WorldWideScience

Sample records for spontaneous combustion control

  1. Control technique of spontaneous combustion in fully mechan ized stope during period of end caving under complex mining influence

    Science.gov (United States)

    Yuan, Benqing

    2018-01-01

    In view of the phenomenon of spontaneous combustion of coal seam occurring during the period of end caving under complex mining conditions, taking the 1116 (3) stope of Guqiao mine as the object of study, the causes of spontaneous combustion during the period of end caving are analyzed, according to the specific geological conditions of the stope to develop corresponding fire prevention measures, including the reduction of air supply and air leakage in goaf, reduce the amount of coal left, reasonable drainage, nitrogen injection for spontaneous combustion prevention, grouting for spontaneous combustion prevention and permanent closure, fundamentally eliminates the potential for spontaneous combustion during the period of 1116(3) stope end caving. The engineering practice shows that this kind of measure has reference value for the prevention and control of spontaneous combustion during the period of stope end caving.

  2. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control.

    Science.gov (United States)

    Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong

    2017-11-01

    We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.

  3. Quantifying emissions from spontaneous combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-01

    Spontaneous combustion can be a significant problem in the coal industry, not only due to the obvious safety hazard and the potential loss of valuable assets, but also with respect to the release of gaseous pollutants, especially CO2, from uncontrolled coal fires. This report reviews methodologies for measuring emissions from spontaneous combustion and discusses methods for quantifying, estimating and accounting for the purpose of preparing emission inventories.

  4. Detection of spontaneous combustion underground by measuring CO levels

    Energy Technology Data Exchange (ETDEWEB)

    Boutonnat, M; Jeger, M

    1980-01-01

    It is essential to detect spontaneous combustion as soon as it occurs so as to prevent such outbreaks from becoming a serious conflagration. At present CO detection is the basic method used. States the need for setting up additional measuring points (in air returns from working palces and in return airways in general). Where possible measuring instruments should be placed near zones where there is a particularly high risk of spontaneous combustion. Measurement should be undertaken on a continuous basis or as frequently as possible and must be capable of distinguishing between extraneous CO (shotfiring and diesel motors) and CO emanating from outbreaks of spontaneous combustion. The article describes two instruments developed by CERCHAR: the remote-control CO monitors type C and CSD. Both devices make use of a UNOR analyser.

  5. The Spontaneous Combustion of Railway Ties and Asphalt Shingles

    Science.gov (United States)

    Leslie, Geoffrey

    Many Low Carbon Fuels (LCFs) present unknown spontaneous combustion risks, which must be quantified before their use as fossil fuel replacements. Wood and coal spontaneous combustion is well understood; however, LCFs weather, and subsequent chemical changes could affect their spontaneous combustion properties. LCF spontaneous combustion could lead to accidental fires with possible loss of life, limb and property. The spontaneous combustion risks of two LCFs, discarded creosote-treated wooden railway ties and roofing asphalt shingles, were investigated with calorimetry and heat transfer experiments. Chemical changes due to weathering were studied with pyrolysis-Gas Chromatography/Mass Spectrometry (py-GC/MS). Creosote-treated wooden railway tie dust, roofing asphalt shingle particles, poplar wood pellets, and petroleum coke self-heating were studied with isothermal calorimetry. Railway tie dust and asphalt shingle heat transfer were characterized with a guarded hot plate. Petroleum coke self-heating was consistent with coal, while both poplar pellets and railway tie dust were found to be more reactive compared to oven test results of similar materials. The observed increase in reactivity was probably a result of significant moisture contenint in the pellet and railway tie dust. Critical conditions for spontaneous combustion were evaluated with the Frank-Kamenetskii parameter, assuming an ambient temperature of 40°C and constant moisture content. Kamenetskii calculations indicate that a 1.6 m cube of railway tie dust, or a 58 m cube of asphalt particles, would be unstable and combust. LCF chemistry may have been affected by weathering, which would cause chemical changes that affect their spontaneous combustion properties. Therefore, railway tie wood and roofing asphalt shingle chemistry were investigated by identifying products of 250° and 550°C pyrolysis with py-GC/MS. Railway tie wood pyrolyzates did not show signs of weathering; in contrast, asphalt pyrolysis

  6. Techniques for Liquid Rocket Combustion Spontaneous Stability and Rough Combustion Assessments

    Science.gov (United States)

    Kenny, R. J.; Giacomoni, C.; Casiano, M. J.; Fischbach, S. R.

    2016-01-01

    This work presents techniques for liquid rocket engine combustion stability assessments with respect to spontaneous stability and rough combustion. Techniques covering empirical parameter extraction, which were established in prior works, are applied for three additional programs: the F-1 Gas Generator (F1GG) component test program, the RS-84 preburner component test program, and the Marshall Integrated Test Rig (MITR) program. Stability assessment parameters from these programs are compared against prior established spontaneous stability metrics and updates are identified. Also, a procedure for comparing measured with predicted mode shapes is presented, based on an extension of the Modal Assurance Criterion (MAC).

  7. Dimensionless model to determine spontaneous combustion danger zone in the longwall gob

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-hai; DENG Jun; WEN Hu

    2011-01-01

    According to spontaneous combustion propensity,the longwall gob is divided into three zones,including heat dissipation zone,self-heating zone and the choking zone.Only in the self-heating zone can temperature of coal rise due to oxidation.Studying the distribution of the “Three Zones” in gob is important for predicting and preventing spontaneous combustion in coalmine.In normal mining operations,temperature of coal is roughly constant.The process of mass transfer in the gob is considered to be steady.Based on mass conservation,gas species conservation,darcy' s law,Ficks law of diffusion and coal oxidation 1-grade reaction rule,governing equation for air leakage intensity and species concentration are deduced.With critical value of coal spontaneous combustion and the size of longwall workface as basic dimension,a dimensionless steady coupled model of air flow diffusion and chemical reaction in loose coal of Fully Mechanized Top-Coal Caving Mining Workface (FMTCCMW) is setup.By solving the model numerically,regulation of three zones' distribution and spontaneous combustion in the gob can be obtained.The results can be easily popularized to prediction of spontaneous combustion in other coalmines' longwall gob.

  8. [Quantitative spectrum analysis of characteristic gases of spontaneous combustion coal].

    Science.gov (United States)

    Liang, Yun-Tao; Tang, Xiao-Jun; Luo, Hai-Zhu; Sun, Yong

    2011-09-01

    Aimed at the characteristics of spontaneous combustion gas such as a variety of gases, lou limit of detection, and critical requirement of safety, Fourier transform infrared (FTIR) spectral analysis is presented to analyze characteristic gases of spontaneous combustion In this paper, analysis method is introduced at first by combing characteristics of absorption spectra of analyte and analysis requirement. Parameter setting method, sample preparation, feature variable abstract and analysis model building are taken into consideration. The methods of sample preparation, feature abstraction and analysis model are introduced in detail. And then, eleven kinds of gases were tested with Tensor 27 spectrometer. CH4, C2H6, C3H8, iC4H10, nC4H10, C2 H4, C3 H6, C3 H2, SF6, CO and CO2 were included. The optical path length was 10 cm while the spectra resolution was set as 1 cm(-1). The testing results show that the detection limit of all analytes is less than 2 x 10(-6). All the detection limits fit the measurement requirement of spontaneous combustion gas, which means that FTIR may be an ideal instrument and the analysis method used in this paper is competent for spontaneous combustion gas measurement on line.

  9. Spontaneous human combustion in the light of the 21st century.

    Science.gov (United States)

    Koljonen, Virve; Kluger, Nicolas

    2012-01-01

    The term "spontaneous human combustion" refers to a situation when a human body is found with significant portions of the middle parts of the body reduced to ashes, much less damage to the head and extremities, and minimal damage to the direct surroundings of the body. Typically, no observable source of ignition is found in the vicinity of the victim and a bad smelling oily substance is noted. In the past, such a situation was erroneously attributed to supernatural powers, as such phenomenon occurs in the absence of any witness. The purpose of this review article was to analyze articles published from January 1, 2000, on this unique type of burn injury. Further aims were to gather and present data on the causes and events leading to this situation. The literature was reviewed with PubMed interface using the key words spontaneous human combustion and preternatural combustion. Specific inclusion criteria resulted in 12 patients. A unique sequence of events takes place for the human body to incinerate to ashes. The flame burn victim has to die for the body fat to start melting. A tear in the skin has to occur for the melted fat to impregnate the charred clothes, igniting a wick effect that produces localized heat for extended period. A phenomenon called spontaneous human combustion is reality. The term "spontaneous human combustion" has nuances which are not applicable to this situation or to these modern times, therefore we suggest a new term "fat wick burns."

  10. Assessing Spontaneous Combustion Instability with Nonlinear Time Series Analysis

    Science.gov (United States)

    Eberhart, C. J.; Casiano, M. J.

    2015-01-01

    Considerable interest lies in the ability to characterize the onset of spontaneous instabilities within liquid propellant rocket engine (LPRE) combustion devices. Linear techniques, such as fast Fourier transforms, various correlation parameters, and critical damping parameters, have been used at great length for over fifty years. Recently, nonlinear time series methods have been applied to deduce information pertaining to instability incipiency hidden in seemingly stochastic combustion noise. A technique commonly used in biological sciences known as the Multifractal Detrended Fluctuation Analysis has been extended to the combustion dynamics field, and is introduced here as a data analysis approach complementary to linear ones. Advancing, a modified technique is leveraged to extract artifacts of impending combustion instability that present themselves a priori growth to limit cycle amplitudes. Analysis is demonstrated on data from J-2X gas generator testing during which a distinct spontaneous instability was observed. Comparisons are made to previous work wherein the data were characterized using linear approaches. Verification of the technique is performed by examining idealized signals and comparing two separate, independently developed tools.

  11. Burns resulting from spontaneous combustion of electronic cigarettes: a case series

    OpenAIRE

    Sheckter, Clifford; Chattopadhyay, Arhana; Paro, John; Karanas, Yvonne

    2016-01-01

    Background Electronic cigarette (e-cigarette) sales have grown rapidly in recent years, coinciding with a public perception that they are a safer alternative to traditional cigarettes. However, there have been numerous media reports of fires associated with e-cigarette spontaneous combustion. Case Presentation Three severe burns caused by spontaneous combustion of e-cigarettes within a 6-month period were treated at the Santa Clara Valley Medical Center Burn Unit. Patients sustained partial a...

  12. Low temperature oxidation and spontaneous combustion characteristics of upgraded low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.K.; Kim, S.D.; Yoo, J.H.; Chun, D.H.; Rhim, Y.J.; Lee, S.H. [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2013-07-01

    The low temperature oxidation and spontaneous combustion characteristics of dried coal produced from low rank coal using the upgraded brown coal (UBC) process were investigated. To this end, proximate properties, crossing-point temperature (CPT), and isothermal oxidation characteristics of the coal were analyzed. The isothermal oxidation characteristics were estimated by considering the formation rates of CO and CO{sub 2} at low temperatures. The upgraded low rank coal had higher heating values than the raw coal. It also had less susceptibility to low temperature oxidation and spontaneous combustion. This seemed to result from the coating of the asphalt on the surface of the coal, which suppressed the active functional groups from reacting with oxygen in the air. The increasing upgrading pressure negatively affected the low temperature oxidation and spontaneous combustion.

  13. Burns resulting from spontaneous combustion of electronic cigarettes: a case series.

    Science.gov (United States)

    Sheckter, Clifford; Chattopadhyay, Arhana; Paro, John; Karanas, Yvonne

    2016-01-01

    Electronic cigarette (e-cigarette) sales have grown rapidly in recent years, coinciding with a public perception that they are a safer alternative to traditional cigarettes. However, there have been numerous media reports of fires associated with e-cigarette spontaneous combustion. Three severe burns caused by spontaneous combustion of e-cigarettes within a 6-month period were treated at the Santa Clara Valley Medical Center Burn Unit. Patients sustained partial and full-thickness burns. Two required hospitalization and surgical treatment. E-cigarettes are dangerous devices and have the potential to cause significant burns. Consumers and the general public should be made aware of these life-threatening devices.

  14. Analysis of Index Gases of Coal Spontaneous Combustion Using Fourier Transform Infrared Spectrometer

    Directory of Open Access Journals (Sweden)

    Xiaojun Tang

    2014-01-01

    Full Text Available Analysis of the index gases of coal for the prevention of spontaneous combustion is of great importance for the enhancement of coal mine safety. In this work, Fourier Transform Infrared Spectrometer (FTIRS is presented to be used to analyze the index gases of coal in real time to monitor spontaneous combustion conditions. Both the instrument parameters and the analysis method are introduced at first by combining characteristics of the absorption spectra of the target analyte with the analysis requirements. Next, more than ten sets of the gas mixture containing ten components (CH4, C2H6, C3H8, iso-C4H10, n-C4H10, C2H4, C3H6, C2H2, CO, and CO2 are included and analyzed with a Spectrum Two FTIRS made by Perkin Elmer. The testing results show that the detection limit of most analytes is less than 2×10-6. All the detection limits meet the monitoring requirements of coal spontaneous combustion in China, which means that FTIRS may be an ideal instrument and the analysis method used in this paper is sufficient for spontaneous combustion gas monitoring on-line and even in situ, since FTIRS has many advantages such as fast analysis, being maintenance-free, and good safety.

  15. Prevention of spontaneous combustion of backfilled plant waste material.

    CSIR Research Space (South Africa)

    Adamski, SA

    2003-06-01

    Full Text Available Since Grootegeluk Coal Mine commenced operation in 1980 all plant discards and inter-burden material have been stacked on discards dumps, a practice that has led to the spontaneous combustion of the waste material on these dumps. From 1980 to 1988...

  16. Planning in deep coal mines prone to spontaneous combustion. Planificacion de explotaciones subterraneas de carbon con propension a fuegos

    Energy Technology Data Exchange (ETDEWEB)

    Leon Marco, P

    1991-03-01

    During the planning process, analysis and assessment of criteria which contribute to spontaneous combustion are used to forecast the level of risk. This information is then used to determine what action should be taken to eliminate or reduce spontaneous combustion. The measures taken involve varying the factors which affect spontaneous combustion in order to make conditions unfavourable to the occurrence of the phenomenon. 1 fig.

  17. Prevention of spontaneous combustion in coal stockpiles : Experimental results in coal storage yard

    NARCIS (Netherlands)

    Fierro, V.; Miranda, J.L.; Romero, C.; Andrés, J.M.; Arriaga, A.; Schmal, D.; Visser, G.H.

    1999-01-01

    The spontaneous ignition of coal stockpiles is a serious economic and safety problem. This paper deals with oxidation and spontaneous combustion of coal piles laid in coal storage yard and the measures to avoid the heat losses produced. Investigations on self heating were carried out with five test

  18. Study of electrophysical processes during spontaneous combustion of gases and vapors of organic substances

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, B.S.; Shebeko, Yu.N.; Muravlev, V.K.; Il' in, A.B.

    Combustion of organic substances is accompanied by non-equilibrium ionization, the greatest degree of ionization being in the high temperature zone of the flame, although notable concentrations of ions have been observed in the earlier, low temperature stages of combustion. Since this phenomenon has been studied for only a small number of compounds, a study was undertaken of the electrophysical phenomena taking place during spontaneous combustion of a large variety of compounds, viz., ethanol, acetone, benzene, diethylamine, pentane, diethyl ether, A-72 gasoline, dibromotetrafluoroethane, dichloromethane, and three mixtures of ethanol with 1,2-dibromotetrafluoroethane. Relationships of temperature to passive sonde potential and conductivity current during the induction period were determined. The effective activation energy for the conductivity current-temperature relationship was found to be 230 kilojoules per mole, which agrees with that determined for the induction period in the spontaneous combustion of acetylene-air mixtures in shock waves. 14 references, 3 figures.

  19. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    Science.gov (United States)

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  20. Applying Rock Engineering Systems (RES approach to Evaluate and Classify the Coal Spontaneous Combustion Potential in Eastern Alborz Coal Mines

    Directory of Open Access Journals (Sweden)

    Amir Saffari

    2013-12-01

    Full Text Available Subject analysis of the potential of spontaneous combustion in coal layers with analytical and numerical methods has been always considered as a difficult task because of the complexity of the coal behavior and the number of factors influencing it. Empirical methods, due to accounting for certain and specific factors, have not accuracy and efficiency for all positions. The Rock Engineering Systems (RES approach as a systematic method for analyzing and classifying is proposed in engineering projects. The present study is concerned with employing the RES approach to categorize coal spontaneous combustion in coal regions. Using this approach, the interaction of parameters affecting each other in an equal scale on the coal spontaneous combustion was evaluated. The Intrinsic, geological and mining characteristics of coal seams were studied in order to identifying important parameters. Then, the main stages of implementation of the RES method i.e. interaction matrix formation, coding matrix and forming a list category were performed. Later, an index of Coal Spontaneous Combustion Potential (CSCPi was determined to format the mathematical equation. Then, the obtained data related to the intrinsic, geological and mining, and special index were calculated for each layer in the case study (Pashkalat coal region, Iran. So, the study offers a perfect and comprehensive classification of the layers. Finally, by using the event of spontaneous combustion occurred in Pashkalat coal region, an initial validation for this systematic approach in the study area was conducted, which suggested relatively good concordance in Pashkalat coal region.

  1. A note on self heating and spontaneous combustion of stored sunflower seed cake and cotton seeds

    International Nuclear Information System (INIS)

    El-Nazir, S. M. A.; Babikir, I. H.; Shakak, M. A. S.; Sulieman, I. A.; Medani, R. M.

    2012-01-01

    Sunflower seed cake and cotton seed warehouses combusted spontaneously and burnt in August and November 2009, respectively, in Khartoum North industrial area. The objective of this study was to determine some of the reasons for self-heating and spontaneous combustion. Representative sample from the two warehouses were collected. Aspergillus niger, A. flavus, paecilomyces sp., Rhizopus oryzae, Absidia sp. were isolated at 37°C. Bacillus thuringiensis was isolated at 37°C and B. pantothenticus, B. circulans, B. licheniformis, B. sphaericus, B. badius, Escherichia coli and klebsiella sp. were isolated at 60°C. A decrease in soil, fiber and phosphorus and increase in free fatty acids and protein contents were detected.(Author)

  2. Interesting spontaneous combustion fire at Haus Aden colliery

    Energy Technology Data Exchange (ETDEWEB)

    Both, W; Weinheimer, O

    1976-02-05

    Spontaneous combustion ahead of the face occurred in an over-worked and under-worked seam. When the first cavity containing hot ash was found, an attempt to extinguish the fire with water was abandoned because of the quantity of steam produced, but the fire was extinguished by covering it with paste containing magnesium chloride and hydroxide and calcium chloride. Mining operations continued while the coal surrounding the hot region was cooled with water. The steps taken to detect and deal with other fires in advance of the face are described. These included pre-infusion with calcium chloride solution via boreholes and treatment of the hot cavities encountered with magnesium chloride paste. This method of fire-fighting was more successful than the use of water alone.

  3. Full and Partial Thickness Burns from Spontaneous Combustion of E-Cigarette Lithium-Ion Batteries with Review of Literature.

    Science.gov (United States)

    Treitl, Daniela; Solomon, Rachele; Davare, Dafney L; Sanchez, Rafael; Kiffin, Chauniqua

    2017-07-01

    In recent years, the use of electronic cigarettes (e-cigarettes) has increased worldwide. Most electronic nicotine delivery systems use rechargeable lithium-ion batteries, which are relatively safe, but in rare cases these batteries can spontaneously combust, leading to serious full and partial thickness burn injuries. Explosions from lithium-ion batteries can cause a flash fire and accelerant-related burn injuries. A retrospective chart review was conducted of 3 patients with lithium-ion battery burns seen at our Level I community-based trauma center. Clinical presentation, management, and outcome are presented. All 3 patients sustained burn injuries (total body surface area range 5-13%) from the spontaneous combustion of lithium-ion batteries used for e-cigarettes. All patients were treated with debridement and local wound care. All fully recovered without sequelae. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians can expect to treat burn cases due to spontaneous lithium-ion battery combustion as e-cigarette use continues to increase. The cases presented here are intended to bring attention to lithium-ion battery-related burns, prepare physicians for the clinical presentation of this burn mechanism, and facilitate patient education to minimize burn risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    Science.gov (United States)

    Zhao, H.; Zhang, S.

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O2, H2O, CO2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine.

  5. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    International Nuclear Information System (INIS)

    Zhao, H; Zhang, S

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O 2 , H 2 O, CO 2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine

  6. The research and implementation of coalfield spontaneous combustion of carbon emission WebGIS based on Silverlight and ArcGIS server

    International Nuclear Information System (INIS)

    Zhu, Z; Bi, J; Wang, X; Zhu, W

    2014-01-01

    As an important sub-topic of the natural process of carbon emission data public information platform construction, coalfield spontaneous combustion of carbon emission WebGIS system has become an important study object. In connection with data features of coalfield spontaneous combustion carbon emissions (i.e. a wide range of data, which is rich and complex) and the geospatial characteristics, data is divided into attribute data and spatial data. Based on full analysis of the data, completed the detailed design of the Oracle database and stored on the Oracle database. Through Silverlight rich client technology and the expansion of WCF services, achieved the attribute data of web dynamic query, retrieval, statistical, analysis and other functions. For spatial data, we take advantage of ArcGIS Server and Silverlight-based API to invoke GIS server background published map services, GP services, Image services and other services, implemented coalfield spontaneous combustion of remote sensing image data and web map data display, data analysis, thematic map production. The study found that the Silverlight technology, based on rich client and object-oriented framework for WCF service, can efficiently constructed a WebGIS system. And then, combined with ArcGIS Silverlight API to achieve interactive query attribute data and spatial data of coalfield spontaneous emmission, can greatly improve the performance of WebGIS system. At the same time, it provided a strong guarantee for the construction of public information on China's carbon emission data

  7. CFD modelling of sampling locations for early detection of spontaneous combustion in long-wall gob areas.

    Science.gov (United States)

    Yuan, Liming; Smith, Alex C

    In this study, computational fluid dynamics (CFD) modeling was conducted to optimize gas sampling locations for the early detection of spontaneous heating in longwall gob areas. Initial simulations were carried out to predict carbon monoxide (CO) concentrations at various regulators in the gob using a bleeder ventilation system. Measured CO concentration values at these regulators were then used to calibrate the CFD model. The calibrated CFD model was used to simulate CO concentrations at eight sampling locations in the gob using a bleederless ventilation system to determine the optimal sampling locations for early detection of spontaneous combustion.

  8. Combustion instability control in the model of combustion chamber

    International Nuclear Information System (INIS)

    Akhmadullin, A N; Ahmethanov, E N; Iovleva, O V; Mitrofanov, G A

    2013-01-01

    An experimental study of the influence of external periodic perturbations on the instability of the combustion chamber in a pulsating combustion. As an external periodic disturbances were used sound waves emitted by the electrodynamics. The purpose of the study was to determine the possibility of using the method of external periodic perturbation to control the combustion instability. The study was conducted on a specially created model of the combustion chamber with a swirl burner in the frequency range from 100 to 1400 Hz. The study found that the method of external periodic perturbations may be used to control combustion instability. Depending on the frequency of the external periodic perturbation is observed as an increase and decrease in the amplitude of the oscillations in the combustion chamber. These effects are due to the mechanisms of synchronous and asynchronous action. External periodic disturbance generated in the path feeding the gaseous fuel, showing the high efficiency of the method of management in terms of energy costs. Power required to initiate periodic disturbances (50 W) is significantly smaller than the thermal capacity of the combustion chamber (100 kW)

  9. Study and application of measures for prevention of spontaneous combustion of coal in goaf induced by air leakage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Tang, H.; Zou, S.; Shi, S. [Xiangtan Mining Institute (China)

    1996-12-01

    To prevent spontaneous ignition of coal due to air leakage in the goaf, air stoppings were built periodically in a U-shaped air leakage area based on computer simulation and site experience. The measure had reduced remarkably the quantity and extent of air leakage in the mined-out area and expanded the extent of non-spontaneous combustion area, thus prevented effectively the risk of spontaneous ignition and gas explosion. Application of this method in Mugang Mine of Liuzhi Bureau for more than two years had reduced the economic loss by over 3 million Yuan RMB. This method is characterized by simple operation, low cost, etc. It is suitable for mines in under developed area and mines with complicated conditions which are prone to spontaneous ignition. 5 refs., 3 figs., 1 tab.

  10. Spontaneous ignition characteristics of coal in a large-scale furnace: An experimental and numerical investigation

    International Nuclear Information System (INIS)

    Wen, Hu; Yu, Zhijin; Deng, Jun; Zhai, Xiaowei

    2017-01-01

    Highlights: • Three coal spontaneous combustion coupled models based on various flow equations were constructed and compared. • The airflow behavior in loose coal should be defined as a Brinkman flow. • The self-heating of coal in a large-scale reactor was numerically reappeared. • The effect of heat dissipated conditions on temperature profiles of broken coal was presented. - Abstract: A comprehensive understanding of the spontaneous combustion characteristics of coal in various surroundings is necessary for developing reliable test platform and predictive models. In this study, the characteristics of oxidation and self-heating combining various gas flow equations in loose coal were investigated separately and used to simulate the experimental procedure of spontaneous combustion. The main focus was to investigate the effect of thermal boundary on temperature profiles as well as spontaneous combustion period. The results showed that the numerical approach was validated by comparison with the test data. Furthermore, the model based upon Brinkman equation showed a higher accuracy, which indicated that airflow behavior influences the balances of coal oxidation and heat dissipation, thus impacts the temperature profiles of loose coal. The areas of high temperature zones would be evidently expanded and the spontaneous ignition time would be significantly accelerated if the thermal exchange between the coal and its surroundings decreased. Our results, especially for the field of engineering, have substantial effects for grasping and controlling coal spontaneous combustion disaster.

  11. Spontaneous combustion of the Upper Paleocene Cerrejon Formation coal and generation of clinker in La Guajira Peninsula (Caribbean Region of Colombia)

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, J.A. [Carbones del Cerrejon Limited., Cl. 100 No. 19-54 piso 12, Bogota D.C. (Colombia); Candela, S.A. [ECOPETROL S.A. Edificio Principal Cr. 7 No. 37-65, Bogota D.C. (Colombia); Rios, C.A. [Escuela de Geologia, Universidad Industrial de Santander, Cr 27 Cl 9, Ciudad Universitaria, Bucaramanga (Colombia); Montes, C. [Smithsonian Tropical Research Institute, Roosvelt Ave., Tupper Building - 401, Balboa, Ancon, Panama (Panama); Uribe, C. [Tubos Moore S.A. Cll 99 No. 57-74, Bogota (Colombia)

    2009-12-01

    Clinker referred here as red and brick-looking burnt rocks found interbedded in the Upper Paleocene Cerrejon Formation is the result of spontaneous and natural combustion of coal seams in the recent geologic past. These rocks have been mapped, measured and characterized in the Cerrejon Coal Mine at La Guajira Peninsula (Colombia). These burnt rocks usually outcrop in irregular patterns as almost tabular bodies up to 100 m thick, thinning and pinching out below ground surface to depths up to 448 m. Mapping revealed that clinker is usually found near deformed zones, either faults or tight folds. Timing of spontaneous combustion seems to predate folding and faulting, but seems to postdate the development of the Cerrejon thrust fault and alluvial fan proceeding from the Perija Range. Clinker covers an area of around 2.9 x 10{sup 6} m{sup 2} with a volume of approximately 1.4 x 10{sup 8} m{sup 3}. The calculation of the amount of heat released through coal burning indicates that complete combustion of 6.4 Mt of 26.4 x 10{sup 6} J/kg coal would yield 17 x 10{sup 13} J. (author)

  12. Engine combustion control via fuel reactivity stratification

    Science.gov (United States)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  13. Experimental study of improvement on combustion control of fluidized bed combustion chamber; Ryudosho shokyakuro no nenshosei no kaizen ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Izumiya, T.; Baba, K.; Koshida, H.; Uetani, J.; Furuta, M.

    1998-10-29

    Nippon Steel Corporation has carried out an experimental study using the Yawata waste incinerator plant in order to improve combustion control of a fluidized bed combustion chamber. For controlling the forming of dioxin, combustion control is very important in addition to conventional methods. In this paper, we report two studies about improvements on combustion control. In the first study, we verified improvement on combustion control by modifying gas flow at the freeboard. The operational results of the experiments were studied using the numerical model of the combustion chamber. The modification of gas flow at freeboard was confirmed to be effective to obtain a compact design of fluidized bed combustion chamber for municipal waste. In the second, study we improved combustion control for sewage combustion with municipal waste. In burning municipal waste and sewage, it is especially required to take combustion control into careful consideration. In this experiment, we developed a new device for supplying sewage for the appropriate controlling combustion, and verified its effectiveness to combustion control and an effective reduction of dioxin. (author)

  14. Use of Landsat thermal imagery for dynamically monitoring spontaneous combustion of Datong Jurassic coalfields in China

    Science.gov (United States)

    Xue, Yongan; Liu, Jin; Li, Jun; Shang, Changsheng; Zhao, Jinling; Zhang, Mingmei

    2018-06-01

    It is highly helpful and necessary to investigate and monitor the status of coal seam. Fortunately, remote sensing has facilitated the identification and dynamical monitoring of spontaneous combustion for a large area coal mining area, especially using the time series remotely-sensed datasets. In this paper, Datong Jurassic coal mining area is used as the study area, China, and an exclusion method and a multiple-factor analysis method are jointly used to identify the spontaneous combustion, including land surface temperature (LST), burnt rocks, and land use and land cover change (LUCC). The LST is firstly retrieved using a single-window algorithm due to a thermal infrared band of Landsat-5 TM (Thematic Mapper). Burnt rocks is then extracted using a decision-tree classification method based on a high-resolution SPOT-5 image. The thermal anomaly areas are identified and refined by the spatial overlay analysis of the above affecting factors. Three-period maps of coal fire areas are obtained and dynamically analyzed in 2007, 2009 and 2010. The results show that a total of 12 coal fire areas have been identified, which account for more than 1% of the total area of the study area. In general, there is an increasing trend yearly and a total of 771,970 m2 is increased. The average annual increase is 257,320 m2, the average annual growth rate is 3.78%, and the dynamic degree is 11.29%.

  15. Wood combustion and NOx formation control

    International Nuclear Information System (INIS)

    Tewksbury, C.

    1991-01-01

    The control of wood combustion on stoker fed grates for optimum efficiency and the limiting of NO x (oxides of nitrogen) formation are not necessarily contradictory. This paper presents a matrix of air/fuel ratio control options, then discusses simple on-line monitoring techniques and the importance of operator training and alertness. The significance of uniform fuel feed and air distribution is emphasized. The relationships between combustion control and NO x formation are outlined both in theory and as tested. The experience of the McNeil Generating Station (the largest wood-fired, single boiler, stoker grate, utility electric generating station in the world) is used to demonstrate the theoretical principles. It has been observed that NO x emissions firing 100% whole tree chips with moisture contents as low as 40% by weight can be as low as 0.13 lb/MMBtu (MMBtu = 10 6 Btu) while still achieving a boiler efficiency in the range of 68% to 73% (in the high end of the design range) without the use of post-combustion treatment or flue gas recirculation (FGR). Problems of combustion and emissions control at steaming rates other than normal full-load are also examined. 2 figs., 4 tabs

  16. Novel Active Combustion Control Valve

    Science.gov (United States)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  17. Combustion control and sensors: a review

    International Nuclear Information System (INIS)

    Docquier, N.; Candel, S.

    2002-01-01

    There is an increased interest in the application of control to combustion. The objective is to optimize combustor operation, monitor the process and alleviate instabilities and their severe consequences. One wishes to improve the system performance, for example by reducing the levels of pollutant emissions or by smoothing the pattern factor at the combustor exhaust. In other cases, the aim is to extend the stability domain by reducing the level of oscillation induced by coupling between resonance modes and combustion. As combustion systems have to meet increasingly more demanding air pollution standards, their design and operation becomes more complex. The trend towards reduced NO x levels has led to new developments in different fields. Automotive engines and gas turbine combustors are considered in this article. In the first case, complex exhaust aftertreatment is being applied and dedicated engine control systems are required to ensure and maintain high pollutant conversion efficiency. For gas turbines, premixed combustors, which operate at lower local temperatures than conventional systems have been designed. In both cases, monitoring and control of the operating point of the process have to be achieved with great precision to obtain the full benefits of the NO x reduction scheme. For premixed combustors operating near the lean stability limit, the flame is more susceptible to blowout, oscillation or flashback. Research is now carried out to reduce these dynamical problems with passive and active control methods. In addition to a broad range of fundamental problems raised by Active Combustion Control (ACC) and Operating Point Control (OPC), there are important technological issues. This paper contains a review of some facets of combustion control and focuses on the sensors that take or could take part to combustion control solutions. The current status of ACC and OPC is presented together with the associated control concepts. The state of the art in sensors is

  18. Internal combustion engine and method for control

    Science.gov (United States)

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  19. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    Science.gov (United States)

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  20. Control device for combustible gas concentration

    International Nuclear Information System (INIS)

    Osawa, Yasuo.

    1988-01-01

    Purpose: To control the concentration of combustible gases such as hydrogen evolved in a reactor container upon loss-of-coolant accidents. Constitution: Combustible gases evolved from the lower area of a drywell in which a combustible atmosphere is liable to be formed locally are taken out through a take-out pipeway to the outside of a reactor container and processed by a hydrogen-oxygen recombiner. Combustible gases in other areas of the drywell are also introduced to the lower area of the drywell and then taken-out externally for procession. Further, combustible gases in the suppression chamber are introduced by the opening of a vacuum breaking valve through a gas supply pipe to the lower area of the drywell and fluids in the drywell are stirred and diluted with fluids exhausted from the gas supply pipe. Disposition of such take-out pipeway and gas supply pipe can reduce the possibility of forming local combustible atmosphere to improve the integrity of the reactor container. (Kamimura, M.)

  1. Flow Friction or Spontaneous Ignition?

    Science.gov (United States)

    Stoltzfus, Joel M.; Gallus, Timothy D.; Sparks, Kyle

    2012-01-01

    "Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system.

  2. Combustion control for diesel engines with direct injection

    Energy Technology Data Exchange (ETDEWEB)

    Jeschke, J.; Henn, M.; Lang, T.; Wendt, J.; Nitzke, H.G.; Mannigel, D. [Volkswagen AG (Germany)

    2007-07-01

    This article looks at a new cylinder pressure-based combustion control for DI diesel engines that has been developed by Volkswagen. This cylinder pressure-based control uses cylinder pressure sensors that are integrated in the glow plugs. The description and the evaluation of these sensors form a main part of this article as they are a central element in the new diesel management system. The test and development phase in connection with a rapid prototyping system and the realisation of the combustion control algorithms in a diesel control unit are also described. Finally, results from use of the closed-loop combustion control with different applications on a diesel engine are presented. (orig.)

  3. Control issues in oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Snarheim, Dagfinn

    2009-08-15

    Combustion of fossil fuels is the major energy source in todays society. While the use of fossil fuels is a necessity for our society to function, there has been an increasing concern on the emissions of CO{sub 2} resulting from human activities. Emissions of CO{sub 2} are considered to be the main cause for the global warming and climate changes we have experienced in recent years. To fight the climate changes, the emissions of CO{sub 2} must be reduced in a timely fashion. Strategies to achieve this include switching to less carbon intensive fuels, renewable energy sources, nuclear energy and combustion with CO{sub 2} capture. The use of oxy-fuel combustion is among the alternative post- and pre combustion capture concepts, a strategy to achieve power production from fossil fuels with CO{sub 2} capture. In an oxy-fuel process, the fuel is burned in a mixture of oxygen and CO{sub 2} (or steam), leaving the exhaust consisting mainly of CO{sub 2} and steam. The steam can be removed by use of a condenser, leaving (almost) pure CO{sub 2} ready to be captured. The downside to CO{sub 2} capture is that it is expensive, both in capital cost of extra equipment, and in operation as it costs energy to capture the CO{sub 2}. Thus it is important to maximize the efficiency in such plants. One attractive concept to achieve CO{sub 2} capture by use of oxy-fuel, is a semi-closed oxy-fuel gas turbine cycle. The dynamics of such a plant are highly integrated, involving energy and mass recycle, and optimizing efficiency might lead to operational (control) challenges. In these thesis we investigate how such a power cycle should be controlled. By looking at control at such an early stage in the design phase, it is possible to find control solutions otherwise not feasible, that leads to better overall performance. Optimization is used on a nonlinear model based on first principles, to compare different control structures. Then, closed loop simulations using MPC, are used to validate

  4. Inhibition Effect of Phosphorus Flame Retardants on the Fire Disasters Induced by Spontaneous Combustion of Coal

    Directory of Open Access Journals (Sweden)

    Yibo Tang

    2017-01-01

    Full Text Available Coal spontaneous combustion (CSC generally induces fire disasters in underground mines, thus causing serious casualties, environmental pollution, and property loss around the world. By using six P-containing additives to process three typical coal samples, this study investigated the variations of the self-ignition characteristics of the coal samples before and after treatment. The analysis was performed by combining thermogravimetric analysis/differential scanning calorimetry (TG/DSC Fourier transform infrared spectrometer (FTIR and low temperature oxidation. Experimental results showed that P-containing inhibitors could effectively restrain the heat emitted in the combustion of coal samples and therefore the ignition temperature of the coal samples was delayed at varying degrees. The combustion rate of the coal samples was reduced as well. At the temperatures ranging from 50°C to 150°C, the activation energy of the coal samples after the treatment was found to increase, which indicated that the coal samples were more difficult to be oxidized. After being treated with phosphorus flame retardants (PFRs, the content of several active groups represented by the C-O structure in the three coal samples was proved to be obviously changed. This suggested that PFRs could significantly inhibit the content of CO generated by the low temperature oxidation of coal, and the flame-retardant efficiency grew with the increasing temperature. At 200°C, the maximal inhibition efficiency reached approximately 85%.

  5. Oxy-fuel combustion with integrated pollution control

    Science.gov (United States)

    Patrick, Brian R [Chicago, IL; Ochs, Thomas Lilburn [Albany, OR; Summers, Cathy Ann [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul Chandler [Independence, OR

    2012-01-03

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  6. Engine combustion control at low loads via fuel reactivity stratification

    Science.gov (United States)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2014-10-07

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  7. Engine combustion control at low loads via fuel reactivity stratification

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage

    2017-12-26

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  8. Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jun; Xue, Sheng [CSIRO Earth Science and Resource Engineering, Kenmore (Australia); Cheng, Weimin; Wang, Gang [Shandong University of Science and Technology, Qingdao (China)

    2011-01-01

    Spontaneous combustion of coal (sponcom) is a major hazard in underground coal mining operations. If not detected early and managed properly, it can seriously affect mine safety and productivity. Gaseous products of sponcom, such as carbon monoxide, ethylene and hydrogen, are commonly used in coal mines as indicators to reflect the state of the sponcom. Studies have shown that ethylene starts to occur when sponcom reaches a characteristic temperature. However, due to dilution of ventilation air and detection limits of the instruments used for gas analysis at coal mines, ethylene cannot be detected until the sponcom has developed past its early stage, missing an optimum opportunity for mine operators to control the hazard. To address the issue, an ethylene-enriching system, based on its physical adsorption and desorption properties, has been developed to increase detection sensitivity of the ethylene concentration in mine air by about 10 times. This system has successfully been applied in a number of underground coal mines in China to detect sponcom at its early stage and enable mine operators to take effective control measures. This paper describes the ethylene enriching system and its application. (author)

  9. Control of the low-load region in partially premixed combustion

    Science.gov (United States)

    Ingesson, Gabriel; Yin, Lianhao; Johansson, Rolf; Tunestal, Per

    2016-09-01

    Partially premixed combustion (PPC) is a low temperature, direct-injection combustion concept that has shown to give promising emission levels and efficiencies over a wide operating range. In this concept, high EGR ratios, high octane-number fuels and early injection timings are used to slow down the auto-ignition reactions and to enhance the fuel and are mixing before the start of combustion. A drawback with this concept is the combustion stability in the low-load region where a high octane-number fuel might cause misfire and low combustion efficiency. This paper investigates the problem of low-load PPC controller design for increased engine efficiency. First, low-load PPC data, obtained from a multi-cylinder heavy- duty engine is presented. The data shows that combustion efficiency could be increased by using a pilot injection and that there is a non-linearity in the relation between injection and combustion timing. Furthermore, intake conditions should be set in order to avoid operating points with unfavourable global equivalence ratio and in-cylinder temperature combinations. Model predictive control simulations were used together with a calibrated engine model to find a gas-system controller that fulfilled this task. The findings are then summarized in a suggested engine controller design. Finally, an experimental performance evaluation of the suggested controller is presented.

  10. Effect of automatic control technologies on emission reduction in small-scale combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ruusunen, M. [Control Engineering Laboratory, University of Oulu (Finland)

    2007-07-01

    Automatic control can be regarded as a primary measure for preventing combustion emissions. In this view, the control technology covers broadly the control methods, sensors and actuators for monitoring and controlling combustion. In addition to direct control of combustion process, it can also give tools for condition monitoring and optimisation of total heat consumption by system integration thus reducing the need for excess conversion of energy. Automatic control has already shown its potential in small-scale combustion. The potential, but still unrealised advantages of automatic control in this scale are the adaptation to changes in combustion conditions (fuel, environment, device, user) and the continuous optimisation of the air/fuel ratio. Modem control technology also covers combustion condition monitoring, diagnostics, and the higher level optimisation of the energy consumption with system integration. In theory, these primary measures maximise the overall efficiency, enabling a significant reduction in fuel consumption and thus total emissions per small-scale combustion unit, specifically at the annual level.

  11. Primer on spontaneous heating and pyrophoricity

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This primer was prepared as an information resource for personnel responsible for operation of DOE nuclear facilities. It has sections on combustion principles, spontaneous heating/ignition of hydrocarbons and organics, pyrophoric gases and liquids, pyrophoric nonmetallic solids, pyrophoric metals (including Pu and U), and accident case studies. Although the information in this primer is not all-encompassing, it should provide the reader with a fundamental knowledge level sufficient to recognize most spontaneous combustion hazards and how to prevent ignition and widespread fires. This primer is provided as an information resource only, and is not intended to replace any fire protection or hazardous material training.

  12. Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based Combustion Control

    NARCIS (Netherlands)

    Leskens, M.

    2013-01-01

    The combustion of municipal solid waste (MSW) is used for its inertisation, reduction of its volume and the conversion of its energy content into heat and/or electricity. Operation and control of modern large scale MSW combustion (MSWC) plants is determined by economic and environmental objectives

  13. Spontaneous emission control in a tunable hybrid photonic system

    NARCIS (Netherlands)

    Frimmer, M.; Koenderink, A.F.

    2013-01-01

    We experimentally demonstrate control of the rate of spontaneous emission in a tunable hybrid photonic system that consists of two canonical building blocks for spontaneous emission control, an optical antenna and a mirror, each providing a modification of the local density of optical states (LDOS).

  14. Advanced Combustion and Emission Control Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  15. Experimental validation of combustion control with multi-pulse fuel injection

    NARCIS (Netherlands)

    Luo, X.; Velayutham, S.; Willems, F.P.T.

    2017-01-01

    Closed-loop combustion control helps to achieve precise fuel injection and robust engine performance against disturbances. The controller design complexity increases greatly with larger number of fuel injection pulses due to the coupled influence of changing individual pulse on the combustion

  16. Robust Multivariable Feedback Control of Natural Gas-Diesel RCCI Combustion

    NARCIS (Netherlands)

    Indrajuana, A.; Bekdemir, C.; Luo, X.; Willems, F.P.T.

    2016-01-01

    Advanced combustion concepts such as Reactivity Controlled Compression Ignition (RCCI) demonstrate very high thermal efficiencies combined with ultra low NOx emissions. As RCCI is sensitive for operating conditions, closed-loop control is a crucial enabler for stable and robust combustion. The

  17. Control of spontaneous combustion of coal in goaf at high geotemperatureby injecting liquid carbon dioxide: inertand cooling characteristics of coal

    Science.gov (United States)

    Liu, Zhenling; Wen, Hu; Yu, Zhijin; Wang, Chao; Ma, Li

    2018-02-01

    The spontaneous combustion of coal in goaf at high geo temperatures is threatening safety production in coalmine. The TG-DSC is employed to study the variation of mass and energy at 4 atmospheres (mixed gases of N2, O2 and CO2) and heating rates (10°C/min) during oxidation of coal samples. The apparent activation energy and pre-exponential factor of coal oxidation decrease rapidly with increasing theCO2 concentration. Furthermore, its reaction rate is slow, its heat released reduces. Based on the conditions of 1301 face in the Longgucoalmine, a three-dimensional geometry model is developed to simulate the distributions stream field and temperature field and the variation characteristics ofCO2 concentration field after injecting liquidCO2. The results indicate that oxygen reached to depths of˜120m in goaf, 100m in the side of inlet air, and 10m in the side of outlet air before injecting liquidCO2. After injecting liquidCO2for 28.8min, the width of oxidation and heat accumulation zone is shortened by 20m, and the distance is 80m in the side of working face and 40˜60m in goafin the direction of dip affected by temperature.

  18. Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control

    Science.gov (United States)

    2016-07-30

    flames," Physics of Fluids , vol. 7, no. 6, pp. 1447-54, 1995. [8] K. Lyons, " Toward an understanding of the stabilization mechanisms of lifted...Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control This report summarizes the research accomplished in the project...34Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control". The main areas of activity are: a) electrostatic flame and flow

  19. Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-08-01

    Full Text Available This paper presents a review on the combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixture stratification that have been conducted in the authors’ group, including the charge reactivity controlled homogeneous charge compression ignition (HCCI combustion, stratification controlled premixed charge compression ignition (PCCI combustion, and dual-fuel combustion concepts controlled by both fuel reactivity and mixture stratification. The review starts with the charge reactivity controlled HCCI combustion, and the works on HCCI fuelled with both high cetane number fuels, such as DME and n-heptane, and high octane number fuels, such as methanol, natural gas, gasoline and mixtures of gasoline/alcohols, are reviewed and discussed. Since single fuel cannot meet the reactivity requirements under different loads to control the combustion process, the studies related to concentration stratification and dual-fuel charge reactivity controlled HCCI combustion are then presented, which have been shown to have the potential to achieve effective combustion control. The efforts of using both mixture and thermal stratifications to achieve the auto-ignition and combustion control are also discussed. Thereafter, both charge reactivity and mixture stratification are then applied to control the combustion process. The potential and capability of thermal-atmosphere controlled compound combustion mode and dual-fuel reactivity controlled compression ignition (RCCI/highly premixed charge combustion (HPCC mode to achieve clean and high efficiency combustion are then presented and discussed. Based on these results and discussions, combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixtures stratification in the whole operating range is proposed.

  20. Stoichiometric calculations of combustion of Lakhra lignite

    International Nuclear Information System (INIS)

    Ali, I.; Ali, M.M.

    2002-01-01

    Lakhra coal field is largest productive coal field of Pakistan. About 1.5 millions tonne of this coal is, annually, mined and transported daily to various parts of the country in 500 trucks each of 10 tonnes of coal. The major consumers of this coal are brick kilns located in Sindh and Punjab. It is available at Rs. 500/- per tonne at mine head. A number of attempts were made for the production of power (electricity) by foreign companies. Feasibility studies were undertaken but no one set up power plant. It may be due to inferior quality of coal as it is lignitic in nature with high ash and sulfur contents. This coal is also, very sensitive to spontaneous combustion. Spontaneous combustion is the auto-ignition of coal at ambient conditions. Hence there are storage problems. In spite of these drawbacks, a 3(50) Mega Watt (3 units of each 50 mega watt power generation capacity) power plant, based on atmospheric fluidized bed combustion of coal technology (AFBC), was setup in early nineties. The performance of this plant remained poor. The main reasons might be poor quality of coal and limestone. Limestone is used with high sulfur Lakhra lignite, in fluidized bed combustor, to arrest sulfur of the coal, fixing sulfur as calcium sulfate to minimize hazardous emissions of sulfur dioxide (SO/sub 2/). Spontaneous combustion of Lakhra lignite is responsible for each fire of coal and conveyor belt etc. (author)

  1. Combustion Control System Design of Diesel Engine via ASPR based Output Feedback Control Strategy with a PFC

    Science.gov (United States)

    Mizumoto, Ikuro; Tsunematsu, Junpei; Fujii, Seiya

    2016-09-01

    In this paper, a design method of an output feedback control system with a simple feedforward input for a combustion model of diesel engine will be proposed based on the almost strictly positive real-ness (ASPR-ness) of the controlled system for a combustion control of diesel engines. A parallel feedforward compensator (PFC) design scheme which renders the resulting augmented controlled system ASPR will also be proposed in order to design a stable output feedback control system for the considered combustion model. The effectiveness of our proposed method will be confirmed through numerical simulations.

  2. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... with Mark III type containments and all pressurized water reactors with ice condenser containments must... condenser containments that do not rely upon an inerted atmosphere inside containment to control combustible... containment atmosphere following a significant beyond design-basis accident for combustible gas control and...

  3. Modeling and simulation of combustion chamber and propellant dynamics and issues in active control of combustion instabilities

    Science.gov (United States)

    Isella, Giorgio Carlo

    A method for a comprehensive approach to analysis of the dynamics of an actively controlled combustion chamber, with detailed analysis of the combustion models for the case of a solid rocket propellant, is presented here. The objective is to model the system as interconnected blocks describing the dynamics of the chamber, combustion and control. The analytical framework for the analysis of the dynamics of a combustion chamber is based on spatial averaging, as introduced by Culick. Combustion dynamics are analyzed for the case of a solid propellant. Quasi-steady theory is extended to include the dynamics of the gas-phase and also of a surface layer. The models are constructed so that they produce a combustion response function for the solid propellant that can be immediately introduced in the our analytical framework. The principal objective mechanisms responsible for the large sensitivity, observed experimentally, of propellant response to small variations. We show that velocity coupling, and not pressure coupling, has the potential to be the mechanism responsible for that high sensitivity. We also discuss the effect of particulate modeling on the global dynamics of the chamber and revisit the interpretation of the intrinsic stability limit for burning of solid propellants. Active control is also considered. Particular attention is devoted to the effect of time delay (between sensing and actuation); several methods to compensate for it are discussed, with numerical examples based on the approximate analysis produced by our framework. Experimental results are presented for the case of a Dump Combustor. The combustor exhibits an unstable burning mode, defined through the measurement of the pressure trace and shadowgraph imaging. The transition between stable and unstable modes of operation is characterized by the presence of hysteresis, also observed in other experimental works, and hence not a special characteristic of this combustor. Control is introduced in the

  4. Real-time combustion control and diagnostics sensor-pressure oscillation monitor

    Science.gov (United States)

    Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy [Morgantown, WV; Huckaby, E David [Morgantown, WV; Richards, George A [Morgantown, WV

    2009-07-14

    An apparatus and method for monitoring and controlling the combustion process in a combustion system to determine the amplitude and/or frequencies of dynamic pressure oscillations during combustion. An electrode in communication with the combustion system senses hydrocarbon ions and/or electrons produced by the combustion process and calibration apparatus calibrates the relationship between the standard deviation of the current in the electrode and the amplitudes of the dynamic pressure oscillations by applying a substantially constant voltage between the electrode and ground resulting in a current in the electrode and by varying one or more of (1) the flow rate of the fuel, (2) the flow rate of the oxidant, (3) the equivalence ratio, (4) the acoustic tuning of the combustion system, and (5) the fuel distribution in the combustion chamber such that the amplitudes of the dynamic pressure oscillations in the combustion chamber are calculated as a function of the standard deviation of the electrode current. Thereafter, the supply of fuel and/or oxidant is varied to modify the dynamic pressure oscillations.

  5. Model predictive control as a tool for improving the process operation of MSW combustion plants

    International Nuclear Information System (INIS)

    Leskens, M.; Kessel, L.B.M. van; Bosgra, O.H.

    2005-01-01

    In this paper a feasibility study is presented on the application of the advanced control strategy called model predictive control (MPC) as a tool for obtaining improved process operation performance for municipal solid waste (MSW) combustion plants. The paper starts with a discussion of the operational objectives and control of such plants, from which a motivation follows for applying MPC to them. This is followed by a discussion on the basic idea behind this advanced control strategy. After that, an MPC-based combustion control system is proposed aimed at tackling a typical MSW combustion control problem and, using this proposed control system, an assessment is made of the improvement in performance that an MPC-based MSW combustion control system can provide in comparison to conventional MSW combustion control systems. This assessment is based on simulations using an experimentally obtained process and disturbance model of a real-life large-scale MSW combustion plant

  6. Control of combustion generated emissions from spark ignition engines: a review

    International Nuclear Information System (INIS)

    Mansha, M.; Shahid, E.M.; Qureshi, A.H.

    2012-01-01

    For the past several decades automobiles have been a major source of ground level emissions of various pollutants like CO, HC, NO/sub x/, SO/sub x/ CO/sub 2/, etc. Due to their dangerous effects on human health, vegetation and on climate, various pre combustion, in-cylinder and post. combustion techniques have been tried for their abatement. This paper reviews all of the workable measures taken so far to controlling the combustion generated emissions from 4-stroke Spark Ignition Vehicular Engines ever since the promulgation of emission control legislation/standards and their subsequent enforcement in the late 1960s. (author)

  7. Polarization control of spontaneous emission for rapid quantum-state initialization

    Science.gov (United States)

    DiLoreto, C. S.; Rangan, C.

    2017-04-01

    We propose an efficient method to selectively enhance the spontaneous emission rate of a quantum system by changing the polarization of an incident control field, and exploiting the polarization dependence of the system's spontaneous emission rate. This differs from the usual Purcell enhancement of spontaneous emission rates as it can be selectively turned on and off. Using a three-level Λ system in a quantum dot placed in between two silver nanoparticles and a linearly polarized, monochromatic driving field, we present a protocol for rapid quantum state initialization, while maintaining long coherence times for control operations. This process increases the overall amount of time that a quantum system can be effectively utilized for quantum operations, and presents a key advance in quantum computing.

  8. Automatic combustion control of the ArcelorMittal Tubarao coke oven batteries

    Energy Technology Data Exchange (ETDEWEB)

    L. Barbosa de Oliveira Mello; C.-H. Sampaio Dandrea; G.-H. Marietto Goncalves; A. Estevao Torres; N.-L. Biccas

    2008-05-15

    The objective of the automatic combustion control is to guarantee the operational stability of the coke batteries based on the control of the coking time and consequently, minimize the reduction of useful life of the ovens. This control is guided by a mathematical model whose inputs are process variables and raw materials parameters and outputs are combustion parameters. Therefore, this paper will present the evolution of the performance of the burning process, providing a stability of the coking time.

  9. Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

    2010-03-20

    The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated

  10. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    Science.gov (United States)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  11. Fuel accountability and control at Combustion Engineering, Inc

    International Nuclear Information System (INIS)

    Kersteen, G.C.

    1978-01-01

    Combustion Engineering, Inc. has recently developed and installed an automated data collection, data processing system for the accounting and control of special nuclear material. The system uses a variety of data collection techniques and some relatively new data processing ideas. The next few pages describe the Fuel Accountability and Control System

  12. Sorbent control of trace metals in sewage sludge combustion and incineration

    Science.gov (United States)

    Naruse, I.; Yao, H.; Mkilaha, I. S. N.

    2003-05-01

    Coal and wastes combustion have become an important issue not only in terms of energy generation but also environmental conservation. The need for alternative fuels and wastes management has made the two energy sources of importance. However, the utilization of the two is faced with problems of impurity trace metals in the fuel. These metals usually speciate during combustion or incineration leading to generation of fumes and subsequently particles. This paper reports on the study aimed at understanding the speciation of trace metals and their emission from combustion systems as particulates. Experiments carried out using a down-flow furnace and theoretical study carried out using lead, chromium and cadmium as basic metals had shown that their speciation and subsequent emission is controlled by both chemical composition and physical properties of the fuel. The physical and chemical and physical properties of the fuel and their respective compounds and the operating conditions of the incineration and combustion system control the enrichment of the particles with trace metals.

  13. Intelligent Integration between Human Simulated Intelligence and Expert Control Technology for the Combustion Process of Gas Heating Furnace

    Directory of Open Access Journals (Sweden)

    Yucheng Liu

    2014-01-01

    Full Text Available Due to being poor in control quality of the combustion process of gas heating furnace, this paper explored a sort of strong robust control algorithm in order to improve the control quality of the combustion process of gas heating furnace. The paper analyzed the control puzzle in the complex combustion process of gas heating furnace, summarized the cybernetics characteristic of the complex combustion process, researched into control strategy of the uncertainty complex control process, discussed the control model of the complex process, presented a sort of intelligent integration between human-simulated intelligence and expert control technology, and constructed the control algorithm for the combustion process controlling of gas heating furnace. The simulation results showed that the control algorithm proposed in the paper is not only better in dynamic and steady quality of the combustion process, but also obvious in energy saving effect, feasible, and effective in control strategy.

  14. Advanced closed loop combustion control of a LTC diesel engine based on in-cylinder pressure signals

    International Nuclear Information System (INIS)

    Carlucci, A.P.; Laforgia, D.; Motz, S.; Saracino, R.; Wenzel, S.P.

    2014-01-01

    Highlights: • We have proposed an in-cylinder pressure-based closed loop combustion control. • We have tested the control on an engine at the test bench. • We have tested the control on the engine equipping a Euro 6-compliant vehicle. • The control is effective in increasing torque stability and reduce engine noise. - Abstract: The adoption of diesel LTC combustion concepts is widely recognised as a practical way to reduce simultaneously nitric oxides and particulate emission levels from diesel internal combustion engines. However, several challenges have to be faced up when implementing diesel LTC concepts in real application vehicles. In particular, achieving acceptable performance concerning the drivability comfort, in terms of output torque stability and combustion noise during engine dynamic transients, is generally a critical point. One of the most promising solutions to improve the LTC combustion operation lays in the exploitation of closed loop combustion control, based on in-cylinder pressure signals. In this work, the application of an in-cylinder pressure-based closed loop combustion control to a Euro 6-compliant demonstrator vehicle has been developed. The main challenges deriving from the control of the LTC combustion, directly affecting the engine/vehicle performance, have been analysed in detail. In order to overcome these drawbacks, a new control function, integrated into the base closed loop system, has been designed. The performance of the new function have been experimentally tested at the engine test bench. Results showed a significant enhancement of the LTC operation, in terms of both combustion stability and noise reduction during engine transients. The new function was also implemented on a real vehicle, thus proving the potential of the new control concept in realistic operating conditions

  15. Cylinder Pressure-based Combustion Control with Multi-pulse Fuel Injection

    NARCIS (Netherlands)

    Luo, X.; Wang, S.; Jager, B. de; Willems, F.P.T.

    2015-01-01

    With an increased number of fuel injection pulses, the control problem in diesel engines becomes complex. Consisting of multiple single-input single-output (SISO) controllers, the conventional control strategy shows unsatisfactory dynamic performance in tracking combustion load and phase reference

  16. Experimental and numerical study of the active control of jets inside combustion chambers; Etude experimentale et numerique du controle actif de jets dans des chambres de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Faivre, V

    2003-12-15

    Combustion instabilities occur when the flame heat release couples with the acoustic waves propagating in the combustion chamber. This phenomenon can lead to strong vibrations and noise but also, sometimes, to the complete combustion device failure. That is the reason why so many studies focus on the control of those instabilities. The method chosen in this study consists in an active control device (or set of actuators) having a strong effect on the mixing of the burner exhaust flow with the ambient fluid. The model configuration studied consists in a non reactive jet of air controlled by four small tangential secondary jets. Experiments have been carried out to optimize the control device geometry. The configuration identified as the most efficient, in terms of mixing enhancement, has been simulated through Large Eddy Simulations (LES). The objective of the numerical part of the present work is double. First, the numerical simulations provide a better understanding of the phenomena occurring when the control is on. Then, it is shown that LES can be considered as a tool to predict the effects of a control device on a flow. (author)

  17. Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion

    International Nuclear Information System (INIS)

    Masurier, J.-B.; Foucher, F.; Dayma, G.; Dagaut, P.

    2015-01-01

    Highlights: • Ozone was useful to control combustion phasing of alcohol fuels in HCCI engine. • Ozone helps to improve the combustion and advance its phasing. • Butanol is more impacted by ozone than methanol and ethanol. • HCCI combustion parameters may be controlled by managing ozone concentration. • Kinetics demonstrates that alcohol fuels are initially oxidized by O-atoms. - Abstract: The present investigation examines the impact of seeding the intake of an HCCI engine with ozone, one of the most oxidizing chemical species, on the combustion of three alcohol fuels: methanol, ethanol and n-butanol. The research was performed through engine experiments and constant volume computations. The results showed that increasing the ozone concentration led to an improvement in combustion coupled with a combustion advance. It was also observed, by comparing the results for each fuel selected, that n-butanol is the most impacted by ozone seeding and methanol the least. Further analyses of the experimental results showed that the alcohol fuel combustion can be controlled with ozone, which presents an interesting potential. Finally, computation results confirmed the experimental results observed. They also showed that in presence of ozone, alcohol fuels are not initially oxidized by molecular oxygen but by O-atoms coming from the ozone decomposition.

  18. Prospective controlled trial comparing colostomy irrigation with "spontaneous-action" method.

    OpenAIRE

    Williams, N S; Johnston, D

    1980-01-01

    Thirty randomly selected patients with permanent colostomies entered a prospective controlled trial comparing colostomy irrigation with spontaneous action. Each patient was interviewed and examined before irrigation was begun and again after the technique had been used for three months. Each then reverted to spontaneous action for a further three months and was then reassessed. Eight patients abandoned irrigation and 22 (73%) adhered to the protocol. Irrigation caused no mishaps or complicati...

  19. Estudio de Algoritmos 2-Deslizantes Aplicados al Control de Pilas de Combustible

    OpenAIRE

    Cristian Kunusch; Paul F. Puleston; Miguel A. Mayosky

    2008-01-01

    Resumen: En este trabajo se hace un estudio comparativo de tres diferentes técnicas de control por modo deslizante de segundo orden, aplicadas al problema específico del control de respiración de una pila de combustible PEM. Los algoritmos diseñados se contrastan por simulación utilizando el modelo completo del sistema, poniendo particular énfasis en la respuesta transitoria y la robustez frente a perturbaciones. Palabras clave: Pilas de Combustible, Control no lineal, Modo Deslizante

  20. Placental histology in spontaneous and indicated preterm birth: A case control study

    NARCIS (Netherlands)

    Nijman, Tobias A. J.; van Vliet, Elvira O. G.; Benders, Manon J. N.; Mol, Ben Willem J.; Franx, Arie; Nikkels, Peter G. J.; Oudijk, Martijn A.

    2016-01-01

    Placental pathology is an important contributor in preterm birth, both spontaneous and indicated. The aim of this study was to describe and compare placental histological features of spontaneous preterm birth versus indicated preterm birth. A case control study was performed at the University

  1. Combustion distribution control using the extremum seeking algorithm

    International Nuclear Information System (INIS)

    Marjanovic, A; Djurovic, Z; Kvascev, G; Papic, V; Krstic, M

    2014-01-01

    Quality regulation of the combustion process inside the furnace is the basis of high demands for increasing robustness, safety and efficiency of thermal power plants. The paper considers the possibility of spatial temperature distribution control inside the boiler, based on the correction of distribution of coal over the mills. Such control system ensures the maintenance of the flame focus away from the walls of the boiler, and thus preserves the equipment and reduces the possibility of ash slugging. At the same time, uniform heat dissipation over mills enhances the energy efficiency of the boiler, while reducing the pollution of the system. A constrained multivariable extremum seeking algorithm is proposed as a tool for combustion process optimization with the main objective of centralizing the flame in the furnace. Simulations are conducted on a model corresponding to the 350MW boiler of the Nikola Tesla Power Plant, in Obrenovac, Serbia

  2. Combustion distribution control using the extremum seeking algorithm

    Science.gov (United States)

    Marjanovic, A.; Krstic, M.; Djurovic, Z.; Kvascev, G.; Papic, V.

    2014-12-01

    Quality regulation of the combustion process inside the furnace is the basis of high demands for increasing robustness, safety and efficiency of thermal power plants. The paper considers the possibility of spatial temperature distribution control inside the boiler, based on the correction of distribution of coal over the mills. Such control system ensures the maintenance of the flame focus away from the walls of the boiler, and thus preserves the equipment and reduces the possibility of ash slugging. At the same time, uniform heat dissipation over mills enhances the energy efficiency of the boiler, while reducing the pollution of the system. A constrained multivariable extremum seeking algorithm is proposed as a tool for combustion process optimization with the main objective of centralizing the flame in the furnace. Simulations are conducted on a model corresponding to the 350MW boiler of the Nikola Tesla Power Plant, in Obrenovac, Serbia.

  3. Artificial intelligence for the modeling and control of combustion processes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Kalogirou, S.A. [Higher Technical Inst., Nicosia, Cyprus (Greece). Dept. of Mechanical Engineering

    2003-07-01

    Artificial intelligence (AI) systems are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with non-linear problems, and once trained can perform prediction and generalization at high speed. They have been used in diverse applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimization, signal processing, and social/psychological sciences. They are particularly useful in system modeling such as in implementing complex mappings and system identification. Al systems comprise areas like, expert systems, artificial neural networks, genetic algorithms, fuzzy logic and various hybrid systems, which combine two or more techniques. The major objective of this paper is to illustrate how Al techniques might play an important role in modeling and prediction of the performance and control of combustion process. The paper outlines an understanding of how AI systems operate by way of presenting a number of problems in the different disciplines of combustion engineering. The various applications of AI are presented in a thematic rather than a chronological or any other order. Problems presented include two main areas: combustion systems and internal combustion (IC) engines. Combustion systems include boilers, furnaces and incinerators modeling and emissions prediction, whereas, IC engines include diesel and spark ignition engines and gas engines modeling and control. Results presented in this paper, are testimony to the potential of Al as a design tool in many areas of combustion engineering. (author)

  4. Estudio de Algoritmos 2-Deslizantes Aplicados al Control de Pilas de Combustible

    Directory of Open Access Journals (Sweden)

    Cristian Kunusch

    2008-07-01

    Full Text Available Resumen: En este trabajo se hace un estudio comparativo de tres diferentes técnicas de control por modo deslizante de segundo orden, aplicadas al problema específico del control de respiración de una pila de combustible PEM. Los algoritmos diseñados se contrastan por simulación utilizando el modelo completo del sistema, poniendo particular énfasis en la respuesta transitoria y la robustez frente a perturbaciones. Palabras clave: Pilas de Combustible, Control no lineal, Modo Deslizante

  5. Artificial intelligence-based modeling and control of fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, E.; Leppaekoski, K. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)). email: enso.ikonen@oulu.fi

    2009-07-01

    AI-inspired techniques have a lot to offer when developing methods for advanced identification, monitoring, control and optimization of industrial processes, such as power plants. Advanced control methods have been extensively examined in the research of the Power Plant Automation group at the Systems Engineering Laboratory, e.g., in fuel inventory modelling, combustion power control, modelling and control of flue gas oxygen, drum control, modelling and control of superheaters, or in optimization of flue-gas emissions. Most engineering approaches to artificial intelligence (AI) are characterized by two fundamental properties: the ability to learn from various sources and the ability to deal with plant complexity. Learning systems that are able to operate in uncertain environments based on incomplete information are commonly referred to as being intelligent. A number of other approaches exist, characterized by these properties, but not easily categorized as AI-systems. Advanced control methods (adaptive, predictive, multivariable, robust, etc.) are based on the availability of a model of the process to be controlled. Hence identification of processes becomes a key issue, leading to the use of adaptation and learning techniques. A typical learning control system concerns a selection of learning techniques applied for updating a process model, which in turn is used for the controller design. When design of learning control systems is complemented with concerns for dealing with uncertainties or vaguenesses in models, measurements, or even objectives, particularly close connections exist between advanced process control and methods of artificial intelligence and machine learning. Needs for advanced techniques are typically characterized by the desire to properly handle plant non-linearities, the multivariable nature of the dynamic problems, and the necessity to adapt to changing plant conditions. In the field of fluidized bed combustion (FBC) control, the many promising

  6. Experimental and Numerical Study of Jet Controlled Compression Ignition on Combustion Phasing Control in Diesel Premixed Compression Ignition Systems

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2014-07-01

    Full Text Available In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature jets of reacting active radical species issued from the ignition chamber played an important role on the onset of combustion in the JCCI system. The combustion of diesel pre-mixtures was initiated rapidly by the combustion products issued from the ignition chamber. Moreover, the flame propagation was not obvious, similar to that in Pre-mixed Charge Compression Ignition (PCCI. Consequently, spark timing sweep experiments were conducted. The results showed a good linear relationship between spark timing in the ignition chamber and CA10 and CA50, which indicated the ability for direct combustion phasing control in diesel PCCI. The NOx and soot emissions gradually changed with the decrease of spark advance angle. The maximum reduction of NOx and soot were both over 90%, and HC and CO emissions were increased.

  7. A review of active control approaches in stabilizing combustion systems in aerospace industry

    Science.gov (United States)

    Zhao, Dan; Lu, Zhengli; Zhao, He; Li, X. Y.; Wang, Bing; Liu, Peijin

    2018-02-01

    Self-sustained combustion instabilities are one of the most plaguing challenges and problems in lean-conditioned propulsion and land-based engine systems, such as rocket motors, gas turbines, industrial furnace and boilers, and turbo-jet thrust augmenters. Either passive or active control in open- or closed-loop configurations can be implemented to mitigate such instabilities. One of the classical disadvantages of passive control is that it is only implementable to a designed combustor over a limited frequency range and can not respond to the changes in operating conditions. Compared with passive control approaches, active control, especially in closed-loop configuration is more adaptive and has inherent capacity to be implemented in practice. The key components in closed-loop active control are 1) sensor, 2) controller (optimization algorithm) and 3) dynamic actuator. The present work is to outline the current status, technical challenges and development progress of the active control approaches (in open- or closed-loop configurations). A brief description of feedback control, adaptive control, model-based control and sliding mode control are provided first by introducing a simplified Rijke-type combustion system. The modelled combustion system provides an invaluable platform to evaluate the performance of these feedback controllers and a transient growth controller. The performance of these controllers are compared and discussed. An outline of theoretical, numerical and experimental investigations are then provided to overview the research and development progress made during the last 4 decades. Finally, potential, challenges and issues involved with the design, application and implementation of active combustion control strategies on a practical engine system are highlighted.

  8. Fossil fuel power plant combustion control: Research in Italy

    International Nuclear Information System (INIS)

    Pasini, S.; Trebbi, G.

    1991-01-01

    Electric power demand forecasts for Italy to the year 2000 indicate an increase of about 50% which, due to the current moratorium on nuclear energy, should be met entirely by fossil fuel power plants. Now, there is growing public concern about possible negative health impacts due to the air pollution produced through the combustion of fossil fuels. In response to these concerns, ENEL (Italian National Electricity Board) is investing heavily in air pollution abatement technology R ampersand D. The first phase involves the investigation of pollution mechanisms in order to develop suitable mathematical models and diagnostic techniques. The validity of the models is being tested through through measurements made by sophisticated instrumentation placed directly inside the combustion chambers of steam generator systems. These are allowing engineers to develop improved combustion control methods designed to reduce air pollution at source

  9. Biomass Combustion Control and Stabilization Using Low-Cost Sensors

    Directory of Open Access Journals (Sweden)

    Ján Piteľ

    2013-01-01

    Full Text Available The paper describes methods for biomass combustion process control and burning stabilization based on low-cost sensing of carbon monoxide emissions and oxygen concentration in the flue gas. The designed control system was tested on medium-scale biomass-fired boilers and some results are evaluated and presented in the paper.

  10. Artificial intelligence for the modeling and control of combustion processes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Soteris A. Kalogirou, [Higher Technical Institute, Nicosia (Cyprus). Department of Mechanical Engineering

    2003-07-01

    Artificial intelligence (AI) systems are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with non-linear problems, and once trained can perform prediction and generalization at high speed. They have been used in diverse applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimization, signal processing, and social/psychological sciences. They are particularly useful in system modeling such as in implementing complex mappings and system identification. AI systems comprise areas like, expert systems, artificial neural networks, genetic algorithms, fuzzy logic and various hybrid systems, which combine two or more techniques. The major objective of this paper is to illustrate how AI techniques might play an important role in modeling and prediction of the performance and control of combustion process. The paper outlines an understanding of how AI systems operate by way of presenting a number of problems in the different disciplines of combustion engineering. The various applications of AI are presented in a thematic rather than a chronological or any other order. Problems presented include two main areas: combustion systems and internal combustion (IC) engines. Combustion systems include boilers, furnaces and incinerators modeling and emissions prediction, whereas, IC engines include diesel and spark ignition engines and gas engines modeling and control. Results presented in this paper, are testimony to the potential of AI as a design tool in many areas of combustion engineering. 109 refs., 31 figs., 11 tabs.

  11. Effects of Mixture Stratification on Combustion and Emissions of Boosted Controlled Auto-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2017-12-01

    Full Text Available The stratification of in-cylinder mixtures appears to be an effective method for managing the combustion process in controlled auto-ignition (CAI engines. Stratification can be achieved and controlled using various injection strategies such as split fuel injection and the introduction of a portion of fuel directly before the start of combustion. This study investigates the effect of injection timing and the amount of fuel injected for stratification on the combustion and emissions in CAI engine. The experimental research was performed on a single cylinder engine with direct gasoline injection. CAI combustion was achieved using negative valve overlap and exhaust gas trapping. The experiments were performed at constant engine fueling. Intake boost was applied to control the excess air ratio. The results show that the application of the late injection strategy has a significant effect on the heat release process. In general, the later the injection is and the more fuel is injected for stratification, the earlier the auto-ignition occurs. However, the experimental findings reveal that the effect of stratification on combustion duration is much more complex. Changes in combustion are reflected in NOX emissions. The attainable level of stratification is limited by the excessive emission of unburned hydrocarbons, CO and soot.

  12. Effects of air jet duration and timing on the combustion characteristics of high-pressure air jet controlled compression ignition combustion mode in a hybrid pneumatic engine

    International Nuclear Information System (INIS)

    Long, Wuqiang; Meng, Xiangyu; Tian, Jiangping; Tian, Hua; Cui, Jingchen; Feng, Liyan

    2016-01-01

    Highlights: • A 3-D CFD model of the power cylinder in HPE was developed. • High-pressure air JCCI combustion mode includes two-stage high-temperature reaction. • The combustion phasing of the pre-mixture is controllable via the SOJ timing. • There exists an optimum SOJ timing for obtaining the highest combustion efficiency and shortest burning duration. - Abstract: The high-pressure air jet controlled compression ignition (JCCI) combustion mode was employed to control the premixed diesel compression ignition combustion phasing by using the compound thermodynamic cycle under all operating conditions, which is accomplished in a hybrid pneumatic engine (HPE). A three-dimensional computational fluid dynamics (CFD) numerical simulation coupled with reduced n-heptane chemical kinetics mechanism has been applied to investigate the effects of high-pressure air jet duration and the start of jet (SOJ) timing on the combustion characteristics in the power cylinder of HPE. By sweeping the high-pressure air jet durations from 6 to 14 °CA and SOJ timings from −12 °CA ATDC to the top dead center (TDC) under the air jet temperatures of 400 and 500 K, respectively, the low- and high-temperature reactions, combustion efficiency, as well as the combustion phasing and burning duration have been analyzed in detail. The results illustrated that a longer air jet duration results in a higher peak in the first-stage high-temperature reaction, and the short air jet duration of 6 °CA can lead to a higher combustion efficiency. The SOJ timing sweep results showed that there exists an optimum timing for obtaining the highest combustion efficiency and shortest burning duration.

  13. A comparison of spontaneous combustion susceptibility of coal from ...

    African Journals Online (AJOL)

    Although the CPT of Onyeama coal and Owukpa coal is identical to each other as they are the sub-bituminous, Owukpa coal has a lower initial oxidation temperature (IOT) and maximum oxidation temperature (MOT) than those of Onyeama coal. This means that although each coal has the same rank and CPT, spontaneous ...

  14. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  15. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  16. The combustion behavior of diesel/CNG mixtures in a constant volume combustion chamber

    Science.gov (United States)

    Firmansyah; Aziz, A. R. A.; Heikal, M. R.

    2015-12-01

    The stringent emissions and needs to increase fuel efficiency makes controlled auto-ignition (CAI) based combustion an attractive alternative for the new combustion system. However, the combustion control is the main obstacles in its development. Reactivity controlled compression ignition (RCCI) that employs two fuels with significantly different in reactivity proven to be able to control the combustion. The RCCI concept applied in a constant volume chamber fuelled with direct injected diesel and compressed natural gas (CNG) was tested. The mixture composition is varied from 0 - 100% diesel/CNG at lambda 1 with main data collection are pressure profile and combustion images. The results show that diesel-CNG mixture significantly shows better combustion compared to diesel only. It is found that CNG is delaying the diesel combustion and at the same time assisting in diesel distribution inside the chamber. This combination creates a multipoint ignition of diesel throughout the chamber that generate very fast heat release rate and higher maximum pressure. Furthermore, lighter yellow color of the flame indicates lower soot production in compared with diesel combustion.

  17. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    International Nuclear Information System (INIS)

    Kim, Seonguk; Min, Kyoungdoug

    2008-01-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NO x emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion

  18. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    Science.gov (United States)

    Kim, Seonguk; Min, Kyoungdoug

    2008-08-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NOx emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion.

  19. PARs for combustible gas control in advanced light water reactors

    International Nuclear Information System (INIS)

    Hosler, J.; Sliter, G.

    1997-01-01

    This paper discusses the progress being made in the United States to introduce passive autocatalytic recombiner (PAR) technology as a cost-effective alternative to electric recombiners for controlling combustible gas produced in postulated accidents in both future Advanced Light Water Reactors (ALWRs) and certain U. S. operating nuclear plants. PARs catalytically recombine hydrogen and oxygen, gradually producing heat and water vapor. They have no moving parts and are self-starting and self-feeding, even under relatively cold and wet containment conditions. Buoyancy of the hot gases they create sets up natural convective flow that promotes mixing of combustible gases in a containment. In a non-inerted ALWR containment, two approaches each employing a combination of PARs and igniters are being considered to control hydrogen in design basis and severe accidents. In pre-inerted ALWRs, PARs alone control radiolytic oxygen produced in either accident type. The paper also discusses regulatory feedback regarding these combustible gas control approaches and describes a test program being conducted by the Electric Power Research Institute (EPRI) and Electricite de France (EdF) to supplement the existing PAR test database with performance data under conditions of interest to U.S. plants. Preliminary findings from the EPRI/EdF PAR model test program are included. Successful completion of this test program and confirmatory tests being sponsored by the U. S. NRC are expected to pave the way for use of PARs in ALWRs and operating plants. (author)

  20. Measures for a quality combustion (combustion chamber exit and downstream); Mesures pour une combustion de qualite (sortie de chambre de combustion et en aval)

    Energy Technology Data Exchange (ETDEWEB)

    Epinat, G. [APAVE Lyonnaise, 69 (France)

    1996-12-31

    After a review of the different pollutants related to the various types of stationary and mobile combustion processes (stoichiometric, reducing and oxidizing combustion), measures and analyses than may be used to ensure the quality and efficiency of combustion processes are reviewed: opacimeters, UV analyzers, etc. The regulation and control equipment for combustion systems are then listed, according to the generator capacity level

  1. Spontaneous ignition in afterburner segment tests at an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM jet-A fuel

    Science.gov (United States)

    Schultz, D. F.; Branstetter, J. R.

    1973-01-01

    A brief testing program was undertaken to determine if spontaneous ignition and stable combustion could be obtained in a jet engine afterburning operating with an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM Jet-A fuel. Spontaneous ignition with 100-percent combustion efficiency and stable burning was obtained using water-cooled fuel spraybars as flameholders.

  2. Process and device for automatic control of air ratio in combustion

    Energy Technology Data Exchange (ETDEWEB)

    Rohr, F J; Holick, H

    1976-06-24

    The device concerns a process for the automatic control of the air ratio in combustion, by setting the fuel-air mixture for combustion depending on the air number lambda. The control of the air ratio of combustion engines is carried out using a zirconium dioxide measuring probe, which is situated in the exhaust gas. It is a disadvantage that this is only sensitive for an air number lambda of 1. In order to achieve control of the air ratio for air numbers greater or smaller than 1, according to the invention an auxiliary gas is mixed with the hot exhaust gas, or a component of the gas is withdrawn, so that a corrected exhaust gas flow is produced, whose air number is detected by the measuring sensor and controlled to a value of about 1. The auxiliary gas flow is chosen so that an air ratio differing from lambda equals 1 is formed when the air number of the corrected exhaust gas flow is regulated to a value of lambda equals 1 approximately. In order to keep the demand for auxiliary gas low, only part of the exhaust gas flow is used for the measurement. The exhaust gas part flow is kept constant while the auxiliary gas flow or the removed component of gas flow are altered. Hydrogen or oxygen are used as auxiliary gases, depending whether excess or reduced air is required. Instead of hydrogen, fuel or its combustion products can be used. According to the invention, the hydrogen or oxygen can be produced electrolytically. Dosing takes place by the current used for electrolysis.

  3. Fuel and combustion stratification study of Partially Premixed Combustion

    OpenAIRE

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a clear definition of “fuel and combustion stratifications” is obvious in literature. Hence, it is difficult to compare stratification levels of different PPC strategies or other combustion concepts. T...

  4. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  5. A propulsion injury following a spontaneous electronic cigarette explosion

    Directory of Open Access Journals (Sweden)

    Cherrie Chan Yiru

    2017-05-01

    Full Text Available Electronic cigarettes (e-cigarettes have become increasingly popular at an alarming rate. This coincides with the public perception that they are a safer mean of nicotine consumption. Unregulated devices carry unrecognized safety risks that have led to numerous cases of burns, associating with spontaneous combustions of e-cigarettes.

  6. Electrically Controllable Spontaneous Magnetism in Nanoscale Mixed Phase Multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    He, Q.; Chu, Y. H.; Heron, J. T.; Yang, S. Y.; Wang, C. H.; Kuo, C. Y.; Lin, H. J.; Yu, P.; Liang, C. W.; Zeches, R. J.; Chen, C. T.; Arenholz, E.; Scholl, A.; Ramesh, R.

    2010-08-02

    The emergence of enhanced spontaneous magnetic moments in self-assembled, epitaxial nanostructures of tetragonal (T-phase) and rhombohedral phases (R-phase) of the multiferroic BiFeO{sub 3} system is demonstrated. X-ray magnetic circular dichroism based photoemission electron microscopy (PEEM) was applied to investigate the local nature of this magnetism. We find that the spontaneous magnetization of the R-phase is significantly enhanced above the canted antiferromagnetic moment in the bulk phase, as a consequence of a piezomagnetic coupling to the adjacent T-phase and the epitaxial constraint. Reversible electric field control and manipulation of this magnetic moment at room temperature is shown using a combination of piezoresponse force microscopy and PEEM studies.

  7. Detection and control of combustion instability based on the concept of dynamical system theory

    Science.gov (United States)

    Gotoda, Hiroshi; Shinoda, Yuta; Kobayashi, Masaki; Okuno, Yuta; Tachibana, Shigeru

    2014-02-01

    We propose an online method of detecting combustion instability based on the concept of dynamical system theory, including the characterization of the dynamic behavior of combustion instability. As an important case study relevant to combustion instability encountered in fundamental and practical combustion systems, we deal with the combustion dynamics close to lean blowout (LBO) in a premixed gas-turbine model combustor. The relatively regular pressure fluctuations generated by thermoacoustic oscillations transit to low-dimensional intermittent chaos owing to the intermittent appearance of burst with decreasing equivalence ratio. The translation error, which is characterized by quantifying the degree of parallelism of trajectories in the phase space, can be used as a control variable to prevent LBO.

  8. Detection and control of combustion instability based on the concept of dynamical system theory.

    Science.gov (United States)

    Gotoda, Hiroshi; Shinoda, Yuta; Kobayashi, Masaki; Okuno, Yuta; Tachibana, Shigeru

    2014-02-01

    We propose an online method of detecting combustion instability based on the concept of dynamical system theory, including the characterization of the dynamic behavior of combustion instability. As an important case study relevant to combustion instability encountered in fundamental and practical combustion systems, we deal with the combustion dynamics close to lean blowout (LBO) in a premixed gas-turbine model combustor. The relatively regular pressure fluctuations generated by thermoacoustic oscillations transit to low-dimensional intermittent chaos owing to the intermittent appearance of burst with decreasing equivalence ratio. The translation error, which is characterized by quantifying the degree of parallelism of trajectories in the phase space, can be used as a control variable to prevent LBO.

  9. Prospective controlled trial comparing colostomy irrigation with "spontaneous-action" method.

    Science.gov (United States)

    Williams, N S; Johnston, D

    1980-07-12

    Thirty randomly selected patients with permanent colostomies entered a prospective controlled trial comparing colostomy irrigation with spontaneous action. Each patient was interviewed and examined before irrigation was begun and again after the technique had been used for three months. Each then reverted to spontaneous action for a further three months and was then reassessed. Eight patients abandoned irrigation and 22 (73%) adhered to the protocol. Irrigation caused no mishaps or complications. The mean time spent managing the stoma was 45 +/- SEM 9 min/24 hours during spontaneous action and 53 +/- 9 min/24 hours during irrigation. This difference was not significant. The numbers of bowel actions weekly were 13 +/ SEM 2 during spontaneous action and 6 +/- 1 during irrigation (p Irrigation reduced odour and flatus in 20 patients and enabled 12 out of 18 to stop using drugs and seven to discard their appliance. Irrigation also improved the social life of 18 patients and the working conditions of eight out of 14. These finding show that some patients may not be suitable for irrigation but that for many it is better than the conventional British method of colostomy management. With modern apparatus the technique is safe.

  10. Experimental and Numerical Study of Jet Controlled Compression Ignition on Combustion Phasing Control in Diesel Premixed Compression Ignition Systems

    OpenAIRE

    Qiang Zhang; Wuqiang Long; Jiangping Tian; Yicong Wang; Xiangyu Meng

    2014-01-01

    In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI) for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature j...

  11. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  12. Predictive zero-dimensional combustion model for DI diesel engine feed-forward control

    International Nuclear Information System (INIS)

    Catania, Andrea Emilio; Finesso, Roberto; Spessa, Ezio

    2011-01-01

    Highlights: → Zero-dimensional low-throughput combustion model for real-time control in diesel engine applications. → Feed-forward control of MFB50, p max and IMEP in both conventional and PCCI combustion modes. → Capability of resolving the contribution to HRR of each injection pulse in multiple injection schedule. → Ignition delay and model parameters estimated through physically consistent and easy-to-tune correlations. - Abstract: An innovative zero-dimensional predictive combustion model has been developed for the estimation of HRR (heat release rate) and in-cylinder pressure traces. This model has been assessed and applied to conventional and PCCI (premixed charge compression ignition) DI diesel engines for model-based feed-forward control purposes. The injection rate profile is calculated on the basis of the injected fuel quantities and on the injection parameters, such as SOI (start of injection), ET (energizing time), and DT (dwell time), taking the injector NOD (nozzle opening delay) and NCD (nozzle closure delay) into account. The injection rate profile in turn allows the released chemical energy Q ch to be estimated. The approach starts from the assumption that, at each time instant, the HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber. The main novelties of the proposed approach consist of the method that is adopted to estimate the fuel ignition delay and of injection rate splitting for HRR estimation. The procedure allows an accurate calculation to be made of the different combustion parameters that are important for engine calibration, such as SOC (start of combustion) and MFB50 (50% of fuel mass fraction burned angle). On the basis of an estimation of the fuel released chemical energy, of the heat globally exchanged from the charge with the walls and of the energy associated with the fuel evaporation, the charge net energy is calculated, for a subsequent evaluation of the in

  13. Periodic equivalence ratio modulation method and apparatus for controlling combustion instability

    Science.gov (United States)

    Richards, George A.; Janus, Michael C.; Griffith, Richard A.

    2000-01-01

    The periodic equivalence ratio modulation (PERM) method and apparatus significantly reduces and/or eliminates unstable conditions within a combustion chamber. The method involves modulating the equivalence ratio for the combustion device, such that the combustion device periodically operates outside of an identified unstable oscillation region. The equivalence ratio is modulated between preselected reference points, according to the shape of the oscillation region and operating parameters of the system. Preferably, the equivalence ratio is modulated from a first stable condition to a second stable condition, and, alternatively, the equivalence ratio is modulated from a stable condition to an unstable condition. The method is further applicable to multi-nozzle combustor designs, whereby individual nozzles are alternately modulated from stable to unstable conditions. Periodic equivalence ratio modulation (PERM) is accomplished by active control involving periodic, low frequency fuel modulation, whereby low frequency fuel pulses are injected into the main fuel delivery. Importantly, the fuel pulses are injected at a rate so as not to affect the desired time-average equivalence ratio for the combustion device.

  14. Controllable Solid Propulsion Combustion and Acoustic Knowledge Base Improvements

    Science.gov (United States)

    McCauley, Rachel; Fischbach, Sean; Fredrick, Robert

    2012-01-01

    Controllable solid propulsion systems have distinctive combustion and acoustic environments that require enhanced testing and analysis techniques to progress this new technology from development to production. In a hot gas valve actuating system, the movement of the pintle through the hot gas exhibits complex acoustic disturbances and flow characteristics that can amplify induced pressure loads that can damage or detonate the rocket motor. The geometry of a controllable solid propulsion gas chamber can set up unique unsteady flow which can feed acoustic oscillations patterns that require characterization. Research in this area aids in the understanding of how best to design, test, and analyze future controllable solid rocket motors using the lessons learned from past government programs as well as university research and testing. This survey paper will give the reader a better understanding of the potentially amplifying affects propagated by a controllable solid rocket motor system and the knowledge of the tools current available to address these acoustic disturbances in a preliminary design. Finally the paper will supply lessons learned from past experiences which will allow the reader to come away with understanding of what steps need to be taken when developing a controllable solid rocket propulsion system. The focus of this survey will be on testing and analysis work published by solid rocket programs and from combustion and acoustic books, conference papers, journal articles, and additionally from subject matter experts dealing currently with controllable solid rocket acoustic analysis.

  15. Periodontal disease and spontaneous preterm birth: a case control study

    Directory of Open Access Journals (Sweden)

    Eley Barry

    2006-07-01

    Full Text Available Abstract Background Several studies have suggested an association between periodontal disease and prematurity but this finding has not been consistently observed. Methods Case control study. Cases (n = 50 were women who had delivered after spontaneous preterm labor at Results There was no difference in the proportion of sites with significant attachment loss (≥3 mm: Cases-3.2%, Controls-2.2% p = 0.21. The gingival crevicular fluid concentrations of elastase and gingipain were elevated in cases vs. controls 238.8 uU/ul vs. 159.6 uU/ul p = .007 and 2.70 uU/ul vs. 1.56 uU/ul p = .001. On multivariate analysis, the mean log concentration of elastase, but not of gingipain, remained a significant predictor of preterm labor p = .0.015. Conclusion We found no evidence that clinical periodontal disease is associated with spontaneous preterm birth. Elevated gingival crevicular fluid levels of elastase were associated with preterm birth but further research is needed before this can be assumed to be a causal relationship.

  16. Control of internal combustion engines and hybrid engines; Regelung von Verbrennungsmotoren und Hybridantrieben

    Energy Technology Data Exchange (ETDEWEB)

    Isermann, R. [TU Darmstadt (Germany). Forschungsgruppe Regelungstechnik und Prozessautomatisierung

    2007-07-15

    In the development of internal combustion engines, there are increasingly rigid specifications for further reduction of consumption, exhaust and noise emissions, better specific performance, lower weight, and good driving characteristics. The contributions in this special issue provide an insight into the many aspects of internal combustion engine and hybrid engine control. The editors of at journal took care to select interesting papers presented at the 3. VDI/VDE-GMA conference AUTOREG 2006. They show how control and mechatronics support the high demands on functionality in motor car engineering. (orig.)

  17. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  18. Predictive zero-dimensional combustion model for DI diesel engine feed-forward control

    Energy Technology Data Exchange (ETDEWEB)

    Catania, Andrea Emilio; Finesso, Roberto [IC Engines Advanced Laboratory, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino (Italy); Spessa, Ezio, E-mail: ezio.spessa@polito.it [IC Engines Advanced Laboratory, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2011-09-15

    Highlights: {yields} Zero-dimensional low-throughput combustion model for real-time control in diesel engine applications. {yields} Feed-forward control of MFB50, p{sub max} and IMEP in both conventional and PCCI combustion modes. {yields} Capability of resolving the contribution to HRR of each injection pulse in multiple injection schedule. {yields} Ignition delay and model parameters estimated through physically consistent and easy-to-tune correlations. - Abstract: An innovative zero-dimensional predictive combustion model has been developed for the estimation of HRR (heat release rate) and in-cylinder pressure traces. This model has been assessed and applied to conventional and PCCI (premixed charge compression ignition) DI diesel engines for model-based feed-forward control purposes. The injection rate profile is calculated on the basis of the injected fuel quantities and on the injection parameters, such as SOI (start of injection), ET (energizing time), and DT (dwell time), taking the injector NOD (nozzle opening delay) and NCD (nozzle closure delay) into account. The injection rate profile in turn allows the released chemical energy Q{sub ch} to be estimated. The approach starts from the assumption that, at each time instant, the HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber. The main novelties of the proposed approach consist of the method that is adopted to estimate the fuel ignition delay and of injection rate splitting for HRR estimation. The procedure allows an accurate calculation to be made of the different combustion parameters that are important for engine calibration, such as SOC (start of combustion) and MFB50 (50% of fuel mass fraction burned angle). On the basis of an estimation of the fuel released chemical energy, of the heat globally exchanged from the charge with the walls and of the energy associated with the fuel evaporation, the charge net energy is calculated, for a subsequent

  19. The effect of control parameters to the quality of small-scale wood pellet combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ruusunen, M. (Oulu Univ. (Finland). Contol Engineering Lab.), Email: mika.ruusunen@oulu.fi; Korpela, T.; Bjoerkqvist, T. (Tampere Univ. of Technology (Finland). Dept. of Automation Science and Engineering), Email: timo.korpela@tut.fi, Email: tomas.bjorqvist@tut.fi

    2009-07-01

    The target is to clear out control variables and requirements for clean small-scale wood pellet combustion (<100 kW{sub th}). Experimental runs were carried out in the form of design of experiments (DOE) with two commercial 15 kW pellet burners, namely a horizontal gas-burner and a conventional horizontal burner in a 20 kW commercial pellet boiler. Analysed variables were fuel power, draught, air flows, and fuel feed period, and research variables were CO, O{sub 2} and efficiency. The target was to identify and characterise separately the magnitude and direction of the effect of each factor. After process identification and variable optimisation, the results show strong influence of the studied control parameters on the efficiency and the emissions. The effects and interactions between different process variables were rather similar with both burners. The major effects for CO levels were fuel feed and additionally draught affected in case of wood gas combustion. Additionally, the effects on combustion efficiency is described by draught, air feed and fuel feed period. Furthermore, the fuel feed period affected the excess air level in case of direct combustion principle. It was noticed, however, that the combustion properties and optimal parameter values vary significantly between the two cases. (orig.)

  20. Numerical analysis for controlling mixture heterogeneity to reduce abrupt combustion in diesel PCCI combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nishiwaki, Kazuie [Ritsumeikan University (Japan); Kojima, Takafumi [Takamatsu National College of Technology (Japan)

    2010-07-01

    In the energy sector, stringent regulations have been implemented on combustion emissions in order to address health and environmental concerns and help improve air quality. A novel combustion mode, premixed charge compression ignition (PCCI), can improve the emissions performance of an engine over that of conventional diesel. The aim of this research is to develop a model to analyze the mixture formation in the PCCI combustion mode. A numerical model was developed and was applied to an engine and the results were compared to experimental results. It was found that the model results are in agreement with the experimental results. This paper presented a novel LES computer model and demonstrated that it is efficient in predicting the mixture formation in the PCCI combustion mode.

  1. Fuel and combustion stratification study of Partially Premixed Combustion

    NARCIS (Netherlands)

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a

  2. Neutrophil Leukocyte: Combustive Microbicidal Action and Chemiluminescence

    Directory of Open Access Journals (Sweden)

    Robert C. Allen

    2015-01-01

    Full Text Available Neutrophil leukocytes protect against a varied and complex array of microbes by providing microbicidal action that is simple, potent, and focused. Neutrophils provide such action via redox reactions that change the frontier orbitals of oxygen (O2 facilitating combustion. The spin conservation rules define the symmetry barrier that prevents direct reaction of diradical O2 with nonradical molecules, explaining why combustion is not spontaneous. In burning, the spin barrier is overcome when energy causes homolytic bond cleavage producing radicals capable of reacting with diradical O2 to yield oxygenated radical products that further participate in reactive propagation. Neutrophil mediated combustion is by a different pathway. Changing the spin quantum state of O2 removes the symmetry restriction to reaction. Electronically excited singlet molecular oxygen (O2*1 is a potent electrophilic reactant with a finite lifetime that restricts its radius of reactivity and focuses combustive action on the target microbe. The resulting exergonic dioxygenation reactions produce electronically excited carbonyls that relax by light emission, that is, chemiluminescence. This overview of neutrophil combustive microbicidal action takes the perspectives of spin conservation and bosonic-fermionic frontier orbital considerations. The necessary principles of particle physics and quantum mechanics are developed and integrated into a fundamental explanation of neutrophil microbicidal metabolism.

  3. Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels

    International Nuclear Information System (INIS)

    Duarte, Jorge; Amador, Germán; Garcia, Jesus; Fontalvo, Armando; Vasquez Padilla, Ricardo; Sanjuan, Marco; Gonzalez Quiroga, Arturo

    2014-01-01

    Control strategies for auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels are presented. Ambient temperature and ambient pressure are considered as the disturbing variables. A thermodynamic model for predicting temperature at the ignition point is developed, adjusted and validated with a large experimental data-set from high power turbocharged engines. Based on this model, the performance of feedback and feedforward auto-ignition control strategies is explored. A robustness and fragility analysis for the Feedback control strategies is presented. The feedforward control strategy showed the best performance however its implementation entails adding a sensor and new control logic. The proposed control strategies and the proposed thermodynamic model are useful tools for increasing the range of application of gaseous fuels with low methane number while ensuring a safe running in internal combustion engines. - Highlights: • A model for predicting temperature at the ignition point. • Robust PID, modified PID, and feedforward strategies for auto-ignition control. • λ′ were the best set of tuning equations for calculating controller parameters. • Robust PID showed significant improvements in auto-ignition control. • Feedforward control showed the best performance

  4. Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission.

    Science.gov (United States)

    Wan, Ren-Gang; Zhang, Tong-Yi

    2011-12-05

    We propose a scheme for two-dimensional (2D) atom localization based on the controlled spontaneous emission, in which the atom interacts with two orthogonal standing-wave fields. Due to the spatially dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the resulting spontaneously emission spectrum. The phase sensitive property of the atomic system leads to quenching of the spontaneous emission in some regions of the standing-waves, which significantly reduces the uncertainty in the position measurement of the atom. We find that the frequency measurement of the emitted light localizes the atom in half-wavelength domain. Especially the probability of finding the atom at a particular position can reach 100% when a photon with certain frequency is detected. By increasing the Rabi frequencies of the driving fields, such 2D sub-half-wavelength atom localization can acquire high spatial resolution.

  5. AUTOMATIC CONTROL SYSTEM FOR REGULATED HIGH TEMPERATURE MAIN COMBUSTION CHAMBER OF MANEUVERABLE AIRCRAFT MULTIMODE GAS TURBINE ENGINE

    Directory of Open Access Journals (Sweden)

    T. V. Gras’Ko

    2014-01-01

    Full Text Available The paper describes choosing and substantiating the control laws, forming the appearance the automatic control system for regulated high temperature main combustion chamber of maneuverable aircraft multimode gas turbine engine aimed at sustainable and effective functioning of main combustion chamber within a broad operation range.

  6. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  7. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    Science.gov (United States)

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  8. New type of microengine using internal combustion of hydrogen and oxygen

    Science.gov (United States)

    Svetovoy, Vitaly B.; Sanders, Remco G. P.; Ma, Kechun; Elwenspoek, Miko C.

    2014-01-01

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5–4 bar for a time of 100–400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines. PMID:24599052

  9. New type of microengine using internal combustion of hydrogen and oxygen.

    Science.gov (United States)

    Svetovoy, Vitaly B; Sanders, Remco G P; Ma, Kechun; Elwenspoek, Miko C

    2014-03-06

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm(3) that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines.

  10. Controlling the excess heat from oxy-combustion of coal by blending with biomass

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Turan, A.Z.; Yaman, S.; Kucukbayrak, S. [Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, 34469, Maslak, Istanbul (Turkey)

    2010-11-15

    Two different biomass species such as sunflower seed shell and hazelnut shell were blended with Soma-Denis lignite to determine the effects of co-combustion on the thermal reactivity and the burnout of the lignite sample. For this purpose, Thermogravimetric Analysis and Differential Scanning Calorimetry techniques were applied from ambient to 900 C with a heating rate of 40 C/min under dry air and pure oxygen conditions. It was found that the thermal reactivities of the biomass materials and the lignite are highly different from each other under each oxidizing medium. On the other hand, the presence of biomass in the burning medium led to important influences not only on the burnout levels but also on the heat flows. The heat flow from the burning of lignite increased fivefold when the oxidizing medium was altered from dry air to pure oxygen. But, in case of co-combustion under oxygen, the excess heat arising from combustion of lignite could be reduced and this may be helpful to control the temperature of the combustion chamber. Based on this, co-combustion of coal/biomass blends under oxygen may be suggested as an alternative method to the ''Carbon Dioxide Recycle Method'' encountered in the oxyfuel combustion systems. (author)

  11. Internal combustion engines - Modelling, estimation and control issues

    Energy Technology Data Exchange (ETDEWEB)

    Vigild, C.W.

    2001-12-01

    Alternative power-trains have become buzz words in the automotive industry in the recent past. New technologies like Lithium-Ion batteries or fuel cells combined with high efficient electrical motors show promising results. However both technologies are extremely expensive and important questions like 'How are we going to supply fuel-cells with hydrogen in an environmentally friendly way?', 'How are we going to improve the range - and recharging speed - of electrical vehicles?' and 'How will our existing infrastructure cope with such changes?' are still left unanswered. Hence, the internal combustion engine with all its shortcomings is to stay with us for the next many years. What the future will really bring in this area is uncertain, but one thing can be said for sure; the time of the pipe in - pipe out engine concept is over. Modem engines, Diesel or gasoline, have in the recent past been provided with many new technologies to improve both performance and handling and to cope with the tightening emission legislations. However, as new devices are included, the number of control inputs is also gradually increased. Hence, the control matrix dimension has grown to a considerably size, and the typical table and regression based engine calibration procedures currently in use today contain both challenging and time-consuming tasks. One way to improve understanding of engines and provide a more comprehensive picture of the control problem is by use of simplified physical modelling - one of the main thrusts of this dissertation. The application of simplified physical modelling as a foundation for engine estimation and control design is first motivated by two control applications. The control problem concerns Air/Fuel ratio control of Spark Ignition engines. Two different ways of control are presented; one based on. a model based Extended Kalman Filter updated predictor, and one based on robust H {infinity} techniques. Both controllers are

  12. Controlling spontaneous emission of light by photonic crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2005-01-01

    Photonic bandgap crystals were proposed almost two decades ago as a unique tool for controlling propagation and emission of light. Since then the research field of photonic crystals has exploded and many beautiful demonstrations of the use of photonic crystals and fibers for molding light...... propagation have appeared that hold great promises for integrated optics. These major achievements solidly demonstrate the ability to control propagation of light. In contrast, an experimental demonstration of the use of photonic crystals for timing the emission of light has so far lacked. In a recent...... publication in Nature, we have demonstrated experimentally that both the direction and time of spontaneous emission can be controlled, thereby confirming the original proposal by Eli Yablonovich that founded the field of photonic crystals. We believe that this work opens new opportunities for solid...

  13. Effects of Noise and Time Delay Upon Active Control of Combustion Instabilities

    National Research Council Canada - National Science Library

    Zinn, Ben

    2001-01-01

    To improve the performance of practical active control system (ACS) for unstable combustors, the effects of system noise and ACS time delay upon combustion instabilities and the ACS performance were studied...

  14. Raman Spectra of Methane, Ethylene, Ethane, Dimethyl ether, Formaldehyde and Propane for Combustion Applications

    KAUST Repository

    Magnotti, G.

    2015-05-09

    Spontaneous Raman scattering measurements of temperature and major species concentration in hydrocarbon-air flames require detailed knowledge of the Raman spectra of the hydrocarbons present when fuels more complex than methane are used. Although hydrocarbon spectra have been extensively studied at room temperature, there are no data available at higher temperatures. Quantum mechanical calculations, when available are not sufficiently accurate for combustion applications. This work presents experimental measurements of spontaneous Stokes-Raman scattering spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane in the temperature range 300-860 K. Raman spectra from heated hydrocarbons jets have been collected with a higher resolution than is generally employed for Raman measurements in combustion applications. A set of synthetic spectra have been generated for each hydrocarbon, providing the basis for extrapolation to higher temperatures. The spectra provided here will enable simultaneous measurements of multiple hydrocarbons in flames. This capability will greatly extend the range of applicability of Raman measurements in combustion applications. In addition, the experimental spectra provide a validation dataset for quantum mechanical models.

  15. Raman Spectra of Methane, Ethylene, Ethane, Dimethyl ether, Formaldehyde and Propane for Combustion Applications

    KAUST Repository

    Magnotti, G.; KC, Utsav; Varghese, P.L.; Barlow, R.S.

    2015-01-01

    Spontaneous Raman scattering measurements of temperature and major species concentration in hydrocarbon-air flames require detailed knowledge of the Raman spectra of the hydrocarbons present when fuels more complex than methane are used. Although hydrocarbon spectra have been extensively studied at room temperature, there are no data available at higher temperatures. Quantum mechanical calculations, when available are not sufficiently accurate for combustion applications. This work presents experimental measurements of spontaneous Stokes-Raman scattering spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane in the temperature range 300-860 K. Raman spectra from heated hydrocarbons jets have been collected with a higher resolution than is generally employed for Raman measurements in combustion applications. A set of synthetic spectra have been generated for each hydrocarbon, providing the basis for extrapolation to higher temperatures. The spectra provided here will enable simultaneous measurements of multiple hydrocarbons in flames. This capability will greatly extend the range of applicability of Raman measurements in combustion applications. In addition, the experimental spectra provide a validation dataset for quantum mechanical models.

  16. Spontaneous Raman Scattering Diagnostics: Applications in Practical Combustion Systems. Chapter 5

    Science.gov (United States)

    Kojima, Jun; Viet-Nguyen, Quang; Lackner, Maximilian (Editor); Winter, Franz (Editor); Agarwal, Avinash (Editor)

    2010-01-01

    In this chapter, the recent advancements and practical aspects of laser SRS diagnostics have been reviewed wi til regards to applications in practical combustion systems. Clearly, SRS represents a theoretically and experimentally mature diagnostic technology that has become an essential tool for multiscalar measurements in turbulent combustion at elevated pressures. Today, time-, space-, spectrally, and even polarization-resolved S RS diagnostics is at hand, with aid from recent innovations in theoretical and technological developments on electro-optical or electromechanical devices. Whilst a linear increase in SRS signals can be expected in high-pressure systems (this is perhaps one of the most important advantages for using SRS in high-pressure systems), there are practical (often severe) restrictions associated with pressurized vessels, due mainly to the limited degree of optical access. This narrows ti,e available choice of diagnostics that can be employed at any given time. Point-wise SRS diagnostics provides the highest accuracy on the chemical species and temperature measurements, and will continue to remain a vital approach for the study in such harsh environments. The practical design considerations and hands-on set-up guide for SRS diagnostics provided in this chapter are rarely presented elsewhere. Although the second-harmonic Nd:YAG pulsed laser (532 nm), combined with pulse-stretching optics or the recently introduced White Cell-based laser, seems to be the most favored excitation source of choice by the research community, UV excitation will undoubtedly continue to be used on many occasions, and especially in sooting flames. Detection methods may be divided into ICCD-based nanosecond-gate detection or a rotary-chopper electromechanical shutter-based CCD array detection, and the levels of background flame emission in individual cases would determine this critical design choice. Here, a process of Raman signal calibration based on ti,e crosstalk matrix

  17. Control predictivo económico de vehículos híbridos basados en pilas de combustible

    OpenAIRE

    Sampietro, Jose Luis; Costa Castelló, Ramon; Puig Cayuela, Vicenç

    2015-01-01

    Las pilas de combustible que utilizan el hidrógeno como combustible están siendo consideradas, en estos últimos años, como una alternativa a los combustibles fósiles para su uso en automóviles. Dicha tecnología se puede aplicar en los vehículos de propulsión híbrida. Este trabajo introduce el control predictivo económico (EMPC, siglas en inglés) como técnica de gestión óptima de la energía. Finalmente, se presentan simulaciones de varios escenarios, basados en un control EMPC, en donde se ...

  18. Cooling Effect Analysis of Suppressing Coal Spontaneous Ignition with Heat Pipe

    Science.gov (United States)

    Zhang, Yaping; Zhang, Shuanwei; Wang, Jianguo; Hao, Gaihong

    2018-05-01

    Suppression of spontaneous ignition of coal stockpiles was an important issue for safe utilization of coal. The large thermal energy from coal spontaneous ignition can be viewed as the latent energy source to further utilize for saving energy purpose. Heat pipe was the more promising way to diffuse effectively concentrated energy of the coal stockpile, so that retarding coal spontaneous combustion was therefore highly desirable. The cooling mechanism of the coal with heat pipe was pursued. Based on the research result, the thermal energy can be transported from the coal seam to the surface continuously with the use of heat pipe. Once installed the heat pipes will work automatically as long as the coal oxidation reaction was happened. The experiment was indicated that it can significantly spread the high temperature of the coal pile.

  19. Characterisation of laser ignition in hydrogen-air mixtures in a combustion bomb

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Dhananjay Kumar; Agarwal, Avinash Kumar [Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Weinrotter, Martin; Wintner, Ernst [Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, A-1040 Vienna (Austria); Iskra, Kurt [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2009-03-15

    Laser-induced spark ignition of lean hydrogen-air mixtures was experimentally investigated using nanosecond pulses generated by Q-switched Nd:YAG laser (wavelength 1064 nm) at initial pressure of 3 MPa and temperature 323 K in a constant volume combustion chamber. Laser ignition has several advantages over conventional ignition systems especially in internal combustion engines, hence it is necessary to characterise the combustion phenomena from start of plasma formation to end of combustion. In the present experimental investigation, the formation of laser plasma by spontaneous emission technique and subsequently developing flame kernel was measured. Initially, the plasma propagates towards the incoming laser. This backward moving plasma (towards the focusing lens) grows much faster than the forward moving plasma (along the direction of laser). A piezoelectric pressure transducer was used to measure the pressure rise in the combustion chamber. Hydrogen-air mixtures were also ignited using a spark plug under identical experimental conditions and results are compared with the laser ignition ones. (author)

  20. Combustion synthesis of micron-sized Sm2Co17 particles via mechanochemical processing

    International Nuclear Information System (INIS)

    Liu, W.; McCormick, P.G.

    1998-01-01

    Full text: The spontaneous formation of Sm 2 Co 17 micron-sized particles via a mechanically induced combustion reaction has been investigated. Sm 2 Co 17 alloy particles of 0.1--2 μm in size embedded in a CaO matrix formed directly via a combustion reaction induced by milling the powder mixture of Sm 2 O 3 , CoO, CaO and Ca over a critical time. The micron-sized Sm 2 Co 17 particles were found to have the TbCu 7 -type structure and characterized by a coercivity value of 7.8 kOe while embedded in the CaO matrix. The effect of subsequent heat treatment on the structure and magnetic properties of as-milled samples was also investigated. Removal of the CaO by a carefully controlled washing process yielded micron-sized Sm 2 Co 17 particles without significant oxidation of the particles. These fine Sm 2 Co 17 particles can be used to produce anisotropic bulk or bonded magnets

  1. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2014-01-01

    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  2. High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system.

    Science.gov (United States)

    Ding, Chunling; Li, Jiahua; Yu, Rong; Hao, Xiangying; Wu, Ying

    2012-03-26

    A scheme for realizing two-dimensional (2D) atom localization is proposed based on controllable spontaneous emission in a coherently driven cycle-configuration atomic system. As the spatial-position-dependent atom-field interaction, the frequency of the spontaneously emitted photon carries the information about the position of the atom. Therefore, by detecting the emitted photon one could obtain the position information available, and then we demonstrate high-precision and high-resolution 2D atom localization induced by the quantum interference between the multiple spontaneous decay channels. Moreover, we can achieve 100% probability of finding the atom at an expected position by choosing appropriate system parameters under certain conditions.

  3. Controlling spontaneous emission dynamics in semiconductor micro cavities

    Science.gov (United States)

    Gayral, B.

    Spontaneous emission of light can be controlled, cavity quantum electrodynamics tells us, and many experiments in atomic physics demonstrated this fact. In particular, coupling an emitter to a resonant photon mode of a cavity can enhance its spontaneous emission rate: this is the so-called Purcell effect. Though appealing it might seem to implement these concepts for the benefit of light-emitting semiconductor devices, great care has to be taken as to which emitter/cavity system should be used. Semiconductor quantum boxes prove to be good candidates for witnessing the Purcell effect. Also, low volume cavities having a high optical quality in other words a long photon storage time are required. State-of-the-art fabrication techniques of such cavities are presented and discussed.We demonstrate spontaneous emission rate enhancement for InAs/GaAs quantum boxes in time-resolved and continuous-wave photoluminescence experiments. This is done for two kinds of cavities, namely GaAs/AlAs micropillars (global enhancement by a factor of 5), and GaAs microdisks (global enhancement by a factor of 20). Prospects for lasers, light-emitting diodes and single photon sources based on the Purcell effect are discussed. L'émission spontanée de lumière peut être contrôlée, ainsi que nous l'enseigne l'électrodynamique quantique en cavité, ce fait a été démontré expérimentalement en physique atomique. En particulier, coupler un émetteur à un mode photonique résonnant d'une cavité peut exalter son taux d'émission spontanée : c'est l'effet Purcell. Bien qu'il semble très prometteur de mettre en pratique ces concepts pour améliorer les dispositifs semi-conducteurs émetteurs de lumière, le choix du système émetteur/cavité est crucial. Nous montrons que les boîtes quantiques semi-conductrices sont des bons candidats pour observer l'effet Purcell. Il faut par ailleurs des cavités de faible volume ayant une grande qualité optique en d'autres mots un long temps de

  4. Analysis and control of harmful emissions from combustion processes

    OpenAIRE

    Jafari, Ahmad

    2000-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. The harmful effects of air pollutants on human beings and environment have been the major reason for efforts in sampling, analysis and control of their sources. The major pollutants emitted to atmosphere from stationary combustion processes are nitrogen oxides, inorganic acids, carbon dioxide, carbon monoxide, hydrocarbon and soot. In the current work two methods are developed for sampl...

  5. Spontaneous growth of whiskers from an interlayer of Mo sub 2 C beneath a diamond particle deposited in a combustion-flame

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Katsuyuki; Komatsu, Shojiro; Ishigaki, Takamasa; Matsumoto, Seiichiro; Moriyoshi, Yusuke (National Inst. for Research in Inorganic Materials, Tsukuba, Ibaraki (Japan))

    1992-02-01

    When diamond particles deposited on a molybdenum substrate in a C{sub 2}H{sub -}O{sub 2} combustion-flame were kept for one year in the ambient atmosphere at room temperature, spontaneous whisker growth from an interlayer of Mo{sub 2}C beneath the diamond particles took place. The whiskers were clarified by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM) in a polycrystal composed of MoO{sub 2}, MoOC, and Mo{sub 2}C. The growth mechanism of them is discussed from two different points of view as follows: One is that the oxidation of an interlayer of Mo{sub 2}C beneath a diamond particle effectively reduces the surface free energy between the interlayer and diamond particle; consequently, the whisker can grow by using a screw dislocation. The other is that the internal stress existing between a diamond particle and an Mo{sub 2}C interlayer provides a very reactive zone where the growth of whisker takes place through the oxidation of Mo{sub 2}C. (orig.).

  6. Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness.

    Directory of Open Access Journals (Sweden)

    Stanislas Dehaene

    2005-05-01

    Full Text Available Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden "ignition" of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of "inattentional blindness," in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness.

  7. Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness.

    Science.gov (United States)

    Dehaene, Stanislas; Changeux, Jean-Pierre

    2005-05-01

    Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden "ignition" of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of "inattentional blindness," in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness.

  8. Control of emissions from stationary combustion sources: Pollutant detection and behavior in the atmosphere

    International Nuclear Information System (INIS)

    Licht, W.; Engel, A.J.; Slater, S.M.

    1979-01-01

    Stationary combustion resources continue to be significant sources of NOx and SOx pollutants in the ambient atmosphere. This volume considers four problem areas: (1) control of emissions from stationary combustion sources, particularly SOx and NOx (2) pollutant behavior in the atmosphere (3) advances in air pollution analysis and (4) air quality management. Topics of interest include carbon slurries for sulfur dioxide abatement, mass transfer in the Kellogg-Weir air quality control system, oxidation/inhibition of sulfite ion in aqueous solution, some micrometeorological methods of measuring dry deposition rates, Spanish moss as an indicator of airborne metal contamination, and air quality impacts from future electric power generation in Texas

  9. Propriety check for quenching meshes for control of hydrogen combustion between two compartments

    International Nuclear Information System (INIS)

    Yang, S. Y.; Jeong, S. H.; Kim, H. Z.; Kim, H. D.; Hong, S. W.

    2001-01-01

    In our previous study, the quenching meshes have been proposed for the control of hydrogen combustion under nuclear severe accident. It has been investigated whether the method of installation of quenching mesh to prevent flame from propagating to the other compartment is proper or not. Schlieren photograph is used to visualize the propagation of flame between two compartments. Without the quenching mesh equipped between the compartments, it has been observed that the flame always propagates from a compartment to the other. The data on quencing distance of hydrogen premixed flames gotten in our previous study is alayzed to setup of optimum quenching mesh, too. Such experimental results establish that the quenching meshes proposed for the control of hydrogen combustion are resonably available

  10. Polymer degradation rate control of hybrid rocket combustion

    Science.gov (United States)

    Stickler, D. B.; Ramohalli, K. N. R.

    1970-01-01

    Polymer degradation to small fragments is treated as a rate controlling step in hybrid rocket combustion. Both numerical and approximate analytical solutions of the complete energy and polymer chain bond conservation equations for the condensed phase are obtained. Comparison with inert atmosphere data is very good. It is found that the intersect of curves of pyrolysis rate versus interface temperature for hybrid combustors, with the thermal degradation theory, falls at a pyrolysis rate very close to that for which a pressure dependence begins to be observable. Since simple thermal degradation cannot give sufficient depolymerization at higher pyrolysis rates, it is suggested that oxidative catalysis of the process occurs at the surface, giving a first order dependence on reactive species concentration at the wall. Estimates of the ratio of this activation energy and interface temperature are in agreement with best fit procedures for hybrid combustion data. Requisite active species concentrations and flux are shown to be compatible with turbulent transport. Pressure dependence of hybrid rocket fuel regression rate is thus shown to be describable in a consistent manner in terms of reactive species catalysis of polymer degradation.

  11. Novel Active Combustion Control Concept for High-Frequency Modulation of Atomized Fuel Flow, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal by Jansen's Aircraft Systems Controls, Inc presents an innovative solution for Active Combustion Control. Relative to the state of the art, this...

  12. Coherent control of spontaneous emission near a photonic band edge

    International Nuclear Information System (INIS)

    Woldeyohannes, Mesfin; John, Sajeev

    2003-01-01

    We demonstrate the coherent control of spontaneous emission for a three-level atom located within a photonic band gap (PBG) material, with one resonant frequency near the edge of the PBG. Spontaneous emission from the three-level atom can be totally suppressed or strongly enhanced depending on the relative phase between the steady-state control laser coupling the two upper levels and the pump laser pulse used to create an excited state of the atom in the form of a coherent superposition of the two upper levels. Unlike the free-space case, the steady-state inversion of the atomic system is strongly dependent on the externally prescribed initial conditions. This non-zero steady-state population is achieved by virtue of the localization of light in the vicinity of the emitting atom. It is robust to decoherence effects provided that the Rabi frequency of the control laser field exceeds the rate of dephasing interactions. As a result, such a system may be relevant for a single-atom, phase-sensitive optical memory device on the atomic scale. The protected electric dipole within the PBG provides a basis for a qubit to encode information for quantum computations. A detailed literature survey on the nature, fabrication and applications of PBG materials is presented to provide context for this research. (phd tutorial)

  13. Fundamental limitations of non-thermal plasma processing for internal combustion engine NOx control

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1993-01-01

    This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO x control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO x removal mechanisms, and by product formation. Can non-thermal deNO x operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics

  14. Device for preventing spontaneous repositioning of a control element of a nuclear reactor

    International Nuclear Information System (INIS)

    Maslenok, B.A.; Chegaj, A.S.; Slobin, W.G.; Mednickij, W.G.; Genkin, L.I.; Petritschenko, N.F.; Mitrofanow, B.I.

    1976-01-01

    The invention concerns the control element of a nuclear reactor. The vertical connecting rod is to be prevented from spontaneous repositioning if the pressurized housing which encloses the control element becomes leaky. It is proposed to provide spheres as wedging elements locking the connecting rod, but also allowing easy loosening. (UWI) [de

  15. Biosecurity on Poultry Farms from On-Farm Fluidized Bed Combustion and Energy Recovery from Poultry Litter

    Directory of Open Access Journals (Sweden)

    Kevin McDonnell

    2010-07-01

    Full Text Available The spreading of poultry litter in recent years has led to a serious increase in levels of eutrophication, nitrate leaching, high Biological Oxygen Demand (BOD, ammonia toxicity, high chlorine concentrations and pathogen contamination. The review presented here details the optimum standards that should be met when storing litter for On-Farm Fluidized Bed Combustion. Storage conditions are paramount to a fuel combusting to its highest possible potential. Safety measures such as the prevention of leaching and spontaneous combustion must be adhered to, so too should the prevention and containment of possible diseases and pathogens to minimize the effects of contamination.

  16. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  17. Remote control flare stack igniter for combustible gases

    Science.gov (United States)

    Ray, W. L.

    1972-01-01

    Device has been designed and developed for igniting nonrecoverable combustible gases and sustaining combustion of gases evolving from various gas vent stacks. Igniter is superior to existing systems because of simplicity of operation, low cost fabrication, installation, operational and maintainability features, and excellent reliability in all phases of required operations.

  18. Low emission internal combustion engine

    Science.gov (United States)

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  19. Predictive piston motion control in a free-piston internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Jones, E.; Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU England (United Kingdom)

    2010-05-15

    A piston motion controller for a free-piston internal combustion engine is presented. To improve dynamic performance in the control of the piston motion and engine compression ratio, the controller response is determined from a prediction of engine top dead centre error rather than the measured value from the previous cycle. The proposed control approach showed superior performance compared with that of standard PI feedback control known from the literature due to a reduced control action time delay. The manipulation of fuel injection timing to reduce in-cylinder pressure peaks and cycle-to-cycle variations was also studied, indicating that with the piston motion estimation, the injection timing is a powerful control variable for this purpose. (author)

  20. Robust active combustion control for the optimization of environmental performance and energy efficiency

    Science.gov (United States)

    Demayo, Trevor Nat

    Criteria pollutant regulations, climate change concerns, and energy conservation efforts are placing strict constraints in the design and operation of advanced, stationary combustion systems. To ensure minimal pollutant emissions and maximal efficiency at every instant of operation while preventing reaction blowout, combustion systems need to react and adapt in real-time to external changes. This study describes the development, demonstration, and evaluation of a multivariable feedback control system, designed to maximize the performance of natural gas-fired combustion systems. A feedback sensor array was developed to monitor reaction stability and measure combustion performance as a function of NOx, CO, and O, emissions. Acoustic and UV chemiluminescent emissions were investigated for use as stability indicators. Modulated signals of CH* and CO2* chemiluminescence were found to correlate well with the onset of lean blowout. A variety of emissions sensors were tested and evaluated, including conventional CEMS', micro-fuel cells, a zirconia NOx transducer, and a rapid response predictive NOx sensor based on UV flame chemiluminescence. A dual time-scale controller was designed to actively optimize operating conditions by maximizing a multivariable performance function J using a linear direction set search algorithm. The controller evaluated J under slow, quasi steady-state conditions, while dynamically monitoring the reaction zone at high speed for pre-blowout instabilities or boundary condition violations. To establish the input control parameters, two burner systems were selected: a 30 kW air-swirl, generic research burner, and a 120 kW scaled, fuel-staged, industrial boiler burner. The parameters, chosen to most affect burner performance, consisted of air swirl intensity and excess air for the generic burner, and fuel-staging and excess air for the boiler burner. A set of optimization parameters was also established to ensure efficient and deterministic

  1. Air to fuel ratio sensor for internal combustion engine control system; Nainen kikan no nensho seigyoyo kunen hi sensor

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzuki, M.; Kawai, T.; Yamada, T.; Nishio [NGK Spark Plug Co. Ltd., Aichi (Japan)

    1998-06-01

    Air to fuel ratio sensor is used for emission control system of three-way catalyst, and constitutes the important functional part of combustion control system. For further precise combustion control application, universal air to fuel ratio heated exhaust gas oxygen sensor (UEGO sensor) has been developed. This paper introduces heater control system for constant element temperature of UEGO sensor. By the heater wattage feedback control of sensing cell impedance, the change of sensor element temperature is decreased. 9 refs., 13 figs.

  2. Hydrogen jet combustion in a scramjet combustor with the rearwall-expansion cavity

    Science.gov (United States)

    Zhang, Yan-Xiang; Wang, Zhen-Guo; Sun, Ming-Bo; Yang, Yi-Xin; Wang, Hong-Bo

    2018-03-01

    This study is carried out to experimentally investigate the combustion characteristics of the hydrogen jet flame stabilized by the rearwall-expansion cavity in a model scramjet combustor. The flame distributions are characterized by the OH* spontaneous emission images, and the dynamic features of the flames are studied through the high speed framing of the flame luminosity. The combustion modes are further analyzed based on the visual flame structure and wall pressure distributions. Under the present conditions, the combustion based on the rearwall-expansion cavity appears in two distinguished modes - the typical cavity shear-layer stabilized combustion mode and the lifted-shear-layer stabilized combustion mode. In contrast with the shear-layer stabilized mode, the latter holds stronger flame. The transition from shear-layer stabilized combustion mode to lifted-shear-layer stabilized mode usually occurs when the equivalence ratio is high enough. While the increases of the offset ratio and upstream injection distance both lead to weaker jet-cavity interactions, cause longer ignition delay, and thus delay the mode transition. The results reveal that the rearwall-expansion cavity with an appropriate offset ratio should be helpful in delaying mode transition and preventing thermal choke, and meanwhile just brings minor negative impact on the combustion stability and efficiency.

  3. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    Science.gov (United States)

    Saxena, Samveg

    Homogeneous Charge Compression Ignition (HCCI) engines are one of the most promising engine technologies for the future of energy conversion from clean, efficient combustion. HCCI engines allow high efficiency and lower CO2 emission through the use of high compression ratios and the removal of intake throttle valves (like Diesel), and allow very low levels of urban pollutants like nitric oxide and soot (like Otto). These engines, however, are not without their challenges, such as low power density compared with other engine technologies, and a difficulty in controlling combustion timing. This dissertation first addresses the power output limits. The particular strategies for enabling high power output investigated in this dissertation focus on avoiding five critical limits that either damage an engine, drastically reduce efficiency, or drastically increase emissions: (1) ringing limits, (2) peak in-cylinder pressure limits, (3) misfire limits, (4) low intake temperature limits, and (5) excessive emissions limits. The research shows that the key factors that enable high power output, sufficient for passenger vehicles, while simultaneously avoiding the five limits defined above are the use of: (1) high intake air pressures allowing improved power output, (2) highly delayed combustion timing to avoid ringing limits, and (3) using the highest possible equivalence ratio before encountering ringing limits. These results are revealed by conducting extensive experiments spanning a wide range of operating conditions on a multi-cylinder HCCI engine. Second, this dissertation discusses strategies for effectively sensing combustion characteristics on a HCCI engine. For effective feedback control of HCCI combustion timing, a sensor is required to quantify when combustion occurs. Many laboratory engines use in-cylinder pressure sensors but these sensors are currently prohibitively expensive for wide-scale commercialization. Instead, ion sensors made from inexpensive sparkplugs

  4. Comparison and Application of Two types of Filling Gel to Prevent Spontaneous Combustion at the Region where Top-Coal Caves above Entry

    Directory of Open Access Journals (Sweden)

    Wang Yuhuai

    2016-01-01

    Full Text Available Two types of gel were developed, by taking fly ash and foaming cement as aggregate, which is usually used as filling material at the region where top-coal caves above coal entry in the Jinggezhuang coal mine, and adding high molecular polymer and bio-gel as additive. Sweating rates of the two types of gel under various matching ratio and temperature were tested. And then sweating ratio and water retention ratio of the two gels were calculated, based on which, the optimized matching ratios, were determined. Viscosity indexes of the two-type gel under different ratios were tested. The optimized filling ratios of the two types of gel were determined according to the two indexes, water retention rate and the viscosity. The filling experiments were implemented and evaluated in site, the Jinggezhuang coal mine. The results show that the fly ash gel has a good achievement on preventing spontaneous combustion at the Region where Top-Coal Caves above entries. It is promising, economically and environmental friendly, and valuable in popularization in coal mines.

  5. Passive control of thermoacoustic instabilities in swirl-stabilized combustion at elevated pressures

    Directory of Open Access Journals (Sweden)

    L Justin Williams

    2016-09-01

    Full Text Available In this study, a porous insert is placed at the dump plane of a swirl-stabilized lean premixed combustor to passively suppress thermoacoustic instabilities. The diffuser-shaped annular ring of porous inert material influences the turbulent flow field directly, including recirculation zones and vortical and/or shear layer structures to passively control the acoustic performance of the combustor. The porous inert material is made of silicon carbide–hafnium carbide coated, high-strength, high-temperature-resistant open-cell foam materials. In this study, the porous insert concept is investigated at above-ambient operating pressures to demonstrate its suitability for practical combustion applications. Experiments are conducted in quartz and metal combustors, without and with the porous insert while varying operating pressure, equivalence ratio, and reactant flow rate. Measurements show that the porous insert, and consequent changes in the combustor flow field, decrease the sound pressure levels at the frequency of combustion instability at all operating conditions investigated in this study. The porous insert also decreases the broadband combustion noise, i.e. the measured sound pressure levels over a wide frequency range.

  6. Axisymmetric vortex method for low-Mach number, diffusion-controlled combustion

    CERN Document Server

    Lakkis, I

    2003-01-01

    A grid-free, Lagrangian method for the accurate simulation of low-Mach number, variable-density, diffusion-controlled reacting flow is presented. A fast-chemistry model in which the conversion rate of reactants to products is limited by the local mixing rate is assumed in order to reduce the combustion problem to the solution of a convection-diffusion-generation equation with volumetric expansion and vorticity generation at the reaction fronts. The solutions of the continuity and vorticity equations, and the equations governing the transport of species and energy, are obtained using a formulation in which particles transport conserved quantities by convection and diffusion. The dynamic impact of exothermic combustion is captured through accurate integration of source terms in the vorticity transport equations at the location of the particles, and the extra velocity field associated with volumetric expansion at low Mach number computed to enforced mass conservation. The formulation is obtained for an axisymmet...

  7. Automatic cryogenic liquid level controller is safe for use near combustible substances

    Science.gov (United States)

    Krejsa, M.

    1966-01-01

    Automatic mechanical liquid level controller that is independent of any external power sources is used with safety in the presence of combustibles. A gas filled capillary tube which leads from a pressurized chamber, is inserted into the cryogenic liquid reservoir and becomes a liquid level sensing element or probe.

  8. Highly-controlled, reproducible measurements of aerosol emissions from African biomass combustion

    Science.gov (United States)

    Haslett, Sophie; Thomas, J. Chris; Morgan, William; Hadden, Rory; Liu, Dantong; Allan, James; Williams, Paul; Sekou, Keïta; Liousse, Catherine; Coe, Hugh

    2017-04-01

    Particulate emissions from biomass burning can alter the atmosphere's radiative balance and cause significant harm to human health. However, the relationship between these emissions and fundamental combustion processes is, to date, poorly characterised. In atmospheric models, aerosol emissions are represented by emission factors based on mass loss, which are averaged over an entire combustion event for each particulate species. This approach, however, masks huge variability in emissions during different phases of the combustion period. Laboratory tests have shown that even small changes to the burning environment can lead to huge variation in observed aerosol emission factors (Akagi et al., 2011). In order to address this gap in understanding, in this study, small wood samples sourced from Côte D'Ivoire were burned in a highly-controlled laboratory environment. The shape and mass of samples, available airflow and surrounding heat were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real-time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. Both of these instruments are used regularly to measure aerosol concentrations in the field. This methodology produced remarkably repeatable results, allowing three different phases of combustion to be identified by their emissions. Black carbon was emitted predominantly during flaming combustion; organic aerosols were emitted during pyrolysis before ignition and from smouldering-dominated behaviour near the end of combustion. During the flaming period, there was a strong correlation between the emission of black carbon and the rate of mass loss, which suggests there is value in employing a mass-based emission factor for this species. However, very little correlation was seen between organic aerosol and mass loss throughout the tests. As such, results here suggest that emission factors averaged over an entire combustion event are unlikely to be

  9. Application of a Novel Liquid Nitrogen Control Technique for Heat Stress and Fire Prevention in Underground Mines.

    Science.gov (United States)

    Shi, Bobo; Ma, Lingjun; Dong, Wei; Zhou, Fubao

    2015-01-01

    With the continually increasing mining depths, heat stress and spontaneous combustion hazards in high-temperature mines are becoming increasingly severe. Mining production risks from natural hazards and exposures to hot and humid environments can cause occupational diseases and other work-related injuries. Liquid nitrogen injection, an engineering control developed to reduce heat stress and spontaneous combustion hazards in mines, was successfully utilized for environmental cooling and combustion prevention in an underground mining site named "Y120205 Working Face" (Y120205 mine) of Yangchangwan colliery. Both localized humidities and temperatures within the Y120205 mine decreased significantly with liquid nitrogen injection. The maximum percentage drop in temperature and humidity of the Y120205 mine were 21.9% and 10.8%, respectively. The liquid nitrogen injection system has the advantages of economical price, process simplicity, energy savings and emission reduction. The optimized heat exchanger used in the liquid nitrogen injection process achieved superior air-cooling results, resulting in considerable economic benefits.

  10. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory.

    Science.gov (United States)

    Bui, Anh D; Nguyen, Theresa M; Limouse, Charles; Kim, Hannah K; Szabo, Gergely G; Felong, Sylwia; Maroso, Mattia; Soltesz, Ivan

    2018-02-16

    Temporal lobe epilepsy (TLE) is characterized by debilitating, recurring seizures and an increased risk for cognitive deficits. Mossy cells (MCs) are key neurons in the hippocampal excitatory circuit, and the partial loss of MCs is a major hallmark of TLE. We investigated how MCs contribute to spontaneous ictal activity and to spatial contextual memory in a mouse model of TLE with hippocampal sclerosis, using a combination of optogenetic, electrophysiological, and behavioral approaches. In chronically epileptic mice, real-time optogenetic modulation of MCs during spontaneous hippocampal seizures controlled the progression of activity from an electrographic to convulsive seizure. Decreased MC activity is sufficient to impede encoding of spatial context, recapitulating observed cognitive deficits in chronically epileptic mice. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. PETROGRAPHY AND APPLICATION OF THE RIETVELD METHOD TO THE QUANTITATIVE ANALYSIS OF PHASES OF NATURAL CLINKER GENERATED BY COAL SPONTANEOUS COMBUSTION

    Directory of Open Access Journals (Sweden)

    Pinilla A. Jesús Andelfo

    2010-06-01

    Full Text Available

    Fine-grained and mainly reddish color, compact and slightly breccious and vesicular pyrometamorphic rocks (natural clinker are associated to the spontaneous combustion of coal seams of the Cerrejón Formation exploited by Carbones del Cerrejón Limited in La Guajira Peninsula (Caribbean Region of Colombia. These rocks constitute remaining inorganic materials derived from claystones, mudstones and sandstones originally associated with the coal and are essentially a complex mixture of various amorphous and crystalline inorganic constituents. In this paper, a petrographic characterization of natural clinker, aswell as the application of the X-ray diffraction (Rietveld method by mean of quantitative analysis of its mineral phases were carried out. The RIQAS program was used for the refinement of X ray powder diffraction profiles, analyzing the importance of using the correct isostructural models for each of the existing phases, which were obtained from the Inorganic Crystal Structure Database (ICSD. The results obtained in this investigation show that the Rietveld method can be used as a powerful tool in the quantitative analysis of phases in polycrystalline samples, which has been a traditional problem in geology.

  12. Active lubrication applied to internal combustion engines - evaluation of control strategies

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    surface. The behaviour of a main bearing of a medium size combustion engine, operating with radial oil injection and with four different control strategies is analyzed, giving some insights into the minimum fluid film thickness, maximum fluid film pressure, friction losses and maximum vibration levels...... of reducing friction losses and vibrations between the crankshaft and the bearings. The conventional hydrodynamic lubrication is combined with hydrostatic lubrication which is actively modified by radially injecting oil at controllable pressures, through orifices circumferentially located around the bearing...

  13. Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine

    International Nuclear Information System (INIS)

    Ghazimirsaied, Ahmad; Koch, Charles Robert

    2012-01-01

    Highlights: ► Misfire reduction in a combustion engine based on chaotic theory methods. ► Chaotic theory analysis of cyclic variation of a HCCI engine near misfire. ► Symbol sequence approach is used to predict ignition timing one cycle-ahead. ► Prediction is combined with feedback control to lower HCCI combustion variation. ► Feedback control extends the HCCI operating range into the misfire region. -- Abstract: Cyclic variation of a Homogeneous Charge Compression Ignition (HCCI) engine near misfire is analyzed using chaotic theory methods and feedback control is used to stabilize high cyclic variations. Variation of consecutive cycles of θ Pmax (the crank angle of maximum cylinder pressure over an engine cycle) for a Primary Reference Fuel engine is analyzed near misfire operation for five test points with similar conditions but different octane numbers. The return map of the time series of θ Pmax at each combustion cycle reveals the deterministic and random portions of the dynamics near misfire for this HCCI engine. A symbol-statistic approach is used to predict θ Pmax one cycle-ahead. Predicted θ Pmax has similar dynamical behavior to the experimental measurements. Based on this cycle ahead prediction, and using fuel octane as the input, feedback control is used to stabilize the instability of θ Pmax variations at this engine condition near misfire.

  14. Mult-Pollutant Control Through Novel Approaches to Oxygen Enhanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Richard Axelbaum; Pratim Biswas

    2009-02-28

    Growing concerns about global climate change have focused effortss on identifying approaches to stabilizing carbon dioxide levels in the atmosphere. One approach utilizes oxy-fuel combustion to produce a concentrated flue gas that will enable economical CO{sub 2} capture by direct methods. Oxy-fuel combustion rewuires an Air Separation Unit (ASU) to provide a high-purity stream of oxygen as well as a Compression and Purification Unit (CPU) to clean and compress the CO{sub 2} for long term storage. Overall plant efficiency will suffer from the parasitic load of both the ASU and CPU and researchers are investigating techniques to enhance other aspects of the combustion and gas cleanup proceses to improve the benefit-to-cost ratio. This work examines the influence of oxy-fuel combustion and non-carbon based sorbents on the formation and fate of multiple combustion pollutants both numerically and experimentally.

  15. Time varying voltage combustion control and diagnostics sensor

    Science.gov (United States)

    Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy D [Morgantown, WV; Huckaby, E David [Morgantown, WV; Fincham, William [Fairmont, WV

    2011-04-19

    A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.

  16. Materials Control in the Fabrication of Enriched Uranium Fuels; Controle des Matieres au Cours de la Fabrication des Combustibles a Base d'Uranium Enrichi; Uchet materialov pri izgotovlenii topliva na obogashchennom urane; Control de Materiales en la Elaboracion de Combustibles de Uranio Enriquecido

    Energy Technology Data Exchange (ETDEWEB)

    Cardwell, Jr., R. G. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1966-02-15

    measurement were successfully used where alloy fuel content was critical. Scrap handling had an important effect on the materials balance, by which fuel content was confirmed and good accountability was assured. Records and handling procedures, including batching and physical marking methods, were formulated in a manner that assisted the fabricator in criticality control. (author) [French] Grace aux efforts intenses qui ont ete accomplis au cours des 15 dernieres annees dans le domaine de la technologie des elements de combustible par le Laboratoire national d'Oak Ridge, il a ete possible d'etablir des methodes rationnelles de fabrication et de controle des combustibles eraichis, qui trouvent une iaige application dans la fabrication industrielle des elements de combustible a l'heure actuelle. Des techniques eprouvees de manipulation du combustible enrichi en alliages, en dispersion et sous forme d'oxyde en vrac ont ete mises au point et appliquees a l'etude et a la' fabrication des prototypes d'elements combustibles utilises pour le demarrage du reacteur d'essai de materiaux, du reacteur a protection constituee par la masse du ra- lentisseur ou reacteur piscine, du reacteur de puissance transportable construit pat V, du reacteur protection en tour, du reacteur expose a la Conference de Geneve, du reacteur a haut flux pour la production de radioisotopes et du reacteur experimental refroidi par un gaz. L'experience acquise est la base du present memoire qui traite essentiellement des problemes de controle des matieres qui se posent au cours de la fabrication de differents types d'elements de combustible a base d'uranium enrichi et montre comment ils ont ete resolus. Les objectifs principaux d'un systeme rationnel de controle des matieres sont les suivants: 1. reduire le plus possible le nombre des postes matiere a controler; 2. etablir des releves distincts pour chacune des phases principales des operations et les coordonner de maniere a pouvoir relever les ecarts avec un

  17. Combustion characteristics and influential factors of isooctane active-thermal atmosphere combustion assisted by two-stage reaction of n-heptane

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xingcai; Ji, Libin; Ma, Junjun; Zhou, Xiaoxin; Huang, Zhen [Key Lab. for Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, 200240 Shanghai (China)

    2011-02-15

    This paper presents an experimental study on the isooctane active-thermal atmosphere combustion (ATAC) which is assisted by two-stage reaction of n-heptane. The active-thermal atmosphere is created by low- and high-temperature reactions of n-heptane which is injected at intake port, and isooctane is directly injected into combustion chamber near the top dead center. The effects of isooctane injection timing, active-thermal atmosphere intensity, overall equivalence ratio, and premixed ratio on combustion characteristics and emissions are investigated. The experimental results reveal that, the isooctane ignition and combustion can be classified to thermal atmosphere combustion, active atmosphere combustion, and active-thermal atmosphere combustion respectively according to the extent of n-heptane oxidation as well as effects of isooctane quenching and charge cooling. n-Heptane equivalence ratio, isooctane equivalence ratio and isooctane delivery advance angle are major control parameters. In one combustion cycle, the isooctane ignited and burned after those of n-heptane, and then this combustion phenomenon can also be named as dual-fuel sequential combustion (DFSC). The ignition timing of the overall combustion event is mainly determined by n-heptane equivalence ratio and can be controlled in flexibility by simultaneously adjusting isooctane equivalence ratio. The isooctane ignition regime, overall thermal efficiency, and NO{sub x} emissions show strong sensitivity to the fuel delivery advance angle between 20 CA BTDC and 25 CA BTDC. (author)

  18. Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  19. Highly controlled, reproducible measurements of aerosol emissions from combustion of a common African biofuel source

    Science.gov (United States)

    Haslett, Sophie L.; Thomas, J. Chris; Morgan, William T.; Hadden, Rory; Liu, Dantong; Allan, James D.; Williams, Paul I.; Keita, Sekou; Liousse, Cathy; Coe, Hugh

    2018-01-01

    Particulate emissions from biomass burning can both alter the atmosphere's radiative balance and cause significant harm to human health. However, due to the large effect on emissions caused by even small alterations to the way in which a fuel burns, it is difficult to study particulate production of biomass combustion mechanistically and in a repeatable manner. In order to address this gap, in this study, small wood samples sourced from Côte D'Ivoire in West Africa were burned in a highly controlled laboratory environment. The shape and mass of samples, available airflow and surrounding thermal environment were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. This methodology produced remarkably repeatable results, allowing aerosol emissions to be mapped directly onto different phases of combustion. Emissions from pyrolysis were visible as a distinct phase before flaming was established. After flaming combustion was initiated, a black-carbon-dominant flame was observed during which very little organic aerosol was produced, followed by a period that was dominated by organic-carbon-producing smouldering combustion, despite the presence of residual flaming. During pyrolysis and smouldering, the two phases producing organic aerosol, distinct mass spectral signatures that correspond to previously reported variations in biofuel emissions measured in the atmosphere are found. Organic aerosol emission factors averaged over an entire combustion event were found to be representative of the time spent in the pyrolysis and smouldering phases, rather than reflecting a coupling between emissions and the mass loss of the sample. Further exploration of aerosol yields from similarly carefully controlled fires and a careful comparison with data from macroscopic fires and real-world emissions will help to deliver greater constraints on the

  20. Combustion Property Analysis and Control System for the Dynamics of a Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2013-12-01

    Full Text Available Corresponding to global environment problems in recent year, the technology for reducing fuel consumption and exhaust gas emission of engine was needed. Simulation of transient engine response is needed to predict engine performance that frequently experience rapid changes of speed. The aim of this research is to develop a non-linear dynamic control model for direct injection single cylinder diesel engine which can simulate engine performance under transient conditions. In this paper, the combustion model with multistage injection and conducted experiments in the transient conditions to clarify the combustion characteristics was proposed. In order to perform the analysis of acceleration operation characteristics, it was built a Model Predictive Control (MPC to reproduce the characteristic values of the exhaust gas and fuel consumption from the control parameters in particular. Finally, MPC is an effective method to perform the analysis of characteristic in diesel engine under transient conditions.

  1. Control Scheme Formulation for the Production of Hydrogen on Demand to Feed an Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jarniel García Morales

    2016-12-01

    Full Text Available In this work, a control strategy is presented to produce hydrogen on demand to feed an internal combustion (IC engine. For this purpose, the modeling of the IC engine fueled by gasoline blended with 10 % v/v of anhydrous ethanol (E10 and hydrogen as an additive is developed. It is considered that the hydrogen gas is produced according to the IC engine demand, and that the hydrogen gas is obtained by an alkaline electrolyzer. The gasoline–ethanol blend added into the combustion chamber is determined according to the stoichiometric ratio and the production of hydrogen gas is regulated by a proportional and integral controller (P.I.. The controller reference is varying according to the mass flow air induced into the cylinder, in order to ensure an adequate production of hydrogen gas for any operating condition of the IC engine. The main contribution of this work is the control scheme developed, through simulation, in order to produce hydrogen on demand for any operating point of an internal combustion engine fueled by an E10 blend. The simulation results showed that the use of hydrogen gas as an additive in an E10 blend decreases the E10 fuel consumption 23 % on average, and the thermal efficiency is increased approximately 2.13 % , without brake power loss in the IC engine.

  2. Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2015-06-01

    Full Text Available Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.

  3. Design and implementation of a control system to improve the quality of the combustion gases in the fire-tube boiler of 5 BHP

    Directory of Open Access Journals (Sweden)

    Carlos Alfredo Pérez Albán

    2016-06-01

    Full Text Available The goal of this paper is the design and implementation of a system for controlling the quality of the combustion gases in a fire-tube boiler of 5 BHP. Based on the percentage of O2 present in the combustion gases, measured by a lambda sensor, the percentage of CO2 emitted into the atmosphere is determined. PID proportional control is responsible for the automatic regulation of the entry of air to the boiler by an actuator, according to the percentage of the oxygen concentration in the combustion gases. The control system has an HMI display and a modular PLC. The results achieved ensure pollutant gases emissions within the parameters established by current environmental standards, achieving the required quality of combustion gases and reducing the fuel consumption of the boiler.

  4. Systematic design of an intra-cycle fueling control system for advanced diesel combustion concepts

    NARCIS (Netherlands)

    Kefalidis, L.

    2017-01-01

    This technical report presents a systematic approach for the design and development of an intra-cycle fueling control system for diesel combustion concepts. A high level system was developed and implemented on an experimental engine setup. Implementation and experimental validation are performed for

  5. Developmental Comparisons of the Consequences for Memory of Spontaneous vs. Controlled Imaginal Elaborations.

    Science.gov (United States)

    Foley, Mary Ann; And Others

    Two studies compared the effects of spontaneous and controlled imagery on reality monitoring decisions. Reality monitoring refers to the decision processes involved in discriminating perceptual memories from imaginal ones. In Experiment 1, 6-year-olds and adults were shown pictures and words and they responded to one of two questions: (1)…

  6. Controls and measurements of KU engine test cells for biodiesel, SynGas, and assisted biodiesel combustion

    Science.gov (United States)

    Cecrle, Eric Daniel

    This thesis is comprised of three unique data acquisition and controls (CDAQ) projects. Each of these projects differs from each other; however, they all include the concept of testing renewable or future fuel sources. The projects were the following: University of Kansas's Feedstock-to-Tailpipe Initiative's Synthesis Gas Reforming rig, Feedstock-to-Tailpipe Initiative's Biodiesel Single Cylinder Test Stand, and a unique Reformate Assisted Biodiesel Combustion architecture. The main responsibility of the author was to implement, develop and test CDAQ systems for the projects. For the Synthesis Gas Reforming rig, this thesis includes a report that summarizes the analysis and solution of building a controls and data acquisition system for this setup. It describes the purpose of the sensors selected along with their placement throughout the system. Moreover, it includes an explanation of the planned data collection system, along with two models describing the reforming process useful for system control. For the Biodiesel Single Cylinder Test Stand, the responsibility was to implement the CDAQ system for data collection. This project comprised a variety of different sensors that are being used collect the combustion characteristics of different biodiesel formulations. This project is currently being used by other graduates in order to complete their projects for subsequent publication. For the Reformate Assisted Biodiesel Combustion architecture, the author developed a reformate injection system to test different hydrogen and carbon monoxide mixtures as combustion augmentation. Hydrogen combustion has certain limiting factors, such as pre-ignition in spark ignition engines and inability to work as a singular fuel in compression ignition engines. To offset these issues, a dual-fuel methodology is utilized by injecting a hydrogen/carbon monoxide mixture into the intake stream of a diesel engine operating on biodiesel. While carbon monoxide does degrade some of the

  7. Experimental research on combustion fluorine retention using calcium-based sorbents during coal combustion (II)

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Q.; Ma, X.; Liu, J.; Wu, X.; Zhou, J.; Cen, K. [Liaoning Technical University, Fuxin (China). College of Resource and Environment Engineering

    2008-12-15

    Fluoride pollution produced by coal burning can be controlled with the calcium-based sorbent combustion fluorine technique in which calcium-based sorbents are mixed with the coal or sprayed into the combustion chamber. In a fixed bed tube furnace combustion experiment using one calcium-based natural mineral, limestone and one calcium-based building material, it was shown that the calcium-based sorbent particle grain size and pore structure have a big influence on the combustion fluorine retention effect. Reducing the calcium-based sorbent particle grain size and improving the calcium sorbent structure characteristics at very high temperature to enhance the fluorine retention effect is the important approach to the fluorine retention agent development. 8 refs., 1 fig., 5 tabs.

  8. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  9. Chirality-controlled spontaneous twisting of crystals due to thermal topochemical reaction.

    Science.gov (United States)

    Rai, Rishika; Krishnan, Baiju P; Sureshan, Kana M

    2018-03-20

    Crystals that show mechanical response against various stimuli are of great interest. These stimuli induce polymorphic transitions, isomerizations, or chemical reactions in the crystal and the strain generated between the daughter and parent domains is transcribed into mechanical response. We observed that the crystals of modified dipeptide LL (N 3 -l-Ala-l-Val-NHCH 2 C≡CH) undergo spontaneous twisting to form right-handed twisted crystals not only at room temperature but also at 0 °C over time. Using various spectroscopic techniques, we have established that the twisting is due to the spontaneous topochemical azide-alkyne cycloaddition (TAAC) reaction at room temperature or lower temperatures. The rate of twisting can be increased by heating, exploiting the faster kinetics of the TAAC reaction at higher temperatures. To address the role of molecular chirality in the direction of twisting the enantiomer of dipeptide LL, N 3 -d-Ala-d-Val-NHCH 2 C≡CH (DD), was synthesized and topochemical reactivity and mechanoresponse of its crystals were studied. We have found that dipeptide DD not only underwent TAAC reaction, giving 1,4-triazole-linked pseudopolypeptides of d-amino acids, but also underwent twisting with opposite handedness (left-handed twisting), establishing the role of molecular chirality in controlling the direction of mechanoresponse. This paper reports ( i ) a mechanical response due to a thermal reaction and ( ii ) a spontaneous mechanical response in crystals and ( iii ) explains the role of molecular chirality in the handedness of the macroscopic mechanical response.

  10. Towards Control-Oriented Modeling of Natural Gas-Diesel RCCI Combustion

    NARCIS (Netherlands)

    Bekdemir, C.; Baert, R.; Willems, F.; Somers, B.

    2015-01-01

    For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The

  11. Towards control-oriented modeling of natural gas-diesel RCCI combustion

    NARCIS (Netherlands)

    Bekdemir, C.; Baert, R.S.G.; Willems, F.P.T.; Somers, L.M.T.

    2015-01-01

    For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The

  12. Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine

    International Nuclear Information System (INIS)

    Andwari, Amin Mahmoudzadeh; Aziz, Azhar Abdul; Said, Mohd Farid Muhamad; Latiff, Zulkarnain Abdul

    2014-01-01

    Highlights: • Investigate the effect of In-EGR, Ex-EGR and octane number on a CAI 2-stroke engine. • Effect of In-EGR, Ex-EGR and octane number on combustion phasing of the engine. • Effect of In-EGR, Ex-EGR and octane number on cyclic variability of the engine. • Identify the CAI combustion upper and lower boundary for operating regions. - Abstract: A two-stroke cycle engine incorporated with a controlled auto-ignition combustion approach presents a high thermodynamic efficiency, ultra-low exhaust emissions and high power-to-weight ratio features for future demand of prime movers. The start of auto-ignition, control of the auto-ignition and its cyclic variability, are major concerns that should be addressed in the combustion timing control of controlled auto-ignition engines. Several studies have been performed to examine the effect of internal exhaust gas recirculation utilization on auto-ignited two-stroke cycle engines. However, far too little attention has been devoted to study on the influence of external exhaust gas recirculation on the cyclic variation and the combustion characteristics of controlled auto-ignition two-stroke cycle engines. The purpose of this study is to examine the influence of external exhaust gas recirculation in combination with internal exhaust gas recirculation on the combustion characteristics and the cyclic variability of a controlled auto-ignition two-stroke engine using fuel with different octane numbers. In a detailed experimental investigation, the combustion-related and pressure-related parameters of the engine are examined and statistically associated with the coefficient of variation and the standard deviation. The outcomes of the investigation indicates that the most influential controlled auto-ignition combustion phasing parameters can be managed appropriately via regulating the internal and external exhaust gas recirculation and fuel octane number. In general, start of auto-ignition and its cyclic variability are

  13. Multi-stage combustion using nitrogen-enriched air

    Science.gov (United States)

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  14. CFD simulation of thermodynamic and temperature effects on spontaneous combustion of coal stockpiles and dumps

    CSIR Research Space (South Africa)

    Kekana, J

    2011-01-01

    Full Text Available and energy conservation equations through the porous media. Combustion processes under consideration included physical absorption and desorption of atmospheric species in the coal matrix, formation of coal-oxygen complexes and oxygenated carbon species...

  15. Meta-control of combustion performance with a data mining approach

    Science.gov (United States)

    Song, Zhe

    Large scale combustion process is complex and proposes challenges of optimizing its performance. Traditional approaches based on thermal dynamics have limitations on finding optimal operational regions due to time-shift nature of the process. Recent advances in information technology enable people collect large volumes of process data easily and continuously. The collected process data contains rich information about the process and, to some extent, represents a digital copy of the process over time. Although large volumes of data exist in industrial combustion processes, they are not fully utilized to the level where the process can be optimized. Data mining is an emerging science which finds patterns or models from large data sets. It has found many successful applications in business marketing, medical and manufacturing domains The focus of this dissertation is on applying data mining to industrial combustion processes, and ultimately optimizing the combustion performance. However the philosophy, methods and frameworks discussed in this research can also be applied to other industrial processes. Optimizing an industrial combustion process has two major challenges. One is the underlying process model changes over time and obtaining an accurate process model is nontrivial. The other is that a process model with high fidelity is usually highly nonlinear, solving the optimization problem needs efficient heuristics. This dissertation is set to solve these two major challenges. The major contribution of this 4-year research is the data-driven solution to optimize the combustion process, where process model or knowledge is identified based on the process data, then optimization is executed by evolutionary algorithms to search for optimal operating regions.

  16. LIEKKI 2 - Combustion and gasification research programme 1993- 1998. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M [ed.

    1999-12-31

    The six-year Combustion and Gasification Research Programme LIEKKI 2 (1993-1998) was oriented towards research serving the development of energy production technologies based on combustion and gasification. The programme was divided into six research areas: 1. Modelling of the furnace processes (39 projects); 2. Chemistry of gaseous emission components (28); 3. Particle behaviour, ash, aerosols (42); 4. New combustion and gasification technologies (27); 5. Black liquor (33) and 6. Conventional combustion technologies, waste incineration (19). The main aim of the research has been to develop new, more efficient and environmentally friendly techniques. The development of conventional combustion technology has also been an important part of the programme. Another important goal has been to maintain and develop maintain the competence of the research organisations in the combustion area and to intensify their collaboration. Concerning its research contents and its objectives LIEKKI 2, like its forerunner, has not been fuel-specific. The programme has investigated the thermal conversion of oil, gas, black liquor, and coal as well as that of peat, biofuels, and various waste materials, and it has further advanced the know-how concerning the utilisation of these fuels. This approach differs from the usual fuel-specific differentiation, which, for instance, IEA (International Energy Agency) and EU have applied in their research activities. This approach seems in retrospect to have been the right choice. It has been appropriate to stimulate co-operation between parties who would not seek co-operation spontaneously. One example of this is the development of a steelmaking process by a Finnish steel manufacturer under the LIEKKI programme. The programme has also provided synergetic advantages to the development of the recovery boiler processes of the pulp industry. Assessing the impact of the programme is a matter of many facets. The six-year research work and a total

  17. LIEKKI 2 - Combustion and gasification research programme 1993- 1998. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M. [ed.

    1998-12-31

    The six-year Combustion and Gasification Research Programme LIEKKI 2 (1993-1998) was oriented towards research serving the development of energy production technologies based on combustion and gasification. The programme was divided into six research areas: 1. Modelling of the furnace processes (39 projects); 2. Chemistry of gaseous emission components (28); 3. Particle behaviour, ash, aerosols (42); 4. New combustion and gasification technologies (27); 5. Black liquor (33) and 6. Conventional combustion technologies, waste incineration (19). The main aim of the research has been to develop new, more efficient and environmentally friendly techniques. The development of conventional combustion technology has also been an important part of the programme. Another important goal has been to maintain and develop maintain the competence of the research organisations in the combustion area and to intensify their collaboration. Concerning its research contents and its objectives LIEKKI 2, like its forerunner, has not been fuel-specific. The programme has investigated the thermal conversion of oil, gas, black liquor, and coal as well as that of peat, biofuels, and various waste materials, and it has further advanced the know-how concerning the utilisation of these fuels. This approach differs from the usual fuel-specific differentiation, which, for instance, IEA (International Energy Agency) and EU have applied in their research activities. This approach seems in retrospect to have been the right choice. It has been appropriate to stimulate co-operation between parties who would not seek co-operation spontaneously. One example of this is the development of a steelmaking process by a Finnish steel manufacturer under the LIEKKI programme. The programme has also provided synergetic advantages to the development of the recovery boiler processes of the pulp industry. Assessing the impact of the programme is a matter of many facets. The six-year research work and a total

  18. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Duo, E-mail: zhangduo10@gmail.com [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Li, Jiahua, E-mail: huajia_li@163.com [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Ding, Chunling; Yang, Xiaoxue [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-05-21

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission. -- Highlights: ► Spontaneous emission properties of an atom embedded in PCs are investigated. ► Spectral-line enhancement, suppression and overlapping are observed. ► The results provide more degrees of freedom to control atomic spontaneous emission.

  19. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    International Nuclear Information System (INIS)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-01-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission. -- Highlights: ► Spontaneous emission properties of an atom embedded in PCs are investigated. ► Spectral-line enhancement, suppression and overlapping are observed. ► The results provide more degrees of freedom to control atomic spontaneous emission.

  20. Device for controlling the composition of the mixture burnt in the combustion spaces of an internal combustion engine. Einrichtung zur Regelung der Zusammensetzung des in den Brennraeumen einer Brennkraftmaschine zur Verbrennung kommenden Betriebsgemisches

    Energy Technology Data Exchange (ETDEWEB)

    Latsch, R; Bianchi, V

    1986-07-31

    The purpose of the invention is to create a device by which the extent of the reaction to the control of the composition of the mixture burnt in the combustion spaces of an internal combustion engine can be measured in a sensitive, responsive and safe way, where the position of the elements detecting the reaction should have a relatively small effect on the accuracy of the measurement and the extent of measurement. According to the invention, this problem is solved by the use of 2 thermal sensors connected to a control device (photo-electric diode, photo-electric transistor), one of which acts catalytically and causes the parts of the gas mixture there to react. The thermal sensor output signals are periodically integrated via the piston work and are entered in the control device. The measured temperature is a measure of how far the method of operation of the internal combustion engine has approached its limits. (HWJ).

  1. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    Science.gov (United States)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  2. Related or not? Development of spontaneous Creutzfeldt-Jakob disease in a patient with chronic, well-controlled HIV: A case report and review of the literature.

    Science.gov (United States)

    Babi, M-Alain; Kraft, Bryan D; Sengupta, Sweta; Peterson, Haley; Orgel, Ryan; Wegermann, Zachary; Lugogo, Njira L; Luedke, Matthew W

    2016-01-01

    We report a novel case of a rare disease: spontaneous Creutzfeldt-Jakob disease in a patient with well-controlled HIV. We explore the relationship between spontaneous Creutzfeldt-Jakob disease and HIV. A 66-year-old man with long-standing, well-controlled HIV infection presented with 3 months of progressive, subacute neurocognitive decline. His symptoms included conceptual apraxia, apathy, memory impairment, and gait disturbance, and were initially attributed to depressive "pseudo-dementia." Unfortunately, the patient's symptoms rapidly progressed and he ultimately succumbed to his illness. Autopsy confirmed the clinical diagnosis of spontaneous Creutzfeldt-Jakob disease. This case highlights spontaneous Creutzfeldt-Jakob disease as a rare terminal illness in the setting of well-controlled chronic HIV. To our knowledge, this is the first report of a patient with chronic and previously well-controlled HIV infection dying from a prion disease. Despite the very different epidemiology and pathophysiology of HIV and spontaneous Creutzfeldt-Jakob disease, this case does raise questions of whether certain host genetic factors could predispose to both conditions, albeit currently, there is no clear causal link between HIV and spontaneous Creutzfeldt-Jakob disease.

  3. EMISIONES AL AIRE DE LA COMBUSTION DE LLANTAS USADAS (SPANISH VERSION)

    Science.gov (United States)

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  4. Effect of main injection timing for controlling the combustion phasing of a homogeneous charge compression ignition engine using a new dual injection strategy

    International Nuclear Information System (INIS)

    Das, Pranab; Subbarao, P.M.V.; Subrahmanyam, J.P.

    2015-01-01

    Highlights: • A new dual injection concept is developed by minimum geometry modification. • The occurrence of combustion parameters strongly depend on main injection timing. • At higher load, premixed equivalence ratio dominates over main injection timing. • Retarded of main injection timing tends to retard combustion phasing. • Slightly retarded main injection timing is recommended to avoid intense knocking. - Abstract: Homogeneous charge compression ignition combustion of diesel fuel is implemented using a novel dual injection strategy. A new experimental technique is developed to modify a single cylinder direct injection diesel engine to run on homogeneous combustion mode. Effect of main injection timing is investigated covering a range from 26 to 8 crank angle degrees before top dead center with an interval of 3°. Retarded main injection timing is identified as a control strategy for delaying combustion phasing and a means of controlled combustion phasing of direct injection homogeneous charge compression ignition combustion. Two load conditions were investigated and it was observed that at higher load, start of combustion depends more on fuel air equivalence ratio than main injection timing, whereas at low load, it significantly varies with varying main injection timing. Significant improvements in smoke and oxides of nitrogen emissions are observed when compared with the baseline conventional combustion. By studying different combustion parameters, it is observed that there is an improvement in performance and emissions with marginal loss in thermal efficiency when the main injection timing is 20° before top dead center. This is identified as the optimum main injection timing for such homogeneous combustion under the same operating condition

  5. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuan; Deng, Li [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Chen, Aixi, E-mail: aixichen@ecjtu.jx.cn [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1 (Canada)

    2015-02-15

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.

  6. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    International Nuclear Information System (INIS)

    Chen, Yuan; Deng, Li; Chen, Aixi

    2015-01-01

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device

  7. Atom localization via controlled spontaneous emission in a five-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhiping; Yu Benli; Zhu Jun; Cao Zhigang; Zhen Shenglai; Wu Xuqiang; Xu Feng

    2012-01-01

    We investigate the one- and two-dimensional atom localization behaviors via spontaneous emission in a coherently driven five-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of atom localization behaviors can be significantly improved via adjusting the system parameters. More importantly, the two-dimensional atom localization patterns reveal that the maximal probability of finding an atom within the sub-wavelength domain of the standing waves can reach unity when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization. - Highlights: ► One- and two-dimensional atom localization behaviors via spontaneous emission in five-level atoms are investigated. ► An assisting radio-frequency field is used to control the atom localization behaviors. ► High-precision and high-resolution two-dimensional atom localization can be realized in this scheme.

  8. 30 CFR 56.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  9. 30 CFR 57.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  10. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  11. Pollution active control: a strategy for a clean and efficient combustion; Le controle actif des polluants: une strategie pour une combustion propre et efficace

    Energy Technology Data Exchange (ETDEWEB)

    Lacas, F. [CNRS Ecole Centrale de Paris, 75 (France). Laboratoire E.M2.C

    1996-12-31

    The active control NOx reduction concept has been applied on two burners (20 kW and 840 kW), using a rotary valve enabling an excitation in the 100 to 1000 Hz band, that can be mounted on existing appliances such as domestic or industrial boilers. NOx level reduction may reach 15 pc for the 20 kW burner, 25 pc for the 840 kW burner with domestic fuel oil and 35 pc for the 840 kW burner using pyridine doped domestic fuel oil. Mechanisms are detailed through flow visualization, and consist mainly in an annular vortex inducing a fuel/air pre-mixing favourable to a large decrease in NOx generation level and establishing a staged process such as in re-burning processes. The pulsed combustion process may be also combined to other pollution control systems

  12. Development of a Premixed Combustion Capability for Scramjet Combustion Experiments

    Science.gov (United States)

    Rockwell, Robert D.; Goyne, Christopher P.; Rice, Brian E.; Chelliah, Harsha; McDaniel, James C.; Edwards, Jack R.; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.

    2015-01-01

    Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.

  13. Functional Group Analysis for Diesel-like Mixing-Controlled Compression Ignition Combustion Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Daniel J.; McCormick, Robert L.; Polikarpov, Evgueni; Fioroni, Gina; George, Anthe; Albrecht, Karl O.

    2016-12-30

    This report addresses the suitability of hydrocarbon and oxygenate functional groups for use as a diesel-like fuel blending component in an advanced, mixing-controlled, compression ignition combustion engine. The functional groups are chosen from those that could be derived from a biomass feedstock, and represent a full range of chemistries. This first systematic analysis of functional groups will be of value to all who are pursuing new bio-blendstocks for diesel-like fuels.

  14. Cigarette, alcohol, and caffeine consumption: risk factors for spontaneous abortion

    DEFF Research Database (Denmark)

    Rasch, Vibeke

    2003-01-01

    OBJECTIVE: To study the association between cigarette, alcohol, and caffeine consumption and the occurrence of spontaneous abortion. METHODS: The study population consisted of 330 women with spontaneous abortion and 1168 pregnant women receiving antenatal care. A case-control design was utilized;...... units alcohol per week and 375 mg or more caffeine per day during pregnancy may increase the risk of spontaneous abortion.......OBJECTIVE: To study the association between cigarette, alcohol, and caffeine consumption and the occurrence of spontaneous abortion. METHODS: The study population consisted of 330 women with spontaneous abortion and 1168 pregnant women receiving antenatal care. A case-control design was utilized......; cases were defined as women with a spontaneous abortion in gestational week 6-16 and controls as women with a live fetus in gestational week 6-16. The variables studied comprise age, parity, occupational situation, cigarette, alcohol, and caffeine consumption. The association between cigarette, alcohol...

  15. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.

    Science.gov (United States)

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M

    2013-02-01

    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  16. Combustion mode switching with a turbocharged/supercharged engine

    Science.gov (United States)

    Mond, Alan; Jiang, Li

    2015-09-22

    A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.

  17. Variable compression ratio device for internal combustion engine

    Science.gov (United States)

    Maloney, Ronald P.; Faletti, James J.

    2004-03-23

    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  18. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  19. Technology for emission control in internal combustion engines; Kakushu nainen kikan ni okeru hai gas joka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shioji, M. [Kyoto University, Kyoto (Japan)

    1998-09-01

    Described herein are emission control technology and exhaust gas cleaning measures for internal combustion engines. Gas turbines burn relatively high-quality fuels, such as natural gas, kerosene, diesel oil and gas oil, where the major concerns are to reduce NOx and dust emissions. The NOx abatement techniques fall into two general categories; wet processes which inject water or steam, and dry processes which depend on improved combustion. Power generation and cogeneration which burn natural gas adopt lean, premixed combustion and two-stage combustion as the major approaches. Low-speed, large-size diesel engines, which realize very high thermal efficiency, discharge high concentrations of NOx. Delayed fuel injection timing is the most easy NOx abatement technique to meet the related regulations, but is accompanied by decreased fuel economy. Use of water-emulsified fuel, water layer injection and multi-port injection can reduce NOx emissions without decreasing fuel economy, depending on optimization methods adopted. Automobile gasoline engines are required to further clean exhaust gases by catalystic systems. 9 refs., 10 figs., 6 tabs.

  20. Development of a NO/x/-free combustion system

    Science.gov (United States)

    Sadakata, M.; Furusawa, T.; Kunii, D.; Imagawa, M.; Nawada, M.

    1980-04-01

    The development of a NO(x)-free combustion-heating system realizing both pollution control and energy savings is described. An experiment was carried out by using a small model plant. The system consists of a combustion furnace and a new-type multifunctional heat exchanger. The heat exchanger is a rotary continuous type designed for soot collection and for catalytic combustion of CO and H2 as well as for preheating combustion air.

  1. 30 CFR 57.4104 - Combustible waste.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Combustible waste. 57.4104 Section 57.4104... Control Prohibitions/precautions/housekeeping § 57.4104 Combustible waste. (a) Waste materials, including liquids, shall not accumulate in quantities that could create a fire hazard. (b) Waste or rags containing...

  2. Modeling and controller design architecture for cycle-by-cycle combustion control of homogeneous charge compression ignition (HCCI) engines – A comprehensive review

    International Nuclear Information System (INIS)

    Fathi, Morteza; Jahanian, Omid; Shahbakhti, Mahdi

    2017-01-01

    Highlights: • Addressing accuracy-speed compromise of HCCI representation is very important. • Phasing, load, exhaust temperature and emissions are the most important outputs. • Separability between the effects of the inputs on the outputs is of great interest. • Existing actuation systems combining inputs are favorable. • An HCCI controller should be a fast and robust one to become a viable solution. - Abstract: Homogeneous charge compression ignition (HCCI) combustion engines are advantageous in terms of good fuel economy and low levels of soot-nitrogen oxides (NOx) emissions. However, they are accompanied with some intrinsic challenges, the most important of which is the lack of any direct control method for ignition trigger. Thus, implementation of HCCI combustion is in fact a control problem, and an optimized control structure is required for attaining the inherent benefits of HCCI. The control structure consists of a proper representation of engine processes; a suitable selection of state variables; useful and applicable set of inputs, outputs and observers; appropriate fixed or variable set-points for controlled parameters; instrumentations including sensors and actuators; and an applicable control law implemented in a controller. The present paper aims at addressing these issues altogether by introducing HCCI engine control structure in progress and presenting highlights from literature. Research should result in appropriately controlled HCCI engines which can provide desired load at rated speed with acceptable performance and emissions characteristics.

  3. Modeling the effect of seal leakage on spontaneous heating in a longwall gob area

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.C.; Yuan, L. [National Inst. for Occupational Safety and Health, Pittsburgh, PA (United States). Office of Mine Safety and Health Research

    2010-07-01

    Three coal mines in the United States with a history of spontaneous combustion use a bleederless ventilation system as a control measure. In a bleederless system, one of the headgate entries is used as the tailgate entry of the succeeding panel and is isolated from the gob of the active panel by gob seals that are installed in the headgate entry as the face advances. An active longwall panel using a Y-type bleederless ventilation system was simulated in this study. As longwall mining progresses, some seals are known to leak. Computational fluid dynamics (CFD) simulations were performed to study the effect of seal leakage on spontaneous heating of coal in the longwall gob area. The simulation results showed that under typical bleederless ventilation conditions, the maximum temperature in the gob increased with an increase in leakage rate. The maximum temperature occurred at the headgate side corner at the back end of the panel. When only 1 or 2 seals were leaking, the maximum temperature occurred around the seal. The results demonstrate that complex interactions between pressure differential and gob permeability at different locations in the gob cause ventilation pathways. The interactions depend greatly on gob permeability and seal leakage rates. 8 refs., 1 tab., 14 figs.

  4. Spontaneous Hedonic Reactions to Social Media Cues.

    Science.gov (United States)

    van Koningsbruggen, Guido M; Hartmann, Tilo; Eden, Allison; Veling, Harm

    2017-05-01

    Why is it so difficult to resist the desire to use social media? One possibility is that frequent social media users possess strong and spontaneous hedonic reactions to social media cues, which, in turn, makes it difficult to resist social media temptations. In two studies (total N = 200), we investigated less-frequent and frequent social media users' spontaneous hedonic reactions to social media cues using the Affect Misattribution Procedure-an implicit measure of affective reactions. Results demonstrated that frequent social media users showed more favorable affective reactions in response to social media (vs. control) cues, whereas less-frequent social media users' affective reactions did not differ between social media and control cues (Studies 1 and 2). Moreover, the spontaneous hedonic reactions to social media (vs. control) cues were related to self-reported cravings to use social media and partially accounted for the link between social media use and social media cravings (Study 2). These findings suggest that frequent social media users' spontaneous hedonic reactions in response to social media cues might contribute to their difficulties in resisting desires to use social media.

  5. Highly controlled, reproducible measurements of aerosol emissions from combustion of a common African biofuel source

    Directory of Open Access Journals (Sweden)

    S. L. Haslett

    2018-01-01

    Full Text Available Particulate emissions from biomass burning can both alter the atmosphere's radiative balance and cause significant harm to human health. However, due to the large effect on emissions caused by even small alterations to the way in which a fuel burns, it is difficult to study particulate production of biomass combustion mechanistically and in a repeatable manner. In order to address this gap, in this study, small wood samples sourced from Côte D'Ivoire in West Africa were burned in a highly controlled laboratory environment. The shape and mass of samples, available airflow and surrounding thermal environment were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. This methodology produced remarkably repeatable results, allowing aerosol emissions to be mapped directly onto different phases of combustion. Emissions from pyrolysis were visible as a distinct phase before flaming was established. After flaming combustion was initiated, a black-carbon-dominant flame was observed during which very little organic aerosol was produced, followed by a period that was dominated by organic-carbon-producing smouldering combustion, despite the presence of residual flaming. During pyrolysis and smouldering, the two phases producing organic aerosol, distinct mass spectral signatures that correspond to previously reported variations in biofuel emissions measured in the atmosphere are found. Organic aerosol emission factors averaged over an entire combustion event were found to be representative of the time spent in the pyrolysis and smouldering phases, rather than reflecting a coupling between emissions and the mass loss of the sample. Further exploration of aerosol yields from similarly carefully controlled fires and a careful comparison with data from macroscopic fires and real-world emissions will help to deliver

  6. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  7. Spontaneous mutation rates and the rate-doubling dose

    International Nuclear Information System (INIS)

    Von Borstel, R.C.; Moustaccki, E.; Latarjet, R.

    1978-01-01

    The amount of radiation required to double the frequency of mutations or tumours over the rate of those that occur spontaneously is called the rate-doubling dose. An equivalent concept has been proposed for exposure to other environmental mutagens. The doubling dose concept is predicated on the assumption that all human populations have the same spontaneous mutation rate, and that this spontaneous mutation rate is known. It is now established for prokaryotes and lower eukaryotes that numerous genes control the spontaneous mutation rate, and it is likely that the same is true for human cells as well. Given that the accepted mode of evolution of human populatons is from small, isolated groups of individuals, it seems likely that each population would have a different spontaneous mutation rate. Given that a minimum of twenty genes control or affect the spontaneous mutation rate, and that each of these in turn is susceptible to spontaneously arising or environmentally induced mutations, it seems likely that every individual within a population (except for siblings from identical multiple births) will have a unique spontaneous mutation rate. If each individual in a population does have a different spontaneous mutation rate, the doubling dose concept, in rigorous terms, is fallacious. Therefore, as with other concepts of risk evaluation, the doubling dose concept is subject to criticism. Nevertheless, until we know individual spontaneous mutation rates with precision, and can evaluate risks based on this information, the doubling dose concept has a heuristic value and is needed for practical assessment of risks for defined populations. (author)

  8. New regulations, combustion, environment: responses for natural gas; Nouvelles reglementations, combustion, environnement: les reponses pour le gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Le Peltier-Marc, A. [Gaz de France (GDF), 75 - Paris (France). Direction Commerciale

    1997-12-31

    The impacts of the new French regulations concerning low- to medium-power combustion equipment with regards to their energy sources, energy efficiency and pollution control, on natural gas fired boilers, are discussed: lower pollutant emission limits are set for SO{sub 2}, NO{sub x} and ashes. The decree gives new regulations concerning plant location, combustion control systems, plant monitoring and maintenance, and air pollution control measures such as chimney stack height and emission limits. The French national gas utility promotes environmental high performance boilers

  9. Combustible gas concentration control facility and operation method therefor

    International Nuclear Information System (INIS)

    Yoshikawa, Kazuhiro; Ando, Koji; Kinoshita, Shoichiro; Yamanari, Shozo; Moriya, Kimiaki; Karasawa, Hidetoshi

    1998-01-01

    The present invention provides a hydrogen gas-control facility by using a fuel battery-type combustible gas concentration reducing device as a countermeasure for controlling a hydrogen gas in a reactor container. Namely, a hydrogen electrode adsorb hydrogen by using an ion exchange membrane comprising hydrogen ions as a charge carrier. An air electrode adsorb oxygen in the air. A fuel battery converts recombining energy of hydrogen and oxygen to electric energy. Hydrogen in this case is supplied from an atmosphere in the container. Oxygen in this case is supplied from the air outside of the container. If hydrogen gas should be generated in the reactor, power generation of is performed by the fuel battery by using hydrogen gas, as a fuel, on the side of the hydrogen electrode of the fuel battery and using oxygen, as a fuel, in the air outside of the container on the side of the air electrode. Then, the hydrogen gas is consumed thereby controlling the hydrogen gas concentration in the container. Electric current generated in the fuel battery is used as an emergency power source for the countermeasure for a severe accident. (I.S.)

  10. Combustible gas concentration control facility and operation method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Ando, Koji; Kinoshita, Shoichiro; Yamanari, Shozo; Moriya, Kimiaki; Karasawa, Hidetoshi

    1998-09-25

    The present invention provides a hydrogen gas-control facility by using a fuel battery-type combustible gas concentration reducing device as a countermeasure for controlling a hydrogen gas in a reactor container. Namely, a hydrogen electrode adsorb hydrogen by using an ion exchange membrane comprising hydrogen ions as a charge carrier. An air electrode adsorb oxygen in the air. A fuel battery converts recombining energy of hydrogen and oxygen to electric energy. Hydrogen in this case is supplied from an atmosphere in the container. Oxygen in this case is supplied from the air outside of the container. If hydrogen gas should be generated in the reactor, power generation of is performed by the fuel battery by using hydrogen gas, as a fuel, on the side of the hydrogen electrode of the fuel battery and using oxygen, as a fuel, in the air outside of the container on the side of the air electrode. Then, the hydrogen gas is consumed thereby controlling the hydrogen gas concentration in the container. Electric current generated in the fuel battery is used as an emergency power source for the countermeasure for a severe accident. (I.S.)

  11. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health.

    Science.gov (United States)

    Oliveira, Marcos L S; da Boit, Kátia; Pacheco, Fernanda; Teixeira, Elba C; Schneider, Ismael L; Crissien, Tito J; Pinto, Diana C; Oyaga, Rafael M; Silva, Luis F O

    2018-01-01

    Pollution generated by hazardous elements and persistent organic compounds that affect coal fire is a major environmental concern because of its toxic nature, persistence, and potential risk to human health. The coal mining activities are growing in the state of Santa Catarina in Brazil, thus the collateral impacts on the health and economy are yet to be analyzed. In addition, the environment is also enduring the collateral damage as the waste materials directly influence the coal by-products applied in civil constructions. This study was aimed to establish the relationships between the composition, morphology, and structural characteristics of ultrafine particles emitted by coal mine fires. In Brazil, the self-combustions produced by Al-Ca-Fe-Mg-Si coal spheres are rich in chalcophile elements (As, Cd, Cu, Hg, Pb, Sb, Se, Sn, and Zn), lithophile elements (Ce, Hf, In, La, Th, and U), and siderophile elements (Co, Cr, Mo, Fe, Ni, and V). The relationship between nanomineralogy and the production of hazardous elements as analyzed by advanced methods for the geochemical analysis of different materials were also delineated. The information obtained by the mineral substance analysis may provide a better idea for the understanding of coal-fire development and assessing the response of particular coal in different combustion processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Solution combustion synthesis of calcium phosphate particles for controlled release of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junfeng, E-mail: daidai02304@163.com [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Zhao, Junjie; Qian, Yu; Zhang, Xiali; Zhou, Feifei; Zhang, Hong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Lu, Hongbin [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing (China); Chen, JianHua; Wang, XuHong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Yu, Wencong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China)

    2015-05-01

    Four different phase compositions of calcium phosphate (CaP) particles were prepared via a solution combustion method. X-ray diffraction (XRD) and Rietveld analysis results revealed that the variations in the nominal Ca/P (molar) ratios were found to provide a favorable control in the different proportions of CaP materials. Bovine serum albumin (BSA) was used as a model protein to study the loading and release behavior. The release profile indicated that the BSA release rates depended on the phase compositions of the CaP particles, and showed an order of TCP-BSA > BCP-1-BSA > BCP-2-BSA > HA-BSA. The results suggested that the BSA protein release rate can be controlled by varying the phase compositions of CaP carriers. Moreover, the release process involved two stages: firstly surface diffusion via ion exchange and secondly intraparticle diffusion. - Highlights: • Solution combustion method was an efficient way to produced CaP powders. • Ca/P (molar) ratios provided a favorable control in the different proportions of phase composition. • BSA release rate varied depending on the phase composition of the CaP particles. • Two kinetic models were chosen to simulate the release kinetics of the drugs from CaP carriers.

  13. Science review of internal combustion engines

    International Nuclear Information System (INIS)

    Taylor, Alex M.K.P.

    2008-01-01

    Internal combustion engines used in transportation produce about 23% of the UK's carbon dioxide emission, up from 14% in 1980. The current science described in this paper suggests that there could be 6-15% improvements in internal combustion fuel efficiency in the coming decade, although filters to meet emission legislation reduce these gains. Using these engines as hybrids with electric motors produces a reduction in energy requirements in the order of 21-28%. Developments beyond the next decade are likely to be dominated by four topics: emission legislation and emission control, new fuels, improved combustion and a range of advanced concepts for energy saving. Emission control is important because current methods for limiting nitrogen oxides and particulate emissions imply extra energy consumption. Of the new fuels, non-conventional fossil-derived fuels are associated with larger greenhouse gas emissions than conventional petroleum-based fuels, while a vehicle propelled by fuel cells consuming non-renewable hydrogen does not necessarily offer an improvement in emissions over the best hybrid internal combustion engines. Improved combustion may be developed for both gasoline and diesel fuels and promises better efficiency as well as lower noxious emissions without the need for filtering. Finally, four advanced concepts are considered: new thermodynamic cycles, a Rankine bottoming cycle, electric turbo-compounding and the use of thermoelectric devices. The latter three all have the common theme of trying to extract energy from waste heat, which represents about 30% of the energy input to an internal combustion engine

  14. Combustion chemistry - activities in the CHEK research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K.; Johnsson, J.E.; Glarborg, P.; Frandsen, F.; Jensen, A.; Oestberg, M. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1997-10-01

    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This presentation describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control) Research Programme. (orig.)

  15. Performance and optimization of a combustion interface for isotope ratio monitoring gas chromatography/mass spectrometry

    Science.gov (United States)

    Merritt, D. A.; Freeman, K. H.; Ricci, M. P.; Studley, S. A.; Hayes, J. M.

    1995-01-01

    Conditions and systems for on-line combustion of effluents from capillary gas chromatographic columns and for removal of water vapor from product streams were tested. Organic carbon in gas chromatographic peaks 15 s wide and containing up to 30 nanomoles of carbon was quantitatively converted to CO2 by tubular combustion reactors, 200 x 0.5 mm, packed with CuO or NiO. No auxiliary source of O2 was required because oxygen was supplied by metal oxides. Spontaneous degradation of CuO limited the life of CuO reactors at T > 850 degrees C. Since NiO does not spontaneously degrade, its use might be favored, but Ni-bound carbon phases form and lead to inaccurate isotopic results at T Water must be removed from the gas stream transmitted to the mass spectrometer or else protonation of CO2 will lead to inaccuracy in isotopic analyses. Although thresholds for this effect vary between mass spectrometers, differential permeation of H2O through Nafion tubing was effective in both cases tested, but the required length of the Nafion membrane was 4 times greater for the more sensitive mass spectrometer.

  16. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  17. Introduction to modeling and control of internal combustion engine systems

    Energy Technology Data Exchange (ETDEWEB)

    Guzzella, Lino; Onder, Christopher H. [ETH Zuerich (Switzerland). Institute for Dynamic Systems and Control

    2010-07-01

    Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: - restructured and slightly extended section on superchargers; - short subsection on rotational oscillations and their treatment on engine test-benches; - complete section on modeling, detection, and control of engine knock; - improved physical and chemical model for the three-way catalytic converter; - new methodology for the design of an air-to-fuel ratio controller; - short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects. (orig.)

  18. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  19. Combustion chemistry. Activities in the CHEC research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K; Johnsson, J E; Glarborg, P; Frandsen, F; Jensen, A; Oestberg, M [Technical Univ. of Denmark, Dept. of Chemical Engineering, Lyngby (Denmark)

    1996-12-01

    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This paper describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control Research Programme). (au) 173 refs.

  20. Spontaneous pushing to prevent postpartum urinary incontinence: a randomized, controlled trial.

    Science.gov (United States)

    Low, Lisa Kane; Miller, Janis M; Guo, Ying; Ashton-Miller, James A; DeLancey, John O L; Sampselle, Carolyn M

    2013-03-01

    The risk for urinary incontinence can be 2.6-fold greater in women after pregnancy and childbirth compared with their never-pregnant counterparts, with the incidence increasing with parity. We tested the hypothesis that the incidence of de novo postpartum urinary incontinence in primiparous women is reduced with the use of spontaneous pushing alone or in combination with perineal massage compared with women who experienced traditional directed pushing for second-stage management. This was a prospective clinical trial enrolling and randomizing 249 women into a four-group design: (1) routine care with coached or directed pushing, (2) spontaneous self-directed pushing, (3) prenatal perineal massage initiated in the third trimester, and (4) the combination of spontaneous pushing plus perineal massage. Self-report of incontinence was assessed using analysis of variance (ANOVA) and covariance (ANCOVA) models in 145 remaining women at 12 months postpartum using the Leakage Index, which is sensitive to minor leakage. No statistical difference in the incidence of de novo postpartum incontinence was found based on method of pushing (spontaneous/directed) (P value = 0.57) or in combination with prenatal perineal massage (P value = 0.57). Fidelity to pushing treatment of type was assessed and between-groups crossover detected. Spontaneous pushing did not reduce the incidence of postpartum incontinence experienced by women 1 year after their first birth due to high cross-over between randomization groups.

  1. Novel approaches in advanced combustion characterization of fuels for advanced pressurized combustion

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Haemaelaeinen, J. [VTT Energy (Finland); Joutsenoja, T. [Tampere Univ. of Technology (Finland)

    1996-12-01

    This project is a part of the EU Joule 2 (extension) programme. The objective of the research of Technical Research Centre of Finland (VTT) is to produce experimental results of the effects of pressure and other important parameters on the combustion of pulverized coals and their char derivates. The results can be utilized in modelling of pressurized combustion and in planning pilot-scale reactors. The coals to be studied are Polish hvb coal, French lignite (Gardanne), German anthracite (Niederberg) and German (Goettelbom) hvb coal. The samples are combusted in an electrically heated, pressurized entrained flow reactor (PEFR), where the experimental conditions are controlled with a high precision. The particle size of the fuel can vary between 100 and 300 {mu}m. The studied things are combustion rates, temperatures and sizes of burning single coal and char particles. The latter measurements are performed with a method developed by Tampere University of Technology, Finland. In some of the experiments, mass loss and elemental composition of the char residue are studied in more details as the function of time to find out the combustion mechanism. Combustion rate of pulverized (140-180 {mu}m) Gardanne lignite and Niederberg anthracite were measured and compared with the data obtained earlier with Polish hvb coal at various pressures, gas temperatures, oxygen partial pressures and partial pressures of carbon dioxide in the second working period. In addition, particle temperatures were measured with anthracite. The experimental results were treated with multivariable partial least squares (PLS) method to find regression equation between the measured things and the experimental variables. (author)

  2. Combustion engine. [for air pollution control

    Science.gov (United States)

    Houseman, J. (Inventor)

    1977-01-01

    An arrangement for an internal combustion engine is provided in which one or more of the cylinders of the engine are used for generating hydrogen rich gases from hydrocarbon fuels, which gases are then mixed with air and injected into the remaining cylinders to be used as fuel. When heavy load conditions are encountered, hydrocarbon fuel may be mixed with the hydrogen rich gases and air and the mixture is then injected into the remaining cylinders as fuel.

  3. Design and Testing of a Breadboard Electrical Power Control Unit for the Fluid Combustion Facility Experiment

    Science.gov (United States)

    Kimnach, Greg L.; Lebron, Ramon C.

    1999-01-01

    The Fluid Combustion Facility (FCF) Project and the Power Technology Division at the NASA Glenn Research Center (GRC) at Lewis Field in Cleveland, OH along with the Sundstrand Corporation in Rockford, IL are jointly developing an Electrical Power Converter Unit (EPCU) for the Fluid Combustion Facility to be flown on the International Space Station (ISS). The FCF facility experiment contains three racks: A core rack, a combustion rack, and a fluids rack. The EPCU will be used as the power interface to the ISS 120V(sub dc) power distribution system by each FCF experiment rack which requires 28V(sub dc). The EPCU is a modular design which contains three 120V(sub dc)-to-28V(sub dc) full-bridge, power converters rated at 1 kW(sub e) each bus transferring input relays and solid-state, current-limiting input switches, 48 current-limiting, solid-state, output switches; and control and telemetry hardware. The EPCU has all controls required to autonomously share load demand between the power feeds and--if absolutely necessary--shed loads. The EPCU, which maximizes the usage of allocated ISS power and minimizes loss of power to loads, can be paralleled with other EPCUs. This paper overviews the electrical design and operating characteristics of the EPCU and presents test data from the breadboard design.

  4. International evaluation of the programme on engine-related combustion

    Energy Technology Data Exchange (ETDEWEB)

    Arcoumanis, D [Imperial College, London (United Kingdom); Greenhalgh, D [Cranfield Univ. (United Kingdom); Magnusson, B F [Norwegian Univ. of Science and Technology, Trondheim (Norway); Peters, N [Institut fuer Technische Mechanik, RWTH Aachen (Germany)

    1996-11-01

    The 12 projects in the engine related combustion programme cover the entire range from fundamental and theoretical aspects of combustion to more applied subjects such as engine control. The common denominator in the programme clearly is the internal combustion engine, both the reciprocating as well as the gas turbine engine. Such a large coverage by a relatively small number of projects necessarily leads to an isolation of some of the projects in terms of their subject as well as the methodology that is used. On the other hand, all the research areas of interest in combustion technology are represented by at least one of the projects. These are: mathematical and numerical methods in combustion; modelling of turbulent combustion; laser diagnostics of flows with combustion; studies of engine performance and their control; semi-empirical model development for practical applications. As a conclusion, the evaluation committee believes that the programme is well balanced between fundamental and applied projects. It covers the entire range of modern methodologies that are used on the international level and thereby contributes to the application and further development of these research tools in Sweden

  5. In situ high-temperature gas sensors: continuous monitoring of the combustion quality of different wood combustion systems and optimization of combustion process

    Directory of Open Access Journals (Sweden)

    H. Kohler

    2018-03-01

    Full Text Available The sensing characteristics and long-term stability of different kinds of CO ∕ HC gas sensors (non-Nernstian mixed potential type during in situ operation in flue gas from different types of low-power combustion systems (wood-log- and wood-chip-fuelled were investigated. The sensors showed representative but individual sensing behaviour with respect to characteristically varying flue gas composition over the combustion process. The long-term sensor signal stability evaluated by repeated exposure to CO ∕ H2 ∕ N2 ∕ synthetic air mixtures showed no sensitivity loss after operation in the flue gas. Particularly for one of the sensors (Heraeus GmbH, this high signal stability was observed in a field test experiment even during continuous operation in the flue gas of the wood-chip firing system over 4 months. Furthermore, it was experimentally shown that the signals of these CO ∕ HC sensing elements yield important additional information about the wood combustion process. This was demonstrated by the adaptation of an advanced combustion airstream control algorithm on a wood-log-fed fireplace and by the development of a combustion quality monitoring system for wood-chip-fed central heaters.

  6. Combustion stratification study of partially premixed combustion using Fourier transform analysis of OH* chemiluminescence images

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-11-06

    A relatively high level of stratification (qualitatively: lack of homogeneity) is one of the main advantages of partially premixed combustion over the homogeneous charge compression ignition concept. Stratification can smooth the heat release rate and improve the controllability of combustion. In order to compare stratification levels of different partially premixed combustion strategies or other combustion concepts, an objective and meaningful definition of “stratification level” is required. Such a definition is currently lacking; qualitative/quantitative definitions in the literature cannot properly distinguish various levels of stratification. The main purpose of this study is to objectively define combustion stratification (not to be confused with fuel stratification) based on high-speed OH* chemiluminescence imaging, which is assumed to provide spatial information regarding heat release. Stratification essentially being equivalent to spatial structure, we base our definition on two-dimensional Fourier transforms of photographs of OH* chemiluminescence. A light-duty optical diesel engine has been used to perform the OH* bandpass imaging on. Four experimental points are evaluated, with injection timings in the homogeneous regime as well as in the stratified partially premixed combustion regime. Two-dimensional Fourier transforms translate these chemiluminescence images into a range of spatial frequencies. The frequency information is used to define combustion stratification, using a novel normalization procedure. The results indicate that this new definition, based on Fourier analysis of OH* bandpass images, overcomes the drawbacks of previous definitions used in the literature and is a promising method to compare the level of combustion stratification between different experiments.

  7. A micro-chip initiator with controlled combustion reactivity realized by integrating Al/CuO nanothermite composites on a microhotplate platform

    International Nuclear Information System (INIS)

    Ahn, Ji Young; Lee, Hyung Woo; Kim, Jong Man; Kim, Soo Hyung; Kim, Sang Beom; Kim, Ji Hoon; Jang, Nam Su; Kim, Dae Hyun

    2016-01-01

    The interfacial contact area between the fuel and oxidizer components plays an important role in determining the combustion reactivity of nanothermite composites. In addition, the development of compact and reliable ignition methods can extend the applicability of nanothermite composites to various thermal engineering fields. In this study we report the development of a micro-chip initiator with controlled combustion reactivity using concepts usually applied to microelectromechanical systems (MEMS) and simple nanofabrication processes. The nanothermite composites fabricated in this study consisted of aluminum nanoparticles (Al NPs) as the fuel and copper oxide nanoparticles (CuO NPs) as the oxidizer accumulated on a silicon oxide substrate with a serpentine-shaped gold (Au) electrode. The micro-chip initiator rapidly ignited and exploded when minimal current was supplied. The effects of stacking structures of Al and CuO-based multilayers on the combustion properties were systematically investigated in terms of the pressurization rate, peak explosion time, and heat flow. Pressurization rates of 0.004–0.025 MPa μs −1 and heat flows of 2.0–3.8 kJ g −1 with a commonly fast response time of less than 20 ms could be achieved by simply changing the interfacial structures of the Al and CuO multilayers. The controllability of combustion reactivity of micro-chip initiator can be made for general nanothermite composites composed of Al and various metal oxides (e.g. Fe 2 O 3 , CuO, KMnO 4 , etc). The micro-chip initiator fabricated in this study was reliable, compact, and proved to be a versatile platform, exhibiting controlled combustion reactivity and fast response time, which could be used for various civilian and military thermal engineering applications, such as in initiators and propulsion, welding, and ordinance systems. (paper)

  8. Flue Gas Emissions from Fluidized Bed Combustion

    NARCIS (Netherlands)

    Bramer, E.A.; Valk, M.

    1995-01-01

    During the past decades fluidized bed coal combustion was developed as a technology for burning coal in an effective way meeting the standards for pollution control. During the earlier years of research on fluidized bed combustion, the potential for limiting the S02 emission by adding limestone to

  9. The Application for a Prediction of the Coal Spontaneous Ignition - Predisam

    Science.gov (United States)

    Moni, Vlastimil; Klouda, Petr; Blata, Jan; Helebrant, František

    2017-06-01

    The article follows the research of the project number TA01020351 called "The research of possibilities when predicting steam origin and consequent spontaneous ignition of brown coal fuels" which was researched with the support of the Technological Agency in the Czech Republic in 2011-2014 in the connection with a realized technical research. Therefore, it gives a summary information about the evaluation of the risk degree for the origin of spontaneous ignitions of the brown coal. The presented way of evaluation is based on a numeric expression of a value for MHU criteria - the point load of particular indicators is added together with other results gained from this research project. Then, more information is taken from companies running the dumps of brown coal products - both for suppliers (mining companies) and big consumers (power engineering). The complex knowledge about prediction of the origin of the spontaneous ignition enables to make an early response to eliminate a threat of mining fire in open pit mines or on the dumps of coal products. Consequently, it reduces the risk of fire and breakdowns of transportation means DPD, heavy machines and preparation plants. The working injuries are reduced as well - burns by coal in fire or inhalation of gas products from imperfect combustion.

  10. System and method for engine combustion

    Science.gov (United States)

    Sczomak, David P.; Gallon, Robert J.; Solomon, Arun S.

    2018-03-13

    A combustion system for use with one or more cylinder bores of an internal combustion engine includes at least one cylinder head defining first and second intake ports in fluid communication with the one or more cylinder bores. A flap is adjustably connected to the at least one cylinder head. The flap includes a first flap portion cooperating with the first intake port extending from an arm and a second flap portion cooperating with the second intake port extending from the arm and disposed adjacent the first flap portion. A controller in electrical communication with an actuator monitors the condition of the engine and actuates the flap to position the first and second flap portions between first and second positions to create a first combustion condition and a second combustion condition.

  11. Trends of multiple air pollutants emissions from residential coal combustion in Beijing and its implication on improving air quality for control measures

    Science.gov (United States)

    Xue, Yifeng; Zhou, Zhen; Nie, Teng; Wang, Kun; Nie, Lei; Pan, Tao; Wu, Xiaoqing; Tian, Hezhong; Zhong, Lianhong; Li, Jing; Liu, Huanjia; Liu, Shuhan; Shao, Panyang

    2016-10-01

    Residential coal combustion is considered to be an important source of air pollution in Beijing. However, knowledge regarding the emission characteristics of residential coal combustion and the related impacts on the air quality is very limited. In this study, we have developed an emission inventory for multiple hazardous air pollutants (HAPs) associated with residential coal combustion in Beijing for the period of 2000-2012. Furthermore, a widely used regional air quality model, the Community Multi-Scale Air Quality model (CMAQ), is applied to analyze the impact of residential coal combustion on the air quality in Beijing in 2012. The results show that the emissions of primary air pollutants from residential coal combustion have basically remained the same levels during the past decade, however, along with the strict emission control imposed on major industrial sources, the contribution of residential coal combustion emissions to the overall emissions from anthropogenic sources have increased obviously. In particular, the contributions of residential coal combustion to the total air pollutants concentrations of PM10, SO2, NOX, and CO represent approximately 11.6%, 27.5%, 2.8% and 7.3%, respectively, during the winter heating season. In terms of impact on the spatial variation patterns, the distributions of the pollutants concentrations are similar to the distribution of the associated primary HAPs emissions, which are highly concentrated in the rural-urban fringe zones and rural suburb areas. In addition, emissions of primary pollutants from residential coal combustion are forecasted by using a scenario analysis. Generally, comprehensive measures must be taken to control residential coal combustion in Beijing. The best way to reduce the associated emissions from residential coal combustion is to use economic incentive means to promote the conversion to clean energy sources for residential heating and cooking. In areas with reliable energy supplies, the coal used

  12. Environmental optimisation of waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Robert [AaF Energikonsult, Stockholm (Sweden); Berge, Niclas; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-12-01

    The regulations concerning waste combustion evolve through R and D and a strive to get better and common regulations for the European countries. This study discusses if these rules of today concerning oxygen concentration, minimum temperature and residence time in the furnace and the use of stand-by burners are needed, are possible to monitor, are the optimum from an environmental point of view or could be improved. No evidence from well controlled laboratory experiments validate that 850 deg C in 6 % oxygen content in general is the best lower limit. A lower excess air level increase the temperature, which has a significant effect on the destruction of hydrocarbons, favourably increases the residence time, increases the thermal efficiency and the efficiency of the precipitators. Low oxygen content is also necessary to achieve low NO{sub x}-emissions. The conclusion is that the demands on the accuracy of the measurement devices and methods are too high, if they are to be used inside the furnace to control the combustion process. The big problem is however to find representative locations to measure temperature, oxygen content and residence time in the furnace. Another major problem is that the monitoring of the operation conditions today do not secure a good combustion. It can lead to a false security. The reason is that it is very hard to find boilers without stratifications. These stratifications (stream lines) has each a different history of residence time, mixing time, oxygen and combustible gas levels and temperature, when they reach the convection area. The combustion result is the sum of all these different histories. The hydrocarbons emission is in general not produced at a steady level. Small clouds of unburnt hydrocarbons travels along the stream lines showing up as peaks on a THC measurement device. High amplitude peaks has a tendency to contain higher ratio of heavy hydrocarbons than lower peaks. The good correlation between some easily detected

  13. Sodium nitrate combustion limit tests

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1976-04-01

    Sodium nitrate is a powerful solid oxidant. Energetically, it is capable of exothermically oxidizing almost any organic material. Rate-controlling variables such as temperature, concentration of oxidant, concentration of fuel, thermal conductivity, moisture content, size, and pressure severely limit the possibility of a self-supported exothermic reaction (combustion). The tests reported in this document were conducted on one-gram samples at atmospheric pressure. Below 380 0 C, NaNO 3 was stable and did not support combustion. At moisture concentrations above 22 wt percent, exothermic reactions did not propagate in even the most energetic and reactive compositions. Fresh resin and paraffin were too volatile to enable a NaNO 2 -supported combustion process to propagate. Concentrations of NaNO 3 above 95 wt percent or below 35 wt percent did not react with enough energy release to support combustion. The influence of sample size and confining pressure, both important factors, was not investigated in this study

  14. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2004-10-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  15. Dry sorbent injection of trona to control acid gases from a pilot-scale coal-fired combustion facility

    Directory of Open Access Journals (Sweden)

    Tiffany L. B. Yelverton

    2016-01-01

    Full Text Available  Gaseous and particulate emissions from the combustion of coal have been associated with adverse effects on human and environmental health, and have for that reason been subject to regulation by federal and state governments. Recent regulations by the United States Environmental Protection Agency have further restricted the emissions of acid gases from electricity generating facilities and other industrial facilities, and upcoming deadlines are forcing industry to consider both pre- and post-combustion controls to maintain compliance. As a result of these recent regulations, dry sorbent injection of trona to remove acid gas emissions (e.g. HCl, SO2, and NOx from coal combustion, specifically 90% removal of HCl, was the focus of the current investigation. Along with the measurement of HCl, SO2, and NOx, measurements of particulate matter (PM, elemental (EC, and organic carbon (OC were also accomplished on a pilot-scale coal-fired combustion facility. Gaseous and particulate emissions from a coal-fired combustor burning bituminous coal and using dry sorbent injection were the focus of the current study. From this investigation it was shown that high levels of trona were needed to achieve the goal of 90% HCl removal, but with this increased level of trona injection the ESP and BH were still able to achieve greater than 95% fine PM control. In addition to emissions reported, measurement of acid gases by standard EPA methods were compared to those of an infrared multi-component gas analyzer. This comparison revealed good correlation for emissions of HCl and SO2, but poor correlation in the measurement of NOx emissions.

  16. Combustible structural composites and methods of forming combustible structural composites

    Science.gov (United States)

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  17. Space Station Freedom combustion research

    Science.gov (United States)

    Faeth, G. M.

    1992-01-01

    spread of liquids, drop combustion, and quenching of panicle-air flames. Unfortunately, the same features that make microgravity attractive for fundamental combustion experiments, introduce new fire and explosion hazards that have no counterpart on earth. For example, microgravity can cause broader flammability limits, novel regimes of flame spread, enhanced effects of flame radiation, slower fire detector response, and enhanced combustion upon injecting fire extinguishing agents, among others. On the other hand, spacecraft provide an opportunity to use 'fire-safe' atmospheres due to their controlled environment. Investigation of these problems is just beginning, with specific fire safety experiments supplementing the space based fundamental experiments listed earlier; thus, much remains to be done to develop an adequate technology base for fire and explosion safety considerations for spacecraft.

  18. Fuel formulation and mixing strategy for rate of heat release control with PCCI combustion

    NARCIS (Netherlands)

    Zegers, R.P.C.; Yu, M.; Luijten, C.C.M.; Dam, N.J.; Baert, R.S.G.; Goey, de L.P.H.

    2009-01-01

    Premixed charge compression ignition (or PCCI) is a new combustion concept that promises very low emissions of nitrogen oxides and of particulate matter by internal combustion engines. In the PCCIcombustion mode fuel, products from previous combustion events and air are mixed and compresseduntil the

  19. Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion

    International Nuclear Information System (INIS)

    Sergienko, A.V.; Walton, Z.D.; Booth, M.C.; Saleh, B.E.A.; Teich, M.C.

    2005-01-01

    Full text: A new method for generating entangled photons with controllable frequency correlation via spontaneous parametric down-conversion (SPDC) is presented. The method entails initiating counter-propagating SPDC in a single-mode nonlinear waveguide by pumping with a pulsed beam perpendicular to the waveguide. In a typical spontaneous parametric down-conversion (SPDC) experiment, a photon from a monochromatic pump beam decays into two photons (often referred to as signal and idler) via interaction with a nonlinear optical crystal. While the signal and idler may be broadband individually, conservation of energy requires that the sum of their respective frequencies equals the single frequency of the monochromatic pump. This engenders frequency anti-correlation in the down-converted beams. Two developments in quantum information theory have renewed interest in the generalized states of frequency correlation. First, quantum information processes requiring the synchronized creation of multiple photon pairs have been devised, such as quantum teleportation. The requisite temporal control can be achieved by pumping the crystal with a brief pulse. The availability of pump photons of differing frequencies relaxes the strict frequency anti-correlation in the down-converted beams. Second, applications such as entanglement-enhanced clock synchronization and one-way auto-compensating quantum cryptography have been introduced that specifically require frequency correlation, as opposed to the usual frequency anticorrelation. Our method for obtaining controllable frequency entanglement entails initiating type-I SPDC (signal and idler identically polarized) in a single-mode nonlinear waveguide by pumping with a pulsed beam perpendicular to the waveguide. The down-converted photons emerge from opposite ends of the waveguide with a joint spectrum that can be varied from frequency anti-correlated to frequency correlated by adjusting the temporal and spatial characteristics of the

  20. Two phase exhaust for internal combustion engine

    Science.gov (United States)

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  1. Effect of air-excess on blends of RON70 partially premixed combustion

    NARCIS (Netherlands)

    Wang, S.; Bakker, P.C.; Somers, L.M.T.; de Goey, L.P.H.

    Partially Premixed Combustion (PPC) is a combustion concept that aims to provide combustion with low smoke and NOx emissions and a high thermal efficiency. Extending the ignition delay to enhance premixing, avoiding spray-driven combustion, and controlling temperature at an optimum level through use

  2. Maternal smoking predicts the risk of spontaneous abortion

    DEFF Research Database (Denmark)

    Nielsen, Ann; Hannibal, Charlotte Gerd; Lindekilde, Bodil Eriksen

    2006-01-01

    BACKGROUND: Few studies have examined smoking prior to pregnancy and the occurrence of spontaneous abortion, as most studies have addressed the risk of spontaneous abortion in relation to smoking during pregnancy. However, results are not entirely consistent. The aim of the present study...... was to assess the risk of spontaneous abortion considering smoking prior to pregnancy. METHODS: We performed a nested case-control study using prospective data from a population-based cohort comprising 11,088 women aged 20-29 years. From this cohort, women who experienced either a spontaneous abortion (n=343......) or who gave birth (n=1,578) during follow-up were selected. Associations between self-reported smoking at enrollment and subsequent spontaneous abortion were analyzed by means of multiple logistic regression. RESULTS: The risk of spontaneous abortion in relation to pre-pregnancy smoking showed a clear...

  3. Self adaptive internal combustion engine control for hydrogen mixtures using piezoelectric transducers for dynamic cylinder pressure monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, R.; Bose, T.K. [Quebec Univ., Trois-Rivieres, PQ (Canada). Institut de recherche sur l' hydrogene

    2004-07-01

    Hydrogen internal combustion engine research at the Hydrogen Research Institute includes the following infrastructure: a 20 square metre test cell, an engine preparation room, a 150 hp dynamometer, exhaust gas analysers and a hydrogen supply. The goal of the research is to develop internal combustion engine technologies that can use hydrogen as a fuel without knocking, backfires, excessive engine wear, and with low emissions. As well as hydrogen, fuels such as biogas are also investigated. Technologies under investigation include adaptive control algorithms, as well as advanced sensors and actuators. The latter include piezolelectrics, optical fibres, nitrogen oxide detectors, and chemical composition detectors. Developments include microprocessor-controlled injection and ignition control systems for both single cylinder and multicylinder engines. Research on the influence of fuel composition on best ignition timing is presented. There is also dynamic cylinder pressure monitoring to prevent knocking make engine state assessments and perform engine calibration. Piezoelectric cylinder pressure sensors are employed, either integrated with the spark plugs, or stand-alone, inserted through separate holes through the cylinder head. tabs, figs.

  4. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.

    2017-03-28

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  5. Analysis of cyclic variations during mode switching between spark ignition and controlled auto-ignition combustion operations

    OpenAIRE

    Chen, T; Zhao, H; Xie, H; He, B

    2014-01-01

    © IMechE 2014. Controlled auto-ignition, also known as homogeneous charge compression ignition, has been the subject of extensive research because of their ability to provide simultaneous reductions in fuel consumption and NOx emissions from a gasoline engine. However, due to its limited operation range, switching between controlled auto-ignition and spark ignition combustion is needed to cover the complete operating range of a gasoline engine for passenger car applications. Previous research...

  6. The Relation between Gas Flow and Combustibility using Actual Engine (Basic Experiment of Gas Flow and Combustibility under Low Load Condition)

    OpenAIRE

    田坂, 英紀; 泉, 立哉; 木村, 正寿

    2003-01-01

    Abstract ###Consideration of the global environment problems by exhaust gas is becoming important in recent years. ###Especially about internal combustion engine, social demand has been increasing about low pollution, high ###efficiency and so on. Controlling gas flow in cylinder becomes the key getting good combustion state in ###various driving states. ###The purpose of the research is analysis about the relation between gas flow and combustibility in the cylinder. ###So we measured gas flo...

  7. Exhaust gas recirculation – Zero dimensional modelling and characterization for transient diesel combustion control

    International Nuclear Information System (INIS)

    Asad, Usman; Tjong, Jimi; Zheng, Ming

    2014-01-01

    Highlights: • Zero-dimensional EGR model for transient diesel combustion control. • Detailed analysis of EGR effects on intake, cylinder charge and exhaust properties. • Intake oxygen validated as an operating condition-independent measure of EGR. • Quantified EGR effectiveness in terms of NOx emission reduction. • Twin lambda sensor technique for estimation of EGR/in-cylinder parameters. - Abstract: The application of exhaust gas recirculation (EGR) during transient engine operation is a challenging task since small fluctuations in EGR may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency. Moreover, the intake charge dilution at any EGR ratio is a function of engine load and intake pressure, and typically changes during transient events. Therefore, the management of EGR during transient engine operation or advanced combustion cycles (that are inherently less stable) requires a fundamental understanding of the transient EGR behaviour and its impact on the intake charge development. In this work, a zero-dimensional EGR model is described to estimate the transient (cycle-by-cycle) progression of EGR and the time (engine cycles) required for its stabilization. The model response is tuned to a multi-cylinder engine by using an overall engine system time-constant and shown to effectively track the transient EGR changes. The impact of EGR on the actual air–fuel ratio of the cylinder charge is quantified by defining an in-cylinder excess-air ratio that accounts for the oxygen in the recycled exhaust gas. Furthermore, a twin lambda sensor (TLS) technique is implemented for tracking the intake dilution and in-cylinder excess-air ratio in real-time. The modelling and analysis results are validated against a wide range of engine operations, including transient and steady-state low temperature combustion tests

  8. Advanced combustion, emission control, health impacts, and fuels merit review and peer evaluation

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2006-10-01

    This report is a summary and analysis of comments from the Advisory Panel at the FY 2006 DOE National Laboratory Advanced Combustion, Emission Control, Health Impacts, and Fuels Merit Review and Peer Evaluation, held May 15-18, 2006 at Argonne National Laboratory. The work evaluated in this document supports the FreedomCAR and Vehicle Technologies Program. The results of this merit review and peer evaluation are major inputs used by DOE in making its funding decisions for the upcoming fiscal year.

  9. Processes subject to integrated pollution control. Combustion processes: reheat and heat treatment furnaces 50 MW(th) and over

    International Nuclear Information System (INIS)

    1995-01-01

    This document, part of a series offering guidance on pollution control regulations issued by Her Majesty's Inspectorate of Pollution, focuses on combustion processes involved with reheat and heat treatment furnaces of 50 MW (th) and over. Techniques for controlling releases into air, water and to land are detailed as are the various pollution monitoring strategies. (UK)

  10. The Multi-User Droplet Combustion Apparatus: the Development and Integration Concept for Droplet Combustion Payloads in the Fluids and Combustion Facility Combustion Integrated Rack

    Science.gov (United States)

    Myhre, C. A.

    2002-01-01

    using liquid combustibles on Earth and in space. As a result of the concurrent design process of MDCA and CIR, the MDCA team continues to work closely with the CIR team, developing Integration Agreements and an Interface Control Document during preliminary integration activities. Integrated testing of hardware and software systems will occur at the Engineering Model and Flight Model phases. Because the engineering model is a high fidelity unit, it will be upgraded to a flight equivalent Ground Integration Unit (GIU) when the engineering model phase is completed. The GIU will be available on the ground for troubleshooting of any on-orbit problems. Integrated verification testing will be conducted with the MDCA flight unit and the CIR flight unit. Upon successful testing, the MDCA will be shipped to the Kennedy Space Center for a post-shipment checkout and final turn-over to CIR for final processing and launch to the International Space Station. Once on-orbit, the MDCA is managed from the GRC Telescience Support Center (TSC). The MDCA operations team resides at the TSC. Data is transmitted to the PI's at their home sites by means of TREK workstations, allowing direct interaction between the PI and operations staff to maximum science. Upon completion of a PI's experiment, the MDCA is reconfigured for the next of the three follow-on experiments or ultimately removed from the CIR, placed into stowage, and returned to Earth.

  11. IEA combustion agreement : a collaborative task on alternative fuels in combustion

    International Nuclear Information System (INIS)

    Larmi, M.

    2009-01-01

    The focus of the alternative fuels in combustion task of the International Energy Agency is on high efficiency engine combustion, furnace combustion, and combustion chemistry. The objectives of the task are to develop optimum combustion for dedicated fuels by fully utilizing the physical and chemical properties of synthetic and renewable fuels; a significant reduction in carbon dioxide, NOx and particulate matter emissions; determine the minimum emission levels for dedicated fuels; and meet future emission standards of engines without or with minimum after-treatment. This presentation discussed the alternative fuels task and addressed issues such as synthetic fuel properties and benefits. The anticipated future roadmap was presented along with a list of the synthetic and renewable engine fuels to be studied, such as neat oxygenates like alcohols and ethers, biogas/methane and gas combustion, fuel blends, dual fuel combustion, high cetane number diesel fuels like synthetic Fischer-Tropsch diesel fuel and hydrogenated vegetable oil, and low CN number fuels. Implementation examples were also discussed, such as fuel spray studies in optical spray bombs; combustion research in optical engines and combustion chambers; studies on reaction kinetics of combustion and emission formation; studies on fuel properties and ignition behaviour; combustion studies on research engines; combustion optimization; implementing the optimum combustion in research engines; and emission measurements. Overall milestone examples and the overall schedule of participating countries were also presented. figs.

  12. Spontaneous and posed facial expression in Parkinson's disease.

    Science.gov (United States)

    Smith, M C; Smith, M K; Ellgring, H

    1996-09-01

    Spontaneous and posed emotional facial expressions in individuals with Parkinson's disease (PD, n = 12) were compared with those of healthy age-matched controls (n = 12). The intensity and amount of facial expression in PD patients were expected to be reduced for spontaneous but not posed expressions. Emotional stimuli were video clips selected from films, 2-5 min in duration, designed to elicit feelings of happiness, sadness, fear, disgust, or anger. Facial movements were coded using Ekman and Friesen's (1978) Facial Action Coding System (FACS). In addition, participants rated their emotional experience on 9-point Likert scales. The PD group showed significantly less overall facial reactivity than did controls when viewing the films. The predicted Group X Condition (spontaneous vs. posed) interaction effect on smile intensity was found when PD participants with more severe disease were compared with those with milder disease and with controls. In contrast, ratings of emotional experience were similar for both groups. Depression was positively associated with emotion rating but not with measures of facial activity. Spontaneous facial expression appears to be selectively affected in PD, whereas posed expression and emotional experience remain relatively intact.

  13. THE APPLICATION FOR A PREDICTION OF THE COAL SPONTANEOUS IGNITION – PREDISAM

    Directory of Open Access Journals (Sweden)

    Vlastimil MONI

    2017-04-01

    Full Text Available The article follows the research of the project number TA01020351 called “The research of possibilities when predicting steam origin and consequent spontaneous ignition of brown coal fuels” which was researched with the support of the Technological Agency in the Czech Republic in 2011-2014 in the connection with a realized technical research. Therefore, it gives a summary information about the evaluation of the risk degree for the origin of spontaneous ignitions of the brown coal. The presented way of evaluation is based on a numeric expression of a value for MHU criteria – the point load of particular indicators is added together with other results gained from this research project. Then, more information is taken from companies running the dumps of brown coal products – both for suppliers (mining companies and big consumers (power engineering. The complex knowledge about prediction of the origin of the spontaneous ignition enables to make an early response to eliminate a threat of mining fire in open pit mines or on the dumps of coal products. Consequently, it reduces the risk of fire and breakdowns of transportation means DPD, heavy machines and preparation plants. The working injuries are reduced as well – burns by coal in fire or inhalation of gas products from imperfect combustion.

  14. Burning Questions in Gravity-Dependent Combustion Science

    Science.gov (United States)

    Urban, David; Chiaramonte, Francis P.

    2012-01-01

    Building upon a long history of spaceflight and ground based research, NASA's Combustion Science program has accumulated a significant body of accomplishments on the ISS. Historically, NASAs low-gravity combustion research program has sought: to provide a more complete understanding of the fundamental controlling processes in combustion by identifying simpler one-dimensional systems to eliminate the complex interactions between the buoyant flow and the energy feedback to the reaction zone to provide realistic simulation of the fire risk in manned spacecraft and to enable practical simulation of the gravitational environment experienced by reacting systems in future spacecraft. Over the past two decades, low-gravity combustion research has focused primarily on increasing our understanding of fundamental combustion processes (e.g. droplet combustion, soot, flame spread, smoldering, and gas-jet flames). This research program was highly successful and was aided by synergistic programs in Europe and in Japan. Overall improvements were made in our ability to model droplet combustion in spray combustors (e.g. jet engines), predict flame spread, predict soot production, and detect and prevent spacecraft fires. These results provided a unique dataset that supports both an active research discipline and also spacecraft fire safety for current and future spacecraft. These experiments have been conducted using the Combustion Integrated Rack (CIR), the Microgravity Science Glovebox and the Express Rack. In this paper, we provide an overview of the earlier space shuttle experiments, the recent ISS combustion experiments in addition to the studies planned for the future. Experiments in combustion include topics such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes.

  15. Managing ash from the combustion of solid waste

    International Nuclear Information System (INIS)

    Hauser, R.

    1992-01-01

    This paper reports that with millions of tons of refuse being combusted each year, increasing concern over the environment impact of the residue produced has caused both regulators and the resource recovery industry to address the technical and regulatory issues relating to the safe handling and disposal of ash. The basic issue concerning solid waste combustion ash management in this country is how, based on past, recent, and ongoing scientific research, solid waste combustion ash should be handled. Typically, refuse contains approximately 20 to 25 percent residue, which is collected either on grates at the bottom of the combustion chamber or filtered from the exhaust gases by the air pollution control equipment. The fly ash component of the total residue stream is between 10 and 30 percent of the total residue while the bottom ash content ranges from 70 to 90 percent of the total weight, depending upon the air pollution control equipment utilized, especially acid gas scrubbing equipment

  16. Tunable Diode Laser Sensor for Monitoring and Control of Harsh Combustion Environments

    Energy Technology Data Exchange (ETDEWEB)

    VonDrasek, William; Melsio-Pubill, Anna

    2006-05-30

    This work represents the collaborative effort between American Air Liquide and Physical Sciences, Inc. for developing a sensor based on near-IR tunable diode lasers (TDL). The multi-species capability of the sensor for simultaneous monitoring of CO, O2, and H2O concentration as well as gas temperature is ideal for in-situ monitoring on industrial furnaces. The chemical species targeted are fundamental for controlling the combustion space for improved energy efficiency, reduced pollutants, and improved product quality, when coupling the measurement to a combustion control system. Several add-on modules developed provide flexibility in the system configuration for handling different process monitoring applications. For example, the on-Demand Power Control system for the 1.5 ?m laser is used for high particle density exhaust streams where laser transmission is problematic. For long-distance signal collection a fiber optic communication system is used to reduce noise pick-up. Finally, hardened modules to withstand high ambient temperatures, immune to EMF interference, protection from flying debris, and interfaced with pathlength control laser beam shielding probes were developed specifically for EAF process monitoring. Demonstration of these different system configurations was conducted on Charter Steel's reheat furnace, Imco Recycling, Inc. (now Aleris International, Inc.) aluminum reverberatory furnace, and Gerdau Ameristeel's EAF. Measurements on the reheat furnace demonstrated zone monitoring with the measurement performed close to the steel billet. Results from the aluminum furnace showed the benefit of measuring in-situ near the bath. In this case, low-level furnace optimization was performed and demonstrated 5% fuel savings. Monitoring tests on the EAF off-gas demonstrated the level of industrialization of the sensor to survive the harsh EAF environment. Long-term testing on the EAF has been on-going for over 6 months with essentially zero maintenance

  17. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  18. Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist

    Science.gov (United States)

    Huys, Raoul; Jirsa, Viktor K.; Darokhan, Ziauddin; Valentiniene, Sonata; Roland, Per E.

    2016-01-01

    Neurons in the primary visual cortex spontaneously spike even when there are no visual stimuli. It is unknown whether the spiking evoked by visual stimuli is just a modification of the spontaneous ongoing cortical spiking dynamics or whether the spontaneous spiking state disappears and is replaced by evoked spiking. This study of laminar recordings of spontaneous spiking and visually evoked spiking of neurons in the ferret primary visual cortex shows that the spiking dynamics does not change: the spontaneous spiking as well as evoked spiking is controlled by a stable and persisting fixed point attractor. Its existence guarantees that evoked spiking return to the spontaneous state. However, the spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively different and are separated by a threshold (separatrix). The functional advantage of this organization is that it avoids the need for a system reorganization following visual stimulation, and impedes the transition of spontaneous spiking to evoked spiking and the propagation of spontaneous spiking from layer 4 to layers 2–3. PMID:26778982

  19. Inhibitory control and the onset of combustible cigarette, e-cigarette, and hookah use in early adolescence: The moderating role of socioeconomic status.

    Science.gov (United States)

    Riggs, Nathaniel R; Pentz, Mary Ann

    2016-01-01

    The purpose of the study was to test the moderating influence of socioeconomic status (SES) on the associations between inhibitory control and the onset of combustible cigarette, electronic (e-) cigarette, and hookah use in early adolescence. A total of 407 adolescents self-reported nicotine use, inhibitory control, and SES. The hypothesis that inhibitory control would be significantly associated with nicotine use onset (i.e., combustible cigarettes, e-cigarettes, and hookah) only under the condition of low SES was tested. Direct associations were found for inhibitory control on "ever use" of all three nicotine use variables. A moderating effect was also found whereby low inhibitory control was significantly associated with nicotine use onset when participants were from low, but not high, SES families. Findings illustrate one contextual condition under which inhibitory control is associated with early onset of nicotine use.

  20. Determination of combustion parameters using engine crankshaft speed

    Science.gov (United States)

    Taglialatela, F.; Lavorgna, M.; Mancaruso, E.; Vaglieco, B. M.

    2013-07-01

    Electronic engine controls based on real time diagnosis of combustion process can significantly help in complying with the stricter and stricter regulations on pollutants emissions and fuel consumption. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine crankshaft speed and several authors tried to reconstruct the pressure cycle on the basis of the engine speed signal. In this paper we propose the use of a Multi-Layer Perceptron neural network to model the relationship between the engine crankshaft speed and some parameters derived from the in-cylinder pressure cycle. This allows to have a non-intrusive estimation of cylinder pressure and a real time evaluation of combustion quality. The structure of the model and the training procedure is outlined in the paper. A possible combustion controller using the information extracted from the crankshaft speed information is also proposed. The application of the neural network model is demonstrated on a single-cylinder spark ignition engine tested in a wide range of speeds and loads. Results confirm that a good estimation of some combustion pressure parameters can be obtained by means of a suitable processing of crankshaft speed signal.

  1. Controls on boreal peat combustion and resulting emissions of carbon and mercury

    Science.gov (United States)

    Kohlenberg, Andrew J.; Turetsky, Merritt R.; Thompson, Dan K.; Branfireun, Brian A.; Mitchell, Carl P. J.

    2018-03-01

    Warming in the boreal forest region has already led to changes in the fire regime. This may result in increasing fire frequency or severity in peatlands, which could cause these ecosystems to shift from a net sink of carbon (C) to a net source of C to the atmosphere. Similar to C cycling, peatlands serve as a net sink for mercury (Hg), which binds strongly to organic matter and accumulates in peat over time. This stored Hg is also susceptible to re-release to the atmosphere during peat fires. Here we investigate the physical properties that influence depth of burn in experimental peat columns and the resulting emissions of CO, CO2, CH4, and gaseous and particulate Hg. As expected, bulk density and soil moisture content were important controls on depth of burn, CO2 emissions, and CO emissions. However, our results show that CH4 and Hg emissions are insensitive to combustion temperature or fuel moisture content. Emissions during the burning of peat, across a wide range of moisture conditions, were associated with low particulate Hg and high gaseous Hg release. Due to strong correlations between total Hg and CO emissions and because high Hg emissions occurred despite incomplete combustion of total C, our results suggest that Hg release during peat burning is governed by the thermodynamics of Hg reduction more so than by the release of Hg associated with peat combustion. Our measured emissions ratios, particularly for CH4:CO2, are higher than values typically used in the upscaling of boreal forest or peatland fire emissions. These emission ratios have important implications not only for our understanding of smouldering chemistry, but also for potential influences of peat fires on the Earth’s climate system.

  2. Impact of higher n-butanol addition on combustion and performance of GDI engine in stoichiometric combustion

    International Nuclear Information System (INIS)

    Chen, Zheng; Yang, Feng; Xue, Shuo; Wu, Zhenkuo; Liu, Jingping

    2015-01-01

    Highlights: • Effects of 0–50% n-butanol addition on GDI engine are experimentally studied. • Higher n-butanol fractions increase combustion pressure and fasten burning rate. • Higher n-butanol fractions increase BSFC but improve BTE. • Higher n-butanol fractions enhance combustion stability but increase knock intensity. • Higher n-butanol fractions reduce exhaust temperature and NOx emissions. - Abstract: An experimental study was carried out on a turbocharged gasoline direct injection (GDI) engine fueled by n-butanol/gasoline blends. Effects of n-butanol percents (15%, 30%, and 50%) on combustion and performance of the engine operating on stoichiometric combustion condition were discussed and also compared with pure gasoline in this paper. The results indicate that n-butanol/gasoline blends increase combustion pressure and pressure rise rate, fasten burning rate, and shorten ignition delay and combustion duration, as compared to pure gasoline. Moreover, these trends are impacted more evidently with increased n-butanol fraction in the blends. In addition, higher n-butanol percent of gasoline blends increase combustion temperature but decrease the temperature in the later stage of expansion stroke, which contributes to the control of exhaust temperature at high-load. With regards to engine performance, higher n-butanol percent in the blends results in increased brake specific fuel consumption (BSFC) and higher brake thermal efficiency (BTE). However, higher n-butanol addition helps to improve combustion stability but shows slightly higher knock possibility in high-load. In that case, the knock trend could be weakened by retarding ignition timing. Moreover, higher n-butanol addition significantly decreases NOx emissions, but it increases CO emissions obviously.

  3. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; An, Yanzhao; Dawood, Alaaeldin; Izadi Najafabadi, Mohammad; Somers, Bart; Johansson, Bengt

    2017-01-01

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON

  4. Development of flameless combustion; Desarrollo de la combustion sin flama

    Energy Technology Data Exchange (ETDEWEB)

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: 8344afc@prodigy.net.mx; jgonzalo@servidor.unam.mx

    2010-11-15

    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  5. Polyfunctional HIV-Specific Antibody Responses Are Associated with Spontaneous HIV Control.

    Directory of Open Access Journals (Sweden)

    Margaret E Ackerman

    2016-01-01

    Full Text Available Elite controllers (ECs represent a unique model of a functional cure for HIV-1 infection as these individuals develop HIV-specific immunity able to persistently suppress viremia. Because accumulating evidence suggests that HIV controllers generate antibodies with enhanced capacity to drive antibody-dependent cellular cytotoxicity (ADCC that may contribute to viral containment, we profiled an array of extra-neutralizing antibody effector functions across HIV-infected populations with varying degrees of viral control to define the characteristics of antibodies associated with spontaneous control. While neither the overall magnitude of antibody titer nor individual effector functions were increased in ECs, a more functionally coordinated innate immune-recruiting response was observed. Specifically, ECs demonstrated polyfunctional humoral immune responses able to coordinately recruit ADCC, other NK functions, monocyte and neutrophil phagocytosis, and complement. This functionally coordinated response was associated with qualitatively superior IgG3/IgG1 responses, whereas HIV-specific IgG2/IgG4 responses, prevalent among viremic subjects, were associated with poorer overall antibody activity. Rather than linking viral control to any single activity, this study highlights the critical nature of functionally coordinated antibodies in HIV control and associates this polyfunctionality with preferential induction of potent antibody subclasses, supporting coordinated antibody activity as a goal in strategies directed at an HIV-1 functional cure.

  6. Detection of target phonemes in spontaneous and read speech

    NARCIS (Netherlands)

    Mehta, G.; Cutler, A.

    1988-01-01

    Although spontaneous speech occurs more frequently in most listeners' experience than read speech, laboratory studies of human speech recognition typically use carefully controlled materials read from a script. The phonological and prosodic characteristics of spontaneous and read speech differ

  7. Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA

    International Nuclear Information System (INIS)

    Hastings, P.J.; Quah, S.-K.; Borstel, R.C. von

    1976-01-01

    It is stated that strains of yeast carrying mutations in many of the steps in pathways repairing radiation-induced damage to DNA have enhanced spontaneous mutation rates. Most strains isolated because they have enhanced spontaneous mutation carry mutations in DNA repair systems. This suggests that much spontaneous mutation arises by mutagenic repair of spontaneous lesions. (author)

  8. Biomass fueled fluidized bed combustion: atmospheric emissions, emission control devices and environmental regulations

    International Nuclear Information System (INIS)

    Grass, S.W.; Jenkins, B.M.

    1994-01-01

    Fluidized bed combustors have become the technological choice for power generation from biomass fuels in California. Atmospheric emission data obtained during compliance tests are compared for five operating 18 to 32 MW fluidized bed combustion power plants. The discussion focuses on the impact of fuel properties and boiler design criteria on the emission of pollutants, the efficiency of pollution control devices, and regulations affecting atmospheric emissions. Stack NO x emission factors are shown not to vary substantially among the five plants which burn fuels with nitrogen concentrations between 0.3 and 1.1% dry weight. All facilities use at least one particular control device, but not all use limestone injection or other control techniques for sulfur and chlorine. The lack of control for chlorine suggests the potential for emission of toxic species due to favorable temperature conditions existing in the particulate control devices, particularly when burning fuels containing high concentrations of chlorine. (Author)

  9. Combustion and regulation; Combustion et reglementation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This conference was organized after the publication of the French by-law no 2010 relative to combustion installations and to the abatement of atmospheric pollution. Five topics were discussed during the conference: the new regulations, their content, innovations and modalities of application; the means of energy suppliers to face the new provisions and their schedule; the manufacturers proposals for existing installations and the new equipments; the administration control; and the impact of the new measures on exploitation and engineering. Twenty papers and 2 journal articles are reported in these proceedings. (J.S.)

  10. Detection of target phonemes in spontaneous and read speech

    OpenAIRE

    Mehta, G.; Cutler, A.

    1988-01-01

    Although spontaneous speech occurs more frequently in most listeners’ experience than read speech, laboratory studies of human speech recognition typically use carefully controlled materials read from a script. The phonological and prosodic characteristics of spontaneous and read speech differ considerably, however, which suggests that laboratory results may not generalize to the recognition of spontaneous and read speech materials, and their response time to detect word-initial target phonem...

  11. Acid digestion and pressurization control in combustible radwaste treatment

    International Nuclear Information System (INIS)

    Allen, C.R.; Cowan, R.G.; Grelecki, C.J.

    1978-01-01

    Acid digestion has been developed to reduce the volume of combustible nuclear waste materials, while converting them to an inert, noncombustible residue. A 100 kg/day test unit has recently been constructed to process radioactively contaminated combustible wastes. The unit, called the Radioactive Acid Digestion Test Unit (RADTU) was completed in September, 1977, and is currently undergoing nonradioactive shakedown tests. Radioactive operation is expected in May, 1978. Because of uncertainties in waste composition and reactivity, the system was required to contain pressurizations. This led to the development of a simple and inexpensive system, which is capable of attenuating a shock wave from a full scale vapor detonation. The system has potential application in a wide spectrum of chemical reactors, since the fabrication materials are resistant to a very wide range of corrosive chemical attack

  12. Intelligent emissions controller for substance injection in the post-primary combustion zone of fossil-fired boilers

    Science.gov (United States)

    Reifman, Jaques; Feldman, Earl E.; Wei, Thomas Y. C.; Glickert, Roger W.

    2003-01-01

    The control of emissions from fossil-fired boilers wherein an injection of substances above the primary combustion zone employs multi-layer feedforward artificial neural networks for modeling static nonlinear relationships between the distribution of injected substances into the upper region of the furnace and the emissions exiting the furnace. Multivariable nonlinear constrained optimization algorithms use the mathematical expressions from the artificial neural networks to provide the optimal substance distribution that minimizes emission levels for a given total substance injection rate. Based upon the optimal operating conditions from the optimization algorithms, the incremental substance cost per unit of emissions reduction, and the open-market price per unit of emissions reduction, the intelligent emissions controller allows for the determination of whether it is more cost-effective to achieve additional increments in emission reduction through the injection of additional substance or through the purchase of emission credits on the open market. This is of particular interest to fossil-fired electrical power plant operators. The intelligent emission controller is particularly adapted for determining the economical control of such pollutants as oxides of nitrogen (NO.sub.x) and carbon monoxide (CO) emitted by fossil-fired boilers by the selective introduction of multiple inputs of substances (such as natural gas, ammonia, oil, water-oil emulsion, coal-water slurry and/or urea, and combinations of these substances) above the primary combustion zone of fossil-fired boilers.

  13. Development of High Efficiency and Low Emission Low Temperature Combustion Diesel Engine with Direct EGR Injection

    Science.gov (United States)

    Ho, R. J.; Kumaran, P.; Yusoff, M. Z.

    2016-03-01

    Focus on energy and environmental sustainability policy has put automotive research & development directed to developing high efficiency and low pollutant power train. Diffused flame controlled diesel combustion has reach its limitation and has driven R&D to explore other modes of combustions. Known effective mode of combustion to reduce emission are Low temperature combustion (LTC) and homogeneous charge combustion ignition by suppressing Nitrogen Oxide(NOx) and Particulate Matter (PM) formation. The key control to meet this requirement are chemical composition and distribution of fuel and gas during a combustion process. Most research to accomplish this goal is done by manipulating injected mass flow rate and varying indirect EGR through intake manifold. This research paper shows viable alternative direct combustion control via co-axial direct EGR injection with fuel injection process. A simulation study with OpenFOAM is conducted by varying EGR injection velocity and direct EGR injector diameter performed with under two conditions with non-combustion and combustion. n-heptane (C7H16) is used as surrogate fuel together with 57 species 290 semi-detailed chemical kinetic model developed by Chalmers University is used for combustion simulation. Simulation result indicates viability of co-axial EGR injection as a method for low temperature combustion control.

  14. Stratified charge rotary engine combustion studies

    Science.gov (United States)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-07-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  15. Combustion Stability Verification for the Thrust Chamber Assembly of J-2X Developmental Engines 10001, 10002, and 10003

    Science.gov (United States)

    Morgan, C. J.; Hulka, J. R.; Casiano, M. J.; Kenny, R. J.; Hinerman, T. D.; Scholten, N.

    2015-01-01

    The J-2X engine, a liquid oxygen/liquid hydrogen propellant rocket engine available for future use on the upper stage of the Space Launch System vehicle, has completed testing of three developmental engines at NASA Stennis Space Center. Twenty-one tests of engine E10001 were conducted from June 2011 through September 2012, thirteen tests of the engine E10002 were conducted from February 2013 through September 2013, and twelve tests of engine E10003 were conducted from November 2013 to April 2014. Verification of combustion stability of the thrust chamber assembly was conducted by perturbing each of the three developmental engines. The primary mechanism for combustion stability verification was examining the response caused by an artificial perturbation (bomb) in the main combustion chamber, i.e., dynamic combustion stability rating. No dynamic instabilities were observed in the TCA, although a few conditions were not bombed. Additional requirements, included to guard against spontaneous instability or rough combustion, were also investigated. Under certain conditions, discrete responses were observed in the dynamic pressure data. The discrete responses were of low amplitude and posed minimal risk to safe engine operability. Rough combustion analyses showed that all three engines met requirements for broad-banded frequency oscillations. Start and shutdown transient chug oscillations were also examined to assess the overall stability characteristics, with no major issues observed.

  16. Investigating the reactivity controlled compression ignition (RCCI) combustion strategy in a natural gas/diesel fueled engine with a pre-chamber

    International Nuclear Information System (INIS)

    Salahi, Mohammad Mahdi; Esfahanian, Vahid; Gharehghani, Ayatallah; Mirsalim, Mostafa

    2017-01-01

    Highlights: • A novel combustion strategy, RCCI with a pre-chamber, is proposed and investigated. • The proposed strategy extends the RCCI operating range to use less intake air temperatures. • The new concept extends the RCCI operating range to use lower portions of the active fuel. • The proposed strategy is sensitive to engine load and is more efficient for high loads. - Abstract: Reactivity controlled compression ignition (RCCI) concept has been proven to be a promising combustion mode for the next generations of internal combustion engines. This strategy is still subject of extensive studies to overcome its operational limitations. In the present work, the effect of using a pre-chamber to extend some operating ranges in a RCCI engine is investigated using coupled multidimensional computational fluid dynamics (CFD) with detailed chemical kinetic mechanisms. To accomplish this, the combustion and flow field in a single cylinder engine with a pre-chamber, working in RCCI mode and fueled with natural gas/diesel are numerically modeled. Experimental data is used to validate the simulation results and then, combustion characteristics and engine emissions in some various operating regions, in terms of initial temperature, fuel equivalence ratio and portions of the two fuels are discussed. The results reveal that the proposed strategy provides the ability to extend the engine operating ranges to use lower intake temperatures, even to 50 K lower for some cases, and also using a larger portion of natural gas instead of diesel fuel. On the other hand, the new strategy could result in incomplete combustion and formation of related emissions in low loads, but for higher engine loads it shows better combustion characteristics.

  17. Combustion stratification for naphtha from CI combustion to PPC

    NARCIS (Netherlands)

    Vallinayagam, R.; Vedharaj, S.; An, Y.; Dawood, A.; Izadi Najafabadi, M.; Somers, L.M.T.; Johansson, B.H.

    2017-01-01

    This study demonstrated the change in combustion homogeneity from conventional diesel combustion via partially premixed combustion towards HCCI. Experiments are performed in an optical diesel engine at a speed of 1200 rpm with diesel fuel. Single injection strategy is employed and the fuel is

  18. Low NOx combustion technologies for high-temperature natural gas combustion

    International Nuclear Information System (INIS)

    Flamme, Michael

    1999-01-01

    Because of the high process temperature which is required for some processes like glass melting and the high temperature to which the combustion air is preheated, NOx emission are extremely high. Even at these high temperatures, NOx emissions could be reduced drastically by using advanced combustion techniques such as staged combustion or flame-less oxidation, as experimental work has shown. In the case of oxy-fuel combustion, the NOx emission are also very high if conventional burners are used. The new combustion techniques achieve similar NOx reductions. (author)

  19. A stochastic logical system approach to model and optimal control of cyclic variation of residual gas fraction in combustion engines

    International Nuclear Information System (INIS)

    Wu, Yuhu; Kumar, Madan; Shen, Tielong

    2016-01-01

    Highlights: • An in-cylinder pressure based measuring method for the RGF is derived. • A stochastic logical dynamical model is proposed to represent the transient behavior of the RGF. • The receding horizon controller is designed to reduce the variance of the RGF. • The effectiveness of the proposed model and control approach is validated by the experimental evidence. - Abstract: In four stroke internal combustion engines, residual gas from the previous cycle is an important factor influencing the combustion quality of the current cycle, and the residual gas fraction (RGF) is a popular index to monitor the influence of residual gas. This paper investigates the cycle-to-cycle transient behavior of the RGF in the view of systems theory and proposes a multi-valued logic-based control strategy for attenuation of RGF fluctuation. First, an in-cylinder pressure sensor-based method for measuring the RGF is provided by following the physics of the in-cylinder transient state of four-stroke internal combustion engines. Then, the stochastic property of the RGF is examined based on statistical data obtained by conducting experiments on a full-scale gasoline engine test bench. Based on the observation of the examination, a stochastic logical transient model is proposed to represent the cycle-to-cycle transient behavior of the RGF, and with the model an optimal feedback control law, which targets on rejection of the RGF fluctuation, is derived in the framework of stochastic logical system theory. Finally, experimental results are demonstrated to show the effectiveness of the proposed model and the control strategy.

  20. Continuously tunable sub-half-wavelength localization via coherent control of spontaneous emission

    International Nuclear Information System (INIS)

    Wang Fei; Tan Xin-Yu; Gong Cheng; Shi Wen-Xing

    2012-01-01

    We propose a continuously tunable method of sub-half-wavelength localization via the coherent control of the spontaneous emission of a four-level Y-type atomic system, which is coupled to three strong coupling fields including a standing-wave field together with a weak probe field. It is shown that the sub-half-wavelength atomic localization is realized for both resonance and off-resonance cases. Furthermore, by varying the probe detuning in succession, the positions of the two localization peaks are tuned continuously within a wide range of probe field frequencies, which provides convenience for the realization of sub-half-wavelength atomic localization experimentally

  1. Study of experimental validation for combustion analysis of GOTHIC code

    International Nuclear Information System (INIS)

    Lee, J. Y.; Yang, S. Y.; Park, K. C.; Jeong, S. H.

    2001-01-01

    In this study, present lumped and subdivided GOTHIC6 code analyses of the premixed hydrogen combustion experiment at the Seoul National University and comparison with the experiment results. The experimental facility has 16367 cc free volume and rectangular shape. And the test was performed with unit equivalence ratio of the hydrogen and air, and with various location of igniter position. Using the lumped and mechanistic combustion model in GOTHIC6 code, the experiments were simulated with the same conditions. In the comparison between experiment and calculated results, the GOTHIC6 prediction of the combustion response does not compare well with the experiment results. In the point of combustion time, the lumped combustion model of GOTHIC6 code does not simulate the physical phenomena of combustion appropriately. In the case of mechanistic combustion model, the combustion time is predicted well, but the induction time of calculation data is longer than the experiment data remarkably. Also, the laminar combustion model of GOTHIC6 has deficiency to simulate combustion phenomena unless control the user defined value appropriately. And the pressure is not a proper variable that characterize the three dimensional effect of combustion

  2. ANTISPERM ANTIBODY IS A POSSIBLE CAUSE OF SPONTANEOUS ABORTION

    Institute of Scientific and Technical Information of China (English)

    XUChong; CHENFu; LIULi; ZHAOFei-Sha

    1989-01-01

    To clarify the possible correlation between antisperm antibodies (ASA) and spontaneous abortion, 68 women, aged 23-37, experienced 2-9 times of spontaneous abortion were tested for ASA by ELISA. 38 fertile women, aged 24-40, without history of abortion were employed as control.

  3. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  4. Rotary combustion device

    NARCIS (Netherlands)

    2008-01-01

    Rotary combustion device (1) with rotary combustion chamber (4). Specific measures are taken to provide ignition of a combustible mixture. It is proposed that a hollow tube be provided coaxially with the axis of rotation (6), so that a small part of the mixture is guided into the combustion chamber.

  5. Controlling the heat release in HCCI combustion of DME with methanol and EGR

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper; Yanai, Tadanori

    2010-01-01

    quantity required was determined. The added methanol increased the BMEP by increasing the total heat release and retarding the combustion to after TDC. Engine knock was reduced with increasing quantities of methanol. The highest BMEP was achieved when the equivalence ratio of methanol was around 0.......12 at 1000 RPM, and around 0.76 at 1800 RPM. EGR was also used to retarding the timing. With a moderate amount of EGR the effect on the combustion was not notable, but as the equivalence ratio approached unity the combustion was increasingly delayed and the rate of reaction reduced. Engine knock seized...

  6. A comprehensive study of combustion products generated from pulverized peat combustion in the furnace of BKZ-210-140F steam boiler

    Science.gov (United States)

    Kuzmin, V. A.; Zagrai, I. A.

    2017-11-01

    The experimental and theoretical study of combustion products has been carried out for the conditions of pulverized peat combustion in BKZ-210-140F steam boiler. Sampling has been performed in different parts of the boiler system in order to determine the chemical composition, radiative properties and dispersity of slag and ash particles. The chemical composition of particles was determined using the method of x-ray fluorescence analysis. Shapes and sizes of the particles were determined by means of electron scanning microscopy. The histograms and the particle size distribution functions were computed. The calculation of components of the gaseous phase was based on the combustion characteristics of the original fuel. The software package of calculation of thermal radiation of combustion products from peat combustion was used to simulate emission characteristics (flux densities and emissivity factors). The dependence of emission characteristics on the temperature level and on the wavelength has been defined. On the basis of the analysis of emission characteristics the authors give some recommendations how to determine the temperature of peat combustion products in the furnace of BKZ-210-140F steam boiler. The findings can be used to measure the combustion products temperature, support temperature control in peat combustion and solve the problem of boiler furnace slagging.

  7. Starting procedure for internal combustion vessels

    Science.gov (United States)

    Harris, Harry A.

    1978-09-26

    A vertical vessel, having a low bed of broken material, having included combustible material, is initially ignited by a plurality of ignitors spaced over the surface of the bed, by adding fresh, broken material onto the bed to buildup the bed to its operating depth and then passing a combustible mixture of gas upwardly through the material, at a rate to prevent back-firing of the gas, while air and recycled gas is passed through the bed to thereby heat the material and commence the desired laterally uniform combustion in the bed. The procedure permits precise control of the air and gaseous fuel mixtures and material rates, and permits the use of the process equipment designed for continuous operation of the vessel.

  8. Coal-char combustion in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mehrotra, S.P.; Pande, M. [Indian Institute of Technolgy, Kanpur (India)

    2001-12-01

    Combustion of bituminous coal chars ranging from 0.8 mm to 1.8 mm has been studied in a fluidised bed reactor at temperatures ranging from 500 to 850{sup o}C. The fluidised bed consists of inert sand particles of average size of 0.5 mm and reactive coal char particles. A heat balance has been worked out to calculate the rate of combustion of char from measured incremental changes in the bed temperature during combustion. Investigations on partially burnt particles suggest that the ash layer which builds up around the burning core of char particles is non-flaking and the particles burn in a shrinking core manner. Analysis of rate data indicates that the rate of combustion is controlled by chemical reaction kinetics, though diffusion of oxygen through the bundary layer begins to influence the overall reaction kinetics at higher temperatures. The burnt out time varies linearly with particle size. Activation energy for the chemical reaction control regime is found to be around 68 kJ/mole.

  9. Scanning Emitter Lifetime Imaging Microscopy for Spontaneous Emission Control

    DEFF Research Database (Denmark)

    Frimmer, Martin; Chen, Yuntian; Koenderink, A. Femius

    2011-01-01

    We report an experimental technique to map and exploit the local density of optical states of arbitrary planar nanophotonic structures. The method relies on positioning a spontaneous emitter attached to a scanning probe deterministically and reversibly with respect to its photonic environment while...

  10. Tubular combustion

    CERN Document Server

    Ishizuka, Satoru

    2014-01-01

    Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion--some of it only now coming out of private proprietary protection. Plentiful examples of current applications along with a good explanation of background theory will offer readers an invaluable guide on this promising energy technology. Highlights include: * An introduction to the theory of tubular flames * The "how to" of maintaining stability of tubular flames through continuous combustion * Examples of both small-scal...

  11. Surgical management of spontaneous ruptured hepatocellular adenoma

    Directory of Open Access Journals (Sweden)

    Marcelo Augusto Fontenelle Ribeiro Junior

    2009-01-01

    Full Text Available AIMS: Spontaneous ruptured hepatocellular adenoma (SRHA is a rare life-threatening condition that may require surgical treatment to control hemorrhaging and also stabilize the patient. We report a series of emergency surgeries performed at our institution for this condition. METHODS: We reviewed medical records and radiology files of 28 patients (from 1989 to 2006 with a proven diagnosis of hepatocellular adenoma (HA. Three (10.7% of 28 patients had spontaneous ruptured hepatocellular adenoma, two of which were associated with intrahepatic hemorrhage while one had intraperitoneal bleeding. Two patients were female and one was male. Both female patients had a background history of oral contraceptive use. Sudden abdominal pain associated with hemodynamic instability occurred in all patients who suffered from spontaneous ruptured hepatocellular adenoma. The mean age was 41.6 years old. The preoperative assessment included liver function tests, ultrasonography and computed tomography. RESULTS: The surgical approaches were as follows: right hemihepatectomy for controlling intraperitoneal bleeding, and right extended hepatectomy and non-anatomic resection of the liver for intrahepatic hemorrhage. There were no deaths, and the postoperative complications were bile leakage and wound infection (re-operation, as well as intraperitoneal abscess (re-operation and pleural effusion. CONCLUSION: Spontaneous ruptured hepatocellular adenoma may be treated by surgery for controlling hemorrhages and stabilizing the patient, and the decision to operate depends upon both the patient's condition and the expertise of the surgical team.

  12. Proceedings of IEA combustion 2009 : IEA 31. task leaders meeting on energy conservation and emissions reduction in combustion

    International Nuclear Information System (INIS)

    2009-01-01

    The International Energy Agency (IEA) supports research and development in energy technology. This meeting provided a forum to discuss combustion processes, which is fundamental to achieving further improvements in fuel use efficiency, reducing the production of pollutants such as nitrogen oxides, and facilitating the transition to alternative fuels. The presentations demonstrated recent studies in improving the efficiency and fuel flexibility of automotive engines; improving the performance of industrial furnaces; emissions formation and control mechanisms; and fuel injection and fuel/air mixing. The conference also highlighted studies involving hydrogen combustion, alternative fuels, particulate diagnostics, fuel sprays, gas turbines, and advanced combustion processes such as homogeneous charge compression ignition (HCCI). The sessions were entitled: HCCI fuels; sprays; nanoparticle diagnostics; alternative fuels; hydrogen internal combustion engines; turbines; energy security; and collaborative task planning. All 45 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  13. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-04-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  14. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  15. Success of lime additives for controlling SO2 releases from fluidized bed combustion units

    International Nuclear Information System (INIS)

    Muezzinoglu, A.; Bayram, A.; Odabasi, M.

    1995-01-01

    Purpose of this work was to study the desulfurization efficiencies of dry additives on the fluidized bed reactors fired with low quality lignites. In these tests selected initial SO 2 levels were in the order of 1000 ppm or less in the flue gases. Lime addition for desulfurization may either be made by mixing with the fuel or by injection into the combustion reactor. In fluidized bed combustion systems both methods are physically possible. In the fluidized combustion systems a third method of addition is also possible this, is by mixing dry additives with fluidizer sand. In this third method additives create a fluidizer effect as well as reacting with the sulfur oxides being formed during the combustion of fuel

  16. Internal and Surface Phenomena in Heterogenous Metal Combustion

    Science.gov (United States)

    Dreizin, Edward L.

    1997-01-01

    The phenomenon of gas dissolution in burning metals was observed in recent metal combustion studies, but it could not be adequately explained by the traditional metal combustion models. The research reported here addresses heterogeneous metal combustion with emphasis on the processes of oxygen penetration inside burning metal and its influence on the metal combustion rate, temperature history, and disruptive burning. The unique feature of this work is the combination of the microgravity environment with a novel micro-arc generator of monodispersed metal droplets, ensuring repeatable formation and ignition of uniform metal droplets with a controllable initial temperature and velocity. Burning droplet temperature is measured in real time with a three wavelength pyrometer. In addition, particles are rapidly quenched at different combustion times, cross-sectioned, and examined using SEM-based techniques to retrieve the internal composition history of burning metal particles. When the initial velocity of a spherical particle is nearly zero, the microgravity environment makes it possible to study the flame structure, the development of flame nonsymmetry, and correlation of the flame shape with the heterogeneous combustion processes.

  17. An investigation of partially premixed compression ignition combustion using gasoline and spark assistance

    OpenAIRE

    Benajes Calvo, Jesus Vicente; García Martínez, Antonio; Doménech Llopis, Vicente; Durret, Russell

    2013-01-01

    Nowadays the automotive scientific community and companies are focusing part of their efforts on the investigation of new combustion modes in Compression Ignition (Cl) engines, mainly based on the use of locally lean air fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduce pollutant formation. However these combustion concepts have some shortcomings, related to combustion phasing control and combustion stability under th...

  18. LIEKKI 2 - Combustion technology is environmental technology

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M. [Aabo Akademi, Turku (Finland)

    1996-12-31

    Finland has wide experience in applications of various combustion technologies and fuels and in supplying energy to industry and municipalities. Furthermore, combustion hardware and equipment are amongst our most important export products. Above all, fluidized bed boilers, recovery boilers for pulp mills and heavy diesel engines and diesel power plants have achieved excellent success in the world markets. Exports of these products alone have amounted to several billions of Finnish marks of annual sales in recent years. Within modern combustion technology, the objective is to control flue gas emissions as far as possible in the process itself, thus doing away with the need for the separate scrubbing of flue gases. To accomplish this it has been necessary to conduct a large amount of research on the details of the chemistry of combustion emissions and the flows in furnaces and engine cylinders. A host of completely new products are being developed for the combustion technology field. The LIEKKI programme has been particularly interested in so-called combined-cycle processes based on pressurized fluidized bed technology

  19. Candidate gene analysis of spontaneous preterm delivery: New insights from re-analysis of a case-control study using case-parent triads and control-mother dyads

    Directory of Open Access Journals (Sweden)

    Myking Solveig

    2011-12-01

    Full Text Available Abstract Background Spontaneous preterm delivery (PTD has a multifactorial etiology with evidence of a genetic contribution to its pathogenesis. A number of candidate gene case-control studies have been performed on spontaneous PTD, but the results have been inconsistent, and do not fully assess the role of how two genotypes can impact outcome. To elucidate this latter point we re-analyzed data from a previously published case-control candidate gene study, using a case-parent triad design and a hybrid design combining case-parent triads and control-mother dyads. These methods offer a robust approach to genetic association studies for PTD compared to traditional case-control designs. Methods The study participants were obtained from the Norwegian Mother and Child Cohort Study (MoBa. A total of 196 case triads and 211 control dyads were selected for the analysis. A case-parent triad design as well as a hybrid design was used to analyze 1,326 SNPs from 159 candidate genes. We compared our results to those from a previous case-control study on the same samples. Haplotypes were analyzed using a sliding window of three SNPs and a pathway analysis was performed to gain biological insight into the pathophysiology of preterm delivery. Results The most consistent significant fetal gene across all analyses was COL5A2. The functionally similar COL5A1 was significant when combining fetal and maternal genotypes. PON1 was significant with analytical approaches for single locus association of fetal genes alone, but was possibly confounded by maternal effects. Focal adhesion (hsa04510, Cell Communication (hsa01430 and ECM receptor interaction (hsa04512 were the most constant significant pathways. Conclusion This study suggests a fetal association of COL5A2 and a combined fetal-maternal association of COL5A1 with spontaneous PTD. In addition, the pathway analysis implied interactions of genes affecting cell communication and extracellular matrix.

  20. Neurophysiology of spontaneous facial expressions: I. Motor control of the upper and lower face is behaviorally independent in adults.

    Science.gov (United States)

    Ross, Elliott D; Gupta, Smita S; Adnan, Asif M; Holden, Thomas L; Havlicek, Joseph; Radhakrishnan, Sridhar

    2016-03-01

    Facial expressions are described traditionally as monolithic entities. However, humans have the capacity to produce facial blends, in which the upper and lower face simultaneously display different emotional expressions. This, in turn, has led to the Component Theory of facial expressions. Recent neuroanatomical studies in monkeys have demonstrated that there are separate cortical motor areas for controlling the upper and lower face that, presumably, also occur in humans. The lower face is represented on the posterior ventrolateral surface of the frontal lobes in the primary motor and premotor cortices and the upper face is represented on the medial surface of the posterior frontal lobes in the supplementary motor and anterior cingulate cortices. Our laboratory has been engaged in a series of studies exploring the perception and production of facial blends. Using high-speed videography, we began measuring the temporal aspects of facial expressions to develop a more complete understanding of the neurophysiology underlying facial expressions and facial blends. The goal of the research presented here was to determine if spontaneous facial expressions in adults are predominantly monolithic or exhibit independent motor control of the upper and lower face. We found that spontaneous facial expressions are very complex and that the motor control of the upper and lower face is overwhelmingly independent, thus robustly supporting the Component Theory of facial expressions. Seemingly monolithic expressions, be they full facial or facial blends, are most likely the result of a timing coincident rather than a synchronous coordination between the ventrolateral and medial cortical motor areas responsible for controlling the lower and upper face, respectively. In addition, we found evidence that the right and left face may also exhibit independent motor control, thus supporting the concept that spontaneous facial expressions are organized predominantly across the horizontal facial

  1. Association between Nutritional Status with Spontaneous Abortion

    Directory of Open Access Journals (Sweden)

    Rahimeh Ahmadi

    2016-11-01

    Full Text Available Background: Spontaneous abortion is the most common adverse pregnancy outcome. We aimed to investigate a possible link between nutrient deficiencies and the risk of spontaneous abortion. Materials and Methods: This case-control study included the case group (n=331 experiencing a spontaneous abortion before 14 weeks of pregnancy and the control group (n=331 who were healthy pregnant women over 14 weeks of pregnancy. The participants filled out Food Frequency Questionnaire (FFQ, in which they reported their frequency of consumption for a given serving of each food item during the past three months, on a daily, weekly or monthly basis. The reported frequency for each food item was converted to a daily intake. Then, consumption of nutrients was compared between the two groups. Results: There are significant differences between the two groups regarding consumed servings/day of vegetables, bread and cereal, meat, poultry, fish, eggs, beans, fats, oils and dairy products (P=0.012, P<0.001, P=0.004, P<0.001, P=0.019, respectively. There are significant differences between the two groups in all micronutrient including folic acid, iron, vitamin C, vitamin B6, vitamin B12 and zinc (P<0.001. Conclusion: Poor nutrientions may be correlated with increased risk of spontaneous abortion

  2. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes

    Science.gov (United States)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai

    2018-05-01

    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  3. Modification and control of the spontaneous emission from an M-type atom embedded in an anisotropic photonic crystal

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue; Lue Xinyou

    2011-01-01

    We describe the spontaneous emission properties of an M-type five-level atom embedded in a photonic crystal (PC), which is coherently driven by two external laser fields. It leads to two types of quantum interference: reservoir-induced interference and laser-induced interference. Considering different detunings of atomic transition frequencies from band edges, we reveal some interesting phenomena such as spectral-line enhancement, spectral-line suppression, spectral-line narrowing, reservoir-induced cancellation of spontaneous emission and the appearance of dark lines, which originate from the quantum interference effects and the control of external laser fields. These investigations suggest possible applications in quantum optics, optical communications and in the fabrication of novel optoelectronic devices.

  4. Proceedings of the 2006 Combustion Institute Canadian Section spring technical meeting

    International Nuclear Information System (INIS)

    Devaud, C.; Weckman, E.; Lam, C.; Spike, E.

    2006-01-01

    This conference provided a networking opportunity for academic, government and industrial combustion researchers from across Canada. All aspects of combustion were discussed, particularly those related to new engine technologies that reduce exhaust gas emissions while maintaining performance. Major engine operating and fuelling control parameters that improve combustion efficiency were identified. The conference was divided into several sessions dealing with combustion emissions and pollutants such as soot and particulates; alternative fuels including biofuels and fuel cells; chemical kinetics; droplet and spray combustion; combustion synthesis of materials; detonations, explosions, fires, flammability, flares and incineration; environmental issues and hazard analysis; and, numerical modeling and simulation. The conference featured 61 presentations, of which 39 have been catalogued separately for inclusion in this database

  5. Dorsomedial prefontal cortex supports spontaneous thinking per se.

    Science.gov (United States)

    Raij, T T; Riekki, T J J

    2017-06-01

    Spontaneous thinking, an action to produce, consider, integrate, and reason through mental representations, is central to our daily experience and has been suggested to serve crucial adaptive purposes. Such thinking occurs among other experiences during mind wandering that is associated with activation of the default mode network among other brain circuitries. Whether and how such brain activation is linked to the experience of spontaneous thinking per se remains poorly known. We studied 51 healthy subjects using a comprehensive experience-sampling paradigm during 3T functional magnetic resonance imaging. In comparison with fixation, the experiences of spontaneous thinking and spontaneous perception were related to activation of wide-spread brain circuitries, including the cortical midline structures, the anterior cingulate cortex and the visual cortex. In direct comparison of the spontaneous thinking versus spontaneous perception, activation was observed in the anterior dorsomedial prefrontal cortex. Modality congruence of spontaneous-experience-related brain activation was suggested by several findings, including association of the lingual gyrus with visual in comparison with non-verbal-non-visual thinking. In the context of current literature, these findings suggest that the cortical midline structures are involved in the integrative core substrate of spontaneous thinking that is coupled with other brain systems depending on the characteristics of thinking. Furthermore, involvement of the anterior dorsomedial prefrontal cortex suggests the control of high-order abstract functions to characterize spontaneous thinking per se. Hum Brain Mapp 38:3277-3288, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States); Sheppard, E.J. [Tuskeggee Univ., Tuskegee, AL (United States). Dept. of Aerospace Engineering

    1995-12-31

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  7. Analysis of Turbulent Combustion in Simplified Stratified Charge Conditions

    Science.gov (United States)

    Moriyoshi, Yasuo; Morikawa, Hideaki; Komatsu, Eiji

    The stratified charge combustion system has been widely studied due to the significant potentials for low fuel consumption rate and low exhaust gas emissions. The fuel-air mixture formation process in a direct-injection stratified charge engine is influenced by various parameters, such as atomization, evaporation, and in-cylinder gas motion at high temperature and high pressure conditions. It is difficult to observe the in-cylinder phenomena in such conditions and also challenging to analyze the following stratified charge combustion. Therefore, the combustion phenomena in simplified stratified charge conditions aiming to analyze the fundamental stratified charge combustion are examined. That is, an experimental apparatus which can control the mixture distribution and the gas motion at ignition timing was developed, and the effects of turbulence intensity, mixture concentration distribution, and mixture composition on stratified charge combustion were examined. As a result, the effects of fuel, charge stratification, and turbulence on combustion characteristics were clarified.

  8. Some Factors Affecting Combustion in an Internal-Combustion Engine

    Science.gov (United States)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  9. Laser-assisted homogeneous charge ignition in a constant volume combustion chamber

    Science.gov (United States)

    Srivastava, Dhananjay Kumar; Weinrotter, Martin; Kofler, Henrich; Agarwal, Avinash Kumar; Wintner, Ernst

    2009-06-01

    Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3 μm. These water molecules absorb the incident erbium laser radiations ( λ=2.79 μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to "auto-ignite" could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas.

  10. Reduced NOX combustion method

    International Nuclear Information System (INIS)

    Delano, M.A.

    1991-01-01

    This patent describes a method for combusting fuel and oxidant to achieve reduced formation of nitrogen oxides. It comprises: It comprises: heating a combustion zone to a temperature at least equal to 1500 degrees F.; injecting into the heated combustion zone a stream of oxidant at a velocity within the range of from 200 to 1070 feet per second; injecting into the combustion zone, spaced from the oxidant stream, a fuel stream at a velocity such that the ratio of oxidant stream velocity to fuel stream velocity does not exceed 20; aspirating combustion gases into the oxidant stream and thereafter intermixing the aspirated oxidant stream and fuel stream to form a combustible mixture; combusting the combustible mixture to produce combustion gases for the aspiration; and maintaining the fuel stream substantially free from contact with oxidant prior to the intermixture with aspirated oxidant

  11. Environmental sensing and combustion diagnostics

    International Nuclear Information System (INIS)

    Santoleri, J.J.

    1991-01-01

    This book contains proceedings of Environmental Sensing and Combustion Diagnostics. Topics covered include: Incineration Systems Applications, Permitting, And Monitoring Overview; Infrared Techniques Applied to Incineration Systems; Continuous Emission Monitors; Analyzers and Sensors for Process Control And Environmental Monitoring

  12. The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine

    International Nuclear Information System (INIS)

    Mullett, J D; Dodd, R; Williams, C J; Triantos, G; Dearden, G; Shenton, A T; Watkins, K G; Carroll, S D; Scarisbrick, A D; Keen, S

    2007-01-01

    This work involves a study on laser ignition (LI) in an internal combustion (IC) engine and investigates the effects on control of engine combustion performance and stability of varying specific laser parameters (beam energy, beam quality, minimum beam waist size, focal point volume and focal length). A Q-switched Nd : YAG laser operating at the fundamental wavelength 1064 nm was successfully used to ignite homogeneous stoichiometric gasoline and air mixtures in one cylinder of a 1.6 litre IC test engine, where the remaining three cylinders used conventional electrical spark ignition (SI). A direct comparison between LI and conventional SI is presented in terms of changes in coefficient of variability in indicated mean effective pressure (COV IMEP ) and the variance in the peak cylinder pressure position (Var PPP ). The laser was individually operated in three different modes by changing the diameter of the cavity aperture, where the results show that for specific parameters, LI performed better than SI in terms of combustion performance and stability. Minimum ignition energies for misfire free combustion ranging from 4 to 28 mJ were obtained for various optical and laser configurations and were compared with the equivalent minimum optical breakdown energies in air

  13. Numerical simulations of turbulent jet ignition and combustion

    Science.gov (United States)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  14. Particulate and gaseous emissions from residential biomass combustion

    International Nuclear Information System (INIS)

    Boman, Christoffer

    2005-04-01

    Biomass is considered to be a sustainable energy source with significant potentials for replacing electricity and fossil fuels, not at least in the residential sector. However, present wood combustion is a major source of ambient concentrations of hydrocarbons (e.g. VOC and PAH) and particulate matter (PM) and exposure to these pollutants have been associated with adverse health effects. Increased focus on combustion related particulate emissions has been seen concerning the formation, characteristics and implications to human health. Upgraded biomass fuels (e.g. pellets) provide possibilities of more controlled and optimized combustion with less emission of products of incomplete combustion (PICs). For air quality and health impact assessments, regulatory standards and evaluations concerning residential biomass combustion, there is still a need for detailed emission characterization and quantification when using different fuels and combustion techniques. This thesis summarizes the results from seven different papers. The overall objective was to carefully and systematically study the emissions from residential biomass combustion with respect to: i) experimental characterization and quantification, ii) influences of fuel, appliance and operational variables and iii) aspects of ash and trace element transformations and aerosol formation. Special concern in the work was on sampling, quantification and characterization of particulate emissions using different appliances, fuels and operating procedures. An initial review of health effects showed epidemiological evidence of potential adverse effect from wood smoke exposure. A robust whole flow dilution sampling set-up for residential biomass appliances was then designed, constructed and evaluated, and subsequently used in the following emission studies. Extensive quantifications and characterizations of particulate and gases emissions were performed for residential wood and pellet appliances. Emission factor ranges for

  15. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  16. Device to lower NOx in a gas turbine engine combustion system

    Science.gov (United States)

    Laster, Walter R; Schilp, Reinhard; Wiebe, David J

    2015-02-24

    An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).

  17. Numerical analysis of exhaust jet secondary combustion in hypersonic flow field

    Science.gov (United States)

    Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han

    2018-05-01

    The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.

  18. Formation and Control of Sulfur Oxides in Sour Gas Oxy-Combustion: Prediction Using a Reactor Network Model

    KAUST Repository

    Bongartz, Dominik

    2015-11-19

    © 2015 American Chemical Society. Sour natural gas currently requires expensive gas cleanup before it can be used in power generation because it contains large amounts of hydrogen sulfide (H2S) and carbon dioxide (CO2) that entail a low heating value and highly corrosive combustion products. A potential alternative is to use the gas directly in a gas turbine process employing oxy-fuel combustion, which could eliminate the need for gas cleanup while also enabling the application of carbon capture and sequestration, possibly combined with enhanced oil recovery (EOR). However, the exact influence of an oxy-fuel environment on the combustion products of sour gas has not been quantified yet. In this work, we used a reactor network model for the combustor and the gas turbine together with our recently assembled and validated detailed chemical reaction mechanism for sour gas combustion to investigate the influence of some basic design parameters on the combustion products of natural gas and sour gas in CO2 or H2O diluted oxy-fuel combustion as well as in conventional air combustion. Our calculations show that oxy-fuel combustion produces up to 2 orders of magnitude less of the highly corrosive product sulfur trioxide (SO3) than air combustion, which clearly demonstrates its potential in handling sulfur containing fuels. Unlike in air combustion, in oxy-fuel combustion, SO3 is mainly formed in the flame zone of the combustor and is then consumed as the combustion products are cooled in the dilution zone of the combustor and the turbine. In oxy-fuel combustion, H2O dilution leads to a higher combustion efficiency than CO2 dilution. However, if the process is to be combined with EOR, CO2 dilution makes it easier to comply with the very low levels of oxygen (O2) required in the EOR stream. Our calculations also show that it might even be beneficial to operate slightly fuel-rich because this simultaneously decreases the O2 and SO3 concentration further. The flame zone

  19. Formulation and analyses of vaporization and diffusion-controlled combustion of fuel sprays

    OpenAIRE

    Arrieta Sanagustín, Jorge

    2012-01-01

    This dissertation focuses on the modelling of vaporization and combustion of sprays. A general two-continua formulation is given for the numerical computation of spray flows, including the treatment of the droplets as homogenized sources. Group combustion is considered, with the reaction between the fuel coming from the vaporizing droplets and the oxygen of the air modeled in the Burke-Schumann limit of infinitely fast chemical reaction, with nonunity Lewis numbers allowed for the different r...

  20. Passive autocatalytic recombiners for combustible gas control in advanced light water reactors

    International Nuclear Information System (INIS)

    Wolff, U.; Sliter, G.

    2004-01-01

    A key aspect of the worldwide effort to develop advanced nuclear power plants is designing to address severe accident phenomena, including the generation of hydrogen during core melt progression (metal-water and core-concrete reactions). This design work not only resolves safety concerns with hydrogen, but also supports the development of a technical basis for simplification of off-site emergency planning. The dominant challenge to any emergency planning approach is a large, early containment failure due to pressure excursions. Among the potential contributors to large and rapid increases in containment pressure is hydrogen combustion. The more improbable a containment-threatening combustion becomes, the more appropriate the argument for significant emergency planning simplification. As discussed in this paper, catalytic recombiners provide a means to passively and reliably limit hydrogen combustion to a continuous oxidation process with virtually no potential for containment failure in passive advanced light water reactors (ALWRs). (author)

  1. New class of combustion processes

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Borovinskaya, I.P.

    1975-01-01

    A short review is given of the results of work carried out since 1967 on studying the combustion processes caused by the interaction of chemical elements in the condensed phase and leading to the formation of refractory compounds. New phenomena and processes are described which are revealed when investigating the combustion of the systems of this class, viz solid-phase combustion, fast combustion in the condensed phase, filtering combustion, combustion in liquid nitrogen, spinning combustion, self-oscillating combustion, and repeated combustion. A new direction in employment of combustion processes is discussed, viz. a self-propagating high-temperature synthesis of refractory nitrides, carbides, borides, silicides and other compounds

  2. Control of surplus oxygen in the combustion zone reduces fuel costs and NO{sub x} emissions; Verringerung der Brennstoffkosten und NO{sub X}-Emissionen durch Regelung des Sauerstoffueberschusses in der Brennzone

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Eric S. [Marathon Sensors Inc. (Germany); Baumann, Jens [Process Electronic GmbH (Germany)

    2009-06-15

    Real time in-situ measurement of oxygen content and temperature in the combustion zone of a heating boiler or furnace permits monitoring of combustion conditions at source. Measurements of oxygen surplus and of temperature at strategic points supply us with instantaneous information for optimum control of the combustion process. Accurate and rapid measurement of oxygen surplus is vital in view of the cost explosion in the case of fuels, and also for reduction of NO{sub x} emissions. Locally available commercial high-temperature oxygen sensors make it possible to solve problems of combustion control and burner regulation with only short amortization periods and high annual financial benefits in power generating plant, petrochemicals, refinery and glassworks applications. (orig.)

  3. Experimental validation for combustion analysis of GOTHIC code in 2-dimensional combustion chamber

    International Nuclear Information System (INIS)

    Lee, J. W.; Yang, S. Y.; Park, K. C.; Jung, S. H.

    2002-01-01

    In this study, the prediction capability of GOTHIC code for hydrogen combustion phenomena was validated with the results of two-dimensional premixed hydrogen combustion experiment executed by Seoul National University. The experimental chamber has about 24 liter free volume (1x0.024x1 m 3 ) and 2-dimensional rectangular shape. The test were preformed with 10% hydrogen/air gas mixture and conducted with combination of two igniter positions (top center, top corner) and two boundary conditions (bottom full open, bottom right half open). Using the lumped parameter and mechanistic combustion model in GOTHIC code, the SNU experiments were simulated under the same conditions. The GOTHIC code prediction of the hydrogen combustion phenomena did not compare well with the experimental results. In case of lumped parameter simulation, the combustion time was predicted appropriately. But any other local information related combustion phenomena could not be obtained. In case of mechanistic combustion analysis, the physical combustion phenomena of gas mixture were not matched experimental ones. In boundary open cases, the GOTHIC predicted very long combustion time and the flame front propagation could not simulate appropriately. Though GOTHIC showed flame propagation phenomenon in adiabatic calculation, the induction time of combustion was still very long compare with experimental results. Also, it was found that the combustion model of GOTHIC code had some weak points in low concentration of hydrogen combustion simulation

  4. Emissions from carpet combustion in a pilot-scale rotary kiln: comparison with coal and particle-board combustion

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie Lucero Konopa; James A. Mulholland; Matthew J. Realff; Paul M. Lemieux [Georgia Institute of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering

    2008-08-15

    The use of post-consumer carpet as a potential fuel substitute in cement kilns and other high-temperature processes is being considered to address the problem of huge volumes of carpet waste and the opportunity of waste-to-energy recovery. Carpet represents a high volume waste stream, provides high energy value, and contains other recoverable materials for the production of cement. This research studied the emission characteristics of burning 0.46-kg charges of chopped nylon carpet squares, pulverized coal, and particle-board pellets in a pilot-scale natural gas-fired rotary kiln. Carpet was tested with different amounts of water added. Emissions of oxygen, carbon dioxide, nitric oxide (NO), sulfur dioxide (SO{sub 2}), carbon monoxide (CO), and total hydrocarbons and temperatures were continuously monitored. It was found that carpet burned faster and more completely than coal and particle board, with a rapid volatile release that resulted in large and variable transient emission peaks. NO emissions from carpet combustion ranged from 0.06 to 0.15 g/MJ and were inversely related to CO emissions. Carpet combustion yielded higher NO emissions than coal and particleboard combustion, consistent with its higher nitrogen content. S{sub 2} emissions were highest for coal combustion, consistent with its higher sulfur content than carpet or particle board. Adding water to carpet slowed its burn time and reduced variability in the emission transients, reducing the CO peak but increasing NO emissions. Results of this study indicate that carpet waste can be used as an effective alternative fuel, with the caveats that it might be necessary to wet carpet or chop it finely to avoid excessive transient puff emissions due to its high volatility compared with other solid fuels, and that controlled mixing of combustion air might be used to control NO emissions from nylon carpet. 13 refs., 5 figs., 1 tab.

  5. Fuel and Additive Characterization for HCCI Combustion

    International Nuclear Information System (INIS)

    Aceves, S M; Flowers, D; Martinez-Frias, J; Espinosa-Loza, F; Pitz, W J; Dibble, R

    2003-01-01

    This paper shows a numerical evaluation of fuels and additives for HCCl combustion. First, a long list of candidate HCCl fuels is selected. For all the fuels in the list, operating conditions (compression ratio, equivalence ratio and intake temperature) are determined that result in optimum performance under typical operation for a heavy-duty engine. Fuels are also characterized by presenting Log(p)-Log(T) maps for multiple fuels under HCCl conditions. Log(p)-Log(T) maps illustrate important processes during HCCl engine operation, including compression, low temperature heat release and ignition. Log(p)-Log(T) diagrams can be used for visualizing these processes and can be used as a tool for detailed analysis of HCCl combustion. The paper also includes a ranking of many potential additives. Experiments and analyses have indicated that small amounts (a few parts per million) of secondary fuels (additives) may considerably affect HCCl combustion and may play a significant role in controlling HCCl combustion. Additives are ranked according to their capability to advance HCCl ignition. The best additives are listed and an explanation of their effect on HCCl combustion is included

  6. Testing fireproof materials in a combustion chamber

    Directory of Open Access Journals (Sweden)

    Kulhavy Petr

    2017-01-01

    Full Text Available This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time. Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results – i.e. thermal distribution inside and heat release rate that has gone through the sample.

  7. Does Spontaneous Favorability to Power (vs. Universalism) Values Predict Spontaneous Prejudice and Discrimination?

    Science.gov (United States)

    Souchon, Nicolas; Maio, Gregory R; Hanel, Paul H P; Bardin, Brigitte

    2017-10-01

    We conducted five studies testing whether an implicit measure of favorability toward power over universalism values predicts spontaneous prejudice and discrimination. Studies 1 (N = 192) and 2 (N = 86) examined correlations between spontaneous favorability toward power (vs. universalism) values, achievement (vs. benevolence) values, and a spontaneous measure of prejudice toward ethnic minorities. Study 3 (N = 159) tested whether conditioning participants to associate power values with positive adjectives and universalism values with negative adjectives (or inversely) affects spontaneous prejudice. Study 4 (N = 95) tested whether decision bias toward female handball players could be predicted by spontaneous attitude toward power (vs. universalism) values. Study 5 (N = 123) examined correlations between spontaneous attitude toward power (vs. universalism) values, spontaneous importance toward power (vs. universalism) values, and spontaneous prejudice toward Black African people. Spontaneous positivity toward power (vs. universalism) values was associated with spontaneous negativity toward minorities and predicted gender bias in a decision task, whereas the explicit measures did not. These results indicate that the implicit assessment of evaluative responses attached to human values helps to model value-attitude-behavior relations. © 2016 The Authors. Journal of Personality Published by Wiley Periodicals, Inc.

  8. Preliminary assessment of combustion modes for internal combustion wave rotors

    Science.gov (United States)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  9. Detection of target phonemes in spontaneous and read speech.

    Science.gov (United States)

    Mehta, G; Cutler, A

    1988-01-01

    Although spontaneous speech occurs more frequently in most listeners' experience than read speech, laboratory studies of human speech recognition typically use carefully controlled materials read from a script. The phonological and prosodic characteristics of spontaneous and read speech differ considerably, however, which suggests that laboratory results may not generalise to the recognition of spontaneous speech. In the present study listeners were presented with both spontaneous and read speech materials, and their response time to detect word-initial target phonemes was measured. Responses were, overall, equally fast in each speech mode. However, analysis of effects previously reported in phoneme detection studies revealed significant differences between speech modes. In read speech but not in spontaneous speech, later targets were detected more rapidly than targets preceded by short words. In contrast, in spontaneous speech but not in read speech, targets were detected more rapidly in accented than in unaccented words and in strong than in weak syllables. An explanation for this pattern is offered in terms of characteristic prosodic differences between spontaneous and read speech. The results support claims from previous work that listeners pay great attention to prosodic information in the process of recognising speech.

  10. Numerical simulation of a liquid droplet combustion experiment focusing on ignition process

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Tajima, Yuji

    1999-11-01

    SPHINCS (Sodium Fire phenomenology IN multi-Cell System) computer program has been developed for the safety analysis of sodium fire accident in a Fast Breeder Reactor. The program can deal with spray combustion and pool surface combustion. In this report the authors investigate a single droplet combustion phenomena focusing on an ignition process. The spray combustion model of SPHINCS is as follows. The liquid droplet-burning rate after ignition is based on the D-square law and a diffusion flame assumption. Before the droplet is ignited, the burning rate is evaluated by mass flux of oxidizer gases. Forced convection effect that skews the sphere shape of the flame zone surrounding a droplet is taken into consideration. It enhances the burning rate. The chemical equilibrium theory is used to determine the resultant fraction of reaction products of Na-O 2 -H 2 O system. It is noted that users have to give an ignition temperature based on empirical evidences. According to this model, it is obvious that a smaller liquid droplet with higher initial temperature tends to burn more easily. What is observed in a recent experiment is that the smallest liquid droplet (2mm diameter) did not ignited of itself and larger droplets (3.7mm and 4.5mm diameter) burnt at 300degC initial temperature. The current model for liquid droplet combustion cannot predict the experimental results. Therefore, in the present study, a surface reaction model has been developed to predict the ignition process. The model has been used to analyze a combustion experiment of a stationary liquid droplet. The authors investigate the validity of the physical modeling of the liquid droplet combustion and surface reaction. It has been found, as the results, that the model can predict the influence of the initial temperature on the temperature lower limit for spontaneous ignition and ignition delay time. Also investigated is the influence of the moisture on the ignition phenomena. From the present study, it has

  11. Management of intractable spontaneous epistaxis

    Science.gov (United States)

    Rudmik, Luke

    2012-01-01

    Background: Epistaxis is a common otolaryngology emergency and is often controlled with first-line interventions such as cautery, hemostatic agents, or anterior nasal packing. A subset of patients will continue to bleed and require more aggressive therapy. Methods: Intractable spontaneous epistaxis was traditionally managed with posterior nasal packing and prolonged hospital admission. In an effort to reduce patient morbidity and shorten hospital stay, surgical and endovascular techniques have gained popularity. A literature review was conducted. Results: Transnasal endoscopic sphenopalatine artery ligation and arterial embolization provide excellent control rates but the decision to choose one over the other can be challenging. The role of transnasal endoscopic anterior ethmoid artery ligation is unclear but may be considered in certain cases when bleeding localizes to the ethmoid region. Conclusion: This article will focus on the management of intractable spontaneous epistaxis and discuss the role of endoscopic arterial ligation and embolization as it pertains to this challenging clinical scenario. PMID:22391084

  12. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  13. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  14. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  15. An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel

    International Nuclear Information System (INIS)

    Benajes, Jesús; García, Antonio; Monsalve-Serrano, Javier; Balloul, Iyad; Pradel, Gérard

    2016-01-01

    Highlights: • Reactivity controlled compression ignition regime utilized from 25% to 35% load. • Dual-mode reduces the regeneration periods of the diesel particulate filter. • The use of near-term available biofuels allows good performance and emissions. • Dual-mode leads to 2% greater efficiency than diesel combustion at high engine speeds. - Abstract: This work investigates the capabilities of the dual-mode reactivity controlled compression ignition/conventional diesel combustion engine operation to cover the full operating range of a EURO VI medium-duty diesel engine with compression ratio of 17.5:1. This concept is based on covering all the engine map switching between the reactivity controlled compression ignition and the conventional diesel combustion operating modes. Specifically, the benefits of reactivity controlled compression ignition combustion are exploited whenever possible according to certain restrictions, while the conventional diesel combustion operation is used to cover the zones of the engine map in which the reactivity controlled compression ignition operation is limited. The experiments were conducted using a single-cylinder research diesel engine derived from the multi-cylinder production engine. In addition, considering the mandatory presence of biofuels in the future context of road transport and the ability of ethanol to be blended with gasoline, the low reactivity fuel used in the study is a blend of 20% ethanol by volume with 80% of 95 octane number gasoline. Moreover, a diesel containing 7% of biodiesel has been used as high reactivity fuel. Firstly, a reactivity controlled compression ignition mapping is performed to check the operational limits of the concept in this engine platform. Later, based on the results, the potential of the dual-mode concept is discussed. Results suggest that, under the constraints imposed, reactivity controlled compression ignition combustion can be utilized between 25% and 35% load. In this region

  16. Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China

    Science.gov (United States)

    Wang, Shaobin; Luo, Kunli

    2017-08-01

    To study the mercury emission due to the combustion of steam coal and domestic coal in China, we analyzed the mercury contents of coal, fly ash, bottom ash and sluicing water in thermal power plants, steam boilers as well as domestic coal-stoves, in Shaanxi, Shanxi, Shandong and Yunnan Provinces. This study conduct an estimate of the Hg emission rates from steam coal and domestic coal combustion based on the method of mass distribution ratio of fly ash and bottom ash. The results show that the Hg emission rate of coal combustion in thermal power plants is about 50.21% (electrostatic precipitators + wet flue gas desulfurization), and that in heating boilers is about 67.23%, and 92.28% in industrial boilers without flue gas desulphurisation equipment. Furthermore, Hg emission rate is 83.61% due to domestic coal combustion in coal-stoves. The Hg emission amount into the atmosphere from power and heat generation, industrial boilers, domestic coal-stoves and spontaneous combustion of coal gangue is roughly estimated to be 133 ± 4, 100 ± 17, 11 ± 0.1 and 47 ± 26 tons in China in 2014, respectively, and the total Hg emission amount from this paper is estimated at 292 tons. The trends of Hg emission in China from 1991 to 2014 show an accelerating growth after 2002. The proportion of mercury emission due to thermal power, heating generation and industrial energy utilization continuously increased. The atmospheric emission of mercury due to combustion of steam coal, domestic coal and coal gangue accounts nearly 50% in total anthropogenic Hg emissions in China, indicating one of the largest sources of Hg emission in China which should draw more public and scientific attention in the future.

  17. Tools for the efficient use of the gas: Combustion diagrams

    International Nuclear Information System (INIS)

    Amell Andres; Maya Ruben D

    1997-01-01

    In this work the results of an investigation carried out with the purpose of developing a fundamental tool related to the process of optimization of the combustion are presented: The combustion diagrams with the optimization are looked for using the maximum heat generated in the reaction and to avoid the production of pollutants, product of an incomplete combustion. This is carried out controlling the stability of the flame and the composition of the smoke by means of the adjustment of the ratio air/combustible basically and with a homogeneous mixture. A constant pursuit of the dry smoke allows to determine the presence of pollutants and to establish the combustion type. A valuable tool to establish the conditions in which this process is carried out, this is the combustion diagram; this diagram uses the values of the concentration of O2 and CO2 in the dry smoke, starting from the sampling of the products by an analyzer to determine the composition of these smoke, the percentage of air really used, the air in excess and the combustion type

  18. The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Mullett, J D [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Dodd, R [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Williams, C J [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Triantos, G [Powertrain Control Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Dearden, G [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Shenton, A T [Powertrain Control Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Watkins, K G [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Carroll, S D [Ford Motor Company, Dunton Research and Engineering Centre, Laindon, Basildon, Essex, SS15 6EE (United Kingdom); Scarisbrick, A D [Ford Motor Company, Dunton Research and Engineering Centre, Laindon, Basildon, Essex, SS15 6EE (United Kingdom); Keen, S [GSI Group, Cosford Lane, Swift Valley, Rugby, Warwickshire, CV21 1QN (United Kingdom)

    2007-08-07

    This work involves a study on laser ignition (LI) in an internal combustion (IC) engine and investigates the effects on control of engine combustion performance and stability of varying specific laser parameters (beam energy, beam quality, minimum beam waist size, focal point volume and focal length). A Q-switched Nd : YAG laser operating at the fundamental wavelength 1064 nm was successfully used to ignite homogeneous stoichiometric gasoline and air mixtures in one cylinder of a 1.6 litre IC test engine, where the remaining three cylinders used conventional electrical spark ignition (SI). A direct comparison between LI and conventional SI is presented in terms of changes in coefficient of variability in indicated mean effective pressure (COV{sub IMEP}) and the variance in the peak cylinder pressure position (Var{sub PPP}). The laser was individually operated in three different modes by changing the diameter of the cavity aperture, where the results show that for specific parameters, LI performed better than SI in terms of combustion performance and stability. Minimum ignition energies for misfire free combustion ranging from 4 to 28 mJ were obtained for various optical and laser configurations and were compared with the equivalent minimum optical breakdown energies in air.

  19. Combustion control and model based optimization. Modeling of combustion process and development of supporting control systems for plant operation; Palamisprosessin saeaetoe ja mallipohjainen optimointi; Voimalaitoksen polttoprosessin mallitus ja saeaetoe sekae operoinnin tukiohjelmien kehitys ja testaus

    Energy Technology Data Exchange (ETDEWEB)

    Kortela, U.; Mononen, J.; Leppaekoski, K.; Hiltunen, J.; Jouppila, M.; Karppinen, R. [Oulu Univ. (Finland). Systems Engineering Lab.

    1997-10-01

    The aims of the project are to develop the combustion control strategies and to minimize the flue gas emissions. The common goal of the studies has been the reduction of flue gas emissions by using advanced control and optimization methods. The behaviour of different kind of boilers and fuels has been modelled using experimental data from fullscale plants, such as a 42 MW bubbling fluidized bed boiler, 23 MW bubbling fluidized bed boiler and a 300 MW circulating fluidized bed boiler. Many of the individual observations and modelled correlations between control variables and flue gas emissions have lead to operation instructions and/or re-organized control schemes which help to control total emissions. The most part of this knowledge can be formed to the standard IF- THEN - type rules which contain some uncertainty or fuzziness. Rule-based instruction system for the reduction of flue gas emissions is under work. (orig.)

  20. Multifunctional (NOx/CO/O2) Solid-State Sensors For Coal Combustion Control

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman

    2006-12-31

    Solid-state sensors were developed for coal combustion control and the understanding of sensing mechanisms was advanced. Several semiconducting metal oxides (p-type and n-type) were used to fabricate sensor electrodes. The adsorption/desorption characteristics and catalytic activities of these materials were measured with Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction (TPR) experiments. The sensitivity, selectivity, and response time of these sensors were measured for steps of NO, NO{sub 2}, CO, CO{sub 2}, O{sub 2}, and H{sub 2}O vapor in simple N{sub 2}-balanced and multi-component, simulated combustion-exhaust streams. The role of electrode microstructure and fabrication parameters on sensing performance was investigated. Proof for the proposed sensing mechanism, Differential Electrode Equilibria, was demonstrated by relating the sensing behavior (sensitivities and cross-sensitivities) of the various electrode materials to their gas adsorption/desorption behaviors and catalytic activities. A multifunctional sensor array consisting of three sensing electrodes and an integrated heater and temperature sensors was fabricated with tape-casting and screen-printing and its NO{sub x} sensing performance was measured. The multifunctional sensor demonstrated it was possible to measure NO{sub 2} independent of NO by locally heating one of the sensing electrodes. The sensor technology was licensed to Fuel FX International, Inc. Fuel FX has obtained investor funding and is developing prototype sensors as a first step in their commercialization strategy for this technology.

  1. Indoor air quality environmental information handbook: Combustion sources

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This environmental information handbook was prepared to assist both the non-technical reader (i.e., homeowner) and technical persons (such as researchers, policy analysts, and builders/designers) in understanding the current state of knowledge regarding combustion sources of indoor air pollution. Quantitative and descriptive data addressing the emissions, indoor concentrations, factors influencing indoor concentrations, and health effects of combustion-generated pollutants are provided. In addition, a review of the models, controls, and standards applicable to indoor air pollution from combustion sources is presented. The emphasis is on the residential environment. The data presented here have been compiled from government and privately-funded research results, conference proceedings, technical journals, and recent publications. It is intended to provide the technical reader with a comprehensive overview and reference source on the major indoor air quality aspects relating to indoor combustion activities, including tobacco smoking. In addition, techniques for determining potential concentrations of pollutants in residential settings are presented. This is an update of a 1985 study documenting the state of knowledge of combustion-generated pollutants in the indoor environment. 191 refs., 51 figs., 71 tabs.

  2. DNS of non-premixed combustion in a compressible mixing layer

    NARCIS (Netherlands)

    Bastiaans, R.J.M.; Somers, L.M.T.; Lange, de H.C.; Geurts, B.J.

    2001-01-01

    The non-premixed reaction of fuel with air in a mixing layer is studied using DNS. The situation is a model for the mixing-controlled combustion in a Diesel engine. We show that the combustion region can be comparably passive with respect to relatively large scale aerodynamic instabilities. However

  3. Method of estimating time management of safety control of combustion. Nensho anzen seigyo no tame no jikan kanri No hyoka hoho

    Energy Technology Data Exchange (ETDEWEB)

    Moroboshi, M. (Yamatake-Honeywell Co. Ltd., Tokyo (Japan))

    1993-12-01

    The results of investigating time management (permissible value of ignition time and prepurge time) for safety control of combustion relating to a combustor is reported. It is shown that the heating value of hydrocarbon-based fuel is determined by molecular weight irrespective of molecular structure and constant (11200kcal/kg) per unit weight; the heating value of mixture gas of theoretical mixture ratio is constant (1000kcal/m[sup 3]) indifferently of the kind of fuel; and that the product of the heating value of a fuel and the lower limit of its explosion limit is approximately constant (400-600kcal/m[sup 3]). Succeedingly it is shown based on these values that allowable ignition time is determined by the combustion chamber load (ratio of the maximum amount, 10[sup 4]kcal/h, of combustion to the volume of combustion chamber); the effect of dilution by exhaust lengthens it by only about 50%; and that the conventional criterion that the frequency of ventilation of prepurge should be 4-5 or that the minimum time of prepurge should be 30 seconds is appropriate. 6 refs., 4 figs., 1 tab.

  4. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    Energy Technology Data Exchange (ETDEWEB)

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay; Kumfer, Benjamin

    2014-09-30

    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressed by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for

  5. HERCULES Advanced Combustion Concepts Test Facility: Spray/Combustion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, K. [Eidgenoessische Technische Hochschule (ETH), Labor fuer Aerothermochemie und Verbrennungssysteme, Zuerich (Switzerland)

    2004-07-01

    This yearly report for 2004 on behalf of the Swiss Federal Office of Energy (SFOE) at the Laboratory for Aero-thermochemistry and Combustion Systems at the Federal Institute of Technology ETH in Zurich, Switzerland, presents a review of work being done within the framework of HERCULES (High Efficiency R and D on Combustion with Ultra Low Emissions for Ships) - the international R and D project concerning new technologies for ships' diesels. The work involves the use and augmentation of simulation models. These are to be validated using experimental data. The report deals with the development of an experimental set-up that will simulate combustion in large two-stroke diesel engines and allow the generation of reference data. The main element of the test apparatus is a spray / combustion chamber with extensive possibilities for optical observation under variable flow conditions. The results of first simulations confirm concepts and shall help in further work on the project. The potential offered by high-speed camera systems was tested using the institute's existing HTDZ combustion chamber. Further work to be done is reviewed.

  6. Fuel properties to enable lifted-flame combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Eric [Ford Motor Company, Dearborn, MI (United States)

    2015-03-15

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enable LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  7. Multi-Point Combustion System: Final Report

    Science.gov (United States)

    Goeke, Jerry; Pack, Spencer; Zink, Gregory; Ryon, Jason

    2014-01-01

    A low-NOx emission combustor concept has been developed for NASA's Environmentally Responsible Aircraft (ERA) program to meet N+2 emissions goals for a 70,000 lb thrust engine application. These goals include 75 percent reduction of LTO NOx from CAEP6 standards without increasing CO, UHC, or smoke from that of current state of the art. An additional key factor in this work is to improve lean combustion stability over that of previous work performed on similar technology in the early 2000s. The purpose of this paper is to present the final report for the NASA contract. This work included the design, analysis, and test of a multi-point combustion system. All design work was based on the results of Computational Fluid Dynamics modeling with the end results tested on a medium pressure combustion rig at the UC and a medium pressure combustion rig at GRC. The theories behind the designs, results of analysis, and experimental test data will be discussed in this report. The combustion system consists of five radially staged rows of injectors, where ten small scale injectors are used in place of a single traditional nozzle. Major accomplishments of the current work include the design of a Multipoint Lean Direct Injection (MLDI) array and associated air blast and pilot fuel injectors, which is expected to meet or exceed the goal of a 75 percent reduction in LTO NOx from CAEP6 standards. This design incorporates a reduced number of injectors over previous multipoint designs, simplified and lightweight components, and a very compact combustor section. Additional outcomes of the program are validation that the design of these combustion systems can be aided by the use of Computational Fluid Dynamics to predict and reduce emissions. Furthermore, the staging of fuel through the individually controlled radially staged injector rows successfully demonstrated improved low power operability as well as improvements in emissions over previous multipoint designs. Additional comparison

  8. Gradual combustion - method for nitrogen oxide suppression during brown coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.P.; Verzakov, V.N.; Lobov, T.V.

    1990-10-01

    Discusses combustion of brown coal in BKZ-500-140-1 boilers and factors that influence emission of nitrogen oxides. Temperature distribution in the furnace was evaluated. Effects of burner position, burner number and burner type as well as air excess ratio on chemical reactions during brown coal combustion, formation of nitrogen oxides and their emission were comparatively evaluated. Analyses showed that by optimum arrangement of burners and selecting the optimum air excess ratio a part of nitrogen oxides formed during the initial phase of combustion was reduced to molecular nitrogen in the second phase. On the basis of evaluations the following recommendations for furnace design are made: use of straight-flow burners characterized by a reduced mixing ratio with secondary air, parallel arrangement of burners which guarantees mixing of the combustion products from the burners with stable and unstable combustion (products of incomplete coal combustion), reducing the air excess ratio to below 1.0. 5 refs.

  9. Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jesús Benajes

    2016-12-01

    Full Text Available Stringent emissions limits introduced for internal combustion engines impose a major challenge for the research community. The technological solution adopted by the manufactures of diesel engines to meet the NOx and particle matter values imposed in the EURO VI regulation relies on using selective catalytic reduction and particulate filter systems, which increases the complexity and cost of the engine. Alternatively, several new combustion modes aimed at avoiding the formation of these two pollutants by promoting low temperature combustion reactions, are the focus of study nowadays. Among these new concepts, the dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI seems more promising because it allows better control of the combustion process by means of modulating the fuel reactivity depending on the engine operating conditions. The present experimental work explores the potential of different strategies for reducing the energy losses with RCCI in a single-cylinder research engine, with the final goal of providing the guidelines to define an efficient dual-fuel combustion system. The results demonstrate that the engine settings combination, piston geometry modification, and fuel properties variation are good methods to increase the RCCI efficiency while maintaining ultra-low NOx and soot emissions for a wide range of operating conditions.

  10. System catalytic neutralization control of combustion engines waste gases in mining technologies

    Science.gov (United States)

    Korshunov, G. I.; Solnitsev, R. I.

    2017-10-01

    The paper presents the problems solution of the atmospheric air pollution with the exhaust gases of the internal combustion engines, used in mining technologies. Such engines are used in excavators, bulldozers, dump trucks, diesel locomotives in loading and unloading processes and during transportation of minerals. NOx, CO, CH emissions as the waste gases occur during engine operation, the concentration of which must be reduced to the standard limits. The various methods and means are used for the problem solution, one of which is neutralization based on platinum catalysts. A mathematical model of a controlled catalytic neutralization system is proposed. The simulation results confirm the increase in efficiency at start-up and low engine load and the increase in the catalyst lifetime.

  11. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix D. Assessment of NO/sub x/ control technology for coal fired utility boilers. [Low-excess-air, staged combustion, flu gas recirculation and burner design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Close control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.

  12. Increased combustion stability in modulating biomass boilers for district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Gunnar; Hermansson, Roger (eds.) [Lulea Univ. of Technology (Sweden)

    2002-09-01

    One of the problems in small district heating systems is the large load variation that must be handled by the system. If the boiler is designed to cover the needs during the coldest day in winter time in northern Europe it would have to run at loads as low as 10% of full load during summer time, when heat is needed only for tap water production. Load variations in small networks are quite fast and earlier investigations have shown that existing biomass boilers give rise to large amounts of harmful emissions at fast load variations and at low loads. The problem has been addressed in different ways: Three new boiler concepts have been realized and tested: A prototype of a 500 kW boiler with partitioned primary combustion chamber and supplied with a water heat store. A 10 kW bench scale combustor and a 500 kW prototype boiler based on pulsating combustion. Bench scale boilers to test the influence from applied sound on emissions and a 150 kW prototype boiler with a two-stage secondary vortex combustion chamber. Development of control and regulating equipment: Glow Guard, a control system using infra-red sensors to detect glowing char on the grate, has been constructed and tested. A fast prediction model that can be used in control systems has been developed. Simulation of the combustion process: Code to simulate pyrolysis/gasification of fuel on the grate has been developed. Combustion of the gas phase inside the combustion chamber has been simulated. The two models have been combined to describe the combustion process inside the primary chamber of a prototype boiler. A fast simulation code based on statistical methods that can predict the environmental performance of boilers has been developed. One of the boiler concepts matches the desired load span from 10 to 100% of full load with emissions far below the set limits for CO and THC and close to the set limits for NO{sub x}. The other boilers had a bit more narrow load range, one with very low emissions except for NO

  13. Constant speed control of four-stroke micro internal combustion swing engine

    Science.gov (United States)

    Gao, Dedong; Lei, Yong; Zhu, Honghai; Ni, Jun

    2015-09-01

    The increasing demands on safety, emission and fuel consumption require more accurate control models of micro internal combustion swing engine (MICSE). The objective of this paper is to investigate the constant speed control models of four-stroke MICSE. The operation principle of the four-stroke MICSE is presented based on the description of MICSE prototype. A two-level Petri net based hybrid model is proposed to model the four-stroke MICSE engine cycle. The Petri net subsystem at the upper level controls and synchronizes the four Petri net subsystems at the lower level. The continuous sub-models, including breathing dynamics of intake manifold, thermodynamics of the chamber and dynamics of the torque generation, are investigated and integrated with the discrete model in MATLAB Simulink. Through the comparison of experimental data and simulated DC voltage output, it is demonstrated that the hybrid model is valid for the four-stroke MICSE system. A nonlinear model is obtained from the cycle average data via the regression method, and it is linearized around a given nominal equilibrium point for the controller design. The feedback controller of the spark timing and valve duration timing is designed with a sequential loop closing design approach. The simulation of the sequential loop closure control design applied to the hybrid model is implemented in MATLAB. The simulation results show that the system is able to reach its desired operating point within 0.2 s, and the designed controller shows good MICSE engine performance with a constant speed. This paper presents the constant speed control models of four-stroke MICSE and carries out the simulation tests, the models and the simulation results can be used for further study on the precision control of four-stroke MICSE.

  14. Measuring the exhaust gas dew point of continuously operated combustion plants

    Energy Technology Data Exchange (ETDEWEB)

    Fehler, D.

    1985-07-16

    Low waste-gas temperatures represent one means of minimizing the energy consumption of combustion facilities. However, condensation should be prevented to occur in the waste gas since this could result in a destruction of parts. Measuring the waste-gas dew point allows to control combustion parameters in such a way as to be able to operate at low temperatures without danger of condensation. Dew point sensors will provide an important signal for optimizing combustion facilities.

  15. Combustion synthesis of inorganic materials; Muki zairyo no nensho gose

    Energy Technology Data Exchange (ETDEWEB)

    Oyanagi, M. [Ryukoku University, Kyoto (Japan)

    1999-11-01

    Combustion synthesis of porous titan carbide is outlined. In combustion synthesis, exothermic chain reaction, which is induced by igniting at one point of the simple substance mixture, propagates the combustion wave, and the compound is synthesized, which can be sintered by it. By this method, to this day intermetallic compounds, ceramics and high melting point composite materials have been synthesized, and synthetics can be made compact by adding pressure during or just after the reaction. Recently, applying the induction heating jointly, preheating before the reaction and heat treatment after the reaction can be controlled, accordingly, many high melting point inorganic compounds and composite materials can be made by combustion synthesis under pressure. (NEDO)

  16. Research on optimization of combustion efficiency of thermal power unit based on genetic algorithm

    Science.gov (United States)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the economic performance and reduce pollutant emissions of thermal power units, the characteristics of neural network in establishing boiler combustion model are analyzed based on the analysis of the main factors affecting boiler efficiency by using orthogonal method. In addition, on the basis of this model, the genetic algorithm is used to find the best control amount of the furnace combustion in a certain working condition. Through the genetic algorithm based on real number encoding and roulette selection is concluded: the best control quantity at a condition of furnace combustion can be combined with the boiler combustion system model for neural network training. The precision of the neural network model is further improved, and the basic work is laid for the research of the whole boiler combustion optimization system.

  17. Internal Combustion Engine Principles with Vehicle Applications

    DEFF Research Database (Denmark)

    Sorenson, Spencer C

    The book is an introductory text on the subject of internal combustion engines, intended for use in engineering courses at the senior or introductory graduate student level. The focus in on describing the basic principles of engine operation on a broad basis, to provide a foundation for further...... exchange processes, combustion in different engine types, exhaust emissions, engine control including mean value engine models, pressure charging, fuels and fuel systems, balancing, friction, and heat transfer. In addition, methods to establish the connection between engine characteristics and vehicle...

  18. Spontaneous neutrophil activation in HTLV-1 infected patients

    Directory of Open Access Journals (Sweden)

    Jaqueline B. Guerreiro

    Full Text Available Human T cell lymphotropic Virus type-1 (HTLV-1 induces lymphocyte activation and proliferation, but little is known about the innate immune response due to HTLV-1 infection. We evaluated the percentage of neutrophils that metabolize Nitroblue tetrazolium (NBT to formazan in HTLV-1 infected subjects and the association between neutrophil activation and IFN-gamma and TNF-alpha levels. Blood was collected from 35 HTLV-1 carriers, from 8 patients with HAM/TSP (HTLV-1- associated myelopathy; 22 healthy individuals were evaluated for spontaneous and lipopolysaccharide (LPS-stimulated neutrophil activity (reduction of NBT to formazan. The production of IFN-gamma and TNF-alpha by unstimulated mononuclear cells was determined by ELISA. Spontaneous NBT levels, as well as spontaneous IFN-gamma and TNF-alpha production, were significantly higher (p<0.001 in HTLV-1 infected subjects than in healthy individuals. A trend towards a positive correlation was noted, with increasing percentage of NBT positive neutrophils and levels of IFN-gamma. The high IFN-gamma producing HTLV-1 patient group had significantly greater NBT than healthy controls, 43±24% and 17±4.8% respectively (p< 0.001, while no significant difference was observed between healthy controls and the low IFN-gamma-producing HTLV-1 patient group (30±20%. Spontaneous neutrophil activation is another marker of immune perturbation resulting from HTLV-1 infection. In vivo activation of neutrophils observed in HTLV-1 infected subjects is likely to be the same process that causes spontaneous IFN-gamma production, or it may partially result from direct IFN-gamma stimulation.

  19. Mixing and combustion enhancement of Turbocharged Solid Propellant Ramjet

    Science.gov (United States)

    Liu, Shichang; Li, Jiang; Zhu, Gen; Wang, Wei; Liu, Yang

    2018-02-01

    Turbocharged Solid Propellant Ramjet is a new concept engine that combines the advantages of both solid rocket ramjet and Air Turbo Rocket, with a wide operation envelope and high performance. There are three streams of the air, turbine-driving gas and augment gas to mix and combust in the afterburner, and the coaxial intake mode of the afterburner is disadvantageous to the mixing and combustion. Therefore, it is necessary to carry out mixing and combustion enhancement research. In this study, the numerical model of Turbocharged Solid Propellant Ramjet three-dimensional combustion flow field is established, and the numerical simulation of the mixing and combustion enhancement scheme is conducted from the aspects of head region intake mode to injection method in afterburner. The results show that by driving the compressed air to deflect inward and the turbine-driving gas to maintain strong rotation, radial and tangential momentum exchange of the two streams can be enhanced, thereby improving the efficiency of mixing and combustion in the afterburner. The method of injecting augment gas in the transverse direction and making sure the injection location is as close as possible to the head region is beneficial to improve the combustion efficiency. The outer combustion flow field of the afterburner is an oxidizer-rich environment, while the inner is a fuel-rich environment. To improve the efficiency of mixing and combustion, it is necessary to control the injection velocity of the augment gas to keep it in the oxygen-rich zone of the outer region. The numerical simulation for different flight conditions shows that the optimal mixing and combustion enhancement scheme can obtain high combustion efficiency and have excellent applicability in a wide working range.

  20. Ash quality and environmental quality assurance system in co-combustion - Co-combustion of forest industry waste

    International Nuclear Information System (INIS)

    Laine-Ylijoki, J.; Wahlstroem, M.

    2000-01-01

    The environmental acceptability and possible utilization of co-combustion ashes will have a significant influence on the wider use of co-combustion in the future. At present the correlation between currently used fuels, their mixture ratios, and quality variations in ashes are not known, which complicates the assessment of possible utilization and environmental acceptability of co-combustion ashes. The composition of ashes has also been found to vary significantly. Effective utilization requires that process variations to alter ash composition and quality variations are known in advance. The aim of the research was to characterize the fly ash from co- combustion of peat, wood and biological paper mill sludge produced under different fuel loadings, especially with and without sludge addition, ant to identify critical parameters influencing on the ash composition. The variations in the leaching properties of ashes collected daily were followed up. The environmental acceptability of the ashes produced under different fuel loadings, especially their suitability for use in road constructions, were evaluated. The project included also the preparation of laboratory reference material from ash material. Guidelines were developed for sampling, sample preparation and analysis, and leaching tests. Furthermore, a quality control system, including sampling strategies, sample analysis and leaching testing, was established

  1. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.

    Science.gov (United States)

    Li, Zenghua; Kong, Biao; Wei, Aizhu; Yang, Yongliang; Zhou, Yinbo; Zhang, Lanzhun

    2016-12-01

    Study on the mechanism of coal spontaneous combustion is significant for controlling fire disasters due to coal spontaneous combustion. The free radical reactions can explain the chemical process of coal at low-temperature oxidation. Electron spin resonance (ESR) spectroscopy was used to measure the change rules of the different sorts and different granularity of coal directly; ESR spectroscopy chart of free radicals following the changes of temperatures was compared by the coal samples applying air and blowing nitrogen, original coal samples, dry coal samples, and demineralized coal samples. The fragmentation process was the key factor of producing and initiating free radical reactions. Oxygen, moisture, and mineral accelerated the free radical reactions. Combination of the free radical reaction mechanism, the mechanical fragmentation leaded to the elevated CO concentration, fracturing of coal pillar was more prone to spontaneous combustion, and spontaneous combustion in goaf accounted for a large proportion of the fire in the mine were explained. The method of added diphenylamine can inhibit the self-oxidation of coal effectively, the action mechanism of diphenylamine was analyzed by free radical chain reaction, and this research can offer new method for the development of new flame retardant.

  2. Experimental study on combustion and slagging characteristics of tannery sludge

    International Nuclear Information System (INIS)

    Li, Chunyu; Jiang, Xuguang; Fei, Zhenwei; Chi, Yong; Yan, Jianhua

    2010-01-01

    Incineration is the most reasonable technique for tannery sludge disposal. The combustion and gaseous products emission characteristics of tannery sludge were investigated in this study. Tendency of slagging for combustion residue was also investigated based on the composition and microscopic scanning analysis. The high content of volatile matters and ash in tannery sludge was discovered. It was shown that the thermal decomposition and combustion of tannery sludge mainly occurs in a temperature frame between 150 degree Celsius and 780 degree Celsius. Organic acid was determined as the most important gaseous pollutant at low temperature combustion. The combustion residue from a specially designed furnace was analyzed by X-ray diffractometer (XRD) and energy dispersion spectroscopy (EDS) microprobe coupled in a scanning electron micro-scope (SEM). There is large amount of Ca in the combustion residue, and CaO was the main inorganic composition in these residues. The tannery sludge studied in this paper has a strong tendency of slagging, and the fusion of the residue began at 900 degree Celsius in combustion. It was further discovered that almost all the zinc (Zn) in tannery sludge is volatilized at 900 degree Celsius. The degree of volatilization for heavy metals at 900 degree Celsius followed the order of Zn > Cd >Cu > Mn > Pb > Cr. Most of Cr in tannery sludge is enriched in the residue during combustion. The present study reveals that it is critical to control the combustion temperature for optimal combustion efficiency and minimization of pollutants emission. (author)

  3. Model based control of grate combustion; Modellbaserad roststyrning

    Energy Technology Data Exchange (ETDEWEB)

    Broden, Henrik; Kjellstroem, Bjoern; Niklasson, Fredrik; Boecher Poulsen, Kristian

    2006-12-15

    An existing dynamic model for grate combustion has been further developed. The model has been used for studies of possible advantages that can be gained from utilisation of measurements of grate temperatures and fuel bed height for control of a boiler after disturbances caused by varying fuel moisture and fuel feeding. The objective was to asses the possibilities to develop a control system that would adjust for such disturbances quicker than measurements of steam output and oxygen in the exhaust. The model is based on dividing the fuel bed into three layers, where the different layers include fuel being dried, fuel being pyrolysed and char reacting with oxygen. The grate below the fuel bed is also considered. A mass balance, an energy balance and a volume balance is considered for each layer in 22 cells along the grate. The energy balances give the temperature distribution and the volume balances the bed height. The earlier version of the model could not handle layers that are consumed. This weakness has now been eliminated. Comparisons between predicted grate temperatures and measurements in a 25 MW boiler fuelled with biofuel have been used for validation of the model. The comparisons include effects of variations in primary air temperature, fuel moisture and output power. The model shows good agreement with observations for changes in the air temperature but the ability of the model to predict effects of changed fuel moisture is difficult to judge since the steam dome pressure control caused simultaneous changes of the primary air flow, which probably had a larger influence on the grate temperature. A linearised, tuned and reduced version of the model was used for design of a linear quadratic controller. This was used for studies of advantages of using measurements of grate temperatures and bed height for control of pusher velocity, grate speed, primary air flow and air temperature after disturbances of fuel moisture and fuel flow. Measurements of the grate

  4. Spontaneous Gamma Activity in Schizophrenia.

    Science.gov (United States)

    Hirano, Yoji; Oribe, Naoya; Kanba, Shigenobu; Onitsuka, Toshiaki; Nestor, Paul G; Spencer, Kevin M

    2015-08-01

    A major goal of translational neuroscience is to identify neural circuit abnormalities in neuropsychiatric disorders that can be studied in animal models to facilitate the development of new treatments. Oscillations in the gamma band (30-100 Hz) of the electroencephalogram have received considerable interest as the basic mechanisms underlying these oscillations are understood, and gamma abnormalities have been found in schizophrenia (SZ). Animal models of SZ based on hypofunction of the N-methyl-d-aspartate receptor (NMDAR) demonstrate increased spontaneous broadband gamma power, but this phenomenon has not been identified clearly in patients with SZ. To examine spontaneous gamma power and its relationship to evoked gamma oscillations in the auditory cortex of patients with SZ. We performed a cross-sectional study including 24 patients with chronic SZ and 24 matched healthy control participants at the Veterans Affairs Boston Healthcare System from January 1, 2009, through December 31, 2012. Electroencephalograms were obtained during auditory steady-state stimulation at multiple frequencies (20, 30, and 40 Hz) and during a resting state in 18 participants in each group. Electroencephalographic activity in the auditory cortex was estimated using dipole source localization. Auditory steady-state response (ASSR) measures included the phase-locking factor and evoked power. Spontaneous gamma power was measured as induced (non-phase-locked) gamma power in the ASSR data and as total gamma power in the resting-state data. The ASSR phase-locking factor was reduced significantly in patients with SZ compared with controls for the 40-Hz stimulation (mean [SD], 0.075 [0.028] vs 0.113 [0.065]; F1,46 = 6.79 [P = .012]) but not the 20- or the 30-Hz stimulation (0.042 [0.038] vs 0.043 [0.034]; F1,46 = 0.006 [P = .938] and 0.084 [0.040] vs 0.098 [0.050]; F1,46 = 1.605 [P = .212], respectively), repeating previous findings. The mean [SD] broadband-induced (30

  5. The development of an electrochemical technique for in situ calibrating of combustible gas detectors

    Science.gov (United States)

    Shumar, J. W.; Lantz, J. B.; Schubert, F. H.

    1976-01-01

    A program to determine the feasibility of performing in situ calibration of combustible gas detectors was successfully completed. Several possible techniques for performing the in situ calibration were proposed. The approach that showed the most promise involved the use of a miniature water vapor electrolysis cell for the generation of hydrogen within the flame arrestor of a combustible gas detector to be used for the purpose of calibrating the combustible gas detectors. A preliminary breadboard of the in situ calibration hardware was designed, fabricated and assembled. The breadboard equipment consisted of a commercially available combustible gas detector, modified to incorporate a water vapor electrolysis cell, and the instrumentation required for controlling the water vapor electrolysis and controlling and calibrating the combustible gas detector. The results showed that operation of the water vapor electrolysis at a given current density for a specific time period resulted in the attainment of a hydrogen concentration plateau within the flame arrestor of the combustible gas detector.

  6. Uncertainties in hydrogen combustion

    International Nuclear Information System (INIS)

    Stamps, D.W.; Wong, C.C.; Nelson, L.S.

    1988-01-01

    Three important areas of hydrogen combustion with uncertainties are identified: high-temperature combustion, flame acceleration and deflagration-to-detonation transition, and aerosol resuspension during hydrogen combustion. The uncertainties associated with high-temperature combustion may affect at least three different accident scenarios: the in-cavity oxidation of combustible gases produced by core-concrete interactions, the direct containment heating hydrogen problem, and the possibility of local detonations. How these uncertainties may affect the sequence of various accident scenarios is discussed and recommendations are made to reduce these uncertainties. 40 references

  7. Low dose aspirin in the prevention of recurrent spontaneous preterm labour - the APRIL study: a multicenter randomized placebo controlled trial.

    Science.gov (United States)

    Visser, Laura; de Boer, Marjon A; de Groot, Christianne J M; Nijman, Tobias A J; Hemels, Marieke A C; Bloemenkamp, Kitty W M; Bosmans, Judith E; Kok, Marjolein; van Laar, Judith O; Sueters, Marieke; Scheepers, Hubertina; van Drongelen, Joris; Franssen, Maureen T M; Sikkema, J Marko; Duvekot, Hans J J; Bekker, Mireille N; van der Post, Joris A M; Naaktgeboren, Christiana; Mol, Ben W J; Oudijk, Martijn A

    2017-07-14

    Preterm birth (birth before 37 weeks of gestation) is a major problem in obstetrics and affects an estimated 15 million pregnancies worldwide annually. A history of previous preterm birth is the strongest risk factor for preterm birth, and recurrent spontaneous preterm birth affects more than 2.5 million pregnancies each year. A recent meta-analysis showed possible benefits of the use of low dose aspirin in the prevention of recurrent spontaneous preterm birth. We will assess the (cost-)effectiveness of low dose aspirin in comparison with placebo in the prevention of recurrent spontaneous preterm birth in a randomized clinical trial. Women with a singleton pregnancy and a history of spontaneous preterm birth in a singleton pregnancy (22-37 weeks of gestation) will be asked to participate in a multicenter, randomized, double blinded, placebo controlled trial. Women will be randomized to low dose aspirin (80 mg once daily) or placebo, initiated from 8 to 16 weeks up to maximal 36 weeks of gestation. The primary outcome measure will be preterm birth, defined as birth at a gestational age (GA) aspirin is effective in preventing preterm birth, we expect that there will be cost savings, because of the low costs of aspirin. To evaluate this, a cost-effectiveness analysis will be performed comparing preventive treatment with aspirin with placebo. This trial will provide evidence as to whether or not low dose aspirin is (cost-) effective in reducing recurrence of spontaneous preterm birth. Clinical trial registration number of the Dutch Trial Register: NTR 5675 . EudraCT-registration number: 2015-003220-31.

  8. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    Science.gov (United States)

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dynamics of Spontaneous Emission Controlled by Local Density of States in Photonic Crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter; Nikolaev, Ivan S.; van Driel, A. Floris

    2006-01-01

    We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter.......We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter....

  10. Brain-derived neurotrophic factor is increased in serum and skin levels of patients with chronic spontaneous urticaria.

    Science.gov (United States)

    Rössing, K; Novak, N; Mommert, S; Pfab, F; Gehring, M; Wedi, B; Kapp, A; Raap, U

    2011-10-01

    Chronic spontaneous urticaria is triggered by many direct and indirect aggravating factors including autoreactive/autoimmune mechanisms, infections, non-allergic and pseudoallergic intolerance reactions. However, the role of neuroimmune mechanisms in chronic spontaneous urticaria so far is unclear. Thus, we wanted to address the regulation of the neurotrophin brain-derived neurotrophic factor (BDNF) in serum and inflammatory skin of patients with chronic spontaneous urticaria in comparison to subjects with healthy skin. Fifty adult patients with chronic spontaneous urticaria and 23 skin-healthy subjects were studied. Chronic spontaneous urticaria was defined as recurrent weals for more than 6 weeks. Autologous serum skin test was performed in all patients with chronic spontaneous urticaria and BDNF serum levels were analysed by enzyme immunoassay in all subjects. Furthermore, skin biopsies were taken from weals of eight patients with chronic spontaneous urticaria as well as from healthy skin of eight controls to evaluate the expression of BDNF and its receptors including tyrosine kinase (trk) B and pan-neurotrophin receptor p75(NTR) by immunohistochemistry. BDNF serum levels were detectable in all subjects studied. However, BDNF levels were significantly higher in patients with chronic spontaneous urticaria compared to non-atopic skin-healthy controls (Pchronic spontaneous urticaria compared with controls (Pchronic spontaneous urticaria and controls and no difference in BDNF serum levels between autologous serum skin test-positive (n=23) and -negative (n=27) patients with chronic spontaneous urticaria. This study shows that BDNF is increased in serum and diseased skin of patients with chronic spontaneous urticaria, suggesting a role for neurotrophins in the pathophysiology of this chronic inflammatory skin disease. Further studies are needed to address the functional role of BDNF on key target effector cells in chronic spontaneous urticaria to establish new

  11. Factors affecting the spontaneous mutational spectra in somatic mammalian cells

    Directory of Open Access Journals (Sweden)

    О.А. Ковальова

    2006-04-01

    Full Text Available  In our survey of references we are discussed the influence of factors biological origin on the spontaneous mutation specters in mammalian. Seasonal and age components influence on the frequence of cytogenetic anomalies. The immune and endocrinous systems are take part in control of the alteration of the spontaneous mutation specters. Genetical difference of sensibility in animal and human at the alteration of factors enviroment as and  genetical differences of repair systems activity are may influence on individual variation of spontaneous destabilization characters of chromosomal apparatus.

  12. Design and Implementation of the Control System of an Internal Combustion Engine Test Unit

    Directory of Open Access Journals (Sweden)

    Tufan Koç

    2014-02-01

    Full Text Available Accurate tests and performance analysis of engines are required to minimize measurement errors and so the use of the advanced test equipment is imperative. In other words, the reliable test results depend on the measurement of many parameters and recording the experimental data accurately which is depended on engine test unit. This study aims to design the control system of an internal combustion engine test unit. In the study, the performance parameters of an available internal combustion engine have been transferred to computer in real time. A data acquisition (DAQ card has been used to transfer the experimental data to the computer. Also, a user interface has been developed for performing the necessary procedures by using LabVIEW. The dynamometer load, the fuel consumption, and the desired speed can easily be adjusted precisely by using DAQ card and the user interface during the engine test. Load, fuel consumption, and temperature values (the engine inlet-outlet, exhaust inlet-outlet, oil, and environment can be seen on the interface and also these values can be recorded to the computer. It is expected that developed system will contribute both to the education of students and to the researchers’ studies and so it will eliminate a major lack.

  13. Advanced coal combustion technologies and their environmental impact

    International Nuclear Information System (INIS)

    Bozicevic, Maja; Feretic, Danilo; Tomsic, Zeljko

    1997-01-01

    Estimations of world energy reserves show that coal will remain the leading primary energy source for electricity production in the foreseeable future. In order to comply with ever stricter environmental regulations and to achieve efficient use of limited energy resources, advanced combustion technologies are being developed. The most promising are the pressurised fluidized bed combustion (PFBC) and the integrated gasification combined cycle (IGCC). By injecting sorbent in the furnace, PFBC removes more than 90 percent of SO 2 in flue gases without additional emission control device. In addition, due to lower combustion temperature, NO x emissions are around 90 percent lower than those from pulverised coal (PC) plant. IGCC plant performance is even more environmentally expectable and its high efficiency is a result of a combined cycle usage. Technical, economic and environmental characteristics of mentioned combustion technologies will be presented in this paper. Comparison of PFBC, IGCC and PC power plants economics and air impact will also be given. (Author)

  14. Combustion Sensors: Gas Turbine Applications

    Science.gov (United States)

    Human, Mel

    2002-01-01

    This report documents efforts to survey the current research directions in sensor technology for gas turbine systems. The work is driven by the current and future requirements on system performance and optimization. Accurate real time measurements of velocities, pressure, temperatures, and species concentrations will be required for objectives such as combustion instability attenuation, pollutant reduction, engine health management, exhaust profile control via active control, etc. Changing combustor conditions - engine aging, flow path slagging, or rapid maneuvering - will require adaptive responses; the effectiveness of such will be only as good as the dynamic information available for processing. All of these issues point toward the importance of continued sensor development. For adequate control of the combustion process, sensor data must include information about the above mentioned quantities along with equivalence ratios and radical concentrations, and also include both temporal and spatial velocity resolution. Ultimately these devices must transfer from the laboratory to field installations, and thus must become low weight and cost, reliable and maintainable. A primary conclusion from this study is that the optics-based sensor science will be the primary diagnostic in future gas turbine technologies.

  15. Reduction of NOx emission from stationary combustion sources

    International Nuclear Information System (INIS)

    Nelson, P.F.

    1992-01-01

    The environmental impacts of NO x emission from stationary combustion sources are briefly described. These include the formation of both acid rain and photochemical smog, major environmental problems. The three mechanisms which have been identified for the formation of NO x in combustion (thermal, prompt and fuel) are also briefly outlined. Recently stringent standards have been introduced to control emissions of NO x and the review describes the major primary and secondary measures. 10 refs. 2 tabs., 5 figs

  16. Sulfur Chemistry in Combustion II

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Kiil, Søren

    2000-01-01

    Several options are available to control the emission of SO2 from combustion processes. One possibility is to use a cleaner technology, i.e. fuel switching from oil and coal to natural gas or biomass, or to desulphurize coal and oil. Another possibility is to change to a different technology...

  17. Combustion technology developments in power generation in response to environmental challenges

    Energy Technology Data Exchange (ETDEWEB)

    BeerBeer, J.M. [Massachusetts Inst. of Technology, Dept. of Chemical Engineering, Cambridge, MA (United States)

    2000-07-01

    Combustion system development in power generation is discussed ranging from the pre-environmental era in which the objectives were complete combustion with a minimum of excess air and the capability of scale up to increased boiler unit performances, through the environmental era (1970-), in which reduction of combustion generated pollution was gaining increasing importance, to the present and near future in which a combination of clean combustion and high thermodynamic efficiency is considered to be necessary to satisfy demands for CO{sub 2} emissions mitigation. From the 1970's on, attention has increasingly turned towards emission control technologies for the reduction of oxides of nitrogen and sulfur, the so-called acid rain precursors. By a better understanding of the NO{sub x} formation and destruction mechanisms in flames, it has become possible to reduce significantly their emissions via combustion process modifications, e.g. by maintaining sequentially fuel-rich and fuel-lean combustion zones in a burner flame or in the combustion chamber, or by injecting a hydrocarbon rich fuel into the NO{sub x} bearing combustion products of a primary fuel such as coal. Sulfur capture in the combustion process proved to be more difficult because calcium sulfate, the reaction product of SO{sub 2} and additive lime, is unstable at the high temperature of pulverised coal combustion. It is possible to retain sulfur by the application of fluidised combustion in which coal burns at much reduced combustion temperatures. Fluidised bed combustion is, however, primarily intended for the utilisation of low grade, low volatile coals in smaller capacity units, which leaves the task of sulfur capture for the majority of coal fired boilers to flue gas desulfurisation. During the last decade, several new factors emerged which influenced the development of combustion for power generation. CO{sub 2} emission control is gaining increasing acceptance as a result of the international

  18. Chemical and mineralogical characterization of highly and less reactive coal from Northern Natal and Venda-Pafuri coalfields in South Africa

    Science.gov (United States)

    Kataka, M. O.; Matiane, A. R.; Odhiambo, B. D. O.

    2018-01-01

    Spontaneous combustion of coal is a major hazard associated with the coal mining industry over centuries. It also a major cause of underground fires in South African collieries and in opencast operations, spoil heaps and stockpiles. Spontaneous combustion incidents are manifested in all major aspects of coal mining namely, underground mining, surface mining, including during sea-borne transportation, storage and waste disposal. Previous studies indicate that there are various factors (both intrinsic and extrinsic) that influence the spontaneous combustion of coals. This paper characterizes highly reactive coal from the Vryheid coalfields and less reactive coal from at Venda-Pafuri coalfield, to identify and delineate some intrinsic coal parameters that are considered to be most critical in terms of heat 'generation' and relationships between the two coals types by tracing their similarities and differences in their spontaneous combustion parameters. Various tests were carried out to characterize these coals in terms of their intrinsic properties, namely: ultimate, proximate, petrographic analysis and Glasser spontaneous tests. The ultimate and proximate analysis showed that spontaneous coal has high contents of carbon, oxygen, and volatile matter as compared to non-spontaneous coal, making it more susceptible to spontaneous combustion. Non-spontaneous coal has higher ash content than the spontaneous coal. Furthermore, the petrographic analysis showed that spontaneous coal has high total reactivity compared to the non-spontaneous coal. Results from Glasser spontaneous test indicate that spontaneous coal absorbs more oxygen than non-spontaneous coal, which explains why spontaneous coal is more susceptible to spontaneous combustion. High reactive coal has low values of critical self-heating temperature (CSHT), indicating that this coal has potential of spontaneous ignition.

  19. The reduction of air pollution by improved combustion

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, S.W. [Pennsylvania Univ., Chemical Engineering Dept., Philadelphia, PA (United States)

    1997-12-31

    The contributions of combustion to air pollution and possible remedies are discussed. Control and reduction of air pollution from combustion is more feasible than from other sources because of its discrete localization. The gaseous products of combustion inevitably include H{sub 2}O and CO{sub 2}, NO and/or NO{sub 2} and may include N{sub 2}O, SO{sub 2}, SO{sub 3} and unburned and partially burned hydrocarbons. Soot, ash and other dispersed solids may also be present, but are not considered herein. Unburned and partially burned hydrocarbons are prima facie evidence of poor mechanics of combustion and should not be tolerated. On the other hand, NO{sub x}, SO{sub 2} and SO{sub 3} are unavoidable if the fuel contains nitrogen and sulfur. The best remedy in this latter case is to remove these species from the fuel. Otherwise their products of combustion must be removed by absorption, adsorption or reaction. NO{sub x} from the fixation of N{sub 2} in the air and CO may be minimized by advanced techniques of combustion. One such method is described in some detail. If CO{sub 2} must be removed this can be accomplished by absorption, adsorption or reaction, but precooling is necessary and the quantity is an order of magnitude greater than that of any of the other pollutants. (Author)

  20. Ammonium nitrate: combustion mechanism and the role of additives

    Energy Technology Data Exchange (ETDEWEB)

    Sinditskii, Valery P.; Egorshev, Viacheslav Yu.; Levshenkov, Anton I.; Serushkin, Valery V. [Department of Chemical Engineering, Mendeleev University of Chemical Technology, 9 Miusskaya Sq., 125047, Moscow (Russian Federation)

    2005-09-01

    This paper presents an analysis of the observed combustion behavior of AN mixtures with different additives, fuels, and energetic materials. It has been determined on the basis of flame structure investigation by fine tungsten-rhenium thermocouples that the surface temperature of AN is controlled by the dissociation reaction of the salt occurring at the surface. Results obtained have indicated that the leading reaction of combustion of AN doped with additives proceeds in the condensed phase up to pressures of 20-30 MPa. A reason for the inability of pure AN to burn is suggested and the role of additives in the combustion mechanism is discussed. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  1. Combustion process science and technology

    Science.gov (United States)

    Hale, Robert R.

    1989-01-01

    An important and substantial area of technical work in which noncontact temperature measurement (NCTM) is desired is that involving combustion process research. In the planning for this workshop, it was hoped that W. Serignano would provide a briefing regarding the experimental requirements for thermal measurements to support such research. The particular features of thermal measurement requirements included those describing the timeline for combustion experiments, the requirements for thermal control and diagnostics of temperature and other related thermal measurements and the criticality to the involved science to parametric features of measurement capability including precision, repeatability, stability, and resolution. In addition, it was hoped that definitions could be provided which characterize the needs for concurrent imaging as it relates to science observations during the conduct of experimentation.

  2. Maximal combustion temperature estimation

    International Nuclear Information System (INIS)

    Golodova, E; Shchepakina, E

    2006-01-01

    This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models

  3. Effect of Variant End of Injection Period on Combustion Process of Biodiesel Combustion

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2016-01-01

    Full Text Available Biodiesel is an alternative fuel as a replacement to the standard diesel fuel in combustion diesel engine. The biodiesel fuel has a significantly influences throughout the combustion process and exhaust emission. The purpose of this research is to investigate the combustion process behavior during the End of Injection (EOI period and operates under variant conditions using Rapid Compression Machine (RCM. Experimental of RCM is used to simulate a combustion process and combustion characteristics of diesel engine combustion. Three types of biodiesel blend which are B5, B10 and B15 were tested at several injection pressures of 80 MPa, 90 MPa and 130 MPa under different ambient temperatures, 750 K to 1100 K. The results of this study showed that the ignition delay slightly reduced with increasing the content of biodiesel blends from B5, B10 and B15 and became more shorten as the injection pressure been enhanced. As the injection pressure increased, the behavior of combustion pressure at end of injection is reduced, radically increased the NOX emission. It is noted that the process of combustion at the end of injection increased as the ambient temperature is rising. In fact, higher initial ambient temperature improved the fuel atomization and mixing process. Under the biodiesel combustion with higher ambient temperature condition, the exhaust emission of CO, O2, and HC became less but increased in NOX emission. Besides, increased in blends of biodiesel ratio are found to enhance the combustion process, resulted a decreased in HC emissions.

  4. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2011-09-01

    Full Text Available Black carbon in carbonaceous combustion aerosol warms the climate by absorbing solar radiation, meaning reductions in black carbon emissions are often perceived as an attractive global warming mitigation option. However, carbonaceous combustion aerosol can also act as cloud condensation nuclei (CCN so they also cool the climate by increasing cloud albedo. The net radiative effect of carbonaceous combustion aerosol is uncertain because their contribution to CCN has not been evaluated on the global scale. By combining extensive observations of CCN concentrations with the GLOMAP global aerosol model, we find that the model is biased low (normalised mean bias = −77 % unless carbonaceous combustion aerosol act as CCN. We show that carbonaceous combustion aerosol accounts for more than half (52–64 % of global CCN with the range due to uncertainty in the emitted size distribution of carbonaceous combustion particles. The model predicts that wildfire and pollution (fossil fuel and biofuel carbonaceous combustion aerosol causes a global mean cloud albedo aerosol indirect effect of −0.34 W m−2, with stronger cooling if we assume smaller particle emission size. We calculate that carbonaceous combustion aerosol from pollution sources cause a global mean aerosol indirect effect of −0.23 W m−2. The small size of carbonaceous combustion particles from fossil fuel sources means that whilst pollution sources account for only one-third of the emitted mass they cause two-thirds of the cloud albedo aerosol indirect effect that is due to carbonaceous combustion aerosol. This cooling effect must be accounted for, along with other cloud effects not studied here, to ensure that black carbon emissions controls that reduce the high number concentrations of fossil fuel particles have the desired net effect on climate.

  5. Jet plume injection and combustion system for internal combustion engines

    Science.gov (United States)

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  6. Path planning during combustion mode switch

    Science.gov (United States)

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  7. Experimental investigation of wood combustion in a fixed bed with hot air

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, Miladin, E-mail: m.markovic@utwente.nl; Bramer, Eddy A.; Brem, Gerrit

    2014-01-15

    Highlights: • Upward combustion is a new combustion concept with ignition by hot primary air. • Upward combustion has three stages: short drying, rapid devolatilization and char combustion. • Variation of fuel moisture and inert content have little influence on the combustion. • Experimental comparison between conventional and upward combustion is presented. - Abstract: Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of

  8. A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion

    International Nuclear Information System (INIS)

    Pastor, J.V.; García-Oliver, J.M.; García, A.; Micó, C.; Durrett, R.

    2013-01-01

    Highlights: ► PPC combustion combined with spark assistance and gasoline fuel on a CI engine. ► Chemiluminescence of different chemical species describes the progress of combustion reaction. ► Spectra of a novel combustion mode under SACI conditions is described. ► UV–Visible spectrometry, high speed imaging and pressure diagnostic were employed for analysis. - Abstract: Nowadays many research efforts are focused on the study and development of new combustion modes, mainly based on the use of locally lean air–fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduces pollutant formation and increases efficiency. However these combustion concepts have some drawbacks, related to combustion phasing control, which must be overcome. In this way, the use of a spark plug has shown to be a good solution to improve phasing control in combination with lean low temperature combustion. Its performance is well reported on bibliography, however phenomena involving the combustion process are not completely described. The aim of the present work is to develop a detailed description of the spark assisted compression ignition mode by means of application of UV–Visible spectrometry, in order to improve insight on the combustion process. Tests have been performed in an optical engine by means of broadband radiation imaging and emission spectrometry. The engine hardware is typical of a compression ignition passenger car application. Gasoline was used as the fuel due to its low reactivity. Combining broadband luminosity images with pressure-derived heat-release rate and UV–Visible spectra, it was possible to identify different stages of the combustion reaction. After the spark discharge, a first flame kernel appears and starts growing as a premixed flame front, characterized by a low and constant heat-release rate in combination with the presence of remarkable OH radical radiation. Heat release increases

  9. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Khanh Duc Cung

    2017-12-01

    Full Text Available Gasoline compression ignition (GCI has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed compared to homogeneous charge compression ignition (HCCI, which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually postinjection in a multiple-injection scheme, to mitigate combustion noise. Gasoline usually has longer ignition delay than diesel. The autoignition quality of gasoline can be indicated by research octane number (RON. Fuels with high octane tend to have more resistance to autoignition, hence more time for fuel-air mixing. In this study, three fuels, namely, aromatic, alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multicylinder engine under GCI combustion mode. Considerations of exhaust gas recirculating (EGR, start of injection, and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing (location of 50% of fuel mass burned was kept constant during the experiments. This provides similar thermodynamic conditions to study the effect of fuels on emissions. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number and was also most sensitive to the change in dilution. Reasonably low combustion noise (<90 dB and stable combustion (coefficient of variance of indicated mean effective pressure <3% were maintained during the experiments. The second part of this article contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection and also more intense

  10. Report on research achievement in relation with developing fundamental combustion control technologies in fiscal 1998. Research and development of high-performance industrial furnaces; 1998 nendo nensho seigyo kiban gijutsu no kaihatsu ni kansuru kenkyu seika hokokusho. Koseino kogyoro nado ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Development is intended to be made on fundamental combustion control technologies applicable to high-performance industrial furnaces that can reduce energy consumption and respond to environment preservation requirements. With an intention to achieve reduction in combustion exhaust gases such as carbon dioxide and nitrogen oxides, fundamental studies will be made on factors to decide flame shapes as represented by high-temperature combustion and flame shape control by utilizing microgravity environment, and researches will be made on combustion systems. Devices required for the experiments were fabricated to evaluate critical combustion characteristics of flames in furnaces including industrial furnaces, analyze and evaluate flame control parameters, and study low-pollution combustion technologies. Experimental methods acquired by 1997 were used for the experiments under the microgravity environment. Evaluation experiments were performed on flame shape control technologies and flame radiation characteristics, and basic experiments on the low-pollution combustion technologies. With these experiments, elucidation of the combustion mechanisms was launched by analyzing and evaluating the acquired data. A flame experimenting device for high-temperature preheated air completed by fiscal 1997 was used to acquire such combustion characteristics data as NOx discharge characteristics when the high-temperature preheated air is used. Based on the result thereof, verification was carried out on simulation models. (NEDO)

  11. Combustion, detonation, shock waves. Proceedings of the Zel'dovich memorial - International conference on combustion. Volume 1

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Frolov, S.M.

    1995-01-01

    This book contains lectures by the experts in various fields of modern research in combustion, detonation and shock waves, presented at the Zel'dovich memorial - International conference on combustion dedicated to the 80-th birthday of academician Ya.B. Zel'dovich. There are eight chapters discussing the state-of-the-art in combustion kinetics, ignition and steady-state flame propagation, diffusion and heterogeneous combustion, turbulent combustion, unsteady combustion, detonation, combustion and detonation analogies, intense shock waves and extreme states of matter [ru

  12. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  13. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-01-01

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  14. Dioxins and polyvinylchloride in combustion and fires.

    Science.gov (United States)

    Zhang, Mengmei; Buekens, Alfons; Jiang, Xuguang; Li, Xiaodong

    2015-07-01

    This review on polyvinylchloride (PVC) and dioxins collects, collates, and compares data from selected sources on the formation of polychlorinated dibenzofurans (PCDFs) and dibenzo-p-dioxins (PCDDs), or in brief dioxins, in combustion and fires. In professional spheres, the incineration of PVC as part of municipal solid waste is seldom seen as a problem, since deep flue gas cleaning is required anyhow. Conversely, with its high content of chlorine, PVC is frequently branded as a major chlorine donor and spitefully leads to substantial formation of dioxins during poorly controlled or uncontrolled combustion and open fires. Numerous still ill-documented and diverse factors of influence may affect the formation of dioxins during combustion: on the one hand PVC-compounds represent an array of materials with widely different formulations; on the other hand these may all be exposed to fires of different nature and consequences. Hence, attention should be paid to PVC with respect to the ignition and development of fires, as well as attenuating the emission of objectionable compounds, such as carbon monoxide, hydrogen chloride, polycyclic aromatic hydrocarbons, and dioxins. This review summarises available dioxin emissions data, gathers experimental and simulation studies of fires and combustion tests involving PVC, and identifies and analyses the effects of several local factors of influence, affecting the formation of dioxins during PVC combustion. © The Author(s) 2015.

  15. Combustion pressure-based engine management system

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R.; Hart, M. [DaimlerChrysler, Stuttart (Germany); Truscott, A.; Noble, A. [Ricardo, Shoreham-by-Sea (United Kingdom); Kroetz, G.; Richter, C. [DaimlerChrysler, Munchen (Germany); Cavalloni, C. [Kistler Instruments AG, Winterthur (Switzerland)

    2000-07-01

    In order to fulfill future emissions and OBD regulations, whilst meeting increasing demands for driveability and refinement, new technologies for SI engines have to be found in terms of sensors and algorithms for engine control units. One promising way, explored in the AENEAS collaborative project between DaimlerChrysler, Kistler, Ricardo and the European Commission, is to optimize the behavior of the system by using in-cylinder measurements and analysing them with modern control algorithms. In this paper a new engine management system based on combustion pressure sensing is presented. The pressure sensor is designed to give a reliable and accurate signal of the full pressure trace during a working cycle. With the application of new technologies low cost manufacturing appears to be achievable, so that an application in mass production can be considered. Furthermore, model-based algorithms were developed to allow optimal control of the engine based on the in-cylinder measurements. The algorithms incorporate physical principles to improve efficiency, emissions and to reduce the parameterisation effort. In the paper, applications of the combustion pressure signal for air mass estimation, knock detection, ignition control cam phase detection and diagnosis are discussed. (author)

  16. Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Zhang, Ji

    2013-07-01

    This paper presents measurements of the soot temperature and KL factor for biodiesel and diesel combustion in a constant volume chamber using a two-color technique. This technique uses a high-speed camera coupled with two narrowband filters (550. nm and 650. nm, 10. nm FWHM). After calibration, statistical analysis shows that the uncertainty of the two-color temperature is less than 5%, while it is about 50% for the KL factor. This technique is then applied to the spray combustion of biodiesel and diesel fuels under an ambient oxygen concentration of 21% and ambient temperatures of 800, 1000 and 1200. K. The heat release result shows higher energy utilization efficiency for biodiesel compared to diesel under all conditions; meanwhile, diesel shows a higher pressure increase due to its higher heating value. Biodiesel yields a lower temperature inside the flame area, a longer soot lift-off length, and a smaller soot area compared to diesel. Both the KL factor and the total soot with biodiesel are lower than with diesel throughout the entire combustion process, and this difference becomes larger as the ambient temperature decreases. Biodiesel shows approximately 50-100. K lower temperatures than diesel at the quasi-steady stage for 1000 and 1200. K ambient temperature, while diesel shows a lower temperature than biodiesel at 800. K ambient. This result may raise the question of how important the flame temperature is in explaining the higher NO. x emissions often observed during biodiesel combustion. Other factors may also play an important role in controlling NO. x emissions. Both biodiesel and diesel temperature measurements show a monotonic dependence on the ambient temperature. However, the ambient temperature appears to have a more significant effect on the soot formation and oxidation in diesel combustion, while biodiesel combustion soot characteristics shows relative insensitivity to the ambient temperature. © 2013 Elsevier Ltd.

  17. Energy efficiency impact of EGR on organizing clean combustion in diesel engines

    International Nuclear Information System (INIS)

    Divekar, Prasad S.; Chen, Xiang; Tjong, Jimi; Zheng, Ming

    2016-01-01

    Highlights: • Studied EGR impact on efficiency and emissions of diesel and dual-fuel combustion. • Quantified effectiveness of intake dilution for NOx reduction using EGR. • Identified suitable EGR ranges for mitigating emissions–efficiency trade-off. • Developed careful control of intake dilution and in-cylinder excess ratio. • Enabled ultra-low NOx in both diesel and dual-fuel combustion via EGR control. - Abstract: Exhaust gas recirculation (EGR) is a commonly recognized primary technique for reducing NOx emissions in IC engines. However, depending on the extent of its use, the application of EGR in diesel engines is associated with an increase in smoke emissions and a reduction in thermal efficiency. In this work, empirical investigations and parametric analyses are carried out to assess the impact of EGR in attaining ultra-low NOx emissions while minimizing the smoke and efficiency penalties. Two fuelling strategies are studied, namely diesel-only injection and dual-fuel injection. In the dual-fuel strategy, a high volatility liquid fuel is injected into the intake ports, and a diesel fuel is injected directly into the cylinder. The results suggest that the reduction in NOx can be directly correlated with the intake dilution caused by EGR and the correlation is largely independent of the fuelling strategy, the intake boost, and the engine load level. Simultaneously ultra-low NOx and smoke emissions can be achieved at high intake boost and intake dilution levels in the diesel-only combustion strategy and at high ethanol fractions in the dual-fuel strategy. The efficiency penalty associated with EGR is attributed to two primary factors; the combustion off-phasing and the reduction in combustion efficiency. The combustion off-phasing can be minimized by the closed loop control of the diesel injection timing in both the fuelling strategies, whereas the combustion efficiency can be improved by limiting the intake dilution to moderate levels. The

  18. Spontaneous acute spinal subdural hematoma: spontaneous recovery from severe paraparesis--case report and review.

    Science.gov (United States)

    Payer, Michael; Agosti, Reto

    2010-11-01

    Spontaneous idiopathic acute spinal subdural hematomas are highly exceptional. Neurological symptoms are usually severe, and rapid diagnosis with MRI is mandatory. Surgical evacuation has frequently been used therapeutically; however, spontaneous recovery in mild cases has also been reported. We present a case of spontaneous recovery from severe paraparesis after spontaneous acute SSDH, and review the English-speaking literature.

  19. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury.

    Science.gov (United States)

    Yoshida, Takeshi; Uchiyama, Akinori; Matsuura, Nariaki; Mashimo, Takashi; Fujino, Yuji

    2012-05-01

    We investigated whether potentially injurious transpulmonary pressure could be generated by strong spontaneous breathing and exacerbate lung injury even when plateau pressure is limited to ventilation, each combined with weak or strong spontaneous breathing effort. Inspiratory pressure for low tidal volume ventilation was set at 10 cm H2O and tidal volume at 6 mL/kg. For moderate tidal volume ventilation, the values were 20 cm H2O and 7-9 mL/kg. The groups were: low tidal volume ventilation+spontaneous breathingweak, low tidal volume ventilation+spontaneous breathingstrong, moderate tidal volume ventilation+spontaneous breathingweak, and moderate tidal volume ventilation+spontaneous breathingstrong. Each group had the same settings for positive end-expiratory pressure of 8 cm H2O. Respiratory variables were measured every 60 mins. Distribution of lung aeration and alveolar collapse were histologically evaluated. Low tidal volume ventilation+spontaneous breathingstrong showed the most favorable oxygenation and compliance of respiratory system, and the best lung aeration. By contrast, in moderate tidal volume ventilation+spontaneous breathingstrong, the greatest atelectasis with numerous neutrophils was observed. While we applied settings to maintain plateau pressure at ventilation+spontaneous breathingstrong, transpulmonary pressure rose >33 cm H2O. Both minute ventilation and respiratory rate were higher in the strong spontaneous breathing groups. Even when plateau pressure is limited to mechanical ventilation, transpulmonary pressure and tidal volume should be strictly controlled to prevent further lung injury.

  20. Brief Report: Pilot Randomized Controlled Trial of Reciprocal Imitation Training for Teaching Elicited and Spontaneous Imitation to Children with Autism

    Science.gov (United States)

    Ingersoll, Brooke

    2010-01-01

    Children with autism exhibit significant deficits in imitation skills. Reciprocal Imitation Training (RIT), a naturalistic imitation intervention, was developed to teach young children with autism to imitate during play. This study used a randomized controlled trial to evaluate the efficacy of RIT on elicited and spontaneous imitation skills in 21…

  1. Increase oil recovery of heavy oil in combustion tube using a new catalyst based nickel ionic solution

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Garnica, M.A.; Hernandez-Perez, J.R.; Cabrera-Reves, M.C.; Schacht-Hernandez, P. [Inst. Mexicano del Petroleo, Mexico City (Mexico); Mamora, D.D. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas A and M Univ., College Station, TX (United States)

    2008-10-15

    An ionic liquid-based nickel catalyst was used in conjunction with a combustion tube as an in situ process for heavy oil. The experimental system was comprised of a fluid injection system; a combustion tube; a fluid production system; a gas chromatograph; and a data recording system. Injected nitrogen and air was controlled by a mass flow controller. Nitrogen was used to pressurize the combustion tube and flush the system. Air was injected at a rate of 3 L per minute throughout the combustion run. Liquids leaving the combustion tube passed through a 2-stage separation process. Gases passing through the condenser were kept at low temperatures. Fractions of produced gas were analyzed by the chromatograph. Data loggers were used to obtain data at 30 second intervals. Two combustion experiments were conducted to obtain production times, temperature profiles, and the quality of the oil produced by the catalyst. Combustion tests were conducted with and without the catalyst. An analysis of the experimental data showed that use of the nickel catalyst resulted in increases in oil production as well as higher combustion efficiencies. Use of the catalyst also resulted in a faster combustion front and accelerated oil production. It was concluded that the produced oil contained fewer impurities than oil produced during the control experiment. 23 refs., 3 tabs., 9 figs.

  2. Lump wood combustion process

    Science.gov (United States)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  3. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  4. Combustion chemistry and formation of pollutants; Chimie de la combustion et formation des polluants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This book of proceedings reports on 7 papers on combustion chemistry and formation of pollutants presented during the workshop organized by the `Combustion and Flames` section of the French society of thermal engineers. The chemistry of combustion is analyzed in various situations such as: turbojet engines, spark ignition engines, industrial burners, gas turbines etc... Numerical simulation is used to understand the physico-chemical processes involved in combustion, to describe the kinetics of oxidation, combustion and flame propagation, and to predict the formation of pollutants. (J.S.)

  5. Heavy metals behaviour during mono-combustion and co-combustion of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Helena; Abelha, Pedro; Olieveira, J.F. Santos; Gulyurtlu, Ibrahim; Cabrita, Isabel [INETI-DEECA, Lisboa (Portugal)

    2005-03-01

    This paper presents the study of the combustion of granular dry sewage sludge performed on a pilot fluidized bed system. The results of mono-combustion of sludge and co-combustion with coal were compared with those of coal combustion for ash partitioning, the formation of gaseous pollutants and heavy metals behaviour. It was found that the mineral matter of sludge was essentially retained as bottom ashes. The production of fines ashes was small during the mono-combustion due to the tendency of coal to produce fine ashes which also contained unburned char. The degree of heavy metal volatilization was found to be slightly higher during co-combustion than in mono-combustion; however, most of them were retained in ashes and their emissions were found to be below the regulated levels. Hg was completely volatilized; however, during combustion trials involving coal it was captured by cyclone ashes at temperatures below 300 deg C. During sludge mono-combustion the retention of Hg in cyclone ashes containing low LOI was not enough to decrease emissions below the regulated levels; hence, it is necessary to install dedicated flue gas treatment for Hg removal. The leachability and ecotoxicity of sludge and ashes was compared with the new regulatory limits for landfill disposal in the EU. It was found that the release of organic matter and heavy metals found in the sludge was low from granular bed ashes; hence, except for sulphate release, bed ashes were converted into inert and non-ecotoxic materials. Ashes from test with limestone and cyclone ashes seemed to be more problematic because of pH effects and contamination with steel corrosion products. The recovery and reutilization of sludge bed ashes could, therefore, be possible, as long as the release of sulphate do not interfere with the process.

  6. Twenty-fifth symposium (international) on combustion

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Approximately two-thirds of the papers presented at this conference are contained in this volume. The other one-third appear in special issues of ''Combustion and Flame'', Vol. 99, 1994 and Vol. 100, 1995. Papers are divided into the following sections: Supersonic combustion; Detonations and explosions; Internal combustion engines; Practical aspects of combustion; Incineration and wastes; Sprays and droplet combustion; Coal and organic solids combustion; Soot and polycyclic aromatic hydrocarbons; Reaction kinetics; NO x ; Turbulent flames; Turbulent combustion; Laminar flames; Flame spread, fire and halogenated fire suppressants; Global environmental effects; Ignition; Two-phase combustion; Solid propellant combustion; Materials synthesis; Microgravity; and Experimental diagnostics. Papers have been processed separately for inclusion on the data base

  7. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  8. Novel folliculin (FLCN) mutation and familial spontaneous pneumothorax.

    Science.gov (United States)

    Zhu, J-F; Shen, X-Q; Zhu, F; Tian, L

    2017-01-01

    Familial spontaneous pneumothorax is one of the characteristics of Birt-Hogg-Dubé syndrome (BHDS), which is an autosomal dominant disease caused by the mutation of folliculin (FLCN). To investigate the mutation of FLCN gene in a familial spontaneous pneumothorax. Prospective case study. Clinical and genetic data of a Chinese family with four patients who presented spontaneous pneumothorax in the absence of skin lesions or renal tumors were collected. CT scan of patient's lung was applied for observation of pneumothorax. DNA sequencing of the coding exons (4-14 exons) of FLCN was performed for all 11 members of the family and 100 unrelated healthy controls. CT scan of patient's lung showed spontaneous pneumothorax. A mutation (c. 510C > G) that leads to a premature stop codon (p. Y170X) was found in the proband using DNA sequencing of coding exons (4-14 exons) of FLCN. This mutation was also observed in the other affected members of the family. A nonsense mutation of FLCN was found in a spontaneous pneumothorax family. Our results expand the mutational spectrum of FLCN in patients with BHDS. © The Author 2016. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion

  10. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Energy Technology Data Exchange (ETDEWEB)

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  11. Computational Fluid Dynamics Simulation of Oxygen Seepage in Coal Mine Goaf with Gas Drainage

    Directory of Open Access Journals (Sweden)

    Guo-Qing Shi

    2015-01-01

    Full Text Available Mine fires mainly arise from spontaneous combustion of coal seams and are a global issue that has attracted increasing public attention. Particularly in china, the closure of coal workfaces because of spontaneous combustion has contributed to substantial economic loss. To reduce the occurrence of mine fires, the spontaneous coal combustion underground needs to be studied. In this paper, a computational fluid dynamics (CFD model was developed for coal spontaneous combustion under goaf gas drainage conditions. The CFD model was used to simulate the distribution of oxygen in the goaf at the workface in a fully mechanized cave mine. The goaf was treated as an anisotropic medium, and the effects of methane drainage and oxygen consumption on spontaneous combustion were considered. The simulation results matched observational data from a field study, which indicates CFD simulation is suitable for research on the distribution of oxygen in coalmines. The results also indicated that near the workface spontaneous combustion was more likely to take place in the upper part of the goaf than near the bottom, while further from workface the risk of spontaneous combustion was greater in the lower part of the goaf. These results can be used to develop firefighting approaches for coalmines.

  12. The Characteristics of Methane Combustion Suppression by Water Mist and Its Engineering Applications

    Directory of Open Access Journals (Sweden)

    Rongkun Pan

    2017-10-01

    Full Text Available To safely mine coal, engineers must prevent gas combustion and explosions, as well as seek feasible and reasonable techniques to control for these types of incidents. This paper analyzes the causes and characteristics of methane combustion and explosions. Water mist is proposed to prevent and control methane combustion in an underground confined space. We constructed an experiment platform to investigate the suppression of methane combustion using water mist for different conditions. The experimental results showed that water mist is highly effective for methane flame inhibition. The flame was extinguished with water mist endothermic cooling. However, the annular regions of water vapor around the fire played a vital role in flame extinction. Water from the evaporating mist replaces the oxygen available to the fuel. Additionally, the time required for fuel ignition is prolonged. For these reasons, the water particle action to flame surface is reinforced and the fuel’s reaction with air is delayed. As a result, flame stretching and disturbances occur, which serve to extinguish the flame. Engineering application tests were carried out in the goaf, drill hole and upper-corner to investigate the prevention and control of methane gas combustion, with the results showing a good application effect.

  13. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  14. Fuel Combustion Laboratory | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion Laboratory Fuel Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on designs, using both today's technology and future advanced combustion concepts. This lab supports the combustion chamber platform for fuel ignition kinetics research, was acquired to expand the lab's

  15. Predicting auto-ignition characteristics of RCCI combustion using a multi-zone model

    NARCIS (Netherlands)

    Egüz, U.; Maes, N.C.J.; Leermakers, C.A.J.; Somers, L.M.T.; Goey, de L.P.H.

    2013-01-01

    The objective of new combustion concepts is to meet emission standards by improving fuel air mixing prior to ignition. Since there is no overlap between injection and ignition, combustion is governed mainly by chemical kinetics and it is challenging to control the phasing of ignition. Reactivity

  16. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  17. Experimental study of the kinetics of dry, forward combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.W.; Buthod, A.P.; Allag, O.

    1979-02-01

    Results are presented of an experimental investigation of dry, forward combustion with two main objectives, viz, (1) to develop a method for determining the kinetic perameters of fuel laydown and burnoff from combustion tube data, and (2) to evaluate them for a particular crude-sand mixture. In the light of past experimental work, a two-step chain reaction model is postulated in which fuel laydown and burnoff are considered as competitive kinetic reactions. Laboratory equipment consisting of a combustion tube assembly and sampling probe, a flow control system, an electronic control assembly, and a fluid analysis system are described in detail. The sampling probe provides a novel method for taking fluid samples at selected interior points within the combustion cell. Six experimental runs were performed using a 27/sup 0/ API Prudhoe Bay crude. Analyses of the data indicte that, in addition to the coke residue, some light ends of the crude enter into the total fuel consumed by the burning zone. The use of the moveable sampling probe permitted the reconstruction of CO + CO/sub 2/ production rate curves as functions of time and distance. A technique is presented for solving the integral equation and estimating the activation energies, pre-exponential factors, and some associated constants for fuel deposition and combustion. It was found that operating pressure has essentially no effect on the exponential energy, but it does affect the preexponential (or frequency) factor. It is concluded that the essential phenomena of forward combustion can be adequately depicted by the two-step chain reaction concept, and that kinetic data,or their bounds, can be determined from combustion tube data.

  18. Exhaust gas afterburner for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Haertel, G

    1977-05-12

    The invention pertains to an exhaust gas afterburner for internal combustion engines, with an auxiliary fuel device arranged upstream from the afterburner proper and controlled by the rotational speed of the engine, which is additionally controlled by an oxygen or carbon monoxide sensor. The catalytic part of the afterburner, together with a rotochamber, is a separate unit.

  19. STUDIES AND EXPERIMENTAL RESEARCH CONCERNING THE PERFORMANCES OF THE INTERNAL COMBUSTION ENGINE, CONTROLLED OVER THE POWERTRAIN CONTROL MODULE

    Directory of Open Access Journals (Sweden)

    Narcis URICANU

    2012-05-01

    Full Text Available the paper present how can be controlled a road vehicle through a powertrain control module, a type of ECU, programmable ECU (Electronic Control Unit, when we want to increase the performances of the engine, compared with the standard performances of the engine. The programmable ECU is a control system which replaces the ECU from the vehicle and is able to manage, better than the standard ECU, the behaviour of the spark ignition engine on increasing the performances. Sports cars need to obtain the best performances from them engine, the specific regimes at which them must function impose certain limits which will be achieved during the competition. Nowadays the vehicles designers and engineering, working for the production cars, have adopted many solutions from the race cars area, due to the advantage offered by these elements (lightweight materials, fasts responses, high speeds and system like programmable ECU. To obtain more power on the engine, we have to find and applied the best solution concerning the internal combustion processes and the consequences concerning the exhaust. This papers present who can be increased the performances of the spark ignition engine through the air-flow ratio, controlled by the programmable ECU and with the sensors help, like water temperature sensor, intake air temperature sensor, throttle position sensor, lambda sensor

  20. Mercury emission, control and measurement from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering; Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Cao, Yan [Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Zhang, Kai [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering

    2013-07-01

    Coal-fired electric power generation accounts for 65% of U.S. emissions of sulfur dioxide (SO2), 22% of nitrogen oxides (NOx), and 37% of mercury (Hg). The proposed Clear Air Interstate Rule (CAIR) and Clean Air Mercury Rule (CAMR) will attempt to regulate these emissions using a cap-and-trade program to replace a number of existing regulatory requirements that will impact this industry over the next decade. Mercury emissions remain the largest source that has not yet been efficiently controlled, in part because this is one of the most expensive to control. Mercury is a toxic, persistent pollutant that accumulates in the food chain. During the coal combustion process, when both sampling and accurate measurements are challenging, we know that mercury is present in three species: elemental, oxidized and particulate. There are three basic types of mercury measurement methods: Ontario Hydro Method, mercury continuous emission monitoring systems (CEMS) and sorbent-based monitoring. Particulate mercury is best captured by electrostatic precipitators (ESP). Oxidized mercury is best captured in wet scrubbers. Elemental mercury is the most difficult to capture, but selective catalytic reduction units (SCRs) are able to convert elemental mercury to oxidized mercury allowing it to be captured by wet flue gas desulfurization (FGD). This works well for eastern coals with high chlorine contents, but this does not work well on the Wyoming Powder River Basin (PRB) coals. However, no good explanation for its mechanism, correlations of chlorine content in coal with SCR performance, and impacts of higher chlorine content in coal on FGD re-emission are available. The combination of SCR and FGD affords more than an 80% reduction in mercury emissions in the case of high chlorine content coals. The mercury emission results from different coal ranks, boilers, and the air pollution control device (APCD) in power plant will be discussed. Based on this UAEPA new regulation, most power plants

  1. Minimal algorithm for running an internal combustion engine

    Science.gov (United States)

    Stoica, V.; Borborean, A.; Ciocan, A.; Manciu, C.

    2018-01-01

    The internal combustion engine control is a well-known topic within automotive industry and is widely used. However, in research laboratories and universities the use of a control system trading is not the best solution because of predetermined operating algorithms, and calibrations (accessible only by the manufacturer) without allowing massive intervention from outside. Laboratory solutions on the market are very expensive. Consequently, in the paper we present a minimal algorithm required to start-up and run an internal combustion engine. The presented solution can be adapted to function on performance microcontrollers available on the market at the present time and at an affordable price. The presented algorithm was implemented in LabView and runs on a CompactRIO hardware platform.

  2. EMISSION AND COMBUSTION CHARACTERISTICS OF DIFFERENT FUELS IN A HCCI ENGINE

    Directory of Open Access Journals (Sweden)

    S. Sendilvelan

    2011-06-01

    Full Text Available Different intake valve timings and fuel injection amounts were tested in order to identify their effects on exhaust emissions and combustion characteristics using variable valve actuation (VVA in a Homogeneous Charge Compression Ignition (HCCI engine. The HCCI engine is a promising concept for future automobile engines and stationary power plants. The two-stage ignition process in a HCCI engine creates advanced ignition and stratified combustion, which makes the ignition timing and combustion rate controllable. Meanwhile, the periphery of the fuel-rich zone leads to fierce burning, which results in slightly high NOx emissions. The experiments were conducted in a modified single cylinder water-cooled diesel engine. In this experiment we use diesel, bio-diesel (Jatropha and gasoline as the fuel at different mixing ratios. HCCI has advantages in high thermal efficiency and low emissions and could possibly become a promising combustion method in internal combustion engines.

  3. Working group report: methane emissions from fuel combustion and industrial processes

    International Nuclear Information System (INIS)

    Berdowski, J.J.M.; Beck, L.; Piccot, S.; Olivier, J.G.J.; Veldt, C.

    1993-01-01

    This paper lists the source categories which are currently recognised as minor sources of methane. These fall into five broad groups: stationary fuel combustion (residential combustion of fuels, solid waste incineration at home sites, on-site agricultural waste burning, industrial and utility combustion of coal, wood, oil and gas, commercial and industrial waste incineration); mobile fuel combustion; non-combustion industrial processes (primary metals production, chemical manufacturing processes, petroleum refining, commercial charcoal manufacturing waste treatments); minor energy production sources (storage and distribution of automotive fuels, geothermal energy production; peat mining operations, oil shale mining operations); and miscellaneous sources. The paper also presents a preliminary estimate of global methane emissions from these minor sources and the results of the working group's discussion on recommendations for the IPCC/OECD methodology and specific research needs. A list of control options for emissions from minor sources is provided. 2 tabs

  4. Increasing energy efficiency by in-situ oxygen measurement in combustion gas and optimized fuel-air-ratio control; Effizienzsteigerung durch in-situ Sauerstoffmessung im Verbrennungsgas

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Yvonne [Marathon Sensors Inc., West Chester, OH (United States); Winter, Karl-Michael [PROCESS-ELECTRONIC GmbH, Heiningen (Germany)

    2012-04-15

    High energy costs as well as the necessity to minimize exhaust emissions require a most efficient usage of fossil primary energy resources. In heat treating but also in power generation natural gas is mostly used. Efficient burner systems and preheating combustion air using recuperators or regenerators minimize exhaust losses to a high extent. Another well known but seldom used optimization method controls the excess oxygen percentage in the exhaust gas. Already partially in use in households and state-of-the-art in the combustion control of car engines this technique is still not widely used in industrial sized systems. For closed burners there are few sensor options available that can be integrated into the burner. This article presents a variety of measuring and control systems that have been tailored to this particular task, able to increase the efficiency of both, existing older installations and new burner systems. (orig.)

  5. Air fuel ratio detector corrector for combustion engines using adaptive neurofuzzy networks

    Directory of Open Access Journals (Sweden)

    Nidhi Arora

    2013-07-01

    Full Text Available A perfect mix of the air and fuel in internal combustion engines is desirable for proper combustion of fuel with air. The vehicles running on road emit harmful gases due to improper combustion. This problem is severe in heavy vehicles like locomotive engines. To overcome this problem, generally an operator opens or closes the valve of fuel injection pump of locomotive engines to control amount of air going inside the combustion chamber, which requires constant monitoring. A model is proposed in this paper to alleviate combustion process. The method involves recording the time-varying flow of fuel components in combustion chamber. A Fuzzy Neural Network is trained for around 40 fuels to ascertain the required amount of air to form a standard mix to produce non-harmful gases and about 12 fuels are used for testing the network’s performance. The network then adaptively determines the additional/subtractive amount of air required for proper combustion. Mean square error calculation ensures the effectiveness of the network’s performance.

  6. Study on mechanism of combustion instability in a dump gas turbine combustor

    International Nuclear Information System (INIS)

    Lee, Yeon Joo; Lee, Jong Ho; Jeon, Chong Hwan; Chang, Yonng June

    2002-01-01

    Combustion instabilities are an important concern associated with lean premixed combustion. Laboratory-scale dump combustor was used to understand the underlying mechanisms causing combustion instabilities. Experiments were conducted at atmospheric pressure and sound level meter was used to track the pressure fluctuations inside the combustor. Instability maps and phase-resolved OH chemiluminescence images were obtained at several conditions to investigate the mechanism of combustion instability and relations between pressure wave and heat release rate. It showed that combustion instability was susceptible to occur at higher value of equivalence ratio (>0.6) as the mean velocity was decreased. Instabilities exhibited a longitudinal mode with a dominant frequency of ∼341.8 Hz, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instabilities occurred. Rayleigh index distribution gave a hint about the location where the strong coherence of pressure and heat release existed. These results also give an insight to the control scheme of combustion instabilities. Emission test revealed that NO x emissions were affected by not only equivalence but also combustion instability

  7. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    Directory of Open Access Journals (Sweden)

    Nureddin Dinler

    2010-01-01

    Full Text Available Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion equations were solved. The k-e turbulence model was employed. The fuel mass fraction transport equation was used for modeling of the combustion. For this purpose a computational fluid dynamics code was developed by using the finite volume method with FORTRAN programming code. The moving mesh was utilized to simulate the piston motion. The developed code simulates four strokes of engine continuously. In the case of laminar flow combustion, Arrhenius type combustion equations were employed. In the case of turbulent flow combustion, eddy break-up model was employed. Results were given for rich, stoichiometric, and lean mixtures in contour graphs. Contour graphs showed that lean mixture (l = 1.1 has longer combustion duration.

  8. Effects of biomass on dynamics of combustion in circulating fluidized beds

    Directory of Open Access Journals (Sweden)

    Tourunen Antti

    2004-01-01

    Full Text Available Fluidized bed technology is very suitable for the combustion of biomass Nevertheless substitution of coal with biomass affects boiler operation and especially dynamics and controllability. Non-homogeneity of biomass and fuel feeding disturbances cause process instability, such as variations in temperatures and pressures, which reduce lifetime of equipment and structures. Because of process instability higher air coefficient must be used in order to avoid CO emissions, which is not economical. Combustion profiles for coal, wood and peat, measured at the VTT Processes Pilot circulating fluidized bed reactor, have been compared. Process stability and char inventories have been studied by the measurements and the model. Biofuel are usually very reactive and their combustion profiles are quite different compared to coals. Because of high reactivity and low char content combustion process with biofuel is very sensitive for fuel feeding. Also low char inventory effect on load changes combined with combustion profile that differs from coals. Because of different combustion profile heat transfer can be a limiting factor in load changes despite the high reactivity and fast oxygen response.

  9. AN ALGORITHM OF ADAPTIVE TORQUE CONTROL IN INJECTOR INTERNAL COMBUSTION ENGINE

    Directory of Open Access Journals (Sweden)

    D. N. Gerasimov

    2015-07-01

    Full Text Available Subject of Research. Internal combustion engine as a plant is a highly nonlinear complex system that works mostly in dynamic regimes in the presence of noise and disturbances. A number of engine characteristics and parameters is not known or known approximately due to the complex structure and multimode operating of the engine. In this regard the problem of torque control is not trivial and motivates the use of modern techniques of control theory that give the possibility to overcome the mentioned problems. As a consequence, a relatively simple algorithm of adaptive torque control of injector engine is proposed in the paper. Method. Proposed method is based on nonlinear dynamic model with parametric and functional uncertainties (static characteristics which are suppressed by means of adaptive control algorithm with single adjustable parameter. The algorithm is presented by proportional control law with adjustable feedback gain and provides the exponential convergence of the control error to the neighborhood of zero equilibrium. It is shown that the radius of the neighborhood can be arbitrary reduced by the change of controller design parameters. Main Results. A dynamical nonlinear model of the engine has been designed for the purpose of control synthesis and simulation of the closed-loop system. The parameters and static functions of the model are identified with the use of data aquired during Federal Test Procedure (USA of Chevrolet Tahoe vehicle with eight cylinders 5,7L engine. The algorithm of adaptive torque control is designed, and the properties of the closed-loop system are analyzed with the use of Lyapunov functions approach. The closed-loop system operating is verified by means of simulation in the MatLab/Simulink environment. Simulation results show that the controller provides the boundedness of all signals and convergence of the control error to the neighborhood of zero equilibrium despite significant variations of engine speed. The

  10. The Evaluation of Solid Wastes Reduction with Combustion System in the Combustion Chamber

    International Nuclear Information System (INIS)

    Prayitno; Sukosrono

    2007-01-01

    The evaluation of solid wastes reduction with combustion system is used for weight reduction factor. The evaluation was done design system of combustion chamber furnace and the experiment was done by burning a certain weight of paper, cloth, plastic and rubber in the combustion chamber. The evaluation of paper wastes, the ratio of wastes (paper, cloth, plastic and rubber) against the factor of weight reduction (%) were investigated. The condition was dimension of combustion chamber furnace = 0.6 X 0.9 X 1.20 X 1 m with combustion chamber and gas chamber and reached at the wastes = 2.500 gram, oxygen pressure 0.5 Bar, wastes ratio : paper : cloth : plastic : rubber = 55 : 10 : 30 : 5, the reduction factor = 6.36 %. (author)

  11. Signal correlations in biomass combustion. An information theoretic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruusunen, M.

    2013-09-01

    combustion variables. The potentiality of flue gas temperatures to monitor the quality and efficiency of combustion allows development toward cost effective control systems. Moreover, the uniformity of the presented signal correlations could enable straightforward copies of such systems. This would cumulatively impact the reduction of emissions and fuel consumption in small-scale biomass combustion. (orig.)

  12. Self adaptive internal combustion engine control for hydrogen mixtures based on piezoelectric dynamic cylinder pressure transducers

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, R.; Bose, T. K. [Universite du Quebec a Trois-Rivieres, Hydrogen Research Institute, Trois-Rivieres, PQ (Canada)

    2004-07-01

    An algorithm for self-adaptive tuning of an internal combustion engine is proposed, based on a Kalman filter operating on a few selected metrics of the dynamic pressure curve. Piezoelectric transducers are devices to monitor dynamic cylinder pressure; spark plugs with embedded piezo elements are now available to provide diagnostic engine functions. Such transducers are also capable of providing signals to the engine controller to perform auto tuning, a function that is considered very useful particularly in vehicles using alternative fuels whose characteristics frequently show variations between fill-ups. 2 refs., 2 figs.

  13. Combustion Characteristics of C5 Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation

    KAUST Repository

    Park, Sungwoo

    2015-10-27

    C5 alcohols are considered alternative fuels because they emit less greenhouse gases and fewer harmful pollutants. In this study, the combustion characteristics of 2-methylbutanol (2-methyl-1-butanol) and isopentanol (3-methyl-1-butanol) and their mixtures with primary reference fuels (PRFs) were studied using a detailed chemical kinetic model obtained from merging previously published mechanisms. Ignition delay times of the C5 alcohol/air mixtures were compared to PRFs at 20 and 40 atm. Reaction path analyses were conducted at intermediate and high temperatures to identify the most influential reactions controlling ignition of C5 alcohols. The direct relation graph with expert knowledge methodology was used to eliminate unimportant species and reactions in the detailed mechanism, and the resulting skeletal mechanism was tested at various homogeneous charge compression ignition (HCCI) engine combustion conditions. These simulations were used to investigate the heat release characteristics of the methyl-substituted C5 alcohols, and the results show relatively strong reactions at intermediate temperatures prior to hot ignition. C5 alcohol blending in PRF75 in HCCI combustion leads to a significant decrease of low-temperature heat release (LTHR) and a delay of the main combustion. The heat release features demonstrated by C5 alcohols can be used to improve the design and operation of advanced engine technologies.

  14. The technology available for more efficient combustion of waste gases

    International Nuclear Information System (INIS)

    Burrows, J.

    1999-01-01

    Alternative combustion technologies for open flare systems are discussed, stressing their advantages and limitations while meeting the fundamental requirements of personnel and plant safety, high destruction efficiencies, environmental parameters and industrial reliability. The use of BACT (Best Available Control Technologies) is dependent on the destruction efficiency of waste gas defined by regulatory agencies or industrial leaders. Enclosed vapour combustors and high destruction efficiency thermal oxidation are two of the technologies which result in more efficient combustion of waste gases. There are several conditions that should be considered when choosing combustion equipment for the disposal of waste gas. These include volatile organic compounds content, lower heating value, the composition of the waste gas, the specified combustion efficiency, design flow rates, smokeless operation, operating conditions, ground level radiation, SO 2 dispersion, environmental and social expectations, and economic limitation. 10 figs

  15. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  16. Grooming behavior of spontaneously hypertensive rats

    NARCIS (Netherlands)

    Buuse, M. van den; Jong, Wybren de

    1987-01-01

    In an open field spontaneously hypertensive rats (SHR) exhibited lower scores for grooming when compared to their normotensive controls, the Wistar Kyoto rats (WKY). After i.c.v. injection of 1 μg ACTH1–24 cumulative 50-min grooming scores were lower in SHR. Analysis of subscores indicated that the

  17. Active control of combustion instabilities in low NO{sub x} gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Zinn, B.T.; Neumeier, Y. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    This 3-year research program was initiated in September, 1995, to investigate active control of detrimental combustion instabilities in low NO{sub x} gas turbines (LNGT), which burn natural gas in a lean premixed mode to reduce NO{sub x} emissions. The program will investigate the mechanisms that drive these instabilities. Furthermore, it will study active control systems (ACS) that can effectively prevent the onset of such instabilities and/or reduce their amplitudes to acceptable levels. An understanding of the driving mechanisms will not only guide the development of effective ACS for LNGT but may also lead to combustor design changes (i.e., passive control) that will fully or partially resolve the problem. Initial attempts to stabilize combustors (i.e., chemical rockets) by ACS were reported more than 40 years ago, but were unsuccessful due to lack of adequate sensors, electronics, and actuators for performing the needed control actions. Progress made in recent years in sensor and actuator technology, electronics, and control theory has rekindled interest in developing ACS for unstable combustors. While initial efforts in this area, which focused on active control of instabilities in air breathing combustors, have demonstrated the considerable potential of active control, they have also indicated that more effective observers, controllers, and actuators are needed for practical applications. Considerable progress has been made in the observer and actuator areas by the principal investigators of this program during the past 2 years under an AFOSR program. The developed observer is based upon wavelets theory, and can identify the amplitudes, frequencies, and phases of the five most dominant combustor modes in (virtually) real time. The developed actuator is a fuel injector that uses a novel magneto-strictive material to modulate the fuel flow rate into the combustor.

  18. Processing of hydroxyapatite obtained by combustion synthesis

    International Nuclear Information System (INIS)

    Canillas, M.; Rivero, R.; García-Carrodeguas, R.; Barba, F.; Rodríguez, M.A.

    2017-01-01

    One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties. [es

  19. Processing of hydroxyapatite obtained by combustion synthesis

    Directory of Open Access Journals (Sweden)

    M. Canillas

    2017-09-01

    Full Text Available One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties.

  20. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani; Oß wald, Patrick; Hansen, Nils; Kohse-Hö inghaus, Katharina

    2014-01-01

    . While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides

  1. Diffusion Driven Combustion Waves in Porous Media

    Science.gov (United States)

    Aldushin, A. P.; Matkowsky, B. J.

    2000-01-01

    Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases

  2. Diesel oil combustion in fluidized bed; Combustion de aceite diesel en lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Cazares, Mario [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1992-07-01

    The effect of the fluidized bed depth in the combustion in burning diesel oil in a fluidized bed, was analyzed. A self sustained combustion was achieved injecting the oil with an injector that utilized a principle similar to an automobile carburetor venturi. Three different depths were studied and it was found that the deeper the bed, the greater the combustion efficiency. Combustion efficiencies were attained from 82% for a 100mm bed depth, up to 96% for a 200mm bed depth. The diminution in the efficiency was mainly attributed to unburned hydrocarbons and to the carbon carried over, which was observed in the black smoke at the stack outlet. Other phenomena registered were the temperature gradient between the lower part of the bed and the upper part, caused by the fluidization velocity; additionally it was observed that the air employed for the oil injection (carbureting air) is the most important parameter to attain a complete combustion. [Espanol] Se analizo el efecto de la profundidad del lecho en la combustion al quemar aceite diesel en un lecho fluidizado experimental. Se logro combustion autosostenida inyectando el aceite con un inyector que utilizo un principio similar al venturi del carburador de automovil. Se estudiaron tres diferentes profundidades del lecho y se encontro que a mayor profundidad del lecho, mayor eficiencia de la combustion. Se lograron eficiencias de la combustion desde 82% para el lecho de 100 mm de profundidad hasta 96% para el de 200 mm. La disminucion de la eficiencia se atribuyo, principalmente, a los hidrocarburos no quemados y al carbon arrastrado, lo cual se observo en el humo negro a la salida de la chimenea. Otros fenomenos registrados fueron el gradiente de temperatura entre la parte baja del lecho y la parte superior causado por la velocidad de fluidizacion; ademas, se observo que el aire utilizado para inyectar el aceite (aire de carburacion) es el parametro mas importante para lograr una combustion completa.

  3. DNS and LES/FMDF of turbulent jet ignition and combustion

    Science.gov (United States)

    Validi, Abdoulahad; Jaberi, Farhad

    2014-11-01

    The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.

  4. Transient flow combustion

    Science.gov (United States)

    Tacina, R. R.

    1984-01-01

    Non-steady combustion problems can result from engine sources such as accelerations, decelerations, nozzle adjustments, augmentor ignition, and air perturbations into and out of the compressor. Also non-steady combustion can be generated internally from combustion instability or self-induced oscillations. A premixed-prevaporized combustor would be particularly sensitive to flow transients because of its susceptability to flashback-autoignition and blowout. An experimental program, the Transient Flow Combustion Study is in progress to study the effects of air and fuel flow transients on a premixed-prevaporized combustor. Preliminary tests performed at an inlet air temperature of 600 K, a reference velocity of 30 m/s, and a pressure of 700 kPa. The airflow was reduced to 1/3 of its original value in a 40 ms ramp before flashback occurred. Ramping the airflow up has shown that blowout is more sensitive than flashback to flow transients. Blowout occurred with a 25 percent increase in airflow (at a constant fuel-air ratio) in a 20 ms ramp. Combustion resonance was found at some conditions and may be important in determining the effects of flow transients.

  5. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    International Nuclear Information System (INIS)

    Wang Zhi; He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo

    2010-01-01

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO x emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  6. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhi, E-mail: wangzhi@tsinghua.edu.c [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China); He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-05-15

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO{sub x} emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  7. Shale oil combustion

    International Nuclear Information System (INIS)

    Al-dabbas, M.A.

    1992-05-01

    A 'coutant' carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs

  8. Shale oil combustion

    Energy Technology Data Exchange (ETDEWEB)

    Al-dabbas, M A

    1992-05-01

    A `coutant` carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs.

  9. Transformation quantum optics: designing spontaneous emission using coordinate transformations

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Wubs, Martijn; Ginzburg, Pavel

    2016-01-01

    Spontaneous decay is a fundamental quantum property of emitters that can be controlled in a material environment via modification of the local density of optical states (LDOS). Here we use transformation optics methods in order to design required density of states and thus spontaneous emission (S......, affect the LDOS in complex materials. Tailoring SE properties using transformation optics approach provides an innovative way for designing emission properties in a complex material environment needed for the development of active nanophotonic devices....

  10. Theoretical and experimental studies on emissions from wood combustion

    Energy Technology Data Exchange (ETDEWEB)

    Skreiberg, Oeyvind

    1997-12-31

    This thesis discusses experiments on emissions from wood log combustion and single wood particle combustion, both caused by incomplete combustion and emissions of nitric and nitrous oxide, together with empirical and kinetic NO{sub x} modelling. Experiments were performed in three different wood stoves: a traditional stove, a staged air stove and a stove equipped with a catalytic afterburner. Ideally, biomass fuel does not give a net contribution to the greenhouse effect. However, incomplete combustion was found to result in significant greenhouse gas emissions. Empirical modelling showed the excess air ratio and the combustion chamber temperature to be the most important input variables controlling the total fuel-N to NO{sub x} conversion factor. As the result of an international round robin test of a wood stove equipped with a catalytic afterburner, particle emission measurements were found to be the best method to evaluate the environmental acceptability of the tested stove, since the particle emission level was least dependent of the national standards, test procedures and calculation procedures used. In batch single wood particle combustion experiments on an electrically heated small-scale fixed bed reactor the fuel-N to NO conversion factor varied between 0.11-0.86 depending on wood species and operating conditions. A parameter study and homogeneous kinetic modelling on a plug flow reactor showed that, depending on the combustion compliance in question, there is an optimum combination of primary excess air ratio, temperature and residence time that gives a maximum conversion of fuel-N to N{sub 2}. 70 refs., 100 figs., 26 tabs.

  11. Investigation of the combustion kinetics and polycyclic aromatic hydrocarbon emissions from polycaprolactone combustion.

    Science.gov (United States)

    Chien, Y C; Yang, S H

    2013-01-01

    Polycaprolactone (PCL) is one of the most attractive biodegradable plastics that has been widely used in medicine and agriculture fields. Because of the large increase in biodegradable plastics usage, the production of waste biodegradable plastics will be increasing dramatically, producing a growing environmental problem. Generally, waste PCL is collected along with municipal solid wastes and then incinerated. This study investigates the combustion kinetics and emission factors of 16 US Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) in the PCL combustion. Experimentally, two reactions are involved in the PCL combustion process, possibly resulting in the emission of carbon dioxide, propanal, protonated caprolactone and very small amounts of PAH produced by incomplete combustion. The intermediate products may continuously be oxidized to form CO2. The emission factors for 16 US EPA priority PAHs are n.d. -2.95 microg/g, which are much lower than those of poly lactic acid and other plastics combustion. The conversion of PCL is 100%. Results from this work suggest that combustion is a good choice for the waste PCL disposal.

  12. Spatial Memory in Spontaneously Hypertensive Rats (SHR)

    NARCIS (Netherlands)

    Sontag, Thomas-A.; Fuermaier, Anselm B. M.; Hauser, Joachim; Kaunzinger, Ivo; Tucha, Oliver; Lange, Klaus W.

    2013-01-01

    The spontaneously hypertensive rat (SHR) is an established animal model of ADHD. It has been suggested that ADHD symptoms arise from deficits in executive functions such as working memory, attentional control and decision making. Both ADHD patients and SHRs show deficits in spatial working memory.

  13. Increase in efficiency and reduction of generation cost at hard coal-fired power plants. Post-combustion of combustion residues from co-firing of RDF and biomass during dry ash removal

    Energy Technology Data Exchange (ETDEWEB)

    Baur, Guenter [Magaldi Power GmbH, Esslingen (Germany); Spindeldreher, Olaf [RWE Generation SE, Werne (Germany); RWE Generation SE, Essen (Germany)

    2013-09-01

    Secondary as well as substitute fuels are being used in hard coal-fired power plants to improve efficiency and to enlarge fuel flexibility. However, grinding and firing systems of the existing coal-fired plants are not designed for those co-fuels. Any deterioration of the combustion performance would reduce the power output and increase ash disposal costs by increased content of combustion residues. The application of air-cooled ash removal, with simultaneous and controlled post-combustion of unburned residues on the conveyor belt, enlarges the furnace and maintains combustion efficiency even with different fuel qualities. Plant efficiency can also be increased through heat recovery. (orig.)

  14. Hydrogen assisted diesel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lilik, Gregory K.; Boehman, Andre L. [The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Hedan; Haworth, Daniel C. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Herreros, Jose Martin [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla La-Mancha, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-05-15

    Hydrogen assisted diesel combustion was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine, with a focus on exhaust emissions. Hydrogen was substituted for diesel fuel on an energy basis of 0%, 2.5%, 5%, 7.5%, 10% and 15% by aspiration of hydrogen into the engine's intake air. Four speed and load conditions were investigated (1800 rpm at 25% and 75% of maximum output and 3600 rpm at 25% and 75% of maximum output). A significant retarding of injection timing by the engine's electronic control unit (ECU) was observed during the increased aspiration of hydrogen. The retarding of injection timing resulted in significant NO{sub X} emission reductions, however, the same emission reductions were achieved without aspirated hydrogen by manually retarding the injection timing. Subsequently, hydrogen assisted diesel combustion was examined, with the pilot and main injection timings locked, to study the effects caused directly by hydrogen addition. Hydrogen assisted diesel combustion resulted in a modest increase of NO{sub X} emissions and a shift in NO/NO{sub 2} ratio in which NO emissions decreased and NO{sub 2} emissions increased, with NO{sub 2} becoming the dominant NO{sub X} component in some combustion modes. Computational fluid dynamics analysis (CFD) of the hydrogen assisted diesel combustion process captured this trend and reproduced the experimentally observed trends of hydrogen's effect on the composition of NO{sub X} for some operating conditions. A model that explicitly accounts for turbulence-chemistry interactions using a transported probability density function (PDF) method was better able to reproduce the experimental trends, compared to a model that ignores the influence of turbulent fluctuations on mean chemical production rates, although the importance of the fluctuations is not as strong as has been reported in some other recent modeling studies. The CFD results confirm

  15. Application of bioethanol/RME/diesel blend in a Euro5 automotive diesel engine: Potentiality of closed loop combustion control technology

    International Nuclear Information System (INIS)

    Guido, Chiara; Beatrice, Carlo; Napolitano, Pierpaolo

    2013-01-01

    Highlights: ► Effects of a bioethanol/biodiesel/diesel blend on Euro5 diesel engine. ► Potentiality of combustion control technology with alternative fuels. ► Strong smoke and NOx emissions reduction. ► No power penalties burning bioethanol blend by means of combustion control activation. -- Abstract: The latest European regulations require the use of biofuels by at least 10% as energy source in transport by 2020. This goal could be reached by means of the use of different renewable fuels; bioethanol (BE) is one of the most interesting for its low production cost and availability. BE usually replaces gasoline in petrol engines but it can be also blended in low concentrations to feed diesel engines. In this paper the results of an experimental activity aimed to study the impact of a BE/biodiesel/mineral diesel blend on performance and emissions in a last generation automotive diesel engine are presented. The tests were performed in steady-state in eight partial load engine conditions and at 2500 rpm in full load. Two fuel blends have been compared: the Rapeseed Methyl Ester (RME)/diesel with 10% of biodiesel by volume (B10), and the BE/RME/diesel with 20% of BE and 10% of biodiesel by volume (E20B10). The experimental campaign was carried out on a 2.0 L diesel engine compliant with Euro5 regulation. The engine features the closed loop combustion control (CLCC), which enables individual and real-time control of injection phasing and cylinder inner torque by means of in-cylinder pressure sensors connected with the Electronic Control Unit (ECU). As expected, the results showed a strong smoke emissions reduction for E20B10 in all tested conditions, mainly due to the high oxygen content of BE. Also a reduction of NOx emissions were observed with BE addiction. The results confirm that the CLCC adoption enables a significant improvement in the robustness of the engine performance and emissions when blends with low heat content and very low cetane number (as BE

  16. Using biofuel tracers to study alternative combustion regimes

    International Nuclear Information System (INIS)

    Mack, J.H.; Flowers, D.L.; Buchholz, B.A.; Dibble, R.W.

    2007-01-01

    Interest in the use of alternative fuels and engines is increasing as the price of petroleum climbs. The inherently higher efficiency of Diesel engines has led to increased adoption of Diesels in Europe, capturing approximately 40% of the new passenger car market. Unfortunately, lower CO 2 emissions are countered with higher nitrogen oxides (NO x ) and particulate matter (PM) emissions and higher noise. Adding oxygenated compounds to the fuel helps reduce PM emissions. However, relying on fuel alone to reduce PM is unrealistic due to economic constraints and difficult due to the emerging PM standards. Keeping peak combustion temperature below 1700 K inhibits NO x formation. Altering the combustion regime to burn at temperatures below the NO x threshold and accept a wide variety of fuels seems like a promising alternative for future engines. Homogeneous charge compression ignition (HCCI) is a possible solution. Fuel and air are well mixed prior to intake into a cylinder (homogeneous charge) and ignition occurs by compression of the fuel-air mixture by the piston. HCCI is rapid and relatively cool, producing little NO x and PM. Unfortunately, it is hard to control since HCCI is initiated by temperature and pressure instead of a spark or direct fuel injection. We investigate biofuel HCCI combustion, and use intrinsically labeled biofuels as tracers of HCCI combustion. Data from tracer experiments are used to improve our combustion modeling

  17. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.

    2014-04-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  18. Gestión óptima de la energía en vehículos híbridos basados en pilas de combustible utilizando control predictivo económico

    OpenAIRE

    Sampietro, Jose Luis; Costa Castelló, Ramon; Puig Cayuela, Vicenç

    2016-01-01

    Las pilas de combustible que utilizan el hidrégeno como combustible están siendo consideradas, en estos últimos años, como una alternativa a los combustibles fósiles para su uso en automóviles. Dicha tecnología se puede utilizar en los vehículos eléctricos o de propulsión híbrida ya en uso. Este trabajo introduce el control predictivo económico (EMPC, siglas en inglés) como técnica de gestión óptima de la energía. Finalmente, se presentan simulaciones de varios escenarios, basados en un contr...

  19. Ignition system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, G

    1977-05-12

    The invention pertains to ignition systems for internal combustion engines; in particular, these are used in the engines of modern small motorcycles, where power is supplied by means of a so-called flywheel magneto, so that there is no need for an additional battery. The invention will prevent back-kicking. This is achieved by the following means: in the right direction of rotation of the internal combustion engine, due to an axial magnetic unsymmetry of the rotor, a voltage component that can switch the electronic switch will occur only in one of the two parts of the control winding at the point of ignition. In the wrong direction of rotation, on the other hand, this voltage component will only occur in the other part of the control winding and will act in direction on a diode connected in parallel to this part of the winding.

  20. Large-eddy simulation of ethanol spray combustion using a finite-rate combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Zhou, L.X. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics; Chan, C.K. [Hong Kong Polytechnic Univ. (China). Dept. of Applied Mathematics

    2013-07-01

    Large-eddy simulation of spray combustion is under its rapid development, but the combustion models are less validated by detailed experimental data. In this paper, large-eddy simulation of ethanol-air spray combustion was made using an Eulerian-Lagrangian approach, a subgrid-scale kinetic energy stress model, and a finite-rate combustion model. The simulation results are validated in detail by experiments. The LES obtained statistically averaged temperature is in agreement with the experimental results in most regions. The instantaneous LES results show the coherent structures of the shear region near the high-temperature flame zone and the fuel vapor concentration map, indicating the droplets are concentrated in this shear region. The droplet sizes are found to be in the range of 20-100{mu}m. The instantaneous temperature map shows the close interaction between the coherent structures and the combustion reaction.

  1. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    Science.gov (United States)

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective.

  2. Shared risk aversion in spontaneous and induced abortion.

    Science.gov (United States)

    Catalano, Ralph; Bruckner, Tim A; Karasek, Deborah; Adler, Nancy E; Mortensen, Laust H

    2016-05-01

    Does the incidence of spontaneous abortion correlate positively over conception cohorts with the incidence of non-clinically indicated induced abortion as predicted by shared risk aversion? We find that the number of spontaneous and non-clinically indicated induced abortions correlates in conception cohorts, suggesting that risk aversion affects both the conscious and non-conscious mechanisms that control parturition. Much literature speculates that natural selection conserved risk aversion because the trait enhanced Darwinian fitness. Risk aversion, moreover, supposedly influences all decisions including those that individuals can and cannot report making. We argue that these circumstances, if real, would manifest in conscious and non-conscious decisions to invest in prospective offspring, and therefore affect incidence of induced and spontaneous abortion over time. Using data from Denmark, we test the hypothesis that monthly conception cohorts yielding unexpectedly many non-clinically indicated induced abortions also yield unexpectedly many spontaneous abortions. The 180 month test period (January 1995 through December 2009), yielded 1 351 800 gestations including 156 780 spontaneous as well as 233 280 induced abortions 9100 of which were clinically indicated. We use Box-Jenkins transfer functions to adjust the incidence of spontaneous and non-clinically indicated induced abortions for autocorrelation (including seasonality), cohort size, and fetal as well as gestational anomalies over the 180-month test period. We use cross-correlation to test our hypothesized association. We find a positive association between spontaneous and non-clinically indicated induced abortions. This suggests, consistent with our theory, that mothers of conception cohorts that yielded more spontaneous abortions than expected opted more frequently than expected for non-clinically indicated induced abortion. Limitations of our work include that even the world's best registration system

  3. Combustion and environment. A regulation in full evolution; Combustion et environnement. Une reglementation en pleine evolution

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This paper is a reprint of an article published in `Energie Plus` magazine which gives a synthesis of the different topics discussed during the conference. Two aspects are discussed: the energy regulations and the environmental regulations. The energy regulations concern the energy efficiency required for central heating plants of small (40 kW < P < 400 kW), medium and large (400 kW < P < 50 MW) size and the periodical control of these installations. The environmental regulations concern the combustion systems with a power comprised between 2 and 20 MW (design and siting, operation and maintenance, water effluents, atmospheric effluents), the turbines and engines with a power of 20 to 50 MW, and the big installations of combustion (P > 50 MW). The principal motivation of these regulations is the abatement of ecosystems acidification. (J.S.)

  4. Engine combustion network (Ecn) : characterization and comparison of boundary conditions for different combustion vessels

    NARCIS (Netherlands)

    Meijer, M.; Somers, L.M.T.; Johnson, J.; Naber, J.; Lee, S.Y.; Malbec, L.M.; Bruneaux, G.; Pickett, L.M.; Bardi, M.; Payri, R.; Bazyn, T.

    2012-01-01

    The Engine Combustion Network (ECN) is a worldwide group of institutions using combustion vessels and/or performing computational fluid dynamics (CFD) simulation, whose aim is to advance the state of spray and combustion knowledge at engine-relevant conditions. A key activity is the use of spray

  5. On the need for new continues measurement techniques at combustion plants; Anlaeggningars behov av ny kontinuerlig maetteknik

    Energy Technology Data Exchange (ETDEWEB)

    Eskilsson, David; Samuelsson, Jessica [Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-11-15

    The purpose of this study is to make an inventory regarding the need for new continuous measurement techniques at combustion plants in Sweden. In total 15 interviews at 15 different combustion plants were made. The interviewed plants are of different sizes and use different combustion techniques, fuels, and cleaning equipments. They thereby well reflect the combustion plants present in Sweden today. Among many interesting interview results, we chose to highlight: Continuous measurement of the moisture content of the fuel, which can be used to decide the value of a fuel delivery, or for monitoring or to controlling the combustion (e.g. the speed of the grate); Continuous measurement of the heating value of the fuel, which can be used to decide the value of a fuel delivery, or for monitoring or to controlling the combustion. There is a need for temperature sensors which better withstand the environment in the furnace. Moreover, there is also a need for 3-dimensional measurements of the temperature in the furnace, especially for fluidized beds. This information can be used to control the combustion in different ways, e.g. preventing the bed from sintering. At some plants there was a need to measure the rate of corrosion and the growth of deposits. The measurements can be used to control the fuel mix at an early stage and to thereby avoid problems caused by corrosion and deposits. The measurement results can also be used to control the soot cleaning equipment, fuel mixture and adding of additive. At some of the interviewed plants there was a need to continuously measure the amount of unburned fuel in the ash. The continuous measurement results can be used for automatic control or monitoring of the combustion process. Several plants had problems with their dust instruments. Suitable topics for future work include investigating how the measurement techniques mentioned above may be developed/improved and implemented at the plants.

  6. Spontaneous external gallbladder perforation

    International Nuclear Information System (INIS)

    Noeldge, G.; Wimmer, B.; Kirchner, R.

    1981-01-01

    Spontaneous perforation of the gallbladder is one complication of cholelithiasis. There is a greater occurence of free perforation in the peritoneal cavity with bilary pertonitis, followed by the perforation into the stomach, small intestine and colon. A single case of the nowadays rare spontaneous perforation in and through the abdominal wall will be reported. Spontaneous gallbladder perforation appears nearly asymptomatic in its clinical course because of absent biliary peritonitis. (orig.) [de

  7. Spontaneous pneumomediastinum: A rare complication of methamphetamine use

    Directory of Open Access Journals (Sweden)

    Jessica Albanese

    2017-01-01

    Conclusion: Spontaneous pneumomediastinum is a rare complication of amphetamine use that is often associated with subcutaneous emphysema and can be diagnosed with chest x-ray. Management is conservative, with observation, pain control, and supplemental oxygen as needed.

  8. Optimization of combustion chamber geometry for stoichiometric diesel combustion using a micro genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Wook

    2010-11-15

    This paper describes the optimization of combustion chamber geometry and engine operating conditions for stoichiometric diesel combustion, targeting lower gross indicated specific fuel consumption. The KIVA code, coupled with a micro genetic algorithm population of nine for each generation was used. The optimization variables were composed of ten variables related to the combustion chamber geometry and engine operating conditions. In addition, an auto mesh generator was developed for generating various kinds of combustion chambers, such as open-crater, re-entrant, deep, and shallow types. In addition, the computational models were validated against the experimental results for a stoichiometric process in terms of the combustion pressure history and emissions. Through the preset optimization, a 35% improvement in the gross indicated that specific fuel consumption was achieved. In addition, the optimization results showed that the optimum engine operating conditions employed a premixed charge compression ignition combustion regime with early injection and a narrow spray included angle. Furthermore, a higher boost pressure was used to prevent fuel film formation. (author)

  9. Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies

    International Nuclear Information System (INIS)

    Benajes, Jesús; García, Antonio; Monsalve-Serrano, Javier; Boronat, Vicente

    2017-01-01

    Highlights: • Optimized dual-fuel strategy to cover the whole engine load-speed map. • EURO VI NOx levels up to 14 bar IMEP with fully and highly premixed RCCI strategies. • Dual-fuel provides up to 7% higher efficiency than CDC if urea consumption is considered. - Abstract: This experimental work investigates the capabilities of the reactivity controlled compression ignition combustion concept to be operated in the whole engine map and discusses its benefits when compared to conventional diesel combustion. The experiments were conducted using a single-cylinder medium-duty diesel engine fueled with regular gasoline and diesel fuels. The main modification on the stock engine architecture was the addition of a port fuel injector in the intake manifold. In addition, with the aim of extending the reactivity controlled compression ignition operating range towards higher loads, the piston bowl volume was increased to reduce the compression ratio of the engine from 17.5:1 (stock) down to 15.3:1. To allow the dual-fuel operation over the whole engine map without exceeding the mechanical limitations of the engine, an optimized dual-fuel combustion strategy is proposed in this research. The combustion strategy changes as the engine load increases, starting from a fully premixed reactivity controlled compression ignition combustion up to around 8 bar IMEP, then switching to a highly premixed reactivity controlled compression ignition combustion up to 15 bar IMEP, and finally moving to a mainly diffusive dual-fuel combustion to reach the full load operation. The engine mapping results obtained using this combustion strategy show that reactivity controlled compression ignition combustion allows fulfilling the EURO VI NOx limit up to 14 bar IMEP. Ultra-low soot emissions are also achieved when the fully premixed combustion is promoted, however, the soot levels rise notably as the combustion strategy moves to a less premixed pattern. Finally, the direct comparison of

  10. Spontaneous Plasticity of Multineuronal Activity Patterns in Activated Hippocampal Networks

    Directory of Open Access Journals (Sweden)

    Atsushi Usami

    2008-01-01

    Full Text Available Using functional multineuron imaging with single-cell resolution, we examined how hippocampal networks by themselves change the spatiotemporal patterns of spontaneous activity during the course of emitting spontaneous activity. When extracellular ionic concentrations were changed to those that mimicked in vivo conditions, spontaneous activity was increased in active cell number and activity frequency. When ionic compositions were restored to the control conditions, the activity level returned to baseline, but the weighted spatial dispersion of active cells, as assessed by entropy-based metrics, did not. Thus, the networks can modify themselves by altering the internal structure of their correlated activity, even though they as a whole maintained the same level of activity in space and time.

  11. Experimental study of a separated jets burner: application to the natural gas-pure oxygen combustion; Etude experimentale du comportement de bruleurs a jets separes: application a la combustion gaz naturel-oxygene pur

    Energy Technology Data Exchange (ETDEWEB)

    Salentey, L.

    2002-04-15

    The evolution of pollution standards and the optimisation of furnaces performances require a development of new burner generation and also the improvement of combustion techniques. Actually, the use of oxy-combustion in separated jets burners offers interesting prospects for NO{sub x} emission reduction and on the modularity of flames properties (lift off, flame front topology, flame length). The complex geometry of those burners leads to several problems like the three-dimensional character of the flow, which may sometimes disturb the flame stability as flames are lifted above the burner. This experimental study deals with a simplified version of that kind of burner constituted with a central natural gas jet surrounded by two oxygen jets. Primary, the study of non-reactive jet was planned in order to understand dynamic and mixture phenomena involved between jets and to provide a database useful for the computer code validation. The reactive flow developed in a furnace, which simulates the real conditions, had been characterised. The studies of the dynamic field using Laser Doppler Velocimetry (LDV) and of the turbulent mixture by conditional Laser tomography were supplemented in combustion by the visualisation of the spontaneous emission of radical OH, in the initial and final zone of the oxy-flames, like by the measurement of pollutants like NO{sub x} and soot. The measurements carried out while varying speeds of injection as well as the gap between the jets made possible the highlight of the influence of these parameters upon the stabilisation of the oxy-flames as well as the modification of the topology and the characteristics of the flows. The comparison of the measurements made in non-reactive and reactive flow shows the influence of oxy-combustion on the dynamic and scalar development of the flow for this type of burners. (author)

  12. Dioxin and furan emissions from landfill gas-fired combustion units

    International Nuclear Information System (INIS)

    Caponi, F.R.; Wheless, E.; Frediani, D.

    1998-01-01

    The 1990 Federal Clean Air Act Amendments require the development of maximum achievable control technology standards (MACT) for sources of hazardous air pollutants, including landfill gas-fired combustion sources. The Industrial Combustion Coordinated Rulemaking (ICCR) Federal Advisory Committee is a group of stakeholders from the public and private sector whose charge is to develop recommendations for a unified set of federal toxic air emissions regulations. Specifically, the group will establish MACT standards for industrial-commercial-institutional combustion sources. The ICCR proceedings have given rise to considerable interest in potential dioxin and furan emissions from landfill gas-fired combustion units. In order to establish the potential of dioxin and furan emissions from this group of combustion sources, a world-wide literature search was conducted. A total of 22 references were evaluated. The references covered a wide range of test programs, testing methodologies and combustion equipment type. The most abundant data were for landfill gas-fired flares (shrouded and afterburners) and I.C. engines. Because of limitations in obtaining actual test reports with complete lab data and QA/QC results, and a lack of knowledge as to the exact types of waste received at the European landfills, the test data from these sources, for the purposes of this paper, are considered qualitative. The conclusion reached from review of the test data is that there is a potential for dioxin and furan emissions from landfill gas-fired combustion units, but at very low levels for well operated systems

  13. Spontaneous fungal peritonitis: a rare but severe complication of liver cirrhosis.

    Science.gov (United States)

    Gravito-Soares, Marta; Gravito-Soares, Elisa; Lopes, Sandra; Ribeiro, Graça; Figueiredo, Pedro

    2017-09-01

    Spontaneous bacterial peritonitis is the most common infectious complication in cirrhosis. Spontaneous fungal peritonitis is rare and remains unknown. In this work, spontaneous fungal peritonitis as well as risk factors and prognosis are characterized. A retrospective case-control study of 253 consecutive admissions by peritonitis in cirrhotic patients was carried out between 2006 and 2015. Comparison of patients with spontaneous fungal peritonitis (cases) and spontaneous bacterial peritonitis with positive microbiologic ascitic fluid culture (controls) was performed. Variables such as sociodemographic and clinical features, cirrhosis etiology, liver dysfunction scores, ascitic and laboratory parameters, invasive procedures, and prognosis were evaluated. Of the 231 patients, eight (3.5%) developed spontaneous fungal peritonitis, 62.5% of cases being coinfected with bacteria. Candida spp. was isolated in 87.5% of cases, mainly Candida albicans (37.5%) and C. krusei (25.0%). Patients with spontaneous fungal peritonitis had higher ascitic fluid lactate dehydrogenase (288.4±266.6 vs. 161.0±179.5; P=0.011), blood leukocyte count (15187.5±5432.3 vs. 10969.8±6949.5; P=0.028), blood urea nitrogen (69.8±3.1 vs. 36.3±25.5; P=0.001), higher number of invasive procedures (colonoscopy: 25.0 vs. 0.8%, P=0.001; urinary catheterization: 87.5 vs. 49.6%, P=0.038; nasogastric intubation: 87.5 vs. 26.9%, P=0.001), and longer duration of hospital stay (30.0±32.9 vs. 18.9±17.0 days; P=0.031). No statistical difference was found between the two groups for Model for End-Stage Liver Disease, Model for End-Stage Liver Disease-sodium, and Child-Pugh scores. Spontaneous fungal peritonitis was associated with a worse prognosis, particularly severe sepsis/septic shock (87.5 vs. 42.8%, P=0.023), admission in the gastroenterology intensive care unit (87.5 vs. 24.4%; P=0.001), and overall (62.5 vs. 31.9%; P=0.039) or 30-day mortality (50.0 vs. 24.4%; P=0.034), with a mean diagnosis

  14. Emission of toxic air pollutants from biomass combustion

    International Nuclear Information System (INIS)

    Houck, J.E.; Barnett, S.G.; Roholt, R.B.; Rock, M.E.

    1991-01-01

    Combustion of biomass for power generation, home heating, process steam generation, and waste disposal constitutes a major source of air pollutants nationwide. Emissions from hog-fueled boilers, demolition wood-fired power plants, municipal waste incinerators, woodstoves, fireplaces, pellet stoves, agricultural burning, and forestry burning have been characterized for a variety of purposes. These have included risk assessment, permitting, emission inventory development, source profiling for receptor modeling, and control technology evaluations. From the results of the source characterization studies a compilation of emission factors for criteria and non-criteria pollutants are presented here. Key among these pollutants are polycyclic aromatic hydrocarbons, priority pollutant metals, carbon monoxide, sulfur dioxide, nitrous oxides, and PM 10 particles. The emission factors from the biomass combustion processes are compared and contrasted with other pollutant sources. In addition, sampling and analysis procedures most appropriate for characterizing emissions from the biomass combustion sources are also discussed

  15. DIAGNOSIS OF FAILURE OF COMBUSTION IN THE COMBUSTION CHAMBER WITH A THERMOVISION EQUIPMENT

    Directory of Open Access Journals (Sweden)

    S. V. Vorobiev

    2014-01-01

    Full Text Available The use of thermovision technology to diagnose failure of the combustion flame test tube of the main combustion chamber gas turbine engine is deal with in the article. Join the thermal radiation of the jet of combustion products and the internal elements was carried out using short-wave thermovision system AGA-782 with spectral spectral filters in several ranges from 3.2 to 5.6 microns. Thermovision is mounted on the axis of the flame tube. The output signal was recorded and processed on a computer in real time, allowing monitor the combustion process and the thermal state of the object during the experiment.

  16. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  17. Definition of spontaneous reconnection

    International Nuclear Information System (INIS)

    Schindler, K.

    1984-01-01

    The author discusses his view of driven versus spontaneous. There is a close link between ''spontaneous'' and ''instability.'' One of the prominent examples for instability is the thermal convection instability. Just to remind you, if you heat a fluid layer from below, it takes a certain Rayleigh number to make it unstable. Beyond the onset point you find qualitatively new features. That is called ''spontaneous,'' and this is a bit more than semantics. It's a new qualitative property that appears and it is spontaneous although we have an energy flux through the system. It's a misconception, to call this ''driven'' pointing at the energy flux through it. Of course, the convection would not exist without this energy flux. But what makes it ''spontaneous'' is that without any particular external signal, a new qualitative feature appears. And this is what is called an ''instability'' and ''spontaneous.'' From these considerations the author got a little reassured of what distinction should be made in the field of the magnetosphere. If we have a smooth energy transport into the magnetosphere and suddenly we have this qualitatively new feature (change of B-topology) coming up; then, using this terminology we don't have a choice other than calling this spontaneous or unstable, if you like. If we ''tell'' the system where it should make its neutral line and where it should make its plasmoids, then, it is driven. And this provides a very clear-cut observational distinction. The author emphasizes the difference he sees is a qualitative difference, not only a quantitative one

  18. Computational Modeling of Turbulent Spray Combustion

    NARCIS (Netherlands)

    Ma, L.

    2016-01-01

    The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight,

  19. Spontaneous oscillations in microfluidic networks

    Science.gov (United States)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2017-11-01

    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  20. Underground treatment of combustible minerals

    Energy Technology Data Exchange (ETDEWEB)

    Sarapuu, E

    1954-10-14

    A process is described for treating oil underground, consisting in introducing several electrodes spaced one from the other in a bed of combustibles underground so that they come in electric contact with this bed of combustibles remaining insulated from the ground, and applying to the electrodes a voltage sufficient to produce an electric current across the bed of combustibles, so as to heat it and create an electric connection between the electrodes on traversing the bed of combustibles.