated fatty acids...... channels as molecular force probes for studying this mechanism, with a unique ability to discriminate between consequences of changes in monolayer curvature and bilayer elastic moduli....

  5. Quantitative analysis and prediction of curvature in leucine-rich repeat proteins.

    Science.gov (United States)

    Hindle, K Lauren; Bella, Jordi; Lovell, Simon C

    2009-11-01

    Leucine-rich repeat (LRR) proteins form a large and diverse family. They have a wide range of functions most of which involve the formation of protein-protein interactions. All known LRR structures form curved solenoids, although there is large variation in their curvature. It is this curvature that determines the shape and dimensions of the inner space available for ligand binding. Unfortunately, large-scale parameters such as the overall curvature of a protein domain are extremely difficult to predict. Here, we present a quantitative analysis of determinants of curvature of this family. Individual repeats typically range in length between 20 and 30 residues and have a variety of secondary structures on their convex side. The observed curvature of the LRR domains correlates poorly with the lengths of their individual repeats. We have, therefore, developed a scoring function based on the secondary structure of the convex side of the protein that allows prediction of the overall curvature with a high degree of accuracy. We also demonstrate the effectiveness of this method in selecting a suitable template for comparative modeling. We have developed an automated, quantitative protocol that can be used to predict accurately the curvature of leucine-rich repeat proteins of unknown structure from sequence alone. This protocol is available as an online resource at http://www.bioinf.manchester.ac.uk/curlrr/.

  6. Spinal curvature and characteristics of postural change in pregnant women.

    Science.gov (United States)

    Okanishi, Natsuko; Kito, Nobuhiro; Akiyama, Mitoshi; Yamamoto, Masako

    2012-07-01

    Pregnant women often report complaints due to physiological and postural changes. Postural changes during pregnancy may cause low back pain and pelvic girdle pain. This study aimed to compare the characteristics of postural changes in pregnant compared with non-pregnant women. Prospective case-control study. Pregnancy care center. Fifteen women at 17-34 weeks pregnancy comprised the study group, while 10 non-pregnant female volunteers comprised the control group. Standing posture was evaluated in the sagittal plane with static digital pictures. Two angles were measured by image analysis software: (1) between the trunk and pelvis; and (2) between the trunk and lower extremity. Spinal curvature was measured with Spinal Mouse® to calculate the means of sacral inclination, thoracic and lumbar curvature and inclination. The principal components were calculated until eigenvalues surpassed 1. Three distinct factors with eigenvalues of 1.00-2.49 were identified, consistent with lumbosacral spinal curvature and inclination, thoracic spine curvature, and inclination of the body. These factors accounted for 77.2% of the total variance in posture variables. Eleven pregnant women showed postural characteristics of lumbar kyphosis and sacral posterior inclination. Body inclination showed a variety of patterns compared with those in healthy women. Spinal curvature demonstrated a tendency for lumbar kyphosis in pregnant women. Pregnancy may cause changes in spinal curvature and posture, which may in turn lead to relevant symptoms. Our data provide a basis for investigating the effects of spinal curvature and postural changes on symptoms during pregnancy. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  7. Waterfall field in hybrid inflation and curvature perturbation

    International Nuclear Information System (INIS)

    Gong, Jinn-Ouk; Sasaki, Misao

    2011-01-01

    We study carefully the contribution of the waterfall field to the curvature perturbation at the end of hybrid inflation. In particular we clarify the parameter dependence analytically under reasonable assumptions on the model parameters. After calculating the mode function of the waterfall field, we use the δN formalism and confirm the previously obtained result that the power spectrum is very blue with the index 4 and is absolutely negligible on large scales. However, we also find that the resulting curvature perturbation is highly non-Gaussian and hence we calculate the bispectrum. We find that the bispectrum is at leading order independent of momentum and exhibits its peak at the equilateral limit, though it is unobservably small on large scales. We also present the one-point probability distribution function of the curvature perturbation

  8. Waterfall field in hybrid inflation and curvature perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, 2333 CA Leiden (Netherlands); Sasaki, Misao, E-mail: jgong@lorentz.leidenuniv.nl, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2011-03-01

    We study carefully the contribution of the waterfall field to the curvature perturbation at the end of hybrid inflation. In particular we clarify the parameter dependence analytically under reasonable assumptions on the model parameters. After calculating the mode function of the waterfall field, we use the δN formalism and confirm the previously obtained result that the power spectrum is very blue with the index 4 and is absolutely negligible on large scales. However, we also find that the resulting curvature perturbation is highly non-Gaussian and hence we calculate the bispectrum. We find that the bispectrum is at leading order independent of momentum and exhibits its peak at the equilateral limit, though it is unobservably small on large scales. We also present the one-point probability distribution function of the curvature perturbation.

  9. Differential geometric structures of stream functions: incompressible two-dimensional flow and curvatures

    International Nuclear Information System (INIS)

    Yamasaki, K; Iwayama, T; Yajima, T

    2011-01-01

    The Okubo-Weiss field, frequently used for partitioning incompressible two-dimensional (2D) fluids into coherent and incoherent regions, corresponds to the Gaussian curvature of the stream function. Therefore, we consider the differential geometric structures of stream functions and calculate the Gaussian curvatures of some basic flows. We find the following. (I) The vorticity corresponds to the mean curvature of the stream function. Thus, the stream-function surface for an irrotational flow and that for a parallel shear flow correspond to the minimal surface and a developable surface, respectively. (II) The relationship between the coherency and the magnitude of the vorticity is interpreted by the curvatures. (III) Using the Gaussian curvature, stability of single and double point vortex streets is analyzed. The results of this analysis are compared with the well-known linear stability analysis. (IV) Conformal mapping in fluid mechanics is the physical expression of the geometric fact that the sign of the Gaussian curvature does not change in conformal mapping. These findings suggest that the curvatures of stream functions are useful for understanding the geometric structure of an incompressible 2D flow.

  10. Study of spontaneously broken conformal symmetry in curved space-times

    International Nuclear Information System (INIS)

    Janson, M.M.

    1977-05-01

    Spontaneous breakdown of Weyl invariance (local scale invariance) in a conformally-invariant extension of a gauge model for weak and electromagnetic interactions is considered. The existence of an asymmetric vacuum for the Higgs field, phi, is seen to depend on the space-time structure via the Gursey-Penrose term, approximately phi + phi R, in the action. (R denotes the scalar curvature.) The effects of a prescribed space-time structure on spontaneously broken Weyl invariance is investigated. In a cosmological space-time, it is found that initially, in the primordial fireball, the symmetry must hold exactly. Spontaneous symmetry breaking (SSB) develops as the universe expands and cools. Consequences of this model include a dependence of G/sub F/, the effective weak interaction coupling strength, on ''cosmic time.'' It is seen to decrease monotonically; in the present epoch (G/sub F//G/sub F/)/sub TODAY/ approximately less than 10 -10 (year) -1 . The effects of the Schwarzschild geometry on SSB are explored. In the interior of a neutron star the Higgs vacuum expectation value, and consequently G/sub F/, is found to have a radial dependence. The magnitude of this variation does not warrant revision of present models of neutron star structures. Another perspective on the problem considered a theory of gravitation (conformal relativity) to be incorporated in the conformally invariant gauge model of weak and electromagnetic interactions. If SSB develops, the vacuum gravitational field equations are the Einstein field equations with a cosmological constant. The stability of the asymmetric vacuum solution is investigated to ascertain whether SSB can occur

  11. Modern approaches to discrete curvature

    CERN Document Server

    Romon, Pascal

    2017-01-01

     This book provides a valuable glimpse into discrete curvature, a rich new field of research which blends discrete mathematics, differential geometry, probability and computer graphics. It includes a vast collection of ideas and tools which will offer something new to all interested readers. Discrete geometry has arisen as much as a theoretical development as in response to unforeseen challenges coming from applications. Discrete and continuous geometries have turned out to be intimately connected. Discrete curvature is the key concept connecting them through many bridges in numerous fields: metric spaces, Riemannian and Euclidean geometries, geometric measure theory, topology, partial differential equations, calculus of variations, gradient flows, asymptotic analysis, probability, harmonic analysis, graph theory, etc. In spite of its crucial importance both in theoretical mathematics and in applications, up to now, almost no books have provided a coherent outlook on this emerging field.

  12. The Riemann-Lovelock curvature tensor

    International Nuclear Information System (INIS)

    Kastor, David

    2012-01-01

    In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k ≤ D < 4k. In D = 2k + 1 this identity implies that all solutions of pure kth-order Lovelock gravity are 'Riemann-Lovelock' flat. It is verified that the static, spherically symmetric solutions of these theories, which are missing solid angle spacetimes, indeed satisfy this flatness property. This generalizes results from Einstein gravity in D = 3, which corresponds to the k = 1 case. We speculate about some possible further consequences of Riemann-Lovelock curvature. (paper)

  13. Curvature-driven acceleration: a utopia or a reality?

    International Nuclear Information System (INIS)

    Das, Sudipta; Banerjee, Narayan; Dadhich, Naresh

    2006-01-01

    The present work shows that a combination of nonlinear contributions from the Ricci curvature in Einstein field equations can drive a late time acceleration of expansion of the universe. The transit from the decelerated to the accelerated phase of expansion takes place smoothly without having to resort to a study of asymptotic behaviour. This result emphasizes the need for thorough and critical examination of models with nonlinear contribution from the curvature

  14. Curvature-driven acceleration: a utopia or a reality?

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sudipta [Relativity and Cosmology Research Centre, Department of Physics, Jadavpur University, Calcutta-700 032 (India); Banerjee, Narayan [Relativity and Cosmology Research Centre, Department of Physics, Jadavpur University, Calcutta-700 032 (India); Dadhich, Naresh [Inter University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India)

    2006-06-21

    The present work shows that a combination of nonlinear contributions from the Ricci curvature in Einstein field equations can drive a late time acceleration of expansion of the universe. The transit from the decelerated to the accelerated phase of expansion takes place smoothly without having to resort to a study of asymptotic behaviour. This result emphasizes the need for thorough and critical examination of models with nonlinear contribution from the curvature.

  15. Connections and curvatures on complex Riemannian manifolds

    International Nuclear Information System (INIS)

    Ganchev, G.; Ivanov, S.

    1991-05-01

    Characteristic connection and characteristic holomorphic sectional curvatures are introduced on a complex Riemannian manifold (not necessarily with holomorphic metric). For the class of complex Riemannian manifolds with holomorphic characteristic connection a classification of the manifolds with (pointwise) constant holomorphic characteristic curvature is given. It is shown that the conformal geometry of complex analytic Riemannian manifolds can be naturally developed on the class of locally conformal holomorphic Riemannian manifolds. Complex Riemannian manifolds locally conformal to the complex Euclidean space are characterized with zero conformal fundamental tensor and zero conformal characteristic tensor. (author). 12 refs

  16. Berry Curvature in Magnon-Phonon Hybrid Systems.

    Science.gov (United States)

    Takahashi, Ryuji; Nagaosa, Naoto

    2016-11-18

    We study theoretically the Berry curvature of the magnon induced by the hybridization with the acoustic phonons via the spin-orbit and dipolar interactions. We first discuss the magnon-phonon hybridization via the dipolar interaction, and show that the dispersions have gapless points in momentum space, some of which form a loop. Next, when both spin-orbit and dipolar interactions are considered, we show anisotropic texture of the Berry curvature and its divergence with and without gap closing. Realistic evaluation of the consequent anomalous velocity is given for yttrium iron garnet.

  17. A curvature theory for discrete surfaces based on mesh parallelity

    KAUST Repository

    Bobenko, Alexander Ivanovich; Pottmann, Helmut; Wallner, Johannes

    2009-01-01

    We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces' areas and mixed areas. Remarkably these notions are capable

  18. AdS and stabilized extra dimensions in multi-dimensional gravitational models with nonlinear scalar curvature terms R-1 and R4

    International Nuclear Information System (INIS)

    Guenther, Uwe; Zhuk, Alexander; Bezerra, Valdir B; Romero, Carlos

    2005-01-01

    We study multi-dimensional gravitational models with scalar curvature nonlinearities of types R -1 and R 4 . It is assumed that the corresponding higher dimensional spacetime manifolds undergo a spontaneous compactification to manifolds with a warped product structure. Special attention has been paid to the stability of the extra-dimensional factor spaces. It is shown that for certain parameter regions the systems allow for a freezing stabilization of these spaces. In particular, we find for the R -1 model that configurations with stabilized extra dimensions do not provide a late-time acceleration (they are AdS), whereas the solution branch which allows for accelerated expansion (the dS branch) is incompatible with stabilized factor spaces. In the case of the R 4 model, we obtain that the stability region in parameter space depends on the total dimension D = dim(M) of the higher dimensional spacetime M. For D > 8 the stability region consists of a single (absolutely stable) sector which is shielded from a conformal singularity (and an antigravity sector beyond it) by a potential barrier of infinite height and width. This sector is smoothly connected with the stability region of a curvature-linear model. For D 4 model

  19. First contact: understanding the relationship between hominoid incisor curvature and diet.

    Science.gov (United States)

    Deane, Andrew

    2009-03-01

    Accurately interpreting fossil primate dietary behaviour is necessary to fully understand a species' ecology and connection to its environment. Traditional methods developed to infer diet from hominoid teeth successfully group taxa into broad dietary categories (i.e., folivore, frugivore) but often fail to represent the range of dietary variability characteristic of living apes. This oversimplification is not only a consequence of poor resolution, but may also reflect the use of similar fallback resources by closely related taxa with dissimilar diets. This study demonstrates that additional dietary specificity can be achieved using a morphometric approach to hominoid incisor curvature. High-resolution polynomial curve fitting (HR-PCF) was used to quantify the incisor curvatures of closely related hominoid taxa that have dissimilar diets but similar morphological adaptations to specific keystone resources (e.g., Gorilla gorilla beringei vs. G. g. gorilla). Given the key role of incisors in food processing, it is reasonable to assume that these teeth will be at least partially influenced by the unique selective pressures imposed by the mechanical loading specific to individual diets. Results from this study identify a strong correlation between hominoid dietary proportions and incisor linear dimensions and curvature, indicating that more pronounced incisor curvature is positively correlated with higher levels of frugivory. Hard-object frugivores have the greatest mesiodistal and cervico-incisal curvature and dedicated folivores have the least curved incisors. Mixed folivore/frugivores are morphological intermediates between dedicated folivores and hard- and soft-object frugivores. Mesiodistal curvature varied only in the degree of curvature; however, cervico-incisal curvature was shown to differ qualitatively between more frugivorous and more folivorous taxa. In addition to identifying a greater range of dietary variability among hominoids, this study also

  20. Curvature-Continuous 3D Path-Planning Using QPMI Method

    Directory of Open Access Journals (Sweden)

    Seong-Ryong Chang

    2015-06-01

    Full Text Available It is impossible to achieve vertex movement and rapid velocity control in aerial robots and aerial vehicles because of momentum from the air. A continuous-curvature path ensures such robots and vehicles can fly with stable and continuous movements. General continuous path-planning methods use spline interpolation, for example B-spline and Bézier curves. However, these methods cannot be directly applied to continuous path planning in a 3D space. These methods use a subset of the waypoints to decide curvature and some waypoints are not included in the planned path. This paper proposes a method for constructing a curvature-continuous path in 3D space that includes every waypoint. The movements in each axis, x, y and z, are separated by the parameter u. Waypoint groups are formed, each with its own continuous path derived using quadratic polynomial interpolation. The membership function then combines each continuous path into one continuous path. The continuity of the path is verified and the curvature-continuous path is produced using the proposed method.

  1. Inflation in a shear-or curvature-dominated universe

    International Nuclear Information System (INIS)

    Steigman, G.; Turner, M.S.

    1983-01-01

    We show that new inflation occurs even if the universe is shear-or (negative) curvature-dominated when the phase transition begins. In such situations the size of a causally coherent region, after inflation, is only slightly smaller (by powers, but not by exponential factors) than the usual result. The creation and evolution of density perturbations is unaffected. This result is marked contrast to 'old' inflation, where shear- or curvature-domination could quench inflation. (orig.)

  2. Inflationary scenario from higher curvature warped spacetime

    International Nuclear Information System (INIS)

    Banerjee, Narayan; Paul, Tanmoy

    2017-01-01

    We consider a five dimensional warped spacetime, in presence of the higher curvature term like F(R) = R + αR 2 in the bulk, in the context of the two-brane model. Our universe is identified with the TeV scale brane and emerges as a four dimensional effective theory. From the perspective of this effective theory, we examine the possibility of ''inflationary scenario'' by considering the on-brane metric ansatz as an FRW one. Our results reveal that the higher curvature term in the five dimensional bulk spacetime generates a potential term for the radion field. Due to the presence of radion potential, the very early universe undergoes a stage of accelerated expansion and, moreover, the accelerating period of the universe terminates in a finite time. We also find the spectral index of curvature perturbation (n s ) and the tensor to scalar ratio (r) in the present context, which match with the observational results based on the observations of Planck (Astron. Astrophys. 594, A20, 2016). (orig.)

  3. Inflationary scenario from higher curvature warped spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Narayan [Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Nadia, West Bengal (India); Paul, Tanmoy [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2017-10-15

    We consider a five dimensional warped spacetime, in presence of the higher curvature term like F(R) = R + αR{sup 2} in the bulk, in the context of the two-brane model. Our universe is identified with the TeV scale brane and emerges as a four dimensional effective theory. From the perspective of this effective theory, we examine the possibility of ''inflationary scenario'' by considering the on-brane metric ansatz as an FRW one. Our results reveal that the higher curvature term in the five dimensional bulk spacetime generates a potential term for the radion field. Due to the presence of radion potential, the very early universe undergoes a stage of accelerated expansion and, moreover, the accelerating period of the universe terminates in a finite time. We also find the spectral index of curvature perturbation (n{sub s}) and the tensor to scalar ratio (r) in the present context, which match with the observational results based on the observations of Planck (Astron. Astrophys. 594, A20, 2016). (orig.)

  4. The dark side of curvature

    International Nuclear Information System (INIS)

    Barenboim, Gabriela; Martínez, Enrique Fernández; Mena, Olga; Verde, Licia

    2010-01-01

    Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d A (z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Ω k in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d A (z) up to sufficiently high redshifts z ∼ 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z)−Ω k degeneracy

  5. Computational methods for investigation of surface curvature effects on airfoil boundary layer behavior

    Directory of Open Access Journals (Sweden)

    Xiang Shen

    2017-03-01

    Full Text Available This article presents computational algorithms for the design, analysis, and optimization of airfoil aerodynamic performance. The prescribed surface curvature distribution blade design (CIRCLE method is applied to a symmetrical airfoil NACA0012 and a non-symmetrical airfoil E387 to remove their surface curvature and slope-of-curvature discontinuities. Computational fluid dynamics analysis is used to investigate the effects of curvature distribution on aerodynamic performance of the original and modified airfoils. An inviscid–viscid interaction scheme is introduced to predict the positions of laminar separation bubbles. The results are compared with experimental data obtained from tests on the original airfoil geometry. The computed aerodynamic advantages of the modified airfoils are analyzed in different operating conditions. The leading edge singularity of NACA0012 is removed and it is shown that the surface curvature discontinuity affects aerodynamic performance near the stalling angle of attack. The discontinuous slope-of-curvature distribution of E387 results in a larger laminar separation bubble at lower angles of attack and lower Reynolds numbers. It also affects the inherent performance of the airfoil at higher Reynolds numbers. It is shown that at relatively high angles of attack, a continuous slope-of-curvature distribution reduces the skin friction by suppressing both laminar and turbulent separation, and by delaying laminar-turbulent transition. It is concluded that the surface curvature distribution has significant effects on the boundary layer behavior and consequently an improved curvature distribution will lead to higher aerodynamic efficiency.

  6. Experimental anti-GBM disease as a tool for studying spontaneous lupus nephritis.

    Science.gov (United States)

    Fu, Yuyang; Du, Yong; Mohan, Chandra

    2007-08-01

    Lupus nephritis is an immune-mediated disease, where antibodies and T cells both play pathogenic roles. Since spontaneous lupus nephritis in mouse models takes 6-12 months to manifest, there is an urgent need for a mouse model that can be used to delineate the pathogenic processes that lead to immune nephritis, over a quicker time frame. We propose that the experimental anti-glomerular basement membrane (GBM) disease model might be a suitable tool for uncovering some of the molecular steps underlying lupus nephritis. This article reviews the current evidence that supports the use of the experimental anti-GBM nephritis model for studying spontaneous lupus nephritis. Importantly, out of about 25 different molecules that have been specifically examined in the experimental anti-GBM model and also spontaneous lupus nephritis, all influence both diseases concordantly, suggesting that the experimental model might be a useful tool for unraveling the molecular basis of spontaneous lupus nephritis. This has important clinical implications, both from the perspective of genetic susceptibility as well as clinical therapeutics.

  7. Outcome of Membrane Sweeping in Reducing Induction Rates in Post-Date Pregnancies

    International Nuclear Information System (INIS)

    Saleem, U.; Mustafa, N.; Akhtar, S.

    2013-01-01

    Objectives: To determine the effectiveness of membrane sweeping in reducing need for induction of labour in post-date pregnancies and to enlist types and frequencies of complications experienced with membrane sweeping. Study Design: Randomized Control trial. Setting and Duration of Study: The study was carried out at Department of Obstetrics and Gynaecology, Combined Military Hospital, Lahore from February 2007 to April 2008. Patients and Methods: One hundred primi or second gravidas with uncomplicated singleton pregnancies having cephalic presentation at 40+1-5 weeks of gestation were enrolled after informed consent, and divided randomly into two groups of fifty each. Biophysical profile of 8/8 for each case was ensured. Group A underwent membrane sweeping while group B did not. All patients not having spontaneous labour were induced at 40+5 weeks. Data regarding number of patients having spontaneous labour or induction of labour was recorded. Mode of delivery either vaginal or cesarean birth was also recorded. In group A occurence of complications i.e vaginal bleeding or leaking, discomfort, irregular pains, fever and neonatal sepsis was recorded. Results: The difference in rate of spontaneous labor, induction rate and mode of delivery was insignificant between both the groups (p>0.05). In group A, 44% felt discomfort, 4% had bleeding per vaginum, 2% had leaking per vaginum and 28% had more than one complication. There were no cases of maternal or neonatal sepsis. Twenty percent did not have any side effects. Conclusion: Sweeping of membranes is not effective in reducing induction rates in post dates pregnancies. It does not improve the spontaneous labour rate and there is no effect on the mode of delivery. Therefore, any potential benefits of this intervention must be balanced against risk of maternal discomfort and other adverse effects. (author)

  8. Phase-space curvature in spin-orbit-coupled ultracold atomic systems

    Science.gov (United States)

    Armaitis, J.; Ruseckas, J.; Anisimovas, E.

    2017-04-01

    We consider a system with spin-orbit coupling and derive equations of motion which include the effects of Berry curvatures. We apply these equations to investigate the dynamics of particles with equal Rashba-Dresselhaus spin-orbit coupling in one dimension. In our derivation, the adiabatic transformation is performed first and leads to quantum Heisenberg equations of motion for momentum and position operators. These equations explicitly contain position-space, momentum-space, and phase-space Berry curvature terms. Subsequently, we perform the semiclassical approximation and obtain the semiclassical equations of motion. Taking the low-Berry-curvature limit results in equations that can be directly compared to previous results for the motion of wave packets. Finally, we show that in the semiclassical regime, the effective mass of the equal Rashba-Dresselhaus spin-orbit-coupled system can be viewed as a direct effect of the phase-space Berry curvature.

  9. Spontaneous Vesicle Self-Assembly: A Mesoscopic View of Membrane Dynamics

    DEFF Research Database (Denmark)

    Shillcock, J. C.

    2012-01-01

    Amphiphilic vesicles are ubiquitous in living cells and industrially interesting as drug delivery vehicles. Vesicle self-assembly proceeds rapidly from nanometer to micrometer length scales and is too fast to image experimentally but too slow for molecular dynamics simulations. Here, we use...... parallel dissipative particle dynamics (DPD) to follow spontaneous vesicle self-assembly for up to 445 mu s with near-molecular resolution. The mean mass and radius of gyration of growing amphiphilic clusters obey power laws with exponents of 0.85 +/- 0.03 and 0.41 +/- 0.02, respectively. We show that DPD...... provides a computational window onto fluid dynamics on scales unreachable by other explicit-solvent simulations....

  10. Effect of low levels of lipid oxidation on the curvature, dynamics, and permeability of lipid bilayers and their interactions with cationic nanoparticles

    Science.gov (United States)

    Lee, Hwankyu; Malmstadt, Noah

    2018-04-01

    Lipid bilayers composed of saturated and unsaturated lipids, oxidized lipids, and cholesterol at concentrations of 0–18 mol% oxidized lipid were simulated, showing that the presence of oxidized lipid increases bilayer disorder, curvature, and lateral dynamics at low oxidized-lipid concentrations of 18 mol% or less. The aldehyde terminal of a shortened oxidized-lipid tail tends to interact with water and thus bends toward the bilayer-water interface, in agreement with previous experiments and simulations. In particular, water molecules pass through the oxidized bilayer without pore formation, implying passive permeability. A single nanoparticle, which consists of 300 polystyrene (PS) chains with cationic terminals, added to this bilayer simulation induces negative bilayer curvature and inserts to the bilayer, regardless of the oxidized-lipid concentration. Hydrophobic monomers and cationic terminals of the PS particle interact respectively with lipid tails and headgroups, leading to the wrapping of either lipid monolayer or bilayer along the particle surface. These results indicate that lipid oxidation increases membrane curvature and permeability even at such a low concentration of oxidized lipid, which supports the experimental observations regarding the passive permeability of oxidized bilayer, and also that oxidized lipids of low concentration do not significantly influence the insertion of a cationic PS particle to the bilayer.

  11. Spin Label Studies of the Hemoglobin-Membrane Interaction During Sickle Hemoglobin Polymerization

    International Nuclear Information System (INIS)

    Falcon Dieguez, Jose E.; Rodi, Pablo; Lores Guevara, Manuel A.; Gennaro, Ana Maria

    2009-12-01

    An enhanced hemoglobin-membrane association has been previously documented in Sickle Cell Anemia. However, it is not known how this interaction is modified during the hemoglobin S polymerization process. In this work, we use a model of reconstituted erythrocytes from ghost membranes whose cytoskeleton proteins had been previously labeled with the 4-maleimido Tempo spin label, and that were subsequently resealed with hemoglobin S or A solutions. Using EPR spectroscopy, we studied the time dependence of the spectral W/S parameter, indicative of the conformational state of cytoskeleton proteins (mainly spectrin) under spontaneous deoxygenation, with the aim of detecting the eventual effects due to hemoglobin S polymerization. The differences observed in the temporal behaviour of W/S in erythrocytes reconstituted with both hemoglobins were considered as experimental evidence of an increment in hemoglobin S-membrane interaction, as a result of the polymerization process of hemoglobin S under spontaneous deoxygenation. (author)

  12. Mechanisms of Membrane Binding of Small GTPase K-Ras4B Farnesylated Hypervariable Region*

    Science.gov (United States)

    Jang, Hyunbum; Abraham, Sherwin J.; Chavan, Tanmay S.; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I.; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. PMID:25713064

  13. [Formation of purple membranes during salt bacteria cultivation].

    Science.gov (United States)

    Chekulaeva, L N; Korolev, Iu N; Telegin, N L; Rikhireva, G T

    1975-01-01

    Experiments have been carried out on cultivation of halophile with probe selection in the interval of 1--2 hours to record the spectra of repeated disturbed completed inner reflection. Periodicity in the changes of spectral characteristics of the culture with the interval of 20--24 hours is revealed. A clearly expressed dichroism of the amid II band of the membrane complex is found, the absence of this dichroism in the protein isolated from the membrane complex is stated. It is suggested that dichroism revealed is a specific feature of the presence of purpuric membranes in the cells. Spontaneous plane orientation of protein macromolecules in purpuric membranes is established. The level of dichroism of amid II band is shown to depend on fermentation conditions of salt bacteria.

  14. A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats

    Science.gov (United States)

    Saleem, Mohammed; Morlot, Sandrine; Hohendahl, Annika; Manzi, John; Lenz, Martin; Roux, Aurélien

    2015-02-01

    In endocytosis, scaffolding is one of the mechanisms to create membrane curvature by moulding the membrane into the spherical shape of the clathrin cage. However, the impact of membrane elastic parameters on the assembly and shape of clathrin lattices has never been experimentally evaluated. Here, we show that membrane tension opposes clathrin polymerization. We reconstitute clathrin budding in vitro with giant unilamellar vesicles (GUVs), purified adaptors and clathrin. By changing the osmotic conditions, we find that clathrin coats cause extensive budding of GUVs under low membrane tension while polymerizing into shallow pits under moderate tension. High tension fully inhibits polymerization. Theoretically, we predict the tension values for which transitions between different clathrin coat shapes occur. We measure the changes in membrane tension during clathrin polymerization, and use our theoretical framework to estimate the polymerization energy from these data. Our results show that membrane tension controls clathrin-mediated budding by varying the membrane budding energy.

  15. The Effect of Scala Tympani Morphology on Basilar Membrane Contact With a Straight Electrode Array: A Human Temporal Bone Study.

    Science.gov (United States)

    Verberne, Juul; Risi, Frank; Campbell, Luke; Chambers, Scott; O'Leary, Stephen

    2017-01-01

    Scala tympani morphology influences the insertion dynamics and intra-scalar position of straight electrode arrays. Hearing preservation is the goal of cochlear implantation with current thin straight electrode arrays. These hug the lateral wall, facilitating full, atraumatic insertions. However, most studies still report some postoperative hearing loss. This study explores the influence of scala tympani morphology on array position relative to the basilar membrane and its possible contribution to postoperative hearing loss. Twenty-six fresh-frozen human temporal bones implanted with a straight electrode array were three-dimensionally reconstructed from micro-photographic histological sections. Insertion depth and the proximity between the array and basilar membrane were recorded. Lateral wall shape was quantified as a curvature ratio. Insertion depths ranged from 233 to 470 degrees. The mean first point of contact between the array and basilar membrane was 185 degrees; arrays tended to remain in contact with the membrane after first contacting it. Eighty-nine and 93% of arrays that reached the upper basal (>240-360 degrees) and second (>360-720 degrees) turns respectively contacted the basilar membrane in these regions. Scalar wall curvature ratio decreased significantly (the wall became steeper) from the basal to second turns. This shift correlated with a reduced distance between the array and basilar membrane. Scala tympani morphology influences the insertion dynamics and intra-scalar position of a straight electrode array. In addition to gross trauma of cochlear structures, contact between the array and basilar membrane and how this impacts membrane function should be considered in hearing preservation cases.

  16. Spontaneous release of soluble HL-A antigens from platelets during conservation.

    Science.gov (United States)

    Dautigny, A; Bernier, I; Colombani, J; Jollès, P

    1975-01-01

    Experiments with the aim of studying the solubilisation of HL-A antigens from blood platelets by methods which do not involve any biologically active processes (moderate, discontinuous agitation of a low concentration of platelets suspended in a saline medium, in the presence of an antiseptic; supernatants collected at frequent intervals) have shown that platelets release membrane proteins, including HL-A antigens, spontaneously. Optimal conditions for the treatment of membrane proteins have been perfected. The great stability of HL-A antigens under these conditions permits prolonged treatment. The products extracted are soluble and extremely complex. The molecular weight of the HL-A antigens is between 40,000 and 70,000.

  17. Forelimb bone curvature in terrestrial and arboreal mammals

    Directory of Open Access Journals (Sweden)

    Keith Henderson

    2017-04-01

    Full Text Available It has recently been proposed that the caudal curvature (concave caudal side observed in the radioulna of terrestrial quadrupeds is an adaptation to the habitual action of the triceps muscle which causes cranial bending strains (compression on cranial side. The caudal curvature is proposed to be adaptive because longitudinal loading induces caudal bending strains (increased compression on the caudal side, and these opposing bending strains counteract each other leaving the radioulna less strained. If this is true for terrestrial quadrupeds, where triceps is required for habitual elbow extension, then we might expect that in arboreal species, where brachialis is habitually required to maintain elbow flexion, the radioulna should instead be cranially curved. This study measures sagittal curvature of the ulna in a range of terrestrial and arboreal primates and marsupials, and finds that their ulnae are curved in opposite directions in these two locomotor categories. This study also examines sagittal curvature in the humerus in the same species, and finds differences that can be attributed to similar adaptations: the bone is curved to counter the habitual muscle action required by the animal’s lifestyle, the difference being mainly in the distal part of the humerus, where arboreal animals tend have a cranial concavity, thought to be in response the carpal and digital muscles that pull cranially on the distal humerus.

  18. Spontaneous Cerebrospinal Fluid Otorrhea from a Persistent Tympanomeningeal Fissure Presenting as Recurrent Serous Otitis Media

    DEFF Research Database (Denmark)

    Zakaryan, Arman; Poulsgaard, Lars; Hollander, Camilla

    2015-01-01

    We describe spontaneous cerebrospinal fluid (CSF) otorrhea through a patent tympanomeningeal (Hyrtl) fissure presenting as recurrent serous otitis media. The CSF leak was observed when a drain was placed through the tympanic membrane by an otologist. The diagnosis was then confirmed by computed...

  19. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.

    Science.gov (United States)

    Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja

    2011-07-01

    Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.

  20. Curvature-induced microswarming and clustering of self-propelled particles

    Science.gov (United States)

    Bruss, Isaac; Glotzer, Sharon

    Non-equilibrium active matter systems exhibit many unique phenomena, such as motility-induced phase separation and swarming. However, little is known about how these behaviors depend on the geometry of the environment. To answer this question, we use Brownian dynamics simulations to study the effects of Gaussian curvature on self-propelled particles by confining them to the surface of a sphere. We find that a modest amount of curvature promotes phase separation by altering the shape of a cluster's boundary. Alternatively, particles on surfaces of high curvature experience reduced phase separation and instead form microswarms, where particles share a common orbit. We show that this novel flocking behavior is distinct from other previously studied examples, in that it is not explicitly incorporated into our model through Vicsek-like alignment rules nor torques. Rather, we find that microswarms emerge solely due to the geometric link between orientation and velocity, a property exclusive to surfaces with non-zero Gaussian curvature. These findings reveal the important role of local environment on the global emergent behavior of non-equilibrium systems. Center for Bio-Inspired Engineering (DOE Award # DE-SC0000989).

  1. Buffer-induced swelling and vesicle budding in binary lipid mixtures of dioleoylphosphatidylcholine:dioleoylphosphatidylethanolamine and dioleoylphosphatidylcholine:lysophosphatidylcholine using small-angle X-ray scattering and ³¹P static NMR.

    Science.gov (United States)

    Barriga, Hanna M G; Bazin, Richard; Templer, Richard H; Law, Robert V; Ces, Oscar

    2015-03-17

    A large variety of data exists on lipid phase behavior; however, it is mostly in nonbuffered systems over nonbiological temperature ranges. We present biophysical data on lipid mixtures of dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylethanolamine (DOPE), and lysophosphatidylcholine (LysoPC) examining their behaviors in excess water and buffer systems over the temperature range 4-34 °C. These mixtures are commonly used to investigate the effects of spontaneous curvature on integral membrane proteins. Using small-angle X-ray scattering (SAXS) and (31)P NMR, we observed lamellar and vesicle phases, with the buffer causing an increase in the layer spacing. Increasing amounts of DOPE in a DOPC bilayer decreased the layer spacing of the mesophase, while the opposite trend was observed for increasing amounts of LysoPC. (31)P static NMR was used to analyze the DOPC:LysoPC samples to investigate the vesicle sizes present, with evidence of vesicle budding observed at LysoPC concentrations above 30 mol %. NMR line shapes were fitted using an adapted program accounting for the distortion of the lipids within the magnetic field. The distortion of the vesicle, because of magnetic susceptibility, varied with LysoPC content, and a discontinuity was found in both the water and buffer samples. Generally, the distortion increased with LysoPC content; however, at a ratio of DOPC:LysoPC 60:40, the sample showed a level of distortion of the vesicle similar to that of pure DOPC. This implies an increased flexibility in the membrane at this point. Commonly, the assumption is that for increasing LysoPC concentration there is a reduction in membrane tension, implying that estimations of membrane tension based on spontaneous curvature assumptions may not be accurate.

  2. Curvature effects in two-dimensional optical devices inspired by transformation optics

    KAUST Repository

    Yuan, Shuhao

    2016-11-14

    Light transport in curved quasi two-dimensional waveguides is considered theoretically. Within transformation optics and tensor theory, a concise description of curvature effects on transverse electric and magnetic waves is derived. We show that the curvature can induce light focusing and photonic crystal properties, which are confirmed by finite element simulations. Our results indicate that the curvature is an effective parameter for designing quasi two-dimensional optical devices in the fields of micro and nano photonics. © 2016 Author(s).

  3. Distal root curvatures in mandibular molars: analysis using digital panoramic X-rays.

    Science.gov (United States)

    Fuentes, R; Farfán, C; Astete, N; Navarro, P; Arias, A

    2018-01-01

    The aim of this study was to describe the degree of curvature in distal roots in the first and second permanent mandibular molars in a Chilean patient sample. A cross-sectional descriptive study was conducted in which digital panoramic X-rays were analysed. Examinations of patients under 18 years, with signs of distortion or alteration in the contrast or the presence of pathologies that affected visualisation of the roots and pulp-chamber floor of the teeth to be analysed were excluded. Using the AutoCad software, an angle was drawn to represent the curve of the root in its different thirds, drawing lines inside the root canal from the pulp-chamber floor to the dental apex. Using the classic definition of dilaceration (root curvature > 90°), its prevalence was established. 412 teeth and roots were analysed, finding a dilaceration prevalence of 0.73% (n = 3). 84.72% of the roots presented some type of curvature. The middle third had the highest percentage of curvatures and the greatest average of angular curvature, whereas the cervical third was the straightest. No significant differences were found between the degree of curvature and the gender of the subjects, except for the apical third of tooth 3.6. The analysis of curvature by root third offers to the clinician a better perspective of the directional change of the roots and does not limit it to just the presence of curves in the apical third. The report of the angular degree of the curvatures, in addition to the prevalence of dilacerations, informs to the clinicians about the likelihood of finding difficulties when treating root canals. (Folia Morphol 2018; 77, 1: 131-137).

  4. The spinning particle with extrinsic curvature

    International Nuclear Information System (INIS)

    Dhar, A.

    1988-01-01

    We construct and analyse an action for the spinning particle which contains an extrinsic curvature term. A possible generalization of this construction to the case of the spinning string is also discussed. (orig.)

  5. Curvature effects on the electronic and transport properties of semiconductor films

    Science.gov (United States)

    Batista, F. F.; Chaves, Andrey; da Costa, D. R.; Farias, G. A.

    2018-05-01

    Within the effective mass approximation, we study the curvature effects on the electronic and transport properties of semiconductor films. We investigate how the geometry-induced potential resulting exclusively from periodic ripples in the film induces electronic confinement and a superlattice band structure. For fixed curvature parameters, such a confinement can be easily tuned by an external electric field, hence features of the superlattice band structure such as its energy gaps and band curvature can be controlled by an external parameter. We also show that, for some values of curvature and electric field, it is possible to obtain massless Dirac bands for a smooth curved structure. Moreover, we use a wave packet propagation method to demonstrate that the ripples are responsible for a significant inter-sub-band transition, specially for moderate values of the ripple height.

  6. On the asymptotically Poincaré-Einstein 4-manifolds with harmonic curvature

    Science.gov (United States)

    Hu, Xue

    2018-06-01

    In this paper, we discuss the mass aspect tensor and the rigidity of an asymptotically Poincaré-Einstein (APE) 4-manifold with harmonic curvature. We prove that the trace-free part of the mass aspect tensor of an APE 4-manifold with harmonic curvature and normalized Einstein conformal infinity is zero. As to the rigidity, we first show that a complete noncompact Riemannian 4-manifold with harmonic curvature and positive Yamabe constant as well as a L2-pinching condition is Einstein. As an application, we then obtain that an APE 4-manifold with harmonic curvature and positive Yamabe constant is isometric to the hyperbolic space provided that the L2-norm of the traceless Ricci tensor or the Weyl tensor is small enough and the conformal infinity is a standard round 3-sphere.

  7. Reconciling Differences between Lipid Transfer in Free-Standing and Solid Supported Membranes: A Time-Resolved Small-Angle Neutron Scattering Study.

    Science.gov (United States)

    Wah, Benny; Breidigan, Jeffrey M; Adams, Joseph; Horbal, Piotr; Garg, Sumit; Porcar, Lionel; Perez-Salas, Ursula

    2017-04-11

    Maintaining compositional lipid gradients across membranes in animal cells is essential to biological function, but what is the energetic cost to maintain these differences? It has long been recognized that studying the passive movement of lipids in membranes can provide insight into this toll. Confusingly the reported values of inter- and, particularly, intra-lipid transport rates of lipids in membranes show significant differences. To overcome this difficulty, biases introduced by experimental approaches have to be identified. The present study addresses the difference in the reported intramembrane transport rates of dimyristoylphosphatidylcholine (DMPC) on flat solid supports (fast flipping) and in curved free-standing membranes (slow flipping). Two possible scenarios are potentially at play: one is the difference in curvature of the membranes studied and the other the presence (or not) of the support. Using DMPC vesicles and DMPC supported membranes on silica nanoparticles of different radii, we found that an increase in curvature (from a diameter of 30 nm to a diameter of 100 nm) does not change the rates significantly, differing only by factors of order ∼1. Additionally, we found that the exchange rates of DMPC in supported membranes are similar to the ones in vesicles. And as previously reported, we found that the activation energies for exchange on free-standing and supported membranes are similar (84 and 78 kJ/mol, respectively). However, DMPC's flip-flop rates increase significantly when in a supported membrane, surpassing the exchange rates and no longer limiting the exchange process. Although the presence of holes or cracks in supported membranes explains the occurrence of fast lipid flip-flop in many studies, in defect-free supported membranes we find that fast flip-flop is driven by the surface's induced disorder of the bilayer's acyl chain packing as evidenced from their broad melting temperature behavior.

  8. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer

    Science.gov (United States)

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-01-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. PMID:26269359

  9. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.

    Science.gov (United States)

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-10-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  10. Measurement of curvature and twist of a deformed object using digital holography

    International Nuclear Information System (INIS)

    Chen Wen; Quan Chenggen; Cho Jui Tay

    2008-01-01

    Measurement of curvature and twist is an important aspect in the study of object deformation. In recent years, several methods have been proposed to determine curvature and twist of a deformed object using digital shearography. Here we propose a novel method to determine the curvature and twist of a deformed object using digital holography and a complex phasor. A sine/cosine transformation method and two-dimensional short time Fourier transform are proposed subsequently to process the wrapped phase maps. It is shown that high-quality phase maps corresponding to curvature and twist can be obtained. An experiment is conducted to demonstrate the validity of the proposed method

  11. Numerical studies of transverse curvature effects on transonic flow stability

    Science.gov (United States)

    Macaraeg, M. G.; Daudpota, Q. I.

    1992-01-01

    A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.

  12. Influence of firing time and framework thickness on veneered Y-TZP discs curvature.

    Science.gov (United States)

    Jakubowicz-Kohen, Boris D; Sadoun, Michaël J; Douillard, Thierry; Mainjot, Amélie K

    2014-02-01

    The objective of the present work was to study the curvature of very thinly, veneered Y-TZP discs of different framework thicknesses submitted to different firing times. Fifteen 20-mm-wide Y-TZP discs were produced in three different thicknesses: 0.75, 1, 1.5mm. One disc from each group was left unveneered while the others were layered with a 0.1mm veneering ceramic layer. All discs underwent five firing cycles for a total cumulative firing time of 30 min, 1, 2, 5 and 10h at 900°C. The curvature profile was measured using a profilometer after the veneering process and after each firing cycle respectively. A fitted curve was then used to estimate the, curvature radius. The coefficient of thermal expansion (CTE) measurements were taken on veneering, ceramic and Y-TZP beam samples that underwent the same firing schedule. Those data were used to calculate the curvature generated by CTE variations over firing time. All bilayered samples exhibited a curvature that increased over firing time inversely to framework thickness. However non-veneered samples did not exhibit any curvature modification. The results of the present study reveal that even a very thin veneer layer (0.1mm) can induce a significant curvature of Y-TZP discs. The dilatometric results showed that Tg and CTE, variations are not sufficient to explain this curvature. A chemical-induced zirconia volume, augmentation located at the framework sub-surface near the interface could explain the sample, curvature and its increase with firing time. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Ih equalizes membrane input resistance in a heterogeneous population of fusiform neurons in the dorsal cochlear nucleus.

    Directory of Open Access Journals (Sweden)

    Cesar Celis Ceballos

    2016-10-01

    Full Text Available In a neuronal population, several combinations of its ionic conductances are used to attain a specific firing phenotype. Some neurons present heterogeneity in their firing, generally produced by expression of a specific conductance, but how additional conductances vary along in order to homeostatically regulate membrane excitability is less known. Dorsal cochlear nucleus principal neurons, fusiform neurons, display heterogeneous spontaneous action potential activity and thus represent an appropriate model to study the role of different conductances in establishing firing heterogeneity. Particularly, fusiform neurons are divided into quiet, with no spontaneous firing, or active neurons, presenting spontaneous, regular firing. These modes are determined by the expression levels of an intrinsic membrane conductance, an inwardly rectifying potassium current (IKir. In this work, we tested whether other subthreshold conductances vary homeostatically to maintain membrane excitability constant across the two subtypes. We found that Ih expression covaries specifically with IKir in order to maintain membrane resistance constant. The impact of Ih on membrane resistance is dependent on the level of IKir expression, being much smaller in quiet neurons with bigger IKir, but Ih variations are not relevant for creating the quiet and active phenotypes. Finally, we demonstrate that the individual proportion of each conductance, and not their absolute conductance, is relevant for determining the neuronal firing mode. We conclude that in fusiform neurons the variations of their different subthreshold conductances are limited to specific conductances in order to create firing heterogeneity and maintain membrane homeostasis.

  14. Shape discrimination by total curvature, with a view to cancer diagnostics

    DEFF Research Database (Denmark)

    Gardner, R.J.; Hobolth, Asger; Jensen, Eva Bjørn Vedel

    2005-01-01

    This paper investigates the use of total curvature for shape discrimination of objects via profiles of their planar sections (not assumed to be star shaped). Methods of estimating total curvature from observation of a finite number of points on the boundary of the object are investigated, includi...... a simple discrete approximation method and various interpolation methods. Total curvature is capable of revealing shape differences on a local scale, as demonstrated by the analysis of two data sets of malignant and normal or benign tumour cell nuclear profiles....

  15. Discrete Curvatures and Discrete Minimal Surfaces

    KAUST Repository

    Sun, Xiang

    2012-01-01

    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads

  16. [Prevention of spontaneous preterm birth (excluding preterm premature rupture of membranes): Guidelines for clinical practice - Text of the Guidelines (short text)].

    Science.gov (United States)

    Sentilhes, L; Sénat, M-V; Ancel, P-Y; Azria, E; Benoist, G; Blanc, J; Brabant, G; Bretelle, F; Brun, S; Doret, M; Ducroux-Schouwey, C; Evrard, A; Kayem, G; Maisonneuve, E; Marcellin, L; Marret, S; Mottet, N; Paysant, S; Riethmuller, D; Rozenberg, P; Schmitz, T; Torchin, H; Langer, B

    2016-12-01

    To determine the measures to prevent spontaneous preterm birth (excluding preterm premature rupture of membranes)and its consequences. The PubMed database, the Cochrane Library and the recommendations from the French and foreign obstetrical societies or colleges have been consulted. In France, premature birth concerns 60,000 neonates every year (7.4 %), half of them are delivered after spontaneous onset of labor. Among preventable risk factors of spontaneous prematurity, only cessation of smoking is associated to a decrease of prematurity (level of evidence [LE] 1). This is therefore recommended (grade A). Routine screening and treatment of vaginal bacteriosis in general population is not recommended (grade A). Asymptomatic women with single pregnancy without history of preterm delivery and a short cervix between 16 and 24 weeks is the only population in which vaginal progesterone is recommended (grade B). A history-indicated cerclage is not recommended in case of only past history of conisation (grade C), uterine malformation (Professional consensus), isolated history of pretem delivery (grade B) or twin pregnancies in primary (grade B) or secondary (grade C) prevention of preterm birth. A history-indicated cerclage is recommended for single pregnancy with a history of at least 3 late miscarriages or preterm deliveries (grade A).). In case of past history of a single pregnancy delivery before 34 weeks gestation (WG), ultrasound cervical length screening is recommended between 16 and 22 WG in order to propose a cerclage in case of lengthpremature rupture of membranes. Maintenance tocolysis is not recomended (grade B). Antenatal corticosteroid administration is recommended to every woman at risk of preterm delivery before 34 weeks of gestation (grade A). After 34 weeks, evidences are not consistent enough to recommend systematic antenatal corticosteroid treatment (grade B), however, a course might be indicated in the clinical situations associated with the

  17. Membrane fusion and exocytosis.

    Science.gov (United States)

    Jahn, R; Südhof, T C

    1999-01-01

    Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.

  18. Awareness Becomes Necessary Between Adaptive Pattern Coding of Open and Closed Curvatures

    Science.gov (United States)

    Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    Visual pattern processing becomes increasingly complex along the ventral pathway, from the low-level coding of local orientation in the primary visual cortex to the high-level coding of face identity in temporal visual areas. Previous research using pattern aftereffects as a psychophysical tool to measure activation of adaptive feature coding has suggested that awareness is relatively unimportant for the coding of orientation, but awareness is crucial for the coding of face identity. We investigated where along the ventral visual pathway awareness becomes crucial for pattern coding. Monoptic masking, which interferes with neural spiking activity in low-level processing while preserving awareness of the adaptor, eliminated open-curvature aftereffects but preserved closed-curvature aftereffects. In contrast, dichoptic masking, which spares spiking activity in low-level processing while wiping out awareness, preserved open-curvature aftereffects but eliminated closed-curvature aftereffects. This double dissociation suggests that adaptive coding of open and closed curvatures straddles the divide between weakly and strongly awareness-dependent pattern coding. PMID:21690314

  19. Spontaneous charged lipid transfer between lipid vesicles.

    Science.gov (United States)

    Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul

    2017-10-03

    An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.

  20. Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors

    OpenAIRE

    Huang, Jingsong; Bobby,; Sumpter, Bobby G.; Meunier, Vincent; Yushin, Gleb; Portet, Cristelle; Gogotsi, Yury

    2010-01-01

    Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior ...

  1. A non-differential elastomer curvature sensor for softer-than-skin electronics

    International Nuclear Information System (INIS)

    Majidi, C; Kramer, R; Wood, R J

    2011-01-01

    We extend soft lithography microfabrication and design methods to introduce curvature sensors that are elastically soft (modulus 0.1–1 MPa) and stretchable (100–1000% strain). In contrast to existing curvature sensors that measure differential strain, sensors in this new class measure curvature directly and allow for arbitrary gauge factor and film thickness. Moreover, each sensor is composed entirely of a soft elastomer (PDMS (polydimethylsiloxane) or Ecoflex ® ) and conductive liquid (eutectic gallium indium, eGaIn) and thus remains functional even when stretched to several times its natural length. The electrical resistance in the embedded eGaIn microchannel is measured as a function of the bending curvature for a variety of sensor designs. In all cases, the experimental measurements are in reasonable agreement with closed-form algebraic approximations derived from elastic plate theory and Ohm's law

  2. A non-differential elastomer curvature sensor for softer-than-skin electronics

    Science.gov (United States)

    Majidi, C.; Kramer, R.; Wood, R. J.

    2011-10-01

    We extend soft lithography microfabrication and design methods to introduce curvature sensors that are elastically soft (modulus 0.1-1 MPa) and stretchable (100-1000% strain). In contrast to existing curvature sensors that measure differential strain, sensors in this new class measure curvature directly and allow for arbitrary gauge factor and film thickness. Moreover, each sensor is composed entirely of a soft elastomer (PDMS (polydimethylsiloxane) or Ecoflex®) and conductive liquid (eutectic gallium indium, eGaIn) and thus remains functional even when stretched to several times its natural length. The electrical resistance in the embedded eGaIn microchannel is measured as a function of the bending curvature for a variety of sensor designs. In all cases, the experimental measurements are in reasonable agreement with closed-form algebraic approximations derived from elastic plate theory and Ohm's law.

  3. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    International Nuclear Information System (INIS)

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W.

    1991-01-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication

  4. A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy

    International Nuclear Information System (INIS)

    Dimova, Rumiana; Aranda, Said; Bezlyepkina, Natalya; Nikolov, Vesselin; Riske, Karin A; Lipowsky, Reinhard

    2006-01-01

    Research on giant vesicles is becoming increasingly popular. Giant vesicles provide model biomembrane systems for systematic measurements of mechanical and rheological properties of bilayers as a function of membrane composition and temperature, as well as hydrodynamic interactions. Membrane response to external factors (for example electric fields, ions and amphiphilic molecules) can be directly visualized under the microscope. In this paper we review our current understanding of lipid bilayers as obtained from studies on giant unilamellar vesicles. Because research on giant vesicles increasingly attracts the interest of scientists from various backgrounds, we also try to provide a concise introduction for newcomers in the field. Finally, we summarize some recent developments on curvature effects induced by polymers, domain formation in membranes and shape transitions induced by electric fields

  5. Embedded positive constant r-mean curvature hypersurfaces in Mm × R

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2005-01-01

    Full Text Available Let M be an m-dimensional Riemannian manifold with sectional curvature bounded from below. We consider hypersurfaces in the (m + 1-dimensional product manifold M x R with positive constant r-mean curvature. We obtain height estimates of certain compact vertical graphs in M x R with boundary in M x {0}. We apply this to obtain topological obstructions for the existence of some hypersurfaces. We also discuss the rotational symmetry of some embedded complete surfaces in S² x R of positive constant 2-mean curvature.

  6. Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region.

    Science.gov (United States)

    Jang, Hyunbum; Abraham, Sherwin J; Chavan, Tanmay S; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I; Nussinov, Ruth; Gaponenko, Vadim

    2015-04-10

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Spontaneous regression of retinopathy of prematurity:incidence and predictive factors

    Directory of Open Access Journals (Sweden)

    Rui-Hong Ju

    2013-08-01

    Full Text Available AIM:To evaluate the incidence of spontaneous regression of changes in the retina and vitreous in active stage of retinopathy of prematurity(ROP and identify the possible relative factors during the regression.METHODS: This was a retrospective, hospital-based study. The study consisted of 39 premature infants with mild ROP showed spontaneous regression (Group A and 17 with severe ROP who had been treated before naturally involuting (Group B from August 2008 through May 2011. Data on gender, single or multiple pregnancy, gestational age, birth weight, weight gain from birth to the sixth week of life, use of oxygen in mechanical ventilation, total duration of oxygen inhalation, surfactant given or not, need for and times of blood transfusion, 1,5,10-min Apgar score, presence of bacterial or fungal or combined infection, hyaline membrane disease (HMD, patent ductus arteriosus (PDA, duration of stay in the neonatal intensive care unit (NICU and duration of ROP were recorded.RESULTS: The incidence of spontaneous regression of ROP with stage 1 was 86.7%, and with stage 2, stage 3 was 57.1%, 5.9%, respectively. With changes in zone Ⅲ regression was detected 100%, in zoneⅡ 46.2% and in zoneⅠ 0%. The mean duration of ROP in spontaneous regression group was 5.65±3.14 weeks, lower than that of the treated ROP group (7.34±4.33 weeks, but this difference was not statistically significant (P=0.201. GA, 1min Apgar score, 5min Apgar score, duration of NICU stay, postnatal age of initial screening and oxygen therapy longer than 10 days were significant predictive factors for the spontaneous regression of ROP (P<0.05. Retinal hemorrhage was the only independent predictive factor the spontaneous regression of ROP (OR 0.030, 95%CI 0.001-0.775, P=0.035.CONCLUSION:This study showed most stage 1 and 2 ROP and changes in zone Ⅲ can spontaneously regression in the end. Retinal hemorrhage is weakly inversely associated with the spontaneous regression.

  8. Some curvature properties of quarter symmetric metric connections

    International Nuclear Information System (INIS)

    Rastogi, S.C.

    1986-08-01

    A linear connection Γ ji h with torsion tensor T j h P i -T i h P j , where T j h is an arbitrary (1,1) tensor field and P i is a 1-form, has been called a quarter-symmetric connection by Golab. Some properties of such connections have been studied by Rastogi, Mishra and Pandey, and Yano and Imai. In this paper based on the curvature tensor of quarter-symmetric metric connection we define a tensor analogous to conformal curvature tensor and study some properties of such a tensor. (author)

  9. Monomeric RC-LH1 core complexes retard LH2 assembly and intracytoplasmic membrane formation in PufX-minus mutants of Rhodobacter sphaeroides.

    Science.gov (United States)

    Adams, Peter G; Mothersole, David J; Ng, Irene W; Olsen, John D; Hunter, C Neil

    2011-09-01

    In the model photosynthetic bacterium Rhodobacter sphaeroides domains of light-harvesting 2 (LH2) complexes surround and interconnect dimeric reaction centre-light-harvesting 1-PufX (RC-LH1-PufX) 'core' complexes, forming extensive networks for energy transfer and trapping. These complexes are housed in spherical intracytoplasmic membranes (ICMs), which are assembled in a stepwise process where biosynthesis of core complexes tends to dominate the early stages of membrane invagination. The kinetics of LH2 assembly were measured in PufX mutants that assemble monomeric core complexes, as a consequence of either a twelve-residue N-terminal truncation of PufX (PufXΔ12) or the complete removal of PufX (PufX(-)). Lower rates of LH2 assembly and retarded maturation of membrane invagination were observed for the larger and less curved ICM from the PufX(-) mutant, consistent with the proposition that local membrane curvature, initiated by arrays of bent RC-LH1-PufX dimers, creates a favourable environment for stable assembly of LH2 complexes. Transmission electron microscopy and high-resolution atomic force microscopy were used to examine ICM morphology and membrane protein organisation in these mutants. Some partitioning of core and LH2 complexes was observed in PufX(-) membranes, resulting in locally ordered clusters of monomeric RC-LH1 complexes. The distribution of core and LH2 complexes in the three types of membrane examined is consistent with previous models of membrane curvature and domain formation (Frese et al., 2008), which demonstrated that a combination of crowding and asymmetries in sizes and shapes of membrane protein complexes drives membrane organisation. 2011 Elsevier B.V. All rights reserved.

  10. No large scale curvature perturbations during the waterfall phase transition of hybrid inflation

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Firouzjahi, Hassan

    2011-01-01

    In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of the standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depends crucially on the competition between the classical and the quantum mechanical backreactions to terminate inflation. If one considers only the classical evolution of the system, we show that the highly blue-tilted entropy perturbations induce highly blue-tilted large scale curvature perturbations during the waterfall phase transition which dominate over the original adiabatic curvature perturbations. However, we show that the quantum backreactions of the waterfall field inhomogeneities produced during the phase transition dominate completely over the classical backreactions. The cumulative quantum backreactions of very small scale tachyonic modes terminate inflation very efficiently and shut off the curvature perturbation evolution during the waterfall phase transition. This indicates that the standard hybrid inflation model is safe under large scale curvature perturbations during the waterfall phase transition.

  11. Intracellular magnetophoresis of amyloplasts and induction of root curvature

    Science.gov (United States)

    Kuznetsov, O. A.; Hasenstein, K. H.

    1996-01-01

    High-gradient magnetic fields (HGMFs) were used to induce intracellular magnetophoresis of amyloplasts. The HGMFs were generated by placing a small ferromagnetic wedge into a uniform magnetic field or at the gap edge between two permanent magnets. In the vicinity of the tip of the wedge the dynamic factor of the magnetic field, delta(H2/2), was about 10(9) Oe2.cm-1, which subjected the amyloplasts to a force comparable to that of gravity. When roots of 2-d-old seedlings of flax (Linum usitatissimum L.) were positioned vertically and exposed to an HGMF, curvature away from the wedge was transient and lasted approximately 1 h. Average curvature obtained after placing magnets, wedge and seedlings on a 1-rpm clinostat for 2 h was 33 +/- 5 degrees. Roots of horizontally placed control seedlings without rotation curved about 47 +/- 4 degrees. The time course of curvature and changes in growth rate were similar for gravicurvature and for root curvature induced by HGMFs. Microscopy showed displacement of amyloplasts in vitro and in vivo. Studies with Arabidopsis thaliana (L.) Heynh. showed that the wild type responded to HGMFs but the starchless mutant TC7 did not. The data indicate that a magnetic force can be used to study the gravisensing and response system of roots.

  12. The Spatial Structure of Planform Migration - Curvature Relation of Meandering Rivers

    Science.gov (United States)

    Guneralp, I.; Rhoads, B. L.

    2005-12-01

    Planform dynamics of meandering rivers have been of fundamental interest to fluvial geomorphologists and engineers because of the intriguing complexity of these dynamics, the role of planform change in floodplain development and landscape evolution, and the economic and social consequences of bank erosion and channel migration. Improved understanding of the complex spatial structure of planform change and capacity to predict these changes are important for effective stream management, engineering and restoration. The planform characteristics of a meandering river channel are integral to its planform dynamics. Active meandering rivers continually change their positions and shapes as a consequence of hydraulic forces exerted on the channel banks and bed, but as the banks and bed change through sediment transport, so do the hydraulic forces. Thus far, this complex feedback between form and process is incompletely understood, despite the fact that the characteristics and the dynamics of meandering rivers have been studied extensively. Current theoretical models aimed at predicting planform dynamics relate rates of meander migration to local and upstream planform curvature where weighting of the influence of curvature on migration rate decays exponentially over distance. This theoretical relation, however, has not been rigorously evaluated empirically. Furthermore, although models based on exponential-weighting of curvature effects yield fairly realistic predictions of meander migration, such models are incapable of reproducing complex forms of bend development, such as double heading or compound looping. This study presents the development of a new methodology based on parametric cubic spline interpolation for the characterization of channel planform and the planform curvature of meandering rivers. The use of continuous mathematical functions overcomes the reliance on bend-averaged values or piece-wise discrete approximations of planform curvature - a major limitation

  13. Local divergence and curvature divergence in first order optics

    Science.gov (United States)

    Mafusire, Cosmas; Krüger, Tjaart P. J.

    2018-06-01

    The far-field divergence of a light beam propagating through a first order optical system is presented as a square root of the sum of the squares of the local divergence and the curvature divergence. The local divergence is defined as the ratio of the beam parameter product to the beam width whilst the curvature divergence is a ratio of the space-angular moment also to the beam width. It is established that the beam’s focusing parameter can be defined as a ratio of the local divergence to the curvature divergence. The relationships between the two divergences and other second moment-based beam parameters are presented. Their various mathematical properties are presented such as their evolution through first order systems. The efficacy of the model in the analysis of high power continuous wave laser-based welding systems is briefly discussed.

  14. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    Science.gov (United States)

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-04-17

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  15. Curvature-Controlled Topological Defects

    Directory of Open Access Journals (Sweden)

    Luka Mesarec

    2017-05-01

    Full Text Available Effectively, two-dimensional (2D closed films exhibiting in-plane orientational ordering (ordered shells might be instrumental for the realization of scaled crystals. In them, ordered shells are expected to play the role of atoms. Furthermore, topological defects (TDs within them would determine their valence. Namely, bonding among shells within an isotropic liquid matrix could be established via appropriate nano-binders (i.e., linkers which tend to be attached to the cores of TDs exploiting the defect core replacement mechanism. Consequently, by varying configurations of TDs one could nucleate growth of scaled crystals displaying different symmetries. For this purpose, it is of interest to develop a simple and robust mechanism via which one could control the position and number of TDs in such atoms. In this paper, we use a minimal mesoscopic model, where variational parameters are the 2D curvature tensor and the 2D orientational tensor order parameter. We demonstrate numerically the efficiency of the effective topological defect cancellation mechanism to predict positional assembling of TDs in ordered films characterized by spatially nonhomogeneous Gaussian curvature. Furthermore, we show how one could efficiently switch among qualitatively different structures by using a relative volume v of ordered shells, which represents a relatively simple naturally accessible control parameter.

  16. Cosmological signatures of anisotropic spatial curvature

    International Nuclear Information System (INIS)

    Pereira, Thiago S.; Marugán, Guillermo A. Mena; Carneiro, Saulo

    2015-01-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature

  17. Cosmological signatures of anisotropic spatial curvature

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Thiago S. [Departamento de Física, Universidade Estadual de Londrina, 86057-970, Londrina – PR (Brazil); Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006, Madrid (Spain); Carneiro, Saulo, E-mail: tspereira@uel.br, E-mail: mena@iem.cfmac.csic.es, E-mail: saulo.carneiro@pq.cnpq.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador – BA (Brazil)

    2015-07-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.

  18. Hamilton's equations for a fluid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Capovilla, R [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados, Apdo. Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-543, 04510 Mexico, DF (Mexico); Rojas, E [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2005-10-14

    Consider a homogeneous fluid membrane described by the Helfrich-Canham energy, quadratic in the mean curvature of the membrane surface. The shape equation that determines equilibrium configurations is fourth order in derivatives and cubic in the mean curvature. We introduce a Hamiltonian formulation of this equation which dismantles it into a set of coupled first-order equations. This involves interpreting the Helfrich-Canham energy as an action; equilibrium surfaces are generated by the evolution of space curves. Two features complicate the implementation of a Hamiltonian framework. (i) The action involves second derivatives. This requires treating the velocity as a phase-space variable and the introduction of its conjugate momentum. The canonical Hamiltonian is constructed on this phase space. (ii) The action possesses a local symmetry-reparametrization invariance. The two labels we use to parametrize points on the surface are themselves physically irrelevant. This symmetry implies primary constraints, one for each label, that need to be implemented within the Hamiltonian. The two Lagrange multipliers associated with these constraints are identified as the components of the acceleration tangential to the surface. The conservation of the primary constraints implies two secondary constraints, fixing the tangential components of the momentum conjugate to the position. Hamilton's equations are derived and the appropriate initial conditions on the phase-space variables are identified. Finally, it is shown how the shape equation can be reconstructed from these equations.

  19. Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA

    International Nuclear Information System (INIS)

    Hastings, P.J.; Quah, S.-K.; Borstel, R.C. von

    1976-01-01

    It is stated that strains of yeast carrying mutations in many of the steps in pathways repairing radiation-induced damage to DNA have enhanced spontaneous mutation rates. Most strains isolated because they have enhanced spontaneous mutation carry mutations in DNA repair systems. This suggests that much spontaneous mutation arises by mutagenic repair of spontaneous lesions. (author)

  20. On $L_p$ Affine Surface Area and Curvature Measures

    OpenAIRE

    Zhao, Yiming

    2015-01-01

    The relationship between $L_p$ affine surface area and curvature measures is investigated. As a result, a new representation of the existing notion of $L_p$ affine surface area depending only on curvature measures is derived. Direct proofs of the equivalence between this new representation and those previously known are provided. The proofs show that the new representation is, in a sense, "polar" to that of Lutwak's and "dual" to that of Sch\\"utt & Werner's.

  1. On harmonic curvatures of a Frenet curve in Lorentzian space

    International Nuclear Information System (INIS)

    Kuelahci, Mihriban; Bektas, Mehmet; Erguet, Mahmut

    2009-01-01

    In this paper, we consider curves of AW(k)-type, 1 ≤ k ≤ 3, in Lorentzian space. We give curvature conditions of these kind of curves. Furthermore, we study harmonic curvatures of curves of AW(k)-type. We investigate that under what conditions AW(k)-type curves are helix. Some related theorems and corollaries are also proved.

  2. Non-linear realizations and higher curvature supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Farakos, F. [Dipartimento di Fisica e Astronomia ' ' Galileo Galilei' ' , Universita di Padova (Italy); INFN, Sezione di Padova (Italy); Ferrara, S. [Department of Theoretical Physics, Geneva (Switzerland); INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Department of Physics and Astronomy, Mani L. Bhaumik Institute for Theoretical Physics, U.C.L.A., Los Angeles, CA (United States); Kehagias, A. [Physics Division, National Technical University of Athens (Greece); Luest, D. [Arnold Sommerfeld Center for Theoretical Physics, Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2017-12-15

    We focus on non-linear realizations of local supersymmetry as obtained by using constrained superfields in supergravity. New constraints, beyond those of rigid supersymmetry, are obtained whenever curvature multiplets are affected as well as higher derivative interactions are introduced. In particular, a new constraint, which removes a very massive gravitino is introduced, and in the rigid limit it merely reduces to an explicit supersymmetry breaking. Higher curvature supergravities free of ghosts and instabilities are also obtained in this way. Finally, we consider direct coupling of the goldstino multiplet to the super Gauss-Bonnet multiplet and discuss the emergence of a new scalar degree of freedom. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Curvature perturbation spectra from waterfall transition, black hole constraints and non-Gaussianity

    Energy Technology Data Exchange (ETDEWEB)

    Bugaev, Edgar; Klimai, Peter, E-mail: bugaev@pcbai10.inr.ruhep.ru, E-mail: pklimai@gmail.com [Institute for Nuclear Research, Russian Academy of Sciences, 60th October Anniversary Prospect 7a, 117312 Moscow (Russian Federation)

    2011-11-01

    We carried out numerical calculations of a contribution of the waterfall field to the primordial curvature perturbation (on uniform density hypersurfaces) ζ, which is produced during waterfall transition in hybrid inflation scenario. The calculation is performed for a broad interval of values of the model parameters. We show that there is a strong growth of amplitudes of the curvature perturbation spectrum in the limit when the bare mass-squared of the waterfall field becomes comparable with the square of Hubble parameter. We show that in this limit the primordial black hole constraints on the curvature perturbations must be taken into account. It is shown that, in the same limit, peak values of the curvature perturbation spectra are far beyond horizon, and the spectra are strongly non-Gaussian.

  4. Curvature perturbation spectra from waterfall transition, black hole constraints and non-Gaussianity

    International Nuclear Information System (INIS)

    Bugaev, Edgar; Klimai, Peter

    2011-01-01

    We carried out numerical calculations of a contribution of the waterfall field to the primordial curvature perturbation (on uniform density hypersurfaces) ζ, which is produced during waterfall transition in hybrid inflation scenario. The calculation is performed for a broad interval of values of the model parameters. We show that there is a strong growth of amplitudes of the curvature perturbation spectrum in the limit when the bare mass-squared of the waterfall field becomes comparable with the square of Hubble parameter. We show that in this limit the primordial black hole constraints on the curvature perturbations must be taken into account. It is shown that, in the same limit, peak values of the curvature perturbation spectra are far beyond horizon, and the spectra are strongly non-Gaussian

  5. Cholic acid is accumulated spontaneously, driven by membrane Delta pH, in many lactobacilli

    NARCIS (Netherlands)

    Kurdi, P; van Veen, HW; Tanaka, H; Mierau, [No Value; Konings, WN; Tannock, GW; Tomita, F; Yokota, A

    2000-01-01

    Many lactobacilli from various origins were found to apparently lack cholic acid extrusion activity. Cholic acid was accumulated spontaneously, driven by the transmembrane proton gradient. Accumulation is a newly identified kind of interaction between intestinal microbes and unconjugated bile acids

  6. Protein receptor-independent plasma membrane remodeling by HAMLET: a tumoricidal protein-lipid complex.

    Science.gov (United States)

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L; James, Ho C S; Rydström, Anna; Ngassam, Viviane N; Klausen, Thomas Kjær; Pedersen, Stine Falsig; Lam, Matti; Parikh, Atul N; Svanborg, Catharina

    2015-11-12

    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ''protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a ''receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death.

  7. Measurements of the Curvature of Protrusions/Retrusions on Migrating Recrystallization Boundaries

    DEFF Research Database (Denmark)

    Zhang, Yubin; Godfrey, A.; Juul Jensen, Dorte

    2009-01-01

    Two methods to quantify protrusions/retrusions and to estimate local boundary curvature from sample plane sections are proposed. The methods are used to evaluate the driving force due to curvature of the protrusions/retrusions for partially recrystallized pure nickel cold rolled to 96% reduction...

  8. A high resolution electron microscopy investigation of curvature in carbon nanotubes

    Science.gov (United States)

    Weldon, D. N.; Blau, W. J.; Zandbergen, H. W.

    1995-07-01

    Evidence for heptagon inclusion in multi-walled carbon nanotubes was sought in arc-produced carbon deposits. Transmission electron microscopy revealed many curved nanotubes although their relative abundance was low. Close examination of the micrographs in the regions of expected heptagon inclusion shows that the curvature is accomplished by folding or fracture of the lattice planes. This observed phenomenon contradicts the theoretical modelling studies which predict stable structures with negative curvature accomplished by heptagon/pentagon pairs. A possible explanation for curvature in single-walled tubes is presented based on a molecular mechanics geometry optimisation study of spa inclusion in a graphite sheet.

  9. Curvature contributions to the static electrical properties of push-pull molecules

    International Nuclear Information System (INIS)

    Squitieri, Emilio

    2005-01-01

    Calculations of the curvature contribution to the diagonals components of the static dipole moment (μ), polarizability (α), first (β) and second (γ) hyperpolarizability of push-pull molecules are presented. This contribution was obtained from the analytical evaluation of electrical properties method using the harmonic zero-point energy. The valence-bond charge-transfer model was employed to obtain the field-dependent force constant and their derivates with respect to electric field. Our results show a relationship between the curvature and electronic contributions. We have also found that the curvature contribution is important in a numerical estimation of β and γ

  10. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice Boltzmann Model

    International Nuclear Information System (INIS)

    Hua-Bing, Li; Li, Jin; Bing, Qiu

    2008-01-01

    To study two-dimensional red blood cells deforming in a shear Bow with the membrane nonuniform on the rigidity and mass, the membrane is discretized into equilength segments. The fluid inside and outside the red blood cell is simulated by the D2Q9 lattice Boltzmann model and the hydrodynamic forces exerted on the membrane from the inner and outer of the red blood cell are calculated by a stress-integration method. Through the global deviation from the curvature of uniform-membrane, we find that when the membrane is nonuniform on the rigidity, the deviation first decreases with the time increases and implies that the terminal profile of the red blood cell is static. To a red blood cell with the mass nonuniform on the membrane, the deviation becomes more large, and the mass distribution affects the profile of the two sides of the flattened red blood cell in a shear flow. (fundamental areas of phenomenology(including applications))

  11. Fabrication of complex free-standing nanostructures with concave and convex curvature via the layer-by-layer approach.

    Science.gov (United States)

    Raoufi, Mohammad; Schönherr, Holger

    2014-02-18

    We report on the fabrication of unprecedented free-standing complex polymeric nanoobjects, which possess both concave and convex curvatures, by exploiting the layer-by-layer (LBL) deposition of polyelectrolytes. In a combined top-down/bottom-up replication approach pore diameter-modulated anodic aluminum oxide (AAO) templates, fabricated by temperature modulation hard anodization (TMHA), were replicated with multilayers of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) to yield open nanotubes with diameters in the wide and narrow segments of 210 and 150 nm, respectively. To obtain stable pore diameter-modulated nanopores, which possess segment lengths between 1 and 5 μm and 5 and 10 μm in the narrow and wide pore portion, respectively, conventional hard anodization of aluminum was followed by a subsequent temperature-modulated anodization. After removing the backside aluminum electrode, silanizing the aluminum oxide, and passivating the exposed membrane surface with a thin layer of gold, PSS and PAH were deposited alternatingly to yield LBL multilayers. For optimized LBL multilayer thicknesses and compactness, established in separate experiments on silicon substrates and nanoporous AAO with straight pores, free-standing polymeric nanoobjects with concave and convex curvatures, were obtained. These were stable for wall thickness to pore diameter ratios of ≥0.08.

  12. Spontaneous galactosylation of agalactoglycoproteins in colostrum.

    Science.gov (United States)

    Oubihi, M; Kitajima, K; Aoki, N; Matsuda, T

    2000-05-12

    We have found that spontaneous galactosylation of GlcNAc residues occurs in bovine colostrum, but not in dialyzed colostrum, without adding UDP-Gal as a donor substrate. UDP-Gal was shown to be present in bovine colostrum at a level ranging from 200 to 600 microM. When a tracer UDP-[(14)C]Gal was added to the dialyzed colostrum together with a Gal beta1,4-specific beta-galactosidase, remarkable incorporation of radioactivity into 24-28 kDa and 33 kDa RCA1-positive glycoproteins was demonstrated by SDS-PAGE/autoradiography. Some 100-140 kDa agalactoglycoproteins of a CHO mutant cell line were also galactosylated on a blotted membrane by the incubation in the colostrum.

  13. Frame-Covariant Formulation of Inflation in Scalar-Curvature Theories

    CERN Document Server

    Burns, Daniel; Pilaftsis, Apostolos

    2016-01-01

    We develop a frame-covariant formulation of inflation in the slow-roll approximation by generalizing the inflationary attractor solution for scalar-curvature theories. Our formulation gives rise to new generalized forms for the potential slow-roll parameters, which enable us to examine the effect of conformal transformations and inflaton reparameterizations in scalar-curvature theories. We find that cosmological observables, such as the power spectrum, the spectral indices and their runnings, can be expressed in a concise manner in terms of the generalized potential slow-roll parameters which depend on the scalar-curvature coupling function, the inflaton wavefunction, and the inflaton potential. We show how the cosmological observables of inflation are frame-invariant in this generalized potential slow-roll formalism, as long as the end-of-inflation condition is appropriately extended to become frame-invariant as well. We then apply our formalism to specific scenarios, such as the induced gravity inflation, H...

  14. The scalar curvature problem on the four dimensional half sphere

    CERN Document Server

    Ben-Ayed, M; El-Mehdi, K

    2003-01-01

    In this paper, we consider the problem of prescribing the scalar curvature under minimal boundary conditions on the standard four dimensional half sphere. We provide an Euler-Hopf type criterion for a given function to be a scalar curvature for some metric conformal to the standard one. Our proof involves the study of critical points at infinity of the associated variational problem.

  15. Spontaneous membrane formation and self-encapsulation of active rods in an inhomogeneous motility field

    NARCIS (Netherlands)

    Grauer, J.; Löwen, H.; Janssen, L.M.C.

    2018-01-01

    We study the collective dynamics of self-propelled rods in an inhomogeneous motility field. At the interface between two regions of constant but different motility, a smectic rod layer is spontaneously created through aligning interactions between the active rods, reminiscent of an artificial,

  16. Probing interaction and spatial curvature in the holographic dark energy model

    International Nuclear Information System (INIS)

    Li, Miao; Li, Xiao-Dong; Wang, Shuang; Wang, Yi; Zhang, Xin

    2009-01-01

    In this paper we place observational constraints on the interaction and spatial curvature in the holographic dark energy model. We consider three kinds of phenomenological interactions between holographic dark energy and matter, i.e., the interaction term Q is proportional to the energy densities of dark energy (ρ Λ ), matter (ρ m ), and matter plus dark energy (ρ m +ρ Λ ). For probing the interaction and spatial curvature in the holographic dark energy model, we use the latest observational data including the type Ia supernovae (SNIa) Constitution data, the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinson Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). Our results show that the interaction and spatial curvature in the holographic dark energy model are both rather small. Besides, it is interesting to find that there exists significant degeneracy between the phenomenological interaction and the spatial curvature in the holographic dark energy model

  17. Prescribed curvature tensor in locally conformally flat manifolds

    Science.gov (United States)

    Pina, Romildo; Pieterzack, Mauricio

    2018-01-01

    A global existence theorem for the prescribed curvature tensor problem in locally conformally flat manifolds is proved for a special class of tensors R. Necessary and sufficient conditions for the existence of a metric g ¯ , conformal to Euclidean g, are determined such that R ¯ = R, where R ¯ is the Riemannian curvature tensor of the metric g ¯ . The solution to this problem is given explicitly for special cases of the tensor R, including the case where the metric g ¯ is complete on Rn. Similar problems are considered for locally conformally flat manifolds.

  18. Loss of lysosomal membrane protein NCU-G1 in mice results in spontaneous liver fibrosis with accumulation of lipofuscin and iron in Kupffer cells

    Directory of Open Access Journals (Sweden)

    Xiang Y. Kong

    2014-03-01

    Full Text Available Human kidney predominant protein, NCU-G1, is a highly conserved protein with an unknown biological function. Initially described as a nuclear protein, it was later shown to be a bona fide lysosomal integral membrane protein. To gain insight into the physiological function of NCU-G1, mice with no detectable expression of this gene were created using a gene-trap strategy, and Ncu-g1gt/gt mice were successfully characterized. Lysosomal disorders are mainly caused by lack of or malfunctioning of proteins in the endosomal-lysosomal pathway. The clinical symptoms vary, but often include liver dysfunction. Persistent liver damage activates fibrogenesis and, if unremedied, eventually leads to liver fibrosis/cirrhosis and death. We demonstrate that the disruption of Ncu-g1 results in spontaneous liver fibrosis in mice as the predominant phenotype. Evidence for an increased rate of hepatic cell death, oxidative stress and active fibrogenesis were detected in Ncu-g1gt/gt liver. In addition to collagen deposition, microscopic examination of liver sections revealed accumulation of autofluorescent lipofuscin and iron in Ncu-g1gt/gt Kupffer cells. Because only a few transgenic mouse models have been identified with chronic liver injury and spontaneous liver fibrosis development, we propose that the Ncu-g1gt/gt mouse could be a valuable new tool in the development of novel treatments for the attenuation of fibrosis due to chronic liver damage.

  19. Platinum porphyrins as ionophores in polymeric membrane electrodes

    DEFF Research Database (Denmark)

    Lvova, Larisa; Verrelli, Giorgio; Nardis, Sara

    2011-01-01

    A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined...... within the electrode membranes, while those based on Pt(IV)TPPCl2 operate via a mixed mode carrier mechanism, evidencing also a partial reduction of the starting ionophore to Pt(II)TPP. Spectrophotometric measurements of thin polymeric films indicate that no spontaneous formation of hydroxide ion bridged...... porphyrin dimers occurs in the membrane plasticized both with high or low dielectric constant plasticizer, due to a low oxophilicity of central Pt. The computational study of various anion–Pt(IV)TPPCl2 complex formation by means of semi-empirical and density functional theory (DFT) methods revealed a good...

  20. Principal Curvature Measures Estimation and Application to 3D Face Recognition

    KAUST Repository

    Tang, Yinhang

    2017-04-06

    This paper presents an effective 3D face keypoint detection, description and matching framework based on three principle curvature measures. These measures give a unified definition of principle curvatures for both smooth and discrete surfaces. They can be reasonably computed based on the normal cycle theory and the geometric measure theory. The strong theoretical basis of these measures provides us a solid discrete estimation method on real 3D face scans represented as triangle meshes. Based on these estimated measures, the proposed method can automatically detect a set of sparse and discriminating 3D facial feature points. The local facial shape around each 3D feature point is comprehensively described by histograms of these principal curvature measures. To guarantee the pose invariance of these descriptors, three principle curvature vectors of these principle curvature measures are employed to assign the canonical directions. Similarity comparison between faces is accomplished by matching all these curvature-based local shape descriptors using the sparse representation-based reconstruction method. The proposed method was evaluated on three public databases, i.e. FRGC v2.0, Bosphorus, and Gavab. Experimental results demonstrated that the three principle curvature measures contain strong complementarity for 3D facial shape description, and their fusion can largely improve the recognition performance. Our approach achieves rank-one recognition rates of 99.6, 95.7, and 97.9% on the neutral subset, expression subset, and the whole FRGC v2.0 databases, respectively. This indicates that our method is robust to moderate facial expression variations. Moreover, it also achieves very competitive performance on the pose subset (over 98.6% except Yaw 90°) and the occlusion subset (98.4%) of the Bosphorus database. Even in the case of extreme pose variations like profiles, it also significantly outperforms the state-of-the-art approaches with a recognition rate of 57.1%. The

  1. Discrete Curvatures and Discrete Minimal Surfaces

    KAUST Repository

    Sun, Xiang

    2012-06-01

    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.

  2. Plan curvature and landslide probability in regions dominated by earth flows and earth slides

    Science.gov (United States)

    Ohlmacher, G.C.

    2007-01-01

    Damaging landslides in the Appalachian Plateau and scattered regions within the Midcontinent of North America highlight the need for landslide-hazard mapping and a better understanding of the geomorphic development of landslide terrains. The Plateau and Midcontinent have the necessary ingredients for landslides including sufficient relief, steep slope gradients, Pennsylvanian and Permian cyclothems that weather into fine-grained soils containing considerable clay, and adequate precipitation. One commonly used parameter in landslide-hazard analysis that is in need of further investigation is plan curvature. Plan curvature is the curvature of the hillside in a horizontal plane or the curvature of the contours on a topographic map. Hillsides can be subdivided into regions of concave outward plan curvature called hollows, convex outward plan curvature called noses, and straight contours called planar regions. Statistical analysis of plan-curvature and landslide datasets indicate that hillsides with planar plan curvature have the highest probability for landslides in regions dominated by earth flows and earth slides in clayey soils (CH and CL). The probability of landslides decreases as the hillsides become more concave or convex. Hollows have a slightly higher probability for landslides than noses. In hollows landslide material converges into the narrow region at the base of the slope. The convergence combined with the cohesive nature of fine-grained soils creates a buttressing effect that slows soil movement and increases the stability of the hillside within the hollow. Statistical approaches that attempt to determine landslide hazard need to account for the complex relationship between plan curvature, type of landslide, and landslide susceptibility. ?? 2007 Elsevier B.V. All rights reserved.

  3. The Influence of Shoreline Curvature on Rates of Shoreline Change on Sandy Coasts

    Science.gov (United States)

    Murray, A. B.; Lauzon, R.; Cheng, S.; Liu, J.; Lazarus, E.

    2017-12-01

    The sandy, low-lying barrier islands which characterize much of the US East and Gulf coasts are popular spots to live and vacation, and are often heavily developed. However, sandy shorelines and barriers are also naturally mobile landforms, which are vulnerable to sea level rise and storms and can experience high rates of shoreline change. Many previous studies have attempted to understand and quantify the factors that contribute to those rates of shoreline change, such as grain size, underlying geology, sea level rise, and anthropogenic modification. Shoreline curvature has not been considered in such analyses, but previous research has demonstrated that subtle coastline curvature (and therefore alongshore variation in relative offshore wave angle) can result in gradients in net alongshore transport that cause significant shoreline erosion or accretion. Here we present the results of a spatially extensive analysis of the correlation between shoreline curvature and shoreline change rates for the sandy shorelines of the US East and Gulf coasts. We find that, for wave-dominated sandy coasts where nourishment and shoreline stabilization do not dominate the shoreline change signal (such as parts of Texas, North Carolina, and Florida), there is a significant negative correlation between shoreline curvature and shoreline change rates over 1 - 5 km and decadal to centurial space and time scales. This correlation indicates that a portion of the coastal erosion (and accretion) observed in these areas can be explained by the smoothing of subtle coastline curvature by gradients in alongshore transport, and suggests that shoreline curvature should be included in future attempts to understand historical and future rates of shoreline change. Shoreline stabilization, especially through beach nourishment, complicates the relationship between curvature and shoreline change. Beach construction during nourishment creates a seaward convex curvature in the part of the shoreline moves

  4. Soliton surfaces via a zero-curvature representation of differential equations

    International Nuclear Information System (INIS)

    Grundland, A M; Post, S

    2012-01-01

    The main aim of this paper is to introduce a new version of the Fokas–Gel’fand formula for immersion of soliton surfaces in Lie algebras. The paper contains a detailed exposition of the technique for obtaining exact forms of 2D surfaces associated with any solution of a given nonlinear ordinary differential equation which can be written in the zero-curvature form. That is, for any generalized symmetry of the zero-curvature condition of the associated integrable model, it is possible to construct soliton surfaces whose Gauss–Mainardi–Codazzi equations are equivalent to infinitesimal deformations of the zero-curvature representation of the considered model. Conversely, it is shown (proposition 1) that for a given immersion function of a 2D soliton surface in a Lie algebra, it is possible to derive the associated generalized vector field in the evolutionary form which characterizes all symmetries of the zero-curvature condition. The theoretical considerations are illustrated via surfaces associated with the Painlevé equations P1, P2 and P3, including transcendental functions, the special cases of the rational and Airy solutions of P2 and the classical solutions of P3. (paper)

  5. Harmonic curvatures and generalized helices in En

    International Nuclear Information System (INIS)

    Camci, Cetin; Ilarslan, Kazim; Kula, Levent; Hacisalihoglu, H. Hilmi

    2009-01-01

    In n-dimensional Euclidean space E n , harmonic curvatures of a non-degenerate curve defined by Ozdamar and Hacisalihoglu [Ozdamar E, Hacisalihoglu HH. A characterization of Inclined curves in Euclidean n-space. Comm Fac Sci Univ Ankara, Ser A1 1975;24:15-23]. In this paper, we give some characterizations for a non-degenerate curve α to be a generalized helix by using its harmonic curvatures. Also we define the generalized Darboux vector D of a non-degenerate curve α in n-dimensional Euclidean space E n and we show that the generalized Darboux vector D lies in the kernel of Frenet matrix M(s) if and only if the curve α is a generalized helix in the sense of Hayden.

  6. Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jace B. King

    2016-01-01

    Full Text Available In the United States alone, the number of persons living with the enduring consequences of traumatic brain injuries is estimated to be between 3.2 and 5 million. This number does not include individuals serving in the United States military or seeking care at Veterans Affairs hospitals. The importance of understanding the neurobiological consequences of mild traumatic brain injury (mTBI has increased with the return of veterans from conflicts overseas, many of who have suffered this type of brain injury. However, identifying the neuroanatomical regions most affected by mTBI continues to prove challenging. The aim of this study was to assess the use of mean cortical curvature as a potential indicator of progressive tissue loss in a cross-sectional sample of 54 veterans with mTBI compared to 31 controls evaluated with MRI. It was hypothesized that mean cortical curvature would be increased in veterans with mTBI, relative to controls, due in part to cortical restructuring related to tissue volume loss. Mean cortical curvature was assessed in 60 bilateral regions (31 sulcal, 29 gyral. Of the 120 regions investigated, nearly 50% demonstrated significantly increased mean cortical curvature in mTBI relative to controls with 25% remaining significant following multiple comparison correction (all, pFDR < .05. These differences were most prominent in deep gray matter regions of the cortex. Additionally, significant relationships were found between mean cortical curvature and gray and white matter volumes (all, p < .05. These findings suggest potentially unique patterns of atrophy by region and indicate that changes in brain microstructure due to mTBI are sensitive to measures of mean curvature.

  7. Curvature Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Curvature was calculated from the bathymetry surface for each raster cell using the ArcGIS 3D Analyst "Curvature" Tool. Curvature describes the rate of change of...

  8. Atomic fine structure in a space of constant curvature

    International Nuclear Information System (INIS)

    Bessis, N.; Bessis, G.; Shamseddine, R.

    1982-01-01

    As a contribution to a tentative formulation of atomic physics in a curved space, the determination of atomic fine structure energies in a space of constant curvature is investigated. Starting from the Dirac equation in a curved space-time, the analogue of the Pauli equation in a general coordinate system is derived. The theoretical curvature induced shifts and splittings of the fine structure energy levels are put in evidence and examined for the particular case of the hydrogenic n=2 levels. (author)

  9. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays

    Science.gov (United States)

    Lee, J. S.; Evans, M. L.

    1990-01-01

    We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.

  10. Existence of conformal metrics on spheres with prescribed Paneitz curvature

    International Nuclear Information System (INIS)

    Ben Ayed, Mohamed; El Mehdi, Khalil

    2003-07-01

    In this paper we study the problem of prescribing a fourth order conformal invariant (the Paneitz curvature) on the n-spheres, with n ≥ 5. Using tools from the theory of critical points at infinity, we provide some topological conditions on the level sets of a given function defined on the sphere, under which we prove the existence of conformal metric with prescribed Paneitz curvature. (author)

  11. Existence of conformal metrics on spheres with prescribed Paneitz curvature

    CERN Document Server

    Ben-Ayed, M

    2003-01-01

    In this paper we study the problem of prescribing a fourth order conformal invariant (the Paneitz curvature) on the n-spheres, with n >= 5. Using tools from the theory of critical points at infinity, we provide some topological conditions on the level sets of a given function defined on the sphere, under which we prove the existence of conformal metric with prescribed Paneitz curvature.

  12. Curvature tensor copies in affine geometry

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1981-01-01

    The sets of space-time and spin-connections which give rise to the same curvature tensor are constructed. The corresponding geometries are compared. Results are illustrated by an explicit calculation and comment on the copies in Einstein-Cartan and Weyl-Cartan geometries. (Author) [pt

  13. Resolving curvature singularities in holomorphic gravity

    NARCIS (Netherlands)

    Mantz, C.L.M.; Prokopec, T.

    2011-01-01

    We formulate a holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature

  14. Biharmonic Submanifolds with Parallel Mean Curvature Vector in Pseudo-Euclidean Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yu, E-mail: yufudufe@gmail.com [Dongbei University of Finance and Economics, School of Mathematics and Quantitative Economics (China)

    2013-12-15

    In this paper, we investigate biharmonic submanifolds in pseudo-Euclidean spaces with arbitrary index and dimension. We give a complete classification of biharmonic spacelike submanifolds with parallel mean curvature vector in pseudo-Euclidean spaces. We also determine all biharmonic Lorentzian surfaces with parallel mean curvature vector field in pseudo-Euclidean spaces.

  15. Biharmonic Submanifolds with Parallel Mean Curvature Vector in Pseudo-Euclidean Spaces

    International Nuclear Information System (INIS)

    Fu, Yu

    2013-01-01

    In this paper, we investigate biharmonic submanifolds in pseudo-Euclidean spaces with arbitrary index and dimension. We give a complete classification of biharmonic spacelike submanifolds with parallel mean curvature vector in pseudo-Euclidean spaces. We also determine all biharmonic Lorentzian surfaces with parallel mean curvature vector field in pseudo-Euclidean spaces

  16. Synaptic input correlations leading to membrane potential decorrelation of spontaneous activity in cortex.

    Science.gov (United States)

    Graupner, Michael; Reyes, Alex D

    2013-09-18

    Correlations in the spiking activity of neurons have been found in many regions of the cortex under multiple experimental conditions and are postulated to have important consequences for neural population coding. While there is a large body of extracellular data reporting correlations of various strengths, the subthreshold events underlying the origin and magnitude of signal-independent correlations (called noise or spike count correlations) are unknown. Here we investigate, using intracellular recordings, how synaptic input correlations from shared presynaptic neurons translate into membrane potential and spike-output correlations. Using a pharmacologically activated thalamocortical slice preparation, we perform simultaneous recordings from pairs of layer IV neurons in the auditory cortex of mice and measure synaptic potentials/currents, membrane potentials, and spiking outputs. We calculate cross-correlations between excitatory and inhibitory inputs to investigate correlations emerging from the network. We furthermore evaluate membrane potential correlations near resting potential to study how excitation and inhibition combine and affect spike-output correlations. We demonstrate directly that excitation is correlated with inhibition thereby partially canceling each other and resulting in weak membrane potential and spiking correlations between neurons. Our data suggest that cortical networks are set up to partially cancel correlations emerging from the connections between neurons. This active decorrelation is achieved because excitation and inhibition closely track each other. Our results suggest that the numerous shared presynaptic inputs do not automatically lead to increased spiking correlations.

  17. A prescribing geodesic curvature problem

    International Nuclear Information System (INIS)

    Chang, K.C.; Liu, J.Q.

    1993-09-01

    Let D be the unit disk and k be a function on S 1 = δD. Find a flat metric which is pointwise conformal to the standard metric and has k as the geodesic curvature of S 1 . A sufficient condition for the existence of such a metric is that the harmonic extension of k in D has saddle points. (author). 11 refs

  18. Linearized curvatures for auxiliary fields in the de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A

    1988-09-19

    New consistent linearized curvatures in the de Sitter space are constructed. The sequence of actions, describing bosonic and fermionic gauge auxiliary fields, is found based on these curvatures. The proposed actions are parametrized by two integer parameters, n greater than or equal to 0 and m greater than or equal to 0. The simplest case n=m=0 corresponds in the flat limit to the auxiliary fields of 'new minimal' supergravity. The hamiltonian formulation is developed for the auxiliary fields suggested; hamiltonians and first- and second-class constraints are constructed. Using these results, it is shown that the systems of fields proposed possess no dynamical degrees of freedom in de Sitter and flat spaces. In addition the hamiltonian formalism is analysed for some free dynamical systems based on linearized higher-spin curvatures introduced previously.

  19. Higher curvature corrections to primordial fluctuations in slow-roll inflation

    International Nuclear Information System (INIS)

    Satoh, Masaki; Soda, Jiro

    2008-01-01

    We study higher curvature corrections to the scalar spectral index, the tensor spectral index, the tensor-to-scalar ratio, and the polarization of gravitational waves. We find that there are cases where the higher curvature corrections cannot be negligible in the dynamics of the scalar field, although they are always negligible energetically. Indeed, it turns out that the tensor-to-scalar ratio could be enhanced and the tensor spectral index could be blue due to the Gauss–Bonnet term. We estimate the degree of circular polarization of gravitational waves generated during the slow-roll inflation. We argue that the circular polarization could be observable with the help of both the Gauss–Bonnet and the parity violating terms. We also present several examples to reveal observational implications of higher curvature corrections for chaotic inflationary models

  20. The geometric curvature of the lumbar spine during restricted and unrestricted squats.

    Science.gov (United States)

    Hebling Campos, Mário; Furtado Alaman, Laizi I; Seffrin-Neto, Aldo A; Vieira, Carlos A; Costa de Paula, Marcelo; Barbosa de Lira, Claudio A

    2017-06-01

    The main purpose of this study was to analyze the behavior of the geometric curvature of the lumbar spine during restricted and unrestricted squats, using a novel investigative method. The rationale for our hypothesis is that the lumbar curvature has different patterns at different spine levels depending on the squat technique used. Spine motion was collected via stereo-photogrammetric analysis in nineteen participants (11 males, 8 females). The reconstructed spine points at the upright neutral position and at the deepest position of the squat exercise were projected onto the sagittal plane of the trunk, a polynomial was fitted to the data, and were quantified the two-dimensional geometric curvature at lower, central and higher lumbar levels, besides the inclination of trunk and lumbosacral region, the overall geometric curvature and overall angle of the lumbar spine. The mean values for each variable were analysed with paired t-test (Psquat techniques and these effects are also reduced in unrestricted squats. The data collected in the study are evidence that during barbell squats the lumbar curvature has different patterns at different spinal levels depending on the exercise technique. The lower lumbar spine appears to be less overloaded during unrestricted squats.

  1. Global and local curvature in density functional theory.

    Science.gov (United States)

    Zhao, Qing; Ioannidis, Efthymios I; Kulik, Heather J

    2016-08-07

    Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide.

  2. Comparative effectiveness of metal ions in inducing curvature of primary roots of Zea mays

    Science.gov (United States)

    Hasenstein, K. H.; Evans, M. L.; Stinemetz, C. L.; Moore, R.; Fondren, W. M.; Koon, E. C.; Higby, M. A.; Smucker, A. J.

    1988-01-01

    We used five cultivars of Zea mays (Bear Hybrid WF9 * 38MS, B73 * Missouri 17, Yellow Dent, Merit, and Great Lakes Hybrid 422) to reinvestigate the specificity of metal ions for inducing root curvature. Of 17 cations tested, 6 (Al3+, Ba2+, Ca2+, Cd2+, Cu2+, Zn2+) induced curvature. Roots curved away from Al3+, Ba2+, and Cd2+. Roots curved away from low (0.1 millimolar) concentrations of Cu2+ but toward higher (1-5 millimolar) concentrations. Roots initially curved away from Zn2+ but the direction of the subsequent curvature was unpredictable. In most cases, roots of all cultivars curved towards calcium. However, in some tests there was no response to calcium or even (especially in the cultivars Merit and B73 * Missouri 17) substantial curvature away from calcium. The results indicate that the induction of root curvature is not specific for calcium. The results are discussed relative to the possible role of calmodulin as a mediator of ion-induced root curvature.

  3. Evolution of a Rippled Membrane during Phospholipase A2 Hydrolysis Studied by Time-Resolved AFM

    DEFF Research Database (Denmark)

    Leidy, Chad; Mouritsen, Ole G.; Jørgensen, Kent

    2004-01-01

    The sensitivity of phospholipase A2 (PLA2) for lipid membrane curvature is explored by monitoring, through time-resolved atomic force microscopy, the hydrolysis of supported double bilayers in the ripple phase. The ripple phase presents a corrugated morphology. PLA2 is shown to have higher activity...... toward the ripple phase compared to the gel phase in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes, indicating its preference for this highly curved membrane morphology. Hydrolysis of the stable and metastable ripple structures is monitored for equimolar DMPC/1,2-distearoyl- sn-glycero-3....... This is reflected in an increase in ripple spacing, followed by a sudden flattening of the lipid membrane during hydrolysis. Hydrolysis of the ripple phase results in anisotropic holes running parallel to the ripples, suggesting that the ripple phase has strip regions of higher sensitivity to enzymatic attack. Bulk...

  4. No Large Scale Curvature Perturbations during Waterfall of Hybrid Inflation

    OpenAIRE

    Abolhasani, Ali Akbar; Firouzjahi, Hassan

    2010-01-01

    In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depend crucially on the competition between the classical and the quantum mechanical back-reactions to terminate inflation. If one considers only the clas...

  5. Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays

    Science.gov (United States)

    Young, L. M.; Evans, M. L.; Hertel, R.

    1990-01-01

    We compared the kinetics of auxin redistribution across the caps of primary roots of 2-day-old maize (Zea mays, cv Merit) seedlings with the time course of gravitropic curvature. [3H] indoleacetic acid was applied to one side of the cap in an agar donor and radioactivity moving across the cap was collected in an agar receiver applied to the opposite side. Upon gravistimulation the roots first curved upward slightly, then returned to the horizontal and began curving downward, reaching a final angle of about 67 degrees. Movement of label across the caps of gravistimulated roots was asymmetric with preferential downward movement (ratio downward/upward = ca. 1.6, radioactivity collected during the 90 min following beginning of gravistimulation). There was a close correlation between the development of asymmetric auxin movement across the root cap and the rate of curvature, with both values increasing to a maximum and then declining as the roots approached the final angle of curvature. In roots preadapted to gravity (alternate brief stimulation on opposite flanks over a period of 1 hour) the initial phase of upward curvature was eliminated and downward bending began earlier than for controls. The correlation between asymmetric auxin movement and the kinetics of curvature also held in comparisons between control and preadapted roots. Both downward auxin transport asymmetry and downward curvature occurred earlier in preadapted roots than in controls. These findings are consistent with suggestions that the root cap is not only the site of perception but also the location of the initial redistribution of effectors that ultimately leads to curvature.

  6. Gauge and non-gauge curvature tensor copies

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1982-10-01

    A procedure for constructing curvature tensor copies is discussed using the anholonomic geometrical framework. The corresponding geometries are compared and the notion of gauge copy is elucidated. An explicit calculation is also made. (author)

  7. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating

    KAUST Repository

    Zhang, Lianbin

    2015-07-01

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto porous stainless steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water–air interface, collect and convert solar light into heat, and locally heat only the water surface for an enhanced evaporation.

  8. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating

    KAUST Repository

    Zhang, Lianbin; Tang, Bo; Wu, Jinbo; Li, Renyuan; Wang, Peng

    2015-01-01

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto porous stainless steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water–air interface, collect and convert solar light into heat, and locally heat only the water surface for an enhanced evaporation.

  9. Curvature effect on nuclear 'pasta': Is it helpful for gyroid appearance?

    International Nuclear Information System (INIS)

    Nakazato, Ken'ichiro; Iida, Kei; Oyamatsu, Kazuhiro

    2011-01-01

    In supernova cores and neutron star crusts, nuclei are thought to deform to rodlike and slablike shapes, which are often called nuclear pasta. We study the equilibrium properties of the nuclear pasta by using a liquid-drop model with curvature corrections. It is confirmed that the curvature effect acts to lower the transition densities between different shapes. We also examine the gyroid structure, which was recently suggested as a different type of nuclear pasta by analogy with the polymer systems. The gyroid structure investigated in this paper is approximately formulated as an extension of the periodic minimal surface whose mean curvature vanishes. In contrast to our expectations, we find, from the present approximate formulation, that the curvature corrections act to slightly disfavor the appearance of the gyroid structure. By comparing the energy corrections in the gyroid phase and the hypothetical phases composed of d-dimensional spheres, where d is a general dimensionality, we show that the gyroid is unlikely to belong to a family of the generalized dimensional spheres.

  10. FY 2016 Status Report: CIRFT Testing Data Analyses and Updated Curvature Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    This report provides a detailed description of FY15 test result corrections/analysis based on the FY16 Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) test program methodology update used to evaluate the vibration integrity of spent nuclear fuel (SNF) under normal transportation conditions. The CIRFT consists of a U-frame testing setup and a real-time curvature measurement method. The three-component U-frame setup of the CIRFT has two rigid arms and linkages to a universal testing machine. The curvature of rod bending is obtained through a three-point deflection measurement method. Three linear variable differential transformers (LVDTs) are used and clamped to the side connecting plates of the U-frame to capture the deformation of the rod. The contact-based measurement, or three-LVDT-based curvature measurement system, on SNF rods has been proven to be quite reliable in CIRFT testing. However, how the LVDT head contacts the SNF rod may have a significant effect on the curvature measurement, depending on the magnitude and direction of rod curvature. It has been demonstrated that the contact/curvature issues can be corrected by using a correction on the sensor spacing. The sensor spacing defines the separation of the three LVDT probes and is a critical quantity in calculating the rod curvature once the deflections are obtained. The sensor spacing correction can be determined by using chisel-type probes. The method has been critically examined this year and has been shown to be difficult to implement in a hot cell environment, and thus cannot be implemented effectively. A correction based on the proposed equivalent gauge-length has the required flexibility and accuracy and can be appropriately used as a correction factor. The correction method based on the equivalent gauge length has been successfully demonstrated in CIRFT data analysis for the dynamic tests conducted on Limerick (LMK) (17 tests), North Anna (NA) (6 tests), and Catawba mixed oxide (MOX

  11. On Mass, Spacetime Curvature, and Gravity

    Science.gov (United States)

    Janis, Allen I.

    2018-01-01

    The frequently used analogy of a massive ball distorting an elastic sheet, which is used to illustrate why mass causes spacetime curvature and gravitational attraction, is criticized in this article. A different analogy that draws on the students' previous knowledge of spacetime diagrams in special relativity is suggested.

  12. Black hole production in particle collisions and higher curvature gravity

    International Nuclear Information System (INIS)

    Rychkov, Vyacheslav S.

    2004-01-01

    The problem of black hole production in trans-Planckian particle collisions is revisited, in the context of large extra dimensions scenarios of TeV-scale gravity. The validity of the standard description of this process (two colliding Aichelburg-Sexl shock waves in classical Einstein gravity) is questioned. It is observed that the classical spacetime has large curvature along the transverse collision plane, as signaled by the curvature invariant (R μνλσ ) 2 . Thus quantum gravity effects, and in particular higher curvature corrections to the Einstein gravity, cannot be ignored. To give a specific example of what may happen, the collision is reanalyzed in the Einstein-Lanczos-Lovelock gravity theory, which modifies the Einstein-Hilbert Lagrangian by adding a particular 'Gauss-Bonnet' combination of curvature squared terms. The analysis uses a series of approximations, which reduce the field equations to a tractable second order nonlinear PDE of the Monge-Ampere type. It is found that the resulting spacetime is significantly different from the pure Einstein case in the future of the transverse collision plane. These considerations cast serious doubts on the geometric cross section estimate, which is based on the classical Einstein gravity description of the black hole production process

  13. Curvature correction of retinal OCTs using graph-based geometry detection

    Science.gov (United States)

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D.; Sonka, Milan

    2013-05-01

    In this paper, we present a new algorithm as an enhancement and preprocessing step for acquired optical coherence tomography (OCT) images of the retina. The proposed method is composed of two steps, first of which is a denoising algorithm with wavelet diffusion based on a circular symmetric Laplacian model, and the second part can be described in terms of graph-based geometry detection and curvature correction according to the hyper-reflective complex layer in the retina. The proposed denoising algorithm showed an improvement of contrast-to-noise ratio from 0.89 to 1.49 and an increase of signal-to-noise ratio (OCT image SNR) from 18.27 to 30.43 dB. By applying the proposed method for estimation of the interpolated curve using a full automatic method, the mean ± SD unsigned border positioning error was calculated for normal and abnormal cases. The error values of 2.19 ± 1.25 and 8.53 ± 3.76 µm were detected for 200 randomly selected slices without pathological curvature and 50 randomly selected slices with pathological curvature, respectively. The important aspect of this algorithm is its ability in detection of curvature in strongly pathological images that surpasses previously introduced methods; the method is also fast, compared to the relatively low speed of similar methods.

  14. Vertex Normals and Face Curvatures of Triangle Meshes

    KAUST Repository

    Sun, Xiang

    2016-08-12

    This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals deserves to be called a ʼnormal’ congruence. Our main results are a discussion of various definitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula.

  15. Experimental and numerical investigation of laser forming of cylindrical surfaces with arbitrary radius of curvature

    Directory of Open Access Journals (Sweden)

    Mehdi Safari

    2016-09-01

    Full Text Available In this work, laser forming of cylindrical surfaces with arbitrary radius of curvature is investigated experimentally and numerically. For laser forming of cylindrical surfaces with arbitrary radius of curvature, a new and comprehensive method is proposed in this paper. This method contains simple linear irradiating lines and using an analytical method, required process parameters for laser forming of a cylindrical surface with a specific radius of curvature is proposed. In this method, laser output power, laser scanning speed and laser beam diameter are selected based on laser machine and process limitations. As in the laser forming of a cylindrical surface, parallel irradiating lines are needed; therefore key parameter for production of a cylindrical surface with a specific radius of curvature is the number of irradiating lines. Hence, in the proposed analytical method, the required number of irradiating lines for production of a cylindrical surface with a specific radius of curvature is suggested. Performance of the proposed method for production of cylindrical surface with a specific radius of curvature is verified with experimental tests. The results show that using proposed analytical method, cylindrical surfaces with any radius of curvature can be produced successfully.

  16. Quantitative three-dimensional analysis of root canal curvature in maxillary first molars using micro-computed tomography.

    Science.gov (United States)

    Lee, Jong-Ki; Ha, Byung-Hyun; Choi, Jeong-Ho; Heo, Seok-Mo; Perinpanayagam, Hiran

    2006-10-01

    In endodontic therapy, access and instrumentation are strongly affected by root canal curvature. However, the few studies that have actually measured curvature are mostly from two-dimensional radiographs. The purpose of this study was to measure the three-dimensional (3D) canal curvature in maxillary first molars using micro-computed tomography (microCT) and mathematical modeling. Extracted maxillary first molars (46) were scanned by microCT (502 image slices/tooth, 1024 X 1024 pixels, voxel size of 19.5 x 19.5 x 39.0 microm) and their canals reconstructed by 3D modeling software. The intersection of major and minor axes in the canal space of each image slice were connected to create an imaginary central axis for each canal. The radius of curvature of the tangential circle was measured and inverted as a measure of curvature using custom-made mathematical modeling software. Root canal curvature was greatest in the apical third and least in the middle third for all canals. The greatest curvatures were in the mesiobuccal (MB) canal (0.76 +/- 0.48 mm(-1)) with abrupt curves, and the least curvatures were in the palatal (P) canal (0.38 +/- 0.34 mm(-1)) with a gradual curve. This study has measured the 3D curvature of root canals in maxillary first molars and reinforced the value of microCT with mathematical modeling.

  17. Higher Curvature Supergravity, Supersymmetry Breaking and Inflation

    CERN Document Server

    Ferrara, Sergio

    2017-01-01

    In these lectures, after a short introduction to cosmology, we discuss the supergravity embedding of higher curvature models of inflation. The supergravity description of such models is presented for the two different formulations of minimal supergravity.

  18. Regional surface geometry of the rat stomach based on three-dimensional curvature analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liao Donghua [Center of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, DK-9100 Aalborg (Denmark); Zhao Jingbo [Center of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, DK-9100 Aalborg (Denmark); Gregersen, Hans [Center of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, DK-9100 Aalborg (Denmark)

    2005-01-21

    A better understanding of gastric accommodation and gastric perception requires knowledge of regional gastric geometry and local gastric tension throughout the stomach. An analytic method based on medical imaging data was developed in this study to describe the three-dimensional (3D) rat stomach geometry and tension distribution. The surface principal radii of curvatures were simulated and the surface tension was calculated in the glandular and non-glandular region of the stomach at pressures from 0 Pa to 800 Pa. The radii of curvature and tension distribution in the stomach were non-homogeneous. The radii of curvature in the glandular stomach were larger than those in the non-glandular region at pressures less than 100 Pa (P < 0.001). When the pressure increased to more than 200 Pa, the radii of curvature in the non-glandular stomach was larger than in the glandular stomach (P < 0.05). The curvature and tension distribution mapping using medical imaging technology and 3D models can be used to characterize and distinguish the physical behaviour in separate regions of the stomach.

  19. Regional surface geometry of the rat stomach based on three-dimensional curvature analysis

    International Nuclear Information System (INIS)

    Liao Donghua; Zhao Jingbo; Gregersen, Hans

    2005-01-01

    A better understanding of gastric accommodation and gastric perception requires knowledge of regional gastric geometry and local gastric tension throughout the stomach. An analytic method based on medical imaging data was developed in this study to describe the three-dimensional (3D) rat stomach geometry and tension distribution. The surface principal radii of curvatures were simulated and the surface tension was calculated in the glandular and non-glandular region of the stomach at pressures from 0 Pa to 800 Pa. The radii of curvature and tension distribution in the stomach were non-homogeneous. The radii of curvature in the glandular stomach were larger than those in the non-glandular region at pressures less than 100 Pa (P < 0.001). When the pressure increased to more than 200 Pa, the radii of curvature in the non-glandular stomach was larger than in the glandular stomach (P < 0.05). The curvature and tension distribution mapping using medical imaging technology and 3D models can be used to characterize and distinguish the physical behaviour in separate regions of the stomach

  20. Moment-Curvature Behaviors of Concrete Beams Singly Reinforced by Steel-FRP Composite Bars

    Directory of Open Access Journals (Sweden)

    Zeyang Sun

    2017-01-01

    Full Text Available A steel-fiber-reinforced polymer (FRP composite bar (SFCB is a kind of rebar with inner steel bar wrapped by FRP, which can achieve a better anticorrosion performance than that of ordinary steel bar. The high ultimate strength of FRP can also provide a significant increase in load bearing capacity. Based on the adequate simulation of the load-displacement behaviors of concrete beams reinforced by SFCBs, a parametric analysis of the moment-curvature behaviors of concrete beams that are singly reinforced by SFCB was conducted. The critical reinforcement ratio for differentiating the beam’s failure mode was presented, and the concept of the maximum possible peak curvature (MPPC was proposed. After the ultimate curvature reached MPPC, it decreased with an increase in the postyield stiffness ratio (rsf, and the theoretical calculation method about the curvatures before and after the MPPC was derived. The influence of the reinforcement ratio, effective depth, and FRP ultimate strain on the ultimate point was studied by the dimensionless moment and curvature. By calculating the envelope area under the moment-curvature curve, the energy ductility index can obtain a balance between the bearing capacity and the deformation ability. This paper can provide a reference for the design of concrete beams that are reinforced by SFCB or hybrid steel bar/FRP bar.

  1. Incorporating contact angles in the surface tension force with the ACES interface curvature scheme

    Science.gov (United States)

    Owkes, Mark

    2017-11-01

    In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).

  2. Effects of curvature and rotation on turbulence in the NASA low-speed centrifugal compressor impeller

    Science.gov (United States)

    Moore, Joan G.; Moore, John

    1992-01-01

    The flow in the NASA Low-Speed Impeller is affected by both curvature and rotation. The flow curves due to the following: (1) geometric curvature, e.g. the curvature of the hub and shroud profiles in the meridional plane and the curvature of the backswept impeller blades; and (2) secondary flow vortices, e.g. the tip leakage vortex. Changes in the turbulence and effective turbulent viscosity in the impeller are investigated. The effects of these changes on three-dimensional flow development are discussed. Two predictions of the flow in the impeller, one with, and one without modification to the turbulent viscosity due to rotation and curvature, are compared. Some experimental and theoretical background for the modified mixing length model of turbulent viscosity will also be presented.

  3. Profile Curvature Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Profile curvature was calculated from the bathymetry surface for each raster cell using the ArcGIS 3D Analyst "Curvature" Tool. Profile curvature describes the rate...

  4. Does maltose influence on the elasticity of SOPC membrane?

    Energy Technology Data Exchange (ETDEWEB)

    Genova, J; Zheliaskova, A; Mitov, M D, E-mail: ulia@issp.bas.b [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72, Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria)

    2010-11-01

    Thermally induced shape fluctuations of giant quasi-spherical lipid vesicles are used to study the influence of the disaccharide maltose, dissolved in the aqueous solution, on the curvature elasticity k{sub c} of a lipid membrane. The influence of the carbohydrate solute is investigated throughout a considerably wide interval of concentrations. The values of the bending elastic modulus for 200 mM and 400 mM of maltose in the water solution are obtained. The data for k{sub c} in presence of maltose is compared with previously obtained results for this constant for the most popular hydrocarbons: monosaccharides glucose and fructose and disaccharides sucrose and trehalose. It is shown that the presence of maltose, dissolved in the aqueous phase surrounding the membrane does not influence on the bending elasticity with the increase of its concentration in the aqueous solution. Up to our knowledge this is the first sugar that does not show decrease of the bending elastic modulus of the lipid membrane, when present in the water surrounding it in concentration up to 400 mM.

  5. Extraction Socket Preservation Using Porcine-Derived Collagen Membrane Alone or Associated with Porcine-Derived Bone. Clinical Results of Randomized Controlled Study

    Directory of Open Access Journals (Sweden)

    Renzo Guarnieri

    2017-03-01

    Full Text Available Objectives: The aim of present randomized controlled clinical trial was to clinically evaluate hard tissue changes after extraction socket preservation procedures compared to natural spontaneous healing. Material and Methods: Thirty patients were enrolled in the present study and underwent single-tooth extraction in the premolar/molar areas. Ten sites were grafted with porcine-derived bone covered by collagen membrane, 10 covered by porcine-derived collagen membrane alone, and 10 underwent natural spontaneous healing. Vertical and horizontal bone changes after 3-month were evaluated at implant placement. Results: The vertical and horizontal bone changes at the extraction sockets treated with collagen membrane alone (vertical: -0.55 [SD 0.11] mm, and horizontal: -1.21 [SD 0.69] mm and collagen membrane plus porcine-derived bone (vertical: -0.37 [SD 0.7] mm, and horizontal: -0.91 [SD 0.53] mm were found significantly lower (P < 0.001, when compared to non-grafted sockets (vertical: -2.09 [SD 0.19] mm, and horizontal: -3.96 [SD 0.87] mm. In type 1 extraction sockets, in premolar sites, and in presence of vestibular bone thicknesses ≥ 1.5 mm, the use of collagen membrane alone revealed similar outcomes to those with additional graft material. Conclusions: At the re-entry surgery, extraction sockets grafted with porcine-derived bone and covered by collagen membrane, and extraction sockets covered by porcine-derived collagen membrane alone, showed significantly lower vertical and horizontal bone changes, compared to extraction sockets sites underwent natural spontaneous healing. However, a complete prevention of remodelling is not achievable, irrespective of the technique used.

  6. ON THE CURVATURE OF DUST LANES IN GALACTIC BARS

    International Nuclear Information System (INIS)

    Comeron, Sebastien; MartInez-Valpuesta, Inma; Knapen, Johan H.; Beckman, John E.

    2009-01-01

    We test the theoretical prediction that the straightest dust lanes in bars are found in strongly barred galaxies, or more specifically, that the degree of curvature of the dust lanes is inversely proportional to the strength of the bar. The test uses archival images of barred galaxies for which a reliable nonaxisymmetric torque parameter (Q b ) and the radius at which Q b has been measured (r(Q b )) have been published in the literature. Our results confirm the theoretical prediction but show a large spread that cannot be accounted for by measurement errors. We simulate 238 galaxies with different bar and bulge parameters in order to investigate the origin of the spread in the dust lane curvature versus Q b relation. From these simulations, we conclude that the spread is greatly reduced when describing the bar strength as a linear combination of the bar parameters Q b and the quotient of the major and minor axes of the bar, a/b. Thus, we conclude that the dust lane curvature is predominantly determined by the parameters of the bar.

  7. Generic Properties of Curvature Sensing through Vision and Touch

    Directory of Open Access Journals (Sweden)

    Birgitta Dresp-Langley

    2013-01-01

    Full Text Available Generic properties of curvature representations formed on the basis of vision and touch were examined as a function of mathematical properties of curved objects. Virtual representations of the curves were shown on a computer screen for visual scaling by sighted observers (experiment 1. Their physical counterparts were placed in the two hands of blindfolded and congenitally blind observers for tactile scaling. The psychophysical data show that curvature representations in congenitally blind individuals, who never had any visual experience, and in sighted observers, who rely on vision most of the time, are statistically linked to the same mathematical properties of the curves. The perceived magnitude of object curvature, sensed through either vision or touch, is related by a mathematical power law, with similar exponents for the two sensory modalities, to the aspect ratio of the curves, a scale invariant geometric property. This finding supports biologically motivated models of sensory integration suggesting a universal power law for the adaptive brain control and balance of motor responses to environmental stimuli from any sensory modality.

  8. Constant scalar curvature hypersurfaces in (3 + 1) -dimensional GHMC Minkowski spacetimes

    Science.gov (United States)

    Smith, Graham

    2018-06-01

    We prove that every (3 + 1) -dimensional flat GHMC Minkowski spacetime which is not a translation spacetime or a Misner spacetime carries a unique foliation by spacelike hypersurfaces of constant scalar curvature. In other words, we prove that every such spacetime carries a unique time function with isochrones of constant scalar curvature. Furthermore, this time function is a smooth submersion.

  9. Spontaneous third ventriculostomy 8 years after diagnosis of obstructive hydrocephalus.

    Science.gov (United States)

    Öğrenci, Ahmet; Ekşi, Murat Şakir; Koban, Orkun

    2016-09-01

    Spontaneous ventriculostomy is spontaneous rupture of membranes separating the ventricular system from the subarachnoid space in patients with chronic obstructive hydrocephalus that ends with resolution of symptoms. We present a case of spontaneous third ventriculostomy occurred in a 19-year-old girl 8 years after the initial diagnosis of hydrocephalus. An 11-year-old girl applied to the clinic with intermittent headaches. She was neurologically stable with no visual problems. On her brain MRI, obstructive hydrocephalus was observed. Cerebrospinal fluid diversion procedures were recommended, yet the family denied any interventional procedure. She had routine follow-ups with occasional clinical admissions because of ongoing intermittent headaches. On her last clinical visit, 8 years after the first one, she was in well condition with improvement in her headache in the last 4 months. Her new brain MRI showed an active CSF flow between the basal cistern and the third ventricle. In patients with aqueductal stenosis and without any other mass lesion, wait and see protocol might be conveyed in case of mild symptoms of hydrocephalus. However, there is need for large-scaled studies to make a more comprehensive statement for benign obstructive hydrocephalus cases.

  10. Experimental Investigations of Direct and Converse Flexoelectric Effect in Bilayer Lipid Membranes.

    Science.gov (United States)

    Todorov, Angelio Todorov

    Flexoelectric coefficients (direct and converse), electric properties (capacitance and resistivity) and mechanical properties (thickness and elastic coefficients) have been determined for bilayer lipid membranes (BLMs) prepared from egg yolk lecithin (EYL), glycerol monoleate (GMO), phosphatidyl choline (PC) and phosphatidyl serine (PS) as a function of frequency, pH and surface charge modifiers. Direct flexoelectric effect manifested itself in the development of microvolt range a.c. potential (U_{f}) upon subjecting one side of a BLM to an oscillating hydrostatic pressure, in the 100-1000 Hz range. Operationally, the flexoelectric coefficient (f) is expressed by the ratio between U_{f} and the change of curvature (c) which accompanied the flexing of the membrane. Membrane curvature was determined by means of either the electric method (capacitance microphone effect) or by the newly developed method of stroboscopic interferometry. Real-time stroboscopic interferometry coupled with simultaneous electric measurements, provided a direct method for the determination of f. Two different frequency regimes of f were recognized. At low frequencies (300 Hz), associated with free mobility of the surfactant, f-values of 24.1 times 10^{-19} and 0.87 times 10^ {-19} Coulombs were obtained for PC and GMO BLMs. At high frequencies (>300 Hz), associated with blocked mobility of the surfactant, f-values of 16.5 times 10^ {-19} and 0.30 times 10^{-19} Coulombs were obtained for PC and GMO BLMs. The theoretically calculated value for the GMO BLM oscillating at high frequency (0.12 times 10^{-19 } Coulombs) agreed well with that determined experimentally (0.3 times 10 ^{-19} Coulombs). For charged bovine brain PS BLM the observed flexocoefficient was f = 4.0 times 10^{ -18} Coulombs. Converse flexoelectric effect manifested itself in voltage-induced BLM curvature. Observations were carried out on uranyl acetate (UA) stabilized PS BLM under a.c. excitation. Frequency dependence of f

  11. Gaussian curvature on hyperelliptic Riemann surfaces

    Indian Academy of Sciences (India)

    Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 2, May 2014, pp. 155–167. c Indian Academy of Sciences. Gaussian curvature on hyperelliptic Riemann surfaces. ABEL CASTORENA. Centro de Ciencias Matemáticas (Universidad Nacional Autónoma de México,. Campus Morelia) Apdo. Postal 61-3 Xangari, C.P. 58089 Morelia,.

  12. The Riemann-Lovelock Curvature Tensor

    OpenAIRE

    Kastor, David

    2012-01-01

    In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth-order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k \\le D

  13. Factors affecting root curvature of mandibular first molar

    International Nuclear Information System (INIS)

    Choi, Hang Moon; Yi, Won Jin; Heo, Min Suk; Kim, Jung Hwa; Choi, Soon Chul; Park, Tae Won

    2006-01-01

    To find the cause of root curvature by use of panoramic and lateral cephalometric radiograph. Twenty six 1st graders whose mandibular 1st molars just emerged into the mouth were selected. Panoramic and lateral cephalometric radiograph were taken at grade 1 and 6, longitudinally. In cephalometric radio graph, mandibular plane angle, ramus-occlusal place angle, gonial angle, and gonion-gnathion distance(Go-Gn distance) were measured. In panoramic radiograph, elongated root length and root angle were measured by means of digital subtraction radiography. Occlusal plane-tooth axis angle was measured, too. Pearson correlations were used to evaluate the relationships between root curvature and elongated length and longitudinal variations of all variables. Multiple regression equation using related variables was computed. The pearson correlation coefficient between curved angle and longitudinal variations of occlusal plane-tooth axis angle and ramus-occlusal plane angle was 0.350 and 0.401, respectively (p 1 +0.745X 2 (Y: root angle, X 1 : variation of occlusal plane-tooth axis angle, X 2 : variation of ramus-occlusal plane angle). It was suspected that the reasons of root curvature were change of tooth axis caused by contact with 2nd deciduous tooth and amount of mesial and superior movement related to change of occlusal plane

  14. Does Spontaneous Favorability to Power (vs. Universalism) Values Predict Spontaneous Prejudice and Discrimination?

    Science.gov (United States)

    Souchon, Nicolas; Maio, Gregory R; Hanel, Paul H P; Bardin, Brigitte

    2017-10-01

    We conducted five studies testing whether an implicit measure of favorability toward power over universalism values predicts spontaneous prejudice and discrimination. Studies 1 (N = 192) and 2 (N = 86) examined correlations between spontaneous favorability toward power (vs. universalism) values, achievement (vs. benevolence) values, and a spontaneous measure of prejudice toward ethnic minorities. Study 3 (N = 159) tested whether conditioning participants to associate power values with positive adjectives and universalism values with negative adjectives (or inversely) affects spontaneous prejudice. Study 4 (N = 95) tested whether decision bias toward female handball players could be predicted by spontaneous attitude toward power (vs. universalism) values. Study 5 (N = 123) examined correlations between spontaneous attitude toward power (vs. universalism) values, spontaneous importance toward power (vs. universalism) values, and spontaneous prejudice toward Black African people. Spontaneous positivity toward power (vs. universalism) values was associated with spontaneous negativity toward minorities and predicted gender bias in a decision task, whereas the explicit measures did not. These results indicate that the implicit assessment of evaluative responses attached to human values helps to model value-attitude-behavior relations. © 2016 The Authors. Journal of Personality Published by Wiley Periodicals, Inc.

  15. An optomechatronic curvature measurement array based on fiber Bragg gratings

    International Nuclear Information System (INIS)

    Chang, Hsing-Cheng; Lin, Shyan-Lung; Hung, San-Shan; Chang, I-Nan; Chen, Ya-Hui; Lin, Jung-Chih; Liu, Wen-Fung

    2014-01-01

    This study investigated an optomechatronic array-integrated signal processing module and a human–machine interface based on fiber Bragg grating sensing elements embedded in an elastic support matrix that involves using a self-located electromagnetic mechanism for curvature sensing and solid contour reconstruction. Using bilinear interpolation and average calculation methods, the smooth and accurate surface contours of convex and concave lenses are reconstructed in real-time. The elastic supporting optical sensing array is self-balanced to reduce operational errors. Compared with our previous single-head sensor, the sensitivity of the proposed array is improved by more than 15%. In the curvature range from −20.15 to +27.09 m −1 , the sensitivities are 3.53 pm m for the convex measurement and 2.15 pm m for the concave measurement with an error rate below 8.89%. The curvature resolutions are 0.283 and 0.465 m −1 for convex and concave lenses, respectively. This array could be applied in the curvature measurement of solar collectors to monitor energy conversion efficiency or could be used to monitor the wafer-level thin-film fabrication process. (paper)

  16. Fermion localization in higher curvature and scalar-tensor theories of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Joydip [Scottish Church College, Department of Physics, Kolkata (India); Paul, Tanmoy; SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2017-12-15

    It is well known that, in a braneworld model, the localization of fermions on a lower dimensional submanifold (say a TeV 3-brane) is governed by the gravity in the bulk, which also determines the corresponding phenomenology on the brane. Here we consider a five dimensional warped spacetime where the bulk geometry is governed by higher curvature like F(R) gravity. In such a scenario, we explore the role of higher curvature terms on the localization of bulk fermions which in turn determines the effective radion-fermion coupling on the brane. Our result reveals that, for appropriate choices of the higher curvature parameter, the profiles of the massless chiral modes of the fermions may get localized near the TeV brane, while those for massive Kaluza-Klein (KK) fermions localize towards the Planck brane. We also explore these features in the dual scalar-tensor model by appropriate transformations. The localization property turns out to be identical in the two models. This rules out the possibility of any signature of massive KK fermions in TeV scale collider experiments due to higher curvature gravity effects. (orig.)

  17. Curvature correction of retinal OCTs using graph-based geometry detection

    International Nuclear Information System (INIS)

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D; Sonka, Milan

    2013-01-01

    In this paper, we present a new algorithm as an enhancement and preprocessing step for acquired optical coherence tomography (OCT) images of the retina. The proposed method is composed of two steps, first of which is a denoising algorithm with wavelet diffusion based on a circular symmetric Laplacian model, and the second part can be described in terms of graph-based geometry detection and curvature correction according to the hyper-reflective complex layer in the retina. The proposed denoising algorithm showed an improvement of contrast-to-noise ratio from 0.89 to 1.49 and an increase of signal-to-noise ratio (OCT image SNR) from 18.27 to 30.43 dB. By applying the proposed method for estimation of the interpolated curve using a full automatic method, the mean ± SD unsigned border positioning error was calculated for normal and abnormal cases. The error values of 2.19 ± 1.25 and 8.53 ± 3.76 µm were detected for 200 randomly selected slices without pathological curvature and 50 randomly selected slices with pathological curvature, respectively. The important aspect of this algorithm is its ability in detection of curvature in strongly pathological images that surpasses previously introduced methods; the method is also fast, compared to the relatively low speed of similar methods. (paper)

  18. Characteristics of central binding sites for [3H] DAMGO in spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Gulati, A.; Bhargava, H.N.

    1990-01-01

    The binding of [ 3 H] DAMGO, a highly selective ligand for μ-opiate receptors, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats were determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. [ 3 H] DAMGO bound to membranes of brain regions and spinal cord at a single high affinity site. The receptor density (B max value) and apparent dissociation constant (K d value) of [ 3 H] DAMGO to bind to membranes of hippocampus, corpus striatum, pons and medulla, cortex and spinal cord of WKY and SHR rats did not differ. The B max value of [ 3 H] DAMGO in membranes of hypothalamus and midbrain of SHR rats was significantly higher than in WKY rats but the K d values in the two strains did not differ. On the other hand, the B max value of [ 3 H] DAMGO in membranes of amygdala of SHR rats was lower than that of WKY rats but the K d values in the two strains were similar

  19. Physical and Geometric Interpretations of the Riemann Tensor, Ricci Tensor, and Scalar Curvature

    OpenAIRE

    Loveridge, Lee C.

    2004-01-01

    Various interpretations of the Riemann Curvature Tensor, Ricci Tensor, and Scalar Curvature are described. Also, the physical meanings of the Einstein Tensor and Einstein's Equations are discussed. Finally a derivation of Newtonian Gravity from Einstein's Equations is given.

  20. Insertion of Neurotransmitters into a Lipid Bilayer Membrane and Its Implication on Membrane Stability: A Molecular Dynamics Study.

    Science.gov (United States)

    Shen, Chun; Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2017-03-17

    The signaling molecules in neurons, called neurotransmitters, play an essential role in the transportation of neural signals, during which the neurotransmitters interact with not only specific receptors, but also cytomembranes, such as synaptic vesicle membranes and postsynaptic membranes. Through extensive molecular dynamics simulations, the atomic-scale insertion dynamics of typical neurotransmitters, including methionine enkephalin (ME), leucine enkephalin (LE), dopamine (DA), acetylcholine (ACh), and aspartic acid (ASP), into lipid bilayers is investigated. The results show that the first three neurotransmitters (ME, LE, and DA) are able to diffuse freely into both 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) membranes, and are guided by the aromatic residues Tyr and Phe. Only a limited number of these neurotransmitters are allowed to penetrate into the membrane, which suggests an intrinsic mechanism by which the membrane is protected from being destroyed by excessive inserted neurotransmitters. After spontaneous insertion, the neurotransmitters disturb the surrounding phospholipids in the membrane, as indicated by the altered distribution of components in lipid leaflets and the disordered lipid tails. In contrast, the last two neurotransmitters (ACh and ASP) cannot enter the membrane, but instead always diffuse freely in solution. These findings provide an understanding at the atomic level of how neurotransmitters interact with the surrounding cytomembrane, as well as their impact on membrane behavior. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    Science.gov (United States)

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  2. Perforin rapidly induces plasma membrane phospholipid flip-flop.

    Directory of Open Access Journals (Sweden)

    Sunil S Metkar

    Full Text Available The cytotoxic cell granule secretory pathway is essential for host defense. This pathway is fundamentally a form of intracellular protein delivery where granule proteases (granzymes from cytotoxic lymphocytes are thought to diffuse through barrel stave pores generated in the plasma membrane of the target cell by the pore forming protein perforin (PFN and mediate apoptotic as well as additional biological effects. While recent electron microscopy and structural analyses indicate that recombinant PFN oligomerizes to form pores containing 20 monomers (20 nm when applied to liposomal membranes, these pores are not observed by propidium iodide uptake in target cells. Instead, concentrations of human PFN that encourage granzyme-mediated apoptosis are associated with pore structures that unexpectedly favor phosphatidylserine flip-flop measured by Annexin-V and Lactadherin. Efforts that reduce PFN mediated Ca influx in targets did not reduce Annexin-V reactivity. Antigen specific mouse CD8 cells initiate a similar rapid flip-flop in target cells. A lipid that augments plasma membrane curvature as well as cholesterol depletion in target cells enhance flip-flop. Annexin-V staining highly correlated with apoptosis after Granzyme B (GzmB treatment. We propose the structures that PFN oligomers form in the membrane bilayer may include arcs previously observed by electron microscopy and that these unusual structures represent an incomplete mixture of plasma membrane lipid and PFN oligomers that may act as a flexible gateway for GzmB to translocate across the bilayer to the cytosolic leaflet of target cells.

  3. Non-Euclidean geometry and curvature two-dimensional spaces, volume 3

    CERN Document Server

    Cannon, James W

    2017-01-01

    This is the final volume of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. Einstein showed how to interpret gravity as the dynamic response to the curvature of space-time. Bill Thurston showed us that non-Euclidean geometries and curvature are essential to the understanding of low-dimensional spaces. This third and final volume aims to give the reader a firm intuitive understanding of these concepts in dimension 2. The volume first demonstrates a number of the most important properties of non-Euclidean geometry by means of simple infinite graphs that approximate that geometry. This is followed by a long chapter taken from lectures the author gave at MSRI, wh...

  4. Weyl curvature tensor in static spherical sources

    International Nuclear Information System (INIS)

    Ponce de Leon, J.

    1988-01-01

    The role of the Weyl curvature tensor in static sources of the Schwarzschild field is studied. It is shown that in general the contribution from the Weyl curvature tensor (the ''purely gravitational field energy'') to the mass-energy inside the body may be positive, negative, or zero. It is proved that a positive (negative) contribution from the Weyl tensor tends to increase (decrease) the effective gravitational mass, the red-shift (from a point in the sphere to infinity), as well as the gravitational force which acts on a constituent matter element of a body. It is also proved that the contribution from the Weyl tensor always is negative in sources with surface gravitational potential larger than (4/9. It is pointed out that large negative contributions from the Weyl tensor could give rise to the phenomenon of gravitational repulsion. A simple example which illustrates the results is discussed

  5. Role of mitochondria in modulation of spontaneous Ca2+ waves in freshly dispersed interstitial cells of Cajal from the rabbit urethra.

    Science.gov (United States)

    Sergeant, Gerard P; Bradley, Eamonn; Thornbury, Keith D; McHale, Noel G; Hollywood, Mark A

    2008-10-01

    Interstitial cells of Cajal (ICC) isolated from the rabbit urethra exhibit pacemaker activity that results from spontaneous Ca(2+) waves. The purpose of this study was to investigate if this activity was influenced by Ca(2+) uptake into mitochondria. Spontaneous Ca(2+) waves were recorded using a Nipkow spinning disk confocal microscope and spontaneous transient inward currents (STICs) were recorded using the whole-cell patch clamp technique. Disruption of the mitochondrial membrane potential with the electron transport chain inhibitors rotenone (10 microm) and antimycin A (5 microm) abolished Ca(2+) waves and increased basal Ca(2+) levels. Similar results were achieved when mitochondria membrane potential was collapsed using the protonophores FCCP (0.2 microm) and CCCP (1 microm). Spontaneous Ca(2+) waves were not inhibited by the ATP synthase inhibitor oligomycin (1 microm), suggesting that these effects were not attributable to an effect on ATP levels. STICs recorded under voltage clamp at -60 mV were also inhibited by CCCP and antimycin A. Dialysis of cells with the mitochondrial uniporter inhibitor RU360 (10 microm) also inhibited STICS. Stimulation of Ca(2+) uptake into mitochondria using the plant flavonoid kaempferol (10 microm) induced a series of propagating Ca(2+) waves. The kaempferol-induced activity was inhibited by application of caffeine (10 mm) or removal of extracellular Ca(2+), but was not significantly affected by the IP(3) receptor blocker 2-APB (100 microm). These data suggest that spontaneous Ca(2+) waves in urethral ICC are regulated by buffering of cytoplasmic Ca(2+) by mitochondria.

  6. Anatomical study of the radius and center of curvature of the distal femoral condyle

    KAUST Repository

    Kosel, Jü rgen; Giouroudi, Ioanna; Scheffer, Cornie; Dillon, Edwin Mark; Erasmus, Pieter J.

    2010-01-01

    In this anatomical study, the anteroposterior curvature of the surface of 16 cadaveric distal femurs was examined in terms of radii and center point. Those two parameters attract high interest due to their significance for total knee arthroplasty. Basically, two different conclusions have been drawn in foregoing studies: (1) The curvature shows a constant radius and (2) the curvature shows a variable radius. The investigations were based on a new method combining three-dimensional laser-scanning and planar geometrical analyses. This method is aimed at providing high accuracy and high local resolution. The high-precision laser scanning enables the exact reproduction of the distal femurs - including their cartilage tissue - as a three-dimensional computer model. The surface curvature was investigated on intersection planes that were oriented perpendicularly to the surgical epicondylar line. Three planes were placed at the central part of each condyle. The intersection of either plane with the femur model was approximated with the help of a b-spline, yielding three b-splines on each condyle. The radii and center points of the circles, approximating the local curvature of the b-splines, were then evaluated. The results from all three b-splines were averaged in order to increase the reliability of the method. The results show the variation in the surface curvatures of the investigated samples of condyles. These variations are expressed in the pattern of the center points and the radii of the curvatures. The standard deviations of the radii for a 90 deg arc on the posterior condyle range from 0.6 mm up to 5.1 mm, with an average of 2.4 mm laterally and 2.2 mm medially. No correlation was found between the curvature of the lateral and medial condyles. Within the range of the investigated 16 samples, the conclusion can be drawn that the condyle surface curvature is not constant and different for all specimens when viewed along the surgical epicondylar axis. For the portion

  7. Curvature tensors and unified field equations on SEX/sub n/

    International Nuclear Information System (INIS)

    Chung, K.T.; Lee, I.L.

    1988-01-01

    We study the curvature tensors and field equations in the n-dimensional SE manifold SEX/sub n/. We obtain several basic properties of the vectors S/subλ/ and U/sub λ/ and then of the SE curvature tensor and its contractions, such as a generalized Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi identity satisfied by the SE Einstein tensor. Finally, a system of field equations is discussed in SEX/sub n/ an done of its particular solutions is constructed and displayed

  8. Cosmic censorship, persistent curvature and asymptotic causal pathology

    International Nuclear Information System (INIS)

    Newman, R.P.A.C.

    1984-01-01

    The paper examines cosmic censorship in general relativity theory. Conformally flat space-times; persistent curvature; weakly asymptotically simple and empty asymptotes; censorship conditions; and the censorship theorem; are all discussed. (U.K.)

  9. The effects of curvature on the flow field in rapidly rotating gas centrifuges

    International Nuclear Information System (INIS)

    Wood, H.G.; Jordan, J.A.

    1984-01-01

    The effects of curvature on the fluid dynamics of rapidly rotating gas centrifuges are studied. A governing system of a linear partial differential equation and boundary conditions is derived based on a linearization of the equations for viscous compressible flow. This system reduces to the Onsager pancake model if the effects of curvature are neglected. Approximations to the solutions of the governing equations with and without curvature terms are obtained via a finite-element method. Two examples are considered: first where the flow is driven by a thermal gradient at the wall of the centrifuge, and then for the flow being driven by the introduction and removal of mass through the ends of the centrifuge. Comparisons of the results obtained show that, especially for the second example, the inclusion of the terms due to curvature in the model can have an appreciable effect on the solution. (author)

  10. Controllable soliton propagation based on phase-front curvature in asymmetrical nonlocal media

    Science.gov (United States)

    Zhang, Huafeng; Lü, Hua; Luo, Jianghua; Sun, Lihui

    2016-08-01

    The influence of phase-front curvature on the dynamical behavior of the fundamental mode soliton during its transmission in asymmetrical nonlocal media is studied in detail and the phase-front curvature can be imposed on the fundamental mode soliton by reshaping or phase imprinting technologies. By changing the phase-front curvature or its imposed position, controllable soliton propagation in asymmetrical nonlocal media can be achieved. Project supported by the National Natural Science Foundation of China (Grants Nos. 11547007 and 11304024), the Innovation Personnel Training Plan for Excellent Youth of Guangdong University Project (Grant No. 2013LYM_0023), and the Yangtze Fund for Youth Teams of Science and Technology Innovation (Grant No. 2015cqt03).

  11. Finger vein extraction using gradient normalization and principal curvature

    Science.gov (United States)

    Choi, Joon Hwan; Song, Wonseok; Kim, Taejeong; Lee, Seung-Rae; Kim, Hee Chan

    2009-02-01

    Finger vein authentication is a personal identification technology using finger vein images acquired by infrared imaging. It is one of the newest technologies in biometrics. Its main advantage over other biometrics is the low risk of forgery or theft, due to the fact that finger veins are not normally visible to others. Extracting finger vein patterns from infrared images is the most difficult part in finger vein authentication. Uneven illumination, varying tissues and bones, and changes in the physical conditions and the blood flow make the thickness and brightness of the same vein different in each acquisition. Accordingly, extracting finger veins at their accurate positions regardless of their thickness and brightness is necessary for accurate personal identification. For this purpose, we propose a new finger vein extraction method which is composed of gradient normalization, principal curvature calculation, and binarization. As local brightness variation has little effect on the curvature and as gradient normalization makes the curvature fairly uniform at vein pixels, our method effectively extracts finger vein patterns regardless of the vein thickness or brightness. In our experiment, the proposed method showed notable improvement as compared with the existing methods.

  12. Curvature-driven instabilities in the Elmo Bumpy Torus (EBT)

    International Nuclear Information System (INIS)

    Abe, H.; Spong, D.A.; Antonsen, T.M. Jr.; Tsang, K.T.; Nguyen, K.T.

    1982-01-01

    Curvature-driven instabilities are analyzed for an EBT configuration which consists of plasma interacting with a hot electron ring whose drift frequencies are larger than the growth rates predicted from conventional magnetohydrodynamic (MHD) theory. Stability criteria are obtained for five possible modes: the conventional hot electron interchange, a high-frequency hot electron interchange (at frequencies greater than the ion-cyclotron frequency), a compressional instability, a background plasma interchange, and an interacting pressure-driven interchange. A wide parameter regime for stable operation is found, which, however, severely deteriorates for a band of intermediate mode numbers. Finite Larmor radius effects can eliminate this deterioration; moreover, all short-wavelength curvature-driven modes are stabilized if the hot electron Larmor radius rho/sub h/ satisfies (kappa/sub perpendicular/rho/sub h/) 2 > 2Δ/[Rβ/sub h/(1 + P'/sub parallel//P'/sub perpendicular/)], where kappa/sub perpendicular/ is the transverse wavenumber, Δ is the ring half-width, R is the mid-plane radius of curvature, β/sub h/ is the hot electron beta value, and P' is the pressure gradient. Resonant wave-particle instabilities predicted by a new low frequency variational principle show that a variety of remnant instabilities may still persist

  13. Structure, Function, Self-Assembly and Origin of Simple Membrane Proteins

    Science.gov (United States)

    Pohorille, Andrew

    2003-01-01

    Integral membrane proteins perform such essential cellular functions as transport of ions, nutrients and waste products across cell walls, transduction of environmental signals, regulation of cell fusion, recognition of other cells, energy capture and its conversion into high-energy compounds. In fact, 30-40% of genes in modem organisms codes for membrane proteins. Although contemporary membrane proteins or their functional assemblies can be quite complex, their transmembrane fragments are usually remarkably simple. The most common structural motif for these fragments is a bundle of alpha-helices, but occasionally it could be a beta-barrel. In a series of molecular dynamics computer simulations we investigated self-organizing properties of simple membrane proteins based on these structural motifs. Specifically, we studied folding and insertion into membranes of short, nonpolar or amphiphatic peptides. We also investigated glycophorin A, a peptide that forms sequence-specific dimers, and a transmembrane aggregate of four identical alpha-helices that forms an efficient and selective voltage-gated proton channel was investigated. Many peptides are attracted to water-membrane interfaces. Once at the interface, nonpolar peptides spontaneously fold to a-helices. Whenever the sequence permits, peptides that contain both polar and nonpolar amino also adopt helical structures, in which polar and nonpolar amino acid side chains are immersed in water and membrane, respectively. Specific identity of side chains is less important. Helical peptides at the interface could insert into the membrane and adopt a transmembrane conformation. However, insertion of a single helix is unfavorable because polar groups in the peptide become completely dehydrated upon insertion. The unfavorable free energy of insertion can be regained by spontaneous association of peptides in the membrane. The first step in this process is the formation of dimers, although the most common are aggregates of 4

  14. The zero curvature formulation of the KP and the sKP equations

    International Nuclear Information System (INIS)

    Barcelos Neto, J.; Das, A.; Panda, S.; Roy, S.

    1992-01-01

    The Kadomtsev-Petviashvili equation is derived from the zero curvature condition associated with the gauge group SL(2,R) in 2+1 dimensions. A fermionic extension of the KP equation is also obtained using the zero curvature condition of the super group OS p (2/1), which reduces upon appropriate restriction to the Kupershmidt equation. (author). 17 refs

  15. Non-uniform dispersion of the source-sink relationship alters wavefront curvature.

    Directory of Open Access Journals (Sweden)

    Lucia Romero

    Full Text Available The distribution of cellular source-sink relationships plays an important role in cardiac propagation. It can lead to conduction slowing and block as well as wave fractionation. It is of great interest to unravel the mechanisms underlying evolution in wavefront geometry. Our goal is to investigate the role of the source-sink relationship on wavefront geometry using computer simulations. We analyzed the role of variability in the microscopic source-sink relationship in driving changes in wavefront geometry. The electrophysiological activity of a homogeneous isotropic tissue was simulated using the ten Tusscher and Panfilov 2006 action potential model and the source-sink relationship was characterized using an improved version of the Romero et al. safety factor formulation (SFm2. Our simulations reveal that non-uniform dispersion of the cellular source-sink relationship (dispersion along the wavefront leads to alterations in curvature. To better understand the role of the source-sink relationship in the process of wave formation, the electrophysiological activity at the initiation of excitation waves in a 1D strand was examined and the source-sink relationship was characterized using the two recently updated safety factor formulations: the SFm2 and the Boyle-Vigmond (SFVB definitions. The electrophysiological activity at the initiation of excitation waves was intimately related to the SFm2 profiles, while the SFVB led to several counterintuitive observations. Importantly, with the SFm2 characterization, a critical source-sink relationship for initiation of excitation waves was identified, which was independent of the size of the electrode of excitation, membrane excitability, or tissue conductivity. In conclusion, our work suggests that non-uniform dispersion of the source-sink relationship alters wavefront curvature and a critical source-sink relationship profile separates wave expansion from collapse. Our study reinforces the idea that the

  16. Comprehensive Use of Curvature for Robust and Accurate Online Surface Reconstruction.

    Science.gov (United States)

    Lefloch, Damien; Kluge, Markus; Sarbolandi, Hamed; Weyrich, Tim; Kolb, Andreas

    2017-12-01

    Interactive real-time scene acquisition from hand-held depth cameras has recently developed much momentum, enabling applications in ad-hoc object acquisition, augmented reality and other fields. A key challenge to online reconstruction remains error accumulation in the reconstructed camera trajectory, due to drift-inducing instabilities in the range scan alignments of the underlying iterative-closest-point (ICP) algorithm. Various strategies have been proposed to mitigate that drift, including SIFT-based pre-alignment, color-based weighting of ICP pairs, stronger weighting of edge features, and so on. In our work, we focus on surface curvature as a feature that is detectable on range scans alone and hence does not depend on accurate multi-sensor alignment. In contrast to previous work that took curvature into consideration, however, we treat curvature as an independent quantity that we consistently incorporate into every stage of the real-time reconstruction pipeline, including densely curvature-weighted ICP, range image fusion, local surface reconstruction, and rendering. Using multiple benchmark sequences, and in direct comparison to other state-of-the-art online acquisition systems, we show that our approach significantly reduces drift, both when analyzing individual pipeline stages in isolation, as well as seen across the online reconstruction pipeline as a whole.

  17. 3D Facial Similarity Measure Based on Geodesic Network and Curvatures

    Directory of Open Access Journals (Sweden)

    Junli Zhao

    2014-01-01

    Full Text Available Automated 3D facial similarity measure is a challenging and valuable research topic in anthropology and computer graphics. It is widely used in various fields, such as criminal investigation, kinship confirmation, and face recognition. This paper proposes a 3D facial similarity measure method based on a combination of geodesic and curvature features. Firstly, a geodesic network is generated for each face with geodesics and iso-geodesics determined and these network points are adopted as the correspondence across face models. Then, four metrics associated with curvatures, that is, the mean curvature, Gaussian curvature, shape index, and curvedness, are computed for each network point by using a weighted average of its neighborhood points. Finally, correlation coefficients according to these metrics are computed, respectively, as the similarity measures between two 3D face models. Experiments of different persons’ 3D facial models and different 3D facial models of the same person are implemented and compared with a subjective face similarity study. The results show that the geodesic network plays an important role in 3D facial similarity measure. The similarity measure defined by shape index is consistent with human’s subjective evaluation basically, and it can measure the 3D face similarity more objectively than the other indices.

  18. Accuracy evaluation of automatic quantification of the articular cartilage surface curvature from MRI

    DEFF Research Database (Denmark)

    Folkesson, Jenny; Dam, Erik B; Olsen, Ole F

    2007-01-01

    for intersubject comparisons. Digital phantoms were created to establish the accuracy of the curvature estimation methods. RESULTS: A comparison of the two curvature estimation methods to ground truth yielded absolute pairwise differences of 1.1%, and 4.8%, respectively. The interscan reproducibility for the two...

  19. Experimental study of curvature effects on jet impingement heat transfer on concave surfaces

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2017-04-01

    Full Text Available Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects. The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters: jet Reynolds number from 27000 to 130000, relative nozzle to surface distance from 3.3 to 30, and relative surface curvature from 0.005 to 0.030. Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics. On one hand, an increase of relative nozzle to surface distance (increasing jet diameter in fact enhances the average heat transfer around the surface for the same curved surface. On the other hand, the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter. Finally, experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect. This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces, which is of high importance to the design of the aircraft anti-icing system.

  20. Broad-spectrum antibiotics for spontaneous preterm labour: the ORACLE II randomised trial. ORACLE Collaborative Group.

    Science.gov (United States)

    Kenyon, S L; Taylor, D J; Tarnow-Mordi, W

    2001-03-31

    Preterm birth after spontaneous preterm labour is associated with death, neonatal disease, and long-term disability. Previous small trials of antibiotics for spontaneous preterm labour have reported inconclusive results. We did a randomised multicentre trial to resolve this issue. 6295 women in spontaneous preterm labour with intact membranes and without evidence of clinical infection were randomly assigned 250 mg erythromycin (n=1611), 325 mg co-amoxiclav (250 mg amoxicillin and 125 mg clavulanic acid; n=1550), both (n=1565), or placebo (n=1569) four times daily for 10 days or until delivery, whichever occurred earlier. The primary outcome measure was a composite of neonatal death, chronic lung disease, or major cerebral abnormality on ultrasonography before discharge from hospital. Analysis was by intention to treat. None of the trial antibiotics was associated with a lower rate of the composite primary outcome than placebo (erythromycin 90 [5.6%], co-amoxiclav 76 [5.0%], both antibiotics 91 [5.9%], vs placebo 78 [5.0%]). However, antibiotic prescription was associated with a lower occurrence of maternal infection. This trial provides evidence that antibiotics should not be routinely prescribed for women in spontaneous preterm labour without evidence of clinical infection.

  1. Norm of the Riemannian Curvature Tensor

    Indian Academy of Sciences (India)

    We consider the Riemannian functional R p ( g ) = ∫ M | R ( g ) | p d v g defined on the space of Riemannian metrics with unit volume on a closed smooth manifold where R ( g ) and d v g denote the corresponding Riemannian curvature tensor and volume form and p ∈ ( 0 , ∞ ) . First we prove that the Riemannian metrics ...

  2. Zero curvature conditions and conformal covariance

    International Nuclear Information System (INIS)

    Akemann, G.; Grimm, R.

    1992-05-01

    Two-dimensional zero curvature conditions were investigated in detail, with special emphasis on conformal properties, and the appearance of covariant higher order differential operators constructed in terms of a projective connection was elucidated. The analysis is based on the Kostant decomposition of simple Lie algebras in terms of representations with respect to their 'principal' SL(2) subalgebra. (author) 27 refs

  3. Random paths with curvature dependent action

    International Nuclear Information System (INIS)

    Ambjoern, J.; Durhuus, B.

    1986-11-01

    We study discretized random paths with a curvature dependent action. The scaling limits of the corresponding statistical mechanical models can be constructed explicitly and are either usual Brownian motion or a theory where the correlations of tangents are nonzero and described by diffusion on the unit sphere. In the latter case the two point function has an anomalous dimension η = 1. (orig.)

  4. Curvature properties of four-dimensional Walker metrics

    International Nuclear Information System (INIS)

    Chaichi, M; Garcia-Rio, E; Matsushita, Y

    2005-01-01

    A Walker n-manifold is a semi-Riemannian manifold, which admits a field of parallel null r-planes, r ≤ n/2. In the present paper we study curvature properties of a Walker 4-manifold (M, g) which admits a field of parallel null 2-planes. The metric g is necessarily of neutral signature (+ + - -). Such a Walker 4-manifold is the lowest dimensional example not of Lorentz type. There are three functions of coordinates which define a Walker metric. Some recent work shows that a Walker 4-manifold of restricted type whose metric is characterized by two functions exhibits a large variety of symplectic structures, Hermitian structures, Kaehler structures, etc. For such a restricted Walker 4-manifold, we shall study mainly curvature properties, e.g., conditions for a Walker metric to be Einstein, Osserman, or locally conformally flat, etc. One of our main results is the exact solutions to the Einstein equations for a restricted Walker 4-manifold

  5. Clusters of proteins in bio-membranes: insights into the roles of interaction potential shapes and of protein diversity

    OpenAIRE

    Meilhac, Nicolas; Destainville, Nicolas

    2011-01-01

    It has recently been proposed that proteins embedded in lipidic bio-membranes can spontaneously self-organize into stable small clusters, or membrane nano-domains, due to the competition between short-range attractive and longer-range repulsive forces between proteins, specific to these systems. In this paper, we carry on our investigation, by Monte Carlo simulations, of different aspects of cluster phases of proteins in bio-membranes. First, we compare different long-range potentials (includ...

  6. Curvature and Strength of Ni-YSZ Solid Oxide Half-Cells After Redox Treatments

    DEFF Research Database (Denmark)

    Faes, Antonin; Frandsen, Henrik Lund; Pihlatie, Mikko

    2010-01-01

    One of the main drawbacks of anode-supported solid oxide fuel cell technology is the limited capability to withstand reduction and oxidation (“RedOx”) of the Ni phase. This study compares the effect of RedOx cycles on curvature and strength of half-cells, composed of a nickel-yttria-stabilized-zi......One of the main drawbacks of anode-supported solid oxide fuel cell technology is the limited capability to withstand reduction and oxidation (“RedOx”) of the Ni phase. This study compares the effect of RedOx cycles on curvature and strength of half-cells, composed of a nickel...... it is calculated analytically from the force. In this calculation the thermal stresses are estimated from the curvature of the half-cell. For each treatment, more than 30 samples are tested. About 20 ball-on-ring samples are laser cut from one original 12×12 cm2 half-cell. Curvature and porosity are measured...

  7. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Sebastiano

    2015-08-01

    Full Text Available Via Dissipative Particle Dynamics (DPD and implicit solvent coarse-grained (CG Molecular Dynamics (MD we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.

  8. Characteristics of central binding sites for ( sup 3 H) DAMGO in spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Gulati, A.; Bhargava, H.N. (Univ. of Illinois, Chicago (USA))

    1990-01-01

    The binding of ({sup 3}H) DAMGO, a highly selective ligand for {mu}-opiate receptors, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats were determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. ({sup 3}H) DAMGO bound to membranes of brain regions and spinal cord at a single high affinity site. The receptor density (B{sub max} value) and apparent dissociation constant (K{sub d} value) of ({sup 3}H) DAMGO to bind to membranes of hippocampus, corpus striatum, pons and medulla, cortex and spinal cord of WKY and SHR rats did not differ. The B{sub max} value of ({sup 3}H) DAMGO in membranes of hypothalamus and midbrain of SHR rats was significantly higher than in WKY rats but the K{sub d} values in the two strains did not differ. On the other hand, the B{sub max} value of ({sup 3}H) DAMGO in membranes of amygdala of SHR rats was lower than that of WKY rats but the K{sub d} values in the two strains were similar.

  9. [A case-control study on association between OAS1 polymorphism and susceptibility to spontaneous preterm birth and preterm premature rupture of membranes].

    Science.gov (United States)

    Yang, Xiao; Zhang, Xiao-Ai; Wu, Zhi-Hao; Peng, Wei; Zhu, Li-Na; Wang, Yan

    2015-09-01

    To investigate the association between the genetic polymorphism of 2',5'-oligoadenylate synthetase 1 (OAS1) and susceptibility to spontaneous preterm birth (SPTB) and preterm premature rupture of membranes (PPROM). The case-control study consisted of 599 preterm infants including 171 cases of PPROM, and 673 full-term infants without maternal histories of SPTB and PPROM as controls. The single nucleotide polymorphism (SNP) at OAS1 intron 5, rs10774671, was analyzed by polymerase chain reaction-restriction fragment length polymorphism. No significant differences were observed between the case and control groups in the frequencies of genotypes (AA, GA, and GG) and alleles (A and G) of OAS1 rs10774671. When the case group was divided into two subgroups with or without PPROM, no significant differences in the genotype and allele frequencies were found between each subgroup and the control group. When the case group was divided into three subgroups with different gestational ages at SPTB, no significant differences in the genotype and allele frequencies were detected between each subgroup and the control group. No association is identified between OAS1 SNP and susceptibility to SPTB and PPROM.

  10. Non-intubated recovery from refractory cardiogenic shock on percutaneous VA-extracorporeal membrane oxygenation

    NARCIS (Netherlands)

    van Houte, J; Donker, D W; Wagenaar, L J; Slootweg, A P; Kirkels, J H; van Dijk, D

    We report on the use of percutaneous femoral veno-arterial extracorporeal membrane oxygenation (VA-ECMO) in a fully awake, non-intubated and spontaneously breathing patient suffering from acute, severe and refractory cardiogenic shock due to a (sub)acute anterior myocardial infarction. Intensified

  11. [Cellular mechanism of the generation of spontaneous activity in gastric muscle].

    Science.gov (United States)

    Nakamura, Eri; Kito, Yoshihiko; Fukuta, Hiroyasu; Yanai, Yoshimasa; Hashitani, Hikaru; Yamamoto, Yoshimichi; Suzuki, Hikaru

    2004-03-01

    In gastric smooth muscles, interstitial cells of Cajal (ICC) might be the pacemaker cells of spontaneous activities since ICC are rich in mitochondria and are connected with smooth muscle cells via gap junctions. Several types of ICC are distributed widely in the stomach wall. A group of ICC distributed in the myenteric layer (ICC-MY) were the pacemaker cells of gastrointestinal smooth muscles. Pacemaker potentials were generated in ICC-MY, and the potentials were conducted to circular smooth muscles to trigger slow waves and also conducted to longitudinal muscles to form follower potentials. In circular muscle preparations, interstitial cells distributed within muscle bundles (ICC-IM) produced unitary potentials, which were conducted to circular muscles to form slow potentials by summation. In mutant mice lacking inositol trisphosphate (IP(3)) receptor, slow waves were absent in gastric smooth muscles. The generation of spontaneous activity was impaired by the inhibition of Ca(2+)-release from internal stores through IP(3) receptors, inhibition of mitochondrial Ca(2+)-handling with proton pump inhibitors, and inhibition of ATP-sensitive K(+)-channels at the mitochondrial inner membrane. These results suggested that mitochondrial Ca(2+)-handling causes the generation of spontaneous activity in pacemaker cells. Possible involvement of protein kinase C (PKC) in the Ca(2+) signaling system was also suggested.

  12. Model-independent curvature determination with 21cm intensity mapping experiments

    Science.gov (United States)

    Witzemann, Amadeus; Bull, Philip; Clarkson, Chris; Santos, Mario G.; Spinelli, Marta; Weltman, Amanda

    2018-04-01

    Measurements of the spatial curvature of the Universe have improved significantly in recent years, but still tend to require strong assumptions to be made about the equation of state of dark energy (DE) in order to reach sub-percent precision. When these assumptions are relaxed, strong degeneracies arise that make it hard to disentangle DE and curvature, degrading the constraints. We show that forthcoming 21cm intensity mapping experiments such as HIRAX are ideally designed to carry out model-independent curvature measurements, as they can measure the clustering signal at high redshift with sufficient precision to break many of the degeneracies. We consider two different model-independent methods, based on `avoiding' the DE-dominated regime and non-parametric modelling of the DE equation of state respectively. Our forecasts show that HIRAX will be able to improve upon current model-independent constraints by around an order of magnitude, reaching percent-level accuracy even when an arbitrary DE equation of state is assumed. In the same model-independent analysis, the sample variance limit for a similar survey is another order of magnitude better.

  13. Dark Energy, scalar-curvature couplings and a critical acceleration scale

    CERN Document Server

    Navarro, Ignacio

    2008-01-01

    We study the effects of coupling a cosmologically rolling scalar field to higher order curvature terms. We show that when the strong coupling scale of the theory is on the 10^{-3}-10^{-1}eV range, the model passes all experimental bounds on the existence of fifth forces even if the field has a mass of the order of the Hubble scale in vacuum and non-suppressed couplings to SM fields. The reason is that the coupling to certain curvature invariant acts as an effective mass that grows in regions of large curvature. This prevents the field from rolling down its potential near sources and makes its effects on fifth-force search experiments performed in the laboratory to be observable only at the sub-mm scale. We obtain the static spherically symmetric solutions of the theory and show that a long-range force appears but it is turned on only below a fixed Newtonian acceleration scale of the order of the Hubble constant. We comment on the possibility of using this feature of the model to alleviate the CDM small scale ...

  14. On the improvement of two-dimensional curvature computation and its application to turbulent premixed flame correlations

    International Nuclear Information System (INIS)

    Chrystie, R S M; Burns, I S; Hult, J; Kaminski, C F

    2008-01-01

    Measurement of curvature of the flamefront of premixed turbulent flames is important for the validation of numerical models for combustion. In this work, curvature is measured from contours that outline the flamefront, which are generated from laser-induced fluorescence images. The contours are inherently digitized, resulting in pixelation effects that lead to difficulties in computing curvature of the flamefront accurately. A common approach is to fit functions locally to short sections along the flame contour, and this approach is also followed in this work; the method helps smoothen the pixelation before curvature is measured. However, the length and degree of the polynomial, and hence the amount of smoothing, must be correctly set in order to maximize the precision and accuracy of the curvature measurements. Other researchers have applied polynomials of different orders and over different segment lengths to circles of known curvature as a test to determine the appropriate choice of polynomial; it is shown here that this method results in a sub-optimal choice of polynomial function. Here, we determine more suitable polynomial functions through use of a circle whose radius is sinusoidally modulated. We show that this leads to a more consistent and reliable choice for the local polynomial functions fitted to experimental data. A polynomial function thus determined is then applied to flame contour data to measure curvature of experimentally acquired flame contours. The results show that there is an enhancement in local flame speed at sections of the flamefront with a non-zero curvature, and this agrees with numerical models

  15. Curvature and the visual perception of shape: theory on information along object boundaries and the minima rule revisited.

    Science.gov (United States)

    Lim, Ik Soo; Leek, E Charles

    2012-07-01

    Previous empirical studies have shown that information along visual contours is known to be concentrated in regions of high magnitude of curvature, and, for closed contours, segments of negative curvature (i.e., concave segments) carry greater perceptual relevance than corresponding regions of positive curvature (i.e., convex segments). Lately, Feldman and Singh (2005, Psychological Review, 112, 243-252) proposed a mathematical derivation to yield information content as a function of curvature along a contour. Here, we highlight several fundamental errors in their derivation and in its associated implementation, which are problematic in both mathematical and psychological senses. Instead, we propose an alternative mathematical formulation for information measure of contour curvature that addresses these issues. Additionally, unlike in previous work, we extend this approach to 3-dimensional (3D) shape by providing a formal measure of information content for surface curvature and outline a modified version of the minima rule relating to part segmentation using curvature in 3D shape. Copyright 2012 APA, all rights reserved.

  16. Fractional charge and inter-Landau-level states at points of singular curvature.

    Science.gov (United States)

    Biswas, Rudro R; Son, Dam Thanh

    2016-08-02

    The quest for universal properties of topological phases is fundamentally important because these signatures are robust to variations in system-specific details. Aspects of the response of quantum Hall states to smooth spatial curvature are well-studied, but challenging to observe experimentally. Here we go beyond this prevailing paradigm and obtain general results for the response of quantum Hall states to points of singular curvature in real space; such points may be readily experimentally actualized. We find, using continuum analytical methods, that the point of curvature binds an excess fractional charge and sequences of quantum states split away, energetically, from the degenerate bulk Landau levels. Importantly, these inter-Landau-level states are bound to the topological singularity and have energies that are universal functions of bulk parameters and the curvature. Our exact diagonalization of lattice tight-binding models on closed manifolds demonstrates that these results continue to hold even when lattice effects are significant. An important technological implication of these results is that these inter-Landau-level states, being both energetically and spatially isolated quantum states, are promising candidates for constructing qubits for quantum computation.

  17. Effect of Gating Modifier Toxins on Membrane Thickness: Implications for Toxin Effect on Gramicidin and Mechanosensitive Channels

    Directory of Open Access Journals (Sweden)

    Shin-Ho Chung

    2013-02-01

    Full Text Available Various gating modifier toxins partition into membranes and interfere with the gating mechanisms of biological ion channels. For example, GsMTx4 potentiates gramicidin and several bacterial mechanosensitive channels whose gating kinetics are sensitive to mechanical properties of the membrane, whereas binding of HpTx2 shifts the voltage-activity curve of the voltage-gated potassium channel Kv4.2 to the right. The detailed process by which the toxin partitions into membranes has been difficult to probe using molecular dynamics due to the limited time scale accessible. Here we develop a protocol that allows the spontaneous assembly of a polypeptide toxin into membranes in atomistic molecular dynamics simulations of tens of nanoseconds. The protocol is applied to GsMTx4 and HpTx2. Both toxins, released in water at the start of the simulation, spontaneously bind into the lipid bilayer within 50 ns, with their hydrophobic patch penetrated into the bilayer beyond the phosphate groups of the lipids. It is found that the bilayer is about 2 Å thinner upon the binding of a GsMTx4 monomer. Such a thinning effect of GsMTx4 on membranes may explain its potentiation effect on gramicidin and mechanosensitive channels.

  18. Curvature effects on carbon nanomaterials: Exohedral versus endhohedral supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J; Sumpter, B. G.; Meunier, V.; Yushin, G.; Portet, C.; Gogotsi, Y.

    2011-01-31

    Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.

  19. Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Gogotsi, Yury G. [Drexel University; Yushin, Gleb [Georgia Institute of Technology; Portet, Cristelle [Drexel University

    2010-01-01

    Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.

  20. Estimation of Curvature Changes for Steel-Concrete Composite Bridge Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Donghoon Kang

    2013-01-01

    Full Text Available This study is focused on the verification of the key idea of a newly developed steel-concrete composite bridge. The key idea of the proposed bridge is to reduce the design moment by applying vertical prestressing force to steel girders, so that a moment distribution of a continuous span bridge is formed in a simple span bridge. For the verification of the key technology, curvature changes of the bridge should be monitored sequentially at every construction stage. A pair of multiplexed FBG sensor arrays is proposed in order to measure curvature changes in this study. They are embedded in a full-scale test bridge and measured local strains, which are finally converted to curvatures. From the result of curvature changes, it is successfully ensured that the key idea of the proposed bridge, expected theoretically, is viable.

  1. Ion Channels Induced by Antimicrobial Agents in Model Lipid Membranes are Modulated by Plant Polyphenols Through Surrounding Lipid Media.

    Science.gov (United States)

    Efimova, Svetlana S; Zakharova, Anastasiia A; Medvedev, Roman Ya; Ostroumova, Olga S

    2018-03-16

    The potential therapeutic applications of plant polyphenols in various neurological, cardiovascular, metabolic and malignant disorders determine the relevance of studying the molecular mechanisms of their action on the cell membranes. Here, the quantitative changes in the physical parameters of model bilayer lipid membranes upon the adsorption of plant polyphenols were evaluated. It was shown that butein and naringenin significantly decreased the intrinsic dipole potential of cholesterol-free and cholesterol-enriched membranes. Cardamonin, 4'-hydroxychalcone, licochalcone A and liquiritigenin demonstrated the average efficiency, while resveratrol did not characterized by the ability to modulate the bilayer electrostatics. At the same time, the tested polyphenols affected melting of phospholipids with saturated acyl chains. The effects were attributed to the lipid disordering and a promotion of the positive curvature stress. According to DSC data and results of measurements of the threshold voltages that cause bilayer breakdown licochalcone A is the most effective agent. Furthermore, the role of the polyphenol induced changes in the electric and elastic properties of lipid host in the regulation of reconstituted ion channels was examined. The ability of the tested polyphenols to decrease the conductance of single ion channels produced by the antifungal cyclic lipopeptide syringomycin E was in agreement with their effects on the dipole potential of the lipid bilayers. The greatest effect of licochalcone A on the steady-state membrane conductance induced by the antifungal polyene macrolide antibiotic nystatin correlated with its greatest efficacy to induce the positive curvature stress. We also found that butein and naringenin bind specifically to a single pore formed by α-hemolysin from Staphylococcus aureus.

  2. Berry Curvature and Nonlocal Transport Characteristics of Antidot Graphene

    Directory of Open Access Journals (Sweden)

    Jie Pan

    2017-09-01

    Full Text Available Antidot graphene denotes a monolayer of graphene structured by a periodic array of holes. Its energy dispersion is known to display a gap at the Dirac point. However, since the degeneracy between the A and B sites is preserved, antidot graphene cannot be described by the 2D massive Dirac equation, which is suitable for systems with an inherent A/B asymmetry. From inversion and time-reversal-symmetry considerations, antidot graphene should therefore have zero Berry curvature. In this work, we derive the effective Hamiltonian of antidot graphene from its tight-binding wave functions. The resulting Hamiltonian is a 4×4 matrix with a nonzero intervalley scattering term, which is responsible for the gap at the Dirac point. Furthermore, nonzero Berry curvature is obtained from the effective Hamiltonian, owing to the double degeneracy of the eigenfunctions. The topological manifestation is shown to be robust against randomness perturbations. Since the Berry curvature is expected to induce a transverse conductance, we have experimentally verified this feature through nonlocal transport measurements, by fabricating three antidot graphene samples with a triangular array of holes, a fixed periodicity of 150 nm, and hole diameters of 100, 80, and 60 nm. All three samples display topological nonlocal conductance, with excellent agreement with the theory predictions.

  3. Women's expectations and experiences of rupture of membranes and views of the potential use of reagent pads for detecting amniotic fluid.

    Science.gov (United States)

    Spiby, Helen; Borrelli, Sara; Hughes, Anita J

    2017-12-01

    To explore first-time mothers' expectations and experiences regarding rupture of membranes at term and their views on the potential use of reagent pads that detect amniotic fluid. There is little information available on women's experiences of spontaneous rupture of membranes, or interest in using methods to confirm rupture of membranes (e.g. reagent pads). Descriptive qualitative study, using focus groups and telephone interviews with women during pregnancy and after the birth of their first baby. Thematic analysis was undertaken to analyse women's responses. Ethics committee approval was obtained. Twenty-five women participated in the study of whom 13 contributed both during pregnancy and postpartum between October 2015-March 2016. Three overarching themes were identified from the data from women's expectations and experiences: uncertainty in how, when and where membranes may rupture; information which was felt to be limited and confirmation of rupture of membranes. The potential use of reagent pads met with varied responses. Women were interested in having facts and figures regarding rupture of membranes, such as characteristics of liquor; volume and probability of membranes rupturing spontaneously at term. Use of a pad as a means of confirmation was viewed as helpful, although the potential for increasing anxiety was raised. © 2017 John Wiley & Sons Ltd.

  4. Interface for Light-Driven Electron Transfer by Photosynthetic Complexes Across Block Copolymer Membranes.

    Science.gov (United States)

    Kuang, Liangju; Olson, Tien L; Lin, Su; Flores, Marco; Jiang, Yunjiang; Zheng, Wan; Williams, JoAnn C; Allen, James P; Liang, Hongjun

    2014-03-06

    Incorporation of membrane proteins into nanodevices to mediate recognition and transport in a collective and scalable fashion remains a challenging problem. We demonstrate how nanoscale photovoltaics could be designed using robust synthetic nanomembranes with incorporated photosynthetic reaction centers (RCs). Specifically, RCs from Rhodobacter sphaeroides are reconstituted spontaneously into rationally designed polybutadiene membranes to form hierarchically organized proteopolymer membrane arrays via a charge-interaction-directed reconstitution mechanism. Once incorporated, the RCs are fully active for prolonged periods based upon a variety of spectroscopic measurements, underscoring preservation of their 3D pigment configuration critical for light-driven charge transfer. This result provides a strategy to construct solar conversion devices using structurally versatile proteopolymer membranes with integrated RC functions to harvest broad regions of the solar spectrum.

  5. Bioinspired tannic acid-copper complexes as selective coating for nanofiltration membranes

    KAUST Repository

    Chakrabarty, Tina

    2017-04-27

    Bio-polyphenols that are present in tea, date fruits, chockolate and many other plants have been recognized as scaffold material for the manufacture of composite filtration membranes. These phenolic biomolecules possess abundant gallol (1,2,3-trihydroxyphenyl) and catechol (1,2-dihydroxyphenyl) functional groups, which allow the spontaneous formation of a thin polymerized layer at the right pH conditions. Here, we report a facile and cost-effective method to coat porous membranes via the complexation of tannic acid (TA) and cupric acetate (mono hydrate) through co-deposition. The modified membranes were investigated by XPS, ATR/FTIR, water contact angle, SEM and water permeance for a structural and morphological analysis. The obtained results reveal that the modified membranes with TA and cupric acetate (CuII) developed a thin skin layer, which showed excellent hydrophilicity with good water permeance. These membranes were tested with different molecular weight polyethylene glycols (PEG) in aqueous solution; the MWCO was around 600 Daltons.

  6. ORNL Interim Progress Report on Static CIRFT Testing Curvature Data Update

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL

    2016-10-10

    Since the CIRFT tests reported in NUREG-7198 were generated, a number of factors that influence the recorded curvature measurement data were identified. In 2016, a data reanalysis task was undertaken to implement the lessons learned. This letter report provides the revised results of previous CIRFT tests, after implementing the following data reanalysis procedures: (A) experimental data smoothing and LVDT reset, (B) LVDT probe contact and sensor spacing correction for curvature data, and (C) LVDT probe dynamic vibration adjustment procedure development.

  7. Influence of implant rod curvature on sagittal correction of scoliosis deformity

    DEFF Research Database (Denmark)

    Salmingo, Remel A.; Tadano, Shigeru; Abe, Yuichiro

    2014-01-01

    of the implant rod’s angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. STUDY DESIGN: A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. PATIENT SAMPLE: Twenty adolescent idiopathic......BACKGROUND CONTEXT: Deformation of in vivo–implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. PURPOSE: To analyze the changes...... scoliosis patients underwent surgery. Average age at the time of operation was 14 years. OUTCOME MEASURES: The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. METHODS: Two implant rods were attached to the concave and convex side...

  8. Sum frequency generation image reconstruction: Aliphatic membrane under spherical cap geometry

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Victor [Bereozovaya 2A, Konstantinovo, Moscow Region 140207 (Russian Federation)

    2014-10-07

    The article explores an opportunity to approach structural properties of phospholipid membranes using Sum Frequency Generation microscopy. To establish the principles of sum frequency generation image reconstruction in such systems, at first approach, we may adopt an idealistic spherical cap uniform assembly of hydrocarbon molecules. Quantum mechanical studies for decanoic acid (used here as a representative molecular system) provide necessary information on transition dipole moments and Raman tensors of the normal modes specific to methyl terminal – a typical moiety in aliphatic (and phospholipid) membranes. Relative degree of localization and frequencies of the normal modes of methyl terminals make nonlinearities of this moiety to be promising in structural analysis using Sum Frequency Generation imaging. Accordingly, the article describes derivations of relevant macroscopic nonlinearities and suggests a mapping procedure to translate amplitudes of the nonlinearities onto microscopy image plane according to geometry of spherical assembly, local molecular orientation, and optical geometry. Reconstructed images indicate a possibility to extract local curvature of bilayer envelopes of spherical character. This may have practical implications for structural extractions in membrane systems of practical relevance.

  9. Characteristic Changes in Decidual Gene Expression Signature in Spontaneous Term Parturition

    Directory of Open Access Journals (Sweden)

    Haidy El-Azzamy

    2017-05-01

    Full Text Available Background The decidua has been implicated in the “terminal pathway” of human term parturition, which is characterized by the activation of pro-inflammatory pathways in gestational tissues. However, the transcriptomic changes in the decidua leading to terminal pathway activation have not been systematically explored. This study aimed to compare the decidual expression of developmental signaling and inflammation-related genes before and after spontaneous term labor in order to reveal their involvement in this process. Methods Chorioamniotic membranes were obtained from normal pregnant women who delivered at term with spontaneous labor (TIL, n = 14 or without labor (TNL, n = 15. Decidual cells were isolated from snap-frozen chorioamniotic membranes with laser microdissection. The expression of 46 genes involved in decidual development, sex steroid and prostaglandin signaling, as well as pro- and anti-inflammatory pathways, was analyzed using high-throughput quantitative real-time polymerase chain reaction (qRT-PCR. Chorioamniotic membrane sections were immunostained and then semi-quantified for five proteins, and immunoassays for three chemokines were performed on maternal plasma samples. Results The genes with the highest expression in the decidua at term gestation included insulin-like growth factor-binding protein 1 (IGFBP1, galectin-1 (LGALS1, and progestogen-associated endometrial protein (PAEP; the expression of estrogen receptor 1 (ESR1, homeobox A11 (HOXA11, interleukin 1β (IL1B, IL8, progesterone receptor membrane component 2 (PGRMC2, and prostaglandin E synthase (PTGES was higher in TIL than in TNL cases; the expression of chemokine C-C motif ligand 2 (CCL2, CCL5, LGALS1, LGALS3, and PAEP was lower in TIL than in TNL cases; immunostaining confirmed qRT-PCR data for IL-8, CCL2, galectin-1, galectin-3, and PAEP; and no correlations between the decidual gene expression and the maternal plasma protein concentrations of CCL2, CCL5, and

  10. Simultaneous reflectometry and interferometry for measuring thin-film thickness and curvature

    Science.gov (United States)

    Arends, A. A.; Germain, T. M.; Owens, J. F.; Putnam, S. A.

    2018-05-01

    A coupled reflectometer-interferometer apparatus is described for thin-film thickness and curvature characterization in the three-phase contact line region of evaporating fluids. Validation reflectometry studies are provided for Au, Ge, and Si substrates and thin-film coatings of SiO2 and hydrogel/Ti/SiO2. For interferometry, liquid/air and solid/air interferences are studied, where the solid/air samples consisted of glass/air/glass wedges, cylindrical lenses, and molded polydimethylsiloxane lenses. The liquid/air studies are based on steady-state evaporation experiments of water and isooctane on Si and SiO2/Ti/SiO2 wafers. The liquid thin-films facilitate characterization of both (i) the nano-scale thickness of the absorbed fluid layer and (ii) the macro-scale liquid meniscus thickness, curvature, and curvature gradient profiles. For our validation studies with commercial lenses, the apparatus is shown to measure thickness profiles within 4.1%-10.8% error.

  11. Ion channel regulation of the dynamical instability of the resting membrane potential in saccular hair cells of the green frog (Rana esculenta)

    NARCIS (Netherlands)

    Jorgensen, F; Kroese, ABA

    2005-01-01

    Aims: We investigated the ion channel regulation of the resting membrane potential of hair cells with the aim to determine if the resting membrane potential is poised close to instability and thereby a potential cause of the spontaneous afferent spike activity. Methods: The ionic mechanism and the

  12. Numerical Investigation on Fluid Flow in a 90-Degree Curved Pipe with Large Curvature Ratio

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-01-01

    Full Text Available In order to understand the mechanism of fluid flows in curved pipes, a large number of theoretical and experimental researches have been performed. As a critical parameter of curved pipe, the curvature ratio δ has received much attention, but most of the values of δ are very small (δ<0.1 or relatively small (δ≤0.5. As a preliminary study and simulation this research studied the fluid flow in a 90-degree curved pipe of large curvature ratio. The Detached Eddy Simulation (DES turbulence model was employed to investigate the fluid flows at the Reynolds number range from 5000 to 20000. After validation of the numerical strategy, the pressure and velocity distribution, pressure drop, fluid flow, and secondary flow along the curved pipe were illustrated. The results show that the fluid flow in a curved pipe with large curvature ratio seems to be unlike that in a curved pipe with small curvature ratio. Large curvature ratio makes the internal flow more complicated; thus, the flow patterns, the separation region, and the oscillatory flow are different.

  13. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry.

    Science.gov (United States)

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-02-25

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time.

  14. Spontaneous acute spinal subdural hematoma: spontaneous recovery from severe paraparesis--case report and review.

    Science.gov (United States)

    Payer, Michael; Agosti, Reto

    2010-11-01

    Spontaneous idiopathic acute spinal subdural hematomas are highly exceptional. Neurological symptoms are usually severe, and rapid diagnosis with MRI is mandatory. Surgical evacuation has frequently been used therapeutically; however, spontaneous recovery in mild cases has also been reported. We present a case of spontaneous recovery from severe paraparesis after spontaneous acute SSDH, and review the English-speaking literature.

  15. Temperature driven annealing of perforations in bicellar model membranes.

    Science.gov (United States)

    Nieh, Mu-Ping; Raghunathan, V A; Pabst, Georg; Harroun, Thad; Nagashima, Kazuomi; Morales, Hannah; Katsaras, John; Macdonald, Peter

    2011-04-19

    Bicellar model membranes composed of 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dihexanoylphosphatidylcholine (DHPC), with a DMPC/DHPC molar ratio of 5, and doped with the negatively charged lipid 1,2-dimyristoylphosphatidylglycerol (DMPG), at DMPG/DMPC molar ratios of 0.02 or 0.1, were examined using small angle neutron scattering (SANS), (31)P NMR, and (1)H pulsed field gradient (PFG) diffusion NMR with the goal of understanding temperature effects on the DHPC-dependent perforations in these self-assembled membrane mimetics. Over the temperature range studied via SANS (300-330 K), these bicellar lipid mixtures exhibited a well-ordered lamellar phase. The interlamellar spacing d increased with increasing temperature, in direct contrast to the decrease in d observed upon increasing temperature with otherwise identical lipid mixtures lacking DHPC. (31)P NMR measurements on magnetically aligned bicellar mixtures of identical composition indicated a progressive migration of DHPC from regions of high curvature into planar regions with increasing temperature, and in accord with the "mixed bicelle model" (Triba, M. N.; Warschawski, D. E.; Devaux, P. E. Biophys. J.2005, 88, 1887-1901). Parallel PFG diffusion NMR measurements of transbilayer water diffusion, where the observed diffusion is dependent on the fractional surface area of lamellar perforations, showed that transbilayer water diffusion decreased with increasing temperature. A model is proposed consistent with the SANS, (31)P NMR, and PFG diffusion NMR data, wherein increasing temperature drives the progressive migration of DHPC out of high-curvature regions, consequently decreasing the fractional volume of lamellar perforations, so that water occupying these perforations redistributes into the interlamellar volume, thereby increasing the interlamellar spacing. © 2011 American Chemical Society

  16. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension

    Science.gov (United States)

    Lewis, Amanda H; Grandl, Jörg

    2015-01-01

    Piezo1 ion channels mediate the conversion of mechanical forces into electrical signals and are critical for responsiveness to touch in metazoans. The apparent mechanical sensitivity of Piezo1 varies substantially across cellular environments, stimulating methods and protocols, raising the fundamental questions of what precise physical stimulus activates the channel and how its stimulus sensitivity is regulated. Here, we measured Piezo1 currents evoked by membrane stretch in three patch configurations, while simultaneously visualizing and measuring membrane geometry. Building on this approach, we developed protocols to minimize resting membrane curvature and tension prior to probing Piezo1 activity. We find that Piezo1 responds to lateral membrane tension with exquisite sensitivity as compared to other mechanically activated channels and that resting tension can drive channel inactivation, thereby tuning overall mechanical sensitivity of Piezo1. Our results explain how Piezo1 can function efficiently and with adaptable sensitivity as a sensor of mechanical stimulation in diverse cellular contexts. DOI: http://dx.doi.org/10.7554/eLife.12088.001 PMID:26646186

  17. Curvature controlled wetting in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Mikheev, Lev V.

    1995-01-01

    . As the radius of the substrate r0→∞, the leading effect of the curvature is adding the Laplace pressure ΠL∝r0-1 to the pressure balance in the film. At temperatures and pressures under which the wetting is complete in planar geometry, Laplace pressure suppresses divergence of the mean thickness of the wetting...... term reduces the thickness by the amount proportional to r0-1/3...

  18. Role of parallel flow curvature on the mitigation of Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Sarmah, D.; Sen, S.; Cairns, R.A.

    2001-01-01

    The effect of a radially varying parallel equilibrium flow on the stability of the Rayleigh-Taylor (RT) mode is studied analytically in the presence of a sheared magnetic field. It is shown that the parallel flow curvature can completely stabilize the RT mode. The flow curvature also has a robust effect on the radial structure of the mode. Possible implications of these theoretical findings to recent experiments are also discussed

  19. Observational constraints on dark energy and cosmic curvature

    International Nuclear Information System (INIS)

    Wang Yun; Mukherjee, Pia

    2007-01-01

    Current observational bounds on dark energy depend on our assumptions about the curvature of the universe. We present a simple and efficient method for incorporating constraints from cosmic microwave background (CMB) anisotropy data and use it to derive constraints on cosmic curvature and dark energy density as a free function of cosmic time using current CMB, Type Ia supernova (SN Ia), and baryon acoustic oscillation data. We show that there are two CMB shift parameters, R≡√(Ω m H 0 2 )r(z CMB ) (the scaled distance to recombination) and l a ≡πr(z CMB )/r s (z CMB ) (the angular scale of the sound horizon at recombination), with measured values that are nearly uncorrelated with each other. Allowing nonzero cosmic curvature, the three-year WMAP (Wilkinson Microwave Anisotropy Probe) data give R=1.71±0.03, l a =302.5±1.2, and Ω b h 2 =0.02173±0.00082, independent of the dark energy model. The corresponding bounds for a flat universe are R=1.70±0.03, l a =302.2±1.2, and Ω b h 2 =0.022±0.00082. We give the covariance matrix of (R,l a ,Ω b h 2 ) from the three-year WMAP data. We find that (R,l a ,Ω b h 2 ) provide an efficient and intuitive summary of CMB data as far as dark energy constraints are concerned. Assuming the Hubble Space Telescope (HST) prior of H 0 =72±8 (km/s) Mpc -1 , using 182 SNe Ia (from the HST/GOODS program, the first year Supernova Legacy Survey, and nearby SN Ia surveys), (R,l a ,Ω b h 2 ) from WMAP three-year data, and SDSS (Sloan Digital Sky Survey) measurement of the baryon acoustic oscillation scale, we find that dark energy density is consistent with a constant in cosmic time, with marginal deviations from a cosmological constant that may reflect current systematic uncertainties or true evolution in dark energy. A flat universe is allowed by current data: Ω k =-0.006 -0.012-0.025 +0.013+0.025 for assuming that the dark energy equation of state w X (z) is constant, and Ω k =-0.002 -0.018-0.032 +0.018+0.041 for w X (z

  20. The effect of increasing membrane curvature on the phase transition and mixing behavior of a dimyristoyl-sn-glycero-3-phosphatidylcholine/distearoyl-sn-glycero-3-phosphatidylcholine lipid mixture as studied by Fourier transform infrared spectroscopy and differential scanning calorimetry

    DEFF Research Database (Denmark)

    Brumm, T.; Jørgensen, Kent; Mouritsen, Ole G.

    1996-01-01

    The phase transition behavior of a lipid bilayer of dimyristoyl-sn-glycero-3-phosphalidylcholine/distearoyl-sn- glycero-3-phosphatidylcholine (DMPC-d54/DSPC) (1:1) on a solid support with varying curvatures was investigated with differential scanning calorimetry, infrared spectroscopy, and model...... of the liquidus point can be understood as a reduction of the lateral pressure in the bilayer with increasing curvature. The shift of the solidus line is interpreted as a result of the increased demixing of the two components in the two-phase region with increasing curvature due to lowering of the lateral...

  1. Nonsmooth differential geometry-an approach tailored for spaces with Ricci curvature bounded from below

    CERN Document Server

    Gigli, Nicola

    2018-01-01

    The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.

  2. Numerical study on the incompressible Euler equations as a Hamiltonian system: Sectional curvature and Jacobi field

    Science.gov (United States)

    Ohkitani, K.

    2010-05-01

    We study some of the key quantities arising in the theory of [Arnold "Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits," Annales de l'institut Fourier 16, 319 (1966)] of the incompressible Euler equations both in two and three dimensions. The sectional curvatures for the Taylor-Green vortex and the ABC flow initial conditions are calculated exactly in three dimensions. We trace the time evolution of the Jacobi fields by direct numerical simulations and, in particular, see how the sectional curvatures get more and more negative in time. The spatial structure of the Jacobi fields is compared to the vorticity fields by visualizations. The Jacobi fields are found to grow exponentially in time for the flows with negative sectional curvatures. In two dimensions, a family of initial data proposed by Arnold (1966) is considered. The sectional curvature is observed to change its sign quickly even if it starts from a positive value. The Jacobi field is shown to be correlated with the passive scalar gradient in spatial structure. On the basis of Rouchon's physical-space based expression for the sectional curvature (1984), the origin of negative curvature is investigated. It is found that a "potential" αξ appearing in the definition of covariant time derivative plays an important role, in that a rapid growth in its gradient makes a major contribution to the negative curvature.

  3. Emergent gravity in spaces of constant curvature

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Orlando; Haddad, Matthew [Department of Physics, University of Miami,1320 Campo Sano Ave, Coral Gables, FL 33146 (United States)

    2017-03-07

    In physical theories where the energy (action) is localized near a submanifold of a constant curvature space, there is a universal expression for the energy (or the action). We derive a multipole expansion for the energy that has a finite number of terms, and depends on intrinsic geometric invariants of the submanifold and extrinsic invariants of the embedding of the submanifold. This is the second of a pair of articles in which we try to develop a theory of emergent gravity arising from the embedding of a submanifold into an ambient space equipped with a quantum field theory. Our theoretical method requires a generalization of a formula due to by Hermann Weyl. While the first paper discussed the framework in Euclidean (Minkowski) space, here we discuss how this framework generalizes to spaces of constant sectional curvature. We focus primarily on anti de Sitter space. We then discuss how such a theory can give rise to a cosmological constant and Planck mass that are within reasonable bounds of the experimental values.

  4. Electrostatic Effects in Phase Transitions of Biomembranes between Cubic Phases and Lamellar Liquid-Crystalline (Lα) phase

    Science.gov (United States)

    Masum, Shah Md.; Li, Shu Jie; Tamba, Yukihiro; Yamashita, Yuko; Yamazaki, Masahito

    2004-04-01

    Elucidation of the mechanisms of transitions between cubic phase and liquid-crystalline (Lα) phase, and between different IPMS cubic phases, are essential for understanding of dynamics of biomembranes and topological transformation of lipid membranes. Recently, we found that electrostatic interactions due to surface charges of lipid membranes induce transition between cubic phase and Lα phase, and between different IPMS cubic phases. As electrostatic interactions increase, the most stable phase of a monoolein (MO) membrane changes: Q224 ⇒ Q229 ⇒ Lα. We also found that a de novo designed peptide partitioning into electrically neutral lipid membrane changed the phase stability of the MO membranes. As peptide-1 concentration increased, the most stable phase of a MO membrane changes: Q224 ⇒ Q229 ⇒Lα. In both cases, the increase in the electrostatic repulsive interaction greatly reduced the absolute value of spontaneous curvature of the MO monolayer membrane. We also investigated factors such as poly (L-lysine) and osmotic stress to control structure and phase stability of DOPA/MO membranes. Based on these results, we discuss the mechanism of the effect of electrostatic interactions on the stability of cubic phase.

  5. Curvature computation in volume-of-fluid method based on point-cloud sampling

    Science.gov (United States)

    Kassar, Bruno B. M.; Carneiro, João N. E.; Nieckele, Angela O.

    2018-01-01

    This work proposes a novel approach to compute interface curvature in multiphase flow simulation based on Volume of Fluid (VOF) method. It is well documented in the literature that curvature and normal vector computation in VOF may lack accuracy mainly due to abrupt changes in the volume fraction field across the interfaces. This may cause deterioration on the interface tension forces estimates, often resulting in inaccurate results for interface tension dominated flows. Many techniques have been presented over the last years in order to enhance accuracy in normal vectors and curvature estimates including height functions, parabolic fitting of the volume fraction, reconstructing distance functions, coupling Level Set method with VOF, convolving the volume fraction field with smoothing kernels among others. We propose a novel technique based on a representation of the interface by a cloud of points. The curvatures and the interface normal vectors are computed geometrically at each point of the cloud and projected onto the Eulerian grid in a Front-Tracking manner. Results are compared to benchmark data and significant reduction on spurious currents as well as improvement in the pressure jump are observed. The method was developed in the open source suite OpenFOAM® extending its standard VOF implementation, the interFoam solver.

  6. A linearization time-domain CMOS smart temperature sensor using a curvature compensation oscillator.

    Science.gov (United States)

    Chen, Chun-Chi; Chen, Hao-Wen

    2013-08-28

    This paper presents an area-efficient time-domain CMOS smart temperature sensor using a curvature compensation oscillator for linearity enhancement with a -40 to 120 °C temperature range operability. The inverter-based smart temperature sensors can substantially reduce the cost and circuit complexity of integrated temperature sensors. However, a large curvature exists on the temperature-to-time transfer curve of the inverter-based delay line and results in poor linearity of the sensor output. For cost reduction and error improvement, a temperature-to-pulse generator composed of a ring oscillator and a time amplifier was used to generate a thermal sensing pulse with a sufficient width proportional to the absolute temperature (PTAT). Then, a simple but effective on-chip curvature compensation oscillator is proposed to simultaneously count and compensate the PTAT pulse with curvature for linearization. With such a simple structure, the proposed sensor possesses an extremely small area of 0.07 mm2 in a TSMC 0.35-mm CMOS 2P4M digital process. By using an oscillator-based scheme design, the proposed sensor achieves a fine resolution of 0.045 °C without significantly increasing the circuit area. With the curvature compensation, the inaccuracy of -1.2 to 0.2 °C is achieved in an operation range of -40 to 120 °C after two-point calibration for 14 packaged chips. The power consumption is measured as 23 mW at a sample rate of 10 samples/s.

  7. Dynamic Double Curvature Mould System

    DEFF Research Database (Denmark)

    Jepsen, Christian Raun; Kristensen, Mathias Kræmmergaard; Kirkegaard, Poul Henning

    2011-01-01

    The present paper describes a concept for a reconfigurable mould surface which is designed to fit the needs of contemporary architecture. The core of the concept presented is a dynamic surface manipulated into a given shape using a digital signal created directly from the CAD drawing of the design....... This happens fast, automatic and without production of waste, and the manipulated surface is fair and robust, eliminating the need for additional, manual treatment. Limitations to the possibilities of the flexible form are limited curvature and limited level of detail, making it especially suited for larger...

  8. Investigating undergraduate students’ ideas about the curvature of the Universe

    Directory of Open Access Journals (Sweden)

    Kim Coble

    2018-06-01

    Full Text Available [This paper is part of the Focused Collection on Astronomy Education Research.] As part of a larger project studying undergraduate students’ understanding of cosmology, we explored students’ ideas about the curvature of the Universe. We investigated preinstruction ideas held by introductory astronomy (ASTRO 101 students at three participating universities and postinstruction ideas at one. Through thematic analysis of responses to questions on three survey forms and preinstruction interviews, we found that prior to instruction a significant fraction of students said the Universe is round. Students’ reasoning for this included that the Universe contains round objects, therefore it must also be round, or an incorrect idea that the big bang theory describes an explosion from a central point. We also found that a majority of students think that astronomers use the term curvature to describe properties, such as dimensions, angles, or size, of the Universe or objects in the Universe, or that astronomers use the term curvature to describe the bending of space due to gravity. Students are skeptical that the curvature of the Universe can be measured, to a greater or lesser degree depending on question framing. Postinstruction responses to a multiple-choice exam question and interviews at one university indicate that students are more likely to correctly respond that the Universe as a whole is not curved postinstruction, though the idea that the Universe is round still persists for some students. While we see no evidence that priming with an elliptical or rectangular map of the cosmic microwave background on a postinstruction exam affects responses, students do cite visualizations such as diagrams among the reasons for their responses in preinstruction surveys.

  9. Generating ekpyrotic curvature perturbations before the big bang

    International Nuclear Information System (INIS)

    Lehners, Jean-Luc; Turok, Neil; McFadden, Paul; Steinhardt, Paul J.

    2007-01-01

    We analyze a general mechanism for producing a nearly scale-invariant spectrum of cosmological curvature perturbations during a contracting phase preceding a big bang, which can be entirely described using 4D effective field theory. The mechanism, based on first producing entropic perturbations and then converting them to curvature perturbations, can be naturally incorporated in cyclic and ekpyrotic models in which the big bang is modeled as a brane collision, as well as other types of cosmological models with a pre-big bang phase. We show that the correct perturbation amplitude can be obtained and that the spectral tilt n s tends to range from slightly blue to red, with 0.97 s <1.02 for the simplest models, a range compatible with current observations but shifted by a few percent towards the blue compared to the prediction of the simplest, large-field inflationary models

  10. Imprint of spatial curvature on inflation power spectrum

    International Nuclear Information System (INIS)

    Masso, Eduard; Zsembinszki, Gabriel; Mohanty, Subhendra; Nautiyal, Akhilesh

    2008-01-01

    If the Universe had a large curvature before inflation there is a deviation from the scale invariant perturbations of the inflaton at the beginning of inflation. This may have some effect on the cosmic microwave background anisotropy at large angular scales. We calculate the density perturbations for both open and closed universe cases using the Bunch-Davies vacuum condition on the initial state. We use our power spectrum to calculate the temperature anisotropy spectrum and compare the results with the Wilkinson microwave anisotropy map five year data. We find that our power spectrum gives a lower quadrupole anisotropy when Ω-1>0, but matches the temperature anisotropy calculated from the standard Ratra-Peebles power spectrum at large l. The determination of spatial curvature from temperature anisotropy data is not much affected by the different power spectra which arise from the choice of different boundary conditions for the inflaton perturbation.

  11. Curvature profiles as initial conditions for primordial black hole formation

    International Nuclear Information System (INIS)

    Polnarev, Alexander G; Musco, Ilia

    2007-01-01

    This work is part of an ongoing research programme to study possible primordial black hole (PBH) formation during the radiation-dominated era of the early universe. Working within spherical symmetry, we specify an initial configuration in terms of a curvature profile, which represents initial conditions for the large amplitude metric perturbations, away from the homogeneous Friedmann-Robertson-Walker model, which are required for PBH formation. Using an asymptotic quasi-homogeneous solution, we relate the curvature profile with the density and velocity fields, which at an early enough time, when the length scale of the configuration is much larger than the cosmological horizon, can be treated as small perturbations of the background values. We present general analytic solutions for the density and velocity profiles. These solutions enable us to consider in a self-consistent way the formation of PBHs in a wide variety of cosmological situations with the cosmological fluid being treated as an arbitrary mixture of different components with different equations of state. We obtain the analytical solutions for the density and velocity profiles as functions of the initial time. We then use two different parametrizations for the curvature profile and follow numerically the evolution of initial configurations

  12. Model-independent curvature determination with 21 cm intensity mapping experiments

    Science.gov (United States)

    Witzemann, Amadeus; Bull, Philip; Clarkson, Chris; Santos, Mario G.; Spinelli, Marta; Weltman, Amanda

    2018-06-01

    Measurements of the spatial curvature of the Universe have improved significantly in recent years, but still tend to require strong assumptions to be made about the equation of state of dark energy (DE) in order to reach sub-percent precision. When these assumptions are relaxed, strong degeneracies arise that make it hard to disentangle DE and curvature, degrading the constraints. We show that forthcoming 21 cm intensity mapping experiments such as Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) are ideally designed to carry out model-independent curvature measurements, as they can measure the clustering signal at high redshift with sufficient precision to break many of the degeneracies. We consider two different model-independent methods, based on `avoiding' the DE-dominated regime and non-parametric modelling of the DE equation of state, respectively. Our forecasts show that HIRAX will be able to improve upon current model-independent constraints by around an order of magnitude, reaching percent-level accuracy even when an arbitrary DE equation of state is assumed. In the same model-independent analysis, the sample variance limit for a similar survey is another order of magnitude better.

  13. Distributional curvature of time-dependent cosmic strings

    OpenAIRE

    Wilson, J P

    1997-01-01

    Colombeau's theory of generalised functions is used to calculate the contributions, at the rotation axis, to the distributional curvature for a time-dependent radiating cosmic string, and hence the mass per unit length of the string source. This mass per unit length is compared with the mass at null infinity, giving evidence for a global energy conservation law.

  14. An evaluation of canal curvature at the apical one third in type II mesial canals of mandibular molars

    Directory of Open Access Journals (Sweden)

    Hye-Rim Yun

    2012-05-01

    Full Text Available Objectives The purpose of this study was to evaluate the buccolingual curvature at the apical one third in type II mesial canals of mandibular molars using the radius and angle of curvature. Materials and Methods Total 100 mandibular molars were selected. Following an endodontic access in the teeth, their distal roots were removed. #15 H- or K-files (Dentsply Maillefer were inserted into the mesiobuccal and mesiolingual canals of the teeth. Radiographs of the teeth were taken for the proximal view. Among them, type II canals were selected and divided into two subgroups, IIa and IIb. In type IIa, two separate canals merged into one canal before reaching the apex and in type IIb, two separate canals merged into one canal within the apical foramen. The radius and angle of curvature of specimens were examined. Results In type II, mean radius of curvature in mesiolingual and mesiobuccal canals were 2.82 mm and 3.58 mm, respectively. The radius of the curvature of mesiolingual canals were significantly smaller than that of mesiobuccal canals in type II, and especially in type IIa. However, there were no statistically significant differences in radius of curvature between mesiobuccal and mesiolingual canals in type IIb and there were no significant differences in angle of curvature between type IIa and IIb. Conclusion In this study, type II mesial canals of mandibular molars showed severe curvature in the proximal view. Especially, mesiolingual canals of type IIa had more abrupt curvature than mesiobuccal canals at the apical one third.

  15. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations.

    Science.gov (United States)

    Kapus, András; Janmey, Paul

    2013-07-01

    From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions. © 2013 American Physiological Society.

  16. Curvature-induced symmetry breaking in nonlinear Schrodinger models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Mingaleev, S. F.; Christiansen, Peter Leth

    2000-01-01

    We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity leads to a symmetry breaking when an asymmetric stationary state becomes energetically more favorable than a symmetric stationary state. We show that the energy of localized states...

  17. Papapetrou's naked singularity is a strong curvature singularity

    International Nuclear Information System (INIS)

    Hollier, G.P.

    1986-01-01

    Following Papapetrou [1985, a random walk in General Relativity ed. J. Krishna-Rao (New Delhi: Wiley Eastern)], a spacetime with a naked singularity is analysed. This singularity is shown to be a strong curvature singularity and thus a counterexample to a censorship conjecture. (author)

  18. On the projective curvature tensor of generalized Sasakian-space ...

    African Journals Online (AJOL)

    space-forms under some conditions regarding projective curvature tensor. All the results obtained in this paper are in the form of necessary and sufficient conditions. Keywords: Generalized Sasakian-space-forms; projectively flat; ...

  19. Spontaneous Pneumomediastinum: Hamman Syndrome

    Directory of Open Access Journals (Sweden)

    Tushank Chadha, BS

    2018-04-01

    significant fat stranding. The image also showed an intraluminal stent traversing the gastric antrum and gastric pylorus with no indication of obstruction. Circumferential mural thickening of the gastric antrum and body were consistent with the patient’s history of gastric adenocarcinoma. The shotty perigastric lymph nodes with associated fat stranding, along the greater curvature of the distal gastric body suggested local regional nodal metastases and possible peritoneal carcinomatosis. The thoracic CT scans showed extensive pneumomediastinum that tracked into the soft tissues of the neck, which given the history of vomiting also raised concern for esophageal perforation. There was still no evidence of mediastinal abscess or fat stranding. Additionally, a left subclavian vein port catheter, which terminates with tip at the cavoatrial junction of the superior vena cava can also be seen on the image. Discussion: Spontaneous Pneumomediastinum, also known as Hamman syndrome, is defined by the uncommon incidence of free air in the mediastinum due to the bursting of alveoli, as a result of extended spells of shouting, coughing, or vomiting.1,2 The condition is diagnosed when a clear cause (aerodigestive rupture, barotrauma, infection secondary to gas-forming organisms3 for pneumomediastinum cannot be clearly identified on diagnostic studies. Macklin and Macklin were the first to note the pathogenesis of the syndrome and explained that the common denominator to spontaneous pneumomediastinum was that increased alveolar pressure leads to alveolar rupture.3 Common clinical findings for spontaneous pneumomediastinum include: chest pain, dyspnea, cough, and emesis.4 The condition is not always readily recognized on initial presentation in part for its rare incidence, estimated to be approximately 1 in every 44,500 ED patients3and also because of the non-specific presenting symptoms. For this patient, there was no clear singular cause, and therefore she received care for spontaneous

  20. GABA_A receptor function is regulated by lipid bilayer elasticity

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Werge, Thomas; Berthelsen, Camilla

    2006-01-01

    ( s) underlying these effects are poorly understood. DHA and Triton X-100, at concentrations that affect GABAA receptor function, increase the elasticity of lipid bilayers measured as decreased bilayer stiffness using gramicidin channels as molecular force transducers. We have previously shown...... reduced the peak amplitude of the GABA-induced currents and increased the rate of receptor desensitization. The effects of the amphiphiles did not correlate with the expected changes in monolayer spontaneous curvature. We conclude that GABAA receptor function is regulated by lipid bilayer elasticity....... PUFAs may generally regulate membrane protein function by affecting the elasticity of the host lipid bilayer....