WorldWideScience

Sample records for spontaneous hyaline cartilage

  1. Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage

    Directory of Open Access Journals (Sweden)

    Charlotte M. Beddoes

    2016-06-01

    Full Text Available Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour.

  2. Quantification of collagen distributions in rat hyaline and fibro cartilages based on second harmonic generation imaging

    Science.gov (United States)

    Zhu, Xiaoqin; Liao, Chenxi; Wang, Zhenyu; Zhuo, Shuangmu; Liu, Wenge; Chen, Jianxin

    2016-10-01

    Hyaline cartilage is a semitransparent tissue composed of proteoglycan and thicker type II collagen fibers, while fibro cartilage large bundles of type I collagen besides other territorial matrix and chondrocytes. It is reported that the meniscus (fibro cartilage) has a greater capacity to regenerate and close a wound compared to articular cartilage (hyaline cartilage). And fibro cartilage often replaces the type II collagen-rich hyaline following trauma, leading to scar tissue that is composed of rigid type I collagen. The visualization and quantification of the collagen fibrillar meshwork is important for understanding the role of fibril reorganization during the healing process and how different types of cartilage contribute to wound closure. In this study, second harmonic generation (SHG) microscope was applied to image the articular and meniscus cartilage, and textural analysis were developed to quantify the collagen distribution. High-resolution images were achieved based on the SHG signal from collagen within fresh specimens, and detailed observations of tissue morphology and microstructural distribution were obtained without shrinkage or distortion. Textural analysis of SHG images was performed to confirm that collagen in fibrocartilage showed significantly coarser compared to collagen in hyaline cartilage (p wound repair following cartilage injury.

  3. Change in the optical properties of hyaline cartilage heated by the near-IR laser radiation

    International Nuclear Information System (INIS)

    Bagratashvili, Viktor N; Bagratashvili, N V; Omel'chenko, A I; Sviridov, A P; Sobol', E N; Tsypina, S I; Gapontsev, V P; Minaev, V P; Samartsev, I E; Makhmutova, G Sh

    2001-01-01

    The in vitro dynamics of the change in optical properties of hyaline cartilage heated by fibre lasers at wavelengths 0.97 and 1.56 μm is studied. The laser-induced bleaching (at 1.56 μm) and darkening (at 0.97 μm) of the cartilage, caused by the heating and transport of water as well as by a change in the cartilage matrix, were observed and studied. These effects should be taken into account while estimating the depth of heating of the tissue. The investigated dynamics of light scattering in the cartilage allows one to choose the optimum radiation dose for laser plastic surgery of cartilage tissues. (laser applications and other topics in quantum electronics)

  4. In vitro uptake of 153gadolinium and gadolinium complexes by hyaline articular cartilage

    International Nuclear Information System (INIS)

    Engel, A.; Fleischmann, D.; Hamilton, G.; Hajek, P.

    1990-01-01

    This in vitro study evaluated whether Gadolinium (Gd) penetrates into hyaline cartilage and would be incorporated into vital chondrocytes. Hyaline joint cartilage of rabbits was exposed to radioactive 153 GdCl 3 and to a radioactive 153 Gd-DTPA-BSA-complex (DTPA, diethylene-triaminepentaacetic acid; BSA, bovine serum albumine). In addition an exchange experiment with radioactive 153 GdCl 3 versus Gd-DTPA-di-N-methylglucamine (Magnevist) was performed. Incorporation of 153 GdCl 3 into neuroblastoma cells, connective tissue cells and chondrocytes was tested. The results showed that the depth and extent of incorporation of Gd depends on the molecular mass and time of exposure. 153 Gd-DTPA-BSA complexes exhibited an incorporation rate of maximal 11 per cent ± 2.8 per cent up to the middle third of the cartilage within 24 h with almost no incorporation (2 ± 1.9 per cent) for the deep layer. The exchange experiment revealed no uptake of Gd for the deep layer. The maximal incorporation rate of 153 GdCl 3 into vital chondrocytes was 6.3 per cent. These data indicate that under the condition of MR-arthrography, Gd-DTPA-di-N-methylglucamine will not be absorbed into the deep layers of hyaline cartilage and will not be incorporated into vital chondrocytes. (author). 8 refs.; 3 tabs

  5. Chondrocalcinosis of the hyaline cartilage of the knee: MRI manifestations

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, J.; Marty-Delfaut, E.; Bencardino, J.; Rosenberg, Z.S. [Department of Radiology, Hospital for Joint Diseases, New York, NY (United States); Steiner, G. [Department of Pathology, Hospital for Joint Diseases, New York, NY (United States); Aparisi, F. [Department of Radiology, Residencia Sanitaria ``La Fe``, Valencia (Spain); Padron, M. [Clinica San Camilo, Madrid (Spain)

    1998-07-01

    Purpose. To determine the ability of MRI to detect the presence of crystals of calcium pyrophosphate in the articular cartilage of the knee. Design and patients. The MR studies of 12 knees (11 cases) were reviewed retrospectively and correlated with radiographs (12 cases) and the findings at arthroscopy (2 cases) and surgery (1 case). A total of 72 articular surfaces were evaluated. Radiographic, surgical or arthroscopic demonstration of chondrocalcinosis was used as the gold standard. Additionally, two fragments of the knee of a patient who underwent total knee replacement and demonstrated extensive chondrocalcinosis were studied with radiography and MRI using spin-echo T1-, T2- and proton-density-weighted images as well as two- and three-dimensional fat saturation (2D and 3D Fat Sat) gradient recalled echo (GRE) and STIR sequences. Results. MRI revealed multiple hypointense foci within the articular cartilage in 34 articular surfaces, better shown on 2D and 3D GRE sequences. Radiographs showed 12 articular surfaces with chondrocalcinosis. In three cases with arthroscopic or surgical correlation, MRI demonstrated more diffuse involvement of the articular cartilage than did the radiographs. The 3D Fat Sat GRE sequences were the best for demonstrating articular calcification in vitro. In no case was meniscal calcification identified with MRI. Hyperintense halos around some of the calcifications were seen on the MR images. Conclusion. MRI can depict articular cartilage calcification as hypointense foci using GRE techniques. Differential diagnosis includes loose bodies, post-surgical changes, marginal osteophytes and hemosiderin deposition. (orig.) With 4 figs., 14 refs.

  6. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    Directory of Open Access Journals (Sweden)

    Bo He

    Full Text Available Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  7. Mesenchymal Stem Cells in Oriented PLGA/ACECM Composite Scaffolds Enhance Structure-Specific Regeneration of Hyaline Cartilage in a Rabbit Model

    Directory of Open Access Journals (Sweden)

    Weimin Guo

    2018-01-01

    Full Text Available Articular cartilage lacks a blood supply and nerves. Hence, articular cartilage regeneration remains a major challenge in orthopedics. Decellularized extracellular matrix- (ECM- based strategies have recently received particular attention. The structure of native cartilage exhibits complex zonal heterogeneity. Specifically, the development of a tissue-engineered scaffold mimicking the aligned structure of native cartilage would be of great utility in terms of cartilage regeneration. Previously, we fabricated oriented PLGA/ACECM (natural, nanofibrous, articular cartilage ECM composite scaffolds. In vitro, we found that the scaffolds not only guided seeded cells to proliferate in an aligned manner but also exhibited high biomechanical strength. To detect whether oriented cartilage regeneration was possible in vivo, we used mesenchymal stem cell (MSC/scaffold constructs to repair cartilage defects. The results showed that cartilage defects could be completely regenerated. Histologically, these became filled with hyaline cartilage and subchondral bone. Moreover, the aligned structure of cartilage was regenerated and was similar to that of native tissue. In conclusion, the MSC/scaffold constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment strategy for the repair of human cartilage defects.

  8. Animal experimental research on microstructural behavior on the hyaline arthroidal cartilage after immobilization and remobilization

    Science.gov (United States)

    Refior, H. J.

    1980-01-01

    The degeneration of the articular cartilage after a period of immobilization was investigated. The experiment was carried out by the immobilization of the knee joints of rabbits. Even after remobilization there was an increase in the alterations. These changes did not prove to be reversible.

  9. Effects of microcurrent stimulation on Hyaline cartilage repair in immature male rats (Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    de Campos Ciccone Carla

    2013-01-01

    Full Text Available Abstract Background In this study, we investigate the effects of microcurrent stimulation on the repair process of xiphoid cartilage in 45-days-old rats. Methods Twenty male rats were divided into a control group and a treated group. A 3-mm defect was then created with a punch in anesthetized animals. In the treated group, animals were submitted to daily applications of a biphasic square pulse microgalvanic continuous electrical current during 5 min. In each application, it was used a frequency of 0.3 Hz and intensity of 20 μA. The animals were sacrificed at 7, 21 and 35 days after injury for structural analysis. Results Basophilia increased gradually in control animals during the experimental period. In treated animals, newly formed cartilage was observed on days 21 and 35. No statistically significant differences in birefringent collagen fibers were seen between groups at any of the time points. Treated animals presented a statistically larger number of chondroblasts. Calcification points were observed in treated animals on day 35. Ultrastructural analysis revealed differences in cell and matrix characteristics between the two groups. Chondrocyte-like cells were seen in control animals only after 35 days, whereas they were present in treated animals as early as by day 21. The number of cuprolinic blue-stained proteoglycans was statistically higher in treated animals on days 21 and 35. Conclusion We conclude that microcurrent stimulation accelerates the cartilage repair in non-articular site from prepuberal animals.

  10. Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: Comparisons with the normal articular cartilage

    Directory of Open Access Journals (Sweden)

    Kurokawa Takayuki

    2011-09-01

    Full Text Available Abstract Background We have recently found a phenomenon that spontaneous regeneration of a hyaline cartilage-like tissue can be induced in a large osteochondral defect by implanting a double-network (DN hydrogel plug, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid and poly-(N, N'-Dimetyl acrylamide, at the bottom of the defect. The purpose of this study was to clarify gene expression profile of the regenerated tissue in comparison with that of the normal articular cartilage. Methods We created a cylindrical osteochondral defect in the rabbit femoral grooves. Then, we implanted the DN gel plug at the bottom of the defect. At 2 and 4 weeks after surgery, the regenerated tissue was analyzed using DNA microarray and immunohistochemical examinations. Results The gene expression profiles of the regenerated tissues were macroscopically similar to the normal cartilage, but showed some minor differences. The expression degree of COL2A1, COL1A2, COL10A1, DCN, FMOD, SPARC, FLOD2, CHAD, CTGF, and COMP genes was greater in the regenerated tissue than in the normal cartilage. The top 30 genes that expressed 5 times or more in the regenerated tissue as compared with the normal cartilage included type-2 collagen, type-10 collagen, FN, vimentin, COMP, EF1alpha, TFCP2, and GAPDH genes. Conclusions The tissue regenerated by using the DN gel was genetically similar but not completely identical to articular cartilage. The genetic data shown in this study are useful for future studies to identify specific genes involved in spontaneous cartilage regeneration.

  11. Treatment of Knee Osteochondral Lesions Using a Novel Clot of Autologous Plasma Rich in Growth Factors Mixed with Healthy Hyaline Cartilage Chips and Intra-Articular Injection of PRGF

    Directory of Open Access Journals (Sweden)

    Ramón Cugat

    2017-01-01

    Full Text Available Knee cartilage or osteochondral lesions are common and challenging injuries. To date, most symptomatic lesions warrant surgical treatment. We present two cases of patients with knee osteochondral defects treated with a one-step surgical procedure consisting of an autologous-based matrix composed of healthy hyaline cartilage chips, mixed plasma poor-rich in platelets clot, and plasma rich in growth factors (PRGF. Both patients returned to playing soccer at the preinjury activity level and demonstrated excellent defect filling in both magnetic resonance imaging and second-look arthroscopy (in one of them. The use of a clot of autologous plasma poor in platelets with healthy hyaline cartilage chips and intra-articular injection of plasma rich in platelets is an effective, easy, and cheap option to treat knee cartilage injuries in young and athletic patients.

  12. Current strategies for articular cartilage repair

    OpenAIRE

    Redman S. N.; Oldfield S. F.; Archer C. W.

    2005-01-01

    Defects of articular cartilage that do not penetrate to the subchondral bone fail to heal spontaneously. Defects that penetrate to the subchondral bone elicit an intrinsic repair response that yields a fibrocartilaginous repair tissue which is a poor substitute for hyaline articular cartilage. Many arthroscopic repair strategies employed utilise this intrinsic repair response to induce the formation of a repair tissue within the defect. The goal, however, is to produce a repair tissue that ha...

  13. Advances in cartilage tissue engineering : in vitro

    NARCIS (Netherlands)

    E.W. Mandl (Erik)

    2004-01-01

    textabstractWithin the body three subtypes of cartilage can be distinguished: hyaline cartilage, elastic cartilage and fibrocartilage. Hyaline cartilage is the predominant subtype and is mainly located in articular joints and in less extent in the nasal septum and cricoid. Elastic cartilage can be

  14. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    NARCIS (Netherlands)

    Pot, M.W.; Kuppevelt, T.H. van; Gonzales, V.K.; Buma, P.; Hout, J. in't; Vries, R.B.M. de; Daamen, W.F.

    2017-01-01

    Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline

  15. Black Colouration of the Knee Articular Cartilage after Spontaneously Recurrent Haemarthrosis

    Directory of Open Access Journals (Sweden)

    Kazu Matsumoto

    2016-01-01

    Full Text Available Mild discolouration of the articular cartilage is known to gradually occur during aging. However, pathological tissue pigmentation is occasionally induced under several specific conditions. In the present case, we performed total knee replacement in a patient with recurrent haemarthrosis. However, during the operation, we observed severe black colouration of the knee articular cartilage, due to the deposition of hemosiderin and lipofuscin. To our knowledge, this is the first report of severe cartilage pigmentation, due to hemosiderin and lipofuscin deposition in articular cartilage.

  16. Similar properties of chondrocytes from osteoarthritis joints and mesenchymal stem cells from healthy donors for tissue engineering of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Amilton M Fernandes

    Full Text Available Lesions of hyaline cartilage do not heal spontaneously, and represent a therapeutic challenge. In vitro engineering of articular cartilage using cells and biomaterials may prove to be the best solution. Patients with osteoarthritis (OA may require tissue engineered cartilage therapy. Chondrocytes obtained from OA joints are thought to be involved in the disease process, and thus to be of insufficient quality to be used for repair strategies. Bone marrow (BM derived mesenchymal stem cells (MSCs from healthy donors may represent an alternative cell source. We have isolated chondrocytes from OA joints, performed cell culture expansion and tissue engineering of cartilage using a disc-shaped alginate scaffold and chondrogenic differentiation medium. We performed real-time reverse transcriptase quantitative PCR and fluorescence immunohistochemistry to evaluate mRNA and protein expression for a range of molecules involved in chondrogenesis and OA pathogenesis. Results were compared with those obtained by using BM-MSCs in an identical tissue engineering strategy. Finally the two populations were compared using genome-wide mRNA arrays. At three weeks of chondrogenic differentiation we found high and similar levels of hyaline cartilage-specific type II collagen and fibrocartilage-specific type I collagen mRNA and protein in discs containing OA and BM-MSC derived chondrocytes. Aggrecan, the dominant proteoglycan in hyaline cartilage, was more abundantly distributed in the OA chondrocyte extracellular matrix. OA chondrocytes expressed higher mRNA levels also of other hyaline extracellular matrix components. Surprisingly BM-MSC derived chondrocytes expressed higher mRNA levels of OA markers such as COL10A1, SSP1 (osteopontin, ALPL, BMP2, VEGFA, PTGES, IHH, and WNT genes, but lower levels of MMP3 and S100A4. Based on the results presented here, OA chondrocytes may be suitable for tissue engineering of articular cartilage.

  17. Similar properties of chondrocytes from osteoarthritis joints and mesenchymal stem cells from healthy donors for tissue engineering of articular cartilage.

    Science.gov (United States)

    Fernandes, Amilton M; Herlofsen, Sarah R; Karlsen, Tommy A; Küchler, Axel M; Fløisand, Yngvar; Brinchmann, Jan E

    2013-01-01

    Lesions of hyaline cartilage do not heal spontaneously, and represent a therapeutic challenge. In vitro engineering of articular cartilage using cells and biomaterials may prove to be the best solution. Patients with osteoarthritis (OA) may require tissue engineered cartilage therapy. Chondrocytes obtained from OA joints are thought to be involved in the disease process, and thus to be of insufficient quality to be used for repair strategies. Bone marrow (BM) derived mesenchymal stem cells (MSCs) from healthy donors may represent an alternative cell source. We have isolated chondrocytes from OA joints, performed cell culture expansion and tissue engineering of cartilage using a disc-shaped alginate scaffold and chondrogenic differentiation medium. We performed real-time reverse transcriptase quantitative PCR and fluorescence immunohistochemistry to evaluate mRNA and protein expression for a range of molecules involved in chondrogenesis and OA pathogenesis. Results were compared with those obtained by using BM-MSCs in an identical tissue engineering strategy. Finally the two populations were compared using genome-wide mRNA arrays. At three weeks of chondrogenic differentiation we found high and similar levels of hyaline cartilage-specific type II collagen and fibrocartilage-specific type I collagen mRNA and protein in discs containing OA and BM-MSC derived chondrocytes. Aggrecan, the dominant proteoglycan in hyaline cartilage, was more abundantly distributed in the OA chondrocyte extracellular matrix. OA chondrocytes expressed higher mRNA levels also of other hyaline extracellular matrix components. Surprisingly BM-MSC derived chondrocytes expressed higher mRNA levels of OA markers such as COL10A1, SSP1 (osteopontin), ALPL, BMP2, VEGFA, PTGES, IHH, and WNT genes, but lower levels of MMP3 and S100A4. Based on the results presented here, OA chondrocytes may be suitable for tissue engineering of articular cartilage.

  18. MRI of the cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, H.; Noebauer-Huhmann, I.-M.; Krestan, C.; Gahleitner, A.; Marlovits, S.; Trattnig, S. [Department of Osteology, Universitaetklinik fuer Radiodiagnostik, AKH-Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Sulzbacher, I. [Universitaetsklinik fuer Pathologie Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)

    2002-11-01

    With the introduction of fat-suppressed gradient-echo and fast spin-echo (FSE) sequences in clinical routine MR visualization of the hyaline articular cartilage is routinely possible in the larger joints. While 3D gradient-echo with fat suppression allows exact depiction of the thickness and surface of cartilage, FSE outlines the normal and abnormal internal structures of the hyaline cartilage; therefore, both sequences seem to be necessary in a standard MRI protocol for cartilage visualization. In diagnostically ambiguous cases, in which important therapeutic decisions are required, direct MR arthrography is the established imaging standard as an add-on procedure. Despite the social impact and prevalence, until recent years there was a paucity of knowledge about the pathogenesis of cartilage damage. With the introduction of high-resolution MRI with powerful surface coils and fat-suppression techniques, visualization of the articular cartilage is now routinely possible in many joints. After a short summary of the anatomy and physiology of the hyaline cartilage, the different MR imaging methods are discussed and recommended standards are suggested. (orig.)

  19. INJURED ARTICULAR CARTILAGE REPAIR

    Directory of Open Access Journals (Sweden)

    Ariana Barlič

    2008-02-01

    Surveys show that the most frequently used surgical methods are mosaicplasty and bonemarrow stimulation with microfracturing. The efficacy of the autologous chondrocyte implantationmethod should be superior to microfracturing on a long run. Especially when(regeneration of the hyaline cartilage instead of fibrous tissue (fibrocartilage is concerned.However, it has not been scientifically proved yet

  20. Juvenile hyaline fibromatosis. Radiological diagnosis

    International Nuclear Information System (INIS)

    Fuentes, R.; Sar, V.; Cabrera, J.J.; Diaz, L.; Hernandez, B.; Valeron, P.; Baez, O.; Rodriguez, M.

    1993-01-01

    Juvenile hyaline fibromatosis (JHF) is a rare disorder of unknown etiology, very few cases of which have been reported in the literature. It presents similarities to other fibromatosys, but has its particular radiological features which differentiate it from them. The clinical findings consist of several, slow growing, subcutaneous nodules, flexion contractures of the joints which can lead to disability, gingival hypertrophy and muscular atrophy. The suspected radiological diagnosis is confirmed by electron microscopy study of the nodules, although light microscopy can also reveal suggestive images. Author (9 refs.)

  1. Trend of Cadherin-11 expression and its impact on cartilage degradation in the temporomandibular joints of guinea pigs with spontaneous osteoarthritis.

    Science.gov (United States)

    Wu, Mengjie; Lu, Haiping; Yu, Fengyang; Zhou, Yiqun

    2016-08-01

    This study aims to investigate spatial and temporal changes in cadherin-11 (CAD-11) expression and their effects on cartilage degeneration in the temporomandibular joint (TMJ) of guinea pigs with spontaneous osteoarthritis (OA). Dunkin-Hartley (DH) and Bristol strain 2 (BS2) guinea pigs at ages of 1, 3, 6, 9, and 12 months were categorized into two groups and analyzed. The bilateral TMJ condyles of DH and BS2 guinea pigs were harvested and fixed. The distribution and expression profiles of CAD-11, collagen type II, and matrix metalloproteinase 3 (MMP-3) were detected by immunohistological assays. Histological micrographs of the condyle cartilage were obtained and analyzed. Osteoarthritis can be spontaneously induced by mechanical stress in DH guinea pigs. The main histopathological changes in the TMJ structure and increased expression of MMP-3 occurred within 6-9 months of ages in DH guinea pigs with spontaneous OA. By contrast, minimal to mild cartilage degradations were observed in the TMJ of BS2 guinea pigs even at the age of 12 months. From as early as 3 months of age, the expression levels of CAD-11 were upregulated in the TMJ of DH guinea pigs compared with those in BS2 animals. CAD-11 expression differed between the two groups at 12 months of age. Increased CAD-11 expression within cartilage is associated with the development and progression of OA between the two strains of guinea pigs. Therefore, CAD-11 expression in TMJ could be an important predisposing factor for the development of spontaneous OA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Analysis of the Hyalinization Reaction in Otosclerosis.

    Science.gov (United States)

    Nelson, Erik G; Hinojosa, Raul

    2014-06-01

    Otosclerotic bone has been observed to penetrate the endosteal layer of the cochlea, resulting in direct contact with the soft-tissue structures of the inner ear. Sensorineural hearing loss has been observed in some, but not all, of these cases. The development of histologic changes occurring in the cochlear soft tissues at the site of otosclerotic endosteal penetration has been descriptively referred to as a hyalinization reaction. The role of the hyalinization reaction in the development of hearing loss is unknown. To evaluate the composition of these hyalinized soft tissues using immunostaining techniques. Retrospective review in a human temporal bone histopathology research laboratory of 3 specimens from patients with endosteal otosclerotic involvement. Evaluation of human temporal bone pathology findings. Human temporal bone sections with endosteal otosclerotic involvement were studied using immunostaining techniques to identify collagen I, chondroitin sulfate, and keratan sulfate deposition in the hyalinization reaction tissue. Intense collagen I staining was demonstrated within the hyalinization reaction in an onionskin-like layered fashion. In addition, dual immunofluorescence-stained sections for proteoglycans revealed both chondroitin sulfate and keratan sulfate deposition in the hyalinized tissue. The tissue of the hyalinization reaction appears to be composed of collagen I, chondroitin sulfate, and keratan sulfate, which are known to act as molecular barriers. This observation suggests that the hyalinization reaction may limit the diffusion of toxic substances produced by otosclerotic bone into the soft tissues and fluids of the cochlea.

  3. Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives

    Directory of Open Access Journals (Sweden)

    Wayne Yuk-wai Lee

    2017-04-01

    The translational potential of this article: This review summarises recent MSC-related clinical research that focuses on cartilage repair. We also propose a novel possible translational direction for hyaline cartilage formation and a new paradigm making use of extra-cellular signalling and epigenetic regulation in the application of MSCs for cartilage repair.

  4. Ectopic mineralization of cartilage and collagen-rich tendons and ligaments in Enpp1asj-2J mice.

    Science.gov (United States)

    Zhang, Jieyu; Dyment, Nathaniel A; Rowe, David W; Siu, Sarah Y; Sundberg, John P; Uitto, Jouni; Li, Qiaoli

    2016-03-15

    Generalized arterial calcification of infancy (GACI), an autosomal recessive disorder caused by mutations in the ENPP1 gene, manifests with extensive mineralization of the cardiovascular system. A spontaneous asj-2J mutant mouse has been characterized as a model for GACI. Previous studies focused on phenotypic characterization of skin and vascular tissues. This study further examined the ectopic mineralization phenotype of cartilage, collagen-rich tendons and ligaments in this mouse model. The mice were placed on either control diet or the "acceleration diet" for up to 12 weeks of age. Soft connective tissues, such as ear (elastic cartilage) and trachea (hyaline cartilage), were processed for standard histology. Assessment of ectopic mineralization in articular cartilage and fibrocartilage as well as tendons and ligaments which are attached to long bones were performed using a novel cryo-histological method without decalcification. These analyses demonstrated ectopic mineralization in cartilages as well as tendons and ligaments in the homozygous asj-2J mice at 12 weeks of age, with the presence of immature osteophytes displaying alkaline phosphatase and tartrate-resistant acid phosphatase activities as early as at 6 weeks of age. Alkaline phosphatase activity was significantly increased in asj-2J mouse serum as compared to wild type mice, indicating increased bone formation rate in these mice. Together, these data highlight the key role of ENPP1 in regulating calcification of both soft and skeletal tissues.

  5. Hyalinizing trabecular adenoma of the thyroid gland.

    Science.gov (United States)

    Bishop, Justin A; Ali, Syed Z

    2011-04-01

    Hyalinizing trabecular adenoma (HTA) is a rare primary thyroid neoplasm. Ever since its initial descriptions, controversy has surrounded the lesion, particularly in regard to its malignant potential and most appropriate terminology. HTA shares many features with medullary thyroid carcinoma and particularly papillary thyroid carcinoma, making it an especially treacherous lesion on fine-needle aspiration (FNA). This manuscript reviews the history and pathologic features of HTA, with particular attention to cytologic findings and differential diagnosis. Copyright © 2010 Wiley-Liss, Inc.

  6. Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments

    OpenAIRE

    Catherine Baugé; Karim Boumédiene

    2015-01-01

    Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartil...

  7. Significance of cartilage endplate within herniated disc tissue.

    Science.gov (United States)

    Lama, Polly; Zehra, Uruj; Balkovec, Christian; Claireaux, Henry A; Flower, Luke; Harding, Ian J; Dolan, Patricia; Adams, Michael A

    2014-09-01

    Disc herniations sometimes contain hyaline cartilage fragments, but their origins and significance are uncertain. Herniations were removed surgically from 21 patients (aged 35-74 years) whose main symptom was sciatica (10 patients) or back pain (11 patients). Frozen sections, 5 µm thick, were examined histologically, and antibodies were used to label the matrix-degrading enzyme MMP 1, pro-inflammatory mediator TNFα, and cell proliferation marker Ki-67. Proportions of each tissue type were quantified by image analysis. Cartilage and bone components of the endplate were examined in 7-µm frozen sections from 16 cadaveric spines, aged 61-98 years. Cartilage fragments were found in 10/21 herniations. They averaged 5.0 mm in length, comprised 25 % of the herniation area, and two had some bone attached. Hyaline cartilage was more common in herniations from patients with sciatica (7/10) than with back pain (3/11, P = 0.050), and the area (%) of the herniation occupied by the cartilage was greater in sciatica patients (P Disc herniations often include hyaline cartilage pulled from the vertebral endplates. Cartilage fragments show little swelling or proteoglycan loss, and may be slow to resorb, increasing the risk of persisting sciatica. Loss of cartilage will increase endplate permeability, facilitating endplate inflammation and disc infection.

  8. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing

    Energy Technology Data Exchange (ETDEWEB)

    Sobol, Emil [Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, RussiabFederal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Institute of Photonic Technologies, Moscow, Russia; Baum, Olga [Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Institute of Photonic Technologies, Moscow, Russia; Shekhter, Anatoly [Sechenov First Medical University of Moscow, Institute of Regenerative Medicine, Moscow, Russia; Wachsmann-Hogiu, Sebastian [University of California, Center for Biophotonics, Department of Pathology and Laboratory Medicine, Sacramento, California, United StateseMcGill University, Department of Bioengineering, Montreal, Canada; Shnirelman, Alexander [Concordia University, Department of Mathematics and Statistics, Montreal, Canada; Alexandrovskaya, Yulia [Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, RussiabFederal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Institute of Photonic Technologies, Moscow, Russia; Sadovskyy, Ivan [Argonne National Laboratory, Materials Science Division, Argonne, Illinois, United States; Vinokur, Valerii [Argonne National Laboratory, Materials Science Division, Argonne, Illinois, United States

    2017-05-31

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-anderror approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  9. Calcineurin Inhibition at Physiological Osmolarity: Toward improving cartilage regeneration

    NARCIS (Netherlands)

    A.E. van der Windt (Anna)

    2017-01-01

    markdownabstractArticular hyaline cartilage is a white, smooth structure covering the ends of bones in synovial joints, like in the hip and knee. Because of its unique stiff yet flexible properties, it distributes the loads, as a consequence of weight bearing and locomotion, over the surface of the

  10. Pleomorphic Hyalinizing Angiectatic Tumor of Soft Parts

    Directory of Open Access Journals (Sweden)

    Hui-Chin Peng

    2010-08-01

    Full Text Available Pleomorphic hyalinizing angiectatic tumor (PHAT of soft parts is a rare, nonmetastasizing tumor of uncertain lineage which was first reported in 1996. Here, we report a case of PHAT and review the literature. A 49-year-old man presented with a soft and progressively enlarging mass over the right buttock for several years. On suspicion that the mass was a right gluteal lipoma, he underwent surgical excision. The excised lesion measured 14 × 6 × 3.5 cm. It had a variegated appearance with a white-tan to yellowish color on the cut surface. Some punctate hemorrhage and vessel thrombosis were seen. Microscopically, the tumor was a PHAT characterized by clusters of ectatic, fibrin-lined, thin-walled vessels, which were surrounded by a mitotically inert, spindled, pleomorphic, neoplastic stroma that contained a variable inflammatory component. Immunohistochemical study showed that the tumor cells were positive for CD34, and negative for S-100, HMB45 and actin. The patient experienced local recurrence 6 months later. The recurrent tumor was widely excised. No evidence of metastasis was found during the 18 months after the second operation. The recurrent lesion had a microscopic appearance that was similar to the initial lesion.

  11. Cartilage repair: Generations of autologous chondrocyte transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, Stefan [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.marlovits@meduniwien.ac.at; Zeller, Philip [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Singer, Philipp [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Resinger, Christoph [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Vecsei, Vilmos [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation.

  12. Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model.

    Science.gov (United States)

    Turley, Sean M; Thambyah, Ashvin; Riggs, Christopher M; Firth, Elwyn C; Broom, Neil D

    2014-06-01

    The palmar aspect of the third metacarpal (MC3) condyle of equine athletes is known to be subjected to repetitive overloading that can lead to the accumulation of joint tissue damage, degeneration, and stress fractures, some of which result in catastrophic failure. However, there is still a need to understand at a detailed microstructural level how this damage progresses in the context of the wider joint tissue complex, i.e. the articular surface, the hyaline and calcified cartilage, and the subchondral bone. MC3 bones from non-fractured joints were obtained from the right forelimbs of 16 Thoroughbred racehorses varying in age between 3 and 8 years, with documented histories of active race training. Detailed microstructural analysis of two clinically important sites, the parasagittal grooves and the mid-condylar regions, identified extensive levels of microdamage in the calcified cartilage and subchondral bone concealed beneath outwardly intact hyaline cartilage. The study shows a progression in microdamage severity, commencing with mild hard-tissue microcracking in younger animals and escalating to severe subchondral bone collapse and lesion formation in the hyaline cartilage with increasing age and thus athletic activity. The presence of a clearly distinguishable fibrous tissue layer at the articular surface immediately above sites of severe subchondral collapse suggested a limited reparative response in the hyaline cartilage. © 2014 Anatomical Society.

  13. Shark Cartilage

    Science.gov (United States)

    ... inflammation of the intestine (enteritis). Some people apply shark cartilage directly to the skin for arthritis and psoriasis. ... ingredients. Additionally, there is no research showing that shark cartilage is absorbed through the skin. Psoriasis. Developing research suggests that a specific shark ...

  14. Hyaline fibromatosis of Hoffa's fat pad in a patient with a mild type of hyaline fibromatosis syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Raak, Sjoerd M. van [Albert Schweitzer Hospital, Department of Radiology, Dordrecht (Netherlands); Meuffels, Duncan E. [Erasmus MC - University Medical Center, Department of Orthopaedic Surgery, Rotterdam (Netherlands); Leenders, Geert J.L.H. van [Erasmus MC - University Medical Center, Department of Pathology, Rotterdam (Netherlands); Oei, Edwin H.G. [Erasmus MC - University Medical Center, Department of Radiology, Rotterdam (Netherlands)

    2014-04-15

    Hyaline fibromatosis syndrome (HFS) is a rare, homozygous, autosomal recessive disease, characterized by deposition of hyaline material in skin and other organs, resulting in esthetic problems, disability, and potential life-threatening complications. Most patients become clinically apparent in the first few years of life, and the disorder typically progresses with the appearance of new lesions. We describe a rare case of a 20-year-old patient with juvenile-onset mild HFS who presented with a history of progressive anterior knee pain. Detailed magnetic resonance (MR) imaging findings with histopathological correlation are presented of hyaline fibromatosis of Hoffa's fat pad, including differential diagnosis. The diagnosis of HFS is generally made on basis of clinical and histopathological findings. Imaging findings, however, may contribute to the correct diagnosis in patients who present with a less typical clinical course of HFS. (orig.)

  15. Hyaline fibromatosis of Hoffa's fat pad in a patient with a mild type of hyaline fibromatosis syndrome

    International Nuclear Information System (INIS)

    Raak, Sjoerd M. van; Meuffels, Duncan E.; Leenders, Geert J.L.H. van; Oei, Edwin H.G.

    2014-01-01

    Hyaline fibromatosis syndrome (HFS) is a rare, homozygous, autosomal recessive disease, characterized by deposition of hyaline material in skin and other organs, resulting in esthetic problems, disability, and potential life-threatening complications. Most patients become clinically apparent in the first few years of life, and the disorder typically progresses with the appearance of new lesions. We describe a rare case of a 20-year-old patient with juvenile-onset mild HFS who presented with a history of progressive anterior knee pain. Detailed magnetic resonance (MR) imaging findings with histopathological correlation are presented of hyaline fibromatosis of Hoffa's fat pad, including differential diagnosis. The diagnosis of HFS is generally made on basis of clinical and histopathological findings. Imaging findings, however, may contribute to the correct diagnosis in patients who present with a less typical clinical course of HFS. (orig.)

  16. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles.

    Science.gov (United States)

    Yin, Heyong; Wang, Yu; Sun, Zhen; Sun, Xun; Xu, Yichi; Li, Pan; Meng, Haoye; Yu, Xiaoming; Xiao, Bo; Fan, Tian; Wang, Yiguo; Xu, Wenjing; Wang, Aiyuan; Guo, Quanyi; Peng, Jiang; Lu, Shibi

    2016-03-01

    cartilage repair in vivo induced hyaline-like articular cartilage repair. This strategy for cell culture, stem cell differentiation and the one-step surgery for cartilage repair provide novel prospects for cartilage tissue engineering and may have further broad clinical applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Medullary carcinoma of the thyroid - an unusual case of hyalinizing ...

    African Journals Online (AJOL)

    Medullary thyroid carcinoma is a neoplasm occurring in sporadic and familial patterns. A rare variant of medullary thyroid carcinoma shows microscopic features similar to hyalinizing trabecular adenoma of thyroid. Detection of this variant requires a high index of suspicion and immunohistochemical confirmation by ...

  18. Microplate assay for quantifying developmental morphologies: effects of exogenous hyalin on sea urchin gastrulation

    OpenAIRE

    Razinia, Z.; Carroll, E.J.; Oppenheimer, S.B.

    2007-01-01

    It is often difficult to determine the effects of various substances on the development of the sea urchin embryo due to the lack of appropriate quantitative microassays. Here, a microplate assay has been developed for quantitatively evaluating the effects of substances, such as hyalin, on living sea urchin embryos. Hyalin (330 kDa) is a major constituent of the sea urchin hyaline layer, an extracellular matrix that develops 20 min postinsemination. Function of the hyaline layer and its major ...

  19. Endogenous Cartilage Repair by Recruitment of Stem Cells.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Articular cartilage has a very limited capacity for repair after injury. The adult body has a pool of stem cells that are mobilized during injury or disease. These cells exist inside niches in bone marrow, muscle, adipose tissue, synovium, and other connective tissues. A method that mobilizes this endogenous pool of stem cells will provide a less costly and less invasive alternative if these cells successfully regenerate defective cartilage. Traditional microfracture procedures employ the concept of bone marrow stimulation to regenerate cartilage. However, the regenerated tissue usually is fibrous cartilage, which has very poor mechanical properties compared to those of normal hyaline cartilage. A method that directs the migration of a large number of autologous mesenchymal stem cells toward injury sites, retains these cells around the defects, and induces chondrogenic differentiation that would enhance success of endogenous cartilage repair. This review briefly summarizes chemokines and growth factors that induce recruitment, proliferation, and differentiation of endogenous progenitor cells, endogenous cell sources for regenerating cartilage, scaffolds for delivery of bioactive factors, and bioadhesive materials that are necessary to bring about endogenous cartilage repair.

  20. A Hyalinized Trichilemmoma of the Eyelid in a Teenager.

    Science.gov (United States)

    Jakobiec, Frederick A; Stagner, Anna M; Sassoon, Jodi; Goldstein, Scott; Mihm, Martin C

    2016-01-01

    A 16-year-old African American male, the youngest patient to date, presented with a well-circumscribed upper eyelid lesion. On excision, the dermal nodule was contiguous with the epidermis, displayed trichohyalin-like bodies in an expanded outer root sheath, and was composed chiefly of small cellular clusters separated by a prominent network of periodic acid Schiff -positive hyaline bands of basement membrane material. The tumor cells were positive for high molecular weight cytokeratins (CK) 5/6, CK14, and CK34βE12 and were negative for CK7, carcinoembryonic antigen and epithelial membrane antigen. Negative S100, glial fibrillary acidic protein, and smooth muscle actin immunoreactions ruled out a myoepithelial lesion. The Ki-67 proliferation index was <10%. The diagnosis was a hyalinized trichilemmoma, contrasting with the more common lobular type. As an isolated lesion, trichilemmoma does not portend Cowden syndrome.

  1. Hyaline-Vascular Type Castleman's Disease, Sarcoidosis, and Crohns Disease.

    Science.gov (United States)

    Gupta, Arjun; Ayyar, Balaji; Zia, Hamid; Chen, Weina; Harris, Samar; Naina, Harris V

    2016-06-01

    Sarcoidosis and Crohns disease have been associated with increased long term risk of lymphoproliferative disorders, including lymphomas. Newly developed lymphadenopathy in a patient with these disorders should prompt pathological evaluation. Castleman's disease is a lymphoproliferative disorder characterized by enlarged hyperplastic lymph nodes with regressed follicles surrounded by expanded mantle zones of small lymphocytes, and interfollicular vascular proliferation in the hyaline-vascular type. Similar to sarcoidosis and Crohns disease, its etiology is incompletely understood, although immune dysregulation, genetic factors and infectious and environmental factors are thought to play a role in all three diseases. Interleukin-6 is a possible pathological common factor between these three disease processed. Unicentric, hyaline-vascular type Castleman's disease can be treated successfully with complete surgical resection. We report a patient with long history of sarcoidosis and Crohns disease with newly developed lymphadenopathy which was found to be due to Castleman's disease.

  2. Pulmonary hyalinizing granuloma and retroperitoneal fibrosis in an adolescent

    International Nuclear Information System (INIS)

    Young, Adam S.; Binkovitz, Larry A.; Adler, Brent H.; Nicol, Kathleen K.; Rennebohm, Robert M.

    2007-01-01

    We describe a 15-year-old boy who developed pulmonary hyalinizing granuloma (PHG) and retroperitoneal fibrosis (RPF). His PHG and RPF were not associated with histoplasmosis or tuberculosis and appeared to represent idiopathic autoimmune phenomena. This is the first reported case of PHG in a pediatric patient and the fourth reported co-occurrence of PHG and RPF. The use of F-18 fluorodeoxyglucose positron emission tomography in the diagnostic and follow-up evaluation of PHG is reported. (orig.)

  3. Combined nanoindentation testing and scanning electron microscopy of bone and articular calcified cartilage in an equine fracture predilection site

    OpenAIRE

    M Doube; EC Firth; A Boyde; AJ Bushby

    2010-01-01

    Condylar fracture of the third metacarpal bone (Mc3) is the commonest cause of racetrack fatality in Thoroughbred horses. Linear defects involving hyaline articular cartilage, articular calcified cartilage (ACC) and subchondral bone (SCB) have been associated with the fracture initiation site, which lies in the sagittal grooves of the Mc3 condyle. We discovered areas of thickened and abnormally-mineralised ACC in the sagittal grooves of several normal 18-month-old horses, at the same site tha...

  4. An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant.

    Science.gov (United States)

    Bartz, Christoph; Meixner, Miriam; Giesemann, Petra; Roël, Giulietta; Bulwin, Grit-Carsta; Smink, Jeske J

    2016-11-15

    Cell-based therapies such as autologous chondrocyte implantation are promising therapeutic approaches to treat cartilage defects to prevent further cartilage degeneration. To assure consistent quality of cell-based therapeutics, it is important to be able to predict the biological activity of such products. This requires the development of a potency assay, which assesses a characteristic of the cell transplant before implantation that can predict its cartilage regeneration capacity after implantation. In this study, an ex vivo human cartilage repair model was developed as quality assessment tool for potency and applied to co.don's chondrosphere product, a matrix-associated autologous chondrocyte implant (chondrocyte spheroids) that is in clinical use in Germany. Chondrocyte spheroids were generated from 14 donors, and implanted into a subchondral cartilage defect that was manually generated in human articular cartilage tissue. Implanted spheroids and cartilage tissue were co-cultured ex vivo for 12 weeks to allow regeneration processes to form new tissue within the cartilage defect. Before implantation, spheroid characteristics like glycosaminoglycan production and gene and protein expression of chondrogenic markers were assessed for each donor sample and compared to determine donor-dependent variation. After the co-cultivation, histological analyses showed the formation of repair tissue within the cartilage defect, which varied in amount for the different donors. In the repair tissue, aggrecan protein was expressed and extra-cellular matrix cartilage fibers were present, both indicative for a cartilage hyaline-like character of the repair tissue. The amount of formed repair tissue was used as a read-out for regeneration capacity and was correlated with the spheroid characteristics determined before implantation. A positive correlation was found between high level of aggrecan protein expression in spheroids before implantation and a higher regeneration potential

  5. An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant

    Directory of Open Access Journals (Sweden)

    Christoph Bartz

    2016-11-01

    Full Text Available Abstract Background Cell-based therapies such as autologous chondrocyte implantation are promising therapeutic approaches to treat cartilage defects to prevent further cartilage degeneration. To assure consistent quality of cell-based therapeutics, it is important to be able to predict the biological activity of such products. This requires the development of a potency assay, which assesses a characteristic of the cell transplant before implantation that can predict its cartilage regeneration capacity after implantation. In this study, an ex vivo human cartilage repair model was developed as quality assessment tool for potency and applied to co.don’s chondrosphere product, a matrix-associated autologous chondrocyte implant (chondrocyte spheroids that is in clinical use in Germany. Methods Chondrocyte spheroids were generated from 14 donors, and implanted into a subchondral cartilage defect that was manually generated in human articular cartilage tissue. Implanted spheroids and cartilage tissue were co-cultured ex vivo for 12 weeks to allow regeneration processes to form new tissue within the cartilage defect. Before implantation, spheroid characteristics like glycosaminoglycan production and gene and protein expression of chondrogenic markers were assessed for each donor sample and compared to determine donor-dependent variation. Results After the co-cultivation, histological analyses showed the formation of repair tissue within the cartilage defect, which varied in amount for the different donors. In the repair tissue, aggrecan protein was expressed and extra-cellular matrix cartilage fibers were present, both indicative for a cartilage hyaline-like character of the repair tissue. The amount of formed repair tissue was used as a read-out for regeneration capacity and was correlated with the spheroid characteristics determined before implantation. A positive correlation was found between high level of aggrecan protein expression in spheroids

  6. Juvenile hyaline fibromatosis. Radiological diagnosis. Fibromatosis hialina juvenil. Diagnostico radiologico

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, R.; Sar, V.; Cabrera, J.J.; Diaz, L.; Hernandez, B.; Valeron, P.; Baez, O.; Rodriguez, M.

    1993-10-01

    Juvenile hyaline fibromatosis (JHF) is a rare disorder of unknown etiology, very few cases of which have been reported in the literature. It presents similarities to other fibromatosys, but has its particular radiological features which differentiate it from them. The clinical findings consist of several, slow growing, subcutaneous nodules, flexion contractures of the joints which can lead to disability, gingival hypertrophy and muscular atrophy. The suspected radiological diagnosis is confirmed by electron microscopy study of the nodules, although light microscopy can also reveal suggestive images. Author (9 refs.)

  7. Hyaline ring granuloma: a case report with histochemical and polarized microscopic studies.

    Science.gov (United States)

    Lin, S K; Chiang, C P; Ou, S H; Wang, J T; Liu, B Y; Lan, W H

    1993-11-01

    An unusual case of hyaline ring granuloma arising from the connective tissue wall of a residual apical periodontal cyst is reported. Hyaline rings with foreign-body type giant cell inclusions were a significant feature in the histopathologic diagnosis. Histochemical and polarized light microscopic studies suggested that the introduction of foreign material, possibly cellulose, through the postextraction socket into the cystic wall may have caused the granulomatous reaction and formation of the hyaline ring granuloma. The clinical features of this case and 66 previously reported cases, as well as the pathogenesis of the hyaline rings, are discussed.

  8. Repair of articular cartilage lesions in aged chickens by allogeneic transplantation of fresh embryonic epiphyses.

    Science.gov (United States)

    Cohen, Ilan; Melamed, Eitan; Robinson, Dror; Nevo, Zvi

    2007-11-01

    The potential of fresh whole chick epiphyses of embryonic origin to serve as implant material for cartilage defects of aged chicken was tested. Fresh epiphyses of 11-day-old embryos were collected from 24 animals and transplanted into defects created in the weight-bearing areas of tibiotarsal joint cartilage of 2-year-old chicks. Upon sacrifice, samples were examined macroscopically and microsections were prepared for histology. Macroscopically, control defects remained empty at all the time intervals. Defects of the experimental group were, on the other hand, filled with cartilaginous tissue as early as 2 weeks posttransplantation, although individual epiphyses could still be noted in the implant tissue. At 4 weeks and later, defects were filled with cartilaginous material indistinguishable from hyaline cartilage. Histologically, all grafts remained within the defect's pits, showing mitotic and metabolic activity typical to proliferating hyaline cartilage. The engrafted epiphyses showed a partial incorporation and integration with the surrounding host tissues already at 2 weeks. At 4 weeks and later, the integration was complete. It is concluded that a chick embryonic epiphyseal cartilage is suitable as a graft source for articular cartilage transplantation. The embryonic epiphyses provide immediate inherent stability to the graft and supply a good mix of mesenchymal progenitor cells responsible for the high rate of cell proliferation and adhesion to the differentiated committed chondrocytes of the host that create the typical favorable chondrogenic milieu. Based on the present findings, it is postulated that human embryonic epiphyses may, in the future, represent an alternative source to the commonly used techniques of hyaline cartilage repair.

  9. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing

    Science.gov (United States)

    Sobol, Emil; Baum, Olga; Shekhter, Anatoly; Wachsmann-Hogiu, Sebastian; Shnirelman, Alexander; Alexandrovskaya, Yulia; Sadovskyy, Ivan; Vinokur, Valerii

    2017-09-01

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-and-error approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  10. The biomechanical behaviour of the hyalinized periodontal ligament in dogs during experimental orthodontic tooth movement.

    Science.gov (United States)

    Jónsdóttir, S H; Giesen, E B W; Maltha, J C

    2012-10-01

    During orthodontic tooth movement, the mechanical behaviour of the extracellular matrix of the periodontal ligament (PDL) determines the cellular processes involved in turnover of the PDL and alveolar bone. This mechanical behaviour is the basis for finite element (FE) models and FE analyses. Five young adult male beagle dogs were used to test the null hypothesis that the mechanical behaviour of the PDL is identical in normal and hyalinized PDL. Therefore, tooth transposition was measured after standardized force application by super-elastic nickel titanium (NiTi) coil springs, exerting a constant force of 100 cN for 5 hours in both conditions. A rapid transposition during the first few seconds was found. However, it was significantly less for hyalinized than for non-hyalinized PDL. Subsequently, a short-lived creep movement was found for hyalinized PDL, while creep persisted at the non-hyalinized sides (analysis of variance and Tukey's multiple comparisons post hoc tests). The results showed substantial biomechanical differences between hyalinized and non-hyalinized PDL at different time points (Mann-Whitney). This indicates that FE models in the study of long-term orthodontic tooth movement, which are based solely on the characteristics of normal PDL should be reconsidered.

  11. Microplate assay for quantifying developmental morphologies: effects of exogenous hyalin on sea urchin gastrulation.

    Science.gov (United States)

    Razinia, Z; Carroll, E J; Oppenheimer, S B

    2007-05-01

    It is often difficult to determine the effects of various substances on the development of the sea urchin embryo due to the lack of appropriate quantitative microassays. Here, a microplate assay has been developed for quantitatively evaluating the effects of substances, such as hyalin, on living sea urchin embryos. Hyalin (330 kDa) is a major constituent of the sea urchin hyaline layer, an extracellular matrix that develops 20 min postinsemination. Function of the hyaline layer and its major constituent, is the adhesion of cells during morphogenesis. Using wide-mouthed pipette tips, 25 microl of 24-h Strongylocentrotus purpuratus embryos were transferred to each well of a 96-well polystyrene flat-bottom microplate yielding about 12 embryos per well. Specific concentrations of purified hyalin diluted in low calcium seawater were added to the wells containing the embryos, which were then incubated for 24 h at 15 degree C. The hyalin-treated and control samples were observed live and after fixation with 10% formaldehyde using a Zeiss Axiolab photomicroscope. The small number of embryos in each well allowed quantification of the developmental effects of the added media. Specific archenteron morphologies-attached, unattached, no invagination and exogastrula-were scored and a dose-dependent response curve was generated. Hyalin at high concentrations blocked invagination. At low concentrations, it inhibited archenteron elongation/attachment to the blastocoel roof. While many studies have implicated hyalin in a variety of interactions during morphogenesis, we are not aware of any past studies that have quantitatively examined the effects of exogenous hyalin on specific gastrulation events in whole embryos.

  12. Pleomorphic Hyalinizing Angiectatic Tumor Arising in the Hand

    Science.gov (United States)

    Kane, Patrick M.; Gaspar, Michael P.; Whiting, Benjamin B.; Culp, Randall W.

    2016-01-01

    Background: Background: Pleomorphic hyalinizing angiectatic tumors (PHATs) are extremely rare, non-metastasizing tumors of uncertain origin that are typically seen in the lower extremities. To date, it is estimated that less than 100 cases have been reported worldwide since first described in 1996. Methods: The case of a 35-year-old male with a several-year history of a dorsal hand mass is presented. Although the patient was initially asymptomatic, in the months prior to presentation, the patient complained of pain with power grasp and direct pressure over the mass. The patient underwent uncomplicated surgical excision, during which the mass was noted to be adherent to the underlying extensor tendons. Results: Immunopathology confirmed the mass to be PHAT. We believe this is the first documented case of this rare tumor occurring in the hand. Conclusions: History and epidemiology of PHAT are reviewed. Then, in the context of the presented case, pre-operative evaluation, surgical management, pathologic findings and post-operative follow-up are all discussed. PMID:27698646

  13. Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments.

    Science.gov (United States)

    Baugé, Catherine; Boumédiene, Karim

    2015-01-01

    Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells.

  14. Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments

    Directory of Open Access Journals (Sweden)

    Catherine Baugé

    2015-01-01

    Full Text Available Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells.

  15. hWJECM-Derived Oriented Scaffolds with Autologous Chondrocytes for Rabbit Cartilage Defect Repairing.

    Science.gov (United States)

    Zhao, Peng; Liu, Shuyun; Bai, Yuhe; Lu, Shibi; Peng, Jiang; Zhang, Li; Huang, Jingxiang; Zhao, Bin; Xu, Wenjing; Guo, Quanyi

    2018-02-02

    Previously, we synthesized an articular cartilage extracellular matrix (ECM)-derived oriented scaffold for cartilage tissue engineering, which was biomimetic in terms of structure and biochemical composition. However, the limit resource of the cartilage-derived ECM is a hindrance for its application. In this study, we developed a new material for cartilage tissue engineering-human umbilical cord Wharton's jelly-derived ECM (hWJECM). The hWJECM has an abundant resource and similar biochemistry with cartilage ECM, and the use of it is not associated with ethical controversy. We adopted the method previously used in cartilage ECM-derived oriented scaffold preparation to generate the oriented hWJECM-derived scaffold, and the scaffold properties were tested in vitro and in vivo. The three-dimensional scaffold has a porous and well-oriented structure, with a mean pore diameter of ∼104 μm. Scanning electron microscopy and cell viability staining results demonstrated that the oriented scaffold has good biocompatibility and cell alignment. In addition, we used functional autologous chondrocytes to seed the hWJECM-derived oriented scaffold and tested the efficacy of the cell-scaffold constructs to repair the full-thickness articular cartilage defect in a rabbit model. Defects of 4 mm diameter were generated in the patellar grooves of the femurs of both knees and were implanted with chondrocyte-scaffold constructs (group A) or scaffolds alone (group B); rabbits with untreated defects were used as a control (group C). Six months after surgery, all defects in group A were filled completely with repaired tissue, and most of which were hyaline cartilage. In contrast, the defects in group B were filled partially with repaired tissue, and approximately half of these repaired tissues were hyaline cartilage. The defects in group C were only filled with fibrotic tissue. Histological grading score of group A was lower than those of groups B and C. Quantification of

  16. Medullary carcinoma of the thyroid - an unusual case of hyalinizing trabecular adenoma - like variant (encapsulated

    Directory of Open Access Journals (Sweden)

    Madhusmita Jena

    2012-07-01

    Full Text Available Medullary thyroid carcinoma is a neoplasm occurring in sporadic and familial patterns. A rare variant of medullary thyroid carcinoma shows microscopic features similar to hyalinizing trabecular adenoma of thyroid. Detection of this variant requires a high index of suspicion and immunohistochemical confirmation by calcitonin positivity. We present a 36 years old female patient with a thyroid nodule, which, on microscopy, displayed an encapsulated tumor with elongated cells arranged in trabecular pattern separated by hyalinized fibrous septae simulating a hyalinizing trabecular adenoma. Also present were spindle cells arranged in an organoid fashion. Most of the cells showed salt and pepper chromatin pattern. The lesion was negative for amyloid but showed diffuse calcitonin positivity indicative of a tumor of C-cell origin i.e. medullary carcinoma of thyroid – hyalinizing trabecular variant.

  17. POSSIBILITIES OF CURRENT CELLULAR TECHNOLOGIES FOR ARTICULAR CARTILAGE REPAIR (ANALYTICAL REVIEW

    Directory of Open Access Journals (Sweden)

    M. S. Bozhokin

    2016-01-01

    Full Text Available Despite a wide variety of surgical procedures utilized in clinical practice for treatment of articular cartilage lesions, the search for other options of articular reconstruction remains a relevant and open issue at the current stage of medicine and biotechnologies development. The recent years demonstrated a strong belief in cellular methods of hyaline cartilage repair such as implantation of autologous chondrocytes (ACI or cultures of mesenchymal stem cells (MSC including techniques for genetic modification of cells.The purpose of presented review is to summarize the published scientific data on up to date results of perspective cellular technologies for articular cartilage repair that are being developed. Autologous chondrocyte transplantation originally performed by Swedish researchers in 1987 is considered the first clinically applied technique for restoration of hyaline cartilage using cellular technologies. However, the transplanted cell culture featured low proliferative capacity and inability to form a regenerate resistant to high physical activity. Another generation of methods originated at the turn of the century utilized mesenchymal stem cells instead of autologous chondrocytes. Preparation of MSCs is a less invasive procedure compared to chondrocytes harvesting and the culture is featured by a higher proliferative ability. Researchers use various biodegradable carriers (matrices to secure cell fixation. Despite good clinical mid-term outcomes the transplanted tissue-engineering structures deteriorate with time due to cellular de-differentiation. Next generation of techniques being currently under pre-clinical studies is featured by the preliminary chondrogenic modification of transplanted cell culture. Usage of various growth factors, modified cell product and gene-activated matrices allow to gain a stable regulatory and key proteins synthesis and achieve a focused influence on regenerate's chondrogenic proliferation and in result

  18. Role of tenascin-C in articular cartilage.

    Science.gov (United States)

    Hasegawa, Masahiro; Yoshida, Toshimichi; Sudo, Akihiro

    2018-03-01

    Tenascin-C (TN-C) is a glycoprotein component of the extracellular matrix (ECM). TN-C consists of four distinct domains, including the tenascin assembly domain, epidermal growth factor-like repeats, fibronectin type III-like repeats, and the fibrinogen-like globe (FBG) domain. This review summarizes the role of TN-C in articular cartilage. Expression of TN-C is associated with the development of articular cartilage but markedly decreases during maturation of chondrocytes and disappears almost completely in adult articular cartilage. Increased expression of TN-C has been found at diseased cartilage and synovial sites in osteoarthritis (OA) and rheumatoid arthritis (RA). TN-C is increased in the synovial fluid in patients with OA and RA. In addition, serum TN-C is elevated in RA patients. TN-C could be a useful biochemical marker for joint disease. The addition of TN-C results in different effects among TN-C domains. TN-C fragments might be endogenous inducers of cartilage matrix degradation; however, full-length TN-C could promote cartilage repair and prevent cartilage degeneration. The deficiency of TN-C enhanced cartilage degeneration in the spontaneous OA in aged joints and surgical OA model. The clinical significance of TN-C effects on cartilage is not straightforward.

  19. Radiological, computertomographic, pathoanatomical and histological examination of the rib cartilage of the dog

    International Nuclear Information System (INIS)

    Lorber, B.

    2000-06-01

    This study was concerned with the representation and description of the rib cartilage of the dog and the abnormalities of such by means of radiological, computer tomographic, pathoanatomical and histological examinations and the comparison of the results of the various examination methods. The study material consisted of 100 ventral thorax walls of dogs of different ages and breeds. In 39 of the subjects, no abnormalities of rib cartilage other than unremarkable calcification were observed. Among the subjects, there were 11 puppies (0-3 months), whose rib cartilage appeared soft tissue dense due to the absence of calcification, 14 juvenile animals (4-18 months), the rib cartilage of which showed a typical finely granulated structure, and 14 adult dogs (over 18 months), whose rib cartilage exhibited a homogeneous to net-like calcified appearance. In the calcified rib cartilage, the histological section showed a centrally located spongiosa rod surrounded by a hyaline cartilage shell. The calcification tendency of the first pair of rib cartilage was remarkable: in 70 dogs, the first pair of rib cartilage remained uncalcified despite calcification of the other rib cartilage. Sixty-one dogs exhibited rib cartilage abnormalities. According to the radiological appearance of the abnormalities, they were divided into groups and their incidence was calculated. Abnormalities seen included interruption in the continuity of the calcified rib cartilage with and without callus formation, enlargement of rib cartilage, cuff formation, and abnormalities on the Articulationes sternocostales (projections in or around articulations, calcified and fractured joint surfaces). In addition, remarkable calcification patterns were observed. By means of CT examination the densities of the tissue forming the various abnormalities was determined. In the course of the pathoanatomical examination, it was shown that the interruptions in continuity with callus and the various enlarged areas of the

  20. Mesenchymal stem cells for cartilage regeneration in osteoarthritis.

    Science.gov (United States)

    Kristjánsson, Baldur; Honsawek, Sittisak

    2017-09-18

    Osteoarthritis (OA) is a slowly progressive disease where cartilage of the synovial joint degenerates. It is most common in the elderly where patients experience pain and reduce physical activity. In combination with lack of conventional treatment, patients are often left with no other choices than arthroplasty. Over the last years, multipotent stromal cells have been used in efforts to treat OA. Mesenchymal stem/progenitor cells (MSCs) are stromal cells that can differentiate into bone, fat, and cartilage cells. They reside within bone marrow and fat. MSCs can also be found in synovial joints where they affect the progression of OA. They can be isolated and proliferated in an incubator before being applied in clinical trials. When it comes to treatment, emphasis has hitherto been on autologous MSCs, but allogenic cells from healthy donors are emerging as another source of the cells. The first adaptations of MSCs revolved in the use of cell-rich matrix, delivered as invasive surgical procedure, which resulted in production of hyaline cartilage and fibrocartilage. However, the demand for less invasive delivery of cells has prompted the use of direct intra-articular injections, wherein a large amount of suspended cells are implanted in the cartilage defect.

  1. Photoshop-based image analysis of canine articular cartilage after subchondral damage.

    Science.gov (United States)

    Lahm, A; Uhl, M; Lehr, H A; Ihling, C; Kreuz, P C; Haberstroh, J

    2004-09-01

    The validity of histopathological grading is a major problem in the assessment of articular cartilage. Calculating the cumulative strength of signal intensity of different stains gives information regarding the amount of proteoglycan, glycoproteins, etc. Using this system, we examined the medium-term effect of subchondral lesions on initially healthy articular cartilage. After cadaver studies, an animal model was created to produce pure subchondral damage without affecting the articular cartilage in 12 beagle dogs under MRI control. Quantification of the different stains was provided using a Photoshop-based image analysis (pixel analysis) with the histogram command 6 months after subchondral trauma. FLASH 3D sequences revealed intact cartilage after impact in all cases. The best detection of subchondral fractures was achieved with fat-suppressed TIRM sequences. Semiquantitative image analysis showed changes in proteoglycan and glycoprotein quantities in 9 of 12 samples that had not shown any evidence of damage during the initial examination. Correlation analysis showed a loss of the physiological distribution of proteoglycans and glycoproteins in the different zones of articular cartilage. Currently available software programs can be applied for comparative analysis of histologic stains of hyaline cartilage. After subchondral fractures, significant changes in the cartilage itself occur after 6 months.

  2. Changes in growth patterns in mouse condylar cartilage associated with skeletal maturation and senescence

    Energy Technology Data Exchange (ETDEWEB)

    Livne, E.; Weiss, A.; Silbermann, M. (Technion-Israel Inst. of Tech., Haifa (Israel))

    The squamoso-mandibular joint (SMJ) represents one of the most active joints in the mouse. In the young animal the main function of condylar cartilage in the SMJ is to serve as a growth center for the developing mandible. This first phase of skeletal growth lasts up to the age of 6-8 weeks, and is manifested by appositional growth of cartilage followed by endochondral ossification. Thereafter, the condylar cartilage gradually changes its function and serves mainly as an articulating surface for the joint. Consequently, the cartilage changes from a calcifying hyaline cartilage to a fibrous non-calcifying cartilage. The latter phase lasts through the stage of maturation (6 months of age) and it is manifested by a combination of appositional and interstitial patterns of cellular growth. Thereafter, the third phase develops which is characterized by degenerative changes that typify the aging process. In vivo autoradiography with ({sup 3}H)-thymidine indicated that in the very young animal labeled cells are confined to the chondroprogenitor (proliferative) zone of the condylar cartilage. With maturation, the dimension of this zone as well as the number of labeled cells decrease, so that by 3 months of age the labeling index decreases by 30%. By the age of 6, 12 and 18 months, almost no cells take up the radioisotope while the total number of cells declines. During senescence only a very limited interstitial growth is taking place, a feature that might be associated with the repair processes that accompany the onset of osteoarthritic lesions.

  3. Articular cartilage tissue engineering with plasma-rich in growth factors and stem cells with nano scaffolds

    Science.gov (United States)

    Montaser, Laila M.; Abbassy, Hadeer A.; Fawzy, Sherin M.

    2016-09-01

    The ability to heal soft tissue injuries and regenerate cartilage is the Holy Grail of musculoskeletal medicine. Articular cartilage repair and regeneration is considered to be largely intractable due to the poor regenerative properties of this tissue. Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or continue hypertrophic cartilage. The lack of efficient modalities of treatment has prompted research into tissue engineering combining stem cells, scaffold materials and environmental factors. The field of articular cartilage tissue engineering, which aims to repair, regenerate, and/or improve injured or diseased cartilage functionality, has evoked intense interest and holds great potential for improving cartilage therapy. Plasma-rich in growth factors (PRGF) and/or stem cells may be effective for tissue repair as well as cartilage regenerative processes. There is a great promise to advance current cartilage therapies toward achieving a consistently successful approach for addressing cartilage afflictions. Tissue engineering may be the best way to reach this objective via the use of stem cells, novel biologically inspired scaffolds and, emerging nanotechnology. In this paper, current and emergent approach in the field of cartilage tissue engineering is presented for specific application. In the next years, the development of new strategies using stem cells, in scaffolds, with supplementation of culture medium could improve the quality of new formed cartilage.

  4. Degeneration of osteoarthritis cartilage

    DEFF Research Database (Denmark)

    Jørgensen, Dan Richter

    of sensitive biomarkers for monitoring disease progression. This thesis investigates how subregional measures of cartilage thickness can be used to improve upon current imaging biomarkers. The first part of this investigation aims to discover discriminative areas in the cartilage using machine-learning...... techniques specifically developed to take advantage of the spatial nature of the problem. The methods were evaluated on data from a longitudinal study where detailed cartilage thickness maps were quantified from magnetic resonance images. The results showed that focal differences in cartilage thickness may...... spatial cartilage changes that were observed in our study and in recent literature. The cartilage “Activity” marker is shown to have a state-of-the-art performance in separating healthy knees from OA knees and is also shown to predict knee replacement which is a clinically relevant endpoint for OA....

  5. Preoperative imaging of cartilage

    International Nuclear Information System (INIS)

    Glaser, Christian

    2009-01-01

    Cartilage lesions are predisposing to osteoarthritis. The therapeutic approach is chosen according to depth and size of the lesions as well as to stability and quality of the cartilage fragment. Another important factor is the biomechanical environment in the affected joint (menisci, ligaments, joint stability, other compartments). MRI using high resolution and moderately T2w FS TSE sequences is the modality of choice for clinical routine imaging of cartilage. It is important to use a consistent protocol in order to achieve reliable results. Sequence parameters should be adapted to optimize contrast between intact cartilage, joint fluid, the subchondral bone and cartilage lesions. Grading scales mainly are derived from arthroscopy. Subchondral bone marrow edema like signal alterations, effusion and meniscal lesions are very useful secondary signs helping to detect cartilage lesions. (orig.)

  6. Degeneration of osteoarthritis cartilage

    DEFF Research Database (Denmark)

    Jørgensen, Dan Richter

    of sensitive biomarkers for monitoring disease progression. This thesis investigates how subregional measures of cartilage thickness can be used to improve upon current imaging biomarkers. The first part of this investigation aims to discover discriminative areas in the cartilage using machine...... spatial cartilage changes that were observed in our study and in recent literature. The cartilage “Activity” marker is shown to have a state-of-the-art performance in separating healthy knees from OA knees and is also shown to predict knee replacement which is a clinically relevant endpoint for OA....

  7. 3D-BIOPRINTING OF CARTILAGE FOR ORTHOPAEDIC SURGEONS.READING BETWEEN THE LINES

    Directory of Open Access Journals (Sweden)

    Claudia eDi Bella

    2015-08-01

    Full Text Available Chondral and Osteochondral lesions represent one of the most challenging and frustrating scenarios for the orthopaedic surgeon and for the patient. The lack of therapeutic strategies capable to reconstitute the function and structure of hyaline cartilage and to halt the progression towards osteoarthritis has brought clinicians and scientists together, to investigate the potential role of tissue engineering as a viable alternative to current treatment modalities. In particular, the role of bioprinting is emerging as an innovative technology that allows for the creation of organized 3D tissue constructs via a layer-by-layer deposition process. This process also has the capability to combine cells and biomaterials in an ordered and predetermined way. Here we review the recent advances in cartilage bioprinting and we identify the current challenges and the directions for future developments in cartilage regeneration.

  8. 3D Bioprinting of Cartilage for Orthopedic Surgeons: Reading between the Lines.

    Science.gov (United States)

    Di Bella, Claudia; Fosang, Amanda; Donati, Davide M; Wallace, Gordon G; Choong, Peter F M

    2015-01-01

    Chondral and osteochondral lesions represent one of the most challenging and frustrating scenarios for the orthopedic surgeon and for the patient. The lack of therapeutic strategies capable to reconstitute the function and structure of hyaline cartilage and to halt the progression toward osteoarthritis has brought clinicians and scientists together, to investigate the potential role of tissue engineering as a viable alternative to current treatment modalities. In particular, the role of bioprinting is emerging as an innovative technology that allows for the creation of organized 3D tissue constructs via a "layer-by-layer" deposition process. This process also has the capability to combine cells and biomaterials in an ordered and predetermined way. Here, we review the recent advances in cartilage bioprinting and we identify the current challenges and the directions for future developments in cartilage regeneration.

  9. Laser-induced modification of structure and shape of cartilage in otolaryngology and orthopaedics

    Science.gov (United States)

    Sobol’, E. N.; Baum, O. I.; Omel’chenko, A. I.; Soshnikova, Yu. M.; Yuzhakov, A. V.; Kas’yanenko, E. M.; Tokareva, A. V.; Baskov, A. V.; Svistushkin, V. M.; Selezneva, L. V.; Shekhter, A. B.

    2017-11-01

    We present the results of basic research in laser modification of tissues in otolaryngology (correcting the shape of nasal septum and larynx cartilages), cosmetology (correcting ear and nose shape), orthopaedics and spinal surgery (treatment of diseases of spine disc and joints). The physical processes and mechanisms of laser-induced relaxation of stresses and regeneration of tissues are considered. New results of studies in this fast-developing field of laser surgery are presented, in particular, the results of laser correction of costal cartilage shape in the process of making implants for the treatment of larynx stenosis and controlled regeneration of the hyaline articular cartilage. Presented at the Fundamentals of Laser Assisted Micro- and Nanotechnologies (FLAMN-2016) International Symposium (Pushkin, Leningrad oblast, 27 June to 1 July 2016).

  10. Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering.

    Science.gov (United States)

    Li, Ke; Zhang, Chunqiu; Qiu, Lulu; Gao, Lilan; Zhang, Xizheng

    2017-08-01

    Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers

  11. Oral pulse or hyaline ring granuloma: A case report and a brief review

    Directory of Open Access Journals (Sweden)

    Swetha Acharya

    2015-01-01

    Full Text Available Pulse or hyaline ring granulomas are rare but are well-defined oral and extraoral lesions due to implantation of the cellulose moiety of plant foods in contrast starch components. A unique form as reactive gingival growth showing histologic features of oral pulse or hyaline ring granuloma (OPHRG which had resulted from implantation of food particles of plant or vegetable origin into the periodontium has been illustrated. Such a presentation is attributable to compromised periodontal health and poor oral hygiene favoring the implantation of food particles has been described here along with a literature update on OPHRG.

  12. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    Directory of Open Access Journals (Sweden)

    Michiel W. Pot

    2017-10-01

    Full Text Available Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies. Cartilage regeneration was expressed on an absolute 0–100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials.

  13. Roles of the Fibrous Superficial Zone in the Mechanical Behavior of TMJ Condylar Cartilage.

    Science.gov (United States)

    Ruggiero, Leonardo; Zimmerman, Brandon K; Park, Miri; Han, Lin; Wang, Liyun; Burris, David L; Lu, X Lucas

    2015-11-01

    In temporomandibular joints (TMJs), the cartilage on the condylar head displays a unique ultrastructure with a dense layer of type I collagen in the superficial zone, different from hyaline cartilage in other joints. This study aims to elucidate the roles of this fibrous zone in the mechanical behaviors, particularly lubrication, of TMJ under physiological loading regimes. Mechanical tests on porcine condylar cartilage demonstrated that the superficial and middle-deep zones exhibit tension-compression nonlinearity. The tensile and compressive moduli of the superficial zone are 30.73 ± 12.97 and 0.028 ± 0.016 MPa, respectively, while those for the middle-deep zone are 2.43 ± 1.75 and 0.14 ± 0.09 MPa. A nonlinear finite element model of condylar cartilage was built to simulate sliding of a spherical probe over the articular surface. The presence of the superficial zone significantly promoted interstitial fluid pressurization (IFP) inside the loaded cartilage and reduced the friction force on the surface, compared to the case without the superficial zone. Finite element simulations showed that IFP depends on sliding speed but not normal load, which matches the experimental results. This study revealed the presence of the fibrous zone can significantly reduce the deformation of condylar cartilage under compression and the friction force on its surface during sliding.

  14. Pulmonary Changes in Preterm Neonates with Hyaline Membrane Disease (a Clinicomorphological Study

    Directory of Open Access Journals (Sweden)

    A. M. Golubev

    2009-01-01

    Full Text Available Objective: to reveal lung morphological changes in preterm neonatal infants with hyaline membrane disease (HMD in the use of exogenous surfactants and artificial ventilation. Materials and methods. Case histories and autopsy protocols were analyzed in 90 preterm neonates who had died from severe respiratory failure. All the neonates were divided into 4 groups: 1 20 (22.2% infants who had received the exogenous surfactant Curosurf in the combined therapy of HMD; 2 19 (21.1% babies with HMD who had taken Surfactant BL; 3 25 (27.8% surfactant-untreated infants who had died from HMD; 4 26 (28.9% very preterm neonates with extremely low birth weight who had died within the first hour of life. The lungs were histologically and morphometrically examined. Results. The study demonstrated the specific course of HMD when exogenous surfactants and artificial ventilation were used. The contributors to the development of the disease are intranatal amniotic fluid aspiration and intranatal fetal hypoxia. Conclusion. Artificial ventilation and the use of exogenous surfactants do not block the generation of hyaline membranes. The latter differ in formation time, form, and location. The differences in a cell response to hyaline membranes were found in the neonatal infants receiving exogenous surfactants. The characteristic morphological signs of the disease for all the neonates enrolled in the study are alveolar and bronchial epithelial damages and microcirculatory disorders. Key words: preterm neonatal infants, hyaline membrane disease, exogenous surfactants, artificial ventilation, histology, morphometry.

  15. MR imaging of articular cartilage in the ankle: comparison of available imaging sequences and methods of measurement in cadavers

    International Nuclear Information System (INIS)

    Tan, T.C.F.; Wilcox, D.M.; Frank, L.; Shih, C.; Trudell, D.J.; Sartoris, D.J.; Resnick, D.

    1996-01-01

    Objective. To assess hyaline cartilage of cadaveric ankles using different magnetic resonance (MR) imaging techniques and various methods of measurement. Design and patients. Cartilage thicknesses of the talus and tibia were measured in ten cadaveric ankles by naked eye and by digitized image analysis from MR images of fat-suppressed T1-weighted gradient recalled (FS-SPGR), sequences and pulsed transfer saturation sequences with (FS-STS) and without fat-suppression (STS); these measurements were compared with those derived from direct inspection of cadaveric sections. The accuracy and precision errors were evaluated statistically for each imaging technique as well as measuring method. Contrast-to-noise ratios of cartilage versus joint fluid and marrow were compared for each of the imaging sequences. Results. Statistically, measurements from FS-SPGR images were associated with the smallest estimation error. Precision error of measurements derived from digitized image analysis was found to be smaller than that derived from naked eye measurements. Cartilage thickness measurements in images from STS and FS-STS sequences revealed larger errors in both accuracy and precision. Interobserver variance was larger in naked eye assessment of the cartilage. Contrast-to-noise ratio of cartilage versus joint fluid and marrow was higher with FS-SPGR than with FS-STS or STS sequences. Conclusion. Of the sequences and measurement techniques studied, the FS-SPGR sequence combined with the use of digitized image analysis provides the most accurate method for the assessment of ankle hyaline cartilage. (orig.). With 3 figs., 2 tabs

  16. Evaluation of reparative cartilage after autologous chondrocyte implantation for osteochondritis dissecans. Histology, biochemistry, and MR imaging

    International Nuclear Information System (INIS)

    Moriya, Takuro; Watanabe, Atsuya; Sasho, Takahisa; Nakagawa, Koichi; Moriya, Hideshige; Wada, Yuichi; Mainil-Varlet, P.

    2007-01-01

    The aim of this study was to investigate the biochemical properties, histological and immunohistochemical appearance, and magnetic resonance (MR) imaging findings of reparative cartilage after autologous chondrocyte implantation (ACI) for osteochondritis dissecans (OCD). Six patients (mean age 20.2±8.8 years; 13-35 years) who underwent ACI for full-thickness cartilage defects of the femoral condyle were studied. One year after the procedure, a second-look arthroscopic operation was performed with biopsy of reparative tissue. The International Cartilage Repair Society (ICRS) visual histological assessment scale was used for histological assessment. Biopsied tissue was immunohistochemically analyzed with the use of monoclonal antihuman collagen type I and monoclonal antihuman collagen type II primary antibodies. Glycosaminoglycan (GAG) concentrations in biopsied reparative cartilage samples were measured by high performance liquid chromatography (HPLC). MR imaging was performed with T 1 and T 2 -weighted imaging and three-dimensional spoiled gradient-recalled (3D-SPGR) MR imaging. Four tissue samples were graded as having a mixed morphology of hyaline and fibrocartilage while the other two were graded as fibrocartilage. Average ICRS scores for each criterion were (I) 1.0±1.5; (II) 1.7±0.5; (III) 0.6±1.0; (IV) 3.0±0.0; (V) 1.8±1.5; and (VI) 2.5±1.2. Average total score was 10.7±2.8. On immunohistochemical analysis, the matrix from deep and middle layers of reparative cartilage stained positive for type II collagen; however, the surface layer did not stain well. The average GAG concentration in reparative cartilage was 76.6±4.2 μg/mg whereas that in normal cartilage was 108±11.2 μg/mg. Common complications observed on 3D-SPGR MR imaging were hypertrophy of grafted periosteum, edema-like signal in bone marrow, and incomplete repair of subchondral bone at the surgical site. Clinically, patients had significant improvements in Lysholm scores. In spite of a

  17. Relationship between the internal laryngeal nerve and the triticeal cartilage: a potentially unrecognized compression site during anterior cervical spine and carotid endarterectomy operations.

    Science.gov (United States)

    Tubbs, R Shane; Dixon, Joshua F; Loukas, Marios; Shoja, Mohammadali M; Cohen-Gadol, Aaron A

    2010-06-01

    The triticeal cartilage has received scant attention in the literature. To date, its relationship to the nearby internal laryngeal nerve has not been studied. Therefore, to elucidate further this anatomic relationship and its potential surgical implications, this study was performed. Eighty-six adult cadaveric sides underwent dissection of the internal laryngeal nerve near its penetration of the thyrohyoid membrane. The relationship of this nerve to the triticeal cartilage was documented. Measurements and histological analysis were performed on all cartilage specimens. We identified triticeal cartilage in 51% of the specimens and found it to be hyaline in nature. The triticeal cartilage was located in the upper, middle, and lower thirds of the thyrohyoid membrane in 14%, 66%, and 20% of sides, respectively. Regardless of the position of the triticeal cartilage within the thyrohyoid membrane, the internal laryngeal nerve crossed directly over the triticeal cartilage on 59% of sides. When present, the internal laryngeal nerve will cross over the triticeal cartilage in the majority of individuals. This relationship should be borne in mind during surgical manipulation in this area and when placing retractors during anterior neck operations including cervical discectomy/fusion and carotid endarterectomy. Compression of the internal laryngeal nerve against the solid triticeal cartilage can cause laryngeal nerve palsy and increase the risk of resultant postoperative aspiration.

  18. Study on nano-structured hydroxyapatite/zirconia stabilized yttria on healing of articular cartilage defect in rabbit

    Directory of Open Access Journals (Sweden)

    Amir Sotoudeh

    2013-05-01

    Full Text Available PURPOSE: Articular Cartilage has limited potential for self-repair and tissue engineering approaches attempt to repair articular cartilage by scaffolds. We hypothesized that the combined hydroxyapatite and zirconia stabilized yttria would enhance the quality of cartilage healing. METHODS: In ten New Zealand white rabbits bilateral full-thickness osteochondral defect, 4 mm in diameter and 3 mm depth, was created on the articular cartilage of the patellar groove of the distal femur. In group I the scaffold was implanted into the right stifle and the same defect was created in the left stifle without any transplant (group II. Specimens were harvested at 12 weeks after implantation, examined histologically for morphologic features, and stained immunohistochemically for type-II collagen. RESULTS: In group I the defect was filled with a white translucent cartilage tissue In contrast, the defects in the group II remained almost empty. In the group I, the defects were mostly filled with hyaline-like cartilage evidenced but defects in group II were filled with fibrous tissue with surface irregularities. Positive immunohistochemical staining of type-II collagen was observed in group I and it was absent in the control group. CONCLUSION: The hydroxyapatite/yttria stabilized zirconia scaffold would be an effective scaffold for cartilage tissue engineering.

  19. Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Peter Succar

    2016-01-01

    Full Text Available Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC therapy are gaining acceptance for knee-osteoarthritis (OA treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL. At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA.

  20. Magnetic resonance imaging of cartilage and cartilage repair

    International Nuclear Information System (INIS)

    Verstraete, K.L.; Almqvist, F.; Verdonk, P.; Vanderschueren, G.; Huysse, W.; Verdonk, R.; Verbrugge, G.

    2004-01-01

    Magnetic resonance (MR) imaging of articular cartilage has assumed increased importance because of the prevalence of cartilage injury and degeneration, as well as the development of new surgical and pharmacological techniques to treat damaged cartilage. This article will review relevant aspects of the structure and biochemistry of cartilage that are important for understanding MR imaging of cartilage, describe optimal MR pulse sequences for its evaluation, and review the role of experimental quantitative MR techniques. These MR aspects are applied to clinical scenarios, including traumatic chondral injury, osteoarthritis, inflammatory arthritis, and cartilage repair procedures

  1. Magnetic resonance imaging of cartilage and cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Verstraete, K.L. E-mail: koenraad.verstraete@ugent.be; Almqvist, F.; Verdonk, P.; Vanderschueren, G.; Huysse, W.; Verdonk, R.; Verbrugge, G

    2004-08-01

    Magnetic resonance (MR) imaging of articular cartilage has assumed increased importance because of the prevalence of cartilage injury and degeneration, as well as the development of new surgical and pharmacological techniques to treat damaged cartilage. This article will review relevant aspects of the structure and biochemistry of cartilage that are important for understanding MR imaging of cartilage, describe optimal MR pulse sequences for its evaluation, and review the role of experimental quantitative MR techniques. These MR aspects are applied to clinical scenarios, including traumatic chondral injury, osteoarthritis, inflammatory arthritis, and cartilage repair procedures.

  2. Nanotechnology Biomimetic Cartilage Regenerative Scaffolds

    Science.gov (United States)

    Sardinha, Jose Paulo; Myers, Simon

    2014-01-01

    Cartilage has a limited regenerative capacity. Faced with the clinical challenge of reconstruction of cartilage defects, the field of cartilage engineering has evolved. This article reviews current concepts and strategies in cartilage engineering with an emphasis on the application of nanotechnology in the production of biomimetic cartilage regenerative scaffolds. The structural architecture and composition of the cartilage extracellular matrix and the evolution of tissue engineering concepts and scaffold technology over the last two decades are outlined. Current advances in biomimetic techniques to produce nanoscaled fibrous scaffolds, together with innovative methods to improve scaffold biofunctionality with bioactive cues are highlighted. To date, the majority of research into cartilage regeneration has been focused on articular cartilage due to the high prevalence of large joint osteoarthritis in an increasingly aging population. Nevertheless, the principles and advances are applicable to cartilage engineering for plastic and reconstructive surgery. PMID:24883273

  3. The effect of meniscal tears on cartilage loss of the knee: findings on serial MRIs.

    Science.gov (United States)

    Cohen, Steven B; Short, Connor P; O'Hagan, Thomas; Wu, Hung Ta; Morrison, William B; Zoga, Adam C

    2012-09-01

    The relationship between meniscal tears and progressive loss of hyaline cartilage and osteoarthritis of the knee has been reported in the literature. The current treatment protocols for meniscal tears include conservative treatment, meniscal repair, and meniscectomy. Treatment plans are based on factors such as tear pattern, patient age, and associated pathology. The mechanism, pattern, and treatment of meniscal tears vary with age and activity level. Younger, more active patients often sustain more acute tears, which are more amenable to repair due to increased propensity for healing compared with older patients. It is unclear which patients or types of meniscal tears will go on to sustain cartilage loss or osteoarthritis. In our study, we aimed to determine magnetic resonance imaging (MRI) findings in patients with meniscal tears that may be predictive as a risk factor for future cartilage loss. A database was retrospectively searched for patients with ≥ 2 MRIs of the same knee over a 7-year period, with the initial report containing the keyword "meniscal tear." Follow-up examinations were then evaluated for cartilage loss. Seventy-six meniscal tears were evaluated. Initial MRI findings associated with cartilage loss included subchondral bone marrow edema (P meniscal extrusion (P meniscal tear (P = 0.017), and posterior horn meniscal tear (P = 0.031). In patients without meniscectomy, cartilage loss was observed in 38% (15/39) compared with 76% (28/37) in patients with meniscectomy, (P = 0.0001). Subchondral bone marrow edema and meniscal extrusion were the strongest MRI predictors for cartilage loss in an untreated knee with a meniscal tear. There was significantly greater cartilage loss in patients post-meniscectomy at follow-up than in those who did not undergo meniscectomy.

  4. One-stage vs two-stage cartilage repair: a current review

    Directory of Open Access Journals (Sweden)

    Daniel Meyerkort

    2010-10-01

    Full Text Available Daniel Meyerkort, David Wood, Ming-Hao ZhengCenter for Orthopaedic Research, School of Surgery and Pathology, University of Western Australia, Perth, AustraliaIntroduction: Articular cartilage has a poor capacity for regeneration if damaged. Various methods have been used to restore the articular surface, improve pain, function, and slow progression to osteoarthritis.Method: A PubMed review was performed on 18 March, 2010. Search terms included “autologous chondrocyte implantation (ACI” and “microfracture” or “mosaicplasty”. The aim of this review was to determine if 1-stage or 2-stage procedures for cartilage repair produced different functional outcomes.Results: The main procedures currently used are ACI and microfracture. Both first-generation ACI and microfracture result in clinical and functional improvement with no significant differences. A significant increase in functional outcome has been observed in second-generation procedures such as Hyalograft C, matrix-induced ACI, and ChondroCelect compared with microfracture. ACI results in a higher percentage of patients with clinical improvement than mosaicplasty; however, these results may take longer to achieve.Conclusion: Clinical and functional improvements have been demonstrated with ACI, microfracture, mosaicplasty, and synthetic cartilage constructs. Heterogeneous products and lack of good-quality randomized-control trials make product comparison difficult. Future developments involve scaffolds, gene therapy, growth factors, and stem cells to create a single-stage procedure that results in hyaline articular cartilage.Keywords: autologous chondrocyte implantation, microfracture, cartilage repair

  5. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.

    Science.gov (United States)

    Mirahmadi, Fereshteh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber-hydrogel composite for GAG content and in two-layer electrospun fiber-hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. © 2013.

  6. MR-based three-dimensional presentation of cartilage thickness in the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Katsuyuki [Dept. of Radiology, Osaka Seamen' s Insurance Hospital (Japan); Tanaka, Hisashi; Nakamura, Hironobu [Osaka Univ. (Japan). Dept. of Radiology; Sugano, Nobuhiko [Dept. of Orthopedic Surgery, Osaka University Medical School (Japan); Sato, Yoshinobu; Kubota, Tetsuya; Tamura, Shinichi [Div. of Functional Imaging, Osaka University Medical School (Japan); Ueguchi, Takashi [Dept. of Radiology, Osaka University Medical Hospital (Japan)

    2001-11-01

    The purpose of our study was to visualize the hyaline cartilage of the femoral head and to evaluate the distribution of the thickness by three-dimensional reconstruction of MRI data. The MRI was performed in 10 normal volunteers, 1 patient with osteonecrosis and 4 with advanced osteoarthritis. A fast 3D spoiled gradient-recalled acquisition in the steady state pulse sequence (TR 22 ms/TE 5.6 ms/no. of excitations 2) with fat suppression was used for data collection. Coronal and sagittal images were obtained with 3-mm effective slice thickness, 16-cm field of view (FOV) and 256 x 192 matrix. The MR images were reconstructed in three dimensions for evaluating the distribution of the cartilage thickness. In all normal volunteers, 1 patient with osteonecrosis and three advanced osteoarthritis, 3D reconstruction was successful, but in 1 case of osteoarthritis, 3D reconstruction failed because of the narrow joint space. In normal volunteers, the cartilage thickness is thickest in the central portion around the ligamentum teres (mean 2.8 mm). The medial portion and the lateral portion are almost of the same thickness (medial 1.3 mm, lateral 1.1 mm). In 3 cases of osteoarthritis, the cartilage became thinner in the lateral portions (<0.6 mm), but was unchanged in the central and medial portions. Three-dimensional reconstruction of MRI data is useful for evaluating the distribution of the cartilage thickness of the femoral head objectively. (orig.)

  7. MR-based three-dimensional presentation of cartilage thickness in the femoral head

    International Nuclear Information System (INIS)

    Nakanishi, Katsuyuki; Tanaka, Hisashi; Nakamura, Hironobu; Sato, Yoshinobu; Kubota, Tetsuya; Tamura, Shinichi; Ueguchi, Takashi

    2001-01-01

    The purpose of our study was to visualize the hyaline cartilage of the femoral head and to evaluate the distribution of the thickness by three-dimensional reconstruction of MRI data. The MRI was performed in 10 normal volunteers, 1 patient with osteonecrosis and 4 with advanced osteoarthritis. A fast 3D spoiled gradient-recalled acquisition in the steady state pulse sequence (TR 22 ms/TE 5.6 ms/no. of excitations 2) with fat suppression was used for data collection. Coronal and sagittal images were obtained with 3-mm effective slice thickness, 16-cm field of view (FOV) and 256 x 192 matrix. The MR images were reconstructed in three dimensions for evaluating the distribution of the cartilage thickness. In all normal volunteers, 1 patient with osteonecrosis and three advanced osteoarthritis, 3D reconstruction was successful, but in 1 case of osteoarthritis, 3D reconstruction failed because of the narrow joint space. In normal volunteers, the cartilage thickness is thickest in the central portion around the ligamentum teres (mean 2.8 mm). The medial portion and the lateral portion are almost of the same thickness (medial 1.3 mm, lateral 1.1 mm). In 3 cases of osteoarthritis, the cartilage became thinner in the lateral portions (<0.6 mm), but was unchanged in the central and medial portions. Three-dimensional reconstruction of MRI data is useful for evaluating the distribution of the cartilage thickness of the femoral head objectively. (orig.)

  8. Human sclera maintains common characteristics with cartilage throughout evolution.

    Directory of Open Access Journals (Sweden)

    Yuko Seko

    Full Text Available BACKGROUND: The sclera maintains and protects the eye ball, which receives visual inputs. Although the sclera does not contribute significantly to visual perception, scleral diseases such as refractory scleritis, scleral perforation and pathological myopia are considered incurable or difficult to cure. The aim of this study is to identify characteristics of the human sclera as one of the connective tissues derived from the neural crest and mesoderm. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated microarray data of cultured human infant scleral cells. Hierarchical clustering was performed to group scleral cells and other mesenchymal cells into subcategories. Hierarchical clustering analysis showed similarity between scleral cells and auricular cartilage-derived cells. Cultured micromasses of scleral cells exposed to TGF-betas and BMP2 produced an abundant matrix. The expression of cartilage-associated genes, such as Indian hedge hog, type X collagen, and MMP13, was up-regulated within 3 weeks in vitro. These results suggest that human 'sclera'-derived cells can be considered chondrocytes when cultured ex vivo. CONCLUSIONS/SIGNIFICANCE: Our present study shows a chondrogenic potential of human sclera. Interestingly, the sclera of certain vertebrates, such as birds and fish, is composed of hyaline cartilage. Although the human sclera is not a cartilaginous tissue, the human sclera maintains chondrogenic potential throughout evolution. In addition, our findings directly explain an enigma that the sclera and the joint cartilage are common targets of inflammatory cells in rheumatic arthritis. The present global gene expression database will contribute to the clarification of the pathogenesis of developmental diseases such as high myopia.

  9. MIXED HYALINE VASCULAR AND PLASMA CELL TYPE CASTLEMAN’S DISEASE: REPORT OF A CASE

    Directory of Open Access Journals (Sweden)

    F. Asgarani

    2006-05-01

    Full Text Available Castleman’s disease (angiofollicular lymphoid hyperplasia includes a heterogeneous group of lymphoproliferative disorders. The cause of this disease remains uncertain. There are two types of localized Castleman’s disease: the more common hyaline vascular and the plasma cell types. Mixed variant is an uncommon localized lesion in general population. The lesions can occur in any part of the body that contains lymphoid tissue, although seventy percent are found in the anterior mediastinum. We report a thirty years old boy with Castleman’s disease who presented with fever, anorexia, weight loss,sweating, anemia and abdominal mass. The histologic examination of the biopsy specimens revealed a mixed hyaline vascular and plasma cell type of Castleman’s disease.

  10. Pleomorphic Hyalinizing Angiectatic Tumor Arising in the Hand: A Case Report

    OpenAIRE

    Kane, Patrick M.; Gaspar, Michael P.; Whiting, Benjamin B.; Culp, Randall W.

    2016-01-01

    Background: Background: Pleomorphic hyalinizing angiectatic tumors (PHATs) are extremely rare, non-metastasizing tumors of uncertain origin that are typically seen in the lower extremities. To date, it is estimated that less than 100 cases have been reported worldwide since first described in 1996. Methods: The case of a 35-year-old male with a several-year history of a dorsal hand mass is presented. Although the patient was initially asymptomatic, in the months prior to presentation, the pat...

  11. [Cartilage degradation in rheumatoid arthritis].

    Science.gov (United States)

    Ishiguro, Naoki

    2009-03-01

    Rheumatoid arthritis (RA) is a polyarticular joint disease. The inflammatory process is characterized by infiltration of inflammatory cells into the joints, leading to proliferation of synoviocytes and destruction of cartilage and bone. The Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteinases. It had been well recognized that MMP play major roles in the cartilage breakdown in RA and OA. Moreover ADAM-TS-1, -4, -5 have aggrecanase activity, and also involve the cartilage degradation in RA and OA. Of course they contribute the cartilage homeostasis in healthy subjects. Failure to regulate the synthesis, activation and inhibition of the proteinases finally leads to cartilage destruction. Aggrecan and type II collagen are major components in cartilage matrix. Cleavage of aggrecan by aggrecanase and that of collagen by collagenase are critical steps for degradation of articular cartilage in RA. To prevent the cartilage damage, inflammatory synovitis should be suppressed in early stage.

  12. Principles of cartilage repair

    CERN Document Server

    Erggelet, Christoph; Mandelbaum, Bert R

    2008-01-01

    Cartilage defects affect patients of all age groups. Surgeons, teamdoctors, general practitioners and physiotherapists alike are expected to provide adequate care. Only individual treatment plans combining a well balanced choice of various options will be successful. Background knowledge, operative and non-operative therapies are described in concise chapters: Articular cartilage biology - Diagnostics - Surgical techniques - Symptomatic and alternative medications - Physiotherapy. Diagnostic findings and surgical procedures are generously illustrated by aquarelles and colour photographs. Recommendations for additional reading, description of important clinical scoring systems and a listing of analytic tools are added for further information.

  13. Karl Fischer titration and coulometry for measurement of water content in small cartilage specimens.

    Science.gov (United States)

    Spahn, Gunter; Plettenberg, Holger; Nagel, Horst; Kahl, Enrico; Klinger, Hans Michael; Günther, Manfred; Mückley, Thomas; Hofmann, Gunther O

    2006-12-01

    This study evaluated the efficiency of Karl Fischer titration and coulometry for measurement of water content in small intact and defective cartilage specimens. Cartilage from the main weight-bearing zone of the medial condyle of 38 fresh sheep knees was used. Of these, 20 condyles had an intact cartilage, while defects (14 grade I and 4 grade II) were found in the rest. The mechanical hardness was determined as Shore A. Cartilage specimens of approximately 5 mg were analyzed in special devices for moisture measurement and then continuously heated up to 105 degrees C. The actual measurement was performed in an electric cell (coulometry). An electrode was laminated with hygroscopic phosphorus pentoxide. In the electrochemical reaction, H and O are liberated from the electrode. The requirement for electric energy correlates with the amount of water in the specimen. The water content in intact cartilage was 66.9%. Grade I (72.6%) and grade II (77.8%) defects had significantly higher water content. Significantly higher and faster spontaneous evaporation was observed in cartilage defects at room temperature. The water content and spontaneous water evaporation correlated with significantly lower mechanical hardness. The experimental design (combined method of thermogravimetry, Karl Fischer titration, and coulometry) was sufficient for evaluating the water content in small cartilage specimens. It is also possible to measure the temperature-dependent water liberation from cartilage specimens.

  14. Osteoarthritic cartilage is more homogeneous than healthy cartilage

    DEFF Research Database (Denmark)

    Qazi, Arish A; Dam, Erik B; Nielsen, Mads

    2007-01-01

    RATIONALE AND OBJECTIVES: Cartilage loss as determined by magnetic resonance imaging (MRI) or joint space narrowing as determined by x-ray is the result of cartilage erosion. However, metabolic processes within the cartilage that later result in cartilage loss may be a more sensitive assessment...... method for early changes. Recently, it was shown that cartilage homogeneity visualized by MRI representing the biochemical changes undergoing in the cartilage is a potential marker for early detection of knee osteoarthritis (OA) and is also able to significantly separate groups of healthy subjects from...... it evolves as a consequence to disease and thereby can be used as a progression biomarker. MATERIALS AND METHODS: A total of 283 right and left knees from 159 subjects aged 21 to 81 years were scanned using a Turbo 3D T1 sequence on a 0.18-T MRI Esaote scanner. The medial compartment of the tibial cartilage...

  15. T1rho MRI of menisci and cartilage in patients with osteoarthritis at 3T

    International Nuclear Information System (INIS)

    Wang, Ligong; Chang, Gregory; Xu, Jian; Vieira, Renata L.R.; Krasnokutsky, Svetlana; Abramson, Steven; Regatte, Ravinder R.

    2012-01-01

    Objective: To assess and compare subregional and whole T1rho values (median ± interquartile range) of femorotibial cartilage and menisci in patients with doubtful (Kellgren–Lawrence (KL) grade 1) to severe (KL4) osteoarthritis (OA) at 3T. Materials and methods: 30 subjects with varying degrees of OA (KL1–4, 13 females, 17 males, mean age ± SD = 63.9 ± 13.1 years) were evaluated on a 3T MR scanner using a spin-lock-based 3D GRE sequence for T1rho mapping. Clinical proton density (PD)-weighted fast spin echo (FSE) images in sagittal (without fat saturation), axial, and coronal (fat-saturated) planes were acquired for cartilage and meniscus Whole-organ MR imaging score (WORMS) grading. Wilcoxon rank sum test was performed to determine whether there were any statistically significant differences between subregional and whole T1rho values of femorotibial cartilage and menisci in subjects with doubtful to severe OA. Results: Lateral (72 ± 10 ms, median ± interquartile range) and medial (65 ± 10 ms) femoral anterior cartilage subregions in moderate–severe OA subjects had significantly higher T1rho values (P < 0.05) than cartilage subregions and whole femorotibial cartilage in doubtful–minimal OA subjects. There were statistically significant differences in meniscus T1rho values of the medial posterior subregion of subjects with moderate–severe OA and T1rho values of all subregions and the whole meniscus in subjects with doubtful–minimal OA. When evaluated based on WORMS, statistically significant differences were identified in T1rho values between the lateral femoral anterior cartilage subregion in patients with WORMS5–6 (advanced degeneration) and whole femorotibial cartilage and all cartilage subregions in patients with WORMS0–1 (normal). Conclusion: T1rho values are higher in specific meniscus and femorotibial cartilage subregions. These findings suggest that regional damage of both femorotibial hyaline cartilage and menisci may be associated with

  16. Lubrication and cartilage.

    Science.gov (United States)

    Wright, V; Dowson, D

    1976-02-01

    Mechanisms of lubrication of human synovial joints have been analysed in terms of the operating conditions of the joint, the synovial fluid and articular cartilage. In the hip and knee during a walking cycle the load may rise up to four times body weight. In the knee on dropping one metre the load may go up to 25 time body weight. The elastic modulus of cartilage is similar to that of the synthetic rubber of a car tyre. The cartilage surface is rough and in elderly specimens the centre line average is 2-75 mum. The friction force generated in reciprocating tests shows that both cartilage and synovial fluid are important in lubrication. The viscosity-shear rate relationships of normal synovial fluid show that it is non-Newtonian. Osteoarthrosic fluid is less so and rheumatoid fluid is more nearly Newtonian. Experiments with hip joints in a pendulum machine show that fluid film lubrication obtains at some phases of joint action. Boundary lubrication prevails under certain conditions and has been examined with a reciprocating friction machine. Digestion of hyaluronate does not alter the boundary lubrication, but trypsin digestion does. Surface active substances (lauryl sulphate and cetyl 3-ammonium bromide) give a lubricating ability similar to that of synovial fluid. The effectiveness of the two substances varies with pH.

  17. Lubrication and cartilage.

    Science.gov (United States)

    Wright, V; Dowson, D

    1976-01-01

    Mechanisms of lubrication of human synovial joints have been analysed in terms of the operating conditions of the joint, the synovial fluid and articular cartilage. In the hip and knee during a walking cycle the load may rise up to four times body weight. In the knee on dropping one metre the load may go up to 25 time body weight. The elastic modulus of cartilage is similar to that of the synthetic rubber of a car tyre. The cartilage surface is rough and in elderly specimens the centre line average is 2-75 mum. The friction force generated in reciprocating tests shows that both cartilage and synovial fluid are important in lubrication. The viscosity-shear rate relationships of normal synovial fluid show that it is non-Newtonian. Osteoarthrosic fluid is less so and rheumatoid fluid is more nearly Newtonian. Experiments with hip joints in a pendulum machine show that fluid film lubrication obtains at some phases of joint action. Boundary lubrication prevails under certain conditions and has been examined with a reciprocating friction machine. Digestion of hyaluronate does not alter the boundary lubrication, but trypsin digestion does. Surface active substances (lauryl sulphate and cetyl 3-ammonium bromide) give a lubricating ability similar to that of synovial fluid. The effectiveness of the two substances varies with pH. Images Fig. 10 PMID:3490

  18. Gene Therapy for Cartilage Repair

    Science.gov (United States)

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  19. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments.

    Science.gov (United States)

    Vinatier, C; Guicheux, J

    2016-06-01

    Articular cartilage is a non-vascularized and poorly cellularized connective tissue that is frequently damaged as a result of trauma and degenerative joint diseases such as osteoarthrtis. Because of the absence of vascularization, articular cartilage has low capacity for spontaneous repair. Today, and despite a large number of preclinical data, no therapy capable of restoring the healthy structure and function of damaged articular cartilage is clinically available. Tissue-engineering strategies involving the combination of cells, scaffolding biomaterials and bioactive agents have been of interest notably for the repair of damaged articular cartilage. During the last 30 years, cartilage tissue engineering has evolved from the treatment of focal lesions of articular cartilage to the development of strategies targeting the osteoarthritis process. In this review, we focus on the different aspects of tissue engineering applied to cartilage engineering. We first discuss cells, biomaterials and biological or environmental factors instrumental to the development of cartilage tissue engineering, then review the potential development of cartilage engineering strategies targeting new emerging pathogenic mechanisms of osteoarthritis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Articular cartilage repair and the evolving role of regenerative medicine

    Directory of Open Access Journals (Sweden)

    Pieter K Bos

    2010-10-01

    Full Text Available Pieter K Bos1, Marloes L van Melle1, Gerjo JVM van Osch1,21Department of Orthopaedic Surgery, Erasmus MC, Rotterdam, the Netherlands; 2Department of Otorhinolaryngology, Erasmus MC, Rotterdam, the NetherlandsAbstract: Among the growing applications of regenerative medicine, clinical articular cartilage repair has now been used for 2 decades and forms a successful example of translational medicine. Cartilage is characterized by a limited intrinsic repair capacity following injury. Articular cartilage defects cause symptoms, are not spontaneously repaired, and are generally believed to result in early osteoarthritis. Marrow stimulation techniques, osteochondral transplantation, and cell-based therapies, such as autologous chondrocyte implantation (ACI and use of mesenchymal stem cells (MSCs, are used for tissue regeneration, symptom relief, and prevention of further joint degeneration. The exact incidence of cartilage defects and the natural outcome of joints with these lesions are unclear. Currently available cartilage repair techniques are designed for defect treatment in otherwise healthy joints and limbs, mostly in young adults. The natural history studies presented in this review estimated that the prevalence of cartilage lesions in this patient group ranges from 5% to 11%. The background and results from currently available randomized clinical trials of the three mostly used cartilage repair techniques are outlined in this review. Osteochondral transplantation, marrow stimulation, and ACI show improvement of symptoms with an advantage for cell-based techniques, but only a suggestion that risk for joint degeneration can be reduced. MSCs, characterized by their good proliferative capacity and the potential to differentiate into different mesenchymal lineages, form an attractive alternative cell source for cartilage regeneration. Moreover, MSCs provide a regenerative microenvironment by the secretion of bioactive factors. This trophic activity

  1. Pulmonary hyalinizing granuloma: Bilateral pulmonary nodules associated with chronic idiopathic thrombocytopenic purpura

    International Nuclear Information System (INIS)

    Satti, Mohamed B.; Batouk, Abdelnasir; Ahmad, Mohamed F.; Abdelaal, Mohamed A.; Abdelaziz, Muntasir M.

    2005-01-01

    We report a case of a 30-year-old female who had been treated periodically with steroids for idiopathic thrombocytopenic purpura ICTP over the last 10 years. Recently, during the course of investigation, she was found to have incidental asymptomatic multiple pulmonary nodules on chest CT. Following a needle biopsy to exclude malignancy, 2 nodules were excised and were histologically confirmed as pulmonary hyalinizing granuloma PHG. The remaining 2 nodules regressed on increasing her dose of steroids. The case is discussed with emphasis on the histological and radiological differential diagnosis, in addition to including ITP among the spectrum of immunologic conditions associated with PHG. (author)

  2. A rare case of hyaline-type Castleman disease in the liver.

    Science.gov (United States)

    Miyoshi, Hisaaki; Mimura, Shima; Nomura, Takako; Tani, Joji; Morishita, Asahiro; Kobara, Hideki; Mori, Hirohito; Yoneyama, Hirohito; Deguchi, Akihiro; Himoto, Takashi; Yamamoto, Naoki; Okano, Keiichi; Suzuki, Yasuyuki; Masaki, Tsutomu

    2013-07-27

    Castleman disease often develops in the neck, mediastinum and pulmonary hilum. Its onset in the peritoneal cavity is very rare. The patient, a woman in her 70s, was referred to our department for a detailed examination of an abdominal mass. On abdominal ultrasonography, computed tomography scan, magnetic resonance imaging and positron emission tomography, a mass approximately 15 mm in diameter was noted in the hepatic S6. We attempted radical treatment and conducted a laparoscope-assisted right lobectomy. On the basis of histopathological findings, the patient was diagnosed as having hyaline type Castleman disease in the liver, a very rare condition.

  3. Engineering Lubrication in Articular Cartilage

    Science.gov (United States)

    McNary, Sean M.; Athanasiou, Kyriacos A.

    2012-01-01

    Despite continuous progress toward tissue engineering of functional articular cartilage, significant challenges still remain. Advances in morphogens, stem cells, and scaffolds have resulted in enhancement of the bulk mechanical properties of engineered constructs, but little attention has been paid to the surface mechanical properties. In the near future, engineered tissues will be able to withstand and support the physiological compressive and tensile forces in weight-bearing synovial joints such as the knee. However, there is an increasing realization that these tissue-engineered cartilage constructs will fail without the optimal frictional and wear properties present in native articular cartilage. These characteristics are critical to smooth, pain-free joint articulation and a long-lasting, durable cartilage surface. To achieve optimal tribological properties, engineered cartilage therapies will need to incorporate approaches and methods for functional lubrication. Steady progress in cartilage lubrication in native tissues has pushed the pendulum and warranted a shift in the articular cartilage tissue-engineering paradigm. Engineered tissues should be designed and developed to possess both tribological and mechanical properties mirroring natural cartilage. In this article, an overview of the biology and engineering of articular cartilage structure and cartilage lubrication will be presented. Salient progress in lubrication treatments such as tribosupplementation, pharmacological, and cell-based therapies will be covered. Finally, frictional assays such as the pin-on-disk tribometer will be addressed. Knowledge related to the elements of cartilage lubrication has progressed and, thus, an opportune moment is provided to leverage these advances at a critical step in the development of mechanically and tribologically robust, biomimetic tissue-engineered cartilage. This article is intended to serve as the first stepping stone toward future studies in functional

  4. Lubrication of Articular Cartilage.

    Science.gov (United States)

    Jahn, Sabrina; Seror, Jasmine; Klein, Jacob

    2016-07-11

    The major synovial joints such as hips and knees are uniquely efficient tribological systems, able to articulate over a wide range of shear rates with a friction coefficient between the sliding cartilage surfaces as low as 0.001 up to pressures of more than 100 atm. No human-made material can match this. The means by which such surfaces maintain their very low friction has been intensively studied for decades and has been attributed to fluid-film and boundary lubrication. Here, we focus especially on the latter: the reduction of friction by molecular layers at the sliding cartilage surfaces. In particular, we discuss such lubrication in the light of very recent advances in our understanding of boundary effects in aqueous media based on the paradigms of hydration lubrication and of the synergism between different molecular components of the synovial joints (namely hyaluronan, lubricin, and phospholipids) in enabling this lubrication.

  5. Regeneration of spine disc and joint cartilages under temporal and space modulated laser radiation

    Science.gov (United States)

    Sobol, E.; Shekhter, A.; Baskov, A.; Baskov, V.; Baum, O.; Borchshenko, I.; Golubev, V.; Guller, A.; Kolyshev, I.; Omeltchenko, A.; Sviridov, A.; Zakharkina, O.

    2009-02-01

    The effect of laser radiation on the generation of hyaline cartilage in spine disc and joints has been demonstrated. The paper considers physical processes and mechanisms of laser regeneration, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reconstruction of spine discs. Possible mechanisms of laser-induced regeneration include: (1) Space and temporary modulated laser beam induces nonhomogeneous and pulse repetitive thermal expansion and stress in the irradiated zone of cartilage. Mechanical effect due to controllable thermal expansion of the tissue and micro and nano gas bubbles formation in the course of the moderate (up to 45-50 oC) heating of the NP activate biological cells (chondrocytes) and promote cartilage regeneration. (2) Nondestructive laser radiation leads to the formation of nano and micro-pores in cartilage matrix. That promotes water permeability and increases the feeding of biological cells. Results provide the scientific and engineering basis for the novel low-invasive laser procedures to be used in orthopedics for the treatment cartilages of spine and joints. The technology and equipment for laser reconstruction of spine discs have been tested first on animals, and then in a clinical trial. Since 2001 the laser reconstruction of intervertebral discs have been performed for 340 patients with chronic symptoms of low back or neck pain who failed to improve with non-operative care. Substantial relief of back pain was obtained in 90% of patients treated who returned to their daily activities. The experiments on reparation of the defects in articular cartilage of the porcine joints under temporal and spase modulated laser radiation have shown promising results.

  6. Radiologic and histologic features of hyaline membrane diseases of the newbone

    International Nuclear Information System (INIS)

    Baek, Seung Yon; Choi, Kyung Hee; Suh, Jeong Soo; Rhee, Chung Sik; Kim, Hee Seup

    1984-01-01

    This study represents the radiologic, histologic features and clinical analysis of hyaline membrane diseases in 47 newbone infants who were delivered in Ewha Womans Univ. Hospital and expired caused by respiratory distress and confirmed by autopsy, during Jan. 1981 to June. 1984. The results were as follows: 1. Classification of radiographic stage (by Wolfson's criteria); Stage III (34.1%) was the most frequent. 2. Male to female ratio was 2.4 : 1. 3. Method of delivery; Cesarean section (44.7%) was the highest frequency, compared with percent of cesarean section to total delivery (29.0%) 4. Distribution of birth weight; 1.0-2.0 kg (48.9%) was the most frequent. 5. Distribution of gestational period; 32-36 weeks (29.8%) was the most frequent. 6. Complication; pulmonary hemorrhage (31.9%) was the most frequent, in order, subarachnoid hemorrhage and pneumothorax were followed. 7. Final diagnosis of hyaline membrane diseases was based on histo-pathologic diagnosis.

  7. Radiologic and histologic features of hyaline membrane diseases of the newbone

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Yon; Choi, Kyung Hee; Suh, Jeong Soo; Rhee, Chung Sik; Kim, Hee Seup [Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    1984-12-15

    This study represents the radiologic, histologic features and clinical analysis of hyaline membrane diseases in 47 newbone infants who were delivered in Ewha Womans Univ. Hospital and expired caused by respiratory distress and confirmed by autopsy, during Jan. 1981 to June. 1984. The results were as follows: 1. Classification of radiographic stage (by Wolfson's criteria); Stage III (34.1%) was the most frequent. 2. Male to female ratio was 2.4 : 1. 3. Method of delivery; Cesarean section (44.7%) was the highest frequency, compared with percent of cesarean section to total delivery (29.0%) 4. Distribution of birth weight; 1.0-2.0 kg (48.9%) was the most frequent. 5. Distribution of gestational period; 32-36 weeks (29.8%) was the most frequent. 6. Complication; pulmonary hemorrhage (31.9%) was the most frequent, in order, subarachnoid hemorrhage and pneumothorax were followed. 7. Final diagnosis of hyaline membrane diseases was based on histo-pathologic diagnosis.

  8. Quantitative Assessment of Degenerative Cartilage and Subchondral Bony Lesions in a Preserved Cadaveric Knee: Propagation-Based Phase-Contrast CT Versus Conventional MRI and CT.

    Science.gov (United States)

    Geith, Tobias; Brun, Emmanuel; Mittone, Alberto; Gasilov, Sergei; Weber, Loriane; Adam-Neumair, Silvia; Bravin, Alberto; Reiser, Maximilian; Coan, Paola; Horng, Annie

    2018-04-09

    The aim of this study was to quantitatively assess hyaline cartilage and subchondral bone conditions in a fully preserved cadaveric human knee joint using high-resolution x-ray propagation-based phase-contrast imaging (PBI) CT and to compare the performance of the new technique with conventional CT and MRI. A cadaveric human knee was examined using an x-ray beam of 60 keV, a detector with a 90-mm 2 FOV, and a pixel size of 46 × 46 μm 2 . PBI CT images were reconstructed with both the filtered back projection algorithm and the equally sloped tomography method. Conventional 3-T MRI and CT were also performed. Measurements of cartilage thickness, cartilage lesions, International Cartilage Repair Society scoring, and detection of subchondral bone changes were evaluated. Visual inspection of the specimen akin to arthroscopy was conducted and served as a standard of reference for lesion detection. Loss of cartilage height was visible on PBI CT and MRI. Quantification of cartilage thickness showed a strong correlation between the two modalities. Cartilage lesions appeared darker than the adjacent cartilage on PBI CT. PBI CT showed similar agreement to MRI for depicting cartilage substance defects or lesions compared with the visual inspection. The assessment of subchondral bone cysts showed moderate to strong agreement between PBI CT and CT. In contrast to the standard clinical methods of MRI and CT, PBI CT is able to simultaneously depict cartilage and bony changes at high resolution. Though still an experimental technique, PBI CT is a promising high-resolution imaging method to evaluate comprehensive changes of osteoarthritic disease in a clinical setting.

  9. Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique

    Directory of Open Access Journals (Sweden)

    Zheng Ming H

    2008-07-01

    Full Text Available Abstract Introduction The collagen structure in the superficial zone of articular cartilage is critical to the tissue's durability. Early osteoarthritis is often characterized with fissures on the articular surface. This is closely related to the disruption of the collagen network. However, the traditional histology can not offer visualization of the collagen structure in articular cartilage because it uses conventional optical microscopy that does not have insufficient imaging resolution to resolve collagen from proteoglycans in hyaline articular cartilage. This study examines the 3D collagen network of articular cartilage scored from 0 to 2 in the scoring system of International Cartilage Repair Society, and aims to develop a 3D histology for assessing early osteoarthritis. Methods Articular cartilage was visually classified into five physiological groups: normal cartilage, aged cartilage, cartilage with artificial and natural surface disruption, and fibrillated. The 3D collagen matrix of the cartilage was acquired using a 3D imaging technique developed previously. Traditional histology was followed to grade the physiological status of the cartilage in the scoring system of International Cartilage Repair Society. Results Normal articular cartilage contains interwoven collagen bundles near the articular surface, approximately within the lamina splendens. However, its collagen fibres in the superficial zone orient predominantly in a direction spatially oblique to the articular surface. With age and disruption of the articular surface, the interwoven collagen bundles are gradually disappeared, and obliquely oriented collagen fibres change to align predominantly in a direction spatially perpendicular to the articular surface. Disruption of the articular surface is well related to the disappearance of the interwoven collagen bundles. Conclusion A 3D histology has been developed to supplement the traditional histology and study the subtle changes in

  10. Development of artificial articular cartilage

    Indian Academy of Sciences (India)

    The present study describes the development of artificial articular cartilage on the basis of mimicking structural gel properties and mechanical gel properties of natural articular cartilage. It is synthesized from PVA/Si nanocomposite containing 20% Tetra ethoxy silane (TEOS) by sol–gel method. Mechanical strength of ...

  11. Post-radiotherapy locoregional recurrence of hyalinizing clear cell carcinoma of palate

    Directory of Open Access Journals (Sweden)

    Sonia Gon

    2013-01-01

    Full Text Available Clear cell carcinoma of the salivary glands is a rare tumor that represents less than 1% of all salivary tumors and is a new disease that is only recognized in recent years. It is rare and the standard treatment is still under investigation. This tumor often follows an indolent course and treatment includes wide surgical excision with or without adjuvant radiotherapy. Recurrence of the hyalinizing clear cell carcinoma (HCCC after complete surgical resection is uncommonly documented. We hereby report a case of post-radiotherapy locoregional recurrence of HCCC of the palate and recommend further clinicopathological study and long-term follow-up to document the biological behavior of this entity along with highlighting the role of special stains and immunohistochemistry in its diagnosis.

  12. Hyaline Tintinnina (Protozoa-Ciliophora-Oligotrichida from northeast Brazilian coastal reefs

    Directory of Open Access Journals (Sweden)

    Roberto Sassi

    1989-01-01

    Full Text Available Seven species of hyaline Tintinnina were obtained from plankton samples collected near the coastal reefs of Ponta do Seixas (Lat. 7º09'16"S, Long. 34º4735"W, Northeastern Brazil, from April 1981 to May 1982 and from April 1983 to May 1984: Amphorellopsis acuta (Schmidt, 1901, Dadayiella ganymedes (Entz Sr., 1884, Epiplocyloides reticulata (Ostenfeld & Schmidt, 1901, Eutintinnus tubulosus (Ostenfeld, 1899, Favella ehrenbergi (Claparède & Lachmann, 1858, Metacylis mereschkowskyi Kofoid & Campbell, 1929 and M. perspicax (Hada, 1938. The most frequent and abundant species were M. mereschkowskyi and F. ehrenbergi. Except/.ganymedes, E. reticulata and F. ehrenbergi all species are new records from Brazil. Metacylis perspicax is also the seventh world register. For all species we provide description, drawings, measurements, seasonal occurrence, world distribution and some systematic comments.

  13. Changes of cerebral hemodynamics following the administration of surfactant in the hyaline membrane disease of prematurity

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jeong Hyun; Kim, Kyung Hee [Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    2000-09-15

    To evaluate the changes of cerebral blood flow velocity according to the time, before and after surfactant administration in hyaline membrane disease using Doppler ultrasonography. The patients were 15 premature babies who were clinically and radiologically diagnosed HMD. The ratio of male : female was 11:4, the mean gestational age was 30.1 {+-} 2.5 wks, mean body weight was 1.4 {+-} 0.6 kg,mean Apgar score at 5 min was 6.28, and type of delivery was C-section : vaginal delivery 9.6. Before and after, 10 mm, 30 min, 1 hr, 6 hr, 12 hr, 1 day, 3 day, 5 day and 7 day after surfactant administration, peak systolic and end-diastolic cerebral blood flow velocity (PSFV, EDFV) and resistive index (RI) were estimated by Doppler ultrasonography measuring MCA flow velocity using temporal window. The averages of all data according to the time were obtained and analyzed statistical significance. For the evaluation of the clinical status systemic BP, FiO2, pH, and respiratory rate were also checked according to the same time. The clinical status of FiO2, metabolic acidosis, and tachypnea was significantly improved after surfactant administration. There was no significant change of cerebral blood flow velocity (PSFV, EDFV) after the surfactant administration. The change of RI was nor statistically significant. The changes of the systemic BP had no significant changes. In spite of clinical improvement, there were no significant increases of cerebral blood flow velocity and changes of RI after surfactant administration in hyaline membrane disease.

  14. An Autologous Bone Marrow Mesenchymal Stem Cell–Derived Extracellular Matrix Scaffold Applied with Bone Marrow Stimulation for Cartilage Repair

    Science.gov (United States)

    Tang, Cheng; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Min, Byoung-Hyun; Xu, Yan

    2014-01-01

    Purpose: It is well known that implanting a bioactive scaffold into a cartilage defect site can enhance cartilage repair after bone marrow stimulation (BMS). However, most of the current scaffolds are derived from xenogenous tissue and/or artificial polymers. The implantation of these scaffolds adds risks of pathogen transmission, undesirable inflammation, and other immunological reactions, as well as ethical issues in clinical practice. The current study was undertaken to evaluate the effectiveness of implanting autologous bone marrow mesenchymal stem cell–derived extracellular matrix (aBMSC-dECM) scaffolds after BMS for cartilage repair. Methods: Full osteochondral defects were performed on the trochlear groove of both knees in 24 rabbits. One group underwent BMS only in the right knee (the BMS group), and the other group was treated by implantation of the aBMSC-dECM scaffold after BMS in the left knee (the aBMSC-dECM scaffold group). Results: Better repair of cartilage defects was observed in the aBMSC-dECM scaffold group than in the BMS group according to gross observation, histological assessments, immunohistochemistry, and chemical assay. The glycosaminoglycan and DNA content, the distribution of proteoglycan, and the distribution and arrangement of type II and I collagen fibers in the repaired tissue in the aBMSC-dECM scaffold group at 12 weeks after surgery were similar to that surrounding normal hyaline cartilage. Conclusions: Implanting aBMSC-dECM scaffolds can enhance the therapeutic effect of BMS on articular cartilage repair, and this combination treatment is a potential method for successful articular cartilage repair. PMID:24666429

  15. Cartilage destruction in small joints by rheumatoid arthritis: assessment of fat-suppressed three-dimensional gradient-echo MR pulse sequences in vitro

    International Nuclear Information System (INIS)

    Uhl, M.; Allmann, K.H.; Hauer, M.P.; Langer, M.; Ihling, C.; Conca, W.

    1998-01-01

    Purpose. To assess the accuracy of different MR sequences for the detection of articular cartilage abnormalities in rheumatoid arthritis. Design and patients. Ten metacarpophalangeal joints and 10 metatarsophalangeal joints (specimens from arthritis patients undergoing ablative joint surgery) were examined with a fat-suppressed (FS) 3D FLASH, a FS 3D FISP, a FS 2D fast spin-echo T2-weighted, and a 2D FS spin-echo T1-weighted sequence. Each cartilage lesion and each cortical lesion was graded from 0 to 4 (modified Outerbridge staging system). Subsequently, the results of each sequence were compared with the macroscopic findings and statistically tested against each other. Results. The study shows that 3D gradient-echo sequences with fat suppression were best for imaging and grading of cartilage lesions in arthritis of the small joints of the hands and feet. Using 3D techniques, all grade 2, grade 3, and grade 4 lesions of cartilage or cortical bone were detected. Conclusion. FS 3D gradient-echo techniques were best for the detection and grading of hyaline cartilage and subchondral bone lesions in rheumatoid arthritis. MRI has a great potential as an objective method of evaluating cartilage damage and bone erosions in rheumatoid arthritis. (orig.)

  16. Spontaneous pneumothorax

    Directory of Open Access Journals (Sweden)

    Davari R

    1996-07-01

    Full Text Available A case with bilateral spontaneous pneumothorax was presented. Etiology, mechanism, and treatment were discussed on the review of literature. Spontaneous Pneumothorax is a clinical entity resulting from a sudden non traumatic rupture of the lung. Biach reported in 1880 that 78% of 916 patients with spontaneous pneumothorax had tuberculosis. Kjergaard emphasized 1932 the primary importance of subpleural bleb disease. Currently the clinical spectrum of spontaneous pneumothorax seems to have entered a third era with the recognition of the interstitial lung disease and AIDS as a significant etiology. Standard treatment is including: observation, thoracocentesis, tube thoracostomy. Chemical pleurodesis, bullectomy or wedge resection of lung with pleural abrasion and occasionally pleurectomy. Little information has been reported regarding the efficacy of such treatment in spontaneous pneumothorax secondary to non bleb disease

  17. Adipose stem cells differentiated chondrocytes regenerate damaged cartilage in rat model of osteoarthritis.

    Science.gov (United States)

    Latief, Noreen; Raza, Fahad Ali; Bhatti, Fazal-Ur-Rehman; Tarar, Moazzam Nazir; Khan, Shaheen N; Riazuddin, Sheikh

    2016-05-01

    Transplantation of mesenchymal stem cells (MSCs) or autologous chondrocytes has been shown to repair damages to articular cartilage due to osteoarthritis (OA). However, survival of transplanted cells is considerably reduced in the osteoarthritic environment and it affects successful outcome of the transplantation of the cells. Differentiated chrondroytes derived from adipose stem cells have been proposed as an alternative source and our study investigated this possibility in rats. We investigated the regenerative potential of ADSCs and DCs in osteoarthritic environment in the repair of cartilage in rats. We found that ADSCs maintained fibroblast morphology in vitro and also expressed CD90 and CD29. Furthermore, ADSCs differentiated into chondrocytes, accompanied by increased level of proteoglycans and expression of chondrocytes specific genes, such as, Acan, and Col2a1. Histological examination of transplanted knee joints showed regeneration of cartilage tissue compared to control OA knee joints. Increase in gene expression for Acan, Col2a1 with concomitant decrease in the expression of Col1a1 suggested formation of hyaline like cartilage. A significant increase in differentiation index was observed in DCs and ADSCs transplanted knee joints (P = 0.0110 vs. P = 0.0429) when compared to that in OA control knee joints. Furthermore, transplanted DCs showed increased proliferation along with reduction in apoptosis as compared to untreated control. In conclusion, DCs showed better survival and regeneration potential as compared with ADSCs in rat model of OA and thus may serve a better option for regeneration of osteoarthritic cartilage. © 2016 International Federation for Cell Biology.

  18. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Mirahmadi, Fereshteh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin

    2013-01-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber–hydrogel composite for GAG content and in two-layer electrospun fiber–hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. - Highlights: • Chitosan hydrogel composites fabricated by two forms of silk fiber • Silk fibers provide structural support for the hydrogel matrix. • The mechanical properties of hydrogel significantly improved by associating with silk. • Production of GAG and collagen type II was demonstrated within the scaffolds

  19. Sol-gel derived lithium-releasing glass for cartilage regeneration.

    Science.gov (United States)

    Li, Siwei; Maçon, Anthony Lb; Jacquemin, Manon; Stevens, Molly M; Jones, Julian R

    2017-07-01

    Wnt-signalling cascade is one of the crucial pathways involved in the development and homeostasis of cartilage. Influencing this pathway can potentially contribute to improved cartilage repair or regeneration. One key molecular regulator of the Wnt pathway is the glycogen synthase kinase-3 enzyme, the inhibition of which allows initiation of the signalling pathway. This study aims to utilise a binary SiO 2 -Li 2 O sol-gel derived glass for controlled delivery of lithium, a known glycogen synthase kinase-3 antagonist. The effect of the dissolution products of the glass on chondrogenic differentiation in an in vitro 3D pellet culture model is reported. Dissolution products that contained 5 mM lithium and 3.5 mM silicon were capable of inducing chondrogenic differentiation and hyaline cartilaginous matrix formation without the presence of growth factors such as TGF-β3. The results suggest that sol-gel derived glass has the potential to be used as a delivery vehicle for therapeutic lithium ions in cartilage regeneration applications.

  20. Comparison of chondrocytes produced from adipose tissue-derived stem cells and cartilage tissue.

    Science.gov (United States)

    Meric, Aysenur; Yenigun, Alper; Yenigun, Vildan Betul; Dogan, Remzi; Ozturan, Orhan

    2013-05-01

    Spontaneous cartilage regeneration is poor after a cartilage defect occurs by trauma, surgical, and other reasons. Importance of producing chondrocytes from stem cells and using tissues to repair a defect is getting popular. The aim of this study was to compare the effects of injectable cartilage produced by chondrocytes differentiated from adipose tissue-derived mesenchymal stem cells and chondrocyte cells isolated directly from cartilage tissue. Mesenchymal stem cells were isolated from rat adipose tissue and characterized by cell-surface markers. Then, they were differentiated to chondrocyte cells. The function of differentiated chondrocyte cells was compared with chondrocyte cells directly isolated from cartilage tissue in terms of collagen and glycosaminoglycan secretion. Then, both chondrocyte cell types were injected to rats' left ears in liquid and gel form, and histologic evaluation was done 3 weeks after the injection. Adipose-derived stem cells were strongly positive for the CD44 and CD73 mesenchymal markers. Differentiated chondrocyte cells and chondrocyte cells directly isolated from cartilage tissue had relative collagen and glycosaminoglycan secretion results. However, histologic evaluations did not show any cartilage formation after both chondrocyte cell types were injected to rats. Strong CD44- and CD73-positive expression indicated that adipose-derived cells had the stem cell characters. Collagen and glycosaminoglycan secretion results demonstrated that adipose-derived stem cells were successfully differentiated to chondrocyte cells.

  1. Pathology of articular cartilage and synovial membrane from elbow joints with and without degenerative joint disease in domestic cats.

    Science.gov (United States)

    Freire, M; Meuten, D; Lascelles, D

    2014-09-01

    The elbow joint is one of the feline appendicular joints most commonly and severely affected by degenerative joint disease. The macroscopic and histopathological lesions of the elbow joints of 30 adult cats were evaluated immediately after euthanasia. Macroscopic evidence of degenerative joint disease was found in 22 of 30 cats (39 elbow joints) (73.33% cats; 65% elbow joints), and macroscopic cartilage erosion ranged from mild fibrillation to complete ulceration of the hyaline cartilage with exposure of the subchondral bone. Distribution of the lesions in the cartilage indicated the presence of medial compartment joint disease (most severe lesions located in the medial coronoid process of the ulna and medial humeral epicondyle). Synovitis scores were mild overall and correlated only weakly with macroscopic cartilage damage. Intra-articular osteochondral fragments either free or attached to the synovium were found in 10 joints. Macroscopic or histologic evidence of a fragmented coronoid process was not found even in those cases with intra-articular osteochondral fragments. Lesions observed in these animals are most consistent with synovial osteochondromatosis secondary to degenerative joint disease. The pathogenesis for the medial compartmentalization of these lesions has not been established, but a fragmented medial coronoid process or osteochondritis dissecans does not appear to play a role. © The Author(s) 2014.

  2. Engineered cartilage regeneration from adipose tissue derived-mesenchymal stem cells: A morphomolecular study on osteoblast, chondrocyte and apoptosis evaluation.

    Science.gov (United States)

    Szychlinska, Marta Anna; Castrogiovanni, Paola; Nsir, Houda; Di Rosa, Michelino; Guglielmino, Claudia; Parenti, Rosalba; Calabrese, Giovanna; Pricoco, Elisabetta; Salvatorelli, Lucia; Magro, Gaetano; Imbesi, Rosa; Mobasheri, Ali; Musumeci, Giuseppe

    2017-08-15

    The poor self-repair capacity of cartilage tissue in degenerative conditions, such as osteoarthritis (OA), has prompted the development of a variety of therapeutic approaches, such as cellular therapies and tissue engineering based on the use of mesenchymal stem cells (MSCs). The aim of this study is to demonstrate, for the first time, that the chondrocytes differentiated from rat adipose tissue derived-MSCs (AMSCs), are able to constitute a morphologically and biochemically healthy hyaline cartilage after 6 weeks of culture on a Collagen Cell Carrier (CCC) scaffold. In this study we evaluated the expression of some osteoblasts (Runt-related transcription factor 2 (RUNX2) and osteocalcin), chondrocytes (collagen I, II and lubricin) and apoptosis (caspase-3) biomarkers in undifferentiated AMSCs, differentiated AMSCs in chondrocytes cultured in monolayer and AMSCs-derived chondrocytes seeded on CCC scaffolds, by different techniques such as immunohistochemistry, ELISA, Western blot and gene expression analyses. Our results showed the increased expression of collagen II and lubricin in AMSCs-derived chondrocytes cultured on CCC scaffolds, whereas the expression of collagen I, RUNX2, osteocalcin and caspase-3 resulted decreased, when compared to the controls. In conclusion, this innovative basic study could be a possible key for future therapeutic strategies for articular cartilage restoration through the use of CCC scaffolds, to reduce the morbidity from acute cartilage injuries and degenerative joint diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. MR imaging of post-traumatic articular cartilage injuries confined to the femoral trochlea Arthroscopic correlation and clinical significance

    Energy Technology Data Exchange (ETDEWEB)

    Huegli, Rolf W. E-mail: rhuegli@uhbs.ch; Moelleken, Sonja M.C.; Stork, Alexander; Bonel, Harald M.; Bredella, Miriam A.; Meckel, Stephan; Genant, Harry K.; Tirman, Phillip F.J

    2005-01-01

    Objective: To assess and describe post-traumatic articular cartilage injuries isolated to the trochlear groove and provide insight into potential mechanism of injury. Materials and methods: We retrospectively evaluated MR imaging findings of all knee MRIs performed at our institution over the last 2 years (2450). Thirty patients met the criteria of a cartilage injury confined to the trochlear groove. In 15 cases, which were included in our study, arthroscopic correlation was available. Each plane was evaluated and graded for the presence and appearance of articular cartilage defects using a standard arthroscopic grading scheme adapted to MR imaging. Any additional pathological derangement was documented and information about the mechanism of injury was retrieved by chart review. Results: In all cases the cartilaginous injury was well demonstrated on MRI. In 13 patients additional pathological findings could be observed. The most frequently associated injury was a meniscal tear in nine patients. In eight cases, the arthroscopic grading of the trochlear injury matched exactly with the MRI findings. In the remaining seven cases, the discrepancy between MRI and arthroscopy was never higher than one grade. In 13 out of 15 of patients trauma mechanism could be evaluated. Twelve patients suffered an indirect twisting injury and one suffered a direct trauma to their knee. Conclusion: The findings of this study demonstrate that MR imaging allows reliable grading of isolated injury to the trochlear groove cartilage and assists in directing surgical diagnosis and treatment. These injuries may be the only hyaline cartilage injury in the knee and meniscal tears are a frequently associated finding. Therefore, it is important to search specifically for cartilage injuries of the trochlear groove in patients with anterior knee pain, even if other coexistent pathology could potentially explain the patient's symptoms.

  4. Roentgenographic findings in hyaline membrane disease treated with exogenous surfactant: comparison with control group

    International Nuclear Information System (INIS)

    Lee, Sun Kyoung; Lim, Chae Ha; Lim, Woo Young; Kim, Young Sook; Byen, Ju Nam; Oh, Jae Hee; Kim, Young Chul

    1997-01-01

    To compare, with the use of chest radiographic findings, improvement and complications in newborns treated with exogenous surfactant for hyaline membrane disease (HMD), and an untreated control group. Thirty-six patients with HMD were randomly assigned to a control group (n=18) or surfactant treated group (n=18). As part of an initial evaluation of their pulmonary status, we then performed a retrospective statistical analysis of chest radiographic findings obtained in exogenous surfactant treated and untreated infants within the first 90 minutes of life. Subsequent examinations were performed at less than 24 hours of age. Chest radiograph before treatment showed no significant differences between the two groups, but significant improvement was noted in the surfactant treated group, in contrast to the control group. The most common chest radiographic finding after surfactant administration was uniform (n=15) or disproportionate (n=2) improvement of pulmonary aeration. Patent ductus arteriosus developed in three treated neonates and in four cases in the control group. Air leak occurred in three cases in the treated group and in five cases in the control group. In one treated patient pulmonary hemorrhage developed and intracranial hemorrhage occurred in three treated neonates and in four cases in the control group. Bronchopulmonary dysplasia was developed in 6 cases of treated group and 3 cases of control group. A chest radiograph is considered to be helpful in the evaluation of improvement and complications of HMD in infants treated with surfactant

  5. Hyalinizing trabecular tumour: review and new insights into the molecular biology.

    Science.gov (United States)

    Smith, Nicola R; Bullock, Martin J; Hart, Robert D; Trites, Jonathan R; Taylor, S Mark

    2012-02-01

    To review the current literature on hyalinizing trabecular tumor (HTT) and the relationship to other, more sinister neoplasms of the thyroid including papillary thyroid carcinoma (PTC). To apply this information to clinical practice and thus elucidate the best approach regarding the management of patients with thyroid tumours. A thorough literature search was performed on articles published on HTT thus far. Articles were then reviewed for epidemiology, discussion of categorization, and possible areas of differentiation from other thyroid tumor types. Our own hospital records were all reviewed for any possible cases of HTT. There have been many attempts made to find objective ways of categorizing HTT from other thyroid tumors. The articles found highlighted the difficulties in understanding the classification, molecular genetics, and pathology of HTT, especially with regard to the differentiation from PTC. In our own institution, we found only one such case of confirmed HTT. The ability to differentiate between HTT and PTC remains imperfect. Currently, permanent histologic sections are the best means for obtaining a diagnosis. Once this relationship is elucidated further, the treatment approach can be tailored, and patients will possibly avoid a total thyroidectomy and radioactive iodine ablation, as currently indicated for PTC.

  6. Reappraising hyalinizing clear cell carcinoma: A population-based study with molecular confirmation.

    Science.gov (United States)

    Hernandez-Prera, Juan C; Kwan, Ricky; Tripodi, Joseph; Chiosea, Simion; Cordon-Cardo, Carlos; Najfeld, Vesna; Demicco, Elizabeth G

    2017-03-01

    Hyalinizing clear cell carcinoma (HCCC) is a rare malignancy, characterized by EWSR1-ATF1 gene fusion, whose behavior is poorly understood, as it was for many years considered a diagnosis of exclusion. All available salivary gland carcinomas (n = 594) from our institution were reviewed. Diagnosis of HCCC was confirmed by fluorescence in situ hybridization (FISH) for EWSR1. Literature review was performed. We found 15 patients with HCCCs (10 women, 5 men), 13 with EWSR1 rearrangement. Median age at diagnosis was 57 years (range, 31-87 years). Oral cavity (n = 9) and base of tongue (n = 4) were the most frequent primary sites. Combining our cases with those identified in literature review, the 10-year risk of local recurrence and locoregional nodal metastasis were 49% and 15%, respectively. Molecularly confirmed HCCC accounted for 2.5% of salivary gland malignancies at our institution. HCCCs are indolent tumors with a propensity for locoregional recurrence. © 2016 Wiley Periodicals, Inc. Head Neck 39: 503-511, 2017. © 2016 Wiley Periodicals, Inc.

  7. [Cartilage repair and subchondral bone reconstruction based on three-dimensional printing technique].

    Science.gov (United States)

    Zhang, Weijie; Lian, Qin; Li, Dichen; Wang, Kunzheng; Jin, Zhongmin; Bian, Weiguo; Liu, Yaxiong; He, Jiankang; Wang, Ling

    2014-03-01

    To investigate whether subchondral bone microstructural parameters are related to cartilage repair during large osteochondral defect repairing based on three-dimensional (3-D) printing technique. Biomimetic biphasic osteochondral composite scaffolds were fabricated by using 3-D printing technique. The right trochlea critical sized defects (4.8 mm in diameter, 7.5 mm in depth) were created in 40 New Zealand white rabbits (aged 6 months, weighing 2.5-3.5 kg). Biomimetic biphasic osteochondral composite scaffolds were implanted into the defects in the experimental group (n = 35), and no composite scaffolds implantation served as control group (n = 5); the left side had no defect as sham-operation group. Animals of experimental and sham-operation groups were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after operation, while animals of control group were sampled at 24 weeks. Subchondral bone microstructural parameters and cartilage repair were quantitatively analyzed using Micro-CT and Wayne scoring system. Correlation analysis and regression analysis were applied to reveal the relationship between subchondral bone parameters and cartilage repair. The subchondral bone parameters included bone volume fraction (BV/TV), bone surface area fraction (BSA/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular spacing (Tb.Sp). In the experimental group, articular cartilage repair was significantly improved at 52 weeks postoperatively, which was dominated by hyaline cartilage tissue, and tidal line formed. Wayne scores at 24 and 52 weeks were significantly higher than that at 16 weeks in the experimental group (P 0.05); the scores of experimental group were significantly lower than those of sham-operation group at all time points (P twin peaks" like discipline to which BV/TV, BSA/BV, and Tb.N increased at 2 and 16 weeks, and then they returned to normal level. The Tb.Sp showed reversed discipline compared to the former 3 parameters, no significant change

  8. Identification of 2 novel ANTXR2 mutations in patients with hyaline fibromatosis syndrome and proposal of a modified grading system.

    Science.gov (United States)

    Denadai, Rafael; Raposo-Amaral, Cassio E; Bertola, Débora; Kim, Chong; Alonso, Nivaldo; Hart, Thomas; Han, Sangwoo; Stelini, Rafael F; Buzzo, Celso L; Raposo-Amaral, Cesar A; Hart, P Suzanne

    2012-04-01

    Juvenile hyaline fibromatosis (JHF) and infantile systemic hyalinosis (ISH) are rare, autosomal recessive disorders of the connective tissue caused by mutations in the gene encoding the anthrax toxin receptor 2 protein (ANTXR2) located on chromosome 4q21. Characteristically, these conditions present with overlapping clinical features, such as nodules and/or pearly papules, gingival hyperplasia, flexion contractures of the joints, and osteolytic bone defects. The present report describes a pair of sibs and three other JHF/ISH patients whose diagnoses were based on typical clinical manifestations and confirmed by histopathologic analyses and/or molecular analysis. A comparison of ISH and JHF, additional thoughts about new terminology (hyaline fibromatosis syndrome) and a modified grading system are also included. Copyright © 2012 Wiley Periodicals, Inc.

  9. Collagen XI mutation lowers susceptibility to load-induced cartilage damage in mice.

    Science.gov (United States)

    Holyoak, Derek T; Otero, Miguel; Armar, Naa Shidaa; Ziemian, Sophia N; Otto, Ariana; Cullinane, Devinne; Wright, Timothy M; Goldring, Steven R; Goldring, Mary B; van der Meulen, Marjolein C H

    2018-02-01

    Interactions among risk factors for osteoarthritis (OA) are not well understood. We investigated the combined impact of two prevalent risk factors: mechanical loading and genetically abnormal cartilage tissue properties. We used cyclic tibial compression to simulate mechanical loading in the cho/+ (Col11a1 haploinsufficient) mouse, which has abnormal collagen fibrils in cartilage due to a point mutation in the Col11a1 gene. We hypothesized that the mutant collagen would not alter phenotypic bone properties and that cho/+ mice, which develop early onset OA, would develop enhanced load-induced cartilage damage compared to their littermates. To test our hypotheses, we applied cyclic compression to the left tibiae of 6-month-old cho/+ male mice and wild-type (WT) littermates for 1, 2, and 6 weeks at moderate (4.5 N) and high (9.0 N) peak load magnitudes. We then characterized load-induced cartilage and bone changes by histology, microcomputed tomography, and immunohistochemistry. Prior to loading, cho/+ mice had less dense, thinner cortical bone compared to WT littermates. In addition, in loaded and non-loaded limbs, cho/+ mice had thicker cartilage. With high loads, cho/+ mice experienced less load-induced cartilage damage at all time points and displayed decreased matrix metalloproteinase (MMP)-13 levels compared to WT littermates. The thinner, less dense cortical bone and thicker cartilage were unexpected and may have contributed to the reduced severity of load-induced cartilage damage in cho/+ mice. Furthermore, the spontaneous proteoglycan loss resulting from the mutant collagen XI was not additive to cartilage damage from mechanical loading, suggesting that these risk factors act through independent pathways. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:711-720, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Nanopolymers Delivery of the Bone Morphogenetic Protein-4 Plasmid to Mesenchymal Stem Cells Promotes Articular Cartilage Repair In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Junjun Shi

    2012-01-01

    Full Text Available The clinical application of viral vectors for gene therapy is limited for biosafety consideration. In this study, to promote articular cartilage repair, poly (lactic-co glycolic acid (PLGA nanopolymers were used as non-viral vectors to transfect rabbit mesenchymal stem cells (MSCs with the pDC316-BMP4-EGFP plasmid. The cytotoxicity and transfection efficiency in vitro were acceptable measuring by CCK-8 and flow cytometry. After transfection, Chondrogenic markers (mRNA of Col2a1, Sox9, Bmp4, and Agg of experimental cells (MSCs being transfected with BMP-4 plasmid by PLGA nanopolymers were increased more than those of control cells (MSCs being transfected with naked BMP-4 plasmid alone. In vivo study, twelve rabbits (24 knees with large full thickness articular cartilage defects were randomly divided into the experimental group (MSCs being transfected with BMP-4 plasmid by PLGA nanopolymers and the control group (MSCs being transfected with naked BMP-4 plasmid. The experimental group showed better regeneration than the control group 6 and 12 weeks postoperatively. Hyaline-like cartilage formed at week 12 in the experimental group, indicating the local delivery of BMP-4 plasmid to MSCs by PLGA nanopolymers improved articular cartilage repair significantly. PLGA nanopolymers could be a promising and effective non-viral vector for gene therapy in cartilage repair.

  11. Deleted in Malignant Brain Tumors 1 (DMBT1 is present in hyaline membranes and modulates surface tension of surfactant

    Directory of Open Access Journals (Sweden)

    Griese Matthias

    2007-10-01

    Full Text Available Abstract Background Deleted in Malignant Brain Tumors 1 (DMBT1 is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function. Methods DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with pulmonary hyaline membranes. The effect of human recombinant DMBT1 on the function of bovine and porcine surfactant was measured by a capillary surfactometer. DMBT1-levels in tracheal aspirates of ventilated preterm and term infants were determined by ELISA. Results Pulmonary DMBT1 was localized in hyaline membranes during respiratory distress syndrome. In vitro addition of human recombinant DMBT1 to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation. Conclusion Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease.

  12. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor β1 gene

    International Nuclear Information System (INIS)

    Guo Xiaodong; Zheng Qixin; Yang Shuhua; Shao Zengwu; Yuan Quan; Pan Zhengqi; Tang Shuo; Liu Kai; Quan Daping

    2006-01-01

    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-β 1 ) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-β 1 that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-β 1 gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA 3 -TGF-β 1 gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA 3 gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of inflammatory and alloreactive immune responses. The

  13. Post-weaning high-fat diet results in growth cartilage lesions in young male rats.

    Directory of Open Access Journals (Sweden)

    Samuel S Haysom

    Full Text Available To determine if a high-fat diet (HF from weaning would result in a pro-inflammatory state and affect joint cartilage, we fed male rats either HF or Chow diet post-weaning, and voluntary wheel exercise (EX or cage only activity (SED after 9 weeks of age. At 17 weeks body composition, plasma biomarkers and histomorphology scores of femoro-tibial cartilages of HF-SED, HF-EX, Chow-SED and Chow-EX groups were compared. Food intake and activity were not significantly different between groups. HF diet resulted in significantly higher weight gain, %fat, fat:lean ratio, and plasma leptin, insulin and TNFα concentrations, with significant interactions between diet and exercise. No abnormal features were detected in the hyaline articular cartilage or in the metaphyseal growth plate in all four groups. However, collagen type X- positive regions of retained epiphyseal growth cartilage (EGC was present in all HF-fed animals and significantly greater than that observed in Chow-fed sedentary rats. Most lesions were located in the lateral posterior aspect of the tibia and/or femur. The severity of lesions was greater in HF-fed animals. Although exercise had a significantly greater effect in reducing adiposity and associated systemic inflammation in HF-fed rats, it had no effect on lesion incidence or severity. Lesion incidence was also significantly associated with indices of obesity and plasma markers of chronic inflammation. Clinically, EGC lesions induced by HF feeding in rats from very early in life, and possibly by insufficient activity, is typical of osteochondrosis in animals. Such lesions may be the precursor of juvenile osteochondritis dissecans requiring surgery in children/adolescents, conservative management of which could benefit from improved understanding of early changes in cellular and gene expression.

  14. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    LS Moreira Teixeira

    2012-06-01

    Full Text Available Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous matrix deposition and remodelling. To address this issue, we designed a micro-mould to enable controlled high-throughput formation of micro-aggregates. Morphology, stability, gene expression profiles and chondrogenic potential of micro-aggregates of human and bovine chondrocytes were evaluated and compared to single-cells cultured in micro-wells and in 3D after encapsulation in Dextran-Tyramine (Dex-TA hydrogels in vitro and in vivo. We successfully formed micro-aggregates of human and bovine chondrocytes with highly controlled size, stability and viability within 24 hours. Micro-aggregates of 100 cells presented a superior balance in Collagen type I and Collagen type II gene expression over single cells and micro-aggregates of 50 and 200 cells. Matrix metalloproteinases 1, 9 and 13 mRNA levels were decreased in micro-aggregates compared to single-cells. Histological and biochemical analysis demonstrated enhanced matrix deposition in constructs seeded with micro-aggregates cultured in vitro and in vivo, compared to single-cell seeded constructs. Whole genome microarray analysis and single gene expression profiles using human chondrocytes confirmed increased expression of cartilage-related genes when chondrocytes were cultured in micro-aggregates. In conclusion, we succeeded in controlled high-throughput formation of micro-aggregates of chondrocytes. Compared to single cell-seeded constructs, seeding of constructs with micro-aggregates greatly improved neo-cartilage formation. Therefore, micro-aggregation prior to chondrocyte implantation in current MACI procedures, may effectively accelerate hyaline cartilage formation.

  15. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo.

    Science.gov (United States)

    Moreira Teixeira, L S; Leijten, J C H; Sobral, J; Jin, R; van Apeldoorn, A A; Feijen, J; van Blitterswijk, C; Dijkstra, P J; Karperien, M

    2012-06-05

    Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI) could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous matrix deposition and remodelling. To address this issue, we designed a micro-mould to enable controlled high-throughput formation of micro-aggregates. Morphology, stability, gene expression profiles and chondrogenic potential of micro-aggregates of human and bovine chondrocytes were evaluated and compared to single-cells cultured in micro-wells and in 3D after encapsulation in Dextran-Tyramine (Dex-TA) hydrogels in vitro and in vivo. We successfully formed micro-aggregates of human and bovine chondrocytes with highly controlled size, stability and viability within 24 hours. Micro-aggregates of 100 cells presented a superior balance in Collagen type I and Collagen type II gene expression over single cells and micro-aggregates of 50 and 200 cells. Matrix metalloproteinases 1, 9 and 13 mRNA levels were decreased in micro-aggregates compared to single-cells. Histological and biochemical analysis demonstrated enhanced matrix deposition in constructs seeded with micro-aggregates cultured in vitro and in vivo, compared to single-cell seeded constructs. Whole genome microarray analysis and single gene expression profiles using human chondrocytes confirmed increased expression of cartilage-related genes when chondrocytes were cultured in micro-aggregates. In conclusion, we succeeded in controlled high-throughput formation of micro-aggregates of chondrocytes. Compared to single cell-seeded constructs, seeding of constructs with micro-aggregates greatly improved neo-cartilage formation. Therefore, micro-aggregation prior to chondrocyte implantation in current MACI procedures, may effectively accelerate hyaline cartilage formation.

  16. Spontaneous deregulation

    NARCIS (Netherlands)

    Edelman, Benjamin; Geradin, Damien

    Platform businesses such as Airbnb and Uber have risen to success partly by sidestepping laws and regulations that encumber their traditional competitors. Such rule flouting is what the authors call “spontaneous private deregulation,” and it’s happening in a growing number of industries. The authors

  17. Transcriptomic profiling of cartilage ageing

    Directory of Open Access Journals (Sweden)

    Mandy Jayne Peffers

    2014-12-01

    Full Text Available The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386.

  18. Biomaterial and Cell Based Cartilage Repair

    NARCIS (Netherlands)

    Zhao, X

    2015-01-01

    Injuries to human native cartilage tissue are particularly troublesome because cartilage has little ability to heal or regenerate itself. The reconstruction, repair, and regeneration of cartilage tissue continue to be one of the greatest clinical challenges, especially in orthopaedic and plastic

  19. Microwave treatment of xenogeneic cartilage transplants

    NARCIS (Netherlands)

    Visser, C. E.; Boon, M. E.; Visser, P. E.; Kok, L. P.

    1989-01-01

    Human rib cartilage was irradiated with microwaves according to six different methods and transplanted into rabbits. Untreated rib cartilage preserved in Cialit served as a control. After 12 and 40 wk of implantation, the microscopic appearance of these xenogeneic cartilage transplants was given a

  20. Different Patterns of Cartilage Mineralization Analyzed by Comparison of Human, Porcine, and Bovine Laryngeal Cartilages.

    Science.gov (United States)

    Claassen, Horst; Schicht, Martin; Fleiner, Bernd; Hillmann, Ralf; Hoogeboom, Sebastian; Tillmann, Bernhard; Paulsen, Friedrich

    2017-06-01

    Laryngeal cartilages undergo a slow ossification process during aging, making them an excellent model for studying cartilage mineralization and ossification processes. Pig laryngeal cartilages are similar to their human counterparts in shape and size, also undergo mineralization, facilitating the study of cartilage mineralization. We investigated the processes of cartilage mineralization and ossification and compared these with the known processes in growth plates. Thyroid cartilages from glutaraldehyde-perfused male minipigs and from domestic pigs were used for X-ray, light microscopic, and transmission electron microscopic analyses. We applied different fixation and postfixation solutions to preserve cell shape, proteoglycans, and membranes. In contrast to the ossifying human thyroid cartilage, predominantly cartilage mineralization was observed in minipig and domestic pig thyroid cartilages. The same subset of chondrocytes responsible for growth plate mineralization is also present in thyroid cartilage mineralization. Besides mineralization mediated by matrix vesicles, a second pattern of cartilage mineralization was observed in thyroid cartilage only. Here, the formation and growth of crystals were closely related to collagen fibrils, which served as guide rails for the expansion of mineralization. It is hypothesized that the second pattern of cartilage mineralization may be similar to a maturation of mineralized cartilage after initial matrix vesicles-mediated cartilage mineralization.

  1. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review.

    Science.gov (United States)

    Goldberg, Andy; Mitchell, Katrina; Soans, Julian; Kim, Louise; Zaidi, Razi

    2017-03-09

    The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre

  2. Chondroitin sulfate and glucosamine in the cartilage and subchondral bone repair of dogs - Histological findings

    Directory of Open Access Journals (Sweden)

    R.B. Eleotério

    2015-04-01

    Full Text Available Chondroitin and glucosamine sulfate nutraceuticals are commonly used in the management of degenerative articular disease in veterinary routine. However, there are controversies on the contribution of these substances to articular cartilage. The purpose of this study was to evaluate the efficiency of a chondroitin and glucosamine sulfate-based veterinary nutraceutical on the repair of an induced osteochondral defect in a dog femoral condyle, by macroscopic, histological and histomorphometric analyses. The nutraceutical was orally administered the day following injury induction, every 24 hours (treated group, TG, n=24, compared with animals that did not receive the product (control group, CG, n=24. Six animals per group were anaesthetized for sample collection at 15, 30, 60 and 90 days after surgery. At 15 days, defects were macroscopically filled with red-pinkish tissue. After 30 days, whitish color tissue was observed, both in TG and CG animals, with firmer consistency to touch at 60 and 90 postoperative days. Histological analysis demonstrated that, in both groups, there was initial blood clot formation, which was subsequently substituted by a fibrin net, with capillary proliferation from the adjacent bone marrow and infiltration of mesenchymal cells in clot periphery. As cellular differentiation developed, repair tissue presented a fibrocartilage aspect most of the time, and new subchondral bone formation occurred in the deepest area corresponding to the defect. Histomorphometry suggested that the nutraceutical did not favor the articular cartilage repair process. It was concluded that nutraceutical did not significantly influence chondrocytes proliferation or hyaline architecture restoration.

  3. Chondroma of the cricoid cartilage

    Directory of Open Access Journals (Sweden)

    Melo, Giulianno Molina de

    2008-12-01

    Full Text Available Introduction: The larynx cartilaginous tumors are uncommon and comprise 1% of all cartilaginous tumors. The chondroma is the most common benign tumor affecting the larynx cricoid cartilage (75%, and manifests normally in the male gender with dysphonia, progressive dyspnea and dysphagy in some cases. Objective: The objective of this study is to report a case of cricoid cartilage chondroma, in a patient with the symptom of a nodular lesion in the frontal cervical region of slow and progressive growth. Case Report: The treatment was the modified partial laryngectomy with resection of the lower hemisegment of the thyroid cartilage, cricoid hemicartilage and the first tracheal ring with free margins and reconstruction with a pericondrium and muscular prethyroidean piece. The anatomopathological exam showed a chondroma of 1.1 cm, of atypical low cellularity and low figures of mitosis in the frontal region of the cricoid cartilage. Conclusion: In this report we agreed with the literature for the primarily extensive surgical treatment depending on the location and the size of the cricoid chondroma; however, other modalities of treatment may be adopted in cases where the tumor extension appoints a total laryngectomy or when this is not possible to carry out, aiming at the preservation of the larynx. For the suitable treatment of cricoid chondromas, the understanding of the disease natural evolution and more case reports are still necessary.

  4. Postnatal development of articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.

    2010-01-01

    Articular cartilage (AC) is the thin layer of tissue that covers the ends of the bones in the synovial joints in mammals. Functional adult AC has depth-dependent mechanical properties that are not yet present at birth. These depth-dependent mechanical properties in adult life are the result of a

  5. Development of artificial articular cartilage

    Indian Academy of Sciences (India)

    Mechanical strength of Poly(vinyl alcohol), PVA is improved up to 35 MPa. Manufacturing method is adopted considering colloidal stability of nano silica particle in PVA sol at specific pH = 1. An adhesive is also prepared from PVA/Si nanocomposite containing 40% TEOS for firm attachment of artificial articular cartilage on ...

  6. Granuloma hialinizante de pulmão recidivante Recurrent pulmonary hyalinizing granuloma

    Directory of Open Access Journals (Sweden)

    Guilherme D'Andréa Saba Arruda

    2010-10-01

    Full Text Available Relatamos o caso de um paciente de 61 anos, masculino, internado com objetivo de exérese de massa pulmonar para estudo anatomopatológico. O paciente apresentara anteriormente um quadro de febre, tosse seca e dor torácica, associado à presença de massas pulmonares detectadas por radiografia de tórax, tendo sido submetido em duas ocasiões (1976 e 1981 a toracotomia para a investigação diagnóstica, sem diagnóstico anatomopatológico conclusivo. A TC de tórax revelou volumosas massas com áreas de calcificação em ambos os campos pulmonares. O material do estudo anatomopatológico foi compatível com granuloma hialinizante de pulmão. No pós-operatório, o paciente apresentou vários episódios de broncoespasmo que foram revertidos com medicação sintomática. Foi mantido com prednisona na dose de 40 mg/dia com boa evolução clínica até o envio deste relato.We report the case of a 61-year-old male patient who underwent surgical excision of a lung mass for anatomopathological study. The patient had previously presented with fever, dry cough, and chest pain, together with lung masses detected by chest X-ray, and had undergone thoracotomy for diagnostic investigation on two occasions (1976 and 1981, although a conclusive diagnosis had not been made. A CT scan of the chest revealed large masses with areas of calcification in both lung fields. The anatomopathological study was consistent with pulmonary hyalinizing granuloma. In the postoperative period, the patient experienced several episodes of bronchospasm, which was reversible with the use of symptomatic medication. At this writing, the patient was receiving maintenance therapy with prednisone (40 mg/day and had shown clinical improvement.

  7. Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink.

    Science.gov (United States)

    Nguyen, Duong; Hägg, Daniel A; Forsman, Alma; Ekholm, Josefine; Nimkingratana, Puwapong; Brantsing, Camilla; Kalogeropoulos, Theodoros; Zaunz, Samantha; Concaro, Sebastian; Brittberg, Mats; Lindahl, Anders; Gatenholm, Paul; Enejder, Annika; Simonsson, Stina

    2017-04-06

    Cartilage lesions can progress into secondary osteoarthritis and cause severe clinical problems in numerous patients. As a prospective treatment of such lesions, human-derived induced pluripotent stem cells (iPSCs) were shown to be 3D bioprinted into cartilage mimics using a nanofibrillated cellulose (NFC) composite bioink when co-printed with irradiated human chondrocytes. Two bioinks were investigated: NFC with alginate (NFC/A) or hyaluronic acid (NFC/HA). Low proliferation and phenotypic changes away from pluripotency were seen in the case of NFC/HA. However, in the case of the 3D-bioprinted NFC/A (60/40, dry weight % ratio) constructs, pluripotency was initially maintained, and after five weeks, hyaline-like cartilaginous tissue with collagen type II expression and lacking tumorigenic Oct4 expression was observed in 3D -bioprinted NFC/A (60/40, dry weight % relation) constructs. Moreover, a marked increase in cell number within the cartilaginous tissue was detected by 2-photon fluorescence microscopy, indicating the importance of high cell densities in the pursuit of achieving good survival after printing. We conclude that NFC/A bioink is suitable for bioprinting iPSCs to support cartilage production in co-cultures with irradiated chondrocytes.

  8. Towards reconstructing ancient seawater Mg/Ca by combining porcelaneous and hyaline foraminiferal Mg/Ca-temperature calibrations

    Science.gov (United States)

    Wit, J. C.; de Nooijer, L. J.; Haig, J.; Jorissen, F. J.; Thomas, E.; Reichart, G.-J.

    2017-08-01

    The temperature of the deep ocean plays a vital role in the Earth's climate system. Paleo-reconstructions of deep-sea temperatures have traditionally been based on the oxygen isotope composition of deep-sea benthic foraminiferal calcite shells, although this parameter depends upon polar ice volume as well as temperature. More recent reconstructions use Mg/Ca in these shells, with temperature calibrations based on empirical relationships observed in present-day oceans. Incorporation of Mg (DMg) into foraminiferal calcite is, however, not solely dependent on temperature, but also on seawater Mg/Ca. Due to its long oceanic residence time, Mg concentrations remained relatively constant over time scales of a few hundred thousand years, but varied significantly over longer geological time scales. Accurate reconstruction of past temperatures using foraminiferal Mg/Ca, therefore, hinges on our understanding of Mg/Ca seawater changes on geological timescales. We explore a novel, independent approach to reconstructing past seawater Mg/Ca using the temperature-dependent offset in DMg between porcelaneous (secreting intermediate- or high-Mg calcite, abbreviated as IMC or HMC, respectively) and hyaline (producing low-Mg calcite, abbreviated as LMC) benthic foraminifera. We calibrated the Mg/Ca-temperature dependence for Pyrgo spp. (one of the few common, large-sized porcelaneous taxa present in the deep-sea since the middle Miocene), and combined this with an existing calibration of hyaline Cibicidoides spp. to mathematically solve for changes in Mg/Ca seawater through time. We show that changes in Mg/Ca seawater can be reconstructed using the offset between porcelaneous and hyaline foraminifera, but absolute values are highly dependent on the species-specific offset between Mg/Ca seawater and Mg-partition coefficients.

  9. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  10. Intraarticular Hyaluronic Acid Injection after Microfracture Technique for the Management of Full-Thickness Cartilage Defects Does Not Improve the Quality of Repair Tissue

    Science.gov (United States)

    Bostan, Bora; Erdem, Mehmet; Koseoglu, Resid Dogan; Asci, Murat; Sen, Cengiz

    2012-01-01

    Objective: Tissue repair that occurs after microfracture does not include hyaline-like cartilage. Therefore, other treatment modalities must be combined with microfracture to improve repair tissue quality. In this study, we combined exogenous hyaluronic acid with microfracture. Design: Thirty mature New Zealand rabbits were randomly divided into 3 groups as control, microfracture (MF), and microfracture and hyaluronic acid (MFHA). Four-millimetre full-thickness cartilage defects were created in the medial femoral condyle of each rabbit. Microfracture was performed on defects in the MF and MFHA groups. At 1 week following surgery, 1 mL of saline was injected into the knees of the control and MF groups, whereas 1 mL (15 mg/mL) hyaluronic acid was injected into the knees of the MFHA group 3 times weekly. At 6 months postsurgery, defects were evaluated according to the ICRS (International Cartilage Repair Society) and Wakitani scales. Results: According to the ICRS and Wakitani scales, the quality of repair tissue was improved in MF and MFHA groups as compared the control group (P = 0.001 and 0.001, respectively). No significant difference was observed between the MF and MFHA groups (P = 0.342). Conclusions: According to the model in this study, no beneficial effect was obtained when HA injection was combined with microfracture in the treatment of full-thickness cartilage defects. PMID:26069616

  11. In Vivo Tibial Cartilage Strains in Regions of Cartilage-to-Cartilage Contact and Cartilage-to-Meniscus Contact in Response to Walking.

    Science.gov (United States)

    Liu, Betty; Lad, Nimit K; Collins, Amber T; Ganapathy, Pramodh K; Utturkar, Gangadhar M; McNulty, Amy L; Spritzer, Charles E; Moorman, Claude T; Sutter, E Grant; Garrett, William E; DeFrate, Louis E

    2017-10-01

    There are currently limited human in vivo data characterizing the role of the meniscus in load distribution within the tibiofemoral joint. Purpose/Hypothesis: The purpose was to compare the strains experienced in regions of articular cartilage covered by the meniscus to regions of cartilage not covered by the meniscus. It was hypothesized that in response to walking, tibial cartilage covered by the meniscus would experience lower strains than uncovered tibial cartilage. Descriptive laboratory study. Magnetic resonance imaging (MRI) of the knees of 8 healthy volunteers was performed before and after walking on a treadmill. Using MRI-generated 3-dimensional models of the tibia, cartilage, and menisci, cartilage thickness was measured in 4 different regions based on meniscal coverage and compartment: covered medial, uncovered medial, covered lateral, and uncovered lateral. Strain was defined as the normalized change in cartilage thickness before and after activity. Within each compartment, covered cartilage before activity was significantly thinner than uncovered cartilage before activity ( P meniscus experiences lower strains than uncovered cartilage in the medial compartment. These findings provide important baseline information on the relationship between in vivo tibial compressive strain responses and meniscal coverage, which is critical to understanding normal meniscal function.

  12. The contribution of 3D quantitative meniscal and cartilage measures to variation in normal radiographic joint space width—Data from the Osteoarthritis Initiative healthy reference cohort

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Melanie, E-mail: melanie.roth@pmu.ac.at [Institute of Anatomy, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020, Salzburg (Austria); Wirth, Wolfgang, E-mail: wolfgang.wirth@pmu.ac.at [Institute of Anatomy, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020, Salzburg (Austria); Chondrometrics GmbH, Ulrichshöglerstrasse 23, 83404, Ainring (Germany); Emmanuel, Katja, E-mail: katja.emmanuel@icloud.com [Institute of Anatomy, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020, Salzburg (Austria); Department of Orthopedics and Traumatology, Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg (Austria); Culvenor, Adam G., E-mail: adam.culvenor@pmu.ac.at [Institute of Anatomy, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020, Salzburg (Austria); School of Allied Health, La Trobe University, Plenty Road, Bundoora, 3086, Victoria (Australia); Eckstein, Felix, E-mail: felix.eckstein@pmu.ac.at [Institute of Anatomy, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020, Salzburg (Austria); Chondrometrics GmbH, Ulrichshöglerstrasse 23, 83404, Ainring (Germany)

    2017-02-15

    between cartilage and JSW in the medial than lateral femorotibial compartment. The significant contribution of the meniscus’ position on minimal JSW reinforces concerns over validity of JSW as an indirect measure of hyaline cartilage.

  13. Biomimetic fiber assembled gradient hydrogel to engineer glycosaminoglycan enriched and mineralized cartilage: An in vitro study.

    Science.gov (United States)

    Mohan, Neethu; Wilson, Jijo; Joseph, Dexy; Vaikkath, Dhanesh; Nair, Prabha D

    2015-12-01

    The study investigated the potential of electrospun fiber assembled hydrogel, with physical gradients of chondroitin sulfate (CS) and sol-gel-derived bioactive glass (BG), to engineer hyaline and mineralized cartilage in a single 3D system. Electrospun poly(caprolactone) (PCL) fibers incorporated with 0.1% w/w of CS (CSL) and 0.5% w/w of CS (CSH), 2.4% w/w of BG (BGL) and 12.5% w/w of BG (BGH) were fabricated. The CS showed a sustained release up to 3 days from CSL and 14 days from CSH fibers. Chondrocytes secreted hyaline like matrix with higher sulfated glycosaminoglycans (sGAG), collagen type II and aggrecan on CSL and CSH fibers. Mineralization was observed on BGL and BGH fibers when incubated in simulated body fluid for 14 days. Chondrocytes cultured on these fibers secreted a mineralized matrix that consisted of sGAG, hypertrophic proteins, collagen type X, and osteocalcin. The CS and BG incorporated PCL fiber mats were assembled in an agarose-gelatin hydrogel to generate a 3D hybrid scaffold. The signals in the fibers diffused and generated continuous opposing gradients of CS (chondrogenic signal) and BG (mineralization) in the hydrogel. The chondrocytes were encapsulated in hybrid scaffolds; live dead assay at 48 h showed viable cells. Cells maintained their phenotype and secreted specific extracellular matrix (ECM) in response to signals within the hydrogel. Continuous opposing gradients of sGAG enriched and mineralized ECM were observed surrounding each cell clusters on gradient hydrogel after 14 days of culture in response to the physical gradients of raw materials CS and BG. A construct with gradient mineralization might accelerate integration to subchondral bone during in vivo regeneration. © 2015 Wiley Periodicals, Inc.

  14. Predicting knee cartilage loss using adaptive partitioning of cartilage thickness maps

    DEFF Research Database (Denmark)

    Jørgensen, Dan Richter; Dam, Erik Bjørnager; Lillholm, Martin

    2013-01-01

    This study investigates whether measures of knee cartilage thickness can predict future loss of knee cartilage. A slow and a rapid progressor group was determined using longitudinal data, and anatomically aligned cartilage thickness maps were extracted from MRI at baseline. A novel machine learning...

  15. Advances in treatment of articular cartilage injuries

    Directory of Open Access Journals (Sweden)

    Yuan-cheng LI

    2013-05-01

    Full Text Available Cartilage is a kind of terminally differentiated tissue devoid of vessel or nerve, and it is difficult to repair by itself after damage. Many studies for the treatment of cartilage injuries were performed in recent years aiming at repair of the structure and restoration of its function for injured joint. This article reviews the traditional methods of treatment for cartilage injuries, such as joint lavage with the aid of arthroscope, abrasion chondroplasty, laser abrasion and chondroplasty, and drilling of the subchondral bone-marrow space. The research advances in treatment of articular cartilage injuries with tissue engineering were summarized.

  16. Mechanobiological implications of articular cartilage crystals.

    Science.gov (United States)

    Carlson, Alyssa K; McCutchen, Carley N; June, Ronald K

    2017-03-01

    Calcium crystals exist in both pathological and normal articular cartilage. The prevalence of these crystals dramatically increases with age, and crystals are typically found in osteoarthritic cartilage and synovial fluid. Relatively few studies have examined the effects of crystals on cartilage biomechanics or chondrocyte mechanotransduction. The purpose of this review is to describe how crystals could influence cartilage biomechanics and mechanotransduction in osteoarthritis. Crystals are found in both loaded and unloaded regions of articular cartilage. Exogenous crystals, in combination with joint motion, result in substantial joint inflammation. Articular cartilage vesicles promote crystal formation, and these vesicles are found near the periphery of chondrocytes. Crystallographic studies report monoclinic symmetry for synthetic crystals, suggesting that crystals will have a large stiffness compared with the cartilage extracellular matrix, the pericellular matrix, or the chondrocyte. This stiffness imbalance may cause crystal-induced dysregulation of chondrocyte mechanotransduction promoting both aging and osteoarthritis chondrocyte phenotypes. Because of their high stiffness compared with cartilage matrix, crystals likely alter chondrocyte mechanotransduction, and high concentrations of crystals within cartilage may alter macroscale biomechanics. Future studies should focus on understanding the mechanical properties of joint crystals and developing methods to understand how crystals affect chondrocyte mechanotransduction.

  17. Cartilage Turnover Reflected by Metabolic Processing of Type II Collagen: A Novel Marker of Anabolic Function in Chondrocytes

    Directory of Open Access Journals (Sweden)

    Natasja Stæhr Gudmann

    2014-10-01

    Full Text Available The aim of this study was to enable measurement of cartilage formation by a novel biomarker of type II collagen formation. The competitive enzyme-linked immunosorbent assay (ELISA Pro-C2 was developed and characterized for assessment of the beta splice variant of type II procollagen (PIIBNP. This is expected to originate primarily from remodeling of hyaline cartilage. A mouse monoclonal antibody (Mab was raised in mouse, targeting specifically PIIBNP (QDVRQPG and used in development of the assay. The specificity, sensitivity, 4-parameter fit and stability of the assay were tested. Levels of PIIBNP were quantified in human serum (0.6–2.2 nM, human amniotic fluid (163–188 nM and sera from different animal species, e.g., fetal bovine serum (851–901 nM with general good linearity (100% (SD 7.6 recovery and good intra- and inter-assay variation (CV% < 10. Dose (0.1 to 100 ng/mL and time (7, 14 and 21 days dependent release of PIIBNP were evaluated in the conditioned medium from bovine cartilage explants (BEX and human cartilage explants (HEX upon stimulation with insulin-like growth factor (IGF-1, transforming growth factor (TGF-β1 and fibroblastic growth factor-2 (FGF-2. TGF-β1 and IGF-1 in concentrations of 10–100 ng/mL significantly (p < 0.05 induced release of PIIBNP in BEX compared to conditions without treatment (WO. In HEX, IGF-1 100 ng/mL was able to induce a significant increase of PIIBNP after one week compared to WO. FGF-2 did not induce a PIIBNP release in our models. To our knowledge this is the first assay, which is able to specifically evaluate PIIBNP excretion. The Pro-C2 assay seems to provide a promising and novel marker of type II collagen formation.

  18. Substrate topography determines the fate of chondrogenesis from human mesenchymal stem cells resulting in specific cartilage phenotype formation.

    Science.gov (United States)

    Wu, Ying-Nan; Law, Jaslyn Bee Khuan; He, Ai Yu; Low, Hong Yee; Hui, James H P; Lim, Chwee Teck; Yang, Zheng; Lee, Eng Hin

    2014-10-01

    To reproduce a complex and functional tissue, it is crucial to provide a biomimetic cellular microenvironment that not only incorporates biochemical cues, but also physical features including the nano-topographical patterning, for cell/matrix interaction. We developed spatially-controlled nano-topography in the form of nano-pillar, nano-hole and nano-grill on polycaprolactone surface via thermal nanoimprinting. The effects of chondroitin sulfate-coated nano-topographies on cell characteristics and chondrogenic differentiation of human mesenchymal stem cell (MSC) were investigated. Our results show that various nano-topographical patterns triggered changes in MSC morphology and cytoskeletal structure, affecting cell aggregation and differentiation. Compared to non-patterned surface, nano-pillar and nano-hole topography enhanced MSC chondrogenesis and facilitated hyaline cartilage formation. MSCs experienced delayed chondrogenesis on nano-grill topography and were induced to fibro/superficial zone cartilage formation. This study demonstrates the sensitivity of MSC differentiation to surface nano-topography and highlights the importance of incorporating topographical design in scaffolds for cartilage tissue engineering. From the clinical editor: These authors have developed spatially-controlled nano-topography in the form of nano-pillar, nano-hole and nano-grill on polycaprolactone surface via thermal nanoimprinting, and the effects of chondroitin sulfate-coated nano-topographies on cell characteristics and chondrogenic differentiation of human mesenchymal stem cells (MSC) were investigated. It has been concluded that MSC differentiation is sensitive to surface nano-topography, and certain nano-imprinted surfaces are more useful than others for cartilage tissue engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Tumor fusocelular hialinizante con rosetas gigantes: Reporte de un caso Hyalinizing spindle cell tumor with giant rosettes: Case report

    Directory of Open Access Journals (Sweden)

    Ernesto García Ayala

    2010-12-01

    Full Text Available Introducción: El tumor fusocelular hialinizante con rosetas gigantes es una neoplasia constituida por dos componentes histológicos, uno celular con elementos fusiformes, y el segundo representado por islas bien delimitadas casi acelulares, llenas de material hialino, rodeadas de células redondas u ovales, las cuales muestran un perfil inmunohistoquímico inusual, e histogénesis incierta. Objetivo: Instruir a los patólogos y clínicos sobre este tumor, su forma de presentación y diagnósticos diferenciales. Metodología y resultados: Se presenta el caso de una mujer de 42 años con masa ubicada en región inguinal, de crecimiento progresivo (1 año, que se reseca quirúrgicamente anatomía patológica informó un tumor fusocelular hialinizante con rosetas gigantes, según hallazgos morfológicos e inmuno histoquímicos, en correlación con su localización y cuadro clínico. Conclusión: Se hace necesario ampliar el conocimiento sobre esta entidad y de esta forma obtener una adecuada evaluación de sus criterios pronósticos histológicos, comportamiento clínico y tratamiento. Salud UIS 2010; 42: 282-286Introduction: The hyalinizing spindle cell tumor with giant rosettes is a neoplasia characterized by both histologic components, one of which is cellular, with spindle-shaped elements and the second represented by well defined almost acellular islands filled with hyaline material surrounded by round to oval cells, which shows an unusual immunohistochemical profile and uncertain histogenesis. Objective: Educate pathologists and clinicians about this tumor, its presentation and differential diagnosis. Methods and results: A case of a 42 year old woman with a mass located in the inguinal region, with progressive growth (1 year, surgically resected and histopathology reported as Hyalinizing spindle cell tumor with giant rosettes according to morphological, immunohistochemical findings correlates with its location and clinical. Conclusion: It is

  20. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    Directory of Open Access Journals (Sweden)

    Michiel W. Pot

    2016-09-01

    Full Text Available Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found. For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies was assessed and outcome data were collected for meta-analysis (151 studies. Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0–100% scale. Implantation of acellular

  1. Intratubular large cell hyalinizing Sertoli cell tumor of the testis presenting with prepubertal gynecomastia: a case report.

    Science.gov (United States)

    Tuhan, Hale; Abaci, Ayhan; Sarsık, Banu; Öztürk, Tülay; Olguner, Mustafa; Catli, Gonul; Anik, Ahmet; Olgun, Nur; Bober, Ece

    2017-08-01

    Intratubular large cell hyalinizing Sertoli cell neoplasia (ITLCHSCN) resulting from Sertoli cells of the testis are mainly reported in young adults and these are rarely seen in childhood. The most common presenting symptoms of the patients diagnosed with ITLCHSCN are gynecomastia, enlargement in the testicles, increase in growth velocity, and advanced bone age. Symptoms are basically resulting from increased aromatase enzyme activity in Sertoli cells. In this case report, an eight-and-a-half-year-old case presenting with complaint of bilateral gynecomastia since two years, showing no endocrine abnormality in laboratory during two years of follow-up, determined to have progression in bilateral gynecomastia, increase in testicular volumes, advanced bone age, increase in growth velocity in the clinical follow-up, and diagnosed with ITLCHSCN after testis biopsy was presented.

  2. Hyalinizing cholecystitis with features of immunoglobulin G4-related disease-coincidence or an unrecognized association? A case report.

    Science.gov (United States)

    Gupta, Rajib K; Patton, Kurt T

    2015-04-01

    Hyalinizing cholecystitis (HC) is a recently described rare subtype of chronic cholecystitis characterized by dense, paucicellular collagenous transmural fibrosis, which usually replaces the mucosa and muscularis propria. Immunoglobulin (Ig)G4-associated cholecystitis is also a newly described cholecystitis variant characterized by transmural or extramural lymphoplasmacytic inflammation, lymphoid follicles, storiform fibrosis, phlebitis, and increased tissue IgG4-positive plasma cells. We describe a case of cholecystitis in an elderly white man who harbored features of both HC and IgG4-associated cholecystitis. In retrospect, the patient also had a significantly elevated serum IgG4 level. To the best of our knowledge, an association between HC and IgG4-related disease has not been previously described in the literature. Although not entirely conclusive, our observations raise the possibility that some cases of HC represent the end stage of IgG4-related disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2).

    Science.gov (United States)

    Tamai, Noriyuki; Myoui, Akira; Hirao, Makoto; Kaito, Takashi; Ochi, Takahiro; Tanaka, Junzo; Takaoka, Kunio; Yoshikawa, Hideki

    2005-05-01

    Articular cartilage repair remains a major obstacle in tissue engineering. We recently developed a novel tool for articular cartilage repair, consisting of a triple composite of an interconnected porous hydroxyapatite (IP-CHA), recombinant human bone morphogenetic protein-2 (rhBMP-2), and a synthetic biodegradable polymer [poly-d,l-lactic acid/polyethylene glycol (PLA-PEG)] as a carrier for rhBMP-2. In the present study, we evaluated the capacity of the triple composite to induce the regeneration of articular cartilage. Full-thickness cartilage defects were created in the trochlear groove of 52 New Zealand White rabbits. Sixteen defects were filled with the bone morphogenetic protein (BMP)/PLA-PEG/IP-CHA composite (group I), 12 with PLA-PEG/IP-CHA (group II), 12 with IP-CHA alone (group III), and 12 were left empty (group IV). The animals were killed 1, 3, and 6 weeks after surgery, and the gross appearance of the defect sites was assessed. The harvested tissues were examined radiographically and histologically. One week after implantation with the BMP/PLA-PEG/IP-CHA composite (group I), vigorous repair had occurred in the subchondral defect. It contained an agglomeration of mesenchymal cells which had migrated from the surrounding bone marrow either directly, or indirectly via the interconnecting pores of the IP-CHA scaffold. At 6 weeks, these defects were completely repaired. The regenerated cartilage manifested a hyaline-like appearance, with a mature matrix and a columnar organization of chondrocytes. The triple composite of rhBMP-2, PLA-PEG, and IP-CHA promotes the repair of full-thickness articular cartilage defects within as short a period as 3 weeks in the rabbit model. Hence, this novel cell-free implant biotechnology could mark a new development in the field of articular cartilage repair.

  4. Cysts of the semilunar cartilage

    International Nuclear Information System (INIS)

    Bruessermann, M.

    1981-01-01

    On the basis of the studies listed in the bibliography, this dissertation reports on the pathology, clinical symptoms and radiology of cysts of the semilunar cartilage. The author analyses 118 cases of his own, with special regard to the results of pneumo-arthrographic investigations carried through according to a special technique by Schaefer. In the course of this work, measurements of the meniscal base are for the first time used as radiological criteria indicating the presence of a cyst of the semilunar cartilage. Furthermore the well-known radiological signs of cysts, such as bone defects according to Albert and Keller, light central spot in the meniscal body, as well as Rauber's sign and horizontal rupture, are investigated as to the frequency of their incidence. For that purpose all the X-ray pictures were subjected to a further dose scrutiny. A list of all the 118 cases with their clinical and radiological data is found in the annex, together with the results of the operations and patho-anatomical investigations. (orig.) [de

  5. Regulatory Challenges for Cartilage Repair Technologies.

    Science.gov (United States)

    McGowan, Kevin B; Stiegman, Glenn

    2013-01-01

    In the United States, few Food and Drug Administration (FDA)-approved options exist for the treatment of focal cartilage and osteochondral lesions. Developers of products for cartilage repair face many challenges to obtain marketing approval from the FDA. The objective of this review is to discuss the necessary steps for FDA application and approval for a new cartilage repair product. FDA Guidance Documents, FDA Panel Meetings, scientific organization recommendations, and clinicaltrials.gov were reviewed to demonstrate the current thinking of FDA and the scientific community on the regulatory process for cartilage repair therapies. Cartilage repair therapies can receive market approval from FDA as medical devices, drugs, or biologics, and the specific classification of product can affect the nonclinical, clinical, and regulatory strategy to bring the product to market. Recent FDA guidance gives an outline of the required elements to bring a cartilage repair product to market, although these standards are often very general. As a result, companies have to carefully craft their study patient population, comparator group, and clinical endpoint to best showcase their product's attributes. In addition, regulatory strategy and manufacturing process validation need to be considered early in the clinical study process to allow for timely product approval following the completion of clinical study. Although the path to regulatory approval for a cartilage repair therapy is challenging and time-consuming, proper clinical trial planning and attention to the details can eventually save companies time and money by bringing a product to the market in the most expeditious process possible.

  6. Current concepts of articular cartilage repair.

    Science.gov (United States)

    Schindler, Oliver S

    2011-12-01

    Articular cartilage provides a vital function in the homeostasis of the joint environment. It possesses unique mechanical properties, allowing for the maintenance of almost frictionless motion over a lifetime. However, cartilage is vulnerable to traumatic injury and due to its poor vascularity and inability to access mesenchymal stem cells, unable to facilitate a satisfactory healing response. Untreated chondral defects are thus likely to predispose patients to the development of osteoarthritis. Reconstitution and repair of articular cartilage is dependent on the neosynthesis or implantation of cartilage matrix elements, a goal which can be achieved through a variety of surgical means. Commonly used repair techniques include marrow stimulation, structural osteo-articular autografts or chondrocyte implantation. Despite substantial differences in the complexity and technical application of each method, all are united in the endeavour to restore joint function and prevent joint degeneration. Anyone attempting to treat cartilage defects must possess a basic understanding of the physiology of cartilage growth, and relevant factors affecting cartilage healing and repair. Furthermore, knowledge of the biomechanics and kinematics of the knee are essential in order to appreciate the forces acting on joint surfaces and repair tissues. Although clinical success is dependent on appropriate patient selection, accurate clinical assessment, definition of root causes and application of the right choice of treatment modality, the ultimate outcome of any intervention remains heavily reliant on the surgeon's proficiency in the technical aspects of the chosen surgical procedure.

  7. Allogenic lyophilized cartilage grafts for craniomaxillofacial reconstruction

    International Nuclear Information System (INIS)

    Pill Hoon Choung

    1999-01-01

    Allogenic lyophilized cartilages were made in our clinic after Sailer methods and some modification. In our clinic, we have used allogenic cartilage grafts on 102 defects of craniomaxillofacial area; 1) for defects from cyst or ameloblastoma, 2) for lack of continuity of the mandible, 3) for rhinoplasty, 4) for paranasal augmentation, 5) for augmentation genioplasty, 6) for reconstruction of orbital floor, 7) for oroantral fistula, 8) for temporal augmentation, 9) for TMJ surgery 10) for condyle defect as a costochondral graft, 11) for filling of tooth socket and alveolus augmentation,12) for correction or orbital height and 13) for guided bone regeneration in peripheral implant. The types of lyophilized cartilage used were chip, sheet and block types developed by freeze-dried methods. Some grafts showed change of ossification, in which case we could perform implant on it. We have good results on reconstruction of craniomaxillofacial defects. Allogenic cartilage have advantages such as 1) it has no immune reaction clinically, 2) it is more tolerable to infection than that of autogenous cartilage, 3) it has character of less resorption which require no over correction, 4) it is easy to manipulate contouring, and 5) it has possibility of undergoing ossification. Allogenic cartilage has been considered as good substitutes for bone. The author would like to report the results on 102 allogenic cartilage have

  8. An equine joint friction test model using a cartilage-on-cartilage arrangement.

    Science.gov (United States)

    Noble, Prisca; Collin, Bernard; Lecomte-Beckers, Jacqueline; Magnée, Adrien; Denoix, Jean M; Serteyn, Didier

    2010-02-01

    This study describes an equine joint friction test using a cartilage-on-cartilage arrangement and investigates the influence of age and load on the frictional response. Osteochondral plugs were extracted from equine shoulder joints (2-5 years, n=12; 10-14 years, n=15), and mounted in a pin-on-disc tribometer. The frictional response was then measured under constant conditions (2N; 20 degrees C; 5 mm/s), and with increasing load (2N, 5N, 10N). In all experiments, the friction coefficient of young cartilage was significantly (Plubrication remained stable, cartilage ageing may have been responsible for lubrication regime change. The cartilage-on-cartilage model could be used to better understand lubrication regime disturbances in healthy and diseased equine joints, and to test the efficacy of various bio-lubricant treatments. Copyright (c) 2008 Elsevier Ltd. All rights reserved.

  9. [Surgical therapeutic possibilities of cartilage damage].

    Science.gov (United States)

    Burkart, A C; Schoettle, P B; Imhoff, A B

    2001-09-01

    Therapy of cartilage damage is a frequent problem, especially in the young and active patient. For the treatment of a cartilage damage we have to consider the size of the defect, age and weight of the patient, meniscal tears, ligament instabilities and varus-/valgus-malalignment. Lavage, shaving and debridement are only sufficient for a short time and have no long term effect. Abrasio and drilling could be useful in eldery people. Microfracturing seems to be an effective alternative for small defects. The restoration of the cartilage surface with the use of autologous chondrocyte transplantation, osteochondral autograft transplantation and posterior condyle transfer seems to be an adequate treatment for younger patients.

  10. Studies on the prevention of respiratory distress syndrome of infants due to hyaline membrane disease with plasminogen.

    Science.gov (United States)

    Ambrus, C M; Choi, T S; Weintraub, D H; Eisenberg, B; Staub, H P; Courey, N G; Foote, R J; Goplerud, D; Moesch, R V; Ray, M; Bross, I D; Jung, O S; Mink, I B; Ambrus, J L

    1975-07-01

    Hyaline membrane disease (HMD) is leading single cause of death of newborn, premature infants. The "hyaline membranes" consist chiefly of fibrin. The clinical manifestation of HMD is the respiratory distress syndrome (RDS). Infants with RDS were treated with urokinase-activated human plasmin in a previous clinical trial. Survival rate was increased in the plasmin treated group as compared to the placebo recipients. However, cost and difficulty in the preparation of the enzyme made this treatment impractical. We, as well as others, have shown the premature infants lack serum plasminogen; thus they are unable to develop effective fibrinolysis and are defenseless against pulmonary fibrin deposition. Therefore, plamsinogen was tested as a possible preventive agent in RDS due to HMD. In a double blind, randomized study, infants between 1 and 2.5 kg birth weight received plasminogen or placebo shortly after birth, and were then followed for development of RDS. After 100 infants were entered into the study, the code was broken and results were evaluated to assure safety of the procedure. Among the 100 infants, 51 received placebo, 49 received plasminogen. Among the infants who received placebo, seven developed mild, and ten developed severe respiratory distress; of these ten, five died with histopathologically documented HMD. Two infants died from causes other than HMD. Among the 49 infants treated with plasminogen, 13 developed mild and three developed severe respiratory distress. There was no death due to HMD. Two deaths were due to other causes. Factors placing the infant at risk from HMD (degree of prematurity, sex, cesarean section, bleeding episodes during pregnancy, maternal diabetes) were found to be evenly distributed between control and treated groups. Since completing the first phase of the study, data of an additional 277 infants has become available. Although the code was not broken in this series, a preliminary look at mortality data in comparison with

  11. Nanomechanics of the Cartilage Extracellular Matrix

    Science.gov (United States)

    Han, Lin; Grodzinsky, Alan J.; Ortiz, Christine

    2011-08-01

    Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as osteoarthritis. Here, the application of the field of nanomechanics to cartilage is reviewed. Nanomechanics involves the measurement and prediction of nanoscale forces and displacements, intra- and intermolecular interactions, spatially varying mechanical properties, and other mechanical phenomena existing at small length scales. Experimental nanomechanics and theoretical nanomechanics have been applied to cartilage at varying levels of material complexity, e.g., nanoscale properties of intact tissue, the matrix associated with single cells, biomimetic molecular assemblies, and individual extracellular matrix biomolecules (such as aggrecan, collagen, and hyaluronan). These studies have contributed to establishing a fundamental mechanism-based understanding of native and engineered cartilage tissue function, quality, and pathology.

  12. Materials science: Like cartilage, but simpler

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    2015-01-01

    The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties.......The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties....

  13. Modern cartilage imaging of the ankle

    International Nuclear Information System (INIS)

    Weber, Marc-Andre; Wuennemann, Felix; Rehnitz, Christoph; Jungmann, Pia M.; Kuni, Benita

    2017-01-01

    Talar osteochondral lesions are an important risk factor for the development of talar osteoarthritis. Furthermore, osteochondral lesions might explain persistent ankle pain. Early diagnosis of accompanying chondral defects is important to establish the optimal therapy strategy and thereby delaying or preventing the onset of osteoarthritis. The purpose of this review is to explain modern cartilage imaging with emphasis of MR imaging as well as the discussion of more sophisticated imaging studies like CT-arthrography or functional MR imaging. Pubmed literature search concerning: osteochondral lesions, cartilage damage, ankle joint, talus, 2 D MR imaging, 3 D MR imaging, cartilage MR imaging, CT-arthrography, cartilage repair, microfracture, OATS, MACT. Dedicated MR imaging protocols to delineate talar cartilage and the appearance of acute and chronic osteochondral lesions were discussed. Recent developments of MR imaging, such as isotropic 3 D imaging that has a higher signal-to noise ratio when compared to 2 D imaging, and specialized imaging methods such as CT-arthrography as well as functional MR imaging were introduced. Several classifications schemes and imaging findings of osteochondral lesions that influence the conservative or surgical therapy strategy were discussed. MRI enables after surgery the non-invasive assessment of the repair tissue and the success of implantation. Key points: Modern MRI allows for highly resolved visualization of the articular cartilage of the ankle joint and of subchondral pathologies. Recent advances in MRI include 3 D isotropic ankle joint imaging, which deliver higher signal-to-noise ratios of the cartilage and less partial volume artifacts when compared with standard 2 D sequences. In case of osteochondral lesions MRI is beneficial for assessing the stability of the osteochondral fragment and for this discontinuity of the cartilage layer is an important factor. CT-arthrography can be used in case of contraindications of MRI and

  14. Laparoscopic treatment for retroperitoneal hyaline-vascular type localized Castleman's disease (LCD) in the iliac vessel region.

    Science.gov (United States)

    Le, Aiwen; Shan, Lili; Wang, Zhonghai; Dai, Xiaoyun; Xiao, Tianhui; Zhuo, Rong; Yuan, Rui

    2015-01-01

    To improve the understanding, diagnostic levels, and therapeutic levels of retroperitoneal hyaline vascular type LCD in the iliac vessel region. Diagnostic and therapeutic processes of 4 patients with retroperitoneal LCD in the iliac vessel region were retrospectively analyzed. The median ages of the research patients was 31.3 years old, Pelvic vascular dual-source computed tomography (CT) indicated an abnormal pelvic irregular cloddy intensity shadow with heterogeneous densities and punctate calcified lesions. The enhanced scanning showed significantly enhanced lesions and multiple tortuous vascular images inside and around the lesions. Patients' preoperative diagnoses were all "pelvic mass with unknown characteristics", and retroperitoneal masses were successfully stripped off after the laparoscopic surgery. Intra operative findings indicated 1 mass located at the left obturator nerve, 1 at the left internal iliac artery, and 2 at the right external iliac artery. The postoperative pathological reports suggest a diagnosis of Castleman's disease. Retroperitoneal LCD in the iliac vessel region is generally asymptomatic. Preoperative imaging data may help with the diagnosis, but a confirmed diagnosis depends on the results of the pathological examination. Iliac artery embolization is performed prior to laparoscopic mass stripping if the masses have abundant blood supply, while lymphadenectomy is also applied to those with enlarged lymph nodes.

  15. Pleomorphic hyalinizing angiectatic tumor of soft parts: case report with unusual ganglion-like cells and review of the literature.

    Science.gov (United States)

    Changchien, Yi-Che; Bocskai, Pál; Kovács, Ilona; Hargitai, Zoltán; Kollár, Sándor; Török, Miklós

    2014-12-01

    Pleomorphic hyalinizing angiectatic tumor (PHAT) is a recently described, non-metastasizing tumor of uncertain lineage. This tumor distributes equally between the genders and has a predilection for the subcutaneous soft tissue, particularly in lower extremity, other locations are rare. Based on the recent literature, PHAT is suspected to encompass the morphological spectrum with other tumors such as myxoinflammatory fibroblastic sarcoma (MIFS) and hemosiderotic fibrolipomatous tumor (HFLT), although cytogenetic data remain inconsistent. We report a case of PHAT that arose in the upper arm with unusual morphology which showed ganglion-like cells similar to Reed-Sternberg-like cells found in MIFS. The tumor had strong immunohistochemical expression of CD34, CD99, and was negative for S-100. The ganglion-like cells were positive for both CD34 and CD68 but negative for CD30. The translocation between chromosome 1 and 10, a frequent finding of MIFS and HFLT, was not identified by FISH excluding the possibility of hybrid PHAT and MIFS. We conclude FISH can be a potential useful tool to separate PHAT with atypical morphology from hybrid tumor in doubted cases. Due to the rarity of PHAT and lack of consistent pathogenetic signatures, more cases and further studies will be needed to elucidate the pathogenesis and nature of this tumor. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Colonization of a Central Venous Catheter by the Hyaline Fungus Fusarium solani Species Complex: A Case Report and SEM Imaging

    Directory of Open Access Journals (Sweden)

    Alberto Colombo

    2013-01-01

    Full Text Available The incidence of opportunistic infections by filamentous fungi is increasing partly due to the widespread use of central venous catheters (CVC, indwelling medical devices, and antineoplastic/immunosuppressive drugs. The case of a 13-year-old boy under treatment for acute lymphoblastic leukemia is presented. The boy was readmitted to the Pediatric Ward for intermittent fever of unknown origin. Results of blood cultures drawn from peripheral venous sites or through the CVC were compared. CVC-derived bottles (but not those from peripheral veins yielded hyaline fungi that, based on morphology, were identified as belonging to the Fusarium solani species complex. Gene amplification and direct sequencing of the fungal ITS1 rRNA region and the EF-1alpha gene confirmed the isolate as belonging to the Fusarium solani species complex. Portions of the CVC were analyzed by scanning electron microscopy. Fungi mycelia with long protruding hyphae were seen into the lumen. The firm adhesion of the fungal formation to the inner surface of the catheter was evident. In the absence of systemic infection, catheter removal and prophylactic voriconazole therapy were followed by disappearance of febrile events and recovery. Thus, indwelling catheters are prone to contamination by environmental fungi.

  17. Extracellular vesicles in cartilage homeostasis and osteoarthritis.

    Science.gov (United States)

    Miyaki, Shigeru; Lotz, Martin K

    2018-01-01

    Extracellular vesicles carry bioactive molecules that can be transferred between cells and tissues. The purpose of this review is to describe how extracellular vesicles regulate functions of cells in cartilage and other joint tissues. The potential application of extracellular vesicles in the treatment of osteoarthritis and as biomarkers will also be discussed. Extracellular vesicles are found in synovial fluid, in articular cartilage and in the supernatants of synoviocytes and chondrocytes. Extracellular vesicles in cartilage have been proposed to be involved in cross talk between cells in joint tissues and to affect extracellular matrix turnover and inflammation. Extracellular vesicles from arthritic joints can promote abnormal gene expression and changes in cartilage extracellular matrix, including abnormal mineralization. Promising results were obtained in the therapeutic application of mesenchymal stem cell-derived extracellular vesicles for cartilage repair and experimental osteoarthritis. Extracellular vesicles have emerged as vehicles for the exchange of bioactive signaling molecules within cartilage and between joint tissues to promote joint homeostasis and arthritis pathogenesis. As the molecular content of extracellular vesicles can be customized, they offer utility in therapeutic applications.

  18. Articular cartilage tissue engineering: the role of signaling molecules

    Science.gov (United States)

    Kwon, Heenam; Paschos, Nikolaos K.; Hu, Jerry C.; Athanasiou, Kyriacos

    2017-01-01

    Effective early disease modifying options for osteoarthritis remain lacking. Tissue engineering approach to generate cartilage in vitro has emerged as a promising option for articular cartilage repair and regeneration. Signaling molecules and matrix modifying agents, derived from knowledge of cartilage development and homeostasis, have been used as biochemical stimuli toward cartilage tissue engineering and have led to improvements in the functionality of engineered cartilage. Clinical translation of neocartilage faces challenges, such as phenotypic instability of the engineered cartilage, poor integration, inflammation, and catabolic factors in the arthritic environment; these can all contribute to failure of implanted neocartilage. A comprehensive understanding of signaling molecules involved in osteoarthritis pathogenesis and their actions on engineered cartilage will be crucial. Thus, while it is important to continue deriving inspiration from cartilage development and homeostasis, it has become increasing necessary to incorporate knowledge from osteoarthritis pathogenesis into cartilage tissue engineering. PMID:26811234

  19. Cartilage Regeneration in Osteoarthritic Patients by a Composite of Allogeneic Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronate Hydrogel: Results from a Clinical Trial for Safety and Proof-of-Concept with 7 Years of Extended Follow-Up.

    Science.gov (United States)

    Park, Yong-Beom; Ha, Chul-Won; Lee, Choong-Hee; Yoon, Young Cheol; Park, Yong-Geun

    2017-02-01

    Few methods are available to regenerate articular cartilage defects in patients with osteoarthritis. We aimed to assess the safety and efficacy of articular cartilage regeneration by a novel medicinal product composed of allogeneic human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). Patients with Kellgren-Lawrence grade 3 osteoarthritis and International Cartilage Repair Society (ICRS) grade 4 cartilage defects were enrolled in this clinical trial. The stem cell-based medicinal product (a composite of culture-expanded allogeneic hUCB-MSCs and hyaluronic acid hydrogel [Cartistem]) was applied to the lesion site. Safety was assessed by the World Health Organization common toxicity criteria. The primary efficacy outcome was ICRS cartilage repair assessed by arthroscopy at 12 weeks. The secondary efficacy outcome was visual analog scale (VAS) score for pain on walking. During a 7-year extended follow-up, we evaluated safety, VAS score, International Knee Documentation Committee (IKDC) subjective score, magnetic resonance imaging (MRI) findings, and histological evaluations. Seven participants were enrolled. Maturing repair tissue was observed at the 12-week arthroscopic evaluation. The VAS and IKDC scores were improved at 24 weeks. The improved clinical outcomes were stable over 7 years of follow-up. The histological findings at 1 year showed hyaline-like cartilage. MRI at 3 years showed persistence of the regenerated cartilage. Only five mild to moderate treatment-emergent adverse events were observed. There were no cases of osteogenesis or tumorigenesis over 7 years. The application of this novel stem cell-based medicinal product appears to be safe and effective for the regeneration of durable articular cartilage in osteoarthritic knees. Stem Cells Translational Medicine 2017;6:613-621. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  20. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Directory of Open Access Journals (Sweden)

    Pia M. Jungmann

    2014-01-01

    Full Text Available Background. New quantitative magnetic resonance imaging (MRI techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, and diffusion weighted imaging (DWI are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair.

  1. Spontaneous pneumothorax in weightlifters.

    Science.gov (United States)

    Marnejon, T; Sarac, S; Cropp, A J

    1995-06-01

    Spontaneous pneumothorax is infrequently caused by strenuous exertion. To our knowledge there has only been one case of spontaneous pneumothorax associated with weightlifting reported in the medical literature. We describe three consecutive cases of spontaneous pneumothorax associated with weightlifting. We postulate that spontaneous pneumothorax in these patients may be secondary to improper breathing techniques. It is important that physicians and weight trainers be aware of the association between weight lifting and spontaneous pneumothorax and assure that proper instruction is given to athletes who work with weights.

  2. Hyaline globule-like structures in undifferentiated sarcoma cells of malignant müllerian mixed tumor of the fallopian tube.

    Science.gov (United States)

    Kuroda, Naoto; Inui, Yasunobu; Ohara, Masahiko; Hirouchi, Takashi; Mizuno, Keiko; Kubo, Ayumi; Hayashi, Yoshihiro; Enzan, Hideaki; Lee, Gang-Hong

    2007-03-01

    Malignant müllerian mixed tumors (MMMTs) of the fallopian tube are very rare neoplasms, and we present such a case with unusual findings here. A 57-year-old Japanese woman, after she received a medical checkup, underwent salpingo-oophorectomy on the suspicion of ovarian cancer. At the time of operation, the main tumor was present predominantly in the fallopian tube. Microscopically, the tumor consisted of carcinoma and sarcoma components. The carcinoma showed moderately to poorly differentiated adenocarcinoma. The sarcoma consisted of predominantly undifferentiated sarcoma and focally rhabdomyosarcomatous cells with abundant eosinophilic cytoplasm. Immunohistochemically, the differentiation toward rhabdomyosarcoma was confirmed. Interestingly, the cytoplasm of undifferentiated sarcoma cells contained hyaline globule-like structures. These structures showed a positive reaction for PAS, and these structures were not digested by the diastase pretreatment. Ultrastructurally, hyaline globule-like structures corresponded to lysosomes. Finally, pathologists should keep in mind that undifferentiated sarcoma cells in MMMT of the fallopian tube may contain hyaline globule-like structures in the cytoplasm.

  3. A case of a pleomorphic hyalinizing angiectatic tumor of soft parts with intracytoplasmic hemosiderin pigment apparent upon fine-needle aspiration cytology.

    Science.gov (United States)

    Yorita, Kenji; Ishihara, Akira; Tokumitsu, Takako; Minematsu, Eiko; Ohno, Akinobu; Ikejiri, Hiroshi; Kataoka, Hiroaki

    2015-05-01

    Pleomorphic hyalinizing angiectatic tumors of soft parts are extremely rare low-grade mesenchymal lesions that frequently occur subcutaneously, especially in the lower extremity. The tumor is histologically characterized by sheets of plump, spindled or rounded cells, and clusters of ectatic blood vessels. It also has a number of previously characterized cytological features such as pleomorphic cells, intranuclear pseudoinclusion, and intracytoplasmic hemosiderin pigments. However, intracytoplasmic hemosiderin has not been carefully evaluated in cytology specimens. Here, we report the case of a 56-year-old Japanese man with an encapsulated pleomorphic hyalinizing angiectatic tumor of soft parts that included fine and coarse hemosiderin-laden tumor cells. The tumor was clinically followed up as a hematoma, but malignant tumors, including malignant melanoma, were suspected because aspiration cytology specimens contained pleomorphic cells with intracytoplasmic brown pigments. The tumor was closely associated with an intratumoral hematoma and a few microscopic satellite lesions. Pleomorphic hyalinizing angiectatic tumor of soft parts should be included in the differential cytological diagnosis of soft tissue tumors if the three cytological features described earlier are present. Enucleation therapy could facilitate local recurrence, as the tumor may have the potential to infiltrate surrounding soft tissue or form satellite lesions. © 2014 The Authors. Diagnostic Cytopathology Published by Wiley Periodicals, Inc.

  4. Aggrecan structure in amphibian cartilage

    Directory of Open Access Journals (Sweden)

    Covizi D.Z.

    2000-01-01

    Full Text Available The structure of the large proteoglycan present in the bullfrog epiphyseal cartilage was studied by immunochemical and biochemical methods. The isolated monomer showed a polydisperse behavior on Sepharose CL2B, with a peak at Kav = 0.14. Chondroitin sulfate chains were identified by HPLC analysis of the products formed by chondroitinase digestion and mercuric acetate treatment. These chains have approximately 38 disaccharides, a Di45:Di68 ratio of 1.6 and GalNAc4S + GalNAc4,6S are the main non-reducing terminals. Keratan sulfate was identified by the use of two monoclonal antibodies in Western blots after chondroitinase ABC treatment. A keratan sulfate-rich region (~110 kDa was isolated by sequential treatment with chondroitinase ABC and proteases. We also employed antibodies in Western blotting experiments and showed that the full length deglycosylated core protein is about 300 kDa after SDS-PAGE. Domain-specific antibodies revealed the presence of immunoreactive sites corresponding to G1/G2 and G3 globular domains and the characterization of this large proteoglycan as aggrecan. The results indicate the high conservation of the aggrecan domain structure in this lower vertebrate.

  5. Aberrant nuclear beta-catenin expression in the spindle or corded cells in so-called corded and hyalinized endometrioid carcinomas. Another critical role of the unique morphological feature

    OpenAIRE

    Wani, Yoji; Saegusa, Makoto; Notohara, Kenji

    2009-01-01

    Corded and hyalinized endometrioid carcinoma (CHEC), showing spindle and/or corded (SPICO) cells often in the background of hyalinized stroma, is a rare variant of uterine endometrioid carcinomas. The aim of our study was to explore the status of cell-adhesion molecules (beta-catenin, Ecadherin) in CHECs and to survey whether immunostains for beta-catenin and p53 can help to distinguish CHECs from their morphological mimics: malignant mixed mullerian tumors (MMMTs) and...

  6. Hyalinizing trabecular tumor of the thyroid: Diagnosed of a rare tumor using ultrasonography, cytology, and intraoperative frozen sections

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyun Sik; Kim, Eun Kyung; Kwak, Jin Young; Moon, Hee Jung; Yoon, Jung Hyun [Dept. of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Park, Cheol Keun; Son, Eun Ju [Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul (Korea, Republic of)

    2016-03-15

    The goal of this study was to evaluate the clinicopathological and imaging features of thyroid nodules surgically diagnosed as hyaline trabecular tumor (HTT), and to assess the role of cytology and frozen sections (FS) in the diagnosis of HTT. This study included 21 thyroid nodules in 21 patients treated from August 2005 to March 2015 (mean age, 53.3 years) who were either diagnosed as HTT or had HTT suggested as a possible diagnosis based on cytology, FS, or the final pathology report. Patients' medical records were retrospectively reviewed for cytopathologic results and outcomes during the course of follow-up. Sonograms were reviewed and categorized. Twelve nodules from 12 patients were surgically confirmed as HTT. Ultrasonography (US)-guided fine needle aspiration (FNA) was performed on 11 nodules, of which six (54.5%) were papillary thyroid carcinoma (PTC) or suspicious for PTC and three (27.3%) were HTT or suspicious for HTT. Intraoperative FS suggested the possibility of HTT in seven nodules, of which four (57.1%) were confirmed as HTT. US-FNA suggested the diagnosis of HTT in 10 nodules, of which three (30.0%) were confirmed as HTT. Common US features of the 12 pathologically confirmed cases of HTT were hypoechogenicity or marked hypoechogenicity (83.4%), absence of calcifications (91.7%), parallel shape (100.0%), presence of vascularity (75.0%), and probable benignity (58.3%). HTT should be included in the differential diagnosis of solid tumors with hypoechogenicity or marked hypoechogenicity and otherwise benign US features that have been diagnosed as PTC through cytology.

  7. ESTABLISHING A LIVE CARTILAGE-ON-CARTILAGE INTERFACE FOR TRIBOLOGICAL TESTING.

    Science.gov (United States)

    Trevino, Robert L; Stoia, Jonathan; Laurent, Michel P; Pacione, Carol A; Chubinskaya, Susan; Wimmer, Markus A

    2017-03-01

    Mechano-biochemical wear encompasses the tribological interplay between biological and mechanical mechanisms responsible for cartilage wear and degradation. The aim of this study was to develop and start validating a novel tribological testing system, which better resembles the natural joint environment through incorporating a live cartilage-on-cartilage articulating interface, joint specific kinematics, and the application of controlled mechanical stimuli for the measurement of biological responses in order to study the mechano-biochemical wear of cartilage. The study entailed two parts. In Part 1, the novel testing rig was used to compare two bearing systems: (a) cartilage articulating against cartilage (CoC) and (b) metal articulating against cartilage (MoC). The clinically relevant MoC, which is also a common tribological interface for evaluating cartilage wear, should produce more wear to agree with clinical observations. In Part II, the novel testing system was used to determine how wear is affected by tissue viability in live and dead CoC articulations. For both parts, bovine cartilage explants were harvested and tribologically tested for three consecutive days. Wear was defined as release of glycosaminoglycans into the media and as evaluation of the tissue structure. For Part I, we found that the live CoC articulation did not cause damage to the cartilage, to the extent of being comparable to the free swelling controls, whereas the MoC articulation caused decreased cell viability, extracellular matrix disruption, and increased wear when compared to CoC, and consistent with clinical data. These results provided confidence that this novel testing system will be adequate to screen new biomaterials for articulation against cartilage, such as in hemiarthroplasty. For Part II, the live and dead cartilage articulation yielded similar wear as determined by the release of proteoglycans and aggrecan fragments, suggesting that keeping the cartilage alive may not be

  8. Repair of osteochondral defects in rabbits with ectopically produced cartilage

    NARCIS (Netherlands)

    Emans, PJ; Hulsbosch, M; Wetzels, GMR; Bulstra, SK; Kuijer, R

    2005-01-01

    Cartilage has poor regenerative capacity. Donor site morbidity and interference with joint homeostasis should be considered when applying the autologous chondrocyte transplantation technique. The use of ectopically produced cartilage, derived from periosteum, might be a novel method to heal

  9. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Hemanth Akkiraju

    2015-12-01

    Full Text Available Articular cartilage (AC covers the diarthrodial joints and is responsible for the mechanical distribution of loads across the joints. The majority of its structure and function is controlled by chondrocytes that regulate Extracellular Matrix (ECM turnover and maintain tissue homeostasis. Imbalance in their function leads to degenerative diseases like Osteoarthritis (OA. OA is characterized by cartilage degradation, osteophyte formation and stiffening of joints. Cartilage degeneration is a consequence of chondrocyte hypertrophy along with the expression of proteolytic enzymes. Matrix Metalloproteinases (MMPs and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS are an example of these enzymes that degrade the ECM. Signaling cascades involved in limb patterning and cartilage repair play a role in OA progression. However, the regulation of these remains to be elucidated. Further the role of stem cells and mature chondrocytes in OA progression is unclear. The progress in cell based therapies that utilize Mesenchymal Stem Cell (MSC infusion for cartilage repair may lead to new therapeutics in the long term. However, many questions are unanswered such as the efficacy of MSCs usage in therapy. This review focuses on the role of chondrocytes in cartilage formation and the progression of OA. Moreover, it summarizes possible alternative therapeutic approaches using MSC infusion for cartilage restoration.

  10. Tissue engineering techniques to regenerate articular cartilage using polymeric scaffolds.

    OpenAIRE

    PÉREZ OLMEDILLA, MARCOS

    2016-01-01

    [EN] Articular cartilage is a tissue that consists of chondrocytes surrounded by a dense extracellular matrix (ECM). The ECM is mainly composed of type II collagen and proteoglycans. The main function of articular cartilage is to provide a lubricated surface for articulation. Articular cartilage damage is common and may lead to osteoarthritis. Articular cartilage does not have blood vessels, nerves or lymphatic vessels and therefore has limited capacity for intrinsic healing and repair. ...

  11. Body weight independently affects articular cartilage catabolism.

    Science.gov (United States)

    Denning, W Matt; Winward, Jason G; Pardo, Michael Becker; Hopkins, J Ty; Seeley, Matthew K

    2015-06-01

    Although obesity is associated with osteoarthritis, it is unclear whether body weight (BW) independently affects articular cartilage catabolism (i.e., independent from physiological factors that also accompany obesity). The primary purpose of this study was to evaluate the independent effect of BW on articular cartilage catabolism associated with walking. A secondary purpose was to determine how decreased BW influenced cardiovascular response due to walking. Twelve able-bodied subjects walked for 30 minutes on a lower-body positive pressure treadmill during three sessions: control (unadjusted BW), +40%BW, and -40%BW. Serum cartilage oligomeric matrix protein (COMP) was measured immediately before (baseline) and after, and 15 and 30 minutes after the walk. Heart rate (HR) and rate of perceived exertion (RPE) were measured every three minutes during the walk. Relative to baseline, average serum COMP concentration was 13% and 5% greater immediately after and 15 minutes after the walk. Immediately after the walk, serum COMP concentration was 14% greater for the +40%BW session than for the -40%BW session. HR and RPE were greater for the +40%BW session than for the other two sessions, but did not differ between the control and -40%BW sessions. BW independently influences acute articular cartilage catabolism and cardiovascular response due to walking: as BW increases, so does acute articular cartilage catabolism and cardiovascular response. These results indicate that lower-body positive pressure walking may benefit certain individuals by reducing acute articular cartilage catabolism, due to walking, while maintaining cardiovascular response. Key pointsWalking for 30 minutes with adjustments in body weight (normal body weight, +40% and -40% body weight) significantly influences articular cartilage catabolism, measured via serum COMP concentration.Compared to baseline levels, walking with +40% body weight and normal body weight both elicited significant increases in

  12. Tissue Engineering Based Therapy for Articular Cartilage Defects - A New Approach

    Directory of Open Access Journals (Sweden)

    Abraham S

    2007-01-01

    -PCR study of the cells of group I were positive for TGF beta 3 (Proliferation, differentiation, and other functions, GR beta, GR alpha (Development, metabolism and immune Response (glucocorticoid receptor alpha, AGGF (Apoptosis, VDR (Vitamin D3 Receptor, Col II (Type II Collagen. Conclusion: We have established a methodology by which Human chondrocytes could be cultured in vitro without any growth factors for a period of 16 weeks in a polymer-hydrogel scaffold. Upon further confirmation of their characteristics, the TGP grown chondrocytes can be used for autologous implantation to repair damaged cartilage area as the Collagen Type II which grows better without growth factors in the scaffold, eventually will become Hyaline cartilage is expected to give a longer disease free duration than the present method of ACI.

  13. Influence of dynamic load on friction behavior of human articular cartilage, stainless steel and polyvinyl alcohol hydrogel as artificial cartilage.

    Science.gov (United States)

    Li, Feng; Su, Yonglin; Wang, Jianping; Wu, Gang; Wang, Chengtao

    2010-01-01

    Many biomaterials are being developed to be used for cartilage substitution and hemiarthroplasty implants. The lubrication property is a key feature of the artificial cartilage. The frictional behavior of human articular cartilage, stainless steel and polyvinyl alcohol (PVA) hydrogel were investigated under cartilage-on-PVA hydrogel contact, cartilage-on-cartilage contact and cartilage-on-stainless steel contact using pin-on-plate method. Tests under static load, cyclic load and 1 min load change were used to evaluate friction variations in reciprocating motion. The results showed that the lubrication property of cartilage-on-PVA hydrogel contact and cartilage-on-stainless steel contact were restored in both 1 min load change and cyclic load tests. The friction coefficient of PVA hydrogel decreased from 0.178 to 0.076 in 60 min, which was almost one-third of the value under static load in continuous sliding tests. In each test, the friction coefficient of cartilage-on-cartilage contact maintained far lower value than other contacts. It is indicated that a key feature of artificial cartilage is the biphasic lubrication properties.

  14. Influence of meniscus on cartilage and subchondral bone features of knees from older individuals: A cadaver study.

    Science.gov (United States)

    Touraine, Sébastien; Bouhadoun, Hamid; Engelke, Klaus; Laredo, Jean Denis; Chappard, Christine

    2017-01-01

    Cartilage and subchondral bone form a functional unit. Here, we aimed to examine the effect of meniscus coverage on the characteristics of this unit in knees of older individuals. We assessed the hyaline cartilage, subchondral cortical plate (SCP), and subchondral trabecular bone in areas covered or uncovered by the meniscus from normal cadaver knees (without degeneration). Bone cores harvested from the medial tibial plateau at locations uncovered (central), partially covered (posterior), and completely covered (peripheral) by the meniscus were imaged by micro-CT. The following were measured on images: cartilage volume (Cart.Vol, mm3) and thickness (Cart.Th, mm); SCP thickness (SCP.Th, μm) and porosity (SCP.Por, %); bone volume to total volume fraction (BV/TV, %); trabecular thickness (Tb.Th, μm), spacing (Tb.Sp, μm), and number (Tb.N, 1/mm); structure model index (SMI); trabecular pattern factor (Tb.Pf); and degree of anisotropy (DA). Among the 28 specimens studied (18 females) from individuals with mean age 82.8±10.2 years, cartilage and SCP were thicker at the central site uncovered by the meniscus than the posterior and peripheral sites, and Cart.Vol was greater. SCP.Por was highest in posterior samples. In the upper 1-5 mm of subchondral bone, central samples were characterized by higher values for BV/TV, Tb.N, Tb.Th, and connectivity (Tb.Pf), a more plate-like trabecular structure and lower anisotropy than with other samples. Deeper down, at 6-10 mm, the differences were slightly higher for Tb.Th centrally, DA peripherally and SMI posteriorly. The coverage or not by meniscus in the knee of older individuals is significantly associated with Cart.Th, SCP.Th, SCP.Por and trabecular microarchitectural parameters in the most superficial 5 mm and to a lesser extent the deepest area of subchondral trabecular bone. These results suggest an effect of differences in local loading conditions. In subchondral bone uncovered by the meniscus, the trabecular architecture

  15. Influence of meniscus on cartilage and subchondral bone features of knees from older individuals: A cadaver study.

    Directory of Open Access Journals (Sweden)

    Sébastien Touraine

    Full Text Available Cartilage and subchondral bone form a functional unit. Here, we aimed to examine the effect of meniscus coverage on the characteristics of this unit in knees of older individuals.We assessed the hyaline cartilage, subchondral cortical plate (SCP, and subchondral trabecular bone in areas covered or uncovered by the meniscus from normal cadaver knees (without degeneration. Bone cores harvested from the medial tibial plateau at locations uncovered (central, partially covered (posterior, and completely covered (peripheral by the meniscus were imaged by micro-CT. The following were measured on images: cartilage volume (Cart.Vol, mm3 and thickness (Cart.Th, mm; SCP thickness (SCP.Th, μm and porosity (SCP.Por, %; bone volume to total volume fraction (BV/TV, %; trabecular thickness (Tb.Th, μm, spacing (Tb.Sp, μm, and number (Tb.N, 1/mm; structure model index (SMI; trabecular pattern factor (Tb.Pf; and degree of anisotropy (DA.Among the 28 specimens studied (18 females from individuals with mean age 82.8±10.2 years, cartilage and SCP were thicker at the central site uncovered by the meniscus than the posterior and peripheral sites, and Cart.Vol was greater. SCP.Por was highest in posterior samples. In the upper 1-5 mm of subchondral bone, central samples were characterized by higher values for BV/TV, Tb.N, Tb.Th, and connectivity (Tb.Pf, a more plate-like trabecular structure and lower anisotropy than with other samples. Deeper down, at 6-10 mm, the differences were slightly higher for Tb.Th centrally, DA peripherally and SMI posteriorly.The coverage or not by meniscus in the knee of older individuals is significantly associated with Cart.Th, SCP.Th, SCP.Por and trabecular microarchitectural parameters in the most superficial 5 mm and to a lesser extent the deepest area of subchondral trabecular bone. These results suggest an effect of differences in local loading conditions. In subchondral bone uncovered by the meniscus, the trabecular architecture

  16. A pilot study of conically graded chitosan-gelatin hydrogel/PLGA scaffold with dual-delivery of TGF-β1 and BMP-2 for regeneration of cartilage-bone interface.

    Science.gov (United States)

    Han, Fengxuan; Zhou, Fang; Yang, Xiaoling; Zhao, Jin; Zhao, Yunhui; Yuan, Xiaoyan

    2015-10-01

    Repair of cartilage-bone interface tissue remains challenging, because it combines different cell types and gradients of composition and properties. To enable simultaneous regeneration of bone, cartilage, and especially their interface, a conically graded scaffold of chitosan-gelatin hydrogel/poly(l-lactide-co-glycolide) (PLGA) was facilely prepared in the study. The chitosan-gelatin hydrogel containing transforming growth factor β1 (TGF-β1) was used for chondrogenesis, while the PLGA scaffold loading bone morphogenetic protein-2 (BMP-2) for osteogenesis. The conically graded transition from the hydrogel to PLGA scaffold and graded variation in amount of growth factors from TGF-β1 to BMP-2 benefited the cartilage-bone interface reconstruction. The graded scaffold exhibited spatio-temporal delivery of TGF-β1 and BMP-2. Preliminary results of in vitro cell culture demonstrated that the hydrogel and PLGA phases could promote bone marrow mesenchymal stem cells toward chondrogenic and osteogenic differentiation, respectively. From the result of the pilot in vivo experiment, it showed that the regenerated hyaline-like cartilage surface and subchondral bone excellently integrated with the native tissues were found by using the TGF-β1 and BMP-2 double-loaded hydrogel/PLGA graded scaffold via H&E and immunohistochemical stainings of collagen I, collagen II, and osteocalcin at 2 months. The obtained preliminary experiment results showed that the hydrogel/PLGA graded scaffold combining multiphasic composition and spatial dual growth-factor delivery would be useful for cartilage-bone interface tissue defect repair. © 2014 Wiley Periodicals, Inc.

  17. Spontaneous uterine rupture

    African Journals Online (AJOL)

    ABSTRACT. Rupture of a gravid uterus is a surgical emergency. Predisposing factors include a scarred uterus. Spontaneous rupture of an unscarred uterus during pregnancy is a rare occurrence. We hereby present the case of a spontaneous complete uterine rupture at a gestational age of 34 weeks in a 35 year old patient ...

  18. Spontaneous intracranial hypotension.

    LENUS (Irish Health Repository)

    Fullam, L

    2012-01-31

    INTRODUCTION: Spontaneous\\/primary intracranial hypotension is characterised by orthostatic headache and is associated with characteristic magnetic resonance imaging findings. CASE REPORT: We present a case report of a patient with typical symptoms and classical radiological images. DISCUSSION: Spontaneous intracranial hypotension is an under-recognised cause of headache and can be diagnosed by history of typical orthostatic headache and findings on MRI brain.

  19. PRP and Articular Cartilage: A Clinical Update

    Directory of Open Access Journals (Sweden)

    Antonio Marmotti

    2015-01-01

    Full Text Available The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory.

  20. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  1. Osteoarthritis: Control of human cartilage hypertrophic differentiation. Research highlight van: Gremlin1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis

    NARCIS (Netherlands)

    Buckland, J.; Leijten, Jeroen Christianus Hermanus; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Disruption of articular cartilage homeostasis is important in osteoarthritis (OA) pathogenesis, key to which is activation of articular chondrocyte hypertrophic differentiation. Healthy articular cartilage is resistant to hypertrophic differentiation, whereas growth-plate cartilage is destined to

  2. Recent developments in scaffold-guided cartilage tissue regeneration.

    Science.gov (United States)

    Liao, Jinfeng; Shi, Kun; Ding, Qiuxia; Qu, Ying; Luo, Feng; Qian, Zhiyong

    2014-10-01

    Articular cartilage repair is one of the most challenging problems in biomedical engineering because the regenerative capacity of cartilage is intrinsically poor. The lack of efficient treatment modalities motivates researches into cartilage tissue engineering such as combing cells, scaffolds and growth factors. In this review we summarize the current developments on scaffold systems available for cartilage tissue engineering. The factors that are critical to successfully design an ideal scaffold for cartilage regeneration were discussed. Then we present examples of selected material types (natural polymers and synthetic polymers) and fabricated forms of the scaffolds (three-dimensional scaffolds, micro- or nanoparticles, and their composites). In the end of review, we conclude with an overview of the ways in which biomedical nanotechnology is widely applied in cartilage tissue engineering, especially in the design of composite scaffolds. This review attempts to provide recommendations on the combination of qualities that would produce the ideal scaffold system for cartilage tissue engineering.

  3. Magnetization transfer analysis of cartilage repair tissue: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, F. [University ' Federico II' , Department of Radiology, Naples (Italy); Keyzer, F. de [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Maes, F. [Catholic University Leuven, Department of Electrotechnics, Faculty of Engineering, Leuven (Belgium); Breuseghem, I. van [Ghent University Hospital, Department of Radiology, Gent (Belgium)

    2006-12-15

    To evaluate the magnetization transfer ratio (MTR) after two different cartilage repair procedures, and to compare these data with the MTR of normal cartilage. Twenty-seven patients with a proven cartilage defect were recruited: 13 were treated with autologous chondrocyte implantation (ACI) and 14 were treated with the microfracture technique (MFR). All patients underwent MRI examinations with MT-sequences before the surgical treatment, after 12 months (26 patients) and after 24 months (11 patients). Eleven patients received a complete follow-up study at all three time points (five of the ACI group and six of the MFR group). All images were transferred to a workstation to calculate MTR images. For every MT image set, different ROIs were delineated by two radiologists. Means were calculated per ROI type in the different time frames and in both groups of cartilage repair. The data were analyzed with unpaired t- and ANOVA tests, and by calculating Pearson's correlation coefficient. No significant differences were found in the MTR of fatty bone marrow, muscle and normal cartilage in the different time frames. There was a significant but small difference between the MTR of normal cartilage and the cartilage repair area after 12 months for both procedures. After 24 months, the MTR of ACI repaired cartilage (0.31{+-}0.07) was not significantly different from normal cartilage MTR (0.34{+-}0.05). The MTR of MFR repaired cartilage (0.28{+-}0.02), still showed a significant difference from normal cartilage. The differences between damaged and repaired cartilage MTR are too small to enable MT-imaging to be a useful tool for postoperative follow-up of cartilage repair procedures. There is, however, an evolution towards normal MTR-values in the cartilage repair tissue (especially after ACI repair). (orig.)

  4. Magnetization transfer analysis of cartilage repair tissue: a preliminary study

    International Nuclear Information System (INIS)

    Palmieri, F.; Keyzer, F. de; Maes, F.; Breuseghem, I. van

    2006-01-01

    To evaluate the magnetization transfer ratio (MTR) after two different cartilage repair procedures, and to compare these data with the MTR of normal cartilage. Twenty-seven patients with a proven cartilage defect were recruited: 13 were treated with autologous chondrocyte implantation (ACI) and 14 were treated with the microfracture technique (MFR). All patients underwent MRI examinations with MT-sequences before the surgical treatment, after 12 months (26 patients) and after 24 months (11 patients). Eleven patients received a complete follow-up study at all three time points (five of the ACI group and six of the MFR group). All images were transferred to a workstation to calculate MTR images. For every MT image set, different ROIs were delineated by two radiologists. Means were calculated per ROI type in the different time frames and in both groups of cartilage repair. The data were analyzed with unpaired t- and ANOVA tests, and by calculating Pearson's correlation coefficient. No significant differences were found in the MTR of fatty bone marrow, muscle and normal cartilage in the different time frames. There was a significant but small difference between the MTR of normal cartilage and the cartilage repair area after 12 months for both procedures. After 24 months, the MTR of ACI repaired cartilage (0.31±0.07) was not significantly different from normal cartilage MTR (0.34±0.05). The MTR of MFR repaired cartilage (0.28±0.02), still showed a significant difference from normal cartilage. The differences between damaged and repaired cartilage MTR are too small to enable MT-imaging to be a useful tool for postoperative follow-up of cartilage repair procedures. There is, however, an evolution towards normal MTR-values in the cartilage repair tissue (especially after ACI repair). (orig.)

  5. Combined nanoindentation testing and scanning electron microscopy of bone and articular calcified cartilage in an equine fracture predilection site.

    Science.gov (United States)

    Doube, M; Firth, E C; Boyde, A; Bushby, A J

    2010-06-03

    Condylar fracture of the third metacarpal bone (Mc3) is the commonest cause of racetrack fatality in Thoroughbred horses. Linear defects involving hyaline articular cartilage, articular calcified cartilage (ACC) and subchondral bone (SCB) have been associated with the fracture initiation site, which lies in the sagittal grooves of the Mc3 condyle. We discovered areas of thickened and abnormally-mineralised ACC in the sagittal grooves of several normal 18-month-old horses, at the same site that linear defects and condylar fracture occur in older Thoroughbreds and questioned whether this tissue had altered mechanical properties. We embedded bone slices in PMMA, prepared flat surfaces normal to the articular surface and studied ACC and SCB using combined quantitative backscattered electron scanning electron microscopy (qBSE) and nanoindentation testing: this allowed correlation of mineralisation density and tissue stiffness (E) at the micron scale. We studied both normal and affected grooves, and also normal condylar regions. Large arrays of indentations could be visualised as 2-dimensional maps of E with a limit to resolution of indentation spacing, which is much larger than qBSE pixel spacing. ACC was more highly mineralised but less stiff in early linear defects than in control regions, while subchondral bone was more highly mineralised and stiffer in specimens with early linear defects than those without. Thus both ACC and SCB mineralisation may be abnormal in a class of early linear defect in 18-month-old Thoroughbred horses, and this may possibly contribute to later fracture of the Mc3 condyle.

  6. Combined nanoindentation testing and scanning electron microscopy of bone and articular calcified cartilage in an equine fracture predilection site

    Directory of Open Access Journals (Sweden)

    M Doube

    2010-06-01

    Full Text Available Condylar fracture of the third metacarpal bone (Mc3 is the commonest cause of racetrack fatality in Thoroughbred horses. Linear defects involving hyaline articular cartilage, articular calcified cartilage (ACC and subchondral bone (SCB have been associated with the fracture initiation site, which lies in the sagittal grooves of the Mc3 condyle. We discovered areas of thickened and abnormally-mineralised ACC in the sagittal grooves of several normal 18-month-old horses, at the same site that linear defects and condylar fracture occur in older Thoroughbreds and questioned whether this tissue had altered mechanical properties. We embedded bone slices in PMMA, prepared flat surfaces normal to the articular surface and studied ACC and SCB using combined quantitative backscattered electron scanning electron microscopy (qBSE and nanoindentation testing: this allowed correlation of mineralisation density and tissue stiffness (E at the micron scale. We studied both normal and affected grooves, and also normal condylar regions. Large arrays of indentations could be visualised as 2-dimensional maps of E with a limit to resolution of indentation spacing, which is much larger than qBSE pixel spacing. ACC was more highly mineralised but less stiff in early linear defects than in control regions, while subchondral bone was more highly mineralised and stiffer in specimens with early linear defects than those without. Thus both ACC and SCB mineralisation may be abnormal in a class of early linear defect in 18-month-old Thoroughbred horses, and this may possibly contribute to later fracture of the Mc3 condyle.

  7. Human Suprapatellar Fat Pad-Derived Mesenchymal Stem Cells Induce Chondrogenesis and Cartilage Repair in a Model of Severe Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Ignacio Muñoz-Criado

    2017-01-01

    Full Text Available Cartilage degeneration is associated with degenerative bone and joint processes in severe osteoarthritis (OA. Spontaneous cartilage regeneration is extremely limited. Often the treatment consists of a partial or complete joint implant. Adipose-derived stem cell (ASC transplantation has been shown to restore degenerated cartilage; however, regenerative differences of ASC would depend on the source of adipose tissue. The infra- and suprapatellar fat pads surrounding the knee offer a potential autologous source of ASC for patients after complete joint substitution. When infrapatellar- and suprapatellar-derived stromal vascular fractions (SVF were compared, a significantly higher CD105 (+ population was found in the suprapatellar fat. In addition, the suprapatellar SVF exhibited increased numbers of colony formation units and a higher population doubling in culture compared to the infrapatellar fraction. Both the suprapatellar- and infrapatellar-derived ASC were differentiated in vitro into mature adipocytes, osteocytes, and chondrocytes. However, the suprapatellar-derived ASC showed higher osteogenic and chondrogenic efficiency. Suprapatellar-derived ASC transplantation in a severe OA mouse model significantly diminished the OA-associated knee inflammation and cartilage degenerative grade, significantly increasing the production of glycosaminoglycan and inducing endogenous chondrogenesis in comparison with the control group. Overall, suprapatellar-derived ASC offer a potential autologous regenerative treatment for patients with multiple degenerative OA.

  8. Identification and partial characterization of two inducible gelatin-cleavage activities localized to the sea urchin extraembryonic matrix, the hyaline layer.

    Science.gov (United States)

    Robinson, John J; Sharpe, Christopher; Calloway, Carolyn

    2003-04-07

    We have identified two inducible, gelatin-cleaving activities in the sea urchin extraembryonic matrix, the hyaline layer. Isolated hyaline layers, incubated in the presence of benzamidine, were devoid of gelatin-cleavage activities with apparent molecular mass less then 80k. However, when layers were incubated for 9-11 h in the absence of benzamidine, gelatin-cleavage activities, with apparent molecular mass 40- and 50k, were detected. Induction required the presence of NaCl and CaCl(2) at concentrations similar to those found in seawater and readdition of the reversible serine protease inhibitor benzamidine prevented induction. Both gelatin-cleaving activities were activated by calcium at a concentration similar to the calcium concentration found in seawater. Magnesium, also a major cationic species present in seawater, could not replace calcium as the activating ion. In addition, magnesium could not compete with calcium for binding to the gelatinases. Both cleavage activities showed substrate specificity and each failed to cleave bovine serum albumin, bovine hemoglobin or casein. Cleavage activity towards gelatin was inhibited by benzamidine and aminoethyl benzenesulfonyl fluoride, indicating that both activities belonged to the serine class of proteases. The induced 40-kDa activity displayed similar properties to those of a comigrating, gelatin-cleaving activity present in 69-h-old embryos.

  9. Knee cartilage segmentation and thickness computation from ultrasound images.

    Science.gov (United States)

    Faisal, Amir; Ng, Siew-Cheok; Goh, Siew-Li; Lai, Khin Wee

    2018-04-01

    Quantitative thickness computation of knee cartilage in ultrasound images requires segmentation of a monotonous hypoechoic band between the soft tissue-cartilage interface and the cartilage-bone interface. Speckle noise and intensity bias captured in the ultrasound images often complicates the segmentation task. This paper presents knee cartilage segmentation using locally statistical level set method (LSLSM) and thickness computation using normal distance. Comparison on several level set methods in the attempt of segmenting the knee cartilage shows that LSLSM yields a more satisfactory result. When LSLSM was applied to 80 datasets, the qualitative segmentation assessment indicates a substantial agreement with Cohen's κ coefficient of 0.73. The quantitative validation metrics of Dice similarity coefficient and Hausdorff distance have average values of 0.91 ± 0.01 and 6.21 ± 0.59 pixels, respectively. These satisfactory segmentation results are making the true thickness between two interfaces of the cartilage possible to be computed based on the segmented images. The measured cartilage thickness ranged from 1.35 to 2.42 mm with an average value of 1.97 ± 0.11 mm, reflecting the robustness of the segmentation algorithm to various cartilage thickness. These results indicate a potential application of the methods described for assessment of cartilage degeneration where changes in the cartilage thickness can be quantified over time by comparing the true thickness at a certain time interval.

  10. The minor collagens in articular cartilage

    DEFF Research Database (Denmark)

    Luo, Yunyun; Sinkeviciute, Dovile; He, Yi

    2017-01-01

    , especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also...... these minor collagens. The generation and release of fragmented molecules could generate novel biochemical markers with the capacity to monitor disease progression, facilitate drug development and add to the existing toolbox for in vitro studies, preclinical research and clinical trials....... fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including...

  11. Modified technique to increase nostril cross-sectional area after using rib and septal cartilage graft over alar nasal cartilages.

    Science.gov (United States)

    Wulkan, Marcelo; Sá, Alvaro Julio de Andrade; Alonso, Nivaldo

    2012-10-01

    Describe a modified technique to increase nostril cross-sectional area using rib and septal cartilage graft over alar nasal cartilages. A modified surgical technique was used to obtain, carve and insert cartilage grafts over alar nasal cartilages. This study used standardized pictures and measured 90 cadaveric nostril cross-sectional area using Autocad(®); 30 were taken before any procedure and 60 were taken after grafts over lateral crura (30 using costal cartilage and 30 using septal cartilage). Statistical analysis were assessed using a model for repeated measures and ANOVA (Analysis of Variance) for the variable "area". There's statistical evidence that rib cartilage graft is more effective than septal cartilage graft. The mean area after the insertion of septal cartilage graft is smaller than the mean area under rib graft treatment (no confidence interval for mean difference contains the zero value and all P-values are below the significance level of 5%). The technique presented is applicable to increase nostril cross section area in cadavers. This modified technique revealed to enhance more nostril cross section area with costal cartilage graft over lateral crura rather than by septal graft.

  12. Cellular reprogramming for clinical cartilage repair

    OpenAIRE

    Driessen, Britta J.H.; Logie, Colin; Vonk, Lucienne A.

    2017-01-01

    The repair of articular cartilage needs a sufficient number of chondrocytes to replace the defect tissue, and therefore, expansion of cells is generally required. Chondrocytes derived by cellular reprogramming may provide a solution to the limitations of current (stem) cell-based therapies. In this article, two distinct approaches?induced pluripotent stem cell (iPSC)-mediated reprogramming and direct lineage conversion?are analysed and compared according to criteria that encompass the qualifi...

  13. Processed bovine cartilage: an improved biosynthetic implant for contour defects

    Energy Technology Data Exchange (ETDEWEB)

    Ersek, R.A.; Hart, W.G. Jr.; Greer, D.; Beisang, A.A.; Flynn, P.J.; Denton, D.R.

    1984-05-01

    Irradiated human cartilage has been found to be a superior implant material for correction of contour defects; however, availability problems have prevented this material from gaining wide acceptance. Implantation of processed irradiated bovine cartilage in primates and rabbits, as described here, provides strong evidence that this material performs like irradiated allograft cartilage antigenically and has certain cosmetic advantages over allograft cartilage. Our studies in primates have shown that there is no systemically measurable antibody-antigen reaction, either cellular or noncellular, to irradiated processed bovine cartilage. Neither primary nor second-set provocative implantations produced any measurable rejection. In rabbits, composite grafts of two pieces of irradiated bovine cartilage adjacent to each other were also well tolerated, with no measurable absorption and with capsule formation typical of a foreign body reaction to an inert object.

  14. Secondary Cartilage Revealed in a Non-Avian Dinosaur Embryo

    OpenAIRE

    Bailleul, Alida M.; Hall, Brian K.; Horner, John R.

    2013-01-01

    The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae). This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information ...

  15. AMIC Cartilage Repair in a Professional Soccer Player

    OpenAIRE

    Bark, S.; Riepenhof, H.; Gille, J.

    2012-01-01

    We report a case of a professional soccer player suffering from a traumatic cartilage lesion grade IV according to the Outerbridge classification at the femoral condyle treated with an enhanced microfracture technique (AMIC). Autologous Matrix-Induced Chondrogenesis (AMIC) is an innovative treatment for localized full-thickness cartilage defects combining the well-known microfracturing with collagen scaffold and fibrin glue. Because of the cartilage lesion (3 cm2), an AMIC procedure was perfo...

  16. Mesenchymal Stem Cells for Treating Articular Cartilage Defects and Osteoarthritis.

    Science.gov (United States)

    Wang, Yu; Yuan, Mei; Guo, Quan-yi; Lu, Shi-bi; Peng, Jiang

    2015-01-01

    Articular cartilage damage and osteoarthritis are the most common joint diseases. Joints are prone to damage caused by sports injuries or aging, and such damage regularly progresses to more serious joint disorders, including osteoarthritis, which is a degenerative disease characterized by the thinning and eventual wearing out of articular cartilage, ultimately leading to joint destruction. Osteoarthritis affects millions of people worldwide. Current approaches to repair of articular cartilage damage include mosaicplasty, microfracture, and injection of autologous chondrocytes. These treatments relieve pain and improve joint function, but the long-term results are unsatisfactory. The long-term success of cartilage repair depends on development of regenerative methodologies that restore articular cartilage to a near-native state. Two promising approaches are (i) implantation of engineered constructs of mesenchymal stem cell (MSC)-seeded scaffolds, and (ii) delivery of an appropriate population of MSCs by direct intra-articular injection. MSCs may be used as trophic producers of bioactive factors initiating regenerative activities in a defective joint. Current challenges in MSC therapy are the need to overcome current limitations in cartilage cell purity and to in vitro engineer tissue structures exhibiting the required biomechanical properties. This review outlines the current status of MSCs used in cartilage tissue engineering and in cell therapy seeking to repair articular cartilage defects and related problems. MSC-based technologies show promise when used to repair cartilage defects in joints.

  17. Evaluation of laryngeal cartilage calcification in computed tomography

    International Nuclear Information System (INIS)

    Laskowska, K.; Serafin, Z.; Lasek, W.; Maciejewski, M.; Wieczor, W.; Wisniewski, S.

    2008-01-01

    Computed tomography (CT) is one of the basic methods used for laryngeal carcinoma diagnostics. Osteosclerotic and osteolytic changes of the cartilages are considered as a common radiologic symptom of laryngeal neoplasms. The aim of this paper was to evaluate the prevalence of both osteosclerotic changes and focal calcification defects, which may be suggestive of osteolysis. Calcification was assessed in the thyroid, the cricoid and the arytenoids cartilages on CT images of the neck. We have retrospectively analyzed neck CT examinations of 50 patients without any laryngeal pathology in anamnesis. The grade and symmetry of calcifications was assessed in the thyroid, the cricoid and the arytenoids cartilages. Calcification of the laryngeal cartilages was present in 83% of the patients. Osteosclerotic lesions of the thyroid cartilage were seen in 70% of the patients (asymmetric in 60% of them), of the cricoid catrilage in 50% (asymmetric in 60%), and of the arytenoid cartilages in 24% (asymmetric in 67%). Focal calcification defects were present in the thyroid cartilage in 56% of the patients (asymmetric in 67% of them), in the cricoid catrilage in 8% (asymmetric in all cases), and in the arytenoid cartilages in 20% (asymmetric in 90%). Osteosclerotic changes and focal calcification defects, which may suggest osteolysis, were found in most of the patients. Therefore, they cannot be used as crucial radiological criteria of neoplastic invasion of laryngeal cartilages. (authors)

  18. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Science.gov (United States)

    Bailleul, Alida M; Hall, Brian K; Horner, John R

    2013-01-01

    The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae). This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors.

  19. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Directory of Open Access Journals (Sweden)

    Alida M Bailleul

    Full Text Available The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae. This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors.

  20. The Application of Sheet Technology in Cartilage Tissue Engineering.

    Science.gov (United States)

    Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei

    2016-04-01

    Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions.

  1. Spontaneous Atraumatic Mediastinal Hemorrhage

    Directory of Open Access Journals (Sweden)

    Morkos Iskander BSc, BMBS, MRCS, PGCertMedEd

    2013-04-01

    Full Text Available Spontaneous atraumatic mediastinal hematomas are rare. We present a case of a previously fit and well middle-aged lady who presented with acute breathlessness and an increasing neck swelling and spontaneous neck bruising. On plain chest radiograph, widening of the mediastinum was noted. The bruising was later confirmed to be secondary to mediastinal hematoma. This life-threatening diagnostic conundrum was managed conservatively with a multidisciplinary team approach involving upper gastrointestinal and thoracic surgeons, gastroenterologists, radiologists, intensivists, and hematologists along with a variety of diagnostic modalities. A review of literature is also presented to help surgeons manage such challenging and complicated cases.

  2. Storage of the complement components C4, C3, and C 3-activator in the human liver as PAS-negative globular hyaline bodies.

    Science.gov (United States)

    Storch, W; Riedel, H; Trautmann, B; Justus, J; Hiemann, D

    1982-01-01

    Liver biopsies of a 58-year-old clinically healthy patient with a hepatomegaly and intracisternal PAS-negative globular hyaline bodies were immunofluorescent-optically examined for the content of the complement components C 1 q, C 4, C 9, C 1-inactivator, C 3-activator. Further examinations were performed for fibrinogen, IgG, IgA, IgM, IgD, IgE, L-chain (type chi and lambda), alpha 1-antitrypsin, alpha 1-fetoprotein, alpha 1- and alpha 2-glycoprotein, cholinesterase, ceruloplasmin, myoglobin, hemopexin, HBsAg and HBsAg. Th inclusion bodies reacted with antisera against the complement components C 4, C 3 and C 3-activator, as also identified by double immunofluorescence. Probably this is a disturbance of the protein metabolism of the liver cell with abnormal complement storage in the presence of normal total complement and normal complement components in the serum.

  3. Squamous cell carcinoma with perineural and intraneural invasion associated with hyalinized tumor nodules: a diagnostic pitfall and review of the literature.

    Science.gov (United States)

    Murphy, Claire; Zhao, Ge; Berg, Daniel; Olson, Jonathan; Argenyi, Zsolt

    2015-06-01

    Cutaneous squamous cell carcinoma with perineural invasion (PNI) is an important inconspicuous finding. We report a case of a common tumor with an uncommon finding. A 57-year-old white man presented with paresthesias and a new lesion at the site of a previously resected squamous cell carcinoma. At the time of case review, present deep in the dermis, were large hyalinized tumor nodules. These nodules could have easily have been dismissed as sclerotic tumor nodules or fibrotic in-transit metastases. With the clinical history in mind, these nodules were further investigated by immunohistochemistry and reviewed in conjunction with the Mohs frozen section slides. These nodules were subsequently diagnosed as significant peri- and intraneural invasion. This extremely unusual presentation of PNI is a potential diagnostic pitfall that is potentially under-recognized by dermatopathologists but crucial for determining patient management.

  4. Patient Profiling in Cartilage Regeneration Prognostic Factors Determining Success of Treatment for Cartilage Defects

    NARCIS (Netherlands)

    de Windt, Tommy S.; Bekkers, Joris E. J.; Creemers, Laura B.; Dhert, Wouter J. A.; Saris, Daniel B. F.

    2009-01-01

    Background: Cartilage therapy for focal articular lesions has been implemented for more than a decade, and it is becoming increasingly available. What is still lacking, however, is analysis of patient characteristics to help improve outcome or select patients for specific treatment. Purpose: To

  5. Glycogen storage in tissue-engineered cartilage.

    Science.gov (United States)

    Suits, Jocelyne M T; Khan, Aasma A; Waldman, Stephen D

    2008-08-01

    Recent focus in cartilage tissue engineering has been to develop functional tissue that can survive after implantation. One such determinant is the ability of the engineered tissue to be able to sustain its metabolic activity post-implantation. In vivo, chondrocytes contain stores of intracellular glycogen to support metabolism and it is unknown whether these cells can store glycogen during tissue growth in vitro. Thus, the purpose of this study was to determine the appropriate nutrient conditions to elicit glycogen storage in tissue-engineered cartilage. Isolated bovine articular chondrocytes were seeded in scaffold-free, 3D culture and grown under different nutrient conditions (glucose concentrations and media volumes) for 4 weeks. Intracellular glycogen storage, glucose utilization and extracellular matrix (ECM) accumulation of the engineered tissues were then evaluated. Glucose concentration (5-10 mM) and media volume (1-4 ml) had no apparent effect on cartilaginous tissue formation. However, glucose consumption by the cells increased in proportion to the volume of medium provided. Lactate production was similarly affected but in direct proportion to the glucose consumed, indicating a change in glucose utilization. Similarly, under elevated medium volume, engineered tissues stained positive for intracellular glycogen, which was also confirmed biochemically (1 ml, 1 +/- 2; 2 ml, 13 +/- 4; 4 ml, 13 +/- 3 microg/construct). The storage of intracellular glycogen in engineered cartilage can be elicited by culturing the constructs in elevated volumes of medium (>or=1 ml medium/million cells), which might help to ensure appropriate metabolic function after implantation. (c) 2008 John Wiley & Sons, Ltd.

  6. Spontaneous Appendicocutaneous Fistula I

    African Journals Online (AJOL)

    M T0k0de* MB, BS and. Dr 0. A. AWOj0bi+ FMCS (Nig). ABSTRACT. Ruptured appendicitis is not a common cause of spontaneous enterocutaneous fistula. A case of ruptured retrocaecal appendicitis presenting as an enterocutaneous fistula in a Nigerian woman is presented. The literature on this disorder is also reviewed.

  7. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Strauss, Edna; Caly, Wanda Regina

    2003-01-01

    Spontaneous bacterial peritonitis occurs in 30% of patients with ascites due to cirrhosis leading to high morbidity and mortality rates. The pathogenesis of spontaneous bacterial peritonitis is related to altered host defenses observed in end-stage liver disease, overgrowth of microorganisms, and bacterial translocation from the intestinal lumen to mesenteric lymph nodes. Clinical manifestations vary from severe to slight or absent, demanding analysis of the ascitic fluid. The diagnosis is confirmed by a number of neutrophils over 250/mm3 associated or not to bacterial growth in culture of an ascites sample. Enterobacteriae prevail and Escherichia coli has been the most frequent bacterium reported. Mortality rates decreased markedly in the last two decades due to early diagnosis and prompt antibiotic treatment. Third generation intravenous cephalosporins are effective in 70% to 95% of the cases. Recurrence of spontaneous bacterial peritonitis is common and can be prevented by the continuous use of oral norfloxacin. The development of bacterial resistance demands the search for new options in the prophylaxis of spontaneous bacterial peritonitis; probiotics are a promising new approach, but deserve further evaluation. Short-term antibiotic prophylaxis is recommended for patients with cirrhosis and ascites shortly after an acute episode of gastrointestinal bleeding.

  8. Spontaneous Grammar Explanations.

    Science.gov (United States)

    Tjoo, Hong Sing; Lewis, Marilyn

    1998-01-01

    Describes one New Zealand university language teacher's reflection on her own grammar explanations to university-level students of Bahasa Indonesian. Examines form-focused instruction through the teacher's spontaneous answers to students' questions about the form of the language they are studying. The teacher's experiences show that it takes time…

  9. EDITORIAL SPONTANEOUS BACTERIAL PERITONITIS ...

    African Journals Online (AJOL)

    hi-tech

    Spontaneous bacterial peritonitis (SBP) frequent]y occurs in patients with liver cirrhosis and ascites. It is defined as an infection of previously sterile ascitic fluid without any demonstrable intrabdominal source of infection. It is now internationally agreed that a polymorphonuclear (PMN) cell count in the ascitic fluid of over 250 ...

  10. Spontaneous dimensional reduction?

    Science.gov (United States)

    Carlip, Steven

    2012-10-01

    Over the past few years, evidence has begun to accumulate suggesting that spacetime may undergo a "spontaneous dimensional reduction" to two dimensions near the Planck scale. I review some of this evidence, and discuss the (still very speculative) proposal that the underlying mechanism may be related to short-distance focusing of light rays by quantum fluctuations.

  11. Does Radio Frequency Ablation (RFA) Epiphysiodesis Affect Joint Cartilage?

    DEFF Research Database (Denmark)

    Shiguetomi Medina, Juan Manuel; Abood, Ahmed Abdul-Hussein; Rahbek, Ole

    the joint articular cartilage in all samples using T1-weighted, T2-weighted and water content sequences under a 1.5 T magnetic field Findings / Results: The intentionally-damaged articular cartilage showed intensity changes on the MR. This images were used as reference for damage. We found no evidence...

  12. Impact of a daily exercise dose on knee joint cartilage

    DEFF Research Database (Denmark)

    Bricca, A; Juhl, C B; Grodzinsky, A J

    2017-01-01

    OBJECTIVE: To investigate the impact of a daily exercise dose on cartilage composition and thickness, by conducting a systematic review of randomized controlled trials (RCTs) involving healthy animals. METHODS: A narrative synthesis of the effect of a daily exercise dose on knee cartilage aggrecan...

  13. Segmenting articular cartilage automatically using a voxel classification approach

    DEFF Research Database (Denmark)

    Folkesson, Jenny; Dam, Erik B; Olsen, Ole F

    2007-01-01

    We present a fully automatic method for articular cartilage segmentation from magnetic resonance imaging (MRI) which we use as the foundation of a quantitative cartilage assessment. We evaluate our method by comparisons to manual segmentations by a radiologist and by examining the interscan repro...

  14. A Novel Approach to Stimulate Cartilage Repair: Targeting Collagen Turnover

    NARCIS (Netherlands)

    Y.M. Bastiaansen-Jenniskens (Yvonne)

    2009-01-01

    textabstractOA is a complex disease of which the ethiopathology is not completely known and therapies to repair cartilage are still under investigation. The increase of collagen type II expression in osteoarthritic cartilage suggests an activated repair mechanism that is however ineffective in

  15. The Application of Polysaccharide Biocomposites to Repair Cartilage Defects

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2014-01-01

    Full Text Available Owing to own nature of articular cartilage, it almost has no self-healing ability once damaged. Despite lots of restore technologies having been raised in the past decades, no repair technology has smoothly substituted for damaged cartilage using regenerated cartilage tissue. The approach of tissue engineering opens a door to successfully repairing articular cartilage defects. For instance, grafting of isolated chondrocytes has huge clinical potential for restoration of cartilage tissue and cure of chondral injury. In this paper, SD rats are used as subjects in the experiments, and they are classified into three groups: natural repair (group A, hyaluronic acid repair (group B, and polysaccharide biocomposites repair (hyaluronic acid hydrogel containing chondrocytes, group C. Through the observation of effects of repairing articular cartilage defects, we concluded that cartilage repair effect of polysaccharide biocomposites was the best at every time point, and then the second best was hyaluronic acid repair; both of them were better than natural repair. Polysaccharide biocomposites have good biodegradability and high histocompatibility and promote chondrocytes survival, reproduction, and spliting. Moreover, polysaccharide biocomposites could not only provide the porous network structure but also carry chondrocytes. Consequently hyaluronic acid-based polysaccharide biocomposites are considered to be an ideal biological material for repairing articular cartilage.

  16. Repair of osteochondral defects with allogeneic tissue engineered cartilage implants.

    Science.gov (United States)

    Schreiber, R E; Ilten-Kirby, B M; Dunkelman, N S; Symons, K T; Rekettye, L M; Willoughby, J; Ratcliffe, A

    1999-10-01

    The objective of this study was to evaluate the effect of allogeneic tissue engineered cartilage implants on healing of osteochondral defects. Rabbit chondrocytes were cultured in monolayer, then seeded onto biodegradable, three-dimensional polyglycolic acid meshes. Cartilage constructs were cultured hydrodynamically to yield tissue with relatively more (mature) or less (immature) hyalinelike cartilage, as compared with adult rabbit articular cartilage. Osteochondral defects in the patellar grooves of both stifle joints either were left untreated or implanted with allogeneic tissue engineered cartilage. Histologic samples from in and around the defect sites were examined 3, 6, 9, and 12, and 24 months after surgery. By 9 months after surgery, defects sites treated with cartilage implants contained significantly greater amounts of hyalinelike cartilage with high levels of proteoglycan, and had a smooth, nonfibrillated articular surface as compared to untreated defects. In contrast, the repair tissue formed in untreated defects had fibrillated articular surfaces, significant amounts of fibrocartilage, and negligible proteoglycan. These differences between treated and untreated defects persisted through 24 months after surgery. The results of this study suggest that the treatment of osteochondral lesions with allogenic tissue engineered cartilage implants may lead to superior repair tissue than that found in untreated osteochondral lesions.

  17. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  18. Effect of scopoletin on fascia-wrapped diced cartilage grafts

    African Journals Online (AJOL)

    Surgically wrapped diced cartilages exhibit various degrees of resorption; thus, it has been recommended that fascia be used to wrap diced cartilages. However, few surgeons suggest the use of AlloDerm for wrapping because the harvesting of fascia may cause hematoma and alopecia [17]. Additionally, block grafts have a.

  19. Cartilage imaging: motivation, techniques, current and future significance

    International Nuclear Information System (INIS)

    Link, Thomas M.; Stahl, Robert; Woertler, Klaus

    2007-01-01

    Cartilage repair techniques and pharmacological therapies are currently areas of major clinical interest and research, in particular to prevent and treat osteoarthritis. MR imaging-based techniques to visualize cartilage are prerequisites to guide and monitor these therapies. In this review article, standard MR imaging sequences are described, including proton density-weighted fast spin echo, spoiled gradient echo and dual echo steady state sequences. In addition, new sequences that have been developed and are currently being investigated are presented, including driven equilibrium Fourier transform and steady-state free precession-based imaging. Using high-field MR imaging at 3.0-T, visualization of cartilage and the related pathology has been improved. Volumetric quantitative cartilage MR imaging was developed as a tool to monitor the progression of osteoarthritis and to evaluate new pharmacological cartilage protective therapies. The most exciting developments, however, are in the field of cartilage matrix assessment with quantitative dGEMRIC, T2 and T1rho mapping techniques. These techniques aim at detecting cartilage damage at a stage when changes are potentially still reversible, before cartilage tissue is lost. There is currently substantial interest in these techniques from rheumatologists and orthopedists; radiologists therefore need to keep up with these developments. (orig.)

  20. Two dimensional spectral camera development for cartilage monitoring

    Science.gov (United States)

    Kuehn, A.; Graf, A.; Wenzel, U.; Princz, S.; Miller, R.; Mantz, H.; Hessling, M.

    2015-07-01

    In the joint project "BioopTiss" between the Ulm University Medical Center and Ulm University of Applied Sciences, a bioreactor is under development to grow facial cartilage by the methods of tissue engineering. In order to ensure a sufficient quality of the cartilage for implantation, the cartilage growth must be monitored continuously. Current monitoring methods destroy the cultured cartilage so that it is no longer suitable for implantation. Alternatively, it is possible to analyze the cartilage using fluorescence spectroscopy with UV light excitation. This allows a non-invasive assessment of cartilage in terms of composition and quality. The cultured cartilage tissue can reach a size of several square centimeters. For recording fluorescence spectra of every point of the cartilage sample, a highly sensitive spectral camera has been developed which allows distinguishing collagen I from collagen II non-invasively by their fluorescence. This spectral camera operates according to the computed tomography imaging spectrometry (CTIS) principle, which allows obtaining many spectra of a small area with only one snapshot.

  1. Follistatin Alleviates Synovitis and Articular Cartilage Degeneration Induced by Carrageenan

    Directory of Open Access Journals (Sweden)

    Jun Yamada

    2014-01-01

    Full Text Available Activins are proinflammatory cytokines which belong to the TGFβ superfamily. Follistatin is an extracellular decoy receptor for activins. Since both activins and follistatin are expressed in articular cartilage, we hypothesized that activin-follistatin signaling participates in the process of joint inflammation and cartilage degeneration. To test this hypothesis, we examined the effects of follistatin in a carrageenan-induced mouse arthritis model. Synovitis induced by intra-articular injection of carrageenan was significantly alleviated by preinjection with follistatin. Macrophage infiltration into the synovial membrane was significantly reduced in the presence of follistatin. In addition, follistatin inhibited proteoglycan erosion induced by carrageenan in articular cartilage. These data indicate that activin-follistatin signaling is involved in joint inflammation and cartilage homeostasis. Our data suggest that follistatin can be a new therapeutic target for inflammation-induced articular cartilage degeneration.

  2. Injectable hydrogels for cartilage and bone tissue engineering

    Science.gov (United States)

    Liu, Mei; Zeng, Xin; Ma, Chao; Yi, Huan; Ali, Zeeshan; Mou, Xianbo; Li, Song; Deng, Yan; He, Nongyue

    2017-01-01

    Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix (ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed. PMID:28584674

  3. Healing results in meniscus and articular cartilage photochemically welded with 1,8-naphthalimide dyes

    Science.gov (United States)

    Judy, Millard M.; Jackson, Robert W.; Nosir, Hany R.; Matthews, James Lester; Loyd, John D.; Lewis, David E.; Utecht, Ronald E.; Yuan, Dongwu

    1997-05-01

    Meniscal tears and partial thickness defects in articular cartilage do not heal spontaneously. In this paper results are described of studies of a procedure for evoking the healing response in such lesions by a non-thermal tissue sparing photochemical weld using 1,8-naphthalimide dyes. Fifteen essentially mature Barbados sheep 40 - 60 pounds in weight received a 2 - 3 mm flap tear by incision in the red white zone of the medial meniscus oriented parallel to the table of the tibia. The animals were divided into four groups; Group I, no treatment; Group II, treatment by laser activated photoactive dyes; Group III, treatment by suturing; Group IV, treatment by laser irradiation only; Group V, treatment by photoactive dyes only. In another group of 12 sheep partial thickness flap tear was created by incision in the articular cartilage of the femoral condyle. These were divided into four groups as for the meniscus study, omitting the sutured control. Welds were made using the dimeric dye MBM Gold BW 012-012-012 at 12 mM in PBS, 457.9 nm argon ion laser radiation at 800 mW/cm2, 7.5 minutes (360 J/cm2) with approximately 2 kg/cm2 externally applied pressure. Animals were sacrificed at 24 hr, 4 weeks, 3 and 6 months postoperatively. Gross appearance of menisci and cartilage in all welded knees was normal and all welds resisted deformation or loosening under forceful probing. Histology of studies of both tissues out to 6 moths disclosed close bonding of welded area, continuing healing response in the form of cellular recruitment and protein deposition and the absence of inflammatory response. Tissue erosion and arthritic changes were evident in all unwelded controls.

  4. Cartilage regeneration and repair testing in a surrogate large animal model.

    Science.gov (United States)

    Simon, Timothy M; Aberman, Harold M

    2010-02-01

    The aging human population is experiencing increasing numbers of symptoms related to its degenerative articular cartilage (AC), which has stimulated the investigation of methods to regenerate or repair AC. However, the seemingly inherent limited capacity for AC to regenerate persists to confound the various repair treatment strategies proposed or studied. Animal models for testing AC implant devices and reparative materials are an important and required part of the Food and Drug Administration approval process. Although final testing is ultimately performed in humans, animal testing allows for a wider range of parameters and combinations of test materials subjected to all the biological interactions of a living system. We review here considerations, evaluations, and experiences with selection and use of animal models and describe two untreated lesion models useful for testing AC repair strategies. These created lesion models, one deep (6 mm and through the subchondral plate) the other shallow (to the level of the subchondral bone plate) were placed in the middle one-third of the medial femoral condyle of the knee joints of goats. At 1-year neither the deep nor the shallow full-thickness chondral defects generated a repair that duplicated natural AC. Moreover, progressive deleterious changes occurred in the AC surrounding the defects. There are challenges in translation from animals to humans as anatomy and structures are different and immobilization to protect delicate repairs can be difficult. The tissues potentially generated by proposed cartilage repair strategies must be compared with the spontaneous changes that occur in similarly created untreated lesions. The prevention of the secondary changes in the surrounding cartilage and subchondral bone described in this article should be addressed with the introduction of treatments for repairs of the articulating surface.

  5. Biochemical effects on long-term frozen human costal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Stefany P.; Martinho Junior, Antonio C.; Yoshito, Daniele; Soares, Fernando A.N.; Mathor, Monica B., E-mail: mathor@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  6. Biochemical effects on long-term frozen human costal cartilage

    International Nuclear Information System (INIS)

    Santin, Stefany P.; Martinho Junior, Antonio C.; Yoshito, Daniele; Soares, Fernando A.N.; Mathor, Monica B.

    2011-01-01

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  7. Cartilage hair hypoplasia: characteristics and orthopaedic manifestations.

    Science.gov (United States)

    Riley, Patrick; Weiner, Dennis S; Leighley, Bonnie; Jonah, David; Morton, D Holmes; Strauss, Kevin A; Bober, Michael B; Dicintio, Martin S

    2015-04-01

    Cartilage hair hypoplasia (CHH) is a rare metaphyseal chondrodysplasia characterized by short stature and short limbs, found primarily in Amish and Finnish populations. Cartilage hair hypoplasia is caused by mutations in the RMRP gene located on chromosome 9p13.3. The disorder has several characteristic orthopaedic manifestations, including joint laxity, limited elbow extension, ankle varus, and genu varum. Immunodeficiency is of concern in most cases. Although patients exhibit orthopaedic problems, the orthopaedic literature on CHH patients is scant at best. The objective of this study was to characterize the orthopaedic manifestations of CHH based on the authors' unique access to the largest collection of CHH patients ever reported. The authors examined charts and/or radiographs in 135 cases of CHH. We analyzed the orthopaedic manifestations to better characterize and further understand the orthopaedic surgeon's role in this disorder. In addition to describing the clinical characteristics, we report on our surgical experience in caring for CHH patients. Genu varum, with or without knee pain, is the most common reason a patient with CHH will seek orthopaedic consultation. Of the cases reviewed, 32 patients had undergone surgery, most commonly to correct genu varum. This paper characterizes the orthopaedic manifestations of CHH. Characterizing this condition in the orthopaedic literature will likely assist orthopaedic surgeons in establishing a correct diagnosis and appreciating the orthopaedic manifestations. It is important that the accompanying medical conditions are appreciated and evaluated.

  8. Spontaneous healing of spontaneous coronary artery dissection.

    Science.gov (United States)

    Almafragi, Amar; Convens, Carl; Heuvel, Paul Van Den

    2010-01-01

    Spontaneous coronary artery dissection (SCAD) is a rare cause of acute coronary syndrome and sudden cardiac death. It should be suspected in every healthy young woman without cardiac risk factors, especially during the peripartum or postpartum periods. It is important to check for a history of drug abuse, collagen vascular disease or blunt trauma of the chest. Coronary angiography is essential for diagnosis and early management. We wonder whether thrombolysis might aggravate coronary dissection. All types of treatment (medical therapy, percutaneous intervention or surgery) improve the prognosis without affecting survival times if used appropriately according to the clinical stability and the angiographic features of the involved coronary arteries. Prompt recognition and targeted treatment improve outcomes. We report a case of SCAD in a young female free of traditional cardiovascular risk factors, who presented six hours after thrombolysis for ST elevation myocardial infarction. Coronary angiography showed a dissection of the left anterior descending and immediate branch. She had successful coronary artery bypass grafting, with complete healing of left anterior descending dissection.

  9. Revision Surgery After Cartilage Repair: Data From the German Cartilage Registry (KnorpelRegister DGOU).

    Science.gov (United States)

    Pestka, Jan M; Luu, Nam H; Südkamp, Norbert P; Angele, Peter; Spahn, Gunther; Zinser, Wolfgang; Niemeyer, Philipp

    2018-02-01

    Various operative strategies have been introduced to restore the integrity of articular cartilage when injured. The frequency of revision surgery after cartilage regenerative surgery remains incompletely understood. The purpose of this study was to identify the reasons for revision surgery after cartilage regenerative surgery of the knee. We hypothesized that in a large patient cohort, revision rates would differ from those in the current literature. Case-control study; Level of evidence, 3. A total of 2659 complete data sets from the German Cartilage Registry were available for analyses. In brief, baseline data were provided by the attending physician at the time of index surgery. Follow-up data were collected using a web-based questionnaire inquiring whether patients had needed revision surgery during follow-up, which was defined as the endpoint of the present analysis. A total of 88 patients (3.3%) reported the need for revision surgery as early as 12 months postoperatively. Among the most common causes were arthrofibrosis (n = 27) and infection (n = 10). Female patients showed a significantly greater complication rate (4.5%) when compared with male patients (2.6%; P = .0071). The majority of cartilage lesions were located at the medial femoral condyle (40.2%), with a mean defect size of 3.5 ± 2.1 cm 2 . Neither the location nor defect size appeared to lead to an increased revision rate, which was greatest after osteochondral autografts (5.2%) and autologous chondrocyte implantation (4.6%). Revision rates did not differ significantly among surgical techniques. Chi-square analysis revealed significant correlations between the number of previous joint surgeries and the need for revision surgery ( P = .0203). Multivariate regression analysis further confirmed sex and the number of previous surgeries as variables predicting the need for early revision surgery. The low early revision rates found in this study underline that today's cartilage repair surgeries are

  10. Articulation of Native Cartilage Against Different Femoral Component Materials. Oxidized Zirconium Damages Cartilage Less Than Cobalt-Chrome.

    Science.gov (United States)

    Vanlommel, Jan; De Corte, Ronny; Luyckx, Jean Philippe; Anderson, Melissa; Labey, Luc; Bellemans, Johan

    2017-01-01

    Oxidized zirconium (OxZr) is produced by thermally driven oxidization creating an oxidized surface with the properties of a ceramic at the top of the Zr metal substrate. OxZr is much harder and has a lower coefficient of friction than cobalt-chrome (CoCr), both leading to better wear characteristics. We evaluated and compared damage to the cartilage of porcine patella plugs, articulating against OxZr vs CoCr. Our hypothesis was that, owing to its better wear properties, OxZr would damage cartilage less than CoCr. If this is true, OxZr might be a better material for the femoral component during total knee arthroplasty if the patella is not resurfaced. Twenty-one plugs from porcine patellae were prepared and tested in a reciprocating pin-on-disk machine while lubricated with bovine serum and under a constant load. Three different configurations were tested: cartilage-cartilage as the control group, cartilage-OxZr, and cartilage-CoCr. Macroscopic appearance, cartilage thickness, and the modified Mankin score were evaluated after 400,000 wear cycles. The control group showed statistically significant less damage than plugs articulating against both other materials. Cartilage plugs articulating against OxZr were statistically significantly less damaged than those articulating against CoCr. Although replacing cartilage by an implant always leads to deterioration of the cartilage counterface, OxZr results in less damage than CoCr. The use of OxZr might thus be preferable to CoCr in case of total knee arthroplasty without patella resurfacing. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Spontaneous spinal epidural abscess.

    LENUS (Irish Health Repository)

    Ellanti, P

    2011-10-01

    Spinal epidural abscess is an uncommon entity, the frequency of which is increasing. They occur spontaneously or as a complication of intervention. The classical triad of fever, back pain and neurological symptoms are not always present. High index of suspicion is key to diagnosis. Any delay in diagnosis and treatment can have significant neurological consequences. We present the case of a previously well man with a one month history of back pain resulting from an epidural abscess.

  12. Cartilage Degeneration and Alignment in Severe Varus Knee Osteoarthritis.

    Science.gov (United States)

    Nakagawa, Yasuaki; Mukai, Shogo; Yabumoto, Hiromitsu; Tarumi, Eri; Nakamura, Takashi

    2015-10-01

    The aim of this study was to examine the relationship between cartilage, ligament, and meniscus degeneration and radiographic alignment in severe varus knee osteoarthritis in order to understand the development of varus knee osteoarthritis. Fifty-three patients (71 knees) with primary varus knee osteoarthritis and who underwent total knee arthroplasty were selected for this study. There were 6 men and 47 women, with 40 right knees and 31 left knees studied; their mean age at operation was 73.5 years. The ligament, meniscus, degeneration of joint cartilage, and radiographic alignments were examined visually. The tibial plateau-tibial shaft angle was larger if the condition of the cartilage in the lateral femoral condyle was worse. The femorotibial angle and tibial plateau-tibial shaft angle were larger if the conditions of the lateral meniscus or the cartilage in the lateral tibial plateau were worse. Based on the results of this study, progression of varus knee osteoarthritis may occur in the following manner: medial knee osteoarthritis starts in the central portion of the medial tibial plateau, and accompanied by medial meniscal extrusion and anterior cruciate ligament rupture, cartilage degeneration expands from the anterior to the posterior in the medial tibial plateau. Bone attrition occurs in the medial tibial plateau, and the femoro-tibial angle and tibial plateau-tibial shaft angle increase. Therefore, the lateral intercondylar eminence injures the cartilage of the lateral femoral condyle in the longitudinal fissure type. Thereafter, the cartilage degeneration expands in the whole of the knee joints.

  13. Comparison of Different Approaches for Measuring Tibial Cartilage Thickness

    Directory of Open Access Journals (Sweden)

    Maier Jennifer

    2017-07-01

    Full Text Available Osteoarthritis is a degenerative disease affecting bones and cartilage especially in the human knee. In this context, cartilage thickness is an indicator for knee cartilage health. Thickness measurements are performed on medical images acquired in-vivo. Currently, there is no standard method agreed upon that defines a distance measure in articular cartilage. In this work, we present a comparison of different methods commonly used in literature. These methods are based on nearest neighbors, surface normal vectors, local thickness and potential field lines. All approaches were applied to manual segmentations of tibia and lateral and medial tibial cartilage performed by experienced raters. The underlying data were contrast agent-enhanced cone-beam C-arm CT reconstructions of one healthy subject’s knee. The subject was scanned three times, once in supine position and two times in a standing weight-bearing position. A comparison of the resulting thickness maps shows similar distributions and high correlation coefficients between the approaches above 0.90. The nearest neighbor method results on average in the lowest cartilage thickness values, while the local thickness approach assigns the highest values. We showed that the different methods agree in their thickness distribution. The results will be used for a future evaluation of cartilage change under weight-bearing conditions.

  14. The Influence of Articular Cartilage Thickness Reduction on Meniscus Biomechanics.

    Science.gov (United States)

    Łuczkiewicz, Piotr; Daszkiewicz, Karol; Chróścielewski, Jacek; Witkowski, Wojciech; Winklewski, Pawel J

    2016-01-01

    Evaluation of the biomechanical interaction between meniscus and cartilage in medial compartment knee osteoarthritis. The finite element method was used to simulate knee joint contact mechanics. Three knee models were created on the basis of knee geometry from the Open Knee project. We reduced the thickness of medial cartilages in the intact knee model by approximately 50% to obtain a medial knee osteoarthritis (OA) model. Two variants of medial knee OA model with congruent and incongruent contact surfaces were analysed to investigate the influence of congruency. A nonlinear static analysis for one compressive load case was performed. The focus of the study was the influence of cartilage degeneration on meniscal extrusion and the values of the contact forces and contact areas. In the model with incongruent contact surfaces, we observed maximal compressive stress on the tibial plateau. In this model, the value of medial meniscus external shift was 95.3% greater, while the contact area between the tibial cartilage and medial meniscus was 50% lower than in the congruent contact surfaces model. After the non-uniform reduction of cartilage thickness, the medial meniscus carried only 48.4% of load in the medial compartment in comparison to 71.2% in the healthy knee model. We have shown that the change in articular cartilage geometry may significantly reduce the role of meniscus in load transmission and the contact area between the meniscus and cartilage. Additionally, medial knee OA may increase the risk of meniscal extrusion in the medial compartment of the knee joint.

  15. A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose

    Science.gov (United States)

    2013-01-01

    Introduction Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model. Methods Standardized bovine cartilage discs with a central defect filled with BNC were cultured for up to eight weeks with/without stimulation with transforming growth factor-β1 (TGF-β1. Cartilage formation and integrity were analyzed by histology, immunohistochemistry and electron microscopy. Content, release and neosynthesis of the matrix molecules proteoglycan/aggrecan, collagen II and collagen I were also quantified. Finally, gene expression of these molecules was profiled in resident chondrocytes and chondrocytes migrated onto the cartilage surface or the implant material. Results Non-stimulated and especially TGF-β1-stimulated cartilage discs displayed a preserved structural and functional integrity of the chondrocytes and surrounding matrix, remained vital in long-term culture (eight weeks) without signs of degeneration and showed substantial synthesis of cartilage-specific molecules at the protein and mRNA level. Whereas mobilization of chondrocytes from the matrix onto the surface of cartilage and implant was pivotal for successful seeding of cell-free BNC, chondrocytes did not immigrate into the central BNC area, possibly due to the relatively small diameter of its pores (2 to 5 μm). Chondrocytes on the BNC surface showed signs of successful redifferentiation over time, including increase of aggrecan/collagen type II mRNA, decrease of collagen type I mRNA and initial deposition of proteoglycan and collagen type II in long-term high-density pellet cultures

  16. MR imaging of cartilage and its repair in the knee - a review

    Energy Technology Data Exchange (ETDEWEB)

    Trattnig, S.; Welsch, G.W. [Medical University Vienna, MR Centre of Excellence, Department of Radiology, Vienna (Austria); Domayer, S. [Medical University Vienna, MR Centre of Excellence, Department of Radiology, Vienna (Austria); Medical University Vienna, Department of Orthopedics, Vienna (Austria); Mosher, T. [Penn State University, College of Medicine, Department of Radiology and Orthopaedic Surgery, Hershey, PA (United States); Eckstein, F. [Paracelsus Medical University, Institute of Anatomy and Musculoskeletal Research, Salzburg (Austria); Chondrometrics GmbH, Ainring (Germany)

    2009-07-15

    Chondral injuries are common lesions of the knee joint, and many patients could benefit from cartilage repair. Widespread cartilage repair techniques require sophisticated noninvasive follow-up using MRI. In addition to the precise morphological assessment of this area of cartilage repair, the cartilage's biochemical constitution can be determined using biochemical MRI techniques. The combination of the clinical outcome after cartilage repair together with the morphological and biochemical description of the cartilage repair tissue as well as the surrounding cartilage can lead to an optimal follow-up evaluation. The present article on MR imaging techniques of cartilage repair focuses on morphological description and scoring using techniques from conventional 2D through advanced isotropic 3D MRI sequences. Furthermore the ultrastructure of the repair tissue and the surrounding cartilage is evaluated in-vivo by biochemical T1-delayed gadolinium enhanced MRI of cartilage (dGEMRIC), T2 relaxation, and diffusion-weighted imaging techniques. (orig.)

  17. CT and MRI of aggressive osteoblastoma of thyroid cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Agarwala, R.; Graham, R.J.; Panella, J.S. [Northwestern Univ., Evanston, IL (United States)

    1996-01-01

    We present a unique case of aggressive osteoblastoma arising from thyroid cartilage. A 52-year-old man presented with a 10 month history of neck discomfort but without frank pain. CT and MR examinations disclosed a well defined mass arising from the thyroid cartilage. This lesion had areas of coarse calcifications and a central area of lucency. The appearance suggested chondrosarcoma. Hemilaryngectomy was performed to remove the mass en bloc. Surgical pathology diagnosed aggressive osteoblastoma arising from thyroid cartilage. 8 refs., 2 figs.

  18. Tissue engineering of cartilages using biomatrices

    DEFF Research Database (Denmark)

    Melrose, J.; Chuang, C.; Whitelock, J.

    2008-01-01

    Tissue engineering is an exciting new cross-disciplinary methodology which applies the principles of engineering and structure-function relationships between normal and pathological tissues to develop biological substitute to restore, maintain or improve tissue function. Tissue engineering...... therefore involves a melange of approaches encompassing developmental biology, tissue mechanics, medicine, cell differentiation and survival biology, mechanostransduction and nano-fabrication technology. The central tissue of interest in this review is cartilage. Traumatic injuries, congenital abnormalities...... engineering approaches and many of these are discussed and their in vitro and in vivo applications covered in this review. Tissue engineering is entering an exciting era; significant advances have been made; however, many technical challenges remain to be solved before this technology becomes widely...

  19. Prospective Clinical Trial for Septic Arthritis: Cartilage Degradation and Inflammation Are Associated with Upregulation of Cartilage Metabolites

    Directory of Open Access Journals (Sweden)

    Hagen Schmal

    2016-01-01

    Full Text Available Background. Intra-articular infections can rapidly lead to osteoarthritic degradation. The aim of this clinical biomarker analysis was to investigate the influence of inflammation on cartilage destruction and metabolism. Methods. Patients with acute joint infections were enrolled in a prospective clinical trial and the cytokine composition of effusions (n=76 was analyzed. Characteristics of epidemiology and disease severity were correlated with levels of cytokines with known roles in cartilage turnover and degradation. Results. Higher synovial IL-1β concentrations were associated with clinical parameters indicating a higher disease severity (p<0.03 excluding the incidence of sepsis. Additionally, intra-articular IL-1β levels correlated with inflammatory serum parameters as leucocyte counts (LC and C-reactive protein concentrations (p<0.05 but not with age or comorbidity. Both higher LC and synovial IL-1β levels were associated with increased intra-articular collagen type II cleavage products (C2C indicating cartilage degradation. Joints with preinfectious lesions had higher C2C levels. Intra-articular inflammation led to increased concentrations of typical cartilage metabolites as bFGF, BMP-2, and BMP-7. Infections with Staphylococcus species induced higher IL-1β expression but less cartilage destruction than other bacteria. Conclusion. Articular infections have bacteria-specific implications on cartilage metabolism. Collagen type II cleavage products reliably mark destruction, which is associated with upregulation of typical cartilage turnover cytokines. This trial is registered with DRKS00003536, MISSinG.

  20. The development of the collagen fibre network in tissue-engineered cartilage constructs in vivo. Engineered cartilage reorganises fibre network

    Directory of Open Access Journals (Sweden)

    H Paetzold

    2012-04-01

    Full Text Available For long term durability of tissue-engineered cartilage implanted in vivo, the development of the collagen fibre network orientation is essential as well as the distribution of collagen, since expanded chondrocytes are known to synthesise collagen type I. Typically, these properties differ strongly between native and tissue-engineered cartilage. Nonetheless, the clinical results of a pilot study with implanted tissue-engineered cartilage in pigs were surprisingly good. The purpose of this study was therefore to analyse if the structure and composition of the artificial cartilage tissue changes in the first 52 weeks after implantation. Thus, collagen network orientation and collagen type distribution in tissue-engineered cartilage-carrier-constructs implanted in the knee joints of Göttinger minipigs for 2, 26 or 52 weeks have been further investigated by processing digitised microscopy images of histological sections. The comparison to native cartilage demonstrated that fibre orientation over the cartilage depth has a clear tendency towards native cartilage with increasing time of implantation. After 2 weeks, the collagen fibres of the superficial zone were oriented parallel to the articular surface with little anisotropy present in the middle and deep zones. Overall, fibre orientation and collagen distribution within the implants were less homogenous than in native cartilage tissue. Despite a relatively low number of specimens, the consistent observation of a continuous approximation to native tissue is very promising and suggests that it may not be necessary to engineer the perfect tissue for implantation but rather to provide an intermediate solution to help the body to heal itself.

  1. The development of the collagen fibre network in tissue-engineered cartilage constructs in vivo. Engineered cartilage reorganises fibre network.

    Science.gov (United States)

    Paetzold, H; Goepfert, C; Huber, G; Hoenig, E; Pörtner, R; Schilling, A F; Meenen, N M; Morlock, M M

    2012-04-05

    For long term durability of tissue-engineered cartilage implanted in vivo, the development of the collagen fibre network orientation is essential as well as the distribution of collagen, since expanded chondrocytes are known to synthesise collagen type I. Typically, these properties differ strongly between native and tissue-engineered cartilage. Nonetheless, the clinical results of a pilot study with implanted tissue-engineered cartilage in pigs were surprisingly good. The purpose of this study was therefore to analyse if the structure and composition of the artificial cartilage tissue changes in the first 52 weeks after implantation. Thus, collagen network orientation and collagen type distribution in tissue-engineered cartilage-carrier-constructs implanted in the knee joints of Göttinger minipigs for 2, 26 or 52 weeks have been further investigated by processing digitised microscopy images of histological sections. The comparison to native cartilage demonstrated that fibre orientation over the cartilage depth has a clear tendency towards native cartilage with increasing time of implantation. After 2 weeks, the collagen fibres of the superficial zone were oriented parallel to the articular surface with little anisotropy present in the middle and deep zones. Overall, fibre orientation and collagen distribution within the implants were less homogenous than in native cartilage tissue. Despite a relatively low number of specimens, the consistent observation of a continuous approximation to native tissue is very promising and suggests that it may not be necessary to engineer the perfect tissue for implantation but rather to provide an intermediate solution to help the body to heal itself.

  2. Spontaneous Thigh Compartment Syndrome

    Directory of Open Access Journals (Sweden)

    Khan, Sameer K

    2011-02-01

    Full Text Available A young man presented with a painful and swollen thigh, without any history of trauma, illness, coagulopathic medication or recent exertional exercise. Preliminary imaging delineated a haematoma in the anterior thigh, without any fractures or muscle trauma. Emergent fasciotomies were performed. No pathology could be identified intra-operatively, or on follow-up imaging. A review of thigh compartment syndromes described in literature is presented in a table. Emergency physicians and traumatologists should be cognisant of spontaneous atraumatic presentations of thigh compartment syndrome, to ensure prompt referral and definitive management of this limb-threatening condition. [West J Emerg Med. 2011;12(1:134-138].

  3. [Tribological assessment of articular cartilage. A system for the analysis of the friction coefficient of cartilage, regenerates and tissue engineering constructs; initial results].

    Science.gov (United States)

    Schwarz, M L R; Schneider-Wald, B; Krase, A; Richter, W; Reisig, G; Kreinest, M; Heute, S; Pott, P P; Brade, J; Schütte, A

    2012-10-01

    Values for the friction coefficient of articular cartilage are given in ranges of percentage and lower and are calculated as a quotient of the friction force and the perpendicular loading force acting on it. Thus, a sophisticated system has to be provided for analysing the friction coefficient under different conditions in particular when cartilage should be coupled as friction partner. It is possible to deep-freeze articular cartilage before measuring the friction coefficient as the procedure has no influence on the results. The presented tribological system was able to distinguish between altered and native cartilage. Furthermore, tissue engineered constructs for cartilage repair were differentiated from native cartilage probes by their friction coefficient. In conclusion a tribological equipment is presented to analyze the friction coefficient of articular cartilage, in vivo generated cartilage regenerates and in vitro tissue engineered constructs regarding their biomechanical properties for quality assessment.

  4. Costal cartilage fractures and disruptions in a rugby football player.

    Science.gov (United States)

    Lopez, Victor; Ma, Richard; Li, Xinning; Steele, John; Allen, Answorth A

    2013-05-01

    Costal cartilage fracture of the rib cage, or costochondral, is a rare sporting injury. For contact athletes, the instability of the rib cage may lead to potential serious complications, similar to rib fractures or thorax disruption. Most authors recommend initial conservative treatment with surgery reserved for only recalcitrant cases. We report a case of an amateur American male rugby football player who sustained a costal cartilage fracture and disruption involving the anterior left fifth and sixth rib costal cartilages. The case highlights the difficulty in establishing the diagnosis based on clinical examination and standard radiographs alone. Computed tomography was used to assist in diagnosing this destabilizing injury to the rib cage. Costal cartilage fractures and disruptions in athletes are rarely reported in the literature and can have serious implications for the athlete's ability to return to play if the rib cage is destabilized.

  5. Bioluminescence Assays for Monitoring Chondrogenic Differentiation and Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Hyeon Jeong Je

    2017-06-01

    Full Text Available Since articular cartilage has a limited regeneration potential, for developing biological therapies for cartilage regeneration it is important to study the mechanisms underlying chondrogenesis of stem cells. Bioluminescence assays can visualize a wide range of biological phenomena such as gene expression, signaling, metabolism, development, cellular movements, and molecular interactions by using visible light and thus contribute substantially to elucidation of their biological functions. This article gives a concise review to introduce basic principles of bioluminescence assays and applications of the technology to visualize the processes of chondrogenesis and cartilage regeneration. Applications of bioluminescence assays have been highlighted in the methods of real-time monitoring of gene expression and intracellular levels of biomolecules and noninvasive cell tracking within animal models. This review suggests that bioluminescence assays can be applied towards a visual understanding of chondrogenesis and cartilage regeneration.

  6. Namaste (counterbalancing technique: Overcoming warping in costal cartilage

    Directory of Open Access Journals (Sweden)

    Kapil S Agrawal

    2015-01-01

    Full Text Available Background: Indian noses are broader and lack projection as compared to other populations, hence very often need augmentation, that too by large volume. Costal cartilage remains the material of choice in large volume augmentations and repair of complex primary and secondary nasal deformities. One major disadvantage of costal cartilage grafts (CCG which offsets all other advantages is the tendency to warp and become distorted over a period of time. We propose a simple technique to overcome this menace of warping. Materials and Methods: We present the data of 51 patients of rhinoplasty done using CCG with counterbalancing technique over a period of 4 years. Results: No evidence of warping was found in any patient up to a maximum follow-up period of 4 years. Conclusion: Counterbalancing is a useful technique to overcome the problem of warping. It gives liberty to utilize even unbalanced cartilage safely to provide desired shape and use the cartilage without any wastage.

  7. Cartilage (Bovine and Shark) (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the use of bovine and shark cartilage as a treatment for people with cancer. Note: The information in this summary is no longer being updated and is provided for reference purposes only.

  8. New Techniques for Cartilage Magnetic Resonance Imaging Relaxation Time Analysis: Texture Analysis of Flattened Cartilage and Localized Intra- and Inter-subject Comparisons

    OpenAIRE

    Carballido-Gamio, Julio; Link, Thomas M.; Majumdar, Sharmila

    2008-01-01

    MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra- and inter-subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point...

  9. Spontaneous regression of retinopathy of prematurity:incidence and predictive factors

    Directory of Open Access Journals (Sweden)

    Rui-Hong Ju

    2013-08-01

    Full Text Available AIM:To evaluate the incidence of spontaneous regression of changes in the retina and vitreous in active stage of retinopathy of prematurity(ROP and identify the possible relative factors during the regression.METHODS: This was a retrospective, hospital-based study. The study consisted of 39 premature infants with mild ROP showed spontaneous regression (Group A and 17 with severe ROP who had been treated before naturally involuting (Group B from August 2008 through May 2011. Data on gender, single or multiple pregnancy, gestational age, birth weight, weight gain from birth to the sixth week of life, use of oxygen in mechanical ventilation, total duration of oxygen inhalation, surfactant given or not, need for and times of blood transfusion, 1,5,10-min Apgar score, presence of bacterial or fungal or combined infection, hyaline membrane disease (HMD, patent ductus arteriosus (PDA, duration of stay in the neonatal intensive care unit (NICU and duration of ROP were recorded.RESULTS: The incidence of spontaneous regression of ROP with stage 1 was 86.7%, and with stage 2, stage 3 was 57.1%, 5.9%, respectively. With changes in zone Ⅲ regression was detected 100%, in zoneⅡ 46.2% and in zoneⅠ 0%. The mean duration of ROP in spontaneous regression group was 5.65±3.14 weeks, lower than that of the treated ROP group (7.34±4.33 weeks, but this difference was not statistically significant (P=0.201. GA, 1min Apgar score, 5min Apgar score, duration of NICU stay, postnatal age of initial screening and oxygen therapy longer than 10 days were significant predictive factors for the spontaneous regression of ROP (P<0.05. Retinal hemorrhage was the only independent predictive factor the spontaneous regression of ROP (OR 0.030, 95%CI 0.001-0.775, P=0.035.CONCLUSION:This study showed most stage 1 and 2 ROP and changes in zone Ⅲ can spontaneously regression in the end. Retinal hemorrhage is weakly inversely associated with the spontaneous regression.

  10. Spontaneous Tumor Lysis Syndrome

    Directory of Open Access Journals (Sweden)

    Alicia C. Weeks MD

    2015-08-01

    Full Text Available Tumor lysis syndrome (TLS is a known complication of malignancy and its treatment. The incidence varies on malignancy type, but is most common with hematologic neoplasms during cytotoxic treatment. Spontaneous TLS is thought to be rare. This case study is of a 62-year-old female admitted with multisystem organ failure, with subsequent diagnosis of aggressive B cell lymphoma. On admission, laboratory abnormalities included renal failure, elevated uric acid (20.7 mg/dL, and 3+ amorphous urates on urinalysis. Oliguric renal failure persisted despite aggressive hydration and diuretic use, requiring initiation of hemodialysis prior to chemotherapy. Antihyperuricemic therapy and hemodialysis were used to resolve hyperuricemia. However, due to multisystem organ dysfunction syndrome with extremely poor prognosis, the patient ultimately expired in the setting of a terminal ventilator wean. Although our patient did not meet current TLS criteria, she required hemodialysis due to uric acid nephropathy, a complication of TLS. This poses the clinical question of whether adequate diagnostic criteria exist for spontaneous TLS and if the lack of currently accepted guidelines has resulted in the underestimation of its incidence. Allopurinol and rasburicase are commonly used for prevention and treatment of TLS. Although both drugs decrease uric acid levels, allopurinol mechanistically prevents formation of the substrate rasburicase acts to solubilize. These drugs were administered together in our patient, although no established guidelines recommend combined use. This raises the clinical question of whether combined therapy is truly beneficial or, conversely, detrimental to patient outcomes.

  11. Comparative digital cartilage histology for human and common osteoarthritis models

    Directory of Open Access Journals (Sweden)

    Pedersen DR

    2013-02-01

    Full Text Available Douglas R Pedersen, Jessica E Goetz, Gail L Kurriger, James A MartinDepartment of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USAPurpose: This study addresses the species-specific and site-specific details of weight-bearing articular cartilage zone depths and chondrocyte distributions among humans and common osteoarthritis (OA animal models using contemporary digital imaging tools. Histological analysis is the gold-standard research tool for evaluating cartilage health, OA severity, and treatment efficacy. Historically, evaluations were made by expert analysts. However, state-of-the-art tools have been developed that allow for digitization of entire histological sections for computer-aided analysis. Large volumes of common digital cartilage metrics directly complement elucidation of trends in OA inducement and concomitant potential treatments.Materials and methods: Sixteen fresh human knees, 26 adult New Zealand rabbit stifles, and 104 bovine lateral plateaus were measured for four cartilage zones and the cell densities within each zone. Each knee was divided into four weight-bearing sites: the medial and lateral plateaus and femoral condyles.Results: One-way analysis of variance followed by pairwise multiple comparisons (Holm–Sidak method at a significance of 0.05 clearly confirmed the variability between cartilage depths at each site, between sites in the same species, and between weight-bearing articular cartilage definitions in different species.Conclusion: The present study clearly demonstrates multisite, multispecies differences in normal weight-bearing articular cartilage, which can be objectively quantified by a common digital histology imaging technique. The clear site-specific differences in normal cartilage must be taken into consideration when characterizing the pathoetiology of OA models. Together, these provide a path to consistently analyze the volume and variety of histologic slides necessarily generated

  12. Modern cartilage imaging of the ankle; Moderne Knorpelbildgebung des Sprunggelenks

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Marc-Andre; Wuennemann, Felix; Rehnitz, Christoph [University Hospital Heidelberg (Germany). Diagnostic and Interventional Radiology; Jungmann, Pia M. [Technical Univ. Munich (Germany). Radiology; Kuni, Benita [Ortho-Zentrum Karlsruhe (Germany). Orthopedics and Trauma Surgery

    2017-10-15

    Talar osteochondral lesions are an important risk factor for the development of talar osteoarthritis. Furthermore, osteochondral lesions might explain persistent ankle pain. Early diagnosis of accompanying chondral defects is important to establish the optimal therapy strategy and thereby delaying or preventing the onset of osteoarthritis. The purpose of this review is to explain modern cartilage imaging with emphasis of MR imaging as well as the discussion of more sophisticated imaging studies like CT-arthrography or functional MR imaging. Pubmed literature search concerning: osteochondral lesions, cartilage damage, ankle joint, talus, 2 D MR imaging, 3 D MR imaging, cartilage MR imaging, CT-arthrography, cartilage repair, microfracture, OATS, MACT. Dedicated MR imaging protocols to delineate talar cartilage and the appearance of acute and chronic osteochondral lesions were discussed. Recent developments of MR imaging, such as isotropic 3 D imaging that has a higher signal-to noise ratio when compared to 2 D imaging, and specialized imaging methods such as CT-arthrography as well as functional MR imaging were introduced. Several classifications schemes and imaging findings of osteochondral lesions that influence the conservative or surgical therapy strategy were discussed. MRI enables after surgery the non-invasive assessment of the repair tissue and the success of implantation. Key points: Modern MRI allows for highly resolved visualization of the articular cartilage of the ankle joint and of subchondral pathologies. Recent advances in MRI include 3 D isotropic ankle joint imaging, which deliver higher signal-to-noise ratios of the cartilage and less partial volume artifacts when compared with standard 2 D sequences. In case of osteochondral lesions MRI is beneficial for assessing the stability of the osteochondral fragment and for this discontinuity of the cartilage layer is an important factor. CT-arthrography can be used in case of contraindications of MRI and

  13. Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Dixin Cui

    2017-01-01

    Full Text Available Temporomandibular joint osteoarthritis (TMJ OA is a degenerative disease, characterized by progressive cartilage degradation, subchondral bone remodeling, synovitis, and chronic pain. Due to the limited self-healing capacity in condylar cartilage, traditional clinical treatments have limited symptom-modifying and structure-modifying effects to restore impaired cartilage as well as other TMJ tissues. In recent years, stem cell-based therapy has raised much attention as an alternative approach towards tissue repair and regeneration. Mesenchymal stem cells (MSCs, derived from the bone marrow, synovium, and even umbilical cord, play a role as seed cells for the cartilage regeneration of TMJ OA. MSCs possess multilineage differentiation potential, including chondrogenic differentiation as well as osteogenic differentiation. In addition, the trophic modulations of MSCs exert anti-inflammatory and immunomodulatory effects under aberrant conditions. Furthermore, MSCs combined with appropriate scaffolds can form cartilaginous or even osseous compartments to repair damaged tissue and impaired function of TMJ. In this review, we will briefly discuss the pathogenesis of cartilage degeneration in TMJ OA and emphasize the potential sources of MSCs and novel approaches for the cartilage regeneration of TMJ OA, particularly focusing on the MSC-based therapy and tissue engineering.

  14. The Role of Interstitial Fluid Pressurization in Articular Cartilage Lubrication

    Science.gov (United States)

    Ateshian, Gerard A.

    2009-01-01

    Over the last two decades, considerable progress has been reported in the field of cartilage mechanics that impacts our understanding of the role of interstitial fluid pressurization on cartilage lubrication. Theoretical and experimental studies have demonstrated that the interstitial fluid of cartilage pressurizes considerably under loading, potentially supporting most of the applied load under various transient or steady-state conditions. The fraction of the total load supported by fluid pressurization has been called the fluid load support. Experimental studies have demonstrated that the friction coefficient of cartilage correlates negatively with this variable, achieving remarkably low values when the fluid load support is greatest. A theoretical framework that embodies this relationship has been validated against experiments, predicting and explaining various outcomes, and demonstrating that a low friction coefficient can be maintained for prolonged loading durations under normal physiological function. This paper reviews salient aspects of this topic, as well as its implications for improving our understanding of boundary lubrication by molecular species in synovial fluid and the cartilage superficial zone. Effects of cartilage degeneration on its frictional response are also reviewed. PMID:19464689

  15. Mechanical confinement regulates cartilage matrix formation by chondrocytes

    Science.gov (United States)

    Lee, Hong-Pyo; Gu, Luo; Mooney, David J.; Levenston, Marc E.; Chaudhuri, Ovijit

    2017-12-01

    Cartilage tissue equivalents formed from hydrogels containing chondrocytes could provide a solution for replacing damaged cartilage. Previous approaches have often utilized elastic hydrogels. However, elastic stresses may restrict cartilage matrix formation and alter the chondrocyte phenotype. Here we investigated the use of viscoelastic hydrogels, in which stresses are relaxed over time and which exhibit creep, for three-dimensional (3D) culture of chondrocytes. We found that faster relaxation promoted a striking increase in the volume of interconnected cartilage matrix formed by chondrocytes. In slower relaxing gels, restriction of cell volume expansion by elastic stresses led to increased secretion of IL-1β, which in turn drove strong up-regulation of genes associated with cartilage degradation and cell death. As no cell-adhesion ligands are presented by the hydrogels, these results reveal cell sensing of cell volume confinement as an adhesion-independent mechanism of mechanotransduction in 3D culture, and highlight stress relaxation as a key design parameter for cartilage tissue engineering.

  16. Mesenchymal stem cells for cartilage repair in osteoarthritis.

    Science.gov (United States)

    Gupta, Pawan K; Das, Anjan K; Chullikana, Anoop; Majumdar, Anish S

    2012-07-09

    Osteoarthritis (OA) is a degenerative disease of the connective tissue and progresses with age in the older population or develops in young athletes following sports-related injury. The articular cartilage is especially vulnerable to damage and has poor potential for regeneration because of the absence of vasculature within the tissue. Normal load-bearing capacity and biomechanical properties of thinning cartilage are severely compromised during the course of disease progression. Although surgical and pharmaceutical interventions are currently available for treating OA, restoration of normal cartilage function has been difficult to achieve. Since the tissue is composed primarily of chondrocytes distributed in a specialized extracellular matrix bed, bone marrow stromal cells (BMSCs), also known as bone marrow-derived 'mesenchymal stem cells' or 'mesenchymal stromal cells', with inherent chondrogenic differentiation potential appear to be ideally suited for therapeutic use in cartilage regeneration. BMSCs can be easily isolated and massively expanded in culture in an undifferentiated state for therapeutic use. Owing to their potential to modulate local microenvironment via anti-inflammatory and immunosuppressive functions, BMSCs have an additional advantage for allogeneic application. Moreover, by secreting various bioactive soluble factors, BMSCs can protect the cartilage from further tissue destruction and facilitate regeneration of the remaining progenitor cells in situ. This review broadly describes the advances made during the last several years in BMSCs and their therapeutic potential for repairing cartilage damage in OA.

  17. Extraction of aggrecan-peptide from cartilage by tissue autolysis.

    Science.gov (United States)

    Nakano, Takuo; Srichamroen, Anchalee; Ozimek, Lech

    2014-01-01

    Aggrecan is a cartilage specific proteoglycan containing chondroitin sulfate (CS) and keratan sulfate (KS). CS is an acidic polysaccharide having wide range of applications in pharmaceutical, cosmetic, and food industries. CS is extracted from cartilage by tissue proteolysis with an exogenous proteinase or by activating endogenous proteinases (autolysis) to release aggrecan-peptides from the tissue. This review is focused on the latter technique. Bovine nasal and tracheal cartilages, and broiler chicken sternum cartilage have been used for autolysis studies. To extract aggrecan-peptide, cartilage tissues are cut into small pieces, and incubated in a monovalent or divalent salt solution (e.g., 0.1 M sodium or calcium acetate) at pH 4.5 and 37 °C for 7 - 24 h. Most (~80% or more) of total tissue uronic acid, a constituent sugar of aggrecan, is extracted and released into the salt solution during incubation. Reextraction of the tissue residue results in release of a small amount of uronic acid. Aggrecan-peptides purified using anion exchange chromatography are large compounds containing CS and KS. On gel chromatography, they are excluded from the column of Sephacryl S-300. Chemical composition analysis demonstrated that aggrecan-peptides from either bovine or chicken cartilage contain >90% CS with small amount (autolysis has been used as a plate coating antigen in enzyme- linked immunosorbent assay (ELISA) to determine KS.

  18. Radiation synovectomy stimulates glycosaminoglycan synthesis by normal articular cartilage

    International Nuclear Information System (INIS)

    Myers, S.L.; Slowman, S.D.; Brandt, K.D.

    1989-01-01

    Radiation synovectomy has been considered a therapeutic alternative to surgical synovectomy. Whether intraarticular irradiation affects the composition or biochemistry, and therefore the biomechanical properties, of normal articular cartilage has not been established. In the present study, yttrium 90 silicate was injected into one knee of nine normal adult dogs, and three other dogs received nonradioactive yttrium silicate. When the animals were killed 4 to 13 weeks after the injection, synovium from the irradiated knees showed areas of necrosis and fibrosis. Up to 29% less hyaluronate was synthesized in vitro by the synovial intima from irradiated knees than by the intima from the contralateral knees (mean difference 18%). Morphologic abnormalities were not observed in articular cartilage from either the irradiated or control knees, nor did the water content or concentrations of uronic acid or DNA in cartilage from the irradiated knees differ from that in cartilage from the contralateral knees. However, net 35 SO 4 -labeled glycosaminoglycan synthesis in organ cultures of cartilage from irradiated knees was increased (mean difference 21%, p = 0.03) in comparison with that in cultures of contralateral knee cartilage

  19. Radiation synovectomy stimulates glycosaminoglycan synthesis by normal articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Myers, S.L.; Slowman, S.D.; Brandt, K.D.

    1989-07-01

    Radiation synovectomy has been considered a therapeutic alternative to surgical synovectomy. Whether intraarticular irradiation affects the composition or biochemistry, and therefore the biomechanical properties, of normal articular cartilage has not been established. In the present study, yttrium 90 silicate was injected into one knee of nine normal adult dogs, and three other dogs received nonradioactive yttrium silicate. When the animals were killed 4 to 13 weeks after the injection, synovium from the irradiated knees showed areas of necrosis and fibrosis. Up to 29% less hyaluronate was synthesized in vitro by the synovial intima from irradiated knees than by the intima from the contralateral knees (mean difference 18%). Morphologic abnormalities were not observed in articular cartilage from either the irradiated or control knees, nor did the water content or concentrations of uronic acid or DNA in cartilage from the irradiated knees differ from that in cartilage from the contralateral knees. However, net /sup 35/SO/sub 4/-labeled glycosaminoglycan synthesis in organ cultures of cartilage from irradiated knees was increased (mean difference 21%, p = 0.03) in comparison with that in cultures of contralateral knee cartilage.

  20. Rapid isolation of intact, viable fetal cartilage models

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.R.; Chepenik, K.P.; Paynton, B.V.; Cotler, J.M.

    1982-04-01

    A rapid procedure is described for the isolation of viable, intact, femoral cartilage models (humeri and femora) obtained from pregnant rats on the 18th day of gestation. Viability of these models is demonstrated in an in vitro system where the incorporation of /sup 35/S-sulfate was linear with time of incubation and with numbers of cartilage models utilized. Treatment of cartilage models with ice-cold trichloroacetic acid and a boiling water bath prior to incubation with radiolabel, reduced the amount of radioactivity incorporated to 1.3% of that observed for models incubated by routine procedures. Furthermore, digestion of cartilage model homogenates with protease yielded a supernatant from which 51% to 57% of the radioactivity was precipitated as GAG. This method may also be used to isolate fetal cartilage models as early as the 16th day of gestation. with this system, specific biochemical parameters of mammalian fetal chondrogenesis may be surveyed in normally and abnormally developing fetal cartilage free of surrounding soft tissue.

  1. Rapid isolation of intact, viable fetal cartilage models

    International Nuclear Information System (INIS)

    Schmidt, R.R.; Chepenik, K.P.; Paynton, B.V.; Cotler, J.M.

    1982-01-01

    A rapid procedure is described for the isolation of viable, intact, femoral cartilage models (humeri and femora) obtained from pregnant rats on the 18th day of gestation. Viability of these models is demonstrated in an in vitro system where the incorporation of 35 S-sulfate was linear with time of incubation and with numbers of cartilage models utilized. Treatment of cartilage models with ice-cold trichloroacetic acid and a boiling water bath prior to incubation with radiolabel, reduced the amount of radioactivity incorporated to 1.3% of that observed for models incubated by routine procedures. Furthermore, digestion of cartilage model homogenates with protease yielded a supernatant from which 51% to 57% of the radioactivity was precipitated as GAG. This method may also be used to isolate fetal cartilage models as early as the 16th day of gestation. with this system, specific biochemical parameters of mammalian fetal chondrogenesis may be surveyed in normally and abnormally developing fetal cartilage free of surrounding soft tissue

  2. Quantitative imaging of excised osteoarthritic cartilage using spectral CT

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Kishore; Bateman, Christopher J.; Younis, Raja Aamir; De Ruiter, Niels J.A.; Ramyar, Mohsen; Anderson, Nigel G. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); Loebker, Caroline [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); University of Twente, Department of Developmental BioEngineering, Enschede (Netherlands); Schon, Benjamin S.; Hooper, Gary J.; Woodfield, Tim B.F. [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); Chernoglazov, Alex I. [University of Canterbury, Human Interface Technology Laboratory New Zealand, Christchurch (New Zealand); Butler, Anthony P.H. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); MARS Bioimaging, Christchurch (New Zealand)

    2017-01-15

    To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT. We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples. The iodine distribution as an inverse marker of GAG content was presented in the form of 2D and 3D images after applying a basis material decomposition technique to separate iodine in cartilage from bone. We compared this result with a histological section stained for GAG. The iodine in cartilage could be distinguished from subchondral bone and quantified using multi-energy CT. The articular cartilage showed variation in iodine concentration throughout its thickness which appeared to be inversely related to GAG distribution observed in histological sections. Multi-energy CT can quantify ionic iodine contrast (as a marker of GAG content) within articular cartilage and distinguish it from bone by exploiting the energy-specific attenuation profiles of the associated materials. (orig.)

  3. Cationic Contrast Agent Diffusion Differs Between Cartilage and Meniscus.

    Science.gov (United States)

    Honkanen, Juuso T J; Turunen, Mikael J; Freedman, Jonathan D; Saarakkala, Simo; Grinstaff, Mark W; Ylärinne, Janne H; Jurvelin, Jukka S; Töyräs, Juha

    2016-10-01

    Contrast enhanced computed tomography (CECT) is a non-destructive imaging technique used for the assessment of composition and structure of articular cartilage and meniscus. Due to structural and compositional differences between these tissues, diffusion and distribution of contrast agents may differ in cartilage and meniscus. The aim of this study is to determine the diffusion kinematics of a novel iodine based cationic contrast agent (CA(2+)) in cartilage and meniscus. Cylindrical cartilage and meniscus samples (d = 6 mm, h ≈ 2 mm) were harvested from healthy bovine knee joints (n = 10), immersed in isotonic cationic contrast agent (20 mgI/mL), and imaged using a micro-CT scanner at 26 time points up to 48 h. Subsequently, normalized X-ray attenuation and contrast agent diffusion flux, as well as water, collagen and proteoglycan (PG) contents in the tissues were determined. The contrast agent distributions within cartilage and meniscus were different. In addition, the normalized attenuation and diffusion flux were higher (p meniscus. These tissue specific variations can affect the interpretation of CECT images and should be considered when cartilage and meniscus are assessed simultaneously.

  4. The effect of fixed charge density and cartilage swelling on mechanics of knee joint cartilage during simulated gait.

    Science.gov (United States)

    Räsänen, Lasse P; Tanska, Petri; Zbýň, Štefan; van Donkelaar, Corrinus C; Trattnig, Siegfried; Nieminen, Miika T; Korhonen, Rami K

    2017-08-16

    The effect of swelling of articular cartilage, caused by the fixed charge density (FCD) of proteoglycans, has not been demonstrated on knee joint mechanics during simulated walking before. In this study, the influence of the depth-wise variation of FCD was investigated on the internal collagen fibril strains and the mechanical response of the knee joint cartilage during gait using finite element (FE) analysis. The FCD distribution of tibial cartilage was implemented from sodium ( 23 Na) MRI into a 3-D FE-model of the knee joint ("Healthy model"). For comparison, models with decreased FCD values were created according to the decrease in FCD associated with the progression of osteoarthritis (OA) ("Early OA" and "Advanced OA" models). In addition, a model without FCD was created ("No FCD" model). The effect of FCD was studied with five different collagen fibril network moduli of cartilage. Using the reference fibril network moduli, the decrease in FCD from "Healthy model" to "Early OA" and "Advanced OA" models resulted in increased axial strains (by +2 and +6%) and decreased fibril strains (by -3 and -13%) throughout the stance, respectively, calculated as mean values through cartilage depth in the tibiofemoral contact regions. Correspondingly, compared to the "Healthy model", the removal of the FCD altogether in "NoFCD model" resulted in increased mean axial strains by +16% and decreased mean fibril strains by -24%. This effect was amplified as the fibril network moduli were decreased by 80% from the reference. Then mean axial strains increased by +6, +19 and +49% and mean fibril strains decreased by -9, -20 and -32%, respectively. Our results suggest that the FCD in articular cartilage has influence on cartilage responses in the knee during walking. Furthermore, the FCD is suggested to have larger impact on cartilage function as the collagen network degenerates e.g. in OA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Prenatal depression and stress - risk factors for placental pathology and spontaneous abortion.

    Science.gov (United States)

    Marinescu, Ileana P; Foarfă, Maria Camelia; Pîrlog, Mihail Cristian; Turculeanu, Adriana

    2014-01-01

    Prenatal stress and depression affects 10-25% of pregnant women and is associated with disruption of fetal neurodevelopment, higher rates of placental abnormalities, preeclampsia, spontaneous abortion, or preterm birth. Markers of genetic vulnerability are catechol-O-methyltransferase, monoamine oxidase-A, variation of serotonin transporters, low levels of dopamine-beta-hydroxylase, and brain derived neurotrophic factor Val66Met (BDNF), while hyperactivity of HPA (hypothalamic-pituitary-adrenal) axis and massive release of endogenous cortisol, regulated by metalloproteinase-1, -2, -3 and -9, and are involved both in depressive symptoms and neurodevelopmental abnormalities in fetus. In women with prenatal stress and depression which suffered spontaneous abortion were observed placental abnormalities as regular shape and necrotic villi, decidua with large areas of necrosis, acute inflammation and effusion areas correlated with increase in proinflammatory factors, immune deficit and infections, hyaline type fibrosis, intervilos and deciduous intense hemorrhage, associated with increase of vascular endothelial growth factor. Taking into account the important societal and economic costs becomes important for an interdisciplinary approach, in which pregnancy and its risks are a central point for women mental health.

  6. Spontaneous Intracranial Hypotension

    International Nuclear Information System (INIS)

    Joash, Dr.

    2015-01-01

    Epidemiology is not only rare but an important cause of new daily persistent headaches among young & middle age individuals. The Etiology & Pathogenesis is generally caused by spinal CSF leak. Precise cause remains largely unknown, underlying structural weakness of spinal meninges is suspected. There are several MR Signs of Intracranial Hypotension that include:- diffuse pachymeningeal (dural) enhancement; bilateral subdural, effusion/hematomas; Downward displacement of brain; enlargement of pituitary gland; Engorgement of dural venous sinuses; prominence of spinal epidural venous plexus and Venous sinus thrombosis & isolated cortical vein thrombosis. The sum of volumes of intracranial blood, CSF & cerebral tissue must remain constant in an intact cranium. Treatment in Many cases can be resolved spontaneously or by use Conservative approach that include bed rest, oral hydration, caffeine intake and use of abdominal binder. Imaging Modalities for Detection of CSF leakage include CT myelography, Radioisotope cisternography, MR myelography, MR imaging and Intrathecal Gd-enhanced MR

  7. Spontaneous wave packet reduction

    International Nuclear Information System (INIS)

    Ghirardi, G.C.

    1994-06-01

    There are taken into account the main conceptual difficulties met by standard quantum mechanics in dealing with physical processes involving macroscopic system. It is stressed how J.A.Wheeler's remarks and lucid analysis have been relevant to pinpoint and to bring to its extreme consequences the puzzling aspects of quantum phenomena. It is shown how the recently proposed models of spontaneous dynamical reduction represent a consistent way to overcome the conceptual difficulties of the standard theory. Obviously, many nontrivial problems remain open, the first and more relevant one being that of generalizing the model theories considered to the relativistic case. This is the challenge of the dynamical reduction program. 43 refs, 2 figs

  8. MR imaging of patellar cartilage degeneration at 0.02 T

    International Nuclear Information System (INIS)

    Koskinen, S.K.; Komu, M.; Aho, H.J.; Kormano, M.; Turku University Hospital

    1991-01-01

    MR imaging with a 0.02 T resistive magnet was used to establish the correlation between the histologic grading of patellar cartilage degeneration and fat water separation images or T1- and T2-relaxation times. We examined 23 cadaveric patellae. There was a positive correlation between histologically graded cartilage degeneration and T1-relaxation time. Patellar cartilage was well differentiated from surrounding structures on chemical shift water proton images, and an evaluation of cartilage degeneration was possible. No correlation was found between cartilage degeneration damage and T2-relaxation time. Chemical shift imaging at 0.02 T is easy to perform and gives further information of cartilage disorders. (orig.)

  9. Hydrogen peroxide induced oxidative damage on mechanical properties of the articular cartilage.

    Science.gov (United States)

    Cicek, Ekrem

    2017-12-01

    Articular cartilage has unique mechanical and physicochemical properties which are responsible for its load carrying capabilities. This work investigates the effects of hydrogen peroxide induced oxidative damage on mechanical properties of articular cartilage. Bovine articular cartilage was exposed to hydrogen peroxide for a week. Dynamic and static mechanical tests applied to calculate articular cartilage compressive modulus. We observed higher control curve slopes than that of hydrogen peroxide curves which account for lesser stiffness values in the exposed articular cartilage. For the instantaneous experiments, results were statistically significant (p = 0.01, p hydrogen peroxide induced oxidative damage causes reduction in the stiffness of the articular cartilage.

  10. Spontaneous compactification to homogeneous spaces

    International Nuclear Information System (INIS)

    Mourao, J.M.

    1988-01-01

    The spontaneous compactification of extra dimensions to compact homogeneous spaces is studied. The methods developed within the framework of coset space dimensional reduction scheme and the most general form of invariant metrics are used to find solutions of spontaneous compactification equations

  11. Screening for spontaneous preterm birth

    NARCIS (Netherlands)

    van Os, M.A.; van Dam, A.J.E.M.

    2015-01-01

    Preterm birth is the most important cause of perinatal morbidity and mortality worldwide. In this thesis studies on spontaneous preterm birth are presented. The main objective was to investigate the predictive capacity of mid-trimester cervical length measurement for spontaneous preterm birth in a

  12. Radiographic predictability of cartilage damage in medial ankle osteoarthritis.

    Science.gov (United States)

    Moon, Jeong-Seok; Shim, Jae-Chan; Suh, Jin-Soo; Lee, Woo-Chun

    2010-08-01

    Radiographic grading has been used to assess and select between treatment options for ankle osteoarthritis. To use radiographic grading systems in clinical practice and scientific studies one must have reliable systems that predict the fate of the cartilage. We therefore asked whether (1) radiographic grading of ankle osteoarthritis is reliable and (2) grading reflects cartilage damage observed during arthroscopy. We then (3) determined the sensitivity, specificity, and predictive values of the radiographic findings. We examined 74 ankles with medial osteoarthritis and 24 with normal articular cartilage based on arthroscopy. Arthroscopic findings were graded according to the modified Outerbridge grades and all radiographs were graded using the modified Kellgren-Lawrence, Takakura et al., and van Dijk et al. grading systems. The reliability of each radiographic grading system was evaluated. We correlated the radiographic grades and severity of cartilage damage for each radiographic grading system. Sensitivity, specificity, and predictive values of spurs and joint space narrowing with or without talar tilting then were determined. The interobserver weighted kappa ranged from 0.58 to 0.89 and the intraobserver weighted kappa from 0.51 to 0.85. The correlation coefficients for the Kellgren-Lawrence, Takakura et al., and van Dijk et al. grades were 0.53, 0.42, and 0.42, respectively. Ankles with medial joint space narrowing (Stage 2 of Takakura et al. and van Dijk et al. grades) showed varying severity of cartilage damage. The positive predictive value of cartilage damage increased from 77% for medial joint space narrowing regardless of the presence of talar tilting to 98% for medial joint space narrowing with talar tilting. Our observations suggest the inclusion of talar tilting in grading schemes enhances the assessment of cartilage damage. Level II, diagnostic study. See the Guidelines for Authors for a complete description of level of evidence.

  13. Biochemical composition of the superficial layer of articular cartilage.

    Science.gov (United States)

    Crockett, R; Grubelnik, A; Roos, S; Dora, C; Born, W; Troxler, H

    2007-09-15

    To gain more information on the mechanism of lubrication in articular joints, the superficial layer of bovine articular cartilage was mechanically removed in a sheet of ice that formed on freezing the cartilage. Freeze-dried samples contained low concentrations of chondroitin sulphate and protein. Analysis of the protein by SDS PAGE showed that the composition of the sample was comparable to that of synovial fluid (SF). Attenuated total reflection infrared (ATR-IR) spectroscopy of the dried residue indicated that the sample contained mostly hyaluronan. Moreover, ATR-IR spectroscopy of the upper layer of the superficial layer, adsorbed onto silicon, showed the presence of phospholipids. A gel could be formed by mixing hyaluronan and phosphatidylcholine in water with mechanical properties similar to those of the superficial layer on cartilage. Much like the superficial layer of natural cartilage, the surface of this gel became hydrophobic on drying out. Thus, it is proposed that the superficial layer forms from hyaluronan and phospholipids, which associate by hydrophobic interactions between the alkyl chains of the phospholipids and the hydrophobic faces of the disaccharide units in hyaluronan. This layer is permeable to material from the SF and the cartilage, as shown by the presence of SF proteins and chondroitin sulphate. As the cartilage dries out after removal from the joint, the phospholipids migrate towards the surface of the superficial layer to reduce the surface tension. It is also proposed that the highly efficient lubrication in articular joints can, at least in part, be attributed to the ability of the superficial layer to adsorb and hold water on the cartilage surface, thus creating a highly viscous boundary protection. Copyright 2007 Wiley Periodicals, Inc.

  14. When is cartilage repair successful?; Wann ist eine Knorpelreparatur erfolgreich

    Energy Technology Data Exchange (ETDEWEB)

    Raudner, M.; Roehrich, S.; Zalaudek, M.; Trattnig, S. [Medizinische Universitaet Wien, Exzellenzzentrum Hochfeld-MR, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Wien (Austria); Schreiner, M.M. [Medizinische Universitaet Wien, Universitaetsklinik fuer Orthopaedie, Wien (Austria)

    2017-11-15

    Focal cartilage lesions are a cause of long-term disability and morbidity. After cartilage repair, it is crucial to evaluate long-term progression or failure in a reproducible, standardized manner. This article provides an overview of the different cartilage repair procedures and important characteristics to look for in cartilage repair imaging. Specifics and pitfalls are pointed out alongside general aspects. After successful cartilage repair, a complete, but not hypertrophic filling of the defect is the primary criterion of treatment success. The repair tissue should also be completely integrated to the surrounding native cartilage. After some months, the transplants signal should be isointense compared to native cartilage. Complications like osteophytes, subchondral defects, cysts, adhesion and chronic bone marrow edema or joint effusion are common and have to be observed via follow-up. Radiological evaluation and interpretation of postoperative changes should always take the repair method into account. (orig.) [German] Die Therapie fokaler Knorpelschaeden ist weiterhin eine klinische Herausforderung. Nach erfolgter Sanierung gilt es daher besonders, Erfolg und Misserfolg zu evaluieren und den Verlauf standardisiert und somit reproduzierbar zu beurteilen. Dieser Artikel bietet einen Ueberblick ueber gaengige Reparaturverfahren und deren Charakteristika in der Magnetresonanztomographie. Nach einer erfolgreichen Knorpelreparatur ist eine vollstaendige, aber nicht hypertrophe Fuellung des Knorpeldefekts das primaere Kriterium. Zum umgebenden Nativknorpel ist ausserdem eine durchgehende Integration des Transplantats vordergruendig. Im weiteren postoperativen Verlauf sollte das Transplantat ausserdem ein im Vergleich zu nativem Knorpel isointenses Signalverhalten zeigen. Haeufig beobachtete Komplikationen sind zentrale Osteophyten, subchondrale Defekte, Zysten, chronifizierte Knochenmarksoedeme, Gelenkserguesse oder Adhaesionen. Die radiologische Beurteilung dieser

  15. Brother of CDO (BOC) expression in equine articular cartilage.

    Science.gov (United States)

    Vanderman, K S; Tremblay, M; Zhu, W; Shimojo, M; Mienaltowski, M J; Coleman, S J; MacLeod, J N

    2011-04-01

    Brother of CDO (BOC) is a cell surface receptor that derives its name from the structurally related protein, cell adhesion molecule-related/down-regulated by oncogenes (CDO, sometimes CDON). High levels of BOC mRNA and protein expression have been described in embryonic tissues with active cell proliferation and ongoing cellular differentiation(1,2). A microarray-based screen of RNA isolated from 11 different adult equine tissues unexpectedly identified BOC as having an expression pattern restricted to articular cartilage. The objective of this study was to further investigate BOC expression in adult articular cartilage relative to other tissues. Both RT-qPCR and mRNA sequencing confirmed the microarray data. Steady state BOC mRNA levels in articular cartilage were substantially higher than in the other adult tissues tested, neonatal tendon, placenta, and whole embryo. The expression of BOC displayed a pattern of tissue specificity comparable to well established cartilage matrix protein biomarkers. BOC mRNA levels in articular cartilage increased with age, but were rapidly down-regulated when chondrocytes were enzymatically isolated from the cartilage matrix and expanded in monolayer culture. Relative expression patterns of CDO were broadly similar, but displayed lower fold change differences. A functional role in articular cartilage that involves Hedgehog signaling is suggested by the known binding affinity of BOC for all three Hedgehog ligands. These data also extend BOC and CDO biology to a post-mitotic and highly differentiated cell type within a mature tissue. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Spontaneous Pneumomediastinum: Hamman Syndrome

    Directory of Open Access Journals (Sweden)

    Tushank Chadha, BS

    2018-04-01

    significant fat stranding. The image also showed an intraluminal stent traversing the gastric antrum and gastric pylorus with no indication of obstruction. Circumferential mural thickening of the gastric antrum and body were consistent with the patient’s history of gastric adenocarcinoma. The shotty perigastric lymph nodes with associated fat stranding, along the greater curvature of the distal gastric body suggested local regional nodal metastases and possible peritoneal carcinomatosis. The thoracic CT scans showed extensive pneumomediastinum that tracked into the soft tissues of the neck, which given the history of vomiting also raised concern for esophageal perforation. There was still no evidence of mediastinal abscess or fat stranding. Additionally, a left subclavian vein port catheter, which terminates with tip at the cavoatrial junction of the superior vena cava can also be seen on the image. Discussion: Spontaneous Pneumomediastinum, also known as Hamman syndrome, is defined by the uncommon incidence of free air in the mediastinum due to the bursting of alveoli, as a result of extended spells of shouting, coughing, or vomiting.1,2 The condition is diagnosed when a clear cause (aerodigestive rupture, barotrauma, infection secondary to gas-forming organisms3 for pneumomediastinum cannot be clearly identified on diagnostic studies. Macklin and Macklin were the first to note the pathogenesis of the syndrome and explained that the common denominator to spontaneous pneumomediastinum was that increased alveolar pressure leads to alveolar rupture.3 Common clinical findings for spontaneous pneumomediastinum include: chest pain, dyspnea, cough, and emesis.4 The condition is not always readily recognized on initial presentation in part for its rare incidence, estimated to be approximately 1 in every 44,500 ED patients3and also because of the non-specific presenting symptoms. For this patient, there was no clear singular cause, and therefore she received care for spontaneous

  17. Osteoarthritic Cartilage is more Homogeneous than Healthy Cartilage – Identification of a Superior ROI Co-localised with a Major Risk Factor for Osteoarthritis

    DEFF Research Database (Denmark)

    Qazi, Arish Asif; Dam, Erik B.; Nielsen, Mads

    2007-01-01

    Rationale and Objectives Cartilage loss as determined by magnetic resonance imaging (MRI) or joint space narrowing as determined by x-ray is the result of cartilage erosion. However, metabolic processes within the cartilage that later result in cartilage loss may be a more sensitive assessment...... method for early changes. Recently, it was shown that cartilage homogeneity visualized by MRI representing the biochemical changes undergoing in the cartilage is a potential marker for early detection of knee osteoarthritis (OA) and is also able to significantly separate groups of healthy subjects from...... it evolves as a consequence to disease and thereby can be used as a progression biomarker. Materials and Methods A total of 283 right and left knees from 159 subjects aged 21 to 81 years were scanned using a Turbo 3D T1 sequence on a 0.18-T MRI Esaote scanner. The medial compartment of the tibial cartilage...

  18. Evaluation of influence of proteoglycans on hydration of articular cartilage with the use of ultrasound

    Directory of Open Access Journals (Sweden)

    Yi-yi YANG

    2015-04-01

    Full Text Available Objective To monitor the changes in hydration behaviour of articular cartilage induced by degradation of proteoglycans, and to explore the effect of proteoglycans on hydration behaviour of articular cartilage by using high-frequency ultrasound. Methods Twelve porcine patellae with smooth cartilage surface were prepared and equally divided into two groups: normal group without any enzyme treatment, and trypsin group they were treated with 0.25% trypsin for 8h to digest proteoglycan in the cartilage. The hydration behaviour of the cartilage tissue was scanned by high-frequency ultrasound system with a central frequency of 25MHz. Parameters including cartilage hydration strain and cartilage thickness were measured. The histopathological changes in the articular cartilage were observed under a light microscope. Results It took approximately 20min to reach equilibrium during the hydration process in the normal cartilages, while proteoglycan-degraded cartilage took only about 5min to achieve equilibrium. The equilibrium strain of normal cartilage was 3.5%±0.5%. The degradation of proteoglycans induced a significant decrease in equilibrium strain (1.8%±0.2%, P0.05. Conclusion Proteoglycans play an important role in hydration behaviour of articular cartilage. The degradation of proteoglycans could induce degeneration of cartilage structure and decrease in hydration behaviour after dehydration. DOI: 10.11855/j.issn.0577-7402.2015.03.03

  19. The Association Between Modic Changes of Lumbar Endplates and Spontaneous Absorption of Herniated Intervertebral Discs.

    Science.gov (United States)

    Ding, Lingzhi; Teng, Xiao; Fan, Shunwu; Zhao, Fengdong

    2015-04-01

    Herniated disc (HD) is one of the most common causes of lower back pain. Treatment for HD includes conservative therapy and surgical intervention. Following conservative treatment, spontaneous absorption of HD occurs in some patients. To assess whether modic changes are associated with spontaneous absorption of HD, 85 patients with or without modic changes were followed up after 6 months of conservative treatment. As result, we found modic changes of lumbar endplates are associated with poor absorption of HD after conservative treatment. In addition, patients with modic changes exhibit significantly increased cartilage content and decreased neovascularization and macrophage infiltration in HD tissues, all of which are known to impair spontaneous absorption of herniated tissues. At molecular level, modic changes are associated with decreased expression of matrix metalloproteinase-3 gene, which is a key matrix-degrading enzyme for tissue absorption. Our study established a strong association between modic changes of lumbar endplates and spontaneous absorption of lumbar HD, which provided a potential novel method for prediction of spontaneous absorption.

  20. Deferasirox limits cartilage damage following haemarthrosis in haemophilic mice.

    Science.gov (United States)

    Nieuwenhuizen, Laurens; Roosendaal, Goris; Mastbergen, Simon C; Coeleveld, Katja; Biesma, Douwe H; Lafeber, Floris P J G; Schutgens, Roger E G

    2014-11-01

    Joint bleeds in haemophilia result in iron-mediated synovitis and cartilage damage. It was evaluated whether deferasirox, an iron chelator, was able to limit the development of haemophilic synovitis and cartilage damage. Haemophilic mice were randomly assigned to oral treatment with deferasirox (30 mg/kg) or its vehicle (control) (30 mg/kg). Eight weeks after start of treatment, haemarthrosis was induced. After another five weeks of treatment, blood-induced synovitis and cartilage damage were determined. Treatment with deferasirox resulted in a statistically significant (pdeferasirox group. However, deferasirox treatment resulted in a statistically significant (pdeferasirox group with the control group: score 2 (65.4 % vs 4.2 %), score 3 (26.9 % vs 4.2 %), score 4 (7.7 % vs 20.8 %), score 5 (0 % vs 54.2 %), and score 6 (0 % vs 16.7 %). Treatment with deferasirox limits cartilage damage following the induction of a haemarthrosis in haemophilic mice. This study demonstrates the role of iron in blood-induced cartilage damage. Moreover, these data indicate that iron chelation may be a potential prevention option to limit the development of haemophilic arthropathy.

  1. Genipin-Crosslinked Chitosan Gels and Scaffolds for Tissue Engineering and Regeneration of Cartilage and Bone

    Science.gov (United States)

    Muzzarelli, Riccardo A. A.; El Mehtedi, Mohamad; Bottegoni, Carlo; Aquili, Alberto; Gigante, Antonio

    2015-01-01

    The present review article intends to direct attention to the technological advances made since 2009 in the area of genipin-crosslinked chitosan (GEN-chitosan) hydrogels. After a concise introduction on the well recognized characteristics of medical grade chitosan and food grade genipin, the properties of GEN-chitosan obtained with a safe, spontaneous and irreversible chemical reaction, and the quality assessment of the gels are reviewed. The antibacterial activity of GEN-chitosan has been well assessed in the treatment of gastric infections supported by Helicobacter pylori. Therapies based on chitosan alginate crosslinked with genipin include stem cell transplantation, and development of contraction free biomaterials suitable for cartilage engineering. Collagen, gelatin and other proteins have been associated to said hydrogels in view of the regeneration of the cartilage. Viability and proliferation of fibroblasts were impressively enhanced upon addition of poly-l-lysine. The modulation of the osteocytes has been achieved in various ways by applying advanced technologies such as 3D-plotting and electrospinning of biomimetic scaffolds, with optional addition of nano hydroxyapatite to the formulations. A wealth of biotechnological advances and know-how has permitted reaching outstanding results in crucial areas such as cranio-facial surgery, orthopedics and dentistry. It is mandatory to use scaffolds fully characterized in terms of porosity, pore size, swelling, wettability, compressive strength, and degree of acetylation, if the osteogenic differentiation of human mesenchymal stem cells is sought: in fact, the novel characteristics imparted by GEN-chitosan must be simultaneously of physico-chemical and cytological nature. Owing to their high standard, the scientific publications dated 2010–2015 have met the expectations of an interdisciplinary audience. PMID:26690453

  2. Spontaneous breaking of supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Zumino, B.

    1981-12-01

    There has been recently a revival of interest in supersymmetric gauge theories, stimulated by the hope that supersymmetry might help in clarifying some of the questions which remain unanswered in the so called Grand Unified Theories and in particular the gauge hierarchy problem. In a Grand Unified Theory one has two widely different mass scales: the unification mass M approx. = 10/sup 15/GeV at which the unification group (e.g. SU(5)) breaks down to SU(3) x SU(2) x U(1) and the mass ..mu.. approx. = 100 GeV at which SU(2) x U(1) is broken down to the U(1) of electromagnetism. There is at present no theoretical understanding of the extreme smallness of the ratio ..mu../M of these two numbers. This is the gauge hierarchy problem. This lecture attempts to review the various mechanisms for spontaneous supersymmetry breaking in gauge theories. Most of the discussions are concerned with the tree approximation, but what is presently known about radiative correction is also reviewed.

  3. Spontaneous intracranial hypotension

    International Nuclear Information System (INIS)

    Haritanti, A.; Karacostas, D.; Drevelengas, A.; Kanellopoulos, V.; Paraskevopoulou, E.; Lefkopoulos, A.; Economou, I.; Dimitriadis, A.S.

    2009-01-01

    Spontaneous intracranial hypotension (SIH) is an uncommon but increasingly recognized syndrome. Orthostatic headache with typical findings on magnetic resonance imaging (MRI) are the key to diagnosis. Delayed diagnosis of this condition may subject patients to unnecessary procedures and prolong morbidity. We describe six patients with SIH and outline the important clinical and neuroimaging findings. They were all relatively young, 20-54 years old, with clearly orthostatic headache, minimal neurological signs (only abducent nerve paresis in two) and diffuse pachymeningeal gadolinium enhancement on brain MRI, while two of them presented subdural hygromas. Spinal MRI was helpful in detecting a cervical cerebrospinal fluid leak in three patients and dilatation of the vertebral venous plexus with extradural fluid collection in another. Conservative management resulted in rapid resolution of symptoms in five patients (10 days-3 weeks) and in one who developed cerebral venous sinus thrombosis, the condition resolved in 2 months. However, this rapid clinical improvement was not accompanied by an analogous regression of the brain MR findings that persisted on a longer follow-up. Along with recent literature data, our patients further point out that SIH, to be correctly diagnosed, necessitates increased alertness by the attending physician, in the evaluation of headaches

  4. Spontaneous lateral temporal encephalocele.

    Science.gov (United States)

    Tuncbilek, Gokhan; Calis, Mert; Akalan, Nejat

    2013-01-01

    A spontaneous encephalocele is one that develops either because of embryological maldevelopment or from a poorly understood postnatal process that permits brain herniation to occur. We here report a rare case of lateral temporal encephalocele extending to the infratemporal fossa under the zygomatic arch. At birth, the infant was noted to have a large cystic mass in the right side of the face. After being operated on initially in another center in the newborn period, the patient was referred to our clinic with a diagnosis of temporal encephalocele. He was 6 months old at the time of admission. Computerized tomography scan and magnetic resonance imaging studies revealed a 8 × 9 cm fluid-filled, multiloculated cystic mass at the right infratemporal fossa. No intracranial pathology or connection is seen. The patient was operated on to reduce the distortion effect of the growing mass. The histopathological examination of the sac revealed well-differentiated mature glial tissue stained with glial fibrillary acid protein. This rare clinical presentation of encephaloceles should be taken into consideration during the evaluation of the lateral facial masses in the infancy period, and possible intracranial connection should be ruled out before surgery to avoid complications.

  5. Multi-physics computational models of articular cartilage for estimation of its mechanical and physical properties

    NARCIS (Netherlands)

    Arbabi, V.

    2016-01-01

    Recent advances in the realm of computational modeling of complex multiphysics phenomena in articular cartilage enabled efficient and precise determination of articular cartilage properties. However, still accurate quantification of complicated indentation and diffusion processes tying closely with

  6. Bilateral spontaneous carotid artery dissection.

    Science.gov (United States)

    Townend, Bradley Scott; Traves, Laura; Crimmins, Denis

    2005-06-01

    Bilateral internal carotid artery dissections have been reported, but spontaneous bilateral dissections are rare. Internal carotid artery dissection can present with a spectrum of symptoms ranging from headache to completed stroke. Two cases of spontaneous bilateral carotid artery dissection are presented, one with headache and minimal symptoms and the other with a stroke syndrome. No cause could be found in either case, making the dissections completely spontaneous. Bilateral internal carotid artery dissection (ICAD) should be considered in young patients with unexplained head and neck pain with or without focal neurological symptoms and signs. The increasing availability of imaging would sustain the higher index of suspicion.

  7. Low friction hydrogel for articular cartilage repair: evaluation of mechanical and tribological properties in comparison with natural cartilage tissue.

    Science.gov (United States)

    Blum, Michelle M; Ovaert, Timothy C

    2013-10-01

    The mechanical and tribological properties of a novel biomaterial, a boundary lubricant functionalized hydrogel, were investigated and compared to natural cartilage tissue. This low friction hydrogel material was developed for use as a synthetic replacement for focal defects in articular cartilage. The hydrogel was made by functionalizing the biocompatible polymer polyvinyl alcohol with a carboxylic acid derivative boundary lubricant molecule. Two different gel processing techniques were used to create the hydrogels. The first method consisted of initially functionalizing the boundary lubricant to the polyvinyl alcohol and then creating hydrogels by physically crosslinking the reacted polymer. The second method consisted of creating non-functionalized polyvinyl alcohol hydrogels and then performing the functionalization reaction on the fully formed gel. Osteochondral bovine samples were collected and replicate experiments were conducted to compare the mechanical and tribological performance of the boundary lubricant functionalized hydrogels to non-functionalized hydrogels and native cartilage. Friction experiments displayed a maximum decrease in friction coefficient of 70% for the functionalized hydrogels compared to neat polyvinyl alcohol. Indentation investigated the elastic modulus of the hydrogels, demonstrating that stability of the hydrogel was affected by processing method. Hydrogel performance was within the lower ranges of natural cartilage tested under the exact same conditions, showing the potential of the boundary lubricant functionalized hydrogels to perform as a biomimetic synthetic articular cartilage replacement. © 2013.

  8. The amphoteric effect on friction between the bovine cartilage/cartilage surfaces under slightly sheared hydration lubrication mode.

    Science.gov (United States)

    Pawlak, Zenon; Gadomski, Adam; Sojka, Michal; Urbaniak, Wieslaw; Bełdowski, Piotr

    2016-10-01

    The amphoteric effect on the friction between the bovine cartilage/cartilage contacts has been found to be highly sensitive to the pH of an aqueous solution. The cartilage surface was characterized using a combination of the pH, wettability, as well as the interfacial energy and friction coefficient testing methods to support lamellar-repulsive mechanism of hydration lubrication. It has been confirmed experimentally that phospholipidic multi-bilayers are essentially described as lamellar frictionless lubricants protecting the surface of the joints against wear. At the hydrophilicity limit, the low friction would then be due to (a) lamellar slippage of bilayers and (b) a short-range (nanometer-scale) repulsion between the interfaces of negatively charged (PO4(-)) cartilage surfaces, and in addition, contribution of the extracellular matrix (ECM) collagen fibers, hyaluronate, proteoglycans aggregates (PGs), glycoprotein termed lubricin and finally, lamellar PLs phases. In this paper we demonstrate experimentally that the pH sensitivity of cartilage to friction provides a novel concept in joint lubrication on charged surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Electromechanical response of articular cartilage in indentation--considerations on the determination of cartilage properties during arthroscopy.

    Science.gov (United States)

    Li, L P; Herzog, W

    2005-04-01

    A finite element formulation of streaming potentials in articular cartilage was incorporated into a fibril-reinforced model using the commercial software ABAQUS. This model was subsequently used to simulate interactions between an arthroscopic probe and articular cartilage in a knee joint. Fibril reinforcement was found to account for large fluid pressure at considerable strain rates, as has been observed in un-confined compression. Furthermore, specific electromechanical responses were associated with specific changes in tissue properties that occur with cartilage degeneration. For example, the strong strain-rate dependence of the load response was only observed when the collagen network was intact. Therefore, it is possible to use data measured during arthroscopy to evaluate the degree of cartilage degeneration and the source causing changed properties. However, practical problems, such as the difficulty of controlling the speed of the hand-held probe, may greatly reduce the reliability of such evaluations. The fibril-reinforced electromechanical model revealed that high-speed transient responses were associated with the collagen network, and equilibrium response was primarily determined by proteoglycan matrix. The results presented here may be useful in the application of arthroscopic tools for evaluating cartilage degeneration, for the proper interpretation of data, and for the optimization of data collection during arthroscopy.

  10. Characterization of Engineered Cartilage Constructs Using Multiexponential T2 Relaxation Analysis and Support Vector Regression

    OpenAIRE

    Irrechukwu, Onyi N.; Reiter, David A.; Lin, Ping-Chang; Roque, Remigio A.; Fishbein, Kenneth W.; Spencer, Richard G.

    2012-01-01

    Increased sensitivity in the characterization of cartilage matrix status by magnetic resonance (MR) imaging, through the identification of surrogate markers for tissue quality, would be of great use in the noninvasive evaluation of engineered cartilage. Recent advances in MR evaluation of cartilage include multiexponential and multiparametric analysis, which we now extend to engineered cartilage. We studied constructs which developed from chondrocytes seeded in collagen hydrogels. MR measurem...

  11. Visualisation of collagen fibrils in joint cartilage using STIM

    International Nuclear Information System (INIS)

    Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gruender, W.

    2001-01-01

    The scanning transmission ion microscopy (STIM) method was used to investigate the collagen network structure of the articular cartilage from a pig's knee in comparison with high resolution nuclear magnetic resonance imaging (microscopic NMR-tomography) and polarised light microscopy (PLM). Single collagen fibrils down to 200 nm in diameter were visualised. It was proved that the cartilage collagen network consists partly of zones of oriented fibrils as suggested by NMR measurements. Radially oriented fibrils were found in the zone near the calcified zone (hypertrophic zone) of both tibia and femur, and in the tibial radial zone. Tangentially oriented fibrils were found in the femoral and tibial superficial zone and in a second zone of the femoral cartilage. Polarisation light microscopy reveals broader zones of orientation than it was found with STIM

  12. Cartilage oligomeric matrix protein enhances the vascularization of acellular nerves

    Directory of Open Access Journals (Sweden)

    Wei-ling Cui

    2016-01-01

    Full Text Available Vascularization of acellular nerves has been shown to contribute to nerve bridging. In this study, we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves. The rat nerve defects were treated with acellular nerve grafting (control group alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein (experimental group. As shown through two-dimensional imaging, the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation, and gradually covered the entire graft at day 21. The vascular density, vascular area, and the velocity of revascularization in the experimental group were all higher than those in the control group. These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves.

  13. AMIC Cartilage Repair in a Professional Soccer Player

    Directory of Open Access Journals (Sweden)

    S. Bark

    2012-01-01

    Full Text Available We report a case of a professional soccer player suffering from a traumatic cartilage lesion grade IV according to the Outerbridge classification at the femoral condyle treated with an enhanced microfracture technique (AMIC. Autologous Matrix-Induced Chondrogenesis (AMIC is an innovative treatment for localized full-thickness cartilage defects combining the well-known microfracturing with collagen scaffold and fibrin glue. Because of the cartilage lesion (3 cm2, an AMIC procedure was performed followed by a rehabilitation program according to the protocols in the literature, (Steadman et al.; 2003. After 8 months of rehabilitation, the player returned to team training and after 10 months to competition. Altogether he returned to the same skill level for almost one year after the index operation. He is very satisfied with the clinical results after AMIC, which corresponds with the Lysholm score of 90 points at 12 months.

  14. AMIC Cartilage Repair in a Professional Soccer Player.

    Science.gov (United States)

    Bark, S; Riepenhof, H; Gille, J

    2012-01-01

    We report a case of a professional soccer player suffering from a traumatic cartilage lesion grade IV according to the Outerbridge classification at the femoral condyle treated with an enhanced microfracture technique (AMIC). Autologous Matrix-Induced Chondrogenesis (AMIC) is an innovative treatment for localized full-thickness cartilage defects combining the well-known microfracturing with collagen scaffold and fibrin glue. Because of the cartilage lesion (3 cm(2)), an AMIC procedure was performed followed by a rehabilitation program according to the protocols in the literature, (Steadman et al.; 2003). After 8 months of rehabilitation, the player returned to team training and after 10 months to competition. Altogether he returned to the same skill level for almost one year after the index operation. He is very satisfied with the clinical results after AMIC, which corresponds with the Lysholm score of 90 points at 12 months.

  15. Advancing cartilage tissue engineering: the application of stem cell technology.

    Science.gov (United States)

    Raghunath, Joanne; Salacinski, Henryk J; Sales, Kevin M; Butler, Peter E; Seifalian, Alexander M

    2005-10-01

    The treatment of cartilage pathology and trauma face the challenges of poor regenerative potential and inferior repair. Nevertheless, recent advances in tissue engineering indicate that adult stem cells could provide a source of chondrocytes for tissue engineering that the isolation of mature chondrocytes has failed to achieve. Various adjuncts to their propagation and differentiation have been explored, such as biomaterials, bioreactors and growth hormones. To date, all tissue engineered cartilage has been significantly mechanically inferior to its natural counterparts and further problems in vivo relate to poor integration and deterioration of tissue quality over time. However, adult stem cells--with their high rate of proliferation and ease of isolation--are expected to greatly further the development and usefulness of tissue engineered cartilage.

  16. Analysis of Cartilage-Polydioxanone Foil Composite Grafts

    Science.gov (United States)

    Kim, James H.; Wong, Brian

    2014-01-01

    This study presents an analytical investigation into the mechanical behavior of a cartilage-polydioxanone (PDS) plate composite grafts. Numerical methods are used to provide a first-order, numerical model of the flexural stiffness of a cartilage-PDS graft. Flexural stiffness is a measure of resistance to bending and is inversely related to the amount of deformation a structure may experience when subjected to bending forces. The cartilage-PDS graft was modeled as a single composite beam. Using Bernoulli-Euler beam theory, a closed form equation for the theoretical flexural stiffness of the composite graft was developed. A parametric analysis was performed to see how the flexural properties of the composite model changed with varying thicknesses of PDS foil. The stiffness of the cartilage-PDS composite using 0.15-mm-thick PDS was four times higher than cartilage alone. The composite with a 0.5-mm-thick PDS graft was only 1.7 times stiffer than the composite with the 0.15-mm-thick PDS graft. Although a thicker graft material will yield higher flexural stiffness for the composite, the relationship between composite stiffness and PDS thickness is nonlinear. After a critical point, increments in graft thickness produce gradually smaller improvements in flexural stiffness. The small increase in stiffness when using the thicker PDS foils versus the 0.15 mm PDS foil may not be worth the potential complications (prolonged foreign body reaction, reduction in nutrient diffusion to cartilage) of using thicker artificial grafts. PMID:24327249

  17. Bilateral same-day endoscopic transcanal cartilage tympanoplasty: initial results.

    Science.gov (United States)

    Daneshi, Ahmad; Jahandideh, Hesam; Daneshvar, Ali; Safdarian, Mahdi

    Same-day closure of bilateral tympanic membrane perforations is a quick and more comfortable procedure for the patients. However, conventional bilateral same-day tympanoplasty or myringoplasty has been rarely performed because of the theoretical risk of postoperative complications. To evaluate the advantages and outcomes of bilateral simultaneous endoscopic cartilage tympanoplasty in patients with bilateral tympanic membrane perforations. From February 2012 to March 2013, patients with bilateral dry tympanic membrane perforations who had some degree of hearing loss corresponding to the size and location of the perforation entered the study. There was no suspicion to disrupted ossicular chain, mastoid involvement or other middle or inner ear pathology. Endoscopic transcanal cartilage tympanoplasty was done using the underlay (medial) technique. The graft was harvested from cymba cartilage in just one ear with preservation of perichondrium in one side. A 1.5cm×1.5cm cartilage seemed to be enough for tympanoplasty in both sides. Nine patients (4 males and 5 females) with the mean age of 37.9 years underwent bilateral transcanal cartilage tympanoplasty in a same-day surgery. The mean duration of follow up was 15.8 months. There were detected no complications including hearing loss, otorrhea and wound complication with no retraction pocket or displaced graft during follow-up period. The grafts take rate was 94.44% (only one case of unilateral incomplete closure). The mean of air-bone gap overall improved from 13.88dB preoperatively to 9.16dB postoperatively (p<0.05). Bilateral endoscopic transcanal cartilage tympanoplasty can be considered as a safe minimally invasive procedure that can be performed in a same-day surgery. It reduces the costs and operation time and is practical with a low rate of postoperative complications. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights

  18. Phospholipid Vesicles in Media for Tribological Studies against Live Cartilage

    Science.gov (United States)

    Veselack, Teresa; Aldebert, Gregoire; Trunfio-Sfarghiu, Ana-Maria; Schmid, Thomas M.; Laurent, Michel P.; Wimmer, Markus A.

    2018-01-01

    Introduction Pre-clinical testing of hemiarthroplasty devices requires that the tribological conditions present in vivo with live cartilage be closely duplicated. A current limitation in the tribological testing of live cartilage involves the use of cell-culture media as lubricant. Study Aim to develop and test a new hyaluronan-phospholipid based medium (HA–phospholipid medium) that combines the rheological and frictional properties of synovial fluid with the nourishing properties of culture media to keep cells alive. Materials and Methods The HA–phospholipid medium consisted of culture medium with added phospholipid dipalmitoylphosphatidylcholine (0.3 mg/mL), and hyaluronic acid (2.42 mg/mL). A standard cell culture medium was used as the control. The rheology of each medium was determined using a flat plate configuration. Bovine calf cartilage was used to assess cell viability and friction in each medium. For friction measurements, a cobalt-chrome alloy ball was articulated against cartilage disks immersed in medium. Results Lipid vesicles 0.1 to 50 μm in diameter were identified in the HA–phospholipid medium. Cartilage cell viability was significantly higher in the HA–phospholipid medium (62% ± 8%, 95% CI) than in control medium (49.5% ± 5%) (p = 0.009). The HA–phospholipid medium exhibited strong shear-thinning behavior, similar to synovial fluid, with viscosities ~100-fold higher at 10 s−1 and 5-fold higher at 20,000 s−1 than the approximately Newtonian control medium. The HA–phospholipid medium also yielded 20% lower friction values than the control medium after one hour of testing. Conclusions The rheological and friction results indicate that the HA–phospholipid medium is superior to the control cell culture medium in emulating the shear thinning and lubricative properties of natural synovial fluid, making it more clinically relevant for in vitro wear and friction testing with live cartilage. PMID:29527359

  19. In vitro and in vivo modulation of cartilage degradation by a standardized Centella asiatica fraction.

    NARCIS (Netherlands)

    Hartog, A.; Smit, H.F.; Kraan, P.M. van der; Hoijer, M.A.; Garssen, J.

    2009-01-01

    Osteoarthritis (OA) is a degenerative joint disease in which focal cartilage destruction is one of the primary features. The present study aims to evaluate the effect of a Centella asiatica fraction on in vitro and in vivo cartilage degradation. Bovine cartilage explants and bovine chondrocytes

  20. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold

    Science.gov (United States)

    Musumeci, G.; Loreto, C.; Carnazza, M.L.; Coppolino, F.; Cardile, V.; Leonardi, R.

    2011-01-01

    Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease. PMID:22073377

  1. Articular Cartilage Thickness Measured with US is Not as Easy as It Appears

    DEFF Research Database (Denmark)

    Torp-Pedersen, Søren; Bartels, E. M.; Wilhjelm, Jens E.

    2011-01-01

    Background: Theoretically, the high spatial resolution of US makes it well suited to monitor the decrease in articular cartilage thickness in osteoarthritis. A requirement is, however, that the borders of the cartilage are correctly identified and that the cartilage ismeasured under orthogonal...

  2. Growth of the mandible and biological characteristics of the mandibular condylar cartilage

    Directory of Open Access Journals (Sweden)

    Itaru Mizoguchi

    2013-11-01

    Full Text Available Mandibular condylar cartilage is the center of greatest growth in the craniofacial complex, and is associated with maxillofacial skeleton morphogenesis and temporomandibular joint function. The condylar process grows in a wide range of directions from anterosuperior to posterior, resulting in highly diverse mandibular growth and morphology. Condylar growth direction is closely related to mandibular displacement direction and vertical jaw deviations (i.e., high or low angle. Condylar cartilage, which is ontogenetically designated secondary cartilage, differs from other primary cartilage (e.g., articular cartilage and growth plate of a long bone cranial base cartilage, nasal septal cartilage in the following ways. (1 Condylar cartilage is a heterogeneous tissue containing fibroblasts, osteochondral progenitor cells, and chondrocytes. (2 Type I collagen, which is derived from progenitor cells, and cartilage-characteristic type II collagen are colocalized in the cartilaginous cell layer. Colocalization of both collagen types may be an adaptation to the complex biomechanical environments of condylar cartilage. (3 Peripheral condylar cartilage contains chondroid bone, a specialized calcified tissue with morphological properties intermediate between those of bone and cartilage. This hybrid tissue may play an important role in regulating different rates of bone formation in intramembranous and endochondral ossification, allowing for highly diverse growth directions and condylar and maxillofacial morphology.

  3. Gold nanoparticles induced cloudy swelling to hydropic degeneration, cytoplasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis in the liver

    Directory of Open Access Journals (Sweden)

    Jarrar Bashir M

    2011-09-01

    Full Text Available Abstract Background Nanoparticles (NPs can potentially cause adverse effects on organ, tissue, cellular, subcellular and protein levels due to their unusual physicochemical properties. Advances in nanotechnology have identified promising candidates for many biological and biomedical applications. The aim of the present study was to investigate the particle-size, dose and exposure duration effects of gold nanoparticles (GNPs on the hepatic tissue in an attempt to cover and understand the toxicity and their potential therapeutic and diagnostic use. Methods A total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 ul of GNPs infusion of size (10, 20 and 50 nm for 3 or 7 days to investigate particle-size, dose and exposure duration effects of GNPs on the hepatic tissue. Results In comparison with respective control rats, exposure to GNPs doses has produced alterations in the hepatocytes, portal triads and the sinusoids. The alterations in the hepatocytes were mainly vacuolar to hydropic degeneration, cytopasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis. Conclusions The hepatocytes swelling might be exhibited as a result of disturbances of membranes function that lead to massive influx of water and Na+ due to GNPs effects accompanied by leakage of lysosomal hydrolytic enzymes that lead to cytoplasmic degeneration and macromolecular crowding. Hydropic degeneration is a result of ion and fluid homestasis that lead to an increase of intracellular water. The vacuolated swelling of the cytoplasm of the hepatocytes of the GNPs treated rats might indicate acute and subacute liver injury induced by the GNPs. Binucleation represents a consequence of cell injury and is a sort of chromosomes hyperplasia which is usually seen in regenerating cells. The induced histological alterations might be an indication of injured hepatocytes due to GNPs toxicity that became unable to deal

  4. Spontaneous intraorbital hematoma: case report

    Directory of Open Access Journals (Sweden)

    Vinodan Paramanathan

    2010-12-01

    Full Text Available Vinodan Paramanathan, Ardalan ZolnourianQueen's Hospital NHS Foundation Trust, Burton on Trent, Staffordshire DE13 0RB, UKAbstract: Spontaneous intraorbital hematoma is an uncommon clinical entity seen in ophthalmology practice. It is poorly represented in the literature. Current evidence attributes it to orbital trauma, neoplasm, vascular malformations, acute sinusitis, and systemic abnormalities. A 65-year-old female presented with spontaneous intraorbital hematoma manifesting as severe ocular pains, eyelid edema, proptosis, and diplopia, without a history of trauma. Computer tomography demonstrated a fairly well defined extraconal lesion with opacification of the paranasal sinuses. The principal differential based on all findings was that of a spreading sinus infection and an extraconal tumor. An unprecedented finding of a spontaneous orbital hematoma was discovered when the patient was taken to theater. We discuss the rarity of this condition and its management.Keywords: hemorrhage, ophthalmology, spontaneous, intra-orbital, hematoma

  5. Chondronecrosis of the cricoid cartilage following radiation therapy

    International Nuclear Information System (INIS)

    Tanabe, Masahiro; Isshiki, Nobuhiko; Kojima, Hisayoshi

    1979-01-01

    Chondronecrosis of the laryngeal cartilage following radiation therapy is a rare but serious complication. We report herein a case of post-radiation chondronecrosis and discuss factors predisposing to its development. A 67-year-old man received telecobalt therapy for cancer of the right vocal cord. A year after the radiation therapy given in a dose of 7,000r, the patient developed dysphagia and dyspnea. Following tracheotomy, he underwent total laryngectomy. The surgical specimen showed no cancer but chondronecrosis of the cricoid cartilage was present. After laryngectomy he developed progressive soft tissue necrosis of the neck and died following a carotid hemorrhage. (author)

  6. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.

    Science.gov (United States)

    Yang, Jingzhou; Zhang, Yu Shrike; Yue, Kan; Khademhosseini, Ali

    2017-07-15

    Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue

  7. Spontaneous ischaemic stroke in dogs

    DEFF Research Database (Denmark)

    Gredal, Hanne Birgit; Skerritt, G. C.; Gideon, P.

    2013-01-01

    Translation of experimental stroke research into the clinical setting is often unsuccessful. Novel approaches are therefore desirable. As humans, pet dogs suffer from spontaneous ischaemic stroke and may hence offer new ways of studying genuine stroke injury mechanisms.......Translation of experimental stroke research into the clinical setting is often unsuccessful. Novel approaches are therefore desirable. As humans, pet dogs suffer from spontaneous ischaemic stroke and may hence offer new ways of studying genuine stroke injury mechanisms....

  8. Spontaneity and international marketing performance

    OpenAIRE

    Souchon, Anne L.; Hughes, Paul; Farrell, Andrew M.; Nemkova, Ekaterina; Oliveira, Joao S.

    2016-01-01

    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link. Purpose – The purpose of this paper is to ascertain how today’s international marketers can perform better on the global scene by harnessing spontaneity. Design/methodology/approach – The authors draw on contingency theory to develop a model of the spontaneity – international marketing performance relationship, and identify three potential m...

  9. Biomechanical Evaluation of Spontaneity Repair of Osteochondral Defects in Rabbit Knee

    Directory of Open Access Journals (Sweden)

    Fahimeh Kamali

    2007-01-01

    Full Text Available Objective: Full-thickness defects measuring 3 mm in diameter have been commonly used in studies of rabbits to evaluate new procedures designed to improve the quality of articular cartilage repair. These defects initially heal spontaneously. However, little information is available on the characteristics of repair of large defects. The aim of present study was to define the biomechanical characteristics of repair of 5x4 mm full- thickness osteochondral defects in the adolescent male rabbit. Materials & Methods: In a Quasi - Experimental study 5 millimeter diameter and 4 mm deep osteochondral defects were drilled in femoral patellar groove of twenty-one rabbits , and examined at 4 ,8 and 16 weeks. The left knee was kept intact as the normal control. . The knee joints were removed, and both legs were examined biomechanically by in situ indentation method at three time- intervals (4, 8, 16 weeks. The instantaneous and equilibrium elastic- modulus (after 900 second measured during the test. Results: There were no differences in cartilage mechanical properties (instantaneous and equilibrium elastic- modulus between weeks (4, 8, 16 weeks in two groups (P>0/05. Although Significant differences between experimental and control groups were seen in 16 weeks in instantaneous elastic- modulus (P<0/05. New tissue supported high stiffness than normal control in 16 weeks. Conclusion: Full-thickness osteochondral defects, measuring 5x4 mm in diameter and dept in patellar groove of adolescent rabbit knee heal spontaneously.

  10. BIOCHEMICAL AND HISTOLOGICAL EFFECTS OF TETRACYCLINES ON SPONTANEOUS OSTEOARTHRITIS IN GUINEA PIGS

    Directory of Open Access Journals (Sweden)

    Edin De Bri

    2011-05-01

    Full Text Available Matrix metalloproteinases (MMPs are mediators in connective tissue destruction in a variety of pathologic processes. Recently discovered chemically modified tetracyclines have been found to be effective inhibitors of MMP mediated connective tissue degradation in both rheumatoid arthritis (RA and osteoarthritis (OA. The Hartley guinea pig model has been described with a high incidence of spontaneous OA-like changes in the knee joint. Therefore we have studied the effect of two tetracyclines, doxycycline (Dox and chemically modified tetracycline-7 (CMT-7 which have both previously been shown as potent MMP inhibitors. We found that prophylactic orally given CMT-7 decreases OA changes in the knee joints both in vitro and in vivo in the guinea pig OA model. OA changes were most severe in the central compartment of the medial condyle in the control group. Cartilage fibrillation and destruction, in addition to subchondral bone sclerosis and cyst formation were all less in the CMT-7 treated group compared with controls. Collagen, hyaluronan and proteoglycan content in cartilage was higher in the CMT-7 treated group compared with controls. In contrast, OA changes were not decreased in the Dox group. These results show that tetracyclines, but not all tetracyclines, can reduce the severity of OA in the guinea pig model of spontaneous OA.

  11. Novel Genetic Variants for Cartilage Thickness and Hip Osteoarthritis

    NARCIS (Netherlands)

    Castaño-Betancourt, Martha C.; Evans, Dan S.; Ramos, Yolande F M; Boer, Cindy G.; Metrustry, Sarah; Liu, Youfang; den Hollander, Wouter; van Rooij, Jeroen; Kraus, Virginia B.; Yau, Michelle S.; Mitchell, Braxton D.; Muir, Kenneth; Hofman, Albert; Doherty, Michael; Doherty, Sally; Zhang, Weiya; Kraaij, Robert; Rivadeneira, Fernando; Barrett-Connor, Elizabeth; Maciewicz, Rose A.; Arden, Nigel; Nelissen, Rob G H H; Kloppenburg, Margreet; Jordan, Joanne M.; Nevitt, Michael C.; Slagboom, Eline P.; Hart, Deborah J.; Lafeber, Floris; Styrkarsdottir, Unnur; Zeggini, Eleftheria; Evangelou, Evangelos; Spector, Tim D.; Uitterlinden, Andre G.; Lane, Nancy E.; Meulenbelt, Ingrid; Valdes, Ana M.; van Meurs, Joyce B J

    2016-01-01

    Osteoarthritis is one of the most frequent and disabling diseases of the elderly. Only few genetic variants have been identified for osteoarthritis, which is partly due to large phenotype heterogeneity. To reduce heterogeneity, we here examined cartilage thickness, one of the structural components

  12. Novel Genetic Variants for Cartilage Thickness and Hip Osteoarthritis

    NARCIS (Netherlands)

    M.C. Castaño Betancourt (Martha); D.S. Evans (Daniel); Y.F.M. Ramos (Yolande); Boer, C.G. (Cindy G.); S. Metrustry (Sarah); Liu, Y. (Youfang); W. den Hollander (Wouter); J. Van Rooij (Jeroen); Kraus, V.B. (Virginia B.); Yau, M.S. (Michelle S.); B.D. Mitchell (Braxton); Muir, K. (Kenneth); A. Hofman (Albert); M. Doherty (Michael); S. Doherty (Sally); W. Zhang (Weiya); R. Kraaij (Robert); F. Rivadeneira Ramirez (Fernando); Barrett-Connor, E. (Elizabeth); R.A. MacIewicz (Rose); N.K. Arden (Nigel); R.G.H.H. Nelissen (Rob); M. Kloppenburg (Margreet); Jordan, J.M. (Joanne M.); M.C. Nevitt (Michael); E. Slagboom (Eline); D. Hart (Deborah); F.P.J.G. Lafeber (Floris); U. Styrkarsdottir (Unnur); E. Zeggini (Eleftheria); E. Evangelou (Evangelos); T.D. Spector (Timothy); A.G. Uitterlinden (André); N.E. Lane; I. Meulenbelt (Ingrid); A.M. Valdes (Ana Maria); J.B.J. van Meurs (Joyce)

    2016-01-01

    textabstractOsteoarthritis is one of the most frequent and disabling diseases of the elderly. Only few genetic variants have been identified for osteoarthritis, which is partly due to large phenotype heterogeneity. To reduce heterogeneity, we here examined cartilage thickness, one of the structural

  13. NONINVASIVE DETERMINATION OF KNEE CARTILAGE DEFORMATION DURING JUMPING

    Directory of Open Access Journals (Sweden)

    Djordje Kosanic

    2009-12-01

    Full Text Available The purpose of this investigation was to use a combination of image processing, force measurements and finite element modeling to calculate deformation of the knee cartilage during jumping. Professional athletes performed jumps analyzed using a force plate and high-speed video camera system. Image processing was performed on each frame of video using a color recognition algorithm. A simplified mass-spring-damper model was utilized for determination of global force and moment on the knee. Custom software for fitting the coupling characteristics was created. Simulated results were used as input data for the finite element calculation of cartilage deformation in the athlete's knee. Computer simulation data was compared with the average experimental ground reaction forces. The results show the three-dimensional mechanical deformation distribution inside the cartilage volume. A combination of the image recognition technology, force plate measurements and the finite element cartilage deformation in the knee may be used in the future as an effective noninvasive tool for prediction of injury during jumping

  14. Segmentation of articular cartilage using active contours and prior knowledge.

    Science.gov (United States)

    Tejos, Cristian; Hall, Laurance; Cardenas-Blanco, Arturo

    2004-01-01

    A diffusion snake segmentation algorithm was evaluated on synthetic and real MR images of articular cartilage. The algorithm proved to be robust to missing boundaries and the initial contour converges over large distances. Compared with a standard B-spline snake, more accurate and reproducible segmentations were obtained, with less effort during initialization of the algorithm.

  15. Evaluation of early changes of cartilage biomarkers following ...

    African Journals Online (AJOL)

    Hamdy Khamis Koryem

    2014-08-15

    Aug 15, 2014 ... In fat-suppressed 3D-WS-bSSFP, the articular carti- lage has very high signal intensity, joint fluid has an intermedi- ate to low signal intensity, and subchondral bone and bone marrow are dark. Reported sensitivity and specificity for detec- tion of cartilage loss are 75–85% and 95–97%, respectively.25.

  16. Evaluation of early changes of cartilage biomarkers following ...

    African Journals Online (AJOL)

    Evaluation of early changes of cartilage biomarkers following arthroscopic meniscectomy in young Egyptian adults. ... Among the individual biochemical markers, PIICP had the highest significant diagnostic accuracy quantified as the area under the receiver-operator characteristics curve (AUC) of 0.75 (95% confidence ...

  17. Human Endogenous Retrovirus W Activity in Cartilage of Osteoarthritis Patients

    Directory of Open Access Journals (Sweden)

    Signy Bendiksen

    2014-01-01

    Full Text Available The etiology of viruses in osteoarthritis remains controversial because the prevalence of viral nucleic acid sequences in peripheral blood or synovial fluid from osteoarthritis patients and that in healthy control subjects are similar. Until now the presence of virus has not been analyzed in cartilage. We screened cartilage and chondrocytes from advanced and non-/early osteoarthritis patients for parvovirus B19, herpes simplex virus-1, Epstein Barr virus, cytomegalovirus, human herpes virus-6, hepatitis C virus, and human endogenous retroviruses transcripts. Endogenous retroviruses transcripts, but none of the other viruses, were detected in 15 out the 17 patients. Sequencing identified the virus as HERV-WE1 and E2. HERV-W activity was confirmed by high expression levels of syncytin, dsRNA, virus budding, and the presence of virus-like particles in all advanced osteoarthritis cartilages examined. Low levels of HERV-WE1, but not E2 envelope RNA, were observed in 3 out of 8 non-/early osteoarthritis patients, while only 3 out of 7 chondrocytes cultures displayed low levels of syncytin, and just one was positive for virus-like particles. This study demonstrates for the first time activation of HERV-W in cartilage of osteoarthritis patients; however, a causative role for HERV-W in development or deterioration of the disease remains to be proven.

  18. Effect of histone deacetylase inhibitor, trichostatin A, on cartilage ...

    African Journals Online (AJOL)

    transplanted onto the paravertebral muscle of the face of each rabbit. The rabbits were separated into ... Conclusion: Treatment with trichostatin A, an HDAC inhibitor, enhances cartilage regeneration in rabbit recipients of a perichondrial graft. ..... Stillaert FB, Monstrey S. The use of platelet-rich plasma in plastic surgery: a ...

  19. Current perspectives in stem cell research for knee cartilage repair

    Directory of Open Access Journals (Sweden)

    Orth P

    2014-01-01

    Full Text Available Patrick Orth,1 Ana Rey-Rico,2 Jagadeesh K Venkatesan,2 Henning Madry,1,2 Magali Cucchiarini2 1Department of Orthopaedic Surgery, 2Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany Abstract: Protocols based on the delivery of stem cells are currently applied in patients, showing encouraging results for the treatment of articular cartilage lesions (focal defects, osteoarthritis. Yet, restoration of a fully functional cartilage surface (native structural organization and mechanical functions especially in the knee joint has not been reported to date, showing the need for improved designs of clinical trials. Various sources of progenitor cells are now available, originating from adult tissues but also from embryonic or reprogrammed tissues, most of which have already been evaluated for their chondrogenic potential in culture and for their reparative properties in vivo upon implantation in relevant animal models of cartilage lesions. Nevertheless, particular attention will be needed regarding their safe clinical use and their potential to form a cartilaginous repair tissue of proper quality and functionality in the patient. Possible improvements may reside in the use of biological supplements in accordance with regulations, while some challenges remain in establishing standardized, effective procedures in the clinics. Keywords: cartilage repair, knee, focal defects, osteoarthritis, stem cells, clinical trials

  20. Evaluation of early changes of cartilage biomarkers following ...

    African Journals Online (AJOL)

    Evaluation of early changes of cartilage biomarkers following arthroscopic meniscectomy in young Egyptian adults. ... Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

  1. Experimental articular cartilage repair in the Göttingen minipig

    DEFF Research Database (Denmark)

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Olesen, Morten Lykke

    2015-01-01

    treated with one of the following: Matrix-induced autologous chondrocyte implantation (MACI), microfracture (MFx), autologous-dual-tissue transplantation (ADTT), autologous bone graft, autologous cartilage chips. Empty chondral and osteochondral defects were used as controls. MRI and CT were performed 3...

  2. Bone morphogenetic protein-induced cartilage development in tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Urist, M.R.

    1984-03-01

    Outgrowths of mesenchyme-type cells from explants of allogeneic rat muscle onto a substratum of bone matrix containing bone morphogenetic protein (BMP) differentiate into cartilage. When BMP is chemically extracted from the bone matrix, the explanted cells develop only into fibrous tissue. When exogenous bovine BMP is introduced into the culture medium, either as a microsuspension or as a layer of particles between the matrix and the muscle cell tissue, cartilage develops at the interface between the matrix and the mesenchymal cell outgrowth. The chondrogenetic response is induced by as little as 2 micrograms of BMP; the optimum dose is 10 micrograms/40 mg (wet weight) of explant. The endogenous BMP equivalent for a comparable chondrogenetic response is about 0.6 micrograms/mg of allogeneic matrix. The minimum time for transfer of BMP to mesenchymal cell receptors is 1.0 hour, adequate time is 2.5 hours, and optimum time is approximately 5.0 hours. Measured in terms of incorporation of /sup 3/H-thymidine into DNA and of /sup 35/S sulfate into glycosaminoglycan, there is a latent period of one to three days preceeding the differentiation of mesenchyme-type cells into cartilage. During this latent period BMP-modulated mesenchymal cells disaggregate, migrate, reaggregate, and proliferate on new surfaces and constitute the morphogenetic phase of bone development. By the fourth day cells simultaneously undergo mitotic division, synthesize extracellular cartilage matrix, and establish the cytodifferentiation phase of development.

  3. Effect of histone deacetylase inhibitor, trichostatin A, on cartilage ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of histone deacetylase (HDAC) inhibitor, trichostatin A (TCA), on cartilage regeneration in a rabbit perichondrial graft model. Methods: Perichondrial grafts (20 × 20 mm2) were derived from the ears of New Zealand rabbits and transplanted onto the paravertebral muscle of the face of each ...

  4. Healing Osteoarthritis: Engineered Proteins Created for Therapeutic Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Kevin M. Cherry

    2012-01-01

    Full Text Available Millions of people worldwide are afflicted with painfulosteoarthritis, which is characterized by degradationof articular cartilage found in major joints such as thehip or knee. Symptoms include inflammation, pain,and decreased mobility. Because cartilage has a limitedability to self-heal, researchers have focused efforts onmethods that trigger cartilage regeneration. Our approachis to develop an injectable, protein-based hydrogel withmechanical properties analogous to healthy articularcartilage. The hydrogel provides an environment for cellgrowth and stimulates new tissue formation. We utilizedrecombinant DNA technology to create multifunctional,elastomeric proteins. The recombinant proteins weredesigned with biologically active domains to influence cellbehavior and resilin structural domains that mimic thestiffness of native cartilage. Resilin, a protein found in thewing and leg joints of mosquitoes, provided inspiration forthe mechanical domain in the recombinant protein. Thenew resilin-based protein was expressed in E. coli bacteria.Forming hydrogels requires a large quantity of engineeredprotein, so parameters such as bacterial host, incubationtemperature, expression time, and induction method wereoptimized to increase the protein yield. Using salt toprecipitate the protein and exploiting resilin’s heat stability,27 mg/L of recombinant protein was recovered at 95%purity. The protein expression and purification protocolswere established by analyzing experimental samples onSDS-PAGE gels and by Western blotting. The mechanicalproperties and interactions with stem cells are currentlybeing evaluated to assess the potential of the resilin-basedhydrogel as a treatment for osteoarthritis.

  5. Excised larynx evaluation of subthyroid cartilage approach to medialization thyroplasty.

    Science.gov (United States)

    Thompson, James D; Hoffman, Matthew R; Scholp, Austin; Devine, Erin E; Jiang, Jack J; McCulloch, Timothy M

    2018-03-01

    To describe an alternative approach to medialization thyroplasty involving dissection underneath the thyroid cartilage with placement of a Gore-Tex implant, and to evaluate its effect on a range of phonatory measures using an excised canine larynx model. Animal model. On each of eight excised canine larynges, the conditions of normal, paralysis, medialization thyroplasty by standard transthyroid cartilage approach, and medialization thyroplasty by experimental subthyroid cartilage approach were performed. Aerodynamic, acoustic, and mucosal wave parameters were measured for each condition. Compared to the vocal fold paralysis state, both the transthyroid and subthyroid approaches for Gore-Tex insertion resulted in significant decreases in phonation threshold pressure and phonation threshold flow. Both approaches also significantly decreased percent jitter, decreased percent shimmer, and improved signal-to-noise ratio. The mucosal wave was preserved after insertion of the Gore-Tex implant for both approaches. For all the phonatory measures except phonation threshold flow, there were no significant differences between the transthyroid and subthyroid approaches. Gore-Tex implantation via a subthyroid approach in an excised canine larynx model can produce effective medialization, preserve the mucosal wave, and significantly improve aerodynamic and acoustic parameters without meaningful difference compared to a traditional transthyroid approach. The subthyroid approach does not require creation of a thyroid cartilage window and could be a potentially valuable alternative method of performing medialization thyroplasty. NA. Laryngoscope, 128:675-681, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Optical coherence tomography detection of subclinical traumatic cartilage injury.

    Science.gov (United States)

    Bear, David M; Szczodry, Michal; Kramer, Scott; Coyle, Christian H; Smolinski, Patrick; Chu, Constance R

    2010-09-01

    Posttraumatic arthritis is a major cause of disability. Current clinical imaging modalities are unable to reliably evaluate articular cartilage damage before surface breakdown, when potentially reversible changes are occurring. Optical coherence tomography (OCT) is a nondestructive imaging technology that can detect degenerative changes in articular cartilage with an intact surface. This study tests the hypothesis that OCT detects acute articular cartilage injury after impact at energy levels resulting in chondrocyte death and microstructural changes, but insufficient to produce macroscopic surface damage. Bovine osteochondral cores underwent OCT imaging and were divided into a control with no impact or were subjected to low (0.175 J) or moderate (0.35 J) energy impact. Cores were reimaged with OCT after impact and the OCT signal intensity quantified. A ratio of the superficial to deep layer intensities was calculated and compared before and after impact. Chondrocyte viability was determined 1 day after impact followed by histology and polarized microscopy. Macroscopic changes to the articular surface were not observed after low and moderate impact. The OCT signal intensity ratio demonstrated a 27% increase (P = 0.006) after low impact and a 38% increase (P = 0.001) after moderate impact. Cell death increased by 150% (P death and microscopic matrix damage. This finding supports the use of OCT to detect microstructural subsurface cartilage damage that is poorly visualized with conventional imaging.

  7. Thermosensitive hydrogels for 3D bioprinting of cartilage constructs

    NARCIS (Netherlands)

    Abbadessa, A.

    2017-01-01

    Tissue engineering (TE) aims to regenerate damaged tissues by the combined use of biomaterials and cells, often in presence of bioactive molecules, such as growth factors. Particularly for tissues with poor regenerative capacity, such as articular cartilage, TE approaches may lead to promising

  8. Automatic quantification of local and global articular cartilage surface curvature

    DEFF Research Database (Denmark)

    Folkesson, Jenny; Dam, Erik B; Olsen, Ole F

    2008-01-01

    The objective of this study was to quantitatively assess the surface curvature of the articular cartilage from low-field magnetic resonance imaging (MRI) data, and to investigate its role in populations with varying radiographic signs of osteoarthritis (OA), cross-sectionally and longitudinally. ...... curvature estimates from low-field MRI at different scales could potentially become biomarkers targeted at different stages of OA....

  9. Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis.

    Science.gov (United States)

    Sato, Mitsuhiko; Uchida, Kenzo; Nakajima, Hideaki; Miyazaki, Tsuyoshi; Guerrero, Alexander Rodriguez; Watanabe, Shuji; Roberts, Sally; Baba, Hisatoshi

    2012-02-07

    Mesenchymal stem cells (MSCs) can differentiate into various connective tissue cells. Several techniques have been used for the clinical application of MSCs in articular cartilage repair; however, there are many issues associated with the selection of the scaffold material, including its ability to support cell viability and differentiation and its retention and degradation in situ. The application of MSCs via a scaffold also requires a technically demanding surgical procedure. The aim of this study was to test the outcome of intra-articular transplantation of mesenchymal stem cells suspended in hyaluronic acid (HA) in the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis (OA). Commercially available human MSCs were cultured, labeled with carboxyfluorescein diacetate succinimidyl ester (CFDA-SE), suspended in either PBS or HA, and injected into the knee joints of 7-month-old animals. The control animals were injected with either PBS or HA alone. The animals were sacrificed at 1, 3, and 5 weeks post transplantation, the knee joints harvested, and fluorescent microscopic analysis was performed. Histological and immunohistochemical analysis were performed at 5 weeks post transplantation. At 5 weeks post transplantation, partial cartilage repair was noted in the HA-MSC group but not in the other groups. Examination of CFDA-SE-labeled cells demonstrated migration, differentiation, and proliferation of MSC in the HA-MSC group. There was strong immunostaining for type II collagen around both residual chondrocytes and transplanted MSCs in the OA cartilage. This scaffold-free and technically undemanding technique appears to result in the regeneration of articular cartilage in the spontaneous OA animal model. Although further examination of the long-term effects of transplantation is necessary, the findings suggest that intra-articular injection of HA-MSC mixture is potentially beneficial for OA.

  10. The immunomodulatory effects of shark cartilage on the mouse and human immune system

    Directory of Open Access Journals (Sweden)

    ali Sheikhian

    2007-01-01

    Materials and methods: In an experimental study, the effects of different doses of shark cartilage on humoral (antibody titer immune response against sheep red blood cells (SRBC, were measured in mouse. In addition, we evaluated the modulatory effects of the shark cartilage on the natural killer (NK activity of the peritoneal cells of mouse against a tumor cell line called K562, according to the standard methods. The proliferative response of the human peripheral blood mononuclear cells was measured under the influence of shark cartilage. Results: Pure shark cartilage enhanced antibody response against SRBC in vivo. The hemagglutination titer which was 1/147 in the control group (injected with hen cartilage, increased to 1/1355 in the test group. The optimal dose was 100 mg/ml. both type of cartilage had blastogenic effect on peripheral blood mononuclear cells (the blastogenic index was 6.7 and 4.9 for impure shark cartilage and hen cartilage, respectively. NK activity was inhibited completely by pure shark cartilage (the amount of the killing activity of the effector peritoneal cells for the control and test groups against target cells was 25.9% and 5.5% respectively. Conclusion: Shark cartilage has a potent immunomodulatory effect on the specific immune mechanisms and some inhibitory effects on the innate immune mechanisms such as NC activity. Since the specific immunity has a more pivotal role against tumor formation, shark cartilage can be used as a cancer immunotherapeutic.

  11. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering.

    Science.gov (United States)

    Choi, Jane Ru; Yong, Kar Wey; Choi, Jean Yu

    2018-03-01

    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair. © 2017 Wiley Periodicals, Inc.

  12. Correlation between apparent diffusion coefficient and viscoelasticity of articular cartilage in a porcine model.

    Science.gov (United States)

    Aoki, T; Watanabe, A; Nitta, N; Numano, T; Fukushi, M; Niitsu, M

    2012-09-01

    Quantitative MR imaging techniques of degenerative cartilage have been reported as useful indicators of degenerative changes in cartilage extracellular matrix, which consists of proteoglycans, collagen, non-collagenous proteins, and water. Apparent diffusion coefficient (ADC) mapping of cartilage has been shown to correlate mainly with the water content of the cartilage. As the water content of the cartilage in turn correlates with its viscoelasticity, which directly affects the mechanical strength of articular cartilage, ADC can serve as a potentially useful indicator of the mechanical strength of cartilage. The aim of this study was to investigate the correlation between ADC and viscoelasticity as measured by indentation testing. Fresh porcine knee joints (n = 20, age 6 months) were obtained from a local abattoir. ADC of porcine knee cartilage was measured using a 3-Tesla MRI. Indentation testing was performed on an electromechanical precision-controlled system, and viscosity coefficient and relaxation time were measured as additional indicators of the viscoelasticity of cartilage. The relationship between ADC and viscosity coefficient as well as that between ADC and relaxation time were assessed. ADC was correlated with relaxation time and viscosity coefficient (R(2) = 0.75 and 0.69, respectively, p viscoelasticity in the superficial articular cartilage. Both molecular diffusion and viscoelasticity were higher in weight bearing than non-weight-bearing articular cartilage areas.

  13. The distribution of YKL-40 in osteoarthritic and normal human articular cartilage

    DEFF Research Database (Denmark)

    Volck, B; Ostergaard, K; Johansen, J S

    1999-01-01

    YKL-40, also called human cartilage glycoprotein-39, is a major secretory protein of human chondrocytes in cell culture. YKL-40 mRNA is expressed by cartilage from patients with rheumatoid arthritis, but is not detectable in normal human cartilage. The aim was to investigate the distribution of YKL......-40 in osteoarthritic (n=9) and macroscopically normal (n=5) human articular cartilage, collected from 12 pre-selected areas of the femoral head, to discover a potential role for YKL-40 in cartilage remodelling in osteoarthritis. Immunohistochemical analysis showed that YKL-40 staining was found...... staining for YKL-40 was in general low in normal cartilage. The present findings, together with previous observations, suggests that YKL-40 may be of importance in cartilage remodelling/degradation of osteoarthritic joints....

  14. A case of spontaneous ventriculocisternostomy

    International Nuclear Information System (INIS)

    Yamane, Kanji; Yoshimoto, Hisanori; Harada, Kiyoshi; Uozumi, Tohru; Kuwabara, Satoshi.

    1983-01-01

    The authors experienced a case of spontaneous ventriculocisternostomy diagnosed by CT scan with metrizamide and Conray. Patient was 23-year-old male who had been in good health until one month before admission, when he began to have headache and tinnitus. He noticed bilateral visual acuity was decreased about one week before admission and vomiting appeared two days before admission. He was admitted to our hospital because of bilateral papilledema and remarkable hydrocephalus diagnosed by CT scan. On admission, no abnormal neurological signs except for bilateral papilledema were noted. Immediately, right ventricular drainage was performed. Pressure of the ventricle was over 300mmH 2 O and CSF was clear. PVG and PEG disclosed an another cavity behind the third ventricle, which was communicated with the third ventricle, and occlusion of aqueduct of Sylvius. Metrizamide CT scan and Conray CT scan showed a communication between this cavity and quadrigeminal and supracerebellar cisterns. On these neuroradiological findings, the diagnosis of obstructive hydrocephalus due to benign aqueduct stenosis accompanied with spontaneous ventriculocisternostomy was obtained. Spontaneous ventriculocisternostomy was noticed to produce arrest of hydrocephalus, but with our case, spontaneous regression of such symptoms did not appeared. By surgical ventriculocisternostomy (method by Torkildsen, Dandy, or Scarff), arrest of hydrocephalus was seen in about 50 to 70 per cent, which was the same results as those of spontaneous ventriculocisternostomy. It is concluded that VP shunt or VA shunt is thought to be better treatment of obstructive hydrocephalus than the various kinds of surgical ventriculocisternostomy. (J.P.N.)

  15. Optical antenna enhanced spontaneous emission.

    Science.gov (United States)

    Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C

    2015-02-10

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.

  16. Boundary lubrication of articular cartilage: role of synovial fluid constituents.

    Science.gov (United States)

    Schmidt, Tannin A; Gastelum, Nicholas S; Nguyen, Quynhhoa T; Schumacher, Barbara L; Sah, Robert L

    2007-03-01

    To determine whether the synovial fluid (SF) constituents hyaluronan (HA), proteoglycan 4 (PRG4), and surface-active phospholipids (SAPL) contribute to boundary lubrication, either independently or additively, at an articular cartilage-cartilage interface. Cartilage boundary lubrication tests were performed with fresh bovine osteochondral samples. Tests were performed using graded concentrations of SF, HA, and PRG4 alone, a physiologic concentration of SAPL, and various combinations of HA, PRG4, and SAPL at physiologic concentrations. Static (mu(static, Neq)) and kinetic () friction coefficients were calculated. Normal SF functioned as an effective boundary lubricant both at a concentration of 100% ( = 0.025) and at a 3-fold dilution ( = 0.029). Both HA and PRG4 contributed independently to a low mu in a dose-dependent manner. Values of decreased from approximately 0.24 in phosphate buffered saline to 0.12 in 3,300 mug/ml HA and 0.11 in 450 mug/ml PRG4. HA and PRG4 in combination lowered mu further at the high concentrations, attaining a value of 0.066. SAPL at 200 mug/ml did not significantly lower mu, either independently or in combination with HA and PRG4. The results described here indicate that SF constituents contribute, individually and in combination, both at physiologic and pathophysiologic concentrations, to the boundary lubrication of apposing articular cartilage surfaces. These results provide insight into the nature of the boundary lubrication of articular cartilage by SF and its constituents. They therefore provide insight regarding both the homeostatic maintenance of healthy joints and pathogenic processes in arthritic disease.

  17. Novel Genetic Variants for Cartilage Thickness and Hip Osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Martha C Castaño-Betancourt

    2016-10-01

    Full Text Available Osteoarthritis is one of the most frequent and disabling diseases of the elderly. Only few genetic variants have been identified for osteoarthritis, which is partly due to large phenotype heterogeneity. To reduce heterogeneity, we here examined cartilage thickness, one of the structural components of joint health. We conducted a genome-wide association study of minimal joint space width (mJSW, a proxy for cartilage thickness, in a discovery set of 13,013 participants from five different cohorts and replication in 8,227 individuals from seven independent cohorts. We identified five genome-wide significant (GWS, P≤5·0×10-8 SNPs annotated to four distinct loci. In addition, we found two additional loci that were significantly replicated, but results of combined meta-analysis fell just below the genome wide significance threshold. The four novel associated genetic loci were located in/near TGFA (rs2862851, PIK3R1 (rs10471753, SLBP/FGFR3 (rs2236995, and TREH/DDX6 (rs496547, while the other two (DOT1L and SUPT3H/RUNX2 were previously identified. A systematic prioritization for underlying causal genes was performed using diverse lines of evidence. Exome sequencing data (n = 2,050 individuals indicated that there were no rare exonic variants that could explain the identified associations. In addition, TGFA, FGFR3 and PIK3R1 were differentially expressed in OA cartilage lesions versus non-lesioned cartilage in the same individuals. In conclusion, we identified four novel loci (TGFA, PIK3R1, FGFR3 and TREH and confirmed two loci known to be associated with cartilage thickness.The identified associations were not caused by rare exonic variants. This is the first report linking TGFA to human OA, which may serve as a new target for future therapies.

  18. Boundary mode lubrication of articular cartilage by recombinant human lubricin.

    Science.gov (United States)

    Gleghorn, Jason P; Jones, Aled R C; Flannery, Carl R; Bonassar, Lawrence J

    2009-06-01

    Lubrication of cartilage involves a variety of physical and chemical factors, including lubricin, a synovial glycoprotein that has been shown to be a boundary lubricant. It is unclear how lubricin boundary lubricates a wide range of bearings from tissue to artificial surfaces, and if the mechanism is the same for both soluble and bound lubricin. In the current study, experiments were conducted to investigate the hypothesis that recombinant human lubricin (rh-lubricin) lubricates cartilage in a dose-dependent manner and that soluble and bound fractions of rh-lubricin both contribute to the lubrication process. An rh-lubricin dose response was observed with maximal lubrication achieved at concentrations of rh-lubricin greater than 50 microg/mL. A concentration-response variable-slope model was fit to the data, and indicated that rh-lubricin binding to cartilage was not first order. The pattern of decrease in equilibrium friction coefficient indicated that aggregation of rh-lubricin or steric arrangement may regulate boundary lubrication. rh-lubricin localized at the cartilage surface was found to lubricate a cartilage-glass interface in boundary mode, as did soluble rh-lubricin at high concentrations (150 microg/mL); however, the most effective lubrication occurred when both soluble and bound rh-lubricin were present at the interface. These findings point to two distinct mechanisms by which rh-lubricin lubricates, one mechanism involving lubricin bound to the tissue surface and the other involving lubricin in solution. Copyright 2008 Orthopaedic Research Society

  19. Chondroitin sulfate reduces the friction coefficient of articular cartilage.

    Science.gov (United States)

    Basalo, Ines M; Chahine, Nadeen O; Kaplun, Michael; Chen, Faye H; Hung, Clark T; Ateshian, Gerard A

    2007-01-01

    The objective of this study was to investigate the effect of chondroitin sulfate (CS)-C on the frictional response of bovine articular cartilage. The main hypothesis is that CS decreases the friction coefficient of articular cartilage. Corollary hypotheses are that viscosity and osmotic pressure are not the mechanisms that mediate the reduction in the friction coefficient by CS. In Experiment 1, bovine articular cartilage samples (n=29) were tested in either phosphate buffered saline (PBS) or in PBS containing 100mg/ml of CS following 48h incubation in PBS or in PBS+100mg/ml CS (control specimens were not subjected to any incubation). In Experiment 2, samples (n=23) were tested in four different solutions: PBS, PBS+100mg/ml CS, and PBS+polyethylene glycol (PEG) (133 or 170mg/ml). In Experiment 3, samples (n=18) were tested in three solutions of CS (0, 10 and 100mg/ml). Frictional tests (cartilage-on-glass) were performed under constant stress (0.5MPa) for 3600s and the time-dependent friction coefficient was measured. Samples incubated or tested in a 100mg/ml CS solution exhibited a significantly lower equilibrium friction coefficient than the respective PBS control. PEG solutions delayed the rise in the friction coefficient relative to the PBS control, but did not reduce the equilibrium value. Testing in PBS+10mg/ml of CS did not cause any significant decrease in the friction coefficient. In conclusion, CS at a concentration of 100mg/ml significantly reduces the friction coefficient of bovine articular cartilage and this mechanism is neither mediated by viscosity nor osmolarity. These results suggest that direct injection of CS into the joint may provide beneficial tribological effects.

  20. Survivorship After Meniscal Allograft Transplantation According to Articular Cartilage Status.

    Science.gov (United States)

    Lee, Bum-Sik; Bin, Seong-Il; Kim, Jong-Min; Kim, Won-Kyeong; Choi, Jun Weon

    2017-04-01

    Clinical outcomes after meniscal allograft transplantation (MAT) in arthritic knees are unclear, and objective estimates of graft survival according to the articular cartilage status have not been performed. MAT should provide clinical benefits in knees with high-grade cartilage damage, but their graft survivorship should be inferior to that in knees with low-grade chondral degeneration after MAT. Cohort study; Level of evidence, 3. The records of 222 consecutive patients who underwent primary MAT were reviewed to compare clinical outcomes and graft survivorship. The patients were grouped according to the degree and location of articular cartilage degeneration: low-grade chondral lesions (International Cartilage Repair Society [ICRS] grade ≤2) on both the femoral and tibial sides (ideal indication), high-grade lesions (ICRS grade 3 or 4) on either the femoral or tibial side (relative indication), and high-grade lesions on both sides (salvage indication). Kaplan-Meier survival analysis with the log-rank test was performed to compare the clinical survival rates and graft survival rates between the groups. A Lysholm score of meniscal tear or meniscectomy of greater than one-third of the allograft, objectively evaluated by magnetic resonance imaging (MRI) and second-look arthroscopic surgery. The mean (±SD) Lysholm score significantly improved from 63.1 ± 15.1 preoperatively to 85.1 ± 14.3 at the latest follow-up of a mean 44.6 ± 19.7 months ( P lesions. However, better graft survival can be expected when articular cartilage is intact or if chondral damage is limited to a unipolar lesion. MAT should be considered before the progression of chondral damage to a bipolar lesion for better graft survivorship and should be performed cautiously in arthritic knees.

  1. The Top 50 Most Cited Articles in Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Ciaran K. Mc Donald

    2017-06-01

    Full Text Available The aim of this study was to identify and analyze the top 50 most cited articles in cartilage regeneration. The impact of a scientific journal can be gauged by the total number of citations it has accrued. The top 50 most cited articles involving cartilage regeneration represent the most quoted level of evidence among this new subspecialty. This study aims to identify and analyze the 50 most cited articles in cartilage regeneration. The Web of Science™ citation indexing service was utilized to determine the most frequently cited articles published after 1956 containing “cartilage regeneration” in the “topic” or “title.” The 50 most cited articles were included. The number of citations, year of publication, country of article origin, article institution, journal of publication, publication format, and authorship were then calculated for each article. The span of citations ranged from 1287 to 203 citations, with a mean of 361.02 citations per article in question. The articles originated from 11 countries, with the United States contributing 34 articles, followed by Japan with 5 articles. The articles were distributed across 34 high-impact journals. Biomaterials was the journal with the highest number of publications (seven articles followed by the Journal of Orthopaedic Research (three articles. Of the 50 articles, 2 were clinical observational studies, 47 concerned basic science, and 1 was review article. The most cited articles involving cartilage regeneration are detected in both experimental and clinical research fields. The high ratio of basic science to clinical articles reflects the infancy of this relatively new specialty and that further clinical research is required in this area.

  2. The Top 50 Most Cited Articles in Cartilage Regeneration

    Science.gov (United States)

    Mc Donald, Ciaran K.; Moriarty, Peter; Varzgalis, Manvydas; Murphy, Colin

    2017-01-01

    Abstract The aim of this study was to identify and analyze the top 50 most cited articles in cartilage regeneration. The impact of a scientific journal can be gauged by the total number of citations it has accrued. The top 50 most cited articles involving cartilage regeneration represent the most quoted level of evidence among this new subspecialty. This study aims to identify and analyze the 50 most cited articles in cartilage regeneration. The Web of Science™ citation indexing service was utilized to determine the most frequently cited articles published after 1956 containing “cartilage regeneration” in the “topic” or “title.” The 50 most cited articles were included. The number of citations, year of publication, country of article origin, article institution, journal of publication, publication format, and authorship were then calculated for each article. The span of citations ranged from 1287 to 203 citations, with a mean of 361.02 citations per article in question. The articles originated from 11 countries, with the United States contributing 34 articles, followed by Japan with 5 articles. The articles were distributed across 34 high-impact journals. Biomaterials was the journal with the highest number of publications (seven articles) followed by the Journal of Orthopaedic Research (three articles). Of the 50 articles, 2 were clinical observational studies, 47 concerned basic science, and 1 was review article. The most cited articles involving cartilage regeneration are detected in both experimental and clinical research fields. The high ratio of basic science to clinical articles reflects the infancy of this relatively new specialty and that further clinical research is required in this area. PMID:28736688

  3. A high throughput mechanical screening device for cartilage tissue engineering.

    Science.gov (United States)

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. © 2013 Published by Elsevier Ltd.

  4. Binding and lubrication of biomimetic boundary lubricants on articular cartilage.

    Science.gov (United States)

    Samaroo, Kirk J; Tan, Mingchee; Putnam, David; Bonassar, Lawrence J

    2017-03-01

    The glycoprotein, lubricin, is the primary boundary lubricant of articular cartilage and has been shown to prevent cartilage damage after joint injury. In this study, a library of eight bottle-brush copolymers were synthesized to mimic the structure and function of lubricin. Polyethylene glycol (PEG) grafted onto a polyacrylic acid (pAA) core mimicked the hydrophilic mucin-like domain of lubricin, and a thiol terminus anchored the polymers to cartilage surfaces much like lubricin's C-terminus. These copolymers, abbreviated as pAA-g-PEG, rapidly bound to cartilage surfaces with binding time constants ranging from 20 to 39 min, and affected lubrication under boundary mode conditions with coefficients of friction ranging from 0.140 ± 0.024 to 0.248 ± 0.030. Binding and lubrication were highly correlated (r 2  = 0.89-0.99), showing that boundary lubrication in this case strongly depends on the binding of the lubricant to the surface. Along with time-dependent and dose-dependent behavior, lubrication and binding of the lubricin-mimetics also depended on copolymer structural parameters including pAA backbone length, PEG side chain length, and PEG:AA brush density. Polymers with larger backbone sizes, brush sizes, or brush densities took longer to bind (p lubricate and protect cartilage in vivo. In copolymers with shorter pAA backbones, increasing hydrodynamic size inhibited lubrication (p lubricating efficacy as recombinant lubricins and as such have potential for in vivo treatment of post-traumatic osteoarthritis. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:548-557, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Evaluation of nasal cartilage using three-dimensional soft tissue images in patients with unilateral cleft lip

    International Nuclear Information System (INIS)

    Hasegawa, Yoshimichi; Saijo, Hideto; Yonehara, Yoshiyuki; Takato, Tsuyoshi; Nakatuka, Takashi

    2008-01-01

    In the treatment of nasal deformities associated with cleft lip and palate, deformities of the alar cartilage and upper lateral cartilage are usually repaired. It is very useful if deformities of the nasal cartilage are evaluated preoperatively. We created three-dimensional CT images of soft tissues by the volume rendering method, the nasal cartilage. In 26 patients with unilateral cleft lip and palate, the alar cartilage, upper lateral cartilage, and septal cartilage were evaluated morphologically. As a result, in each case, these cartilages were deviated and deformed. However, the size of both the alar cartilage and the upper lateral cartilage on the cleft side were approximately similar to those on the healthy side. It is suggested that using this method formulated for the imaging of cartilaginous morphology, preoperative planning and follow-up can be performed easily. (author)

  6. The bio in the ink : cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells

    NARCIS (Netherlands)

    Levato, Riccardo; Webb, William R; Otto, Iris A; Mensinga, Anneloes; Zhang, Yadan; van Rijen, Mattie; van Weeren, P. René; Khan, Ilyas M.; Malda, Jos

    2017-01-01

    Cell-laden hydrogels are the primary building blocks for bioprinting, and, also termed bioinks, are the foundations for creating structures that can potentially recapitulate the architecture of articular cartilage. To be functional, hydrogel constructs need to unlock the regenerative capacity of

  7. Raman microspectrometry of laser-reshaped rabbit auricular cartilage: preliminary study on laser-induced cartilage mineralization

    NARCIS (Netherlands)

    Heger, Michal; Mordon, Serge; Leroy, Gérard; Fleurisse, Laurence; Creusy, Colette

    2006-01-01

    Laser-assisted cartilage reshaping (LACR) is a relatively novel technique designed to noninvasively and permanently restructure cartilaginous tissue. It is believed that heat-induced stress relaxation, in which a temperature-mediated disruption of H2O binding is associated with conformational

  8. Spontaneous subcapsular and perirrenal hemorrhage

    International Nuclear Information System (INIS)

    Fuster, M.J.; Saez, J.; Perez-Paya, F.J.; Fernandez, F.

    1997-01-01

    To assess the role of CT in the etiologic diagnosis of spontaneous subcapsular and perirrenal hemorrhage. The CT findings are described in 13 patients presenting subcapsular and perirrenal hemorrhage. Those patients in whom the bleeding was not spontaneous were excluded. Surgical confirmation was obtained in nine cases. In 11 of the 13 cases (84.6%), involving five adenocarcinomas, five angiomyolipoma, two complicated cysts and one case of panarterities nodosa, CT disclosed the underlying pathology. In two cases (15.4%), it only revealed the extension of the hematoma, but gave no clue to its origin. CT is the technique of choice when spontaneous subcapsular and perirrenal hemorrhage is suspected since, in most cases, it reveals the underlying pathology. (Author)

  9. Evaluation of laser ablation of knee cartilage as an alternative to microfracture surgery: pilot investigations

    Science.gov (United States)

    Su, Erica; Wong, Brian J. F.; Sun, Hui; Juhasz, Tibor

    2010-02-01

    An emerging clinical treatment option for articular cartilage injury includes bone marrow stimulation techniques, such as microfracture, which has grown increasingly popular among athletes. During the microfracture procedure, the surgeon penetrates the subchondral bone with an awl and creates "microholes" deep enough to ensure bleeding from the bone marrow. This procedure triggers a spontaneous repair response that results in the formation of fibrocartilaginous repair tissue. This preliminary study aimed to evaluate the potential use of femtosecond lasers and Erbium:YAG lasers as alternatives to microfracture surgery of the knee by assessing the effects of ablation on bovine femoral condyles. Bovine femoral condyles were obtained and 8mm cube blocks were extracted. The specimen were ablated with various laser dosimetry parameters and observed using a high power dissecting microscope to examine the effects of the lasers. Further imaging with conventional histology (hematoxylin and eosin staining) was done to provide more accurate information. Preliminary results show some carbonization but demonstrate little thermal damage to surrounding tissues. The femtosecond laser offers a more precise and efficient ablation than the Erbium:YAG laser, but both are demonstrated to be possible alternatives to the surgical-skill dependent microfracture procedure.

  10. Spontaneous isolated celiac artery dissection

    Directory of Open Access Journals (Sweden)

    Tuba Cimilli Ozturk

    2011-01-01

    Full Text Available Dyspepsia with mild, stabbing epigastric discomfort without history of trauma is a very common symptom that emergency physicians see in their daily practice. Vascular emergencies, mostly the aortic dissection and aneurysm, are always described in the differential diagnosis with persistent symptoms. Isolated celiac artery dissection occurring spontaneously is a very rare diagnosis. The involvement of branch vessels is generally observed and patients show various clinical signs and symptoms according to the involved branch vessel. Here we are presenting a case with spontaneous isolated celiac artery dissection, without any branch vessel involvement or visceral damage, detected by computed tomography scans taken on admission.

  11. Spontaneous waves in muscle fibres

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Stefan; Kruse, Karsten [Department of Theoretical Physics, Saarland University, 66041 Saarbruecken (Germany); Max Planck Institute for the Physics of Complex Systems, Noethnitzer Street 38, 01187 Dresden (Germany)

    2007-11-15

    Mechanical oscillations are important for many cellular processes, e.g. the beating of cilia and flagella or the sensation of sound by hair cells. These dynamic states originate from spontaneous oscillations of molecular motors. A particularly clear example of such oscillations has been observed in muscle fibers under non-physiological conditions. In that case, motor oscillations lead to contraction waves along the fiber. By a macroscopic analysis of muscle fiber dynamics we find that the spontaneous waves involve non-hydrodynamic modes. A simple microscopic model of sarcomere dynamics highlights mechanical aspects of the motor dynamics and fits with the experimental observations.

  12. Human Papillomavirus Infection as a Possible Cause of Spontaneous Abortion and Spontaneous Preterm Delivery

    DEFF Research Database (Denmark)

    Ambühl, Lea Maria Margareta; Baandrup, Ulrik; Dybkær, Karen

    2016-01-01

    , and 10.9% (95% CI; 10.1–11.7) for umbilical cord blood. Summary estimates for HPV prevalence of spontaneous abortions and spontaneous preterm deliveries, in cervix (spontaneous abortions: 24.5%, and pretermdeliveries: 47%, resp.) and placenta (spontaneous abortions: 24.9%, and preterm deliveries: 50......%, resp.), were identified to be higher compared to normal full-term pregnancies (푃 spontaneous abortion, spontaneous preterm...

  13. Correlation of laminated MR apperance of articular cartilage with histology

    International Nuclear Information System (INIS)

    Kim, Dong Joon; Suh, Jin Suck; Jeong, Eun Kee; Shin, Kyu Ho; Yang, Woo Ick

    1999-01-01

    To determine the correlation of laminae of different signal intensities (SI) of articular cartilage, as seen on magnetic resonance(MR) imaging with histologic layers, using artificially constructed landmarks. For a landmark that can exactly correlate the cartilage specimen with the MR image, five 'V'-shaped markings of different depths were made on the surface of bovine patella. Both T1-weighted (TR/TE : 300/14) and FSE T2-weighted images (TR/TE : 2000/53) were obtained on a 1.5T system with high gradient echo strength (25mT/m) and a voxel size of 78X78X2000μm. Images were obtained with 1) changed frequency-encoding directions on T1-weighted study, and 2) changed readout gradient strength ( X2, X1/2) on T2-weighted sequence. Raw image data were transferred to a workstation and signal intensity profile was generated for each image. 1 : 1 correlation of histologic specimens and MR images was performed. Line profile through the cartilage showed few peaks, suggesting changes in signal intensity profile in the cartilage. On the basis of artificial landmarks, the histologic zone was accurately identified. The histologic tangential and transitional zones correlated with superficial high SI on T1WI, as well as high and low SI on T2WI. On T1WI, the radial zone correlated with a lamina of intermediate SI, and on T2WI, with a lamina for which SI gradually decreased from high to low. Additional well-defined low and intermediate SI bands were noted on bovine T1WI in the lower radial zone. In both T1 and T2 studies, calcified cartilage layers were of low SI. On T1-weighted study, changes in the direction of frequency gradient did not lead to changes in the laminae. The alteration of readout gradient strengths did not result in an inversely proportional difference in the thickness of the laminae. These became more distinct thus ruling out chemical shift and susceptibility artifacts. The laminated appearance of articular cartilage, as seen on spin echo and fast spin-echo MR

  14. Characterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies.

    Science.gov (United States)

    Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; García-López, J; Brena-Molina, A M; Gutiérrez-Gómez, C; Ibarra, C; Velasquillo, C

    2016-09-01

    The external ear is composed of elastic cartilage. Microtia is a congenital malformation of the external ear that involves a small reduction in size or a complete absence. The aim of tissue engineering is to regenerate tissues and organs clinically implantable based on the utilization of cells and biomaterials. Remnants from microtia represent a source of cells for auricular reconstruction using tissue engineering. To examine the macromolecular architecture of microtia cartilage and behavior of chondrocytes, in order to enrich the knowledge of this type of cartilage as a cell reservoir. Auricular cartilage remnants were obtained from pediatric patients with microtia undergoing reconstructive procedures. Extracellular matrix composition was characterized using immunofluorescence and histological staining methods. Chondrocytes were isolated and expanded in vitro using a mechanical-enzymatic protocol. Chondrocyte phenotype was analyzed using qualitative PCR. Microtia cartilage preserves structural organization similar to healthy elastic cartilage. Extracellular matrix is composed of typical cartilage proteins such as type II collagen, elastin and proteoglycans. Chondrocytes displayed morphological features similar to chondrocytes derived from healthy cartilage, expressing SOX9, COL2 and ELN, thus preserving chondral phenotype. Cell viability was 94.6 % during in vitro expansion. Elastic cartilage from microtia has similar characteristics, both architectural and biochemical to healthy cartilage. We confirmed the suitability of microtia remnant as a reservoir of chondrocytes with potential to be expanded in vitro, maintaining phenotypical features and viability. Microtia remnants are an accessible source of autologous cells for auricular reconstruction using tissue engineering strategies.

  15. Co-culture systems-based strategies for articular cartilage tissue engineering.

    Science.gov (United States)

    Zhang, Yu; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Lu, Liang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Jiang, Peng; Lu, Shibi; Liu, Shuyun; Guo, Quanyi

    2018-03-01

    Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. © 2017 Wiley Periodicals, Inc.

  16. Osteoprotegerin deficiency leads to deformation of the articular cartilage in femoral head.

    Science.gov (United States)

    Liu, Yi; Ge, Jianping; Chen, Danying; Weng, Yuteng; Du, Haiming; Sun, Yao; Zhang, Qi

    2016-10-01

    Osteoarthritis (OA) was a degenerative joint disease characterized by articular cartilage degradation and extensive remodeling of the subchondral bone. Multiple lines of evidence indicated that Osteoprotegerin (OPG), a member of TNF receptor superfamily that was expressed in the chondrocytes of articular cartilage and adjacent locations in the physiological setting, was involved in maintaining integrity of articular cartilage. OPG could prevent subchondral bone from resorption, and also protect cartilage from degradation. In this study, we used Osteoprotegerin-knockout mice (Opg-KO mice) to find out the role of OPG in articular cartilage. We examined articular cartilage in the femoral head of Opg-KO mice began in early adulthood using modern molecular and imaging methods. We found cartilage changes starting from adulthood and progressively with age, reminiscent of pathological changes in OA. Deficiency of OPG caused thinned articular cartilage and extensive remodeling of the subchondral bone in femoral head in comparison with wild-type mice (WT mice). Also, the articular cartilage of femoral head expressed significantly less of Aggrecan, Col-II and Col-X, but more Col-I and Matrix Metalloproteinases-13 (Mmp-13) than WT mice both at gene and protein level. Moreover, increased chondrocyte apoptosis and decreased chondrocyte proliferation were observed in femoral head of Opg-KO mice compared to WT mice. These data suggested that OPG played an important role in maintaining the homeostasis of articular cartilage of femoral head.

  17. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    Science.gov (United States)

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.

  18. The Effects of Smoking on Ultrasonographic Thickness and Elastosonographic Strain Ratio Measurements of Distal Femoral Cartilage

    Directory of Open Access Journals (Sweden)

    Harun R. Gungor

    2016-04-01

    Full Text Available Although adverse effects of smoking on bone health are all well known, data on how smoking interacts with cartilage structure in otherwise healthy individuals remains conflicting. Here, we ascertain the effects of cigarette smoking on sonoelastographic properties of distal femoral cartilage in asymptomatic adults. Demographic characteristics and smoking habits (packets/year of healthy volunteers were recorded. Medial, intercondylar, and lateral distal femoral cartilage thicknesses and strain ratios on the dominant extremity were measured with ultrasonography (US and real time US elastography. A total of 88 subjects (71 M, 17 F; aged 18–56 years, N = 43 smokers and N = 45 nonsmokers were evaluated. Mean amount of cigarette smoking was 10.3 ± 8.9 (1–45 packets/year. Medial, intercondylar and lateral cartilage were thicker in smokers than nonsmokers (p = 0.002, p = 0.017, and p = 0.004, respectively. Medial distal femoral cartilage strain ratio was lower in smokers (p = 0.003. The amount of smoking was positively correlated with cartilage thicknesses and negatively correlated with medial cartilage strain ratios (p < 0.05. Femoral cartilage is thicker in smokers but has less strain ratio representing harder cartilage on the medial side. Future studies are needed to understand how these structural changes in the knee cartilage should be interpreted with regard to the development of knee osteoarthritis in smokers.

  19. Strain ratio measurement of femoral cartilage by real-time elastosonography: preliminary results

    International Nuclear Information System (INIS)

    Ipek, Ali; Unal, Ozlem; Kartal, Merve Gulbiz; Arslan, Halil; Isik, Cetin; Bozkurt, Murat

    2015-01-01

    The purpose of this study was to evaluate strain ratio measurement of femoral cartilage using real-time elastosonography. Twenty-five patients with femoral cartilage pathology on MRI (study group) were prospectively compared with 25 subjects with normal findings on MRI (control group) using real-time elastosonography. Strain ratio measurements of pathologic and normal cartilage were performed and compared, both within the study group and between the two groups. Elastosonography colour-scale coding showed a colour change from blue to red in pathologic cartilage and only blue colour-coding in normal cartilage. In the study group, the median strain ratio was higher in pathologic cartilage areas compared to normal areas (median, 1.49 [interquartile range, 0.80-2.53] vs. median, 0.01 [interquartile range, 0.01-0.01], p < 0.001, respectively). The median strain ratio of the control group was 0.01 (interquartile range, 0.01-0.01), and there was no significant difference compared to normal areas of the study group. There was, however, a significant difference between the control group cartilage and pathologic cartilage of the study group (p < 0.001). Elastosonography may be an effective, easily accessible, and relatively simple tool to demonstrate pathologic cartilage and to differentiate it from normal cartilage in the absence of advanced imaging facility such as MRI. (orig.)

  20. Strain ratio measurement of femoral cartilage by real-time elastosonography: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Ipek, Ali; Unal, Ozlem; Kartal, Merve Gulbiz; Arslan, Halil [Yildirim Beyazit University, Department of Radiology, Faculty of Medicine, Ataturk Training and Research Hospital, Ankara (Turkey); Isik, Cetin; Bozkurt, Murat [Yildirim Beyazit University, Department of Orthopedics, Faculty of Medicine, Ataturk Training and Research Hospital, Ankara (Turkey)

    2015-04-01

    The purpose of this study was to evaluate strain ratio measurement of femoral cartilage using real-time elastosonography. Twenty-five patients with femoral cartilage pathology on MRI (study group) were prospectively compared with 25 subjects with normal findings on MRI (control group) using real-time elastosonography. Strain ratio measurements of pathologic and normal cartilage were performed and compared, both within the study group and between the two groups. Elastosonography colour-scale coding showed a colour change from blue to red in pathologic cartilage and only blue colour-coding in normal cartilage. In the study group, the median strain ratio was higher in pathologic cartilage areas compared to normal areas (median, 1.49 [interquartile range, 0.80-2.53] vs. median, 0.01 [interquartile range, 0.01-0.01], p < 0.001, respectively). The median strain ratio of the control group was 0.01 (interquartile range, 0.01-0.01), and there was no significant difference compared to normal areas of the study group. There was, however, a significant difference between the control group cartilage and pathologic cartilage of the study group (p < 0.001). Elastosonography may be an effective, easily accessible, and relatively simple tool to demonstrate pathologic cartilage and to differentiate it from normal cartilage in the absence of advanced imaging facility such as MRI. (orig.)

  1. Multiparametric MRI of Epiphyseal Cartilage Necrosis (Osteochondrosis with Histological Validation in a Goat Model.

    Directory of Open Access Journals (Sweden)

    Luning Wang

    Full Text Available To evaluate multiple MRI parameters in a surgical model of osteochondrosis (OC in goats.Focal ischemic lesions of two different sizes were induced in the epiphyseal cartilage of the medial femoral condyles of goats at 4 days of age by surgical transection of cartilage canal blood vessels. Goats were euthanized and specimens harvested 3, 4, 5, 6, 9 and 10 weeks post-op. Ex vivo MRI scans were conducted at 9.4 Tesla for mapping the T1, T2, T1ρ, adiabatic T1ρ and TRAFF relaxation times of articular cartilage, unaffected epiphyseal cartilage, and epiphyseal cartilage within the area of the induced lesion. After MRI scans, safranin O staining was conducted to validate areas of ischemic necrosis induced in the medial femoral condyles of six goats, and to allow comparison of MRI findings with the semi-quantitative proteoglycan assessment in corresponding safranin O-stained histological sections.All relaxation time constants differentiated normal epiphyseal cartilage from lesions of ischemic cartilage necrosis, and the histological staining results confirmed the proteoglycan (PG loss in the areas of ischemia. In the scanned specimens, all of the measured relaxation time constants were higher in the articular than in the normal epiphyseal cartilage, consistently allowing differentiation between these two tissues.Multiparametric MRI provided a sensitive approach to discriminate between necrotic and viable epiphyseal cartilage and between articular and epiphyseal cartilage, which may be useful for diagnosing and monitoring OC lesions and, potentially, for assessing effectiveness of treatment interventions.

  2. Autofluorescence lifetime metrology for label-free detection of cartilage matrix degradation

    Science.gov (United States)

    Nickdel, Mohammad B.; Lagarto, João. L.; Kelly, Douglas J.; Manning, Hugh B.; Yamamoto, Kazuhiro; Talbot, Clifford B.; Dunsby, Christopher; French, Paul; Itoh, Yoshifumi

    2014-03-01

    Degradation of articular cartilage extracellular matrix (ECM) by proteolytic enzyme is the hallmark of arthritis that leads to joint destruction. Detection of early biochemical changes in cartilage before irreversible structural damages become apparent is highly desirable. Here we report that the autofluorescence decay profile of cartilage is significantly affected by proteolytic degradation of cartilage ECM and can be characterised by measurements of the autofluorescence lifetime (AFL). A multidimensional fluorometer utilizing ultraviolet excitation at 355 nm or 375 nm coupled to a fibreoptic probe was developed for single point time-resolved AFL measurements of porcine articular cartilage explants treated with different proteinases. Degradation of cartilage matrix components by treating with bacterial collagenase, matrix metalloproteinase 1, or trypsin resulted in significant reduction of AFL of the cartilage in both a dose and time dependent manner. Differences in cartilage AFL were also confirmed by fluorescence lifetime imaging microscopy (FLIM). Our data suggest that AFL of cartilage tissue is a potential non-invasive readout to monitor cartilage matrix integrity that may be utilized for diagnosis of arthritis as well as monitoring the efficacy of anti-arthritic therapeutic agents.

  3. The Potential for Synovium-derived Stem Cells in Cartilage Repair.

    Science.gov (United States)

    Kubosch, Eva Johanna; Lang, Gernot; Furst, David; Kubosch, David; Izadpanah, Kaywan; Rolauffs, Bernd; Sudkamp, Norbert P; Schmal, Hagen

    2018-02-23

    Articular cartilage defects often result in pain, loss of function and finally osteoarthritis. Developing cell-based therapies for cartilage repair is a major goal of orthopaedic research. Autologous chondrocyte implantation is currently the gold standard cell-based surgical procedure for the treatment of large, isolated, full thickness cartilage defects. Several disadvantages such as the need for two surgical procedures or hypertrophic regenerative cartilage, underline the need for alternative cell sources. Mesenchymal stem cells, particularly synovium-derived mesenchymal stem cells, represent a promising cell source. Synovium-derived mesenchymal stem cells have attracted considerable attention since they display great chondrogenic potential and less hypertrophic differentiation than mesenchymal stem cells derived from bone marrow. The aim of this review was to summarize the current knowledge on the chondrogenic potential for synovial stem cells in regard to cartilage repair purposes. A literature search was carried out identifying 260 articles in the databases up to January 2017. Several in vitro and initial animal in vivo studies of cartilage repair using synovia stem cell application showed encouraging results. Since synvoium-derived stem cells are located in the direct vicinity of cartilage and cartilage lesions these cells might even contribute to natural cartilage regeneration. The only one published human in vivo study with 10 patients revealed good results concerning postoperative outcome, MRI, and histologic features after a two-stage implantation of synovial stem cells into an isolated cartilage defect of the femoral condyle. Synovium-derived stem cells possess great chondrogenic potential and showed encouraging results for cartilage repair purposes. Furthermore, synovial stem cells play an important role in joint homeostasis and possibly in natural cartilage repair. Further studies are needed to elucidate the interplay of synovial stem cells and

  4. Automatic atlas-based three-label cartilage segmentation from MR knee images.

    Science.gov (United States)

    Shan, Liang; Zach, Christopher; Charles, Cecil; Niethammer, Marc

    2014-10-01

    Osteoarthritis (OA) is the most common form of joint disease and often characterized by cartilage changes. Accurate quantitative methods are needed to rapidly screen large image databases to assess changes in cartilage morphology. We therefore propose a new automatic atlas-based cartilage segmentation method for future automatic OA studies. Atlas-based segmentation methods have been demonstrated to be robust and accurate in brain imaging and therefore also hold high promise to allow for reliable and high-quality segmentations of cartilage. Nevertheless, atlas-based methods have not been well explored for cartilage segmentation. A particular challenge is the thinness of cartilage, its relatively small volume in comparison to surrounding tissue and the difficulty to locate cartilage interfaces - for example the interface between femoral and tibial cartilage. This paper focuses on the segmentation of femoral and tibial cartilage, proposing a multi-atlas segmentation strategy with non-local patch-based label fusion which can robustly identify candidate regions of cartilage. This method is combined with a novel three-label segmentation method which guarantees the spatial separation of femoral and tibial cartilage, and ensures spatial regularity while preserving the thin cartilage shape through anisotropic regularization. Our segmentation energy is convex and therefore guarantees globally optimal solutions. We perform an extensive validation of the proposed method on 706 images of the Pfizer Longitudinal Study. Our validation includes comparisons of different atlas segmentation strategies, different local classifiers, and different types of regularizers. To compare to other cartilage segmentation approaches we validate based on the 50 images of the SKI10 dataset. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Automatic atlas-based three-label cartilage segmentation from MR knee images

    Science.gov (United States)

    Shan, Liang; Zach, Christopher; Charles, Cecil; Niethammer, Marc

    2016-01-01

    Osteoarthritis (OA) is the most common form of joint disease and often characterized by cartilage changes. Accurate quantitative methods are needed to rapidly screen large image databases to assess changes in cartilage morphology. We therefore propose a new automatic atlas-based cartilage segmentation method for future automatic OA studies. Atlas-based segmentation methods have been demonstrated to be robust and accurate in brain imaging and therefore also hold high promise to allow for reliable and high-quality segmentations of cartilage. Nevertheless, atlas-based methods have not been well explored for cartilage segmentation. A particular challenge is the thinness of cartilage, its relatively small volume in comparison to surrounding tissue and the difficulty to locate cartilage interfaces – for example the interface between femoral and tibial cartilage. This paper focuses on the segmentation of femoral and tibial cartilage, proposing a multi-atlas segmentation strategy with non-local patch-based label fusion which can robustly identify candidate regions of cartilage. This method is combined with a novel three-label segmentation method which guarantees the spatial separation of femoral and tibial cartilage, and ensures spatial regularity while preserving the thin cartilage shape through anisotropic regularization. Our segmentation energy is convex and therefore guarantees globally optimal solutions. We perform an extensive validation of the proposed method on 706 images of the Pfizer Longitudinal Study. Our validation includes comparisons of different atlas segmentation strategies, different local classifiers, and different types of regularizers. To compare to other cartilage segmentation approaches we validate based on the 50 images of the SKI10 dataset. PMID:25128683

  6. Influence of polydioxanone foil on growing septal cartilage after surgery in an animal model: new aspects of cartilage healing and regeneration (preliminary results)

    NARCIS (Netherlands)

    Boenisch, Miriam; Tamás, Hajas; Nolst Trenité, Gilbert J.

    2003-01-01

    To determine whether late complications after septoplasty in growing septal cartilage in children can be prevented by the use of a resorbable polydioxanone (PDS) foil in combination with the cartilage. Animal study with 45 young rabbits, operated on at the nasal septum. Four typical septoplasty

  7. Co-Expression and Co-Localization of Cartilage Glycoproteins CHI3L1 and Lubricin in Osteoarthritic Cartilage: Morphological, Immunohistochemical and Gene Expression Profiles.

    Science.gov (United States)

    Szychlinska, Marta Anna; Trovato, Francesca Maria; Di Rosa, Michelino; Malaguarnera, Lucia; Puzzo, Lidia; Leonardi, Rosy; Castrogiovanni, Paola; Musumeci, Giuseppe

    2016-03-11

    Osteoarthritis is the most common human arthritis characterized by degeneration of articular cartilage. Several studies reported that levels of human cartilage glycoprotein chitinase 3-like-1 (CHI3L1) are known as a potential marker for the activation of chondrocytes and the progression of Osteoarthritis (OA), whereas lubricin appears to be chondroprotective. The aim of this study was to investigate the co-expression and co-localization of CHI3L1 and lubricin in normal and osteoarthritic rat articular cartilage to correlate their modified expression to a specific grade of OA. Samples of normal and osteoarthritic rat articular cartilage were analyzed by the Kellgren-Lawrence OA severity scores, the Kraus' modified Mankin score and the Histopathology Osteoarthritis Research Society International (OARSI) system for histomorphometric evaluations, and through CHI3L1 and lubricin gene expression, immunohistochemistry and double immuno-staining analysis. The immunoexpression and the mRNA levels of lubricin increased in normal cartilage and decreased in OA cartilage (normal vs. OA, p < 0.01). By contrast, the immunoexpression and the mRNA levels of CHI3L1 increased in OA cartilage and decreased in normal cartilage (normal vs. OA, p < 0.01). Our findings are consistent with reports suggesting that these two glycoproteins are functionally associated with the development of OA and in particular with grade 2/3 of OA, suggesting that in the future they could be helpful to stage the severity and progression of the disease.

  8. Co-Expression and Co-Localization of Cartilage Glycoproteins CHI3L1 and Lubricin in Osteoarthritic Cartilage: Morphological, Immunohistochemical and Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Marta Anna Szychlinska

    2016-03-01

    Full Text Available Osteoarthritis is the most common human arthritis characterized by degeneration of articular cartilage. Several studies reported that levels of human cartilage glycoprotein chitinase 3-like-1 (CHI3L1 are known as a potential marker for the activation of chondrocytes and the progression of Osteoarthritis (OA, whereas lubricin appears to be chondroprotective. The aim of this study was to investigate the co-expression and co-localization of CHI3L1 and lubricin in normal and osteoarthritic rat articular cartilage to correlate their modified expression to a specific grade of OA. Samples of normal and osteoarthritic rat articular cartilage were analyzed by the Kellgren–Lawrence OA severity scores, the Kraus’ modified Mankin score and the Histopathology Osteoarthritis Research Society International (OARSI system for histomorphometric evaluations, and through CHI3L1 and lubricin gene expression, immunohistochemistry and double immuno-staining analysis. The immunoexpression and the mRNA levels of lubricin increased in normal cartilage and decreased in OA cartilage (normal vs. OA, p < 0.01. By contrast, the immunoexpression and the mRNA levels of CHI3L1 increased in OA cartilage and decreased in normal cartilage (normal vs. OA, p < 0.01. Our findings are consistent with reports suggesting that these two glycoproteins are functionally associated with the development of OA and in particular with grade 2/3 of OA, suggesting that in the future they could be helpful to stage the severity and progression of the disease.

  9. Spontaneous emission by moving atoms

    International Nuclear Information System (INIS)

    Meystre, P.; Wilkens, M.

    1994-01-01

    It is well known that spontaneous emission is not an intrinsic atomic property, but rather results from the coupling of the atom to the vacuum modes of the electromagnetic field. As such, it can be modified by tailoring the electromagnetic environment into which the atom can radiate. This was already realized by Purcell, who noted that the spontaneous emission rate can be enhanced if the atom placed inside a cavity is resonant with one of the cavity is resonant with one of the cavity modes, and by Kleppner, who discussed the opposite case of inhibited spontaneous emission. It has also been recognized that spontaneous emission need not be an irreversible process. Indeed, a system consisting of a single atom coupled to a single mode of the electromagnetic field undergoes a periodic exchange of excitation between the atom and the field. This periodic exchange remains dominant as long as the strength of the coupling between the atom and a cavity mode is itself dominant. 23 refs., 6 figs

  10. Spontaneous Development of Moral Concepts

    Science.gov (United States)

    Siegal, M.

    1975-01-01

    Moral competence is more difficult to attain than scientific competence. Since language comprehension plays a central role in conceptual development, and moral language is difficult to learn, there is a common deficiency in moral conceptual development. This suggests a theory of non-spontaneous solutions to moral problems. (Author/MS)

  11. Shell theorem for spontaneous emission

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter

    2013-01-01

    and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....

  12. Prediction of Spontaneous Preterm Birth

    NARCIS (Netherlands)

    Dijkstra, Karolien

    2002-01-01

    Preterm birth is a leading cause of neonatal morbidity and mortality. It is a major goal in obstetrics to lower the incidence of spontaneous preterm birth (SPB) and related neonatal morbidity and mortality. One of the principal objectives is to discover early markers that would allow us to identify

  13. EAMJ Dec. Spontaneous.indd

    African Journals Online (AJOL)

    2008-12-12

    Dec 12, 2008 ... surgical abortion at one month gestation without any complication. The second pregnancy which was a year prior resulted in a spontaneous miscarriage at two months followed by evacuation of retained products of conception with no post abortion complications. Antibiotics were taken following both.

  14. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the ...

  15. Effects of γ irradiation on cartilage matrix calcification

    International Nuclear Information System (INIS)

    Nijweide, P.J.; Burger, E.H.; van Delft, J.L.; Kawilarange-de Haas, E.W.M.; Wassenaar, A.M.; Mellink, J.H.

    1980-01-01

    The effect of γ irradiation on cartilage matrix calcification was studied in vitro. Metatarsal bones of 14- to 17-day-old embryonic mice were dissected and cultured under various conditions. Prior to culture, half of the metatarsal bones received absorbed doses of 1.0 to 30.0 Gy γ radiation. Their paired counterparts served as controls. Irradiation inhibited longitudinal growth and calcification of the cartilage matrix during culture. In addition, a number of histological changes were noted. The inhibition of matrix calcification appeared to be due to an inhibition of the intracellular calcium accumulation. The formation of extracellular calcification foci and the growth of the calcified area already present at the moment of explanation were not inhibited during culture

  16. Piezoelectric smart biomaterials for bone and cartilage tissue engineering.

    Science.gov (United States)

    Jacob, Jaicy; More, Namdev; Kalia, Kiran; Kapusetti, Govinda

    2018-01-01

    Tissues like bone and cartilage are remodeled dynamically for their functional requirements by signaling pathways. The signals are controlled by the cells and extracellular matrix and transmitted through an electrical and chemical synapse. Scaffold-based tissue engineering therapies largely disturb the natural signaling pathways, due to their rigidity towards signal conduction, despite their therapeutic advantages. Thus, there is a high need of smart biomaterials, which can conveniently generate and transfer the bioelectric signals analogous to native tissues for appropriate physiological functions. Piezoelectric materials can generate electrical signals in response to the applied stress. Furthermore, they can stimulate the signaling pathways and thereby enhance the tissue regeneration at the impaired site. The piezoelectric scaffolds can act as sensitive mechanoelectrical transduction systems. Hence, it is applicable to the regions, where mechanical loads are predominant. The present review is mainly concentrated on the mechanism related to the electrical stimulation in a biological system and the different piezoelectric materials suitable for bone and cartilage tissue engineering.

  17. Uptake of 35S sulphate by Xenopus cartilage

    International Nuclear Information System (INIS)

    Ishii, Takehisa; Kikuyama, Sakae

    1984-01-01

    Hypohysectomized juvenile Xenopus were injected with growth hormone (GH) or prolactin (PRL) of either ovine or bullfrog origin and the growthpromoting activity of these hormones was measured by monitoring the uptake of 35 S sulphate by the xiphisternal cartilage in vitro. Analysis of the labelled cartilage revealed that the acid mucopolysaccharide fraction contained about 60 - 80 % of the label and that most of them were incorporated into chondroitin sulphates. All of the hormones tested enhaced the 35 S sulphate uptake dose-dependently. Among them bullfrog GH was most effective, then followed ovine GH and ovine PRL. Bullfrog PRL was far less effective than other three. The sensitive assay for frog GH developed in the present experiment may be applicable to the assay for somatomedin-like activity and contribute to the analysis of the mode of action of GH in amphibians. (author)

  18. Gene therapy for cartilage and bone tissue engineering

    CERN Document Server

    Hu, Yu-Chen

    2014-01-01

    "Gene Therapy for Cartilage and Bone Tissue Engineering" outlines the tissue engineering and possible applications of gene therapy in the field of biomedical engineering as well as basic principles of gene therapy, vectors and gene delivery, specifically for cartilage and bone engineering. It is intended for tissue engineers, cell therapists, regenerative medicine scientists and engineers, gene therapist and virologists. Dr. Yu-Chen Hu is a Distinguished Professor at the Department of Chemical Engineering, National Tsing Hua University and has received the Outstanding Research Award (National Science Council), Asia Research Award (Society of Chemical Engineers, Japan) and Professor Tsai-Teh Lai Award (Taiwan Institute of Chemical Engineers). He is also a fellow of the American Institute for Medical and Biological Engineering (AIMBE) and a member of the Tissue Engineering International & Regenerative Medicine Society (TERMIS)-Asia Pacific Council.

  19. A homeostatic function of CXCR2 signalling in articular cartilage.

    Science.gov (United States)

    Sherwood, Joanna; Bertrand, Jessica; Nalesso, Giovanna; Poulet, Blandine; Pitsillides, Andrew; Brandolini, Laura; Karystinou, Alexandra; De Bari, Cosimo; Luyten, Frank P; Pitzalis, Costantino; Pap, Thomas; Dell'Accio, Francesco

    2015-12-01

    ELR+ CXC chemokines are heparin-binding cytokines signalling through the CXCR1 and CXCR2 receptors. ELR+ CXC chemokines have been associated with inflammatory arthritis due to their capacity to attract inflammatory cells. Here, we describe an unsuspected physiological function of these molecules in articular cartilage homeostasis. Chemokine receptors and ligands were detected by immunohistochemistry, western blotting and RT-PCR. Osteoarthritis was induced in wild-type and CXCR2(-/-) mice by destabilisation of the medial meniscus (DMM). CXCR1/2 signalling was inhibited in vitro using blocking antibodies or siRNA. Chondrocyte phenotype was analysed using Alcian blue staining, RT-PCR and western blotting. AKT phosphorylation and SOX9 expression were upregulated using constitutively active AKT or SOX9 plasmids. Apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. CXCL6 was expressed in healthy cartilage and was retained through binding to heparan sulfate proteoglycans. CXCR2(-/-) mice developed more severe osteoarthritis than wild types following DMM, with increased chondrocyte apoptosis. Disruption of CXCR1/2 in human and CXCR2 signalling in mouse chondrocytes led to a decrease in extracellular matrix production, reduced expression of chondrocyte differentiation markers and increased chondrocyte apoptosis. CXCR2-dependent chondrocyte homeostasis was mediated by AKT signalling since forced expression of constitutively active AKT rescued the expression of phenotypic markers and the apoptosis induced by CXCR2 blockade. Our study demonstrates an important physiological role for CXCR1/2 signalling in maintaining cartilage homeostasis and suggests that the loss of ELR+ CXC chemokines during cartilage breakdown in osteoarthritis contributes to the characteristic loss of chondrocyte phenotypic stability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go

  20. Applied osmotic loading for promoting development of engineered cartilage

    OpenAIRE

    Sampat, Sonal R.; Dermksian, Matthew V.; Oungoulian, Sevan R.; Winchester, Robert J.; Bulinski, J. Chloë; Ateshian, Gerard A.; Hung, Clark T.

    2013-01-01

    This study investigated the potential use of static osmotic loading as a cartilage tissue engineering strategy for growing clinically relevant grafts from either synovium-derived stem cells (SDSCs) or chondrocytes. Bovine SDSCs and chondrocytes were individually encapsulated in 2% w/v agarose and divided into chondrogenic media of osmolarities 300 (hypotonic), 330 (isotonic), and 400 (hypertonic, physiologic) mOsM for up to 7 weeks. The application of hypertonic media to constructs comprised ...

  1. Articular Cartilage Repair Through Muscle Cell-Based Tissue Engineering

    Science.gov (United States)

    2011-03-01

    TaqMan probe AAC-CCT-CTT- TTC -GGA-TTA-ACC-CTG-CGA- GTT. Articular cartilage defect model and cell transplanta- tion. All animal experiments were... inhalation mask. The knee joint was exposed by medial parapa- tellar incision, and the trochlear groove was exposed by lateral dislocation of the...least significant difference test. P values less than 0.05 were considered significant. RESULTS In vitro MDSC characterization. Flow cytometric analysis

  2. Centralization of extruded medial meniscus delays cartilage degeneration in rats.

    Science.gov (United States)

    Ozeki, Nobutake; Muneta, Takeshi; Kawabata, Kenichi; Koga, Hideyuki; Nakagawa, Yusuke; Saito, Ryusuke; Udo, Mio; Yanagisawa, Katsuaki; Ohara, Toshiyuki; Mochizuki, Tomoyuki; Tsuji, Kunikazu; Saito, Tomoyuki; Sekiya, Ichiro

    2017-05-01

    Meniscus extrusion often observed in knee osteoarthritis has a strong correlation with the progression of cartilage degeneration and symptom in the patients. We recently reported a novel procedure "arthroscopic centralization" in which the capsule was sutured to the edge of the tibial plateau to reduce meniscus extrusion in the human knee. However, there is no animal model to study the efficacy of this procedure. The purposes of this study were [1] to establish a model of centralization for the extruded medial meniscus in a rat model; and [2] to investigate the chondroprotective effect of this procedure. Medial meniscus extrusion was induced by the release of the anterior synovial capsule and the transection of the meniscotibial ligament. Centralization was performed by the pulled-out suture technique. Alternatively, control rats had only the medial meniscus extrusion surgery. Medial meniscus extrusion was evaluated by micro-CT and macroscopic findings. Cartilage degeneration of the medial tibial plateau was evaluated macroscopically and histologically. By micro-CT analysis, the medial meniscus extrusion was significantly improved in the centralization group in comparison to the extrusion group throughout the study. Both macroscopically and histologically, the cartilage lesion of the medial tibial plateau was prevented in the centralization group but was apparent in the control group. We developed medial meniscus extrusion in a rat model, and centralization of the extruded medial meniscus by the pull-out suture technique improved the medial meniscus extrusion and delayed cartilage degeneration, though the effect was limited. Centralization is a promising treatment to prevent the progression of osteoarthritis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul-Rehman Phull

    2016-01-01

    Full Text Available Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes.

  4. Hyaluronan in experimental injured/inflamed cartilage: In vivo studies.

    Science.gov (United States)

    Avenoso, Angela; D'Ascola, Angela; Scuruchi, Michele; Mandraffino, Giuseppe; Calatroni, Alberto; Saitta, Antonino; Campo, Salvatore; Campo, Giuseppe M

    2018-01-15

    Joint disease is characterized by an imbalance between the synthesis and degradation of articular cartilage and subchondral bone accompanied by capsular fibrosis, osteophyte formation and varying degrees of inflammation of the synovial membrane. Many animal models have been developed to study arthritis and osteoarthritis that enable experimental conditions, diet and environmental risk factors to be carefully controlled. Animal-based studies have demonstrated the positive effects of exogenous HA on the preservation of joint cartilage in different models of arthritis and osteoarthritis. Although many promising effects of exogenous HA have been reported, there remains uncertainty as to its effectiveness in reversing cartilage injury and other manifestations of joint diseases because of difficulties in interpreting and unifying the results of these studies. A review of the literature of the last decade was conducted to report the results and to determine what we have learned from animal models in relation to joint inflammation induced by experimental models and HA treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Immediate autogenous cartilage grafts in rhinoplasty after alloplastic implant rejection.

    Science.gov (United States)

    Raghavan, Ullas; Jones, Nick S; Romo, Thomas

    2004-01-01

    It is accepted in rhinoplasty that complications are more common with alloplastic implants than with autografts. There is little guidance in the literature on how to deal with the cosmetic and/or functional problems that follow alloplastic implant rejection. The conventional advice has been to remove the allograft and not place any graft at the same time. The present article presents our experience treating allograft rejection and immediately repairing any structural defect with autografts. To demonstrate that immediate nasal reconstruction using autogenous cartilage is a good technique when an alloplastic material has to be removed because of rejection, inflammation, or infection. A retrospective analysis of outcome for a case series. A retrospective review of the management of 8 patients who presented to 2 tertiary referral centers with alloplastic implant rejection following rhinoplasty. In 7 cases, the alloplastic implant had to be removed because it had migrated and caused a foreign body reaction; in 1 case, the implant had caused a bacterial infection. In all 8 cases, the nasal deformity that followed the removal of the allograft was so marked that the nose was immediately reconstructed with autogenous cartilage. The patients all made a good recovery after immediate reconstruction, although skin changes associated with the alloplastic implant remained after a mean follow-up of 3 years 3 months. The use of autogenous cartilage is a good option for nasal augmentation immediately after the removal of an alloplastic implant.

  6. Insights from amphioxus into the evolution of vertebrate cartilage.

    Directory of Open Access Journals (Sweden)

    Daniel Meulemans

    2007-08-01

    Full Text Available Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm.

  7. Advances in electrospun nanofibers for bone and cartilage regeneration.

    Science.gov (United States)

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Balasubramanian, Preethi; Jin, Guorui; Valipouri, Afsaneh; Ramakrishna, Seeram

    2013-07-01

    Regeneration of bone and cartilage tissues has been an important issue for biological repair in the field of regenerative medicine. The rapidly emerging field of tissue engineering holds great promise for repair and generation of functional bone and cartilage substitutes with a combination of biomaterials, cells, drugs and growth factors. Scaffolds play a pivotal role in tissue engineering as they mimic the natural extracellular matrix (ECM) and play an important role in guiding cell adhesion and proliferation, and maintaining the normal phenotype of the tissues. The use of tissue-engineered grafts based on scaffolds has found to be a more effective method than conventional implantations of autograft, allograft, xenograft. In recent years much attention has been given to electrospinning as a feasible and versatile technique for fabrication of nanofibrous scaffolds, with large surface area to volume ratio, high porosity, mechanical properties and physical dimension similar to the ECM of natural tissues. Extensive research has been carried out for fabrication polymeric nanofibrous substrates with incorporation of hydroxyapatite nanoparticles or bone morphogenetic protein molecules for efficient tissue repair. Here we review on the literature of electrospun nanofibrous scaffolds, their modifications, and advances aimed towards the rapid regeneration of bone and cartilage.

  8. Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids

    Directory of Open Access Journals (Sweden)

    Daniela Anahí Sánchez-Téllez

    2017-12-01

    Full Text Available The aims of this paper are: (1 to review the current state of the art in the field of cartilage substitution and regeneration; (2 to examine the patented biomaterials being used in preclinical and clinical stages; (3 to explore the potential of polymeric hydrogels for these applications and the reasons that hinder their clinical success. The studies about hydrogels used as potential biomaterials selected for this review are divided into the two major trends in tissue engineering: (1 the use of cell-free biomaterials; and (2 the use of cell seeded biomaterials. Preparation techniques and resulting hydrogel properties are also reviewed. More recent proposals, based on the combination of different polymers and the hybridization process to improve the properties of these materials, are also reviewed. The combination of elements such as scaffolds (cellular solids, matrices (hydrogel-based, growth factors and mechanical stimuli is needed to optimize properties of the required materials in order to facilitate tissue formation, cartilage regeneration and final clinical application. Polymer combinations and hybrids are the most promising materials for this application. Hybrid scaffolds may maximize cell growth and local tissue integration by forming cartilage-like tissue with biomimetic features.

  9. Spontaneous Retropharyngeal Emphysema: A Case Report | Chi ...

    African Journals Online (AJOL)

    ... is a rare clinical condition in pediatric otolaryngology. The predominant symptoms are sore throat, odynophagia, dysphagia, and neck pain. Here, we report a case of spontaneous retropharyngeal emphysema. Keywords: Iatrogenic injury, retropharyngeal emphysema, spontaneous retropharyngeal emphysem, trauma ...

  10. La maladie de Grisel : Spontaneous atlantoaxial subluxation

    NARCIS (Netherlands)

    Meek, MF; Robinson, PH; Hermens, RAEC

    Objective: "La maladie de Grisel" (Grisel's syndrome) is a spontaneously occurring atlantoaxial subluxation with torticollis. We present a case of atlantoaxial subluxation occurring in a 20-year period of pharyngoplasty surgery. The occurrence of a "spontaneous" atlantoaxial subluxation after oral

  11. Chondrogenesis and cartilage tissue engineering: the longer road to technology development.

    Science.gov (United States)

    Mahmoudifar, Nastaran; Doran, Pauline M

    2012-03-01

    Joint injury and disease are painful and debilitating conditions affecting a substantial proportion of the population. The idea that damaged cartilage in articulating joints might be replaced seamlessly with tissue-engineered cartilage is of obvious commercial interest because the market for such treatments is large. Recently, a wealth of new information about the complex biology of chondrogenesis and cartilage has emerged from stem cell research, including increasing evidence of the role of physical stimuli in directing differentiation. The challenge for the next generation of tissue engineers is to identify the key elements in this new body of knowledge that can be applied to overcome current limitations affecting cartilage synthesis in vitro. Here we review the status of cartilage tissue engineering and examine the contribution of stem cell research to technology development for cartilage production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The architecture of cartilage: Elemental maps and scanning transmission ion microscopy/tomography

    International Nuclear Information System (INIS)

    Reinert, Tilo; Reibetanz, Uta; Schwertner, Michael; Vogt, Juergen; Butz, Tilman; Sakellariou, Arthur

    2002-01-01

    Articular cartilage is not just a jelly-like cover of the bone within the joints but a highly sophisticated architecture of hydrated macromolecules, collagen fibrils and cartilage cells. Influences on the physiological balance due to age-related or pathological changes can lead to malfunction and subsequently to degradation of the cartilage. Many activities in cartilage research are dealing with the architecture of joint cartilage but have limited access to elemental distributions. Nuclear microscopy is able to yield spatially resolved elemental concentrations, provides density information and can visualise the arrangement of the collagen fibres. The distribution of the cartilage matrix can be deduced from the elemental and density maps. The findings showed a varying content of collagen and proteoglycan between zones of different cell maturation. Zones of higher collagen content are characterised by aligned collagen fibres that can form tubular structures. Recently we focused on STIM tomography to investigate the three dimensional arrangement of the collagen structures

  13. Mechanical properties of the normal human cartilage-bone complex in relation to age

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Linde, F

    1998-01-01

    OBJECTIVE: This study investigates the age-related variations in the mechanical properties of the normal human tibial cartilage-bone complex and the relationships between cartilage and bone. DESIGN: A novel technique was applied to assess the mechanical properties of the cartilage and bone by mea...... that are of importance for the understanding of the etiology and pathogenesis of degenerative joint diseases, such as arthrosis....

  14. Relationship of chondrocyte apoptosis to matrix degradation and swelling potential of osteoarthritic cartilage.

    Science.gov (United States)

    Chen, Min-Huey; Wang, Jue-Long; Wong, Chi-Yin; Yao, Chung-Chen; Chen, Yi-Jane; Jiang, Ching-Chuan

    2005-04-01

    Softening of cartilage is the initial degenerative step of osteoarthritic cartilage by matrix degradation and corruption of interconnection of the collagen fibrillar network. The purpose of this study was to investigate the correlation of chondrocyte apoptosis, matrix degradation, and the corruption of collagen architecture in the development of severe swelling of osteoarthritic cartilage. Twenty osteoarthritic and 7 normal femoral neck fractured cartilage samples were obtained from patients with knee osteoarthritis and normal patients with femoral neck fracture at the time of total hip joint replacement surgery. Apoptosis was verified by TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick end-labeling) staining and structural changes were observed under phase-contrast microscopy. Matrix degradation was evaluated by histochemical analysis of proteoglycans. Swelling tests were performed by immersing the cartilage slices in hypotonic solution. The results of ultrastructural study of collagen architecture of osteoarthritic cartilage performed by scanning electron microscopy before and after swelling were compared. Matrix degradation was most prominent in the middle zone of osteoarthritic cartilage. The percentage of chondrocytes in osteoarthritic cartilage showing apoptosis ranged from 15 to 20% (average, 18%; standard deviation (SD) = 3.2%) and was correlated with the extent of structural changes and matrix degradation. The swelling strain of the osteoarthritic cartilage varied from 120 to 200% (average, 160%; SD = 40%) depending on the degree of matrix degradation and structural changes. The loss of interconnectivity of collagen fibrillar architecture was correlated with the increased swelling potential of osteoarthritic cartilage. This study demonstrated that chondrocyte apoptosis was correlated with matrix degradation and the corruption of fibrillar architecture and that the extent of these manifestations correlated with the

  15. Amino acid racemization reveals differential protein turnover in osteoarthritic articular and meniscal cartilages

    Science.gov (United States)

    Stabler, Thomas V; Byers, Samuel S; Zura, Robert D; Kraus, Virginia Byers

    2009-01-01

    Introduction Certain amino acids within proteins have been reported to change from the L form to the D form over time. This process is known as racemization and is most likely to occur in long-lived low-turnover tissues such as normal cartilage. We hypothesized that diseased tissue, as found in an osteoarthritic (OA) joint, would have increased turnover reflected by a decrease in the racemized amino acid content. Methods Using high-performance liquid chromatography methods, we quantified the L and D forms of amino acids reported to racemize in vivo on a biological timescale: alanine, aspartate (Asp), asparagine (Asn), glutamate, glutamine, isoleucine, leucine (Leu), and serine (Ser). Furthermore, using a metabolically inactive control material (tooth dentin) and a control material with normal metabolism (normal articular cartilage), we developed an age adjustment in order to make inferences about the state of protein turnover in cartilage and meniscus. Results In the metabolically inactive control material (n = 25, ages 13 to 80 years) and the normal metabolizing control material (n = 19, ages 17 to 83 years), only Asp + Asn (Asx), Ser, and Leu showed a significant change (increase) in racemization with age (P Asx, Ser, and Leu when compared with the normal articular cartilage control were 97%, 74%, and 73% in OA meniscal cartilage and 97%, 70%, and 78% in OA articular cartilage. We also observed lower amino acid content in OA articular and meniscal cartilages compared with normal articular cartilage as well as a loss of total amino acids with age in the OA meniscal but not the OA articular cartilage. Conclusions These data demonstrate comparable anabolic responses for non-lesioned OA articular cartilage and OA meniscal cartilage but an excess of catabolism over anabolism for the meniscal cartilage. PMID:19267899

  16. Cartilage status in FAI patients - results from the Danish Hip Arthroscopy Registry (DHAR)

    DEFF Research Database (Denmark)

    Lund, Bent; Nielsen, Torsten Grønbech; Lind, Martin

    2017-01-01

    on the acetabular side. Overall PROM including pain scores improved significantly from preoperative status to follow-up one and two years postoperatively. The Copenhagen Hip and Groin Outcome Score (HAGOS), Hip Sports Activity Scale (HSAS) and global hip function showed less improvements in patients with more...... of patients have cartilage debridement performed but rarely cartilage repair. The presence of severe cartilage injury at the time of arthroscopic FAI surgery results in reduced subjective outcome and hip function....

  17. Repair of Cartilage injuries using in vitro engineered 3D cartilage tissue- Preliminary Results of Our Animal Studies.

    Science.gov (United States)

    Arumugam, S; Manjunath, S; Senthilkumar, R; Rajendiran, S; Yoshioka, H; Mori, Y; Abraham, S

    2011-01-01

    The cartilage injuries demand novel therapeutic approaches as the success rates of the current conventional strategies for the repair of injured articular cartilages are not that encouraging. Earlier we have reported that the Thermoreversible Gelation Polymer (TGP) is an ideal scaffold for human chondrocyte expansion in vitro. In this study, we report the preliminary results of the in vitro expansion, characterization and experimental in vivo transplantation of chondrocytes in a rabbit model of cartilage injury. Nine rabbits were included in this study scheduled for two years, after approval by the ethics committee. In the first animal, Chondrocytes were isolated from the weight bearing area of patellar groove in the left hindlimb and cultured in TGP Scaffold and maintained at 37°C in 5% carbon dioxide incubator for 64 days without growth factors. Then the TGP-Chondrocyte construct was transplanted into an experimental defect created in the knee of the right forelimb of the same rabbit. After a period of 10 weeks, a biopsy was taken from the transplanted region and subjected to morphological analysis, characterization by histopathology (H&E stain) and Immunohistochemistry (S-100 staining). The chondrocytes in the 3D TGP culture had round to oval shaped morphology without any de-differentiation which is otherwise observed in Conventional 2D cultures. A macroscopic structure which resembled cartilage was appreciated in the TGP construct in vitro after 64 days which was then transplanted to the rabbit. The H&E and Immunohistochemistry studies confirmed the presence of chondrocytes in the biopsy tissue. Based on the results, we conclude that the TGP significantly supports the in vitro expansion of chondrocytes for a longer period and the 3D culture using TGP preserves the phenotype of the articular chondrocytes. The tissue thus grown when implanted with the TGP has engrafted well without any adverse reactions and upon confirmation of safety following completion of the

  18. Cartilage oligomeric matrix protein (COMP) in rheumatoid arthritis and its correlation with sonographic knee cartilage thickness and disease activity.

    Science.gov (United States)

    Sakthiswary, Rajalingham; Rajalingam, Shamala; Hussein, Heselynn; Sridharan, Radhika; Asrul, Abdul Wahab

    2017-12-01

    The aim of the study is to investigate the correlation of serum cartilage oligomeric matrix protein (COMP) levels with articular cartilage damage based on sonographic knee cartilage thickness (KCT) and disease activity in rheumatoid arthritis (RA). A total of 61 RA patients and 27 healthy controls were recruited in this study. Serum samples were obtained from all subjects to determine the serum COMP levels. All subjects had bilateral ultrasound scan of their knees. The KCT was based on the mean of measurements at three sites: the medial condyle, lateral condyle and intercondylar notch. Besides, the RA patients were assessed for their disease activity based on 28-joint-based Disease Activity Score (DAS 28). Serum COMP concentrations were significantly elevated in the RA patients compared to the controls (p = 0.001). The serum COMP levels had an inverse relationship with bilateral KCT in RA subjects and the healthy controls. COMP correlated significantly with disease activity based on DAS 28 (r = 0.299, p = 0.010), disease duration (r = 0.439, p = correlation between serum COMP and DAS 28 scores was comparable to the traditional markers of inflammation: erythrocyte sedimentation rate (ESR) (r = 0.372, p = 0.003) and C-reactive protein (CRP) (r = 0.305, p = 0.017). The serum COMP is a promising biomarker in RA which reflects disease activity and damage to the articular cartilage.

  19. Semi-automated International Cartilage Repair Society scoring of equine articular cartilage lesions in optical coherence tomography images.

    Science.gov (United States)

    Te Moller, N C R; Pitkänen, M; Sarin, J K; Väänänen, S; Liukkonen, J; Afara, I O; Puhakka, P H; Brommer, H; Niemelä, T; Tulamo, R-M; Argüelles Capilla, D; Töyräs, J

    2017-07-01

    Arthroscopic optical coherence tomography (OCT) is a promising tool for the detailed evaluation of articular cartilage injuries. However, OCT-based articular cartilage scoring still relies on the operator's visual estimation. To test the hypothesis that semi-automated International Cartilage Repair Society (ICRS) scoring of chondral lesions seen in OCT images could enhance intra- and interobserver agreement of scoring and its accuracy. Validation study using equine cadaver tissue. Osteochondral samples (n = 99) were prepared from 18 equine metacarpophalangeal joints and imaged using OCT. Custom-made software was developed for semi-automated ICRS scoring of cartilage lesions on OCT images. Scoring was performed visually and semi-automatically by five observers, and levels of inter- and intraobserver agreement were calculated. Subsequently, OCT-based scores were compared with ICRS scores based on light microscopy images of the histological sections of matching locations (n = 82). When semi-automated scoring of the OCT images was performed by multiple observers, mean levels of intraobserver and interobserver agreement were higher than those achieved with visual OCT scoring (83% vs. 77% and 74% vs. 33%, respectively). Histology-based scores from matching regions of interest agreed better with visual OCT-based scoring than with semi-automated OCT scoring; however, the accuracy of the software was improved by optimising the threshold combinations used to determine the ICRS score. Images were obtained from cadavers. Semi-automated scoring software improved the reproducibility of ICRS scoring of chondral lesions in OCT images and made scoring less observer-dependent. The image analysis and segmentation techniques adopted in this study warrant further optimisation to achieve better accuracy with semi-automated ICRS scoring. In addition, studies on in vivo applications are required. © 2016 EVJ Ltd.

  20. 3D Human cartilage surface characterization by optical coherence tomography

    Science.gov (United States)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  1. Systematics of spontaneous positron lines

    International Nuclear Information System (INIS)

    Mueller, U.; Reus, T. de; Reinhardt, J.; Mueller, B.; Greiner, W.

    1985-08-01

    Dynamical and spontaneous positron emission are investigated for heavy-ion collisions with long time delay using a semiclassical description. Numerical results and analytical expressions for the characteristic quantities of the resulting spontaneous positron line, i.e., its position, width, and cross section, are compared. The expected behaviour of the line position and cross section and its visibility against the spectrum of dynamically created positrons is discussed in dependence of the united charge Zsub(u) of projectile and target nucleus in a range of systems from Zsub(u)=180 up to Zsub(u)=188. The results are confronted with presently available experimental data, and possible implications on further experiments are worked out. (orig.)

  2. Spontaneous Rotational Inversion in Phycomyces

    KAUST Repository

    Goriely, Alain

    2011-03-01

    The filamentary fungus Phycomyces blakesleeanus undergoes a series of remarkable transitions during aerial growth. During what is known as the stagea IV growth phase, the fungus extends while rotating in a counterclockwise manner when viewed from above (stagea IVa) and then, while continuing to grow, spontaneously reverses to a clockwise rotation (stagea IVb). This phase lasts for 24-48Ah and is sometimes followed by yet another reversal (stageAIVc) before the overall growth ends. Here, we propose a continuum mechanical model of this entire process using nonlinear, anisotropic, elasticity and show how helical anisotropy associated with the cell wall structure can induce spontaneous rotation and, under appropriate circumstances, the observed reversal of rotational handedness. © 2011 American Physical Society.

  3. Spontaneous regression of colon cancer.

    Science.gov (United States)

    Kihara, Kyoichi; Fujita, Shin; Ohshiro, Taihei; Yamamoto, Seiichiro; Sekine, Shigeki

    2015-01-01

    A case of spontaneous regression of transverse colon cancer is reported. A 64-year-old man was diagnosed as having cancer of the transverse colon at a local hospital. Initial and second colonoscopy examinations revealed a typical cancer of the transverse colon, which was diagnosed as moderately differentiated adenocarcinoma. The patient underwent right hemicolectomy 6 weeks after the initial colonoscopy. The resected specimen showed only a scar at the tumor site, and no cancerous tissue was proven histologically. The patient is alive with no evidence of recurrence 1 year after surgery. Although an antitumor immune response is the most likely explanation, the exact nature of the phenomenon was unclear. We describe this rare case and review the literature pertaining to spontaneous regression of colorectal cancer. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Management of intractable spontaneous epistaxis

    Science.gov (United States)

    Rudmik, Luke

    2012-01-01

    Background: Epistaxis is a common otolaryngology emergency and is often controlled with first-line interventions such as cautery, hemostatic agents, or anterior nasal packing. A subset of patients will continue to bleed and require more aggressive therapy. Methods: Intractable spontaneous epistaxis was traditionally managed with posterior nasal packing and prolonged hospital admission. In an effort to reduce patient morbidity and shorten hospital stay, surgical and endovascular techniques have gained popularity. A literature review was conducted. Results: Transnasal endoscopic sphenopalatine artery ligation and arterial embolization provide excellent control rates but the decision to choose one over the other can be challenging. The role of transnasal endoscopic anterior ethmoid artery ligation is unclear but may be considered in certain cases when bleeding localizes to the ethmoid region. Conclusion: This article will focus on the management of intractable spontaneous epistaxis and discuss the role of endoscopic arterial ligation and embolization as it pertains to this challenging clinical scenario. PMID:22391084

  5. Chondroblastoma arising in the triradiate cartilage. Report of two cases with review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Matsuno, Takeo; Hasegawa, Isao; Masuda, Takeshi

    1987-04-01

    Chondroblastoma is a relatively rare benign bone tumor of cartilage origin. Roentgenologically it presents usually as a region of lytic destruction of bone with a thin sclerotic rim in the epiphysis of long tubular bone. Less than 9% occur in the pelvic bones but show a tendency to arise from the triradiate cartilage. We present two cases of chondroblastoma originating in the triradiate cartilage, each showing extensive lytic bony destruction and an intrapelvic soft tissue mass. A review of the literature suggests that chondroblastoma of the triradiate cartilage shows an aggressive radiological appearance.

  6. Comparison of temporalis fascia muscle and full-thickness cartilage grafts in type 1 pediatric tympanoplasties.

    Science.gov (United States)

    Yegin, Yakup; Çelik, Mustafa; Koç, Arzu Karaman; Küfeciler, Levent; Elbistanlı, Mustafa Suphi; Kayhan, Fatma Tülin

    Various graft materials have been used to close tympanic membrane perforations. In the literature, there are few studies in pediatric populations comparing different graft materials. To our knowledge, there is no reported study that measured the thickness of the tragal cartilage in pediatric tympanoplasties. The tragal cartilage is not of uniform thickness in every patient. To compare anatomical and functional outcomes of temporalis fascia muscle and full-thickness tragal cartilage in type 1 pediatric tympanoplasties. In total, 78 patients (38 males, 40 females; average age 10.02±1.98 years; range, 7-18 years) who underwent type 1 tympanoplasties in our clinic were included. Demographics, anatomical, and functional outcomes were collected. Temporalis fascia muscle and tragal cartilage were used as graft materials. Tragal cartilage was used without thinning, and the thickness of tragal cartilage was measured using a micrometer. Anatomical and functional outcomes of cartilage and fascia were compared. Audiometric results comparing the cartilage and fascia groups were conducted at 6 months, and we continued to follow the patients to 1 year after surgery. An intact graft and an air-bone gap≤20dB were regarded as a surgical success. Results with a p-valuefascia group. In the fascia group, the preoperative air-bone gap was 33.68±11.44 dB and postoperative air-bone gap was 24.25±12.68dB. In the cartilage group, the preoperative air-bone gap was 35.68±12.94dB and postoperative air-bone gap was 26.11±12.87dB. The anatomical success rate in the cartilage group was significantly better than that for the fascia group (pfascia and cartilage groups (p>0.05). The average thickness of tragal cartilage in the pediatric population was 0.693±0.094mm in males and 0.687±0.058 mm in females. Our data suggest that the anatomical success rate for a cartilage tympanoplasty was higher than for a fascia tympanoplasty. Functional results with cartilage were not different than with

  7. Conditional knockdown of hyaluronidase 2 in articular cartilage stimulates osteoarthritic progression in a mice model.

    Science.gov (United States)

    Higuchi, Yoshitoshi; Nishida, Yoshihiro; Kozawa, Eiji; Zhuo, Lisheng; Arai, Eisuke; Hamada, Shunsuke; Morita, Daigo; Ikuta, Kunihiro; Kimata, Koji; Ushida, Takahiro; Ishiguro, Naoki

    2017-08-01

    The catabolism of hyaluronan in articular cartilage remains unclear. The aims of this study were to investigate the effects of hyaluronidase 2 (Hyal2) knockdown in articular cartilage on the development of osteoarthritis (OA) using genetic manipulated mice. Destabilization of the medial meniscus (DMM) model of Col2a promoter specific conditional Hyal2 knockout (Hyal -/- ) mice was established and examined. Age related and DMM induced alterations of articular cartilage of knee joint were evaluated with modified Mankin score and immunohistochemical staining of MMP-13, ADAMTS-5, KIAA11199, and biotinylated- hyaluronan binding protein staining in addition to histomorphometrical analyses. Effects of Hyal2 suppression were also analyzed using explant culture of an IL-1α induced articular cartilage degradation model. The amount and size of hyaluronan in articular cartilage were higher in Hyal2 -/- mice. Hyal2 -/- mice exhibited aggravated cartilage degradation in age-related and DMM induced mice. MMP-13 and ADAMTS-5 positive chondrocytes were significantly higher in Hyal2 -/- mice. Articular cartilage was more degraded in explant cultures obtained from Hyal2 -/- mice. Knockdown of Hyal2 in articular cartilage induced OA development and progression possibly mediated by an imbalance of HA metabolism. This suggests that Hyal2 knockdown exhibits mucopolysaccharidosis-like OA change in articular cartilage similar to Hyal1 knockdown.

  8. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.

    Science.gov (United States)

    Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K

    2017-10-01

    Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.

  9. Menopause is associated with articular cartilage degeneration: a clinical study of knee joint in 860 women.

    Science.gov (United States)

    Lou, Chao; Xiang, Guangheng; Weng, Qiaoyou; Chen, Zhaojie; Chen, Deheng; Wang, Qingqing; Zhang, Di; Zhou, Bin; He, Dengwei; Chen, Hongliang

    2016-11-01

    The purpose of this study was to investigate the association between menopause and severity of knee joint cartilage degeneration using a magnetic resonance imaging-based six-level grading system, with six cartilage surfaces, the medial and lateral femoral condyle, the femoral trochlea, the medial and lateral tibia plateau, and the patella. The study cohort comprised 860 healthy women (age 36-83 y), and 5,160 cartilage surfaces were analyzed. Age, weight, height, age at natural menopause, and years since menopause (YSM) were obtained. Cartilage degeneration was assessed using a magnetic resonance imaging-based six-level grading system. After removing the age, height, and weight effects, postmenopausal women had more severe cartilage degeneration than pre- and perimenopausal women (P  0.05). No significant difference was observed in lateral tibia plateau and lateral femoral condyle in postmenopausal women. Menopause is associated with cartilage degeneration of knee joint. After menopause, cartilage showed progressive severe degeneration that occurred in the first 25 YSM, suggesting estrogen deficiency might be a risk factor of cartilage degeneration of the knee joint. Further studies are needed to investigate whether age or menopause plays a more important role in the progression of cartilage degeneration in the knee joint.

  10. Treatment of human cartilage defects by means of Nd:YAG Laser Therapy.

    Science.gov (United States)

    Zati, A; Desando, G; Cavallo, C; Buda, R; Giannini, S; Fortuna, D; Facchini, A; Grigolo, B

    2012-01-01

    Articular cartilage lesions represent a challenging problem for orthopaedic surgeons. The purpose of this study was to evaluate the effect of a new pulsed Nd:YAG High Intensity Laser Therapy on the regeneration of cartilage tissue in patients with traumatic lesions. Clinical, histological and immunohistochemical evaluations were performed. Ten patients affected by chondral lesions scheduled for ACI procedure, were enrolled into the study. During the chondrocyte expansion for ACI procedure, cartilage from five patients was treated by Nd:YAG High Intensity Laser Therapy (HILT group). No laser treatment was performed in the remaining patients, who were used as controls. Cartilage repair was assessed by clinicians using two different scores: Cartilage Repair Assessment (CRA) and Overall Repair Assessment (ORA). Cartilage biopsy specimens were harvested to perform histological and immunohistochemical analyses at T0 (before laser treatment) and T1 (at the end of the treatment). A significant decrease in cartilage depth was noticed in the HILT group at T1. Histological and immunohistochemical evaluations showed some regenerative processes in cartilaginous tissue in terms of high amount of proteoglycans, integration with adjacent articular cartilage and good cellular arrangement in the HILT group. By contrast, a not well organized cartilaginous tissue with various fibrous features in the control group at T0 and T1 was observed. In conclusion, the use of this new pulsed Nd:YAG HILT resulted promising in the treatment of moderate cartilage lesions markedly in the young patients.

  11. Development and characterization of decellularized human nasoseptal cartilage matrix for use in tissue engineering.

    Science.gov (United States)

    Graham, M Elise; Gratzer, Paul F; Bezuhly, Michael; Hong, Paul

    2016-10-01

    Reconstruction of cartilage defects in the head and neck can require harvesting of autologous cartilage grafts, which can be associated with donor site morbidity. To overcome this limitation, tissue-engineering approaches may be used to generate cartilage grafts. The objective of this study was to decellularize and characterize human nasoseptal cartilage with the aim of generating a biological scaffold for cartilage tissue engineering. Laboratory study using nasoseptal cartilage. Remnant human nasoseptal cartilage specimens were collected and subjected to a novel decellularization treatment. The decellularization process involved several cycles of enzymatic detergent treatments. For characterization, decellularized and fresh (control) specimens underwent histological, biochemical, and mechanical analyses. Scanning electron microscopy and biocompatibility assay were also performed. The decellularization process had minimal effect on glycosaminoglycan content of the cartilage extracellular matrix. Deoxyribonucleic acid (DNA) analysis revealed the near-complete removal of genomic DNA from decellularized tissues. The effectiveness of the decellularization process was also confirmed on histological and scanning electron microscopic analyses. Mechanical testing results showed that the structural integrity of the decellularized tissue was maintained, and biocompatibility was confirmed. Overall, the current decellularization treatment resulted in significant reduction of genetic/cellular material with preservation of the underlying extracellular matrix structure. This decellularized material may serve as a potential scaffold for cartilage tissue engineering. N/A. Laryngoscope, 126:2226-2231, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  12. Spontaneous baryogenesis in warm inflation

    OpenAIRE

    Brandenberger, Robert H.; Yamaguchi, Masahide

    2003-01-01

    We discuss spontaneous baryogenesis in the warm inflation scenario. In contrast with standard inflation models, radiation always exists in the warm inflation scenario, and the inflaton must be directly coupled to it. Also, the transition to the post-inflationary radiation dominated phase is smooth and the entropy is not significantly increased at the end of the period of inflation. In addition, after the period of warm inflation ends, the inflaton does not oscillate coherently but slowly roll...

  13. Spontaneous Splenic Rupture in Melanoma

    Directory of Open Access Journals (Sweden)

    Hadi Mirfazaelian

    2014-01-01

    Full Text Available Spontaneous rupture of spleen due to malignant melanoma is a rare situation, with only a few case reports in the literature. This study reports a previously healthy, 30-year-old man who came with chief complaint of acute abdominal pain to emergency room. On physical examination, abdominal tenderness and guarding were detected to be coincident with hypotension. Ultrasonography revealed mild splenomegaly with moderate free fluid in abdominopelvic cavity. Considering acute abdominal pain and hemodynamic instability, he underwent splenectomy with splenic rupture as the source of bleeding. Histologic examination showed diffuse infiltration by tumor. Immunohistochemical study (positive for S100, HMB45, and vimentin and negative for CK, CD10, CK20, CK7, CD30, LCA, EMA, and chromogranin confirmed metastatic malignant melanoma. On further questioning, there was a past history of a nasal dark skin lesion which was removed two years ago with no pathologic examination. Spontaneous (nontraumatic rupture of spleen is an uncommon situation and it happens very rarely due to neoplastic metastasis. Metastasis of malignant melanoma is one of the rare causes of the spontaneous rupture of spleen.

  14. Articular cartilage lesions increase early cartilage degeneration in knees treated by anterior cruciate ligament reconstruction: T1ρ mapping evaluation and 1-year follow-up.

    Science.gov (United States)

    Hirose, Jun; Nishioka, Hiroaki; Okamoto, Nobukazu; Oniki, Yasunari; Nakamura, Eiichi; Yamashita, Yasuyuki; Usuku, Koichiro; Mizuta, Hiroshi

    2013-10-01

    Articular cartilage degeneration can develop after anterior cruciate ligament reconstruction (ACLR). Although radiological studies have identified risk factors for the progression of degenerative cartilage changes in the long term, risk factors in the early postoperative period remain to be documented. Cartilage lesions that are present at surgery progress to cartilage degeneration in the early phase after ACLR. Case series; Level of evidence, 4. T1ρ is the spin-lattice relaxation in the rotating frame magnetic resonance imaging. Sagittal T1ρ maps of the femorotibial joint were obtained before and 1 year after ACLR in 23 patients with ACL injuries. Four regions of interest (ROIs) were placed on images of the cartilage in the medial and lateral femoral condyle (MFC, LFC) and the medial and lateral tibia plateau (MTP, LTP). Changes in the T1ρ value (milliseconds) of each ROI were recorded, and differences between patients with and without cartilage lesions were evaluated. The relationship between changes in the T1ρ value and meniscal tears was also studied. Arthroscopy at ACLR detected cartilage lesions in 15 MFCs, 7 LFCs, and 2 LTPs. The baseline T1ρ value of the MFC and LFC was significantly higher in patients with cartilage lesions (MFC, 40.7 ms; LFC, 42.2 ms) than in patients without cartilage lesions (MFC, 38.0 ms, P = .025; LFC, 39.4 ms, P = .010). At 1-year follow-up, the T1ρ value of the MFC and LFC was also significantly higher in patients with lesions (MFC, 43.1 ms; LFC, 42.7 ms) than in patients without such lesions (MFC, 39.1 ms, P = .002; LFC, 40.4 ms, P = .023, respectively). In patients with cartilage injury, the T1ρ value of the MFC increased during the year after treatment (P = .002). There was no significant difference in the baseline and follow-up T1ρ value in patients with or without meniscal tears on each side although the T1ρ value of the MFC, MTP, and LFC increased during the first year after surgery regardless of the presence or

  15. Cartilage oligomeric matrix protein enhances matrix assembly during chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S; Chen, Faye H

    2012-04-01

    Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention.

  16. Cartilage biomarkers in the osteoarthropathy of alkaptonuria reveal low turnover and accelerated ageing

    Science.gov (United States)

    Hsueh, Ming-Feng; Ranganath, Lakshminarayan R.; Gallagher, James A.; Dillon, Jane P.; Huebner, Janet L.; Catterall, Jon B.; Kraus, Virginia B.

    2017-01-01

    Objective. Alkaptonuria (AKU) is a rare autosomal recessive disease resulting from a single enzyme deficiency in tyrosine metabolism. As a result, homogentisic acid cannot be metabolized, causing systemic increases. Over time, homogentisic acid polymerizes and deposits in collagenous tissues, leading to ochronosis. Typically, this occurs in joint cartilages, leading to an early onset, rapidly progressing osteoarthropathy. The aim of this study was to examine tissue turnover in cartilage affected by ochronosis and its role in disease initiation and progression. Methods. With informed patient consent, hip and knee cartilages were obtained at surgery for arthropathy due to AKU (n = 6; 2 knees/4 hips) and OA (n = 12; 5 knees/7 hips); healthy non-arthritic (non-OA n = 6; 1 knee/5 hips) cartilages were obtained as waste from trauma surgery. We measured cartilage concentrations (normalized to dry weight) of racemized aspartate, GAG, COMP and deamidated COMP (D-COMP). Unpaired AKU, OA and non-OA samples were compared by non-parametric Mann–Whitney U test. Results. Despite more extractable total protein being obtained from AKU cartilage than from OA or non-OA cartilage, there was significantly less extractable GAG, COMP and D-COMP in AKU samples compared with OA and non-OA comparators. Racemized Asx (aspartate and asparagine) was significantly enriched in AKU cartilage compared with in OA cartilage. Conclusions. These novel data represent the first examination of cartilage matrix components in a sample of patients with AKU, representing almost 10% of the known UK alkaptonuric population. Compared with OA and non-OA, AKU cartilage demonstrates a very low turnover state and has low levels of extractable matrix proteins. PMID:28028161

  17. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering.

    Science.gov (United States)

    Fahy, Niamh; Alini, Mauro; Stoddart, Martin J

    2018-01-01

    Articular cartilage is a load-bearing tissue playing a crucial mechanical role in diarthrodial joints, facilitating joint articulation, and minimizing wear. The significance of biomechanical stimuli in the development of cartilage and maintenance of chondrocyte phenotype in adult tissues has been well documented. Furthermore, dysregulated loading is associated with cartilage pathology highlighting the importance of mechanical cues in cartilage homeostasis. The repair of damaged articular cartilage resulting from trauma or degenerative joint disease poses a major challenge due to a low intrinsic capacity of cartilage for self-renewal, attributable to its avascular nature. Bone marrow-derived mesenchymal stem cells (MSCs) are considered a promising cell type for cartilage replacement strategies due to their chondrogenic differentiation potential. Chondrogenesis of MSCs is influenced not only by biological factors but also by the environment itself, and various efforts to date have focused on harnessing biomechanics to enhance chondrogenic differentiation of MSCs. Furthermore, recapitulating mechanical cues associated with cartilage development and homeostasis in vivo, may facilitate the development of a cellular phenotype resembling native articular cartilage. The goal of this review is to summarize current literature examining the effect of mechanical cues on cartilage homeostasis, disease, and MSC chondrogenesis. The role of biological factors produced by MSCs in response to mechanical loading will also be examined. An in-depth understanding of the impact of mechanical stimulation on the chondrogenic differentiation of MSCs in terms of endogenous bioactive factor production and signaling pathways involved, may identify therapeutic targets and facilitate the development of more robust strategies for cartilage replacement using MSCs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:52-63, 2018. © 2017 Orthopaedic Research

  18. Depth-resolved phase retardation measurements for laser-assisted non-ablative cartilage reshaping

    International Nuclear Information System (INIS)

    Youn, Jong-In; Vargas, Gracie; Wong, Brian J F; Milner, Thomas E

    2005-01-01

    Since polarization-sensitive optical coherence tomography (PS-OCT) is emerging as a new technique for determining phase retardation in biological materials, we measured phase retardation changes in cartilage during local laser heating for application to laser-assisted cartilage reshaping. Thermally-induced changes in phase retardation of nasal septal cartilage following Nd:YAG laser irradiation were investigated using a PS-OCT system. A PS-OCT system and infrared imaging radiometer were used to record, respectively, depth-resolved images of the Stokes parameters of light backscattered from ex vivo porcine nasal septal cartilage and radiometric temperature changes following laser irradiation. PS-OCT images of cartilage were recorded before (control), during and after laser irradiation. From the measured Stokes parameters (I, Q, U and V), an estimate of the relative phase retardation between two orthogonal polarizations was computed to determine birefringence in cartilage. Phase retardation images of light backscattered from cartilage show significant changes in retardation following laser irradiation. To investigate the origin of retardation changes in response to local heat generation, we differentiated two possible mechanisms: dehydration and thermal denaturation. PS-OCT images of cartilage were recorded after dehydration in glycerol and thermal denaturation in heated physiological saline. In our experiments, observed retardation changes in cartilage are primarily due to dehydration. Since dehydration is a principal source for retardation changes in cartilage over the range of heating profiles investigated, our studies suggest that the use of PS-OCT as a feedback control methodology for non-ablative cartilage reshaping requires further investigation

  19. Technical Report: Correlation Between the Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, Biodegradable Hydrogel Composites

    NARCIS (Netherlands)

    Lu, S.; Lam, J.; Trachtenberg, J.E.; Lee, E.J.; Seyednejad, H.; Beucken, J.J.J.P van den; Tabata, Y.; Kasper, F.K.; Scott, D.W.; Wong, M.E.; Jansen, J.A.; Mikos, A.G.

    2015-01-01

    The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and

  20. The effect of tissue-engineered cartilage biomechanical and biochemical properties on its post-implantation mechanical behavior

    NARCIS (Netherlands)

    Khoshgoftar, M.; Wilson, W.; Ito, K.; Donkelaar, C.C. van

    2013-01-01

    The insufficient load-bearing capacity of today's tissue-engineered (TE) cartilage limits its clinical application. Focus has been on engineering cartilage with enhanced mechanical stiffness by reproducing native biochemical compositions. More recently, depth dependency of the biochemical content

  1. Transport of Iodine Is Different in Cartilage and Meniscus.

    Science.gov (United States)

    Honkanen, J T J; Turunen, M J; Tiitu, V; Jurvelin, J S; Töyräs, J

    2016-07-01

    Contrast enhanced computed tomography (CECT) has been proposed for diagnostics of cartilage and meniscus injuries and degeneration. As both tissues may be imaged simultaneously, CECT could provide a method for comprehensive evaluation of knee joint health. Since the composition and structure of cartilage and meniscus are different, we hypothesize that transport characteristics of anionic contrast agents also differ between the tissues. This would affect interpretation of CECT images and warrants investigation. To clarify this, we aimed to determine the transport kinematics of anionic iodine (q = -1, M = 126.9 g/mol), assumed to not be significantly affected by the steric hindrance, thus providing faster transport than large molecule contrast agents (e.g., ioxaglate). Cylindrical samples (d = 6 mm, h = 2 mm) were prepared from healthy bovine (n = 10) patella and meniscus, immersed in isotonic phosphate-buffered NaI solution (20 mgI/mL), and subsequently imaged with a micro-CT at 20 time points up to 23 h. Subsequently, normalized attenuation and contrast agent flux, as well as water, collagen, and proteoglycan (PG) contents in the tissues were determined. Normalized attenuation at equilibrium was higher (p = 0.005) in meniscus. Contrast agent flux was lower (p = 0.005) in the meniscus at 10 min, but higher (p meniscus was different, especially between the first 2 hours after the immersion. This is an important finding which should be considered during simultaneous CECT of cartilage and meniscus.

  2. Spontaneous oscillations in microfluidic networks

    Science.gov (United States)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2017-11-01

    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  3. General features of spontaneous baryogenesis

    Science.gov (United States)

    Arbuzova, Elena

    2017-04-01

    The classical version of spontaneous baryogenesis is studied in details. It is shown that the relation between the time derivative of the (pseudo)goldstone field and the baryonic chemical potential essentially depends upon the representation chosen for the fermionic fields with non-zero baryonic number (quarks). The kinetic equation, used for the calculations of the cosmological baryon asymmetry, is generalized to the case of non-stationary background. The effects of the finite interval of the integration over time are also included into consideration.

  4. Spontaneous osteonecrosis of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Kattapuram, Taj M. [Department of Radiology, Massachusetts General Hospital (United States); Kattapuram, Susan V. [Department of Radiology, Massachusetts General Hospital (United States)], E-mail: skattapuram@partners.org

    2008-07-15

    Spontaneous osteonecrosis of the knee presents with acute onset of severe, pain in elderly patients, usually female and usually without a history of trauma. Originally described as idiopathic osteonecrosis, the exact etiology is still debated. Evidence suggests that an acute fracture occurs as a result of chronic stress or minor trauma to a weakened subchondral bone plate. The imaging characteristics on MR reflect the age of the lesion and the symptoms. More appropriate terminology may be ' subchondral insufficiency fracture of the knee' or 'focal subchondral osteonecrosis'.

  5. Cartilage tumors. Pathology and radiomorphology; Chondrogene Knochentumoren. Pathologie und Radiomorphologie

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, M. [RKK-Klinikum Freiburg, Klinik fuer Diagnostische und Interventionelle Radiologie, Kinderradiologie und Neuroradiologie SJK, Freiburg (Germany); Herget, G. [Universitaetsklinik Freiburg, Department Orthopaedie und Traumatologie, Freiburg (Germany); Kurz, P. [Universitaetsklinik Freiburg, Pathologisches Institut, Freiburg (Germany)

    2016-06-15

    Primary cartilage-forming tumors of the bone are frequent entities in the daily work of skeletal radiologists. This article describes the correlation of pathology and radiology in cartilage-forming skeletal tumors, in particular, enchondroma, osteochondroma, periosteal chondromas, chondroblastoma and various forms of chondrosarcoma. After reading, the radiologist should be able to deduce the different patterns of cartilage tumors on radiographs, CT, and MRI from the pathological aspects. Differentiation of enchondroma and chondrosarcoma is a frequent diagnostic challenge. Some imaging parameters, e. g., deep cortical scalloping (more than two thirds of the cortical thickness), cortical destruction, or a soft-tissue mass, are features of a sarcoma. Osteochondromas are bony protrusions with a continuous extension of bone marrow from the parent bone, the host cortical bone runs continuously from the osseous surface of the tumor into the shaft of the osteochondroma and the osteochondroma has a cartilage cap. Chondromyxoid fibromas are well-defined lytic and eccentric lesions of the metaphysis of the long bones, with nonspecific MRI findings. Chondroblastomas have a strong predilection for the epiphysis of long tubular bones and develop an intense perifocal bone marrow edema. Dedifferentiated chondrosarcomas are bimorphic lesions with a low-grade chondrogenic component and a high-grade noncartilaginous component. Most chondrogenic tumors have a predilection with regard to site and age at manifestation. (orig.) [German] Primaere knorpelbildende Tumoren sind haeufige Entitaeten in der taeglichen Arbeit des Radiologen. Der Beitrag beschreibt die Korrelation von Pathologie und Radiologie knorpelbildender Skeletttumoren, insbesondere von Enchondrom, Osteochondrom, periostalem Chondrom, Chondroblastom, und verschiedenen Varianten des Chondrosarkoms. Nach Lesen des Beitrags kann der Radiologe die verschiedenen typischen Muster knorpelbildender Tumoren im Roentgenbild

  6. Cartilage oligomeric matrix protein specific antibodies are pathogenic

    DEFF Research Database (Denmark)

    Geng, Hui; Nandakumar, Kutty Selva; Pramhed, Anna

    2012-01-01

    form of COMP, which is present in cartilage and synovium. Passive transfer of COMP-specific mAbs enhanced arthritis when co-administrated with a sub-arthritogenic dose of a mAb specific to collagen type II. Interestingly, we found that a combination of 5 COMP mAbs was capable of inducing arthritis...... in naive mice. CONCLUSIONS: We have identified the specificities of mAbs to COMP and their contribution to the development of arthritis. These findings will further improve our understanding of the autoantibody mediated immunopathologies occurring widely in rheumatoid arthritis (RA), as well as in other...... autoimmune disorders....

  7. Cartilage turnover reflected by metabolic processing of type II collagen

    DEFF Research Database (Denmark)

    Gudmann, Karoline Natasja Stæhr; Wang, Jianxia; Hoielt, Sabine

    2014-01-01

    The aim of this study was to enable measurement of cartilage formation by a novel biomarker of type II collagen formation. The competitive enzyme-linked immunosorbent assay (ELISA) Pro-C2 was developed and characterized for assessment of the beta splice variant of type II procollagen (PIIBNP....... To our knowledge this is the first assay, which is able to specifically evaluate PIIBNP excretion. The Pro-C2 assay seems to provide a promising and novel marker of type II collagen formation....

  8. Elevation of cartilage AGEs does not accelerate initiation of canine experimental osteoarthritis upon mild surgical damage

    NARCIS (Netherlands)

    Vos, P.A.J.M.; Degroot, J.; Barten-Van Rijbroek, A.D.; Zuurmond, A.-M.; Bijlsma, J.W.J.; Mastbergen, S.C.; Lafeber, F.P.J.G.

    2012-01-01

    Osteoarthritis is a highly prevalent disease, age being the main risk factor. The age-related accumulation of advanced-glycation-endproducts (AGEs) adversely affects the mechanical and biochemical properties of cartilage. The hypothesis that accumulation of cartilage AGEs in combination with

  9. Effect of scopoletin on fascia-wrapped diced cartilage grafts | Zeng ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of scopoletin (SL) on fascia-wrapped diced cartilage grafts in rhinoplasty surgery. Methods: Cartilage grafts (2 × 2 cm) from the ears of New Zealand rabbits were diced into sections (1 mm3) and then wrapped in muscle fascia taken from the right rear leg. Each graft was placed on the back of ...

  10. Diced Cartilage Grafts Wrapped in Rectus Abdominis Fascia for Nasal Dorsum Augmentation.

    Science.gov (United States)

    Cerkes, Nazim; Basaran, Karaca

    2016-01-01

    Dorsum augmentation is one of the most delicate components of rhinoplasty. Although various solid grafts have been used in the past for this purpose, diced cartilage grafts wrapped in fascia have become popular in recent decades. In this study, the authors analyze and discuss the results of using diced cartilage grafts wrapped in rectus abdominis muscle fascia for dorsal augmentation. Nasal dorsum augmentation using the diced cartilage wrapped in rectus abdominis fascia technique was performed on 109 patients between 2008 and 2014. Six patients were primary cases, 69 patients were secondary, and 18 were tertiary. Sixteen patients had previously undergone more than three operations. In all patients, the rectus abdominis fascia was harvested with the described technique and wrapped around the diced cartilages obtained from the costal cartilage. The average follow-up period was 19.6 months (range, 6 to 47 months). Satisfactory results were obtained with acceptable complications and revision rates. Three patients underwent reoperation because of overcorrection. Insufficient augmentation was seen in five patients. In four patients, infection developed after postoperative day 5. One patient complained of a hypertrophic scar on the donor site. None of the patients showed any symptoms indicating an abdominal hernia. Techniques using diced cartilage grafts wrapped in fascia have now become the gold standard for dorsal augmentations. When it is considered that secondary cases requiring dorsal augmentation are usually those also needing costal cartilage grafts, rectus abdominis fascia becomes a useful carrier for diced cartilages, which is in the same donor area. Therapeutic, IV.

  11. Effects of aluminum trichloride on the cartilage stimulatory growth factors in rats.

    Science.gov (United States)

    Zhang, Fan; Sun, Xudong; Yu, Hongyan; Yang, Xu; Song, Miao; Han, Yanfei; Li, Yanfei; Zhu, Yanzhu

    2017-02-01

    Aluminum (Al) is considered to be a potentially toxic metal and inhibits cartilage formation. Transforming growth factor β1 (TGF-β1) and bone morphogenetic protein 2 (BMP-2) are cartilage stimulatory growth factors, which play important roles in regulating the cartilage formation. To investigate the effects of aluminum trichloride (AlCl 3 ) on the regulation of cartilage formation. Eighty Wistar rats were orally exposed to 0 (control group), 0.4 g/L (low-dose group), 0.8 g/L (mid-dose group) and 1.6 g/L (high-dose group) AlCl 3 for 120 days, respectively. The rats body weight were decreased, the cartilage histological structure were disrupted, the cartilage and serum contents of Al and the serum level of C-telopeptide of type II collagen were all increased, the serum level of type II collagen (Col II) and alkaline phosphatase (ALP), and the mRNA expressions of TGF-β1, BMP-2, ALP and Col II were all decreased in the AlCl 3 -treated groups compared with those in control group. These results indicate that AlCl 3 inhibits the cartilage formation through inhibition of the cartilage stimulatory growth factors expressions.

  12. The metabolic dynamics of cartilage explants over a long-term culture period

    Directory of Open Access Journals (Sweden)

    E.K Moo

    2011-01-01

    Full Text Available INTRODUCTION: Although previous studies have been performed on cartilage explant cultures, the generalized dynamics of cartilage metabolism after extraction from the host are still poorly understood due to differences in the experimental setups across studies, which in turn prevent building a complete picture. METHODS: In this study, we investigated the response of cartilage to the trauma sustained during extraction and determined the time needed for the cartilage to stabilize. Explants were extracted aseptically from bovine metacarpal-phalangeal joints and cultured for up to 17 days. RESULTS: The cell viability, cell number, proteoglycan content, and collagen content of the harvested explants were analyzed at 0, 2, 10, and 17 days after explantation. A high percentage of the cartilage explants were found to be viable. The cell density initially increased significantly but stabilized after two days. The proteoglycan content decreased gradually over time, but it did not decrease to a significant level due to leakage through the distorted peripheral collagen network and into the bathing medium. The collagen content remained stable for most of the culture period until it dropped abruptly on day 17. CONCLUSION: Overall, the tested cartilage explants were sustainable over long-term culture. They were most stable from day 2 to day 10. The degradation of the collagen on day 17 did not reach diseased levels, but it indicated the potential of the cultures to develop into degenerated cartilage. These findings have implications for the application of cartilage explants in pathophysiological fields.

  13. Articular cartilage is more susceptible to blood induced damage at young than at old age

    NARCIS (Netherlands)

    Roosendaal, G.; TeKoppele, J. M.; Vianen, M. E.; van den Berg, H. M.; Lafeber, F. P.; Bijlsma, J. W.

    2000-01-01

    It has been shown that cartilage is damaged upon intraarticular hemorrhage. We investigated differences in the susceptibility of cartilage from young adult and old animals to blood induced joint damage in a canine in vivo model. Right knees of 6 young adult beagles (aged 2.2 +/- 0.1 yrs) and 6 old

  14. Cell Therapy and Tissue Engineering Approaches for Cartilage Repair and/or Regeneration

    Science.gov (United States)

    Mardones, Rodrigo; Jofré, Claudio M.; Minguell, José J.

    2015-01-01

    Articular cartilage injuries caused by traumatic, mechanical and/or by progressive degeneration result in pain, swelling, subsequent loss of joint function and finally osteoarthritis. Due to the peculiar structure of the tissue (no blood supply), chondrocytes, the unique cellular phenotype in cartilage, receive their nutrition through diffusion from the synovial fluid and this limits their intrinsic capacity for healing. The first cellular avenue explored for cartilage repair involved the in situ transplantation of isolated chondrocytes. Latterly, an improved alternative for the above reparative strategy involved the infusion of mesenchymal stem cells (MSC), which in addition to a self-renewal capacity exhibit a differentiation potential to chondrocytes, as well as a capability to produce a vast array of growth factors, cytokines and extracellular matrix compounds involved in cartilage development. In addition to the above and foremost reparative options up till now in use, other therapeutic options have been developed, comprising the design of biomaterial substrates (scaffolds) capable of sustaining MSC attachment, proliferation and differentiation. The implantation of these engineered platforms, closely to the site of cartilage damage, may well facilitate the initiation of an ‘in situ’ cartilage reparation process. In this mini-review, we examined the timely and conceptual development of several cell-based methods, designed to repair/regenerate a damaged cartilage. In addition to the above described cartilage reparative options, other therapeutic alternatives still in progress are portrayed. PMID:26019754

  15. Side Effects of Radiation in Bone and Cartilage: An FT-IR Analysis.

    Science.gov (United States)

    Mavrogenis, Andreas F; Megaloikonomos, Panayiotis D; Panagopoulos, George N; Papagelopoulos, Panayiotis J; Theophanides, Theofilos; Anastassopoulou, Jane

    2015-01-01

    Although radiation therapy is an essential treatment of cancers, it is associated with unwanted complications. The purpose of this review is to summarize the current knowledge regarding the side effects of radiation in bone and articular cartilage and to recommend Fourier transform infrared spectroscopy to monitor the differences in infrared spectra between healthy and irradiated bone and cartilage.

  16. Non-invasive monitoring of in vivo hydrogel degradation and cartilage regeneration by multiparametric MR imaging

    Science.gov (United States)

    Chen, Zelong; Yan, Chenggong; Yan, Shina; Liu, Qin; Hou, Meirong; Xu, Yikai; Guo, Rui

    2018-01-01

    Numerous biodegradable hydrogels for cartilage regeneration have been widely used in the field of tissue engineering. However, to non-invasively monitor hydrogel degradation and efficiently evaluate cartilage restoration in situ is still challenging. Methods: A ultrasmall superparamagnetic iron oxide (USPIO)-labeled cellulose nanocrystal (CNC)/silk fibroin (SF)-blended hydrogel system was developed to monitor hydrogel degradation during cartilage regeneration. The physicochemical characterization and biocompatibility of the hydrogel were evaluated in vitro. The in vivo hydrogel degradation and cartilage regeneration of different implants were assessed using multiparametric magnetic resonance imaging (MRI) and further confirmed by histological analysis in a rabbit cartilage defect model for 3 months. Results: USPIO-labeled hydrogels showed sufficient MR contrast enhancement and retained stability without loss of the relaxation rate. Neither the mechanical properties of the hydrogels nor the proliferation of bone-marrow mesenchymal stem cells (BMSCs) were affected by USPIO labeling in vitro. CNC/SF hydrogels with BMSCs degraded more quickly than the acellular hydrogels as reflected by the MR relaxation rate trends in vivo. The morphology of neocartilage was noninvasively visualized by the three-dimensional water-selective cartilage MRI scan sequence, and the cartilage repair was further demonstrated by macroscopic and histological observations. Conclusion: This USPIO-labeled CNC/SF hydrogel system provides a new perspective on image-guided tissue engineering for cartilage regeneration. PMID:29464005

  17. Osteochondral Autograft Transfer for Treatment of Metacarpophalangeal and Interphalangeal Cartilage Defects.

    Science.gov (United States)

    Micev, Alan J; Gaspar, Michael P; Culp, Randall W

    2016-09-01

    There is no general consensus regarding the optimal surgical treatment for cartilage defects of the metacarpophalangeal and interphalangeal joints in active patients who wish to preserve motion and functionality. We describe our technique of arthroscopically harvested femoral osteochondral autograft for treatment of metacarpophalangeal and interphalangeal cartilage defects.

  18. The mechanism of inhibition of metastasis by cartilage polysaccharide in breast-cancer cells.

    Science.gov (United States)

    Liu, An-jun; Hu, Yan-xun; Liu, Chang-jin; Yao, Xiu-ling; Zhang, Guo-rong

    2009-06-22

    As large amounts of porcine cartilage are discarded as waste in daily life, it is necessary to find new uses for them. We extracted polysaccharide from cartilage and performed in vitro and in vivo experiments in cancer cells. A mouse breast-cancer pulmonary metastasis model was set up, and we tried to determine the mechanism of the inhibition of metastasis by cartilage PS (polysaccharide). Effects on tumour size and the progression of metastasis indicated that cartilage PS can obviously inhibit metastasis in breast-cancer cells. The levels of LNR1 (laminin receptor 1), alphavbeta3 integrin and MMP-9 (matrix metalloproteinase-9) in mice treated or not with cartilage PS showed significant differences. Cartilage PS inhibited the growth of MCF-7 human breast adenocarcinoma cells, but had little effect on normal cells. Cartilage PS can inhibit the activity of the MMP-2 and the MMP-9 by decreasing the levels of LNR1 and alphavbeta3 integrin to inhibit metastasis further. In summary, we conclude that cartilage PS can act as a specific anti-metastatic agent in breast-cancer cells.

  19. Use of Environmental and Physical Stimuli in Cartilage Tissue Engineering Engineering

    NARCIS (Netherlands)

    R.H.J. Das (Ruud)

    2014-01-01

    markdownabstract__Abstract__ Articular cartilage enables friction-free, and thus painless, joint movement, while also functioning as a shock absorber. Although articular cartilage is made up of only few main components, natural healing fails to re-establish the native organization of the

  20. Use of magnetic forces to promote stem cell aggregation during differentiation, and cartilage tissue modeling.

    Science.gov (United States)

    Fayol, D; Frasca, G; Le Visage, C; Gazeau, F; Luciani, N; Wilhelm, C

    2013-05-14

    Magnetic forces induce cell condensation necessary for stem cell differentiation into cartilage and elicit the formation of a tissue-like structure: Magnetically driven fusion of aggregates assembled by micromagnets results in the formation of a continuous tissue layer containing abundant cartilage matrix. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. β1 Integrins Mediate Attachment of Mesenchymal Stem Cells to Cartilage Lesions

    NARCIS (Netherlands)

    D. Zwolanek (Daniela); M. Flicker (Magdalena); E. Kirstätter (Elisabeth); F. Zaucke (Frank); G.J.V.M. van Osch (Gerjo); R.G. Erben (Reinhold)

    2015-01-01

    textabstractMesenchymal stem cells (MSC) may have great potential for cell-based therapies of osteoarthritis. However, after injection in the joint, only few cells adhere to defective articular cartilage and contribute to cartilage regeneration. Little is known about the molecular mechanisms of MSC

  2. Osteoarthritic Cartilage is more Homogeneous than Healthy Cartilage – Identification of a Superior ROI Co-localised with a Major Risk Factor for Osteoarthritis

    DEFF Research Database (Denmark)

    Qazi, Arish Asif; Dam, Erik B.; Nielsen, Mads

    2007-01-01

    sheet was segmented using a fully automatic voxel classification scheme based on supervised learning. From the segmented cartilage sheet, homogeneity was quantified by measuring entropy from the distribution of signal intensities inside the compartment. Each knee was examined by radiography...

  3. Allogeneic Mesenchymal Stem Cells Stimulate Cartilage Regeneration and Are Safe for Single-Stage Cartilage Repair in Humans upon Mixture with Recycled Autologous Chondrons

    NARCIS (Netherlands)

    de Windt, Tommy S; Vonk, Lucienne A; Slaper-Cortenbach, Ineke C M; van den Broek, Marcel P H; Nizak, Razmara; van Rijen, Mattie H P; de Weger, Roel A; Dhert, Wouter J A; Saris, Daniel B F

    Traditionally, mesenchymal stem cells (MSCs) isolated from adult bone marrow were described as being capable of differentiating to various lineages including cartilage. Despite increasing interest in these MSCs, concerns regarding their safety, in vivo behavior and clinical effectiveness have

  4. Regulation of complement by cartilage oligomeric matrix protein allows for a novel molecular diagnostic principle in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Happonen, Kaisa E; Saxne, Tore; Aspberg, Anders

    2010-01-01

    Cartilage oligomeric matrix protein (COMP) is a structural component of cartilage, where it catalyzes collagen fibrillogenesis. Elevated amounts of COMP are found in serum during increased turnover of cartilage associated with active joint disease, such as rheumatoid arthritis (RA) and osteoarthr...

  5. Snorc is a novel cartilage specific small membrane proteoglycan expressed in differentiating and articular chondrocytes

    DEFF Research Database (Denmark)

    Heinonen, J; Taipaleenmäki, H; Roering, P

    2011-01-01

    and interaction partners are still likely to be discovered. Our focus in this study was to characterize a novel cartilage specific gene that was identified in mouse limb cartilage during embryonic development. METHODS: Open access bioinformatics tools were used to characterize the gene, predicted protein...... subgroups. Cartilage specific expression was highest in proliferating and prehypertrophic zones during development, and in adult articular cartilage, expression was restricted to the uncalcified zone, including chondrocyte clusters in human osteoarthritic cartilage. Studies with experimental chondrogenesis...... and orthologs in vertebrate species. Immunohistochemistry and mRNA expression methodology were used to study tissue specific expression. Fracture callus and limb bud micromass culture were utilized to study the effects of BMP-2 during experimental chondrogenesis. Fusion protein with C-terminal HA...

  6. [Relationship between PMI and ATR-FTIR Spectral Changes in Swine Costal Cartilages and Ribs].

    Science.gov (United States)

    Yao, Yao; Wang, Qi; Jing, Xiao-li; Li, Bing; Zhang, Yin-ming; Wang, Zhi-jun; Li, Cheng-zhi; Lin, Han-cheng; Zhang, Ji; Huang, Ping; Wang, Zhen-yuan

    2016-02-01

    To analyze postmortem chemical changes in Landrace costal cartilages and ribs using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and to provide a novel technique for estimation of postmortem interval (PMI). The swines were sacrificed by hemorrhage and their costal cartilages and ribs were kept in 20 degrees C. The chemical analysis of the costal cartilages and ribs were performed using ATR-FTIR every 72 h. The correlation between the certain spectral parameters and PMI was also analyzed. The time-dependent changes of costal cartilages were more significant than ribs. There were no obvious changes for the main absorbance bands position, and some absorbance band ratios showed time-dependent changes and significant correlations with the PMI. ATR-FTIR has the ability to analyze postmortem chemical changes of the swine costal cartilages and ribs, and it can be a new method to estimate PMI based on spectroscopy.

  7. Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography

    Science.gov (United States)

    Ravanfar, Mohammadreza; Pfeiffer, Ferris M.; Bozynski, Chantelle C.; Wang, Yuanbo; Yao, Gang

    2017-12-01

    Collagen degeneration is an important pathological feature of osteoarthritis. The purpose of this study is to investigate whether the polarization-sensitive optical coherence tomography (PSOCT)-based optical polarization tractography (OPT) can be useful in imaging collagen structural changes in human osteoarthritic cartilage samples. OPT eliminated the banding artifacts in conventional PSOCT by calculating the depth-resolved local birefringence and fiber orientation. A close comparison between OPT and PSOCT showed that OPT provided improved visualization and characterization of the zonal structure in human cartilage. Experimental results obtained in this study also underlined the importance of knowing the collagen fiber orientation in conventional polarized light microscopy assessment. In addition, parametric OPT imaging was achieved by quantifying the surface roughness, birefringence, and fiber dispersion in the superficial zone of the cartilage. These quantitative parametric images provided complementary information on the structural changes in cartilage, which can be useful for a comprehensive evaluation of collagen damage in osteoarthritic cartilage.

  8. QUANTITATIVE MAGNETIC RESONANCE IMAGING OF ARTICULAR CARTILAGE AND ITS CLINICAL APPLICATIONS

    Science.gov (United States)

    Li, Xiaojuan; Majumdar, Sharmila

    2013-01-01

    Cartilage is one of the most essential tissues for healthy joint function and is compromised in degenerative and traumatic joint diseases. There have been tremendous advances during the past decade using quantitative MRI techniques as a non-invasive tool for evaluating cartilage, with a focus on assessing cartilage degeneration during osteoarthritis (OA). In this review, after a brief overview of cartilage composition and degeneration, we discuss techniques that grade and quantify morphologic changes as well as the techniques that quantify changes in the extracellular matrix. The basic principles, in vivo applications, advantages and challenges for each technique are discussed. Recent studies using the OA Initiative (OAI) data are also summarized. Quantitative MRI provides non-invasive measures of cartilage degeneration at the earliest stages of joint degeneration, which is essential for efforts towards prevention and early intervention in OA. PMID:24115571

  9. The presence of lysylpyridinoline in the hypertrophic cartilage of newly hatched chicks

    Science.gov (United States)

    Orth, M. W.; Martinez, D. A.; Cook, M. E.; Vailas, A. C.

    1993-01-01

    The presence of lysylpyridinoline (LP) as a nonreducible cross-link in appreciable quantities has primarily been limited to the mineralized tissues, bone and dentin. However, the results reported here show that LP is not only present in the hypertrophic cartilage of the tibiotarsus isolated from newly hatched broiler chicks, but it is approx. 4-fold as concentrated as hydroxylysylpyridinoline (HP). Bone and articular cartilage surrounding the hypertrophic cartilage do not contain measurable quantities of LP. Purified LP has a fluorescent scan similar to purified HP and literature values, confirming that we indeed were measuring LP. Also, the cartilage lesion produced by immature chondrocytes from birds with tibial dyschondroplasia had LP but the HP:LP ratio was > 1. Thus, the low HP:LP ratio could be a marker for hypertrophic cartilage in avians.

  10. Histochemistry as a unique approach for investigating normal and osteoarthritic cartilage

    Directory of Open Access Journals (Sweden)

    G. Musumeci

    2014-04-01

    Full Text Available In this review article, we describe benefits and disadvantages of the established histochemical methods for studying articular cartilage tissue under normal, pathological and experimental conditions. We illustrate the current knowledge on cartilage tissue based on histological and immunohistochemical aspects, and in conclusion we provide a short overview on the degeneration of cartilage, such as osteoarthritis. Adult articular cartilage has low capacity to repair itself, and thus even minor injuries may lead to progressive damage and osteoarthritic joint degeneration, resulting in significant pain and disability. Numerous efforts have been made to implement the knowledge in the study of cartilage in the last years, and histochemistry proved to be an especially powerful tool to this aim.

  11. Biphasic and boundary lubrication mechanisms in artificial hydrogel cartilage: A review.

    Science.gov (United States)

    Murakami, Teruo; Yarimitsu, Seido; Nakashima, Kazuhiro; Sakai, Nobuo; Yamaguchi, Tetsuo; Sawae, Yoshinori; Suzuki, Atsushi

    2015-12-01

    Various studies on the application of artificial hydrogel cartilage to cartilage substitutes and artificial joints have been conducted. It is expected in clinical application of artificial hydrogel cartilage that not only soft-elastohydrodynamic lubrication but biphasic, hydration, gel-film and boundary lubrication mechanisms will be effective to sustain extremely low friction and minimal wear in daily activities similar to healthy natural synovial joints with adaptive multimode lubrication. In this review article, the effectiveness of biphasic lubrication and boundary lubrication in hydrogels in thin film condition is focused in relation to the structures and properties of hydrogels. As examples, the tribological behaviors in three kinds of poly(vinyl alcohol) hydrogels with high water content are compared, and the importance of lubrication mechanism in biomimetic artificial hydrogel cartilage is discussed to extend the durability of cartilage substitute. © IMechE 2015.

  12. Radiological evaluation of spontaneous pneumoperitoneum

    International Nuclear Information System (INIS)

    Kim, H. S.; Kim, J. D.; Rhee, H. S.

    1982-01-01

    112 cases of spontaneous penumoperitoneum, the causes of which were confirmed by clinical and surgical procedure at Presbyterian Medical Center from January, 1977 to July, 1981 were reviewed radiologically. The results were as follows: 1. Perforation of duodenal ulcer (46/112: 41.1%), stomach ulcer (22/112: 19.6%), and stomach cancer (11/112: 9.8%) were the three most common causes of spontaneous penumoperitoneum. These were 70.5% of all causes. 2. The most common site of free gas was both subdiaphragmatic areas (46: 41.1%). Others were Rt. subdiaphragmatic only (31: 27.7%), both subdiaphragmatic with subhepatic (16: 14.3%), Rt. subdiaphragmatic with subhepatic (7: 6.2%), Rt. subdiaphragmatic only (5: 4.4%), diffuse in abdomen (4: 3.6%), and subhepatic only (3: 2.7%). So 92.0% (103/112) were located in RUQ. 3. The radiological shape of free gas was classified: crescent (52: 46.4%) of small amount; half-moon (21: 18.8%) of moderate amount; large or diffuse (39: 34.8%) of large amount.4. The age between 31 and 60 occupied 69.1% (77/112), and male was predominant (5.2 times). 5. The patient's position showing free air most frequently was erect

  13. 3.0T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging-A preliminary study.

    Science.gov (United States)

    Jungmann, Pia M; Baum, Thomas; Schaeffeler, Christoph; Sauerschnig, Martin; Brucker, Peter U; Mann, Alexander; Ganter, Carl; Bieri, Oliver; Rummeny, Ernst J; Woertler, Klaus; Bauer, Jan S

    2015-08-01

    To determine the impact of axial traction during high resolution 3.0T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. MR images of n=25 asymptomatic ankles were acquired with and without axial traction (6kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1=best, 4=worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n=8) T2 and SSFP diffusion-weighted imaging (DWI; n=8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (Pw images (P0.05). T2 values were lower at the tibia than at the talus (P<0.001). Reproducibility was better for images with axial traction. Axial traction increased the joint space width, allowed for better visualization of cartilage surfaces and improved compartment discrimination and reproducibility of quantitative cartilage parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. A Case of Multiple Spontaneous Keloid Scars

    Directory of Open Access Journals (Sweden)

    Abdulhadi Jfri

    2015-07-01

    Full Text Available Keloid scars result from an abnormal healing response to cutaneous injury or inflammation that extends beyond the borders of the original wound. Spontaneous keloid scars forming in the absence of any previous trauma or surgical procedure are rare. Certain syndromes have been associated with this phenomenon, and few reports have discussed the evidence of single spontaneous keloid scar, which raises the question whether they are really spontaneous. Here, we present a 27-year-old mentally retarded single female with orbital hypertelorism, broad nasal bridge, repaired cleft lip and high-arched palate who presented with progressive multiple spontaneous keloid scars in different parts of her body which were confirmed histologically by the presence of typical keloidal collagen. This report supports the fact that keloid scars can appear spontaneously and are possibly linked to a genetic factor. Furthermore, it describes a new presentation of spontaneous keloid scars in the form of multiple large lesions in different sites of the body.

  15. Spontaneity of communication in individuals with autism.

    Science.gov (United States)

    Chiang, Hsu-Min; Carter, Mark

    2008-04-01

    This article provides an examination of issues related to spontaneity of communication in children with autism. Deficits relating to spontaneity or initiation are frequently reported in individuals with autism, particularly in relation to communication and social behavior. Nevertheless, spontaneity is not necessarily clearly conceptualized or measured. Several approaches to conceptualization of communicative spontaneity are examined with a particular focus on the continuum model and how it might be practically applied. A range of possible explanations for deficits in spontaneity of communication in children with autism is subsequently explored, including external factors (highly structured teaching programs, failure to systematically instruct for spontaneity) and intrinsic characteristics (intellectual disability, stimulus overselectivity, weak central coherence). Possible implications for future research are presented.

  16. Long-term use and follow-up of autologous and homologous cartilage graft in rhinoplasty

    Directory of Open Access Journals (Sweden)

    Ghasemali Khorasani

    2016-05-01

    Full Text Available Background: Cartilage grafting is used in rhinoplasty and reconstructive surgeries. Autologous rib and nasal septum cartilage (auto graft is the preferred source of graft material in rhinoplasty, however, homologous cartilage (allograft has been extensively used to correct the nasal framework in nasal deformities. Autologous cartilage graft usage is restricted with complication of operation and limiting availability of tissue for extensive deformities. Alternatively, preserved costal cartilage allograft represents a readily available and easily contoured material. The current study was a formal systematic review of complications associated with autologous versus homologous cartilage grafting in rhinoplasty patients. Methods: In this cohort retrospective study, a total of 124 patients undergone primary or revision rhinoplasty using homologous or autologus grafts with postoperative follow-up ranging from 6 to 60 months were studied. The types of grafts and complications related to the grafts were evaluated. This included evaluation for warping, infection, resorption, mobility and fracture. Results: The total complications related to the cartilage grafts were 7 cases, which included 1 warped in auto graft group, three cases of graft displacement (two in allograft group and one in auto graft group and three fractures in allograft group. No infection and resorption was recorded. Complication rate (confidence interval 0.95 in autologous and homologous group were 1.25(0.4-3.88 and 2.08(0.78-5.55 in 1000 months follow up. There was no statistically significant difference between autologous and homologous group complications. Onset of complication in autologous and homologous group were 51.23(49.27-53.19 and 58.7(54.51-62.91 month respectively (P=0.81. Conclusion: The allograft cartilage has the advantage of avoiding donor-site scar. Moreover, it provides the same benefits as autologous costal cartilage with comparable complication rate. Therefore, it

  17. Spatial regulation of bone morphogenetic proteins (BMPs) in postnatal articular and growth plate cartilage

    Science.gov (United States)

    Garrison, Presley; Yue, Shanna; Hanson, Jeffrey; Baron, Jeffrey; Lui, Julian C.

    2017-01-01

    Articular and growth plate cartilage both arise from condensations of mesenchymal cells, but ultimately develop important histological and functional differences. Each is composed of three layers—the superficial, mid and deep zones of articular cartilage and the resting, proliferative and hypertrophic zones of growth plate cartilage. The bone morphogenetic protein (BMP) system plays an important role in cartilage development. A gradient in expression of BMP-related genes has been observed across growth plate cartilage, likely playing a role in zonal differentiation. To investigate the presence of a similar expression gradient in articular cartilage, we used laser capture microdissection (LCM) to separate murine growth plate and articular cartilage from the proximal tibia into their six constituent zones, and used a solution hybridization assay with color-coded probes (nCounter) to quantify mRNAs for 30 different BMP-related genes in each zone. In situ hybridization and immunohistochemistry were then used to confirm spatial expression patterns. Expression gradients for Bmp2 and 6 were observed across growth plate cartilage with highest expression in hypertrophic zone. However, intracellular BMP signaling, assessed by phospho-Smad1/5/8 immunohistochemical staining, appeared to be higher in the proliferative zone and prehypertrophic area than in hypertrophic zone, possibly due to high expression of Smad7, an inhibitory Smad, in the hypertrophic zone. We also found BMP expression gradients across the articular cartilage with BMP agonists primarily expressed in the superficial zone and BMP functional antagonists primarily expressed in the deep zone. Phospho-Smad1/5/8 immunohistochemical staining showed a similar gradient. In combination with previous evidence that BMPs regulate chondrocyte proliferation and differentiation, the current findings suggest that BMP signaling gradients exist across both growth plate and articular cartilage and that these gradients may

  18. Evaluation of articular cartilage degeneration with contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Fujioka, Mikihiro

    1994-01-01

    The evaluation of glycosaminoglycan (GAG) concentration is important in the clinical diagnosis of articular cartilage degeneration. Glycosaminoglycan provides a large number of fixed negative charges. When manganese ion (Mn 2+ ) is administered to the cartilage matrix, this cation diffuses into the matrix and accumulates in accordance with the distribution of fixed negative charges owing to the electrostatic interaction. The accumulation of Mn 2+ causes a shortening of the relaxation times, resulting in high signal intensity in the MR image, when a T 1 -weighted image is obtained. The present study applied this new method to the articular cartilage to evaluate the degree of the cartilage degeneration. Small pieces of articular cartilage were dissected from the knee joints of young chickens. Experimentally degenerated articular cartilage was obtained by treating the specimen with various concentrations of papain solution. Then specimens were soaked in manganese solution until they obtained equilibrium and served for MR microimaging. The fixed charge density (FCD), the concentration of Mn 2+ and Na + , T 1 and T 2 relaxation times were also measured. In degenerated cartilage, lower accumulation of Mn 2+ due to lower GAG density caused a lower than normal signal intensity. Thus, administration of Mn 2+ enhances the biochemical change in the cartilage matrix in terms of differences in the relaxation time. The actual signal intensity on MRI of each specimen corresponded to the theoretical signal intensity, which was calculated from the FCD. It was concluded that MR images taken with contrast enhancement by Mn 2+ give direct visual information about the GAG density in the articular cartilage. MRI with cationic contrast agent could develop into a new method for early non-invasive diagnosis of cartilage dysfunction and degeneration. (author)

  19. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhua; Yang, Qiu; Cheng, Niangmei [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Tao, Xiaojun [Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan (China); Zhang, Zhihua; Sun, Xiaomin [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Key Laboratory of Biomedical Materials of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-04-01

    For cartilage repair, ideal scaffolds should mimic natural extracellular matrix (ECM) exhibiting excellent characteristics, such as biocompatibility, suitable porosity, and good cell affinity. This study aimed to prepare a collagen/silk fibroin composite scaffold incorporated with poly-lactic-co-glycolic acid (PLGA) microsphere that can be applied in repairing cartilage. To obtain optimum conditions for manufacturing a composite scaffold, a scaffold composed of different collagen-to-silk fibroin ratios was evaluated by determining porosity, water absorption, loss rate in hot water, and cell proliferation. Results suggested that the optimal ratio of collagen and silk fibroin composite scaffold was 7:3. The microstructure and morphological characteristics of the obtained scaffold were also examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results of in vitro fluorescence staining of bone marrow stromal cells revealed that collagen/silk fibroin composite scaffold enhanced cell proliferation without eliciting side effects. The prepared composite scaffold incorporated with PLGA microsphere was implanted in fully thick articular cartilage defects in rabbits. Collagen/silk fibroin composite scaffold with PLGA microspheres could enhance articular cartilage regeneration and integration between the repaired cartilage and the surrounding cartilage. Therefore, this composite will be a promising material for cartilage repair and regeneration. - Highlights: • Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere proposed for cartilage repair was created. • In vivo, scaffold could enhance cartilage regeneration and integration between the repaired and surrounding cartilage. • In vitro, scaffold exhibits excellent characteristics, such as, improved porosity water absorption and good cell affinity.

  20. Repair of Cartilage injuries using in vitro engineered 3D cartilage tissue- Preliminary Results of Our Animal Studies

    Directory of Open Access Journals (Sweden)

    Arumugam S

    2011-01-01

    Full Text Available Introduction: The cartilage injuries demand novel therapeutic approaches as the success rates of the current conventional strategies for the repair of injured articular cartilages are not that encouraging. Earlier we have reported that the Thermoreversible Gelation Polymer (TGP is an ideal scaffold for human chondrocyte expansion in vitro. In this study, we report the preliminary results of the in vitro expansion, characterization and experimental in vivo transplantation of chondrocytes in a rabbit model of cartilage injury Materials & Methods: Nine rabbits were included in this study scheduled for two years, after approval by the ethics committee. In the first animal, Chondrocytes were isolated from the weight bearing area of patellar groove in the left hindlimb and cultured in TGP Scaffold and maintained at 37°C in 5% carbon dioxide incubator for 64 days without growth factors. Then the TGP-Chondrocyte construct was transplanted into an experimental defect created in the knee of the right forelimb of the same rabbit. After a period of 10 weeks, a biopsy was taken from the transplanted region and subjected to morphological analysis, characterization by histopathology (H&E stain and Immunohistochemistry (S-100 staining.Results: The chondrocytes in the 3D TGP culture had round to oval shaped morphology without any de-differentiation which is otherwise observed in Conventional 2D cultures. A macroscopic structure which resembled cartilage was appreciated in the TGP construct in vitro after 64 days which was then transplanted to the rabbit. The H&E and Immunohistochemistry studies confirmed the presence of chondrocytes in the biopsy tissue. Conclusion: Based on the results, we conclude that the TGP significantly supports the in vitro expansion of chondrocytes for a longer period and the 3D culture using TGP preserves the phenotype of the articular chondrocytes. The tissue thus grown when implanted with the TGP has engrafted well without any

  1. Spontaneous cryptococcal peritonitis in cirrhotic patients.

    Directory of Open Access Journals (Sweden)

    Sungkanuparph S

    2002-07-01

    Full Text Available Spontaneous bacterial peritonitis is a common complication in patients with cirrhosis and ascites. However, spontaneous peritonitis caused by Cryptococcus neoformans is uncommon. Delayed diagnosis of cryptococcal peritonitis often results in death. We describe three cases of spontaneous cryptococcal peritonitis in patients with decompensated cirrhosis. One case had associated symptomatic human immunodeficiency virus infection. Clinical awareness of this entity may lead to the early diagnosis and proper treatment.

  2. Spontaneous Intracranial Hypotension without Orthostatic Headache

    Directory of Open Access Journals (Sweden)

    Tülay Kansu

    2009-03-01

    Full Text Available We report 2 cases of spontaneous intracranial hypotension that presented with unilateral abducens nerve palsy, without orthostatic headache. While sixth nerve palsies improved without any intervention, subdural hematoma was detected with magnetic resonance imaging. We conclude that headache may be absent in spontaneous intracranial hypotension and spontaneous improvement of sixth nerve palsy can occur, even after the development of a subdural hematoma

  3. Spontaneous renal hematoma - a case report

    International Nuclear Information System (INIS)

    Obrzut, M.; Obrzut, M.; Homa, J.; Obrzut, B.

    2006-01-01

    Spontaneous pararenal hematoma is a rare pathology most frequently coexisting with renal tumours, vascular anomalies and inflammatory processes. In some cases one cannot establish its etiology. The paper describes a case of a 58-year-old man with a spontaneous pararenal hematoma and presents a diagnostic algorithm. Ultrasonography and CT play an important role in diagnostics of spontaneous pararenal haemorrhages. These methods enable a precise evaluation of size and location of hematoma and its evolution. (author)

  4. Rate process analysis of thermal damage in cartilage

    International Nuclear Information System (INIS)

    Diaz, Sergio H; Nelson, J Stuart; Wong, Brian J F

    2003-01-01

    Cartilage laser thermoforming (CLT) is a new surgical procedure that allows in situ treatment of deformities in the head and neck with less morbidity than traditional approaches. While some animal and human studies have shown promising results, the clinical feasibility of CLT depends on preservation of chondrocyte viability, which has not been extensively studied. The present paper characterizes cellular damage due to heat in rabbit nasal cartilage. Damage was modelled as a first order rate process for which two experimentally derived coefficients, A=1.2x10 70 s -1 and E a =4.5x10 5 J mole -1 , were determined by quantifying the decrease in concentration of healthy chondrocytes in tissue samples as a function of exposure time to constant-temperature water baths. After immersion, chondrocytes were enzymatically isolated from the matrix and stained with a two-component fluorescent dye. The dye binds nuclear DNA differentially depending upon chondrocyte viability. A flow cytometer was used to detect differential cell fluorescence to determine the percentage of live and dead cells in each sample. As a result, a damage kinetic model was obtained that can be used to predict the onset, extent and severity of cellular injury to thermal exposure

  5. Permeability of cartilage to neutral and charged polysaccharides

    International Nuclear Information System (INIS)

    Haselton, F.R.; Fishman, A.P.; Sampson, P.M.

    1986-01-01

    The authors investigated macromolecular transport through a negatively charged membrane made from articular cartilage. Sections (150-1000 μ) of cartilage obtained at autopsy from a horse fetlock were clamped between two 15 ml chambers containing .15 M sodium chloride in pH 7.4, .004 M phosphate. Tracers were introduced into chamber A and transport was determined by radiolabel transferred to chamber B over time. Structural integrity was preserved as shown by histological staining. In three experiments, size selectivity was measured using polydisperse uncharged 3 H-dextran. The authors determined the elution patterns from a calibrated Sephadex S300 column of samples from each chamber. The relative transport of molecules over the size range of 1.0 to 10.0 nm was determined by comparing the two elution patterns. They found a sharp cutoff at an effective molecular radius of 2.5 nm. In an additional three experiments, charge selectivity was investigated by comparing the simultaneous transport of 3 H-inulin and 14 C-carboxy inulin. Both tracers have an effective molecular radius of 1.1 nm. The negatively charged carboxy inulin was transferred 15% faster than the uncharged inulin. They conclude: a) there is a maximum effective radius for uncharged dextrans that can be transferred across this membrane which is smaller than that reported for proteins and b) negatively charged cartilagenous membranes do not retard the transport of negatively charged inulin

  6. Correlation between Focal Nodular Low Signal Changes in Hoffa’s Fat Pad Adjacent to Anterior Femoral Cartilage and Focal Cartilage Defect Underlying This Region and Its Possible Implication

    Directory of Open Access Journals (Sweden)

    Chermaine Deepa Antony

    2016-01-01

    Full Text Available Purpose. This study investigates the association between focal nodular mass with low signal in Hoffa’s fat pad adjacent to anterior femoral cartilage of the knee (FNMHF and focal cartilage abnormality in this region. Method. The magnetic resonance fast imaging employing steady-state acquisition sequence (MR FIESTA sagittal and axial images of the B1 and C1 region (described later of 148 patients were independently evaluated by two reviewers and categorized into four categories: normal, FNMHF with underlying focal cartilage abnormality, FNMHF with normal cartilage, and cartilage abnormality with no FNMHF. Results. There was a significant association (p=0.00 between FNMHF and immediate adjacent focal cartilage abnormality with high interobserver agreement. The absence of focal nodular lesions next to the anterior femoral cartilage has a very high negative predictive value for chondral injury (97.8%. Synovial biopsy of focal nodular lesion done during arthroscopy revealed some fibrocollagenous tissue and no inflammatory cells. Conclusion. We postulate that the FNMHF adjacent to the cartilage defects is a form of normal healing response to the cartilage damage. One patient with FHMHF and underlying cartilage abnormality was rescanned six months later. In this patient, the FNMHF disappeared and normal cartilage was observed in the adjacent region which may support this theory.

  7. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case–control study of relationship between collagen, glycosaminoglycan and cartilage swelling

    Directory of Open Access Journals (Sweden)

    Hosseininia Shahrzad

    2013-01-01

    Full Text Available Abstract Background It remains to be shown whether OA shares molecular similarities between different joints in humans. This study provides evidence for similarities in cartilage molecular damage in osteoarthritic (OA joints. Methods Articular cartilage from osteoarthritic hip joints were analysed and compared to non-OA controls regarding collagen, glycosaminoglycan and water content. Femoral heads from 16 osteoarthritic (OA and 20 reference patients were obtained from hip replacement surgery due to OA and femoral neck fracture, respectively. Cartilage histological changes were assessed by Mankin grading and denatured collagen type II immunostaining and cartilage was extracted by α-chymotrypsin. Hydroxyproline and Alcian blue binding assays were used to measure collagen and glycosaminoglycan (GAG content, respectively. Results Mankin and immunohistology scores were significantly higher in hip OA samples than in reference samples. Cartilage water content was 6% higher in OA samples than in references. 2.5 times more collagen was extracted from OA than from reference samples. There was a positive association between water content and percentage of extractable collagen pool (ECP in both groups. The amounts of collagen per wet and dry weights did not differ statistically between OA and reference cartilage. % Extractable collagen was not related to collagen per dry weight in either group. However when collagen was expressed by wet weight there was a negative correlation between % extractable and collagen in OA cartilage. The amount of GAG per wet weight was similar in both groups but the amount of GAG per dry weight was higher in OA samples compared to reference samples, which suggests a capacity for GAG biosynthesis in hip OA cartilage. Neither of the studied parameters was related to age in either group. Conclusions Increased collagen extractability and water content in human hip cartilage is associated with OA pathology and can be observed at

  8. 3.0 T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging—A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Jungmann, Pia M., E-mail: pia.jungmann@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Baum, Thomas, E-mail: thomas.baum@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Schaeffeler, Christoph, E-mail: schaeffeler@me.com [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Musculoskeletal Imaging, Kantonsspital Graubuenden, Loestrasse 170, CH-7000 Chur (Switzerland); Sauerschnig, Martin, E-mail: martin.sauerschnig@mri.tum.de [Department of Trauma Surgery, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Brucker, Peter U., E-mail: peter.brucker@lrz.tu-muenchen.de [Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Mann, Alexander, E-mail: abmann@onlinemed.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Ganter, Carl, E-mail: cganter@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Bieri, Oliver, E-mail: oliver.bieri@unibas.ch [Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031 Basel (Switzerland); and others

    2015-08-15

    Highlights: • Axial traction is applicable during high resolution MR imaging of the ankle. • Axial traction during MR imaging oft the ankle improves cartilage surface delineation of the individual tibial and talar cartilage layer for better morphological evaluation without the need of intraarticular contrast agent application. • Coronal T1-weighted MR images with a driven equilibrium pulse performed best. • Axial traction during MR imaging of the ankle facilitates compartment discrimination for segmentation purposes resulting in better reproducibility. - Abstract: Purpose: To determine the impact of axial traction during high resolution 3.0 T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. Materials and Methods: MR images of n = 25 asymptomatic ankles were acquired with and without axial traction (6 kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1 = best, 4 = worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n = 8) T2 and SSFP diffusion-weighted imaging (DWI; n = 8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. Results: With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (P < 0.05). Cartilage surfaces were best visualized on coronal T1-w images (P < 0.05). Differences for cartilage matrix evaluation were smaller. Subchondral bone evaluation, motion artifacts and image quality were not significantly different between the acquisition methods (P > 0.05). T2 values were lower at the tibia than at the talus (P < 0.001). Reproducibility was better for images with axial traction. Conclusion

  9. Biomarkers of spontaneous preterm birth

    DEFF Research Database (Denmark)

    Polettini, Jossimara; Cobo, Teresa; Kacerovsky, Marian

    2017-01-01

    predictors of pregnancy outcome. This systematic review was conducted to synthesize the knowledge on PTB biomarkers identified using multiplex analysis. Three electronic databases (PubMed, EMBASE and Web of Science) were searched for studies in any language reporting the use of multiplex assays for maternal......Despite decades of research on risk indicators of spontaneous preterm birth (PTB), reliable biomarkers are still not available to screen or diagnose high-risk pregnancies. Several biomarkers in maternal and fetal compartments have been mechanistically linked to PTB, but none of them are reliable......) followed by MIP-1β, GM-CSF, Eotaxin, and TNF-RI (two studies) were reported more than once in maternal serum. However, results could not be combined due to heterogeneity in type of sample, study population, assay, and analysis methods. By this systematic review, we conclude that multiplex assays...

  10. Spontaneous Strategies in Innovation Networks

    DEFF Research Database (Denmark)

    Plesner, Ursula; Husted, Emil Krastrup

    and a site ontology, we show how physical sites and objects become constitutive of the inside of virtual worlds through innovation processes. This argument is in line with ANT’s perspective on strategy, where sites and objects are considered a strategically relevant resource in the innovation process...... of materiality in relation to the organization and structuring of virtual worlds. We examine various innovation processes in five Danish entrepreneurial companies where actors continuously struggle to stabilize virtual worlds as platforms for professional communication. With inspiration from actor-network theory....... Empirically, the analysis is founded on descriptive accounts from the five entrepreneurs. By highlighting the spontaneous strategies described by actors, we show how sites and objects are actively used as an element in their strategy, and also how the sites and objects end up facilitating new ways of thinking...

  11. Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct