Sample records for spontaneous combustion control

  1. Control technique of spontaneous combustion in fully mechan ized stope during period of end caving under complex mining influence (United States)

    Yuan, Benqing


    In view of the phenomenon of spontaneous combustion of coal seam occurring during the period of end caving under complex mining conditions, taking the 1116 (3) stope of Guqiao mine as the object of study, the causes of spontaneous combustion during the period of end caving are analyzed, according to the specific geological conditions of the stope to develop corresponding fire prevention measures, including the reduction of air supply and air leakage in goaf, reduce the amount of coal left, reasonable drainage, nitrogen injection for spontaneous combustion prevention, grouting for spontaneous combustion prevention and permanent closure, fundamentally eliminates the potential for spontaneous combustion during the period of 1116(3) stope end caving. The engineering practice shows that this kind of measure has reference value for the prevention and control of spontaneous combustion during the period of stope end caving.

  2. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control. (United States)

    Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong


    We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.

  3. Application of Foam-gel Technique to Control CO Exposure Generated During Spontaneous Combustion of Coal in Coal Mines. (United States)

    Ren, Xing W; Wang, Feng Z; Guo, Qing; Zuo, Zhao B; Fang, Qi S


    In China, 47.3% of state-owned coal mines are located in coal seams that are prone to spontaneous combustion. The spontaneous combustion of coal is the main cause of the generation of a large amount of carbon monoxide, which can cause serious health issues to miners. A new technique using foam-gel formation was developed to effectively control the spontaneous combustion of coal. The gel can capture more than 90% of the water in the grout and at the same time the foam can cover dangerous areas in the goaf by stacking and cooling of foam in all directions. In this study, a mechanism of foam-gel formation was introduced and the optimal proportions of additives were defined based on experiments of different foaming properties, gelling time and water loss rate as the main index parameters. The results of a field application in a coal mine promise that this new technique would effectively prevent coal oxidation in the goaf and reduce the generation of carbon monoxide.

  4. A comparison of spontaneous combustion susceptibility of coal from ...

    African Journals Online (AJOL)

    This study investigated spontaneous combustion susceptibility of coal according to the rank. To estimate the spontaneous combustion susceptibility of coal, both crossing-point temperature (CPT) measurement and gas analysis by using gas chromatography (GC) were performed. For the experiment, Ihuoma coal, Orlu ...

  5. Joseph Conrad and the spontaneous combustion of coal - Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Walters, A.D. [Kilborn Engineering Pacific Ltd., Vancouver, BC (Canada)


    Joseph Conrad`s novel `Youth` described an on-board fire and explosion from transported coal between Sumatra and Bangka Island. This incident is based on Conrad`s experience as a mariner transporting coal, and displays a detailed knowledge of the technical issues and preventative actions involved in the spontaneous combustion of coal cargoes at sea. The coal concerned was West Hartley coal, and in this article the author examines the combustion characteristics of this coal, and the historical information available on the explosion on board the `Palestine`. The reasons for spontaneous combustion are examined, with particular attention paid to oxidation, moisture content and pyrite oxidation. West Hartley coal was a high volatile bituminous coal, with high self-heating tendencies, and so likely to undergo spontaneous combustion in the right conditions. Self-heating in ships is now well researched as a result of the international maritime coal trade. 21 refs., 3 figs., 7 tabs.

  6. Signal Processing Methods for Liquid Rocket Engine Combustion Spontaneous Stability and Rough Combustion Assessments (United States)

    Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.


    Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.

  7. The Spontaneous Combustion of Railway Ties and Asphalt Shingles (United States)

    Leslie, Geoffrey

    Many Low Carbon Fuels (LCFs) present unknown spontaneous combustion risks, which must be quantified before their use as fossil fuel replacements. Wood and coal spontaneous combustion is well understood; however, LCFs weather, and subsequent chemical changes could affect their spontaneous combustion properties. LCF spontaneous combustion could lead to accidental fires with possible loss of life, limb and property. The spontaneous combustion risks of two LCFs, discarded creosote-treated wooden railway ties and roofing asphalt shingles, were investigated with calorimetry and heat transfer experiments. Chemical changes due to weathering were studied with pyrolysis-Gas Chromatography/Mass Spectrometry (py-GC/MS). Creosote-treated wooden railway tie dust, roofing asphalt shingle particles, poplar wood pellets, and petroleum coke self-heating were studied with isothermal calorimetry. Railway tie dust and asphalt shingle heat transfer were characterized with a guarded hot plate. Petroleum coke self-heating was consistent with coal, while both poplar pellets and railway tie dust were found to be more reactive compared to oven test results of similar materials. The observed increase in reactivity was probably a result of significant moisture contenint in the pellet and railway tie dust. Critical conditions for spontaneous combustion were evaluated with the Frank-Kamenetskii parameter, assuming an ambient temperature of 40°C and constant moisture content. Kamenetskii calculations indicate that a 1.6 m cube of railway tie dust, or a 58 m cube of asphalt particles, would be unstable and combust. LCF chemistry may have been affected by weathering, which would cause chemical changes that affect their spontaneous combustion properties. Therefore, railway tie wood and roofing asphalt shingle chemistry were investigated by identifying products of 250° and 550°C pyrolysis with py-GC/MS. Railway tie wood pyrolyzates did not show signs of weathering; in contrast, asphalt pyrolysis

  8. Observation of spontaneous combustion of hydrogen and oxygen in microbubbles

    NARCIS (Netherlands)

    Postnikov, A.V.; Uvarov, I.V.; Prokaznikov, A.V.; Svetovoy, Vitaly


    Experimental evidence is presented that combustion can ignite at room temperature spontaneously inside microbubbles filled with mixture of hydrogen and oxygen. We perform water electrolysis in a closed microchamber by voltage pulses of alternating polarity at repetition frequencies 100 kHz to pump

  9. Prevention of spontaneous combustion of backfilled plant waste material.

    CSIR Research Space (South Africa)

    Adamski, SA


    Full Text Available many large-scale and laboratory tests were conducted to determine the factors that contribute to spontaneous combustion, but no successful method of preventing or containing the problem was formulated. Further research into this problem during 1988 by a...


    Directory of Open Access Journals (Sweden)

    Vlastimil MONI


    Full Text Available This article presents summarizing information about the solution of partial part of research problem of prognoses of deposited brown coal spontaneous combustion sources genesis as a part of project TA01020351 – program ALFA. We will gradually describe the results of long term measurements carried out on selected brown coal heaps realized from 2011 to 2013. The attention is devoted to characterization of key parameters. These parameters influence the genesis of combustion. The second problem is the comparison of results of thermal imaging with laboratory results of gas and coal samples sampled in situ, with the influence of atmospheric conditions (insolation, aeration, rainfall, atmospheric pressure changes etc., with influence of coal mass degradation, physical and chemical factors and another failure factors to brown coal spontaneous combustion processes.

  11. Techniques for Liquid Rocket Combustion Spontaneous Stability and Rough Combustion Assessments (United States)

    Kenny, R. J.; Giacomoni, C.; Casiano, M. J.; Fischbach, S. R.


    This work presents techniques for liquid rocket engine combustion stability assessments with respect to spontaneous stability and rough combustion. Techniques covering empirical parameter extraction, which were established in prior works, are applied for three additional programs: the F-1 Gas Generator (F1GG) component test program, the RS-84 preburner component test program, and the Marshall Integrated Test Rig (MITR) program. Stability assessment parameters from these programs are compared against prior established spontaneous stability metrics and updates are identified. Also, a procedure for comparing measured with predicted mode shapes is presented, based on an extension of the Modal Assurance Criterion (MAC).

  12. Combustion Engine Identification and Control


    Blasco Serrano, Daniel


    The topic of this thesis is system identification and control of two different internal combustion engines, Partially Premixed Combustion (PPC) engine and a more conventional Combustion Ignited (CI) diesel engine. The control of both engines is aimed to emission reduction and to increase the eficiency. There is an introduction to the internal combustion engine, as well as theory used about system identification and Model Predictive Control (MPC). A physical model of a PPC en...

  13. Active Combustion Control Valve Project (United States)

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the operational...

  14. The Effect of Pore Volume of Hard Coals on Their Susceptibility to Spontaneous Combustion

    Directory of Open Access Journals (Sweden)

    Agnieszka Dudzińska


    Full Text Available In this paper the results of the experimental studies on a relationship between pore volume of hard coals and their tendency to spontaneous combustion are presented. Pore volumes were determined by the gas adsorption method and spontaneous combustion tendencies of coals were evaluated by determination of the spontaneous combustion indexes Sza and Sza′ on the basis of the current Polish standards. An increase in the spontaneous combustion susceptibility of coal occurs in the case of the rise both in micropore volumes and in macropore surfaces. Porosity of coal strongly affects the possibility of oxygen diffusion into the micropores of coal located inside its porous structure. The volume of coal micropores determined on the basis of the carbon dioxide adsorption isotherms can serve as an indicator of a susceptibility of coal to spontaneous combustion.

  15. CFD simulation of thermodynamic and temperature effects on spontaneous combustion of coal stockpiles and dumps

    CSIR Research Space (South Africa)

    Kekana, J


    Full Text Available In this work the development of a numerical model capable of identifying suitable conditions responsible for spontaneous combustion of coal storage piles and carbonaceous waste dumps are presented. The developed model captured the mass, momentum...

  16. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health. (United States)

    Oliveira, Marcos L S; da Boit, Kátia; Pacheco, Fernanda; Teixeira, Elba C; Schneider, Ismael L; Crissien, Tito J; Pinto, Diana C; Oyaga, Rafael M; Silva, Luis F O


    Pollution generated by hazardous elements and persistent organic compounds that affect coal fire is a major environmental concern because of its toxic nature, persistence, and potential risk to human health. The coal mining activities are growing in the state of Santa Catarina in Brazil, thus the collateral impacts on the health and economy are yet to be analyzed. In addition, the environment is also enduring the collateral damage as the waste materials directly influence the coal by-products applied in civil constructions. This study was aimed to establish the relationships between the composition, morphology, and structural characteristics of ultrafine particles emitted by coal mine fires. In Brazil, the self-combustions produced by Al-Ca-Fe-Mg-Si coal spheres are rich in chalcophile elements (As, Cd, Cu, Hg, Pb, Sb, Se, Sn, and Zn), lithophile elements (Ce, Hf, In, La, Th, and U), and siderophile elements (Co, Cr, Mo, Fe, Ni, and V). The relationship between nanomineralogy and the production of hazardous elements as analyzed by advanced methods for the geochemical analysis of different materials were also delineated. The information obtained by the mineral substance analysis may provide a better idea for the understanding of coal-fire development and assessing the response of particular coal in different combustion processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Combustion instability control in the model of combustion chamber

    International Nuclear Information System (INIS)

    Akhmadullin, A N; Ahmethanov, E N; Iovleva, O V; Mitrofanov, G A


    An experimental study of the influence of external periodic perturbations on the instability of the combustion chamber in a pulsating combustion. As an external periodic disturbances were used sound waves emitted by the electrodynamics. The purpose of the study was to determine the possibility of using the method of external periodic perturbation to control the combustion instability. The study was conducted on a specially created model of the combustion chamber with a swirl burner in the frequency range from 100 to 1400 Hz. The study found that the method of external periodic perturbations may be used to control combustion instability. Depending on the frequency of the external periodic perturbation is observed as an increase and decrease in the amplitude of the oscillations in the combustion chamber. These effects are due to the mechanisms of synchronous and asynchronous action. External periodic disturbance generated in the path feeding the gaseous fuel, showing the high efficiency of the method of management in terms of energy costs. Power required to initiate periodic disturbances (50 W) is significantly smaller than the thermal capacity of the combustion chamber (100 kW)

  18. Analysis of Index Gases of Coal Spontaneous Combustion Using Fourier Transform Infrared Spectrometer

    Directory of Open Access Journals (Sweden)

    Xiaojun Tang


    Full Text Available Analysis of the index gases of coal for the prevention of spontaneous combustion is of great importance for the enhancement of coal mine safety. In this work, Fourier Transform Infrared Spectrometer (FTIRS is presented to be used to analyze the index gases of coal in real time to monitor spontaneous combustion conditions. Both the instrument parameters and the analysis method are introduced at first by combining characteristics of the absorption spectra of the target analyte with the analysis requirements. Next, more than ten sets of the gas mixture containing ten components (CH4, C2H6, C3H8, iso-C4H10, n-C4H10, C2H4, C3H6, C2H2, CO, and CO2 are included and analyzed with a Spectrum Two FTIRS made by Perkin Elmer. The testing results show that the detection limit of most analytes is less than 2×10-6. All the detection limits meet the monitoring requirements of coal spontaneous combustion in China, which means that FTIRS may be an ideal instrument and the analysis method used in this paper is sufficient for spontaneous combustion gas monitoring on-line and even in situ, since FTIRS has many advantages such as fast analysis, being maintenance-free, and good safety.

  19. Internal combustion engine and method for control (United States)

    Brennan, Daniel G


    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  20. A note on self heating and spontaneous combustion of stored sunflower seed cake and cotton seeds

    International Nuclear Information System (INIS)

    El-Nazir, S. M. A.; Babikir, I. H.; Shakak, M. A. S.; Sulieman, I. A.; Medani, R. M.


    Sunflower seed cake and cotton seed warehouses combusted spontaneously and burnt in August and November 2009, respectively, in Khartoum North industrial area. The objective of this study was to determine some of the reasons for self-heating and spontaneous combustion. Representative sample from the two warehouses were collected. Aspergillus niger, A. flavus, paecilomyces sp., Rhizopus oryzae, Absidia sp. were isolated at 37°C. Bacillus thuringiensis was isolated at 37°C and B. pantothenticus, B. circulans, B. licheniformis, B. sphaericus, B. badius, Escherichia coli and klebsiella sp. were isolated at 60°C. A decrease in soil, fiber and phosphorus and increase in free fatty acids and protein contents were detected.(Author)

  1. Inhibition Effect of Phosphorus Flame Retardants on the Fire Disasters Induced by Spontaneous Combustion of Coal


    Tang, Yibo


    Coal spontaneous combustion (CSC) generally induces fire disasters in underground mines, thus causing serious casualties, environmental pollution, and property loss around the world. By using six P-containing additives to process three typical coal samples, this study investigated the variations of the self-ignition characteristics of the coal samples before and after treatment. The analysis was performed by combining thermogravimetric analysis/differential scanning calorimetry (TG/DSC) Fouri...


    Energy Technology Data Exchange (ETDEWEB)

    Joseph M. Okoh; Joseph N.D. Dodoo


    Spontaneous combustion has always been a problem in coal utilization especially in the storage and transportation of coal. In the United States, approximately 11% of underground coal mine fires are attributed to spontaneous coal combustion. The incidence of such fires is expected to increase with increased consumption of lower rank coals. The cause is usually suspected to be the reabsorption of moisture and oxidation. To understand the mechanisms of spontaneous combustion this study was conducted to (1) define the initial and final products during the low temperature (10 to 60 C) oxidation of coal at different partial pressures of O{sub 2}, (2) determine the rate of oxidation, and (3) measure the reaction enthalpy. The reaction rate (R) and propensity towards spontaneous combustion were evaluated in terms of the initial rate method for the mass gained due to adsorbed O{sub 2}. Equipment that was used consisted of a FT-IR (Fourier Transform-Infrared Spectrometer, Perkin Elmer), an accelerated surface area porosimeter (ASAP, Micromeritics model 2010), thermogravimetric analyzer (TGA, Cahn Microbalance TG 121) and a differential scanning calorimeter (DSC, Q1000, thermal analysis instruments). Their combination yielded data that established a relation between adsorption of oxygen and reaction enthalpy. The head space/ gas chromatograph/ mass spectrometer system (HS/GC/MS) was used to identify volatiles evolved during oxidation. The coal samples used were Beulah lignite and Wyodak (sub-bituminous). Oxygen (O{sub 2}) absorption rates ranged from 0.202 mg O{sub 2}/mg coal hr for coal sample No.20 (Beulah pyrolyzed at 300 C) to 6.05 mg O{sub 2}/mg coal hr for coal sample No.8 (wyodak aged and pyrolyzed at 300 C). Aging of coal followed by pyrolysis was observed to contribute to higher reaction rates. Reaction enthalpies ranged from 0.42 to 1580 kcal/gm/mol O{sub 2}.

  3. Engine combustion control via fuel reactivity stratification (United States)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L


    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  4. Applying Rock Engineering Systems (RES approach to Evaluate and Classify the Coal Spontaneous Combustion Potential in Eastern Alborz Coal Mines

    Directory of Open Access Journals (Sweden)

    Amir Saffari


    Full Text Available Subject analysis of the potential of spontaneous combustion in coal layers with analytical and numerical methods has been always considered as a difficult task because of the complexity of the coal behavior and the number of factors influencing it. Empirical methods, due to accounting for certain and specific factors, have not accuracy and efficiency for all positions. The Rock Engineering Systems (RES approach as a systematic method for analyzing and classifying is proposed in engineering projects. The present study is concerned with employing the RES approach to categorize coal spontaneous combustion in coal regions. Using this approach, the interaction of parameters affecting each other in an equal scale on the coal spontaneous combustion was evaluated. The Intrinsic, geological and mining characteristics of coal seams were studied in order to identifying important parameters. Then, the main stages of implementation of the RES method i.e. interaction matrix formation, coding matrix and forming a list category were performed. Later, an index of Coal Spontaneous Combustion Potential (CSCPi was determined to format the mathematical equation. Then, the obtained data related to the intrinsic, geological and mining, and special index were calculated for each layer in the case study (Pashkalat coal region, Iran. So, the study offers a perfect and comprehensive classification of the layers. Finally, by using the event of spontaneous combustion occurred in Pashkalat coal region, an initial validation for this systematic approach in the study area was conducted, which suggested relatively good concordance in Pashkalat coal region.

  5. Combustion control and sensors: a review

    International Nuclear Information System (INIS)

    Docquier, N.; Candel, S.


    There is an increased interest in the application of control to combustion. The objective is to optimize combustor operation, monitor the process and alleviate instabilities and their severe consequences. One wishes to improve the system performance, for example by reducing the levels of pollutant emissions or by smoothing the pattern factor at the combustor exhaust. In other cases, the aim is to extend the stability domain by reducing the level of oscillation induced by coupling between resonance modes and combustion. As combustion systems have to meet increasingly more demanding air pollution standards, their design and operation becomes more complex. The trend towards reduced NO x levels has led to new developments in different fields. Automotive engines and gas turbine combustors are considered in this article. In the first case, complex exhaust aftertreatment is being applied and dedicated engine control systems are required to ensure and maintain high pollutant conversion efficiency. For gas turbines, premixed combustors, which operate at lower local temperatures than conventional systems have been designed. In both cases, monitoring and control of the operating point of the process have to be achieved with great precision to obtain the full benefits of the NO x reduction scheme. For premixed combustors operating near the lean stability limit, the flame is more susceptible to blowout, oscillation or flashback. Research is now carried out to reduce these dynamical problems with passive and active control methods. In addition to a broad range of fundamental problems raised by Active Combustion Control (ACC) and Operating Point Control (OPC), there are important technological issues. This paper contains a review of some facets of combustion control and focuses on the sensors that take or could take part to combustion control solutions. The current status of ACC and OPC is presented together with the associated control concepts. The state of the art in sensors is

  6. Inhibition Effect of Phosphorus Flame Retardants on the Fire Disasters Induced by Spontaneous Combustion of Coal

    Directory of Open Access Journals (Sweden)

    Yibo Tang


    Full Text Available Coal spontaneous combustion (CSC generally induces fire disasters in underground mines, thus causing serious casualties, environmental pollution, and property loss around the world. By using six P-containing additives to process three typical coal samples, this study investigated the variations of the self-ignition characteristics of the coal samples before and after treatment. The analysis was performed by combining thermogravimetric analysis/differential scanning calorimetry (TG/DSC Fourier transform infrared spectrometer (FTIR and low temperature oxidation. Experimental results showed that P-containing inhibitors could effectively restrain the heat emitted in the combustion of coal samples and therefore the ignition temperature of the coal samples was delayed at varying degrees. The combustion rate of the coal samples was reduced as well. At the temperatures ranging from 50°C to 150°C, the activation energy of the coal samples after the treatment was found to increase, which indicated that the coal samples were more difficult to be oxidized. After being treated with phosphorus flame retardants (PFRs, the content of several active groups represented by the C-O structure in the three coal samples was proved to be obviously changed. This suggested that PFRs could significantly inhibit the content of CO generated by the low temperature oxidation of coal, and the flame-retardant efficiency grew with the increasing temperature. At 200°C, the maximal inhibition efficiency reached approximately 85%.

  7. Control issues in oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Snarheim, Dagfinn


    Combustion of fossil fuels is the major energy source in todays society. While the use of fossil fuels is a necessity for our society to function, there has been an increasing concern on the emissions of CO{sub 2} resulting from human activities. Emissions of CO{sub 2} are considered to be the main cause for the global warming and climate changes we have experienced in recent years. To fight the climate changes, the emissions of CO{sub 2} must be reduced in a timely fashion. Strategies to achieve this include switching to less carbon intensive fuels, renewable energy sources, nuclear energy and combustion with CO{sub 2} capture. The use of oxy-fuel combustion is among the alternative post- and pre combustion capture concepts, a strategy to achieve power production from fossil fuels with CO{sub 2} capture. In an oxy-fuel process, the fuel is burned in a mixture of oxygen and CO{sub 2} (or steam), leaving the exhaust consisting mainly of CO{sub 2} and steam. The steam can be removed by use of a condenser, leaving (almost) pure CO{sub 2} ready to be captured. The downside to CO{sub 2} capture is that it is expensive, both in capital cost of extra equipment, and in operation as it costs energy to capture the CO{sub 2}. Thus it is important to maximize the efficiency in such plants. One attractive concept to achieve CO{sub 2} capture by use of oxy-fuel, is a semi-closed oxy-fuel gas turbine cycle. The dynamics of such a plant are highly integrated, involving energy and mass recycle, and optimizing efficiency might lead to operational (control) challenges. In these thesis we investigate how such a power cycle should be controlled. By looking at control at such an early stage in the design phase, it is possible to find control solutions otherwise not feasible, that leads to better overall performance. Optimization is used on a nonlinear model based on first principles, to compare different control structures. Then, closed loop simulations using MPC, are used to validate


    Energy Technology Data Exchange (ETDEWEB)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen


    Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this

  9. Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jun; Xue, Sheng [CSIRO Earth Science and Resource Engineering, Kenmore (Australia); Cheng, Weimin; Wang, Gang [Shandong University of Science and Technology, Qingdao (China)


    Spontaneous combustion of coal (sponcom) is a major hazard in underground coal mining operations. If not detected early and managed properly, it can seriously affect mine safety and productivity. Gaseous products of sponcom, such as carbon monoxide, ethylene and hydrogen, are commonly used in coal mines as indicators to reflect the state of the sponcom. Studies have shown that ethylene starts to occur when sponcom reaches a characteristic temperature. However, due to dilution of ventilation air and detection limits of the instruments used for gas analysis at coal mines, ethylene cannot be detected until the sponcom has developed past its early stage, missing an optimum opportunity for mine operators to control the hazard. To address the issue, an ethylene-enriching system, based on its physical adsorption and desorption properties, has been developed to increase detection sensitivity of the ethylene concentration in mine air by about 10 times. This system has successfully been applied in a number of underground coal mines in China to detect sponcom at its early stage and enable mine operators to take effective control measures. This paper describes the ethylene enriching system and its application. (author)


    Energy Technology Data Exchange (ETDEWEB)

    Lawrence E. Bool; Jack C. Chen; David R. Thompson


    Increased environmental regulations will require utility boilers to reduce NO{sub x} emissions to less than 0.15lb/MMBtu in the near term. Conventional technologies such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) are unable to achieve these lowered emission levels without substantially higher costs and major operating problems. Oxygen enhanced combustion is a novel technology that allows utilities to meet the NO{sub x} emission requirements without the operational problems that occur with SCR and SNCR. Furthermore, oxygen enhanced combustion can achieve these NO{sub x} limits at costs lower than conventional technologies. The objective of this program is to demonstrate the use of oxygen enhanced combustion as a technical and economical method of meeting the EPA State Implementation Plan for NO{sub x} reduction to less than 0.15lb/MMBtu for a wide range of boilers and coal. The oxygen enhanced coal combustion program (Task 1) focused this quarter on the specific objective of exploration of the impact of oxygen enrichment on NO{sub x} formation utilizing small-scale combustors for parametric testing. Research efforts toward understanding any limitations to the applicability of the technology to different burners and fuels such as different types of coal are underway. The objective of the oxygen transport membrane (OTM) materials development program (Task 2.1) is to ascertain a suitable material composition that can be fabricated into dense tubes capable of producing the target oxygen flux under the operating conditions. This requires that the material have sufficient oxygen permeation resulting from high oxygen ion conductivity, high electronic conductivity and high oxygen surface exchange rate. The OTM element development program (Task 2.2) objective is to develop, fabricate and characterize OTM elements for laboratory and pilot reactors utilizing quality control parameters to ensure reproducibility and superior performance

  11. Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based Combustion Control

    NARCIS (Netherlands)

    Leskens, M.


    The combustion of municipal solid waste (MSW) is used for its inertisation, reduction of its volume and the conversion of its energy content into heat and/or electricity. Operation and control of modern large scale MSW combustion (MSWC) plants is determined by economic and environmental objectives

  12. Full and Partial Thickness Burns from Spontaneous Combustion of E-Cigarette Lithium-Ion Batteries with Review of Literature. (United States)

    Treitl, Daniela; Solomon, Rachele; Davare, Dafney L; Sanchez, Rafael; Kiffin, Chauniqua


    In recent years, the use of electronic cigarettes (e-cigarettes) has increased worldwide. Most electronic nicotine delivery systems use rechargeable lithium-ion batteries, which are relatively safe, but in rare cases these batteries can spontaneously combust, leading to serious full and partial thickness burn injuries. Explosions from lithium-ion batteries can cause a flash fire and accelerant-related burn injuries. A retrospective chart review was conducted of 3 patients with lithium-ion battery burns seen at our Level I community-based trauma center. Clinical presentation, management, and outcome are presented. All 3 patients sustained burn injuries (total body surface area range 5-13%) from the spontaneous combustion of lithium-ion batteries used for e-cigarettes. All patients were treated with debridement and local wound care. All fully recovered without sequelae. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians can expect to treat burn cases due to spontaneous lithium-ion battery combustion as e-cigarette use continues to increase. The cases presented here are intended to bring attention to lithium-ion battery-related burns, prepare physicians for the clinical presentation of this burn mechanism, and facilitate patient education to minimize burn risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Engine combustion control at low loads via fuel reactivity stratification (United States)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L


    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  14. Durable Feedback Control System for Small Scale Wood Chip Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Korpela, T.; Bjoerkqvist, T.; Lautala, P. (Tampere Univ. of Technology, Dept. of Automation Science and Engineering, FIN-33101 Tampere (Finland)). E-mail:


    The purpose is to control wood chip combustion in an inexpensive and durable way. A control concept in order to reduce the effect of fluctuation of the fuel feed is introduced. The concept is based on temperature and lambda measurements. The main task of the control system is to set the fuel feed at a desired level after a change in the combustion conditions. Additionally, temporary fluctuations of the degree of filling of feeding screw are compensated. Test results of a 80 kW and a 200 kW commercial wood chip fired systems are introduced. The process experiments indicate that the high level control system is able to adapt to varying combustion conditions and to maintain low emission levels. Furthermore, passive means that can be exploited to stabilize the combustion are discussed. As the control concept is not dependent on the design of the combustion system, the concept is adaptable to present systems

  15. Engine combustion control at low loads via fuel reactivity stratification

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage


    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  16. Advanced Combustion and Emission Control Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)



    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  17. Combustion

    CERN Document Server

    Glassman, Irvin


    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  18. Investigation of Active Control of Combustion Instabilities in Liquid Propellant Rocket Motors

    National Research Council Canada - National Science Library

    Zinn, B


    This study investigated the feasibility of active control of combustion instabilities in liquid fueled combustors using a liquid fuel injector actuator and adaptive control of combustion instabilities...

  19. Technology Awareness Workshop on Active Combustion Control (ACC) in Propulsion Systems: JANNAF Combustion Subcommittee Workshop (United States)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)


    A JANNAF Combustion Subcommittee Technology Awareness Seminar on Active Combustion Control (ACC) in Propulsion Systems' was held 12 November 1997 at the NASA Lewis Research Center (LeRC), Cleveland, Ohio. The objectives of the seminar were: 1) Define the need and potential of ACC to meet future requirements for gas turbines and ramjets; 2) Explain general principles of ACC and discuss recent successes to suppress combustion instabilities, increase combustion efficiency, reduce emission, and extend flammability limits; 3) Identify R&D barriers/needs for practical implementation of ACC; 4) Explore potential for improving coordination of future R&D activities funded by various government agencies. Over 40 individuals representing senior management from over 20 industry and government organizations participated. This document summarizes the presentations and findings of this seminar.

  20. Combustion engine. [for air pollution control (United States)

    Houseman, J. (Inventor)


    An arrangement for an internal combustion engine is provided in which one or more of the cylinders of the engine are used for generating hydrogen rich gases from hydrocarbon fuels, which gases are then mixed with air and injected into the remaining cylinders to be used as fuel. When heavy load conditions are encountered, hydrocarbon fuel may be mixed with the hydrogen rich gases and air and the mixture is then injected into the remaining cylinders as fuel.

  1. A statistical combustion phase control approach of SI engines (United States)

    Gao, Jinwu; Wu, Yuhu; Shen, Tielong


    In order to maximize the performance of internal combustion engine, combustion phase is usually controlled to track its desired reference. However, suffering from the cyclic variability of combustion, it is difficulty but meaningful to control mean of combustion phase and constrain its variance. As a combustion phase indicator, the location of peak pressure (LPP) is utilized for real-time combustion phase control in this research. The purpose of the proposed method is to ensure the mean of LPP statistically tracks its reference and constrains the standard deviation of LPP distribution. To achieve this, LPP is first calculated based on the cylinder pressure sensor, and its characteristics are analyzed at the steady-state operating condition, then the distribution of LPP is examined online using hypothesis test criterion. On the basis of the presented statistical algorithm, current mean of LPP is applied in the feedback channel for designing spark advance adjustment law, and the stability of closed-loop system is theoretically ensured according to a steady statistical model. Finally, the proposed strategy is verified on a spark ignition gasoline engine.

  2. The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Pone, J. Denis N. [Energy and Geo-Environmental Engineering, The Pennsylvania State University, 228 Housler Building, University Park, PA 16802 (United States); Hein, Kim A.A. [School of Geosciences, University of the Witwatersrand Johannesburg, P/Bag 3, 2050, WITS (South Africa); Stracher, Glenn B. [Division of Science and Mathematics, East Georgia College, Swainsboro, Georgia 30401 (United States); Annegarn, Harold J. [Department of Geography and Environmental Management, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 (South Africa); Finkleman, Robert B. [University of Texas at Dallas, Department of Geosciences, Richardson, TX 75083-0688 (United States); Blake, Donald R. [Department of Chemistry, 570 Rowland Hall, University of California, Irvine, CA 92697-2025 (United States); McCormack, John K. [Electron Microbeam Facility, Department of Geological Sciences, MS 172, Mackay School of Mines, University of Nevada, Reno, Navada 8955-0047 (United States); Schroeder, Paul [Department of Geology, University of Georgia, 210 Field Street, Athens, GA 30602-2501 (United States)


    Spontaneous combustion of coal seams in the Witbank and Sasolburg coalfields, South Africa, was studied in order to determine if toxic chemical elements and compounds are being mobilised into the environment. Samples of the minerals forming on the surface of coal seams, and gases escaping from vents, were analysed to verify the presence of these elements and compounds. Gas temperature measurements at coal-fire vents range from 34 C to 630 C. The coal-fire gas minerals (CFGM) identified included sulphur compounds and salammoniac. X-ray diffraction (XRD) studies of CFGM by-products confirmed the presence of mascagnite ((NH{sub 4}){sub 2}SO{sub 4}), illite ((Al,Si){sub 4}O{sub 10}[(OH){sub 2},H{sub 2}O]) letovicite ((NH{sub 4}){sub 3}H(SO{sub 4}){sub 2}), phlogopite (KMg{sub 3}(AlSi{sub 3})O{sub 10}(F,OH){sub 2}), titanium dioxide (TiO{sub 2}), barite (BaSO{sub 4}), iron sulphate (FeSO{sub 4}), gypsum (CaSO{sub 4}.2H{sub 2}O) and silicate. An unknown and unclassified sulphur-nitrogen-chlorine CFGM was also identified. The minerals are interpreted to have formed by condensation or sublimation; several may be alteration products. Other heavy elements found in the CFGM's are mercury, arsenic, lead, zinc, and copper. Arsenic and mercury were the major elements of potential environmental significance found accumulating around coal-fire vents. Relatively high concentrations of toluene, benzene and xylene were found in the gas collected at both Witbank and Sasolburg coalfields. Benzene, toluene and xylenes are known to possess carcinogenic proprieties. Thirty-two aliphatic compounds were detected, as well as halogenated compounds including bromomethane, iodomethane and trichloromethane in low concentrations, and dichloromethane and chloromethane in high concentrations. The highest concentrations of halogenated compounds were measured for gas samples from the Witbank coalfield. High concentrations of carbon monoxide, carbon dioxide, and methane were also detected. The

  3. 3rd Active Flow and Combustion Control Conference

    CERN Document Server


    The book reports on the latest theoretical and experimental advances in the  field of active flow and combustion control. It covers new developments in actuator technology and sensing, in robust and optimal open- and closed-loop control, as well as in model reduction for control. It collects contributions presented during the third edition of the Active Flow and Combustion Control conference, held in September 10-12, 2014 at the Technische Universität Berlin (Germany). This conference, as well as the research presented in the book, have been supported by the collaborative research center SFB 1029 -Substantial efficiency increase in gas turbines through direct use of coupled unsteady combustion and flow dynamics, funded by the DFG (German Research Foundation).

  4. Fuel accountability and control at Combustion Engineering, Inc

    International Nuclear Information System (INIS)

    Kersteen, G.C.


    Combustion Engineering, Inc. has recently developed and installed an automated data collection, data processing system for the accounting and control of special nuclear material. The system uses a variety of data collection techniques and some relatively new data processing ideas. The next few pages describe the Fuel Accountability and Control System

  5. Biomass Combustion Control and Stabilization Using Low-Cost Sensors

    Directory of Open Access Journals (Sweden)

    Ján Piteľ


    Full Text Available The paper describes methods for biomass combustion process control and burning stabilization based on low-cost sensing of carbon monoxide emissions and oxygen concentration in the flue gas. The designed control system was tested on medium-scale biomass-fired boilers and some results are evaluated and presented in the paper.

  6. Oxy-fuel combustion with integrated pollution control (United States)

    Patrick, Brian R [Chicago, IL; Ochs, Thomas Lilburn [Albany, OR; Summers, Cathy Ann [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul Chandler [Independence, OR


    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  7. The research and implementation of coalfield spontaneous combustion of carbon emission WebGIS based on Silverlight and ArcGIS server

    International Nuclear Information System (INIS)

    Zhu, Z; Bi, J; Wang, X; Zhu, W


    As an important sub-topic of the natural process of carbon emission data public information platform construction, coalfield spontaneous combustion of carbon emission WebGIS system has become an important study object. In connection with data features of coalfield spontaneous combustion carbon emissions (i.e. a wide range of data, which is rich and complex) and the geospatial characteristics, data is divided into attribute data and spatial data. Based on full analysis of the data, completed the detailed design of the Oracle database and stored on the Oracle database. Through Silverlight rich client technology and the expansion of WCF services, achieved the attribute data of web dynamic query, retrieval, statistical, analysis and other functions. For spatial data, we take advantage of ArcGIS Server and Silverlight-based API to invoke GIS server background published map services, GP services, Image services and other services, implemented coalfield spontaneous combustion of remote sensing image data and web map data display, data analysis, thematic map production. The study found that the Silverlight technology, based on rich client and object-oriented framework for WCF service, can efficiently constructed a WebGIS system. And then, combined with ArcGIS Silverlight API to achieve interactive query attribute data and spatial data of coalfield spontaneous emmission, can greatly improve the performance of WebGIS system. At the same time, it provided a strong guarantee for the construction of public information on China's carbon emission data

  8. Electrically Controllable Spontaneous Magnetism in Nanoscale Mixed Phase Multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    He, Q.; Chu, Y. H.; Heron, J. T.; Yang, S. Y.; Wang, C. H.; Kuo, C. Y.; Lin, H. J.; Yu, P.; Liang, C. W.; Zeches, R. J.; Chen, C. T.; Arenholz, E.; Scholl, A.; Ramesh, R.


    The emergence of enhanced spontaneous magnetic moments in self-assembled, epitaxial nanostructures of tetragonal (T-phase) and rhombohedral phases (R-phase) of the multiferroic BiFeO{sub 3} system is demonstrated. X-ray magnetic circular dichroism based photoemission electron microscopy (PEEM) was applied to investigate the local nature of this magnetism. We find that the spontaneous magnetization of the R-phase is significantly enhanced above the canted antiferromagnetic moment in the bulk phase, as a consequence of a piezomagnetic coupling to the adjacent T-phase and the epitaxial constraint. Reversible electric field control and manipulation of this magnetic moment at room temperature is shown using a combination of piezoresponse force microscopy and PEEM studies.

  9. 77 FR 441 - Measurement and Control of Combustible Gas Generation and Dispersal (United States)


    ... measurement and control of combustible gas generation and dispersal within a power reactor system. The NRC is...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Parts 50, 52, and 100 Measurement and Control of Combustible Gas... measurement and control of combustible gas generation and dispersal within a reactor system. The Commission is...

  10. Combustion distribution control using the extremum seeking algorithm

    International Nuclear Information System (INIS)

    Marjanovic, A; Djurovic, Z; Kvascev, G; Papic, V; Krstic, M


    Quality regulation of the combustion process inside the furnace is the basis of high demands for increasing robustness, safety and efficiency of thermal power plants. The paper considers the possibility of spatial temperature distribution control inside the boiler, based on the correction of distribution of coal over the mills. Such control system ensures the maintenance of the flame focus away from the walls of the boiler, and thus preserves the equipment and reduces the possibility of ash slugging. At the same time, uniform heat dissipation over mills enhances the energy efficiency of the boiler, while reducing the pollution of the system. A constrained multivariable extremum seeking algorithm is proposed as a tool for combustion process optimization with the main objective of centralizing the flame in the furnace. Simulations are conducted on a model corresponding to the 350MW boiler of the Nikola Tesla Power Plant, in Obrenovac, Serbia

  11. Combustion distribution control using the extremum seeking algorithm (United States)

    Marjanovic, A.; Krstic, M.; Djurovic, Z.; Kvascev, G.; Papic, V.


    Quality regulation of the combustion process inside the furnace is the basis of high demands for increasing robustness, safety and efficiency of thermal power plants. The paper considers the possibility of spatial temperature distribution control inside the boiler, based on the correction of distribution of coal over the mills. Such control system ensures the maintenance of the flame focus away from the walls of the boiler, and thus preserves the equipment and reduces the possibility of ash slugging. At the same time, uniform heat dissipation over mills enhances the energy efficiency of the boiler, while reducing the pollution of the system. A constrained multivariable extremum seeking algorithm is proposed as a tool for combustion process optimization with the main objective of centralizing the flame in the furnace. Simulations are conducted on a model corresponding to the 350MW boiler of the Nikola Tesla Power Plant, in Obrenovac, Serbia.

  12. Coherent control of spontaneous emission near a photonic band edge

    International Nuclear Information System (INIS)

    Woldeyohannes, Mesfin; John, Sajeev


    We demonstrate the coherent control of spontaneous emission for a three-level atom located within a photonic band gap (PBG) material, with one resonant frequency near the edge of the PBG. Spontaneous emission from the three-level atom can be totally suppressed or strongly enhanced depending on the relative phase between the steady-state control laser coupling the two upper levels and the pump laser pulse used to create an excited state of the atom in the form of a coherent superposition of the two upper levels. Unlike the free-space case, the steady-state inversion of the atomic system is strongly dependent on the externally prescribed initial conditions. This non-zero steady-state population is achieved by virtue of the localization of light in the vicinity of the emitting atom. It is robust to decoherence effects provided that the Rabi frequency of the control laser field exceeds the rate of dephasing interactions. As a result, such a system may be relevant for a single-atom, phase-sensitive optical memory device on the atomic scale. The protected electric dipole within the PBG provides a basis for a qubit to encode information for quantum computations. A detailed literature survey on the nature, fabrication and applications of PBG materials is presented to provide context for this research. (phd tutorial)

  13. Endocrine disruptors and spontaneous premature labor: a case control study

    Directory of Open Access Journals (Sweden)

    Swaby Cheryl


    Full Text Available Abstract Background Premature labor is a poorly understood condition. Estrogen is thought to play a key role and therefore the labor process may be affected by endocrine disruptors. We sought to determine whether or not an environmental toxicant, DDE, or dietary derived endocrine disruptors, daidzein and genistein, are associated with spontaneous preterm labor. Methods Cases were defined as primiparous patients having a preterm delivery at or before 35 weeks following the spontaneous onset of labor. Controls were defined as primiparous women who delivered on the same day as the cases but at term gestation. Over approximately 1 year, 26 cases and 52 controls were recruited. Subjects agreed to have blood tests on day one postpartum for DDE and for the phytoestrogens genistein and daidzein. Results The mean concentration of DDE was similar in the case and control groups: 4.29 vs 4.32 ng/g lipid p = .85. In the case group, 13/26 had detectable levels of daidzein (range 0.20 – 1.56 ng/ml compared to 25/52 controls (range 0.21 – 3.26 ng/ml. The mean concentration of daidzein was similar in cases compared to controls: 0.30 vs .34 ng/ml p = 0.91. Of the case group,14/26 had detectable levels of genistein (range 0.20 – 2.19 ng/ml compared to 32/52 controls (range 0.21 – 2.55 ng/ml. The mean concentration of genistein was similar in cases compared to controls: 0.39 vs 0.31 ng/ml, p = 0.61. Conclusion The serum levels of DDE in this population were found to be low. There appears to be no relationship between serum concentrations of DDE, daidzein, and genistein and spontaneous preterm labor in our population. The inability to identify an effect may be related to the comparatively low concentrations of DDE in our population and the rapid and variable reduction of phytoestrogens from women in labor.

  14. Controlling spontaneous emission of light by photonic crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter


    Photonic bandgap crystals were proposed almost two decades ago as a unique tool for controlling propagation and emission of light. Since then the research field of photonic crystals has exploded and many beautiful demonstrations of the use of photonic crystals and fibers for molding light...... propagation have appeared that hold great promises for integrated optics. These major achievements solidly demonstrate the ability to control propagation of light. In contrast, an experimental demonstration of the use of photonic crystals for timing the emission of light has so far lacked. In a recent...... publication in Nature, we have demonstrated experimentally that both the direction and time of spontaneous emission can be controlled, thereby confirming the original proposal by Eli Yablonovich that founded the field of photonic crystals. We believe that this work opens new opportunities for solid...

  15. Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity

    Directory of Open Access Journals (Sweden)

    Hu eWang


    Full Text Available This paper presents a review on the combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixture stratification that have been conducted in the authors’ group, including the charge reactivity controlled homogeneous charge compression ignition (HCCI combustion, stratification controlled premixed charge compression ignition (PCCI combustion, and dual-fuel combustion concepts controlled by both fuel reactivity and mixture stratification. The review starts with the charge reactivity controlled HCCI combustion, and the works on HCCI fuelled with both high cetane number fuels, such as DME and n-heptane, and high octane number fuels, such as methanol, natural gas, gasoline and mixtures of gasoline/alcohols, are reviewed and discussed. Since single fuel cannot meet the reactivity requirements under different loads to control the combustion process, the studies related to concentration stratification and dual-fuel charge reactivity controlled HCCI combustion are then presented, which have been shown to have the potential to achieve effective combustion control. The efforts of using both mixture and thermal stratifications to achieve the auto-ignition and combustion control are also discussed. Thereafter, both charge reactivity and mixture stratification are then applied to control the combustion process. The potential and capability of thermal-atmosphere controlled compound combustion mode and dual-fuel reactivity controlled compression ignition (RCCI/highly premixed charge combustion (HPCC mode to achieve clean and high efficiency combustion are then presented and discussed. Based on these results and discussions, combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixtures stratification in the whole operating range is proposed.

  16. Controllable Solid Propulsion Combustion and Acoustic Knowledge Base Improvements (United States)

    McCauley, Rachel; Fischbach, Sean; Fredrick, Robert


    Controllable solid propulsion systems have distinctive combustion and acoustic environments that require enhanced testing and analysis techniques to progress this new technology from development to production. In a hot gas valve actuating system, the movement of the pintle through the hot gas exhibits complex acoustic disturbances and flow characteristics that can amplify induced pressure loads that can damage or detonate the rocket motor. The geometry of a controllable solid propulsion gas chamber can set up unique unsteady flow which can feed acoustic oscillations patterns that require characterization. Research in this area aids in the understanding of how best to design, test, and analyze future controllable solid rocket motors using the lessons learned from past government programs as well as university research and testing. This survey paper will give the reader a better understanding of the potentially amplifying affects propagated by a controllable solid rocket motor system and the knowledge of the tools current available to address these acoustic disturbances in a preliminary design. Finally the paper will supply lessons learned from past experiences which will allow the reader to come away with understanding of what steps need to be taken when developing a controllable solid rocket propulsion system. The focus of this survey will be on testing and analysis work published by solid rocket programs and from combustion and acoustic books, conference papers, journal articles, and additionally from subject matter experts dealing currently with controllable solid rocket acoustic analysis.

  17. Controlling spontaneous emission dynamics in semiconductor micro cavities (United States)

    Gayral, B.

    Spontaneous emission of light can be controlled, cavity quantum electrodynamics tells us, and many experiments in atomic physics demonstrated this fact. In particular, coupling an emitter to a resonant photon mode of a cavity can enhance its spontaneous emission rate: this is the so-called Purcell effect. Though appealing it might seem to implement these concepts for the benefit of light-emitting semiconductor devices, great care has to be taken as to which emitter/cavity system should be used. Semiconductor quantum boxes prove to be good candidates for witnessing the Purcell effect. Also, low volume cavities having a high optical quality in other words a long photon storage time are required. State-of-the-art fabrication techniques of such cavities are presented and discussed.We demonstrate spontaneous emission rate enhancement for InAs/GaAs quantum boxes in time-resolved and continuous-wave photoluminescence experiments. This is done for two kinds of cavities, namely GaAs/AlAs micropillars (global enhancement by a factor of 5), and GaAs microdisks (global enhancement by a factor of 20). Prospects for lasers, light-emitting diodes and single photon sources based on the Purcell effect are discussed. L'émission spontanée de lumière peut être contrôlée, ainsi que nous l'enseigne l'électrodynamique quantique en cavité, ce fait a été démontré expérimentalement en physique atomique. En particulier, coupler un émetteur à un mode photonique résonnant d'une cavité peut exalter son taux d'émission spontanée : c'est l'effet Purcell. Bien qu'il semble très prometteur de mettre en pratique ces concepts pour améliorer les dispositifs semi-conducteurs émetteurs de lumière, le choix du système émetteur/cavité est crucial. Nous montrons que les boîtes quantiques semi-conductrices sont des bons candidats pour observer l'effet Purcell. Il faut par ailleurs des cavités de faible volume ayant une grande qualité optique en d'autres mots un long temps de

  18. Automated Boiler Combustion Controls for Emission Reduction and Efficiency Improvement

    Energy Technology Data Exchange (ETDEWEB)

    None, None


    In the late 1980s, then President Bush visited Krakow, Poland. The terrible air quality theremotivated him to initiate a USAID-funded program, managed by DOE, entitled "Krakow Clean Fossil Fuels and Energy Efficiency Program." The primary objective of this program was to encourage the formation of commercial ventures between U.S. and Polish firms to provide equipment and/or services to reduce pollution from low-emission sources in Krakow, Poland. This program led to the award of a number of cooperative agreements, including one to Control Techtronics International. The technical objective of CTI's cooperative agreement is to apply combustion controls to existing boiler plants in Krakow and transfer knowledge and technology through a joint U.S. and Polish commercial venture. CTI installed automatic combustion controls on five coal boilers for the district heating system in Krakow. Three of these were for domestic hot-water boilers, and two were for steam for industrial boilers. The following results have occurred due to the addition of CTI's combustion controls on these five existing boilers: ! 25% energy savings ! 85% reduction in particulate emissions The joint venture company CTI-Polska was then established. Eleven additional technical and costing proposals were initiated to upgrade other coal boilers in Krakow. To date, no co-financing has been made available on the Polish side. CTI-Polska continues in operation, serving customers in Russia and Ukraine. Should the market in Poland materialize, the joint venture company is established there to provide equipment and service.

  19. High-frequency combustion instability control through acoustic modulation at the inlet boundary for liquid rocket engine applications (United States)

    Bennewitz, John William

    This research investigation encompasses experimental tests demonstrating the control of a high-frequency combustion instability by acoustically modulating the propellant flow. A model rocket combustor burned gaseous oxygen and methane using a single-element, pentad-style injector. Flow conditions were established that spontaneously excited a 2430 Hz first longitudinal combustion oscillation at an amplitude up to p'/pc ≈ 6%. An acoustic speaker was placed at the base of the oxidizer supply to modulate the flow and alter the oscillatory behavior of the combustor. Two speaker modulation approaches were investigated: (1) Bands of white noise and (2) Pure sinusoidal tones. The first approach adjusted 500 Hz bands of white noise ranging from 0-500 Hz to 2000-2500 Hz, while the second implemented single-frequency signals with arbitrary phase swept from 500-2500 Hz. The results showed that above a modulation signal amplitude threshold, both approaches suppressed 95+% of the spontaneous combustion oscillation. By increasing the applied signal amplitude, a wider frequency range of instability suppression became present for these two acoustic modulation approaches. Complimentary to these experiments, a linear modal analysis was undertaken to investigate the effects of acoustic modulation at the inlet boundary on the longitudinal instability modes of a dump combustor. The modal analysis employed acoustically consistent matching conditions with a specific impedance boundary condition at the inlet to represent the acoustic modulation. From the modal analysis, a naturally unstable first longitudinal mode was predicted in the absence of acoustic modulation, consistent with the spontaneously excited 2430 Hz instability observed experimentally. Subsequently, a detailed investigation involving variation of the modulation signal from 0-2500 Hz and mean combustor temperature from 1248-1685 K demonstrated the unstable to stable transition of a 2300-2500 Hz first longitudinal mode. The

  20. Polymer degradation rate control of hybrid rocket combustion (United States)

    Stickler, D. B.; Ramohalli, K. N. R.


    Polymer degradation to small fragments is treated as a rate controlling step in hybrid rocket combustion. Both numerical and approximate analytical solutions of the complete energy and polymer chain bond conservation equations for the condensed phase are obtained. Comparison with inert atmosphere data is very good. It is found that the intersect of curves of pyrolysis rate versus interface temperature for hybrid combustors, with the thermal degradation theory, falls at a pyrolysis rate very close to that for which a pressure dependence begins to be observable. Since simple thermal degradation cannot give sufficient depolymerization at higher pyrolysis rates, it is suggested that oxidative catalysis of the process occurs at the surface, giving a first order dependence on reactive species concentration at the wall. Estimates of the ratio of this activation energy and interface temperature are in agreement with best fit procedures for hybrid combustion data. Requisite active species concentrations and flux are shown to be compatible with turbulent transport. Pressure dependence of hybrid rocket fuel regression rate is thus shown to be describable in a consistent manner in terms of reactive species catalysis of polymer degradation.

  1. Annual Change Detection by ASTER TIR Data and an Estimation of the Annual Coal Loss and CO2 Emission from Coal Seams Spontaneous Combustion

    Directory of Open Access Journals (Sweden)

    Xiaomin Du


    Full Text Available Coal fires, including both underground and coal waste pile fires, result in large losses of coal resources and emit considerable amounts of greenhouse gases. To estimate the annual intensity of greenhouse gas emissions and the loss of coal resources, estimating the annual loss from fire-influenced coal seams is a feasible approach. This study assumes that the primary cause of coal volume loss is subsurface coal seam fires. The main calculation process is divided into three modules: (1 Coal fire quantity calculations, which use change detection to determine the areas of the different coal fire stages (increase/growth, maintenance/stability and decrease/shrinkage. During every change detections, the amount of coal influenced by fires for these three stages was calculated by multiplying the coal mining residual rate, combustion efficiency, average thickness and average coal intensity. (2 The life cycle estimate is based on remote sensing long-term coal fires monitoring. The life cycles for the three coal fire stages and the corresponding life cycle proportions were calculated; (3 The diurnal burnt rates for different coal fire stages were calculated using the CO2 emission rates from spontaneous combustion experiments, the coal fire life cycle, life cycle proportions. Then, using the fire-influenced quantity aggregated across the different stages, the diurnal burn rates for the different stages and the time spans between the multi-temporal image pairs used for change detection, we estimated the annual coal loss to be 44.3 × 103 tons. After correction using a CH4 emission factor, the CO2 equivalent emissions resulting from these fires was on the order of 92.7 × 103 tons. We also discovered that the centers of these coal fires migrated from deeper to shallower parts of the coal seams or traveled in the direction of the coal seam strike. This trend also agrees with the cause of the majority coal fires: spontaneous combustion of coalmine goafs.

  2. The Implications of Experimentally Controlled Gravitational Accelerations for Combustion Science (United States)

    Sacksteder, Kurt R.


    An overview of basic combustion problems which have been investigated under the condition of reduced gravity is presented to identify promising research directions. Attention is given to the broad categories of gas-jet diffusion flames, droplet combustions, particle clouds, flame spreading over liquid pools, smoldering, and flame spreading over solid fuels. Fire safety in spacecraft is the primary application that is addressed by the studies of combustion under microgravity. The need for more complete testing of the issues discussed in orbiting spacecraft is identified in the light of limited earth-based testing. Attention is also directed toward the need for advanced diagnostic methods for in-flight and other combustion investigations.

  3. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN


    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  4. Robust Multivariable Feedback Control of Natural Gas-Diesel RCCI Combustion

    NARCIS (Netherlands)

    Indrajuana, A.; Bekdemir, C.; Luo, X.; Willems, F.P.T.


    Advanced combustion concepts such as Reactivity Controlled Compression Ignition (RCCI) demonstrate very high thermal efficiencies combined with ultra low NOx emissions. As RCCI is sensitive for operating conditions, closed-loop control is a crucial enabler for stable and robust combustion. The

  5. Combustible gas concentration control facility and operation method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Ando, Koji; Kinoshita, Shoichiro; Yamanari, Shozo; Moriya, Kimiaki; Karasawa, Hidetoshi


    The present invention provides a hydrogen gas-control facility by using a fuel battery-type combustible gas concentration reducing device as a countermeasure for controlling a hydrogen gas in a reactor container. Namely, a hydrogen electrode adsorb hydrogen by using an ion exchange membrane comprising hydrogen ions as a charge carrier. An air electrode adsorb oxygen in the air. A fuel battery converts recombining energy of hydrogen and oxygen to electric energy. Hydrogen in this case is supplied from an atmosphere in the container. Oxygen in this case is supplied from the air outside of the container. If hydrogen gas should be generated in the reactor, power generation of is performed by the fuel battery by using hydrogen gas, as a fuel, on the side of the hydrogen electrode of the fuel battery and using oxygen, as a fuel, in the air outside of the container on the side of the air electrode. Then, the hydrogen gas is consumed thereby controlling the hydrogen gas concentration in the container. Electric current generated in the fuel battery is used as an emergency power source for the countermeasure for a severe accident. (I.S.)

  6. Controlling the spontaneous emission of a superconducting transmon qubit. (United States)

    Houck, A A; Schreier, J A; Johnson, B R; Chow, J M; Koch, Jens; Gambetta, J M; Schuster, D I; Frunzio, L; Devoret, M H; Girvin, S M; Schoelkopf, R J


    We present a detailed characterization of coherence in seven transmon qubits in a circuit QED architecture. We find that spontaneous emission rates are strongly influenced by far off-resonant modes of the cavity and can be understood within a semiclassical circuit model. A careful analysis of the spontaneous qubit decay into a microwave transmission-line cavity can accurately predict the qubit lifetimes over 2 orders of magnitude in time and more than an octave in frequency. Coherence times T1 and T_{2};{*} of more than a microsecond are reproducibly demonstrated.

  7. Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine

    Directory of Open Access Journals (Sweden)

    Florian Zurbriggen


    Full Text Available This paper investigates the combustion phasing control of natural gas-diesel engines. In this study, the combustion phasing is influenced by manipulating the start and the duration of the diesel injection. Instead of using both degrees of freedom to control the center of combustion only, we propose a method that simultaneously controls the combustion phasing and minimizes the amount of diesel used. Minimizing the amount of diesel while keeping the center of combustion at a constant value is formulated as an optimization problem with an equality constraint. A combination of feedback control and extremum seeking is used to solve this optimization problem online. The necessity to separate the different time scales is discussed and a structure is proposed that facilitates this separation for this specific example. The proposed method is validated by experiments on a test bench.

  8. Placental histology in spontaneous and indicated preterm birth: A case control study

    NARCIS (Netherlands)

    Nijman, Tobias A. J.; van Vliet, Elvira O. G.; Benders, Manon J. N.; Mol, Ben Willem J.; Franx, Arie; Nikkels, Peter G. J.; Oudijk, Martijn A.


    Placental pathology is an important contributor in preterm birth, both spontaneous and indicated. The aim of this study was to describe and compare placental histological features of spontaneous preterm birth versus indicated preterm birth. A case control study was performed at the University

  9. Placental histology in spontaneous and indicated preterm birth : A case control study

    NARCIS (Netherlands)

    Nijman, Tobias A J; van Vliet, Elvira O G; Benders, Manon J N; Mol, Ben Willem J; Franx, Arie; Nikkels, Peter G J; Oudijk, Martijn A


    INTRODUCTION: Placental pathology is an important contributor in preterm birth, both spontaneous and indicated. The aim of this study was to describe and compare placental histological features of spontaneous preterm birth versus indicated preterm birth. METHODS: A case control study was performed

  10. Scanning Emitter Lifetime Imaging Microscopy for Spontaneous Emission Control

    DEFF Research Database (Denmark)

    Frimmer, Martin; Chen, Yuntian; Koenderink, A. Femius


    We report an experimental technique to map and exploit the local density of optical states of arbitrary planar nanophotonic structures. The method relies on positioning a spontaneous emitter attached to a scanning probe deterministically and reversibly with respect to its photonic environment while...

  11. Novel Active Combustion Control Concept for High-Frequency Modulation of Atomized Fuel Flow, Phase I (United States)

    National Aeronautics and Space Administration — This proposal by Jansen's Aircraft Systems Controls, Inc presents an innovative solution for Active Combustion Control. Relative to the state of the art, this...

  12. Control of the low-load region in partially premixed combustion (United States)

    Ingesson, Gabriel; Yin, Lianhao; Johansson, Rolf; Tunestal, Per


    Partially premixed combustion (PPC) is a low temperature, direct-injection combustion concept that has shown to give promising emission levels and efficiencies over a wide operating range. In this concept, high EGR ratios, high octane-number fuels and early injection timings are used to slow down the auto-ignition reactions and to enhance the fuel and are mixing before the start of combustion. A drawback with this concept is the combustion stability in the low-load region where a high octane-number fuel might cause misfire and low combustion efficiency. This paper investigates the problem of low-load PPC controller design for increased engine efficiency. First, low-load PPC data, obtained from a multi-cylinder heavy- duty engine is presented. The data shows that combustion efficiency could be increased by using a pilot injection and that there is a non-linearity in the relation between injection and combustion timing. Furthermore, intake conditions should be set in order to avoid operating points with unfavourable global equivalence ratio and in-cylinder temperature combinations. Model predictive control simulations were used together with a calibrated engine model to find a gas-system controller that fulfilled this task. The findings are then summarized in a suggested engine controller design. Finally, an experimental performance evaluation of the suggested controller is presented.

  13. Time varying voltage combustion control and diagnostics sensor (United States)

    Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy D [Morgantown, WV; Huckaby, E David [Morgantown, WV; Fincham, William [Fairmont, WV


    A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.

  14. Active lubrication applied to internal combustion engines - evaluation of control strategies

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar


    The performance of fluid film bearings in a combustion engine affects key functions such as durability, noise and vibration. Therefore, this work evaluates different control strategies for applying active radial oil injection in the main bearings of internal combustion engines with the aim...... surface. The behaviour of a main bearing of a medium size combustion engine, operating with radial oil injection and with four different control strategies is analyzed, giving some insights into the minimum fluid film thickness, maximum fluid film pressure, friction losses and maximum vibration levels...

  15. Effects of Noise and Time Delay Upon Active Control of Combustion Instabilities

    National Research Council Canada - National Science Library

    Zinn, Ben


    To improve the performance of practical active control system (ACS) for unstable combustors, the effects of system noise and ACS time delay upon combustion instabilities and the ACS performance were studied...

  16. Real-time combustion control and diagnostics sensor-pressure oscillation monitor (United States)

    Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy [Morgantown, WV; Huckaby, E David [Morgantown, WV; Richards, George A [Morgantown, WV


    An apparatus and method for monitoring and controlling the combustion process in a combustion system to determine the amplitude and/or frequencies of dynamic pressure oscillations during combustion. An electrode in communication with the combustion system senses hydrocarbon ions and/or electrons produced by the combustion process and calibration apparatus calibrates the relationship between the standard deviation of the current in the electrode and the amplitudes of the dynamic pressure oscillations by applying a substantially constant voltage between the electrode and ground resulting in a current in the electrode and by varying one or more of (1) the flow rate of the fuel, (2) the flow rate of the oxidant, (3) the equivalence ratio, (4) the acoustic tuning of the combustion system, and (5) the fuel distribution in the combustion chamber such that the amplitudes of the dynamic pressure oscillations in the combustion chamber are calculated as a function of the standard deviation of the electrode current. Thereafter, the supply of fuel and/or oxidant is varied to modify the dynamic pressure oscillations.

  17. Intelligent Integration between Human Simulated Intelligence and Expert Control Technology for the Combustion Process of Gas Heating Furnace

    Directory of Open Access Journals (Sweden)

    Yucheng Liu


    Full Text Available Due to being poor in control quality of the combustion process of gas heating furnace, this paper explored a sort of strong robust control algorithm in order to improve the control quality of the combustion process of gas heating furnace. The paper analyzed the control puzzle in the complex combustion process of gas heating furnace, summarized the cybernetics characteristic of the complex combustion process, researched into control strategy of the uncertainty complex control process, discussed the control model of the complex process, presented a sort of intelligent integration between human-simulated intelligence and expert control technology, and constructed the control algorithm for the combustion process controlling of gas heating furnace. The simulation results showed that the control algorithm proposed in the paper is not only better in dynamic and steady quality of the combustion process, but also obvious in energy saving effect, feasible, and effective in control strategy.

  18. Fuel distributor control of an internal combustion engine using ...

    African Journals Online (AJOL)

    The article presents the results of vibration-acoustic signal processing of an internal combustion engine using HHT. The series of experiments was carried out in a test laboratory on a motorized bench (eight-cylinder two-stroke engine). The measurements of vibrationacoustic signals were carried out for the periods when the ...

  19. Acid digestion and pressurization control in combustible radwaste treatment

    International Nuclear Information System (INIS)

    Allen, C.R.; Cowan, R.G.; Grelecki, C.J.


    Acid digestion has been developed to reduce the volume of combustible nuclear waste materials, while converting them to an inert, noncombustible residue. A 100 kg/day test unit has recently been constructed to process radioactively contaminated combustible wastes. The unit, called the Radioactive Acid Digestion Test Unit (RADTU) was completed in September, 1977, and is currently undergoing nonradioactive shakedown tests. Radioactive operation is expected in May, 1978. Because of uncertainties in waste composition and reactivity, the system was required to contain pressurizations. This led to the development of a simple and inexpensive system, which is capable of attenuating a shock wave from a full scale vapor detonation. The system has potential application in a wide spectrum of chemical reactors, since the fabrication materials are resistant to a very wide range of corrosive chemical attack

  20. Effects of Mixture Stratification on Combustion and Emissions of Boosted Controlled Auto-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz


    Full Text Available The stratification of in-cylinder mixtures appears to be an effective method for managing the combustion process in controlled auto-ignition (CAI engines. Stratification can be achieved and controlled using various injection strategies such as split fuel injection and the introduction of a portion of fuel directly before the start of combustion. This study investigates the effect of injection timing and the amount of fuel injected for stratification on the combustion and emissions in CAI engine. The experimental research was performed on a single cylinder engine with direct gasoline injection. CAI combustion was achieved using negative valve overlap and exhaust gas trapping. The experiments were performed at constant engine fueling. Intake boost was applied to control the excess air ratio. The results show that the application of the late injection strategy has a significant effect on the heat release process. In general, the later the injection is and the more fuel is injected for stratification, the earlier the auto-ignition occurs. However, the experimental findings reveal that the effect of stratification on combustion duration is much more complex. Changes in combustion are reflected in NOX emissions. The attainable level of stratification is limited by the excessive emission of unburned hydrocarbons, CO and soot.

  1. Cylinder Pressure-based Combustion Control with Multi-pulse Fuel Injection

    NARCIS (Netherlands)

    Luo, X.; Wang, S.; Jager, B. de; Willems, F.P.T.


    With an increased number of fuel injection pulses, the control problem in diesel engines becomes complex. Consisting of multiple single-input single-output (SISO) controllers, the conventional control strategy shows unsatisfactory dynamic performance in tracking combustion load and phase reference

  2. Spontaneous growth of whiskers from an interlayer of Mo sub 2 C beneath a diamond particle deposited in a combustion-flame

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Katsuyuki; Komatsu, Shojiro; Ishigaki, Takamasa; Matsumoto, Seiichiro; Moriyoshi, Yusuke (National Inst. for Research in Inorganic Materials, Tsukuba, Ibaraki (Japan))


    When diamond particles deposited on a molybdenum substrate in a C{sub 2}H{sub -}O{sub 2} combustion-flame were kept for one year in the ambient atmosphere at room temperature, spontaneous whisker growth from an interlayer of Mo{sub 2}C beneath the diamond particles took place. The whiskers were clarified by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM) in a polycrystal composed of MoO{sub 2}, MoOC, and Mo{sub 2}C. The growth mechanism of them is discussed from two different points of view as follows: One is that the oxidation of an interlayer of Mo{sub 2}C beneath a diamond particle effectively reduces the surface free energy between the interlayer and diamond particle; consequently, the whisker can grow by using a screw dislocation. The other is that the internal stress existing between a diamond particle and an Mo{sub 2}C interlayer provides a very reactive zone where the growth of whisker takes place through the oxidation of Mo{sub 2}C. (orig.).

  3. Experimental and numerical study of the active control of jets inside combustion chambers; Etude experimentale et numerique du controle actif de jets dans des chambres de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Faivre, V.


    Combustion instabilities occur when the flame heat release couples with the acoustic waves propagating in the combustion chamber. This phenomenon can lead to strong vibrations and noise but also, sometimes, to the complete combustion device failure. That is the reason why so many studies focus on the control of those instabilities. The method chosen in this study consists in an active control device (or set of actuators) having a strong effect on the mixing of the burner exhaust flow with the ambient fluid. The model configuration studied consists in a non reactive jet of air controlled by four small tangential secondary jets. Experiments have been carried out to optimize the control device geometry. The configuration identified as the most efficient, in terms of mixing enhancement, has been simulated through Large Eddy Simulations (LES). The objective of the numerical part of the present work is double. First, the numerical simulations provide a better understanding of the phenomena occurring when the control is on. Then, it is shown that LES can be considered as a tool to predict the effects of a control device on a flow. (author)

  4. Estudio de Algoritmos 2-Deslizantes Aplicados al Control de Pilas de Combustible

    Directory of Open Access Journals (Sweden)

    Cristian Kunusch


    Full Text Available Resumen: En este trabajo se hace un estudio comparativo de tres diferentes técnicas de control por modo deslizante de segundo orden, aplicadas al problema específico del control de respiración de una pila de combustible PEM. Los algoritmos diseñados se contrastan por simulación utilizando el modelo completo del sistema, poniendo particular énfasis en la respuesta transitoria y la robustez frente a perturbaciones. Palabras clave: Pilas de Combustible, Control no lineal, Modo Deslizante

  5. Modular prototyping engine controller for innovative combustion processes; Flexible Motorprozessregelung fuer neue Brennverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Alexander; Stoelting, Eckhard; Predelli, Oliver; Gratzke, Ralf [IAV GmbH, Gifhorn (Germany)


    The requirements of the customers and the legislator concerning emission limits, system costs, etc. are well known. This paper presents a rapid prototyping system for engine control, that offers the developer the freedom and the capacity to take this challenge and to achieve the targets. The flexibility of the system and the quick adaptation to a new engine hardware allow a fast realization of new ideas upon an engine test bench or within a vehicle environment. This paper gives an overview about the technical highlights like the Advanced Closedloop Combustion Control (IAVAC3) and the achieved results in the research of innovative combustion processes and their control. (orig.)

  6. New approaches for combustion sensing on prototyping engine control unit; Fahrzeugtaugliches Prototypen-Motorsteuergeraet mit Brennverlaufserfassung

    Energy Technology Data Exchange (ETDEWEB)

    Drmic, A.; Burkardt, D. [AFT Atlas Fahrzeugtechnik GmbH, Werdohl (Germany)


    Further development of the established combustion engine still offers potential, that is both important and achievable in the medium-term, in tackling the problem of rising raw material costs and ever-tougher emissions limits. Together with the emissions finishing treatment, inner-engine further developments are focused on for the reduction of consumption and raw exhaust gas. In conjunction with the support of the FVV (German Research Association for Combustion Engines), AFT Atlas Fahrzeugtechnik GmbH has developed the open engine control unit PROtroniC trademark especially for the research and development of combustion engines. Through the open and flexible structure of the control system, engines can be initialised on stationary test-bench applications in extremely short time periods. The implementation of user-specific functions means new ideas can be developed and tested directly. A series production vehicle was transformed into a test vehicle for the further development of vehicle-relevant functions, such as physically based dynamic functions, engine idle controller and the integration in the control unit topology. As this vehicle is now driven with the PROtroniC trademark, further algorithms can now be tried and tested directly in the vehicle. Combustion-relevant variables are often of great importance in the development phase. If the combustion is to be controlled on the basis of such variables, the conversion mostly results in highly complex system superstructures. A combustion computation has therefore been integrated in the PROtroniC trademark, which calculates the appropriate parameters in real-time and provides them in the control unit for further control tasks. (orig.)

  7. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines (United States)

    DeLaat, John C.


    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  8. Spontaneous centralization of control in a network of company ownerships.

    Directory of Open Access Journals (Sweden)

    Sebastian M Krause

    Full Text Available We introduce a model for the adaptive evolution of a network of company ownerships. In a recent work it has been shown that the empirical global network of corporate control is marked by a central, tightly connected "core" made of a small number of large companies which control a significant part of the global economy. Here we show how a simple, adaptive "rich get richer" dynamics can account for this characteristic, which incorporates the increased buying power of more influential companies, and in turn results in even higher control. We conclude that this kind of centralized structure can emerge without it being an explicit goal of these companies, or as a result of a well-organized strategy.

  9. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    International Nuclear Information System (INIS)

    Kim, Seonguk; Min, Kyoungdoug


    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NO x emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion

  10. Developmental Comparisons of the Consequences for Memory of Spontaneous vs. Controlled Imaginal Elaborations. (United States)

    Foley, Mary Ann; And Others

    Two studies compared the effects of spontaneous and controlled imagery on reality monitoring decisions. Reality monitoring refers to the decision processes involved in discriminating perceptual memories from imaginal ones. In Experiment 1, 6-year-olds and adults were shown pictures and words and they responded to one of two questions: (1)…

  11. Control of emissions from stationary combustion sources: Pollutant detection and behavior in the atmosphere

    International Nuclear Information System (INIS)

    Licht, W.; Engel, A.J.; Slater, S.M.


    Stationary combustion resources continue to be significant sources of NOx and SOx pollutants in the ambient atmosphere. This volume considers four problem areas: (1) control of emissions from stationary combustion sources, particularly SOx and NOx (2) pollutant behavior in the atmosphere (3) advances in air pollution analysis and (4) air quality management. Topics of interest include carbon slurries for sulfur dioxide abatement, mass transfer in the Kellogg-Weir air quality control system, oxidation/inhibition of sulfite ion in aqueous solution, some micrometeorological methods of measuring dry deposition rates, Spanish moss as an indicator of airborne metal contamination, and air quality impacts from future electric power generation in Texas

  12. Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness.

    Directory of Open Access Journals (Sweden)

    Stanislas Dehaene


    Full Text Available Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden "ignition" of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of "inattentional blindness," in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness.

  13. Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness. (United States)

    Dehaene, Stanislas; Changeux, Jean-Pierre


    Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden "ignition" of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of "inattentional blindness," in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness.

  14. Sleep duration, vital exhaustion, and odds of spontaneous preterm birth: a case-control study. (United States)

    Kajeepeta, Sandhya; Sanchez, Sixto E; Gelaye, Bizu; Qiu, Chunfang; Barrios, Yasmin V; Enquobahrie, Daniel A; Williams, Michelle A


    Preterm birth is a leading cause of perinatal morbidity and mortality worldwide, resulting in a pressing need to identify risk factors leading to effective interventions. Limited evidence suggests potential relationships between maternal sleep or vital exhaustion and preterm birth, yet the literature is generally inconclusive. We examined the relationship between maternal sleep duration and vital exhaustion in the first six months of pregnancy and spontaneous (non-medically indicated) preterm birth among 479 Peruvian women who delivered a preterm singleton infant (exhaustion were ascertained through in-person interviews. Spontaneous preterm birth cases were further categorized as those following either spontaneous preterm labor or preterm premature rupture of membranes. In addition, cases were categorized as very (exhaustion was also associated with increased odds of preterm birth (aOR = 2.41; 95% CI 1.79-3.23) compared to no exhaustion (Ptrend exhaustion on the odds of spontaneous preterm birth. The results of this case-control study suggest maternal sleep duration, particularly short sleep duration, and vital exhaustion may be risk factors for spontaneous preterm birth. These findings call for increased clinical attention to maternal sleep and the study of potential intervention strategies to improve sleep in early pregnancy with the aim of decreasing risk of preterm birth.

  15. Randomized controlled trial of the effect of amniotomy on the duration of spontaneous labor. (United States)

    Vadivelu, Malarvizhi; Rathore, Swati; Benjamin, Santosh J; Abraham, Anuja; Belavendra, Antonisamy; Mathews, Jiji E


    To investigate the effect of amniotomy on the duration of spontaneous labor. In the present randomized controlled trial, women in spontaneous labor with singleton pregnancies presenting at a tertiary teaching hospital in South India between August 1, 2014, and October 31, 2015, were randomized in a 1:1 ratio to undergo amniotomy or conservative management. The primary outcome was the duration of labor. Per-protocol analyses were performed and the duration of labor was compared between the groups of patients. There were 144 patients randomized to each group. The median duration of labor was 235 minutes (interquartile range 117-355) in the amniotomy group and 364 minutes (interquartile range 201-580) in the conservative management group (Plabor in comparison with conservative management in patients with singleton pregnancies experiencing spontaneous labor. Clinical Trials Registry-India: (CTRI) (CTRI/2014/12/005264). © 2017 International Federation of Gynecology and Obstetrics.

  16. Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission. (United States)

    Wan, Ren-Gang; Zhang, Tong-Yi


    We propose a scheme for two-dimensional (2D) atom localization based on the controlled spontaneous emission, in which the atom interacts with two orthogonal standing-wave fields. Due to the spatially dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the resulting spontaneously emission spectrum. The phase sensitive property of the atomic system leads to quenching of the spontaneous emission in some regions of the standing-waves, which significantly reduces the uncertainty in the position measurement of the atom. We find that the frequency measurement of the emitted light localizes the atom in half-wavelength domain. Especially the probability of finding the atom at a particular position can reach 100% when a photon with certain frequency is detected. By increasing the Rabi frequencies of the driving fields, such 2D sub-half-wavelength atom localization can acquire high spatial resolution.

  17. High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system. (United States)

    Ding, Chunling; Li, Jiahua; Yu, Rong; Hao, Xiangying; Wu, Ying


    A scheme for realizing two-dimensional (2D) atom localization is proposed based on controllable spontaneous emission in a coherently driven cycle-configuration atomic system. As the spatial-position-dependent atom-field interaction, the frequency of the spontaneously emitted photon carries the information about the position of the atom. Therefore, by detecting the emitted photon one could obtain the position information available, and then we demonstrate high-precision and high-resolution 2D atom localization induced by the quantum interference between the multiple spontaneous decay channels. Moreover, we can achieve 100% probability of finding the atom at an expected position by choosing appropriate system parameters under certain conditions.

  18. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf


    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  19. A review of active control approaches in stabilizing combustion systems in aerospace industry (United States)

    Zhao, Dan; Lu, Zhengli; Zhao, He; Li, X. Y.; Wang, Bing; Liu, Peijin


    Self-sustained combustion instabilities are one of the most plaguing challenges and problems in lean-conditioned propulsion and land-based engine systems, such as rocket motors, gas turbines, industrial furnace and boilers, and turbo-jet thrust augmenters. Either passive or active control in open- or closed-loop configurations can be implemented to mitigate such instabilities. One of the classical disadvantages of passive control is that it is only implementable to a designed combustor over a limited frequency range and can not respond to the changes in operating conditions. Compared with passive control approaches, active control, especially in closed-loop configuration is more adaptive and has inherent capacity to be implemented in practice. The key components in closed-loop active control are 1) sensor, 2) controller (optimization algorithm) and 3) dynamic actuator. The present work is to outline the current status, technical challenges and development progress of the active control approaches (in open- or closed-loop configurations). A brief description of feedback control, adaptive control, model-based control and sliding mode control are provided first by introducing a simplified Rijke-type combustion system. The modelled combustion system provides an invaluable platform to evaluate the performance of these feedback controllers and a transient growth controller. The performance of these controllers are compared and discussed. An outline of theoretical, numerical and experimental investigations are then provided to overview the research and development progress made during the last 4 decades. Finally, potential, challenges and issues involved with the design, application and implementation of active combustion control strategies on a practical engine system are highlighted.

  20. Artificial intelligence for the modeling and control of combustion processes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Kalogirou, S.A. [Higher Technical Inst., Nicosia, Cyprus (Greece). Dept. of Mechanical Engineering


    Artificial intelligence (AI) systems are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with non-linear problems, and once trained can perform prediction and generalization at high speed. They have been used in diverse applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimization, signal processing, and social/psychological sciences. They are particularly useful in system modeling such as in implementing complex mappings and system identification. Al systems comprise areas like, expert systems, artificial neural networks, genetic algorithms, fuzzy logic and various hybrid systems, which combine two or more techniques. The major objective of this paper is to illustrate how Al techniques might play an important role in modeling and prediction of the performance and control of combustion process. The paper outlines an understanding of how AI systems operate by way of presenting a number of problems in the different disciplines of combustion engineering. The various applications of AI are presented in a thematic rather than a chronological or any other order. Problems presented include two main areas: combustion systems and internal combustion (IC) engines. Combustion systems include boilers, furnaces and incinerators modeling and emissions prediction, whereas, IC engines include diesel and spark ignition engines and gas engines modeling and control. Results presented in this paper, are testimony to the potential of Al as a design tool in many areas of combustion engineering. (author)

  1. Artificial intelligence for the modeling and control of combustion processes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Soteris A. Kalogirou, [Higher Technical Institute, Nicosia (Cyprus). Department of Mechanical Engineering


    Artificial intelligence (AI) systems are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with non-linear problems, and once trained can perform prediction and generalization at high speed. They have been used in diverse applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimization, signal processing, and social/psychological sciences. They are particularly useful in system modeling such as in implementing complex mappings and system identification. AI systems comprise areas like, expert systems, artificial neural networks, genetic algorithms, fuzzy logic and various hybrid systems, which combine two or more techniques. The major objective of this paper is to illustrate how AI techniques might play an important role in modeling and prediction of the performance and control of combustion process. The paper outlines an understanding of how AI systems operate by way of presenting a number of problems in the different disciplines of combustion engineering. The various applications of AI are presented in a thematic rather than a chronological or any other order. Problems presented include two main areas: combustion systems and internal combustion (IC) engines. Combustion systems include boilers, furnaces and incinerators modeling and emissions prediction, whereas, IC engines include diesel and spark ignition engines and gas engines modeling and control. Results presented in this paper, are testimony to the potential of AI as a design tool in many areas of combustion engineering. 109 refs., 31 figs., 11 tabs.

  2. Fundamental limitations of non-thermal plasma processing for internal combustion engine NOx control

    International Nuclear Information System (INIS)

    Penetrante, B.M.


    This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO x control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO x removal mechanisms, and by product formation. Can non-thermal deNO x operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics

  3. Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan


    The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated


    EPA's efforts in research and development of nitrogen oxide (NOx) control technologies bymeans of modifying the combustion process have played a major role in reducing stationarysource NOx emissions by over 3 million tons (2.73 x 10^6 tonnes) annually, and have led to at<...

  5. 10 CFR 50.44 - Combustible gas control for nuclear power reactors. (United States)


    ... 10 Energy 1 2010-01-01 2010-01-01 false Combustible gas control for nuclear power reactors. 50.44... for nuclear power reactors. (a) Definitions—(1) Inerted atmosphere means a containment atmosphere with... pressurized water nuclear power reactor with an operating license on October 16, 2003, except for those...


    Directory of Open Access Journals (Sweden)



    Full Text Available The potential of vegetable oils to undergo violent thermal oxidation is long-known problem. The process of this oxidation is investigated by the means of differential thermal analysis. Polyurethane foam was saturated with Tung oil rich in unsaturated fatty acids at three different mass rations, and airfl ow at three different rates is introduces to the sample to ensure suffi cient volume of air for oxidation. The samples were thermally stressed both dynamically and isothermally. The results were compared to results of standard differential Mackey test.

  7. Space station contamination control study: Internal combustion, phase 1 (United States)

    Ruggeri, Robert T.


    Contamination inside Space Station modules was studied to determine the best methods of controlling contamination. The work was conducted in five tasks that identified existing contamination control requirements, analyzed contamination levels, developed outgassing specification for materials, wrote a contamination control plan, and evaluated current materials of offgassing tests used by NASA. It is concluded that current contamination control methods can be made to function on the Space Station for up to 1000 days, but that current methods are deficient for periods longer than about 1000 days.

  8. On what controls the spacing of spontaneous adiabatic shear bands in collapsing thick-walled cylinders

    Directory of Open Access Journals (Sweden)

    Lovinger Zev


    Full Text Available Shear bands formation in collapsing thick walled cylinders occurs in a spontaneous manner. The advantage of examining spontaneous, as opposed to forced shear localization, is that it highlights the inherent susceptibility of the material to adiabatic shear banding without prescribed geometrical constraints. The Thick-Walled Cylinder technique (TWC provides a controllable and repeatable technique to create and study multiple adiabatic shear bands. The technique, reported in the literature uses an explosive cylinder to create the driving force, collapsing the cylindrical sample. Recently, we developed an electro-magnetic set-up using a pulsed current generator to provide the collapsing force, replacing the use of explosives. Using this platform we examined the shear band evolution at different stages of formation in 7 metallic alloys, spanning a wide range of strength and failure properties. We examined the number of shear bands and spacing between them for the different materials to try and figure out what controls these parameters. The examination of the different materials enabled us to better comprehend the mechanisms which control the spatial distribution of multiple shear bands in this geometry. The results of these tests are discussed and compared to explosively driven collapsing TWC results in the literature and to existing analytical models for spontaneous adiabatic shear localization.

  9. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuan; Deng, Li [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Chen, Aixi, E-mail: [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1 (Canada)


    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.

  10. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    International Nuclear Information System (INIS)

    Chen, Yuan; Deng, Li; Chen, Aixi


    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device

  11. Combustion Property Analysis and Control System for the Dynamics of a Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono


    Full Text Available Corresponding to global environment problems in recent year, the technology for reducing fuel consumption and exhaust gas emission of engine was needed. Simulation of transient engine response is needed to predict engine performance that frequently experience rapid changes of speed. The aim of this research is to develop a non-linear dynamic control model for direct injection single cylinder diesel engine which can simulate engine performance under transient conditions. In this paper, the combustion model with multistage injection and conducted experiments in the transient conditions to clarify the combustion characteristics was proposed. In order to perform the analysis of acceleration operation characteristics, it was built a Model Predictive Control (MPC to reproduce the characteristic values of the exhaust gas and fuel consumption from the control parameters in particular. Finally, MPC is an effective method to perform the analysis of characteristic in diesel engine under transient conditions.

  12. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith


    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  13. Efficient combustion of fuels with controlled chemical underburning (United States)

    Roslyakov, P. V.; Ionkin, I. L.; Pleshanov, K. A.


    We present results obtained from putting into use a method of firing natural gas and fuel oil with controlled chemical underburning that allows nitrogen oxide emissions to be reduced by 20-40% in boilers that are in operation. The permissible level of fuel underburning from the considerations of ensuring efficient and environmentally safe operating conditions is determined.

  14. Highly controlled, reproducible measurements of aerosol emissions from combustion of a common African biofuel source (United States)

    Haslett, Sophie L.; Thomas, J. Chris; Morgan, William T.; Hadden, Rory; Liu, Dantong; Allan, James D.; Williams, Paul I.; Keita, Sekou; Liousse, Cathy; Coe, Hugh


    Particulate emissions from biomass burning can both alter the atmosphere's radiative balance and cause significant harm to human health. However, due to the large effect on emissions caused by even small alterations to the way in which a fuel burns, it is difficult to study particulate production of biomass combustion mechanistically and in a repeatable manner. In order to address this gap, in this study, small wood samples sourced from Côte D'Ivoire in West Africa were burned in a highly controlled laboratory environment. The shape and mass of samples, available airflow and surrounding thermal environment were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. This methodology produced remarkably repeatable results, allowing aerosol emissions to be mapped directly onto different phases of combustion. Emissions from pyrolysis were visible as a distinct phase before flaming was established. After flaming combustion was initiated, a black-carbon-dominant flame was observed during which very little organic aerosol was produced, followed by a period that was dominated by organic-carbon-producing smouldering combustion, despite the presence of residual flaming. During pyrolysis and smouldering, the two phases producing organic aerosol, distinct mass spectral signatures that correspond to previously reported variations in biofuel emissions measured in the atmosphere are found. Organic aerosol emission factors averaged over an entire combustion event were found to be representative of the time spent in the pyrolysis and smouldering phases, rather than reflecting a coupling between emissions and the mass loss of the sample. Further exploration of aerosol yields from similarly carefully controlled fires and a careful comparison with data from macroscopic fires and real-world emissions will help to deliver greater constraints on the

  15. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory. (United States)

    Bui, Anh D; Nguyen, Theresa M; Limouse, Charles; Kim, Hannah K; Szabo, Gergely G; Felong, Sylwia; Maroso, Mattia; Soltesz, Ivan


    Temporal lobe epilepsy (TLE) is characterized by debilitating, recurring seizures and an increased risk for cognitive deficits. Mossy cells (MCs) are key neurons in the hippocampal excitatory circuit, and the partial loss of MCs is a major hallmark of TLE. We investigated how MCs contribute to spontaneous ictal activity and to spatial contextual memory in a mouse model of TLE with hippocampal sclerosis, using a combination of optogenetic, electrophysiological, and behavioral approaches. In chronically epileptic mice, real-time optogenetic modulation of MCs during spontaneous hippocampal seizures controlled the progression of activity from an electrographic to convulsive seizure. Decreased MC activity is sufficient to impede encoding of spatial context, recapitulating observed cognitive deficits in chronically epileptic mice. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Advanced closed loop combustion control of a LTC diesel engine based on in-cylinder pressure signals

    International Nuclear Information System (INIS)

    Carlucci, A.P.; Laforgia, D.; Motz, S.; Saracino, R.; Wenzel, S.P.


    Highlights: • We have proposed an in-cylinder pressure-based closed loop combustion control. • We have tested the control on an engine at the test bench. • We have tested the control on the engine equipping a Euro 6-compliant vehicle. • The control is effective in increasing torque stability and reduce engine noise. - Abstract: The adoption of diesel LTC combustion concepts is widely recognised as a practical way to reduce simultaneously nitric oxides and particulate emission levels from diesel internal combustion engines. However, several challenges have to be faced up when implementing diesel LTC concepts in real application vehicles. In particular, achieving acceptable performance concerning the drivability comfort, in terms of output torque stability and combustion noise during engine dynamic transients, is generally a critical point. One of the most promising solutions to improve the LTC combustion operation lays in the exploitation of closed loop combustion control, based on in-cylinder pressure signals. In this work, the application of an in-cylinder pressure-based closed loop combustion control to a Euro 6-compliant demonstrator vehicle has been developed. The main challenges deriving from the control of the LTC combustion, directly affecting the engine/vehicle performance, have been analysed in detail. In order to overcome these drawbacks, a new control function, integrated into the base closed loop system, has been designed. The performance of the new function have been experimentally tested at the engine test bench. Results showed a significant enhancement of the LTC operation, in terms of both combustion stability and noise reduction during engine transients. The new function was also implemented on a real vehicle, thus proving the potential of the new control concept in realistic operating conditions

  17. Decoupled control for internal combustion engines research test beds


    López Hincapié, José David; Espinosa Oviedo, Jairo José; Agudelo Santamaría, John Ramiro


    This article presents a solid and robust automation model which has been developed and implemented in two different research engine test beds which were instrumented, one for diesel and the other one for spark ignition engines. The model, programmed in Matlab, is based on transfer functions with a decoupled (two single input single output systems) independent proportional and integral action controller that allows setting the desired engine speed and torque under stationary operation conditio...

  18. Control Scheme Formulation for the Production of Hydrogen on Demand to Feed an Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jarniel García Morales


    Full Text Available In this work, a control strategy is presented to produce hydrogen on demand to feed an internal combustion (IC engine. For this purpose, the modeling of the IC engine fueled by gasoline blended with 10 % v/v of anhydrous ethanol (E10 and hydrogen as an additive is developed. It is considered that the hydrogen gas is produced according to the IC engine demand, and that the hydrogen gas is obtained by an alkaline electrolyzer. The gasoline–ethanol blend added into the combustion chamber is determined according to the stoichiometric ratio and the production of hydrogen gas is regulated by a proportional and integral controller (P.I.. The controller reference is varying according to the mass flow air induced into the cylinder, in order to ensure an adequate production of hydrogen gas for any operating condition of the IC engine. The main contribution of this work is the control scheme developed, through simulation, in order to produce hydrogen on demand for any operating point of an internal combustion engine fueled by an E10 blend. The simulation results showed that the use of hydrogen gas as an additive in an E10 blend decreases the E10 fuel consumption 23 % on average, and the thermal efficiency is increased approximately 2.13 % , without brake power loss in the IC engine.

  19. Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels

    International Nuclear Information System (INIS)

    Duarte, Jorge; Amador, Germán; Garcia, Jesus; Fontalvo, Armando; Vasquez Padilla, Ricardo; Sanjuan, Marco; Gonzalez Quiroga, Arturo


    Control strategies for auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels are presented. Ambient temperature and ambient pressure are considered as the disturbing variables. A thermodynamic model for predicting temperature at the ignition point is developed, adjusted and validated with a large experimental data-set from high power turbocharged engines. Based on this model, the performance of feedback and feedforward auto-ignition control strategies is explored. A robustness and fragility analysis for the Feedback control strategies is presented. The feedforward control strategy showed the best performance however its implementation entails adding a sensor and new control logic. The proposed control strategies and the proposed thermodynamic model are useful tools for increasing the range of application of gaseous fuels with low methane number while ensuring a safe running in internal combustion engines. - Highlights: • A model for predicting temperature at the ignition point. • Robust PID, modified PID, and feedforward strategies for auto-ignition control. • λ′ were the best set of tuning equations for calculating controller parameters. • Robust PID showed significant improvements in auto-ignition control. • Feedforward control showed the best performance

  20. Study on development and the characteristics of quenching meshes for control of hydrogen combustion

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Suk Ho; Yang, Seung Yeon; Chun, Kang Woo [Seoul National University, Seoul (Korea)


    The characteristics of quenching meshes for control of hydrogen combustion in the severe accident in the nuclear power plant are experimentally investigated. The quenching distances of various hydrogen-air mixtures without water vapor over a range of initial pressures are measured. Also, those of stoichiometric hydrogen-air mixtures with various water vapor mixture ratios over a range of initial pressures are measured. It has been investigated whether the method of installation of quenching mesh to prevent flame from propagating to the other compartment is proper or not. Schlieren photograph is used to visualize the propagation of flame between two compartments. The types and installations of the quenching meshes have been proposed for the control of hydrogen combustion in the compartment. 36 refs., 34 figs., 1 tabs. (Author)

  1. Artificial intelligence-based modeling and control of fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, E.; Leppaekoski, K. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)). email:


    AI-inspired techniques have a lot to offer when developing methods for advanced identification, monitoring, control and optimization of industrial processes, such as power plants. Advanced control methods have been extensively examined in the research of the Power Plant Automation group at the Systems Engineering Laboratory, e.g., in fuel inventory modelling, combustion power control, modelling and control of flue gas oxygen, drum control, modelling and control of superheaters, or in optimization of flue-gas emissions. Most engineering approaches to artificial intelligence (AI) are characterized by two fundamental properties: the ability to learn from various sources and the ability to deal with plant complexity. Learning systems that are able to operate in uncertain environments based on incomplete information are commonly referred to as being intelligent. A number of other approaches exist, characterized by these properties, but not easily categorized as AI-systems. Advanced control methods (adaptive, predictive, multivariable, robust, etc.) are based on the availability of a model of the process to be controlled. Hence identification of processes becomes a key issue, leading to the use of adaptation and learning techniques. A typical learning control system concerns a selection of learning techniques applied for updating a process model, which in turn is used for the controller design. When design of learning control systems is complemented with concerns for dealing with uncertainties or vaguenesses in models, measurements, or even objectives, particularly close connections exist between advanced process control and methods of artificial intelligence and machine learning. Needs for advanced techniques are typically characterized by the desire to properly handle plant non-linearities, the multivariable nature of the dynamic problems, and the necessity to adapt to changing plant conditions. In the field of fluidized bed combustion (FBC) control, the many promising

  2. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control (United States)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.


    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  3. Functional Group Analysis for Diesel-like Mixing-Controlled Compression Ignition Combustion Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Daniel J.; McCormick, Robert L.; Polikarpov, Evgueni; Fioroni, Gina; George, Anthe; Albrecht, Karl O.


    This report addresses the suitability of hydrocarbon and oxygenate functional groups for use as a diesel-like fuel blending component in an advanced, mixing-controlled, compression ignition combustion engine. The functional groups are chosen from those that could be derived from a biomass feedstock, and represent a full range of chemistries. This first systematic analysis of functional groups will be of value to all who are pursuing new bio-blendstocks for diesel-like fuels.

  4. Advanced combustion, emission control, health impacts, and fuels merit review and peer evaluation

    Energy Technology Data Exchange (ETDEWEB)

    None, None


    This report is a summary and analysis of comments from the Advisory Panel at the FY 2006 DOE National Laboratory Advanced Combustion, Emission Control, Health Impacts, and Fuels Merit Review and Peer Evaluation, held May 15-18, 2006 at Argonne National Laboratory. The work evaluated in this document supports the FreedomCAR and Vehicle Technologies Program. The results of this merit review and peer evaluation are major inputs used by DOE in making its funding decisions for the upcoming fiscal year.

  5. Pollution active control: a strategy for a clean and efficient combustion; Le controle actif des polluants: une strategie pour une combustion propre et efficace

    Energy Technology Data Exchange (ETDEWEB)

    Lacas, F. [CNRS Ecole Centrale de Paris, 75 (France). Laboratoire E.M2.C


    The active control NOx reduction concept has been applied on two burners (20 kW and 840 kW), using a rotary valve enabling an excitation in the 100 to 1000 Hz band, that can be mounted on existing appliances such as domestic or industrial boilers. NOx level reduction may reach 15 pc for the 20 kW burner, 25 pc for the 840 kW burner with domestic fuel oil and 35 pc for the 840 kW burner using pyridine doped domestic fuel oil. Mechanisms are detailed through flow visualization, and consist mainly in an annular vortex inducing a fuel/air pre-mixing favourable to a large decrease in NOx generation level and establishing a staged process such as in re-burning processes. The pulsed combustion process may be also combined to other pollution control systems

  6. A Controlled Trial of Chemoprevention Using COX-2 Inhibitors in an Avian Model of Spontaneous Ovarian Carcinogesis

    National Research Council Canada - National Science Library

    Barnes, Mack N


    The objective of this study was to determine in a controlled chemoprevention trial the ability of a COX-2 inhibitor to inhibit the development of spontaneously arising genital tract adenocarcinoma in the laying hen (Gall us Domesticus...

  7. Predictive zero-dimensional combustion model for DI diesel engine feed-forward control

    International Nuclear Information System (INIS)

    Catania, Andrea Emilio; Finesso, Roberto; Spessa, Ezio


    Highlights: → Zero-dimensional low-throughput combustion model for real-time control in diesel engine applications. → Feed-forward control of MFB50, p max and IMEP in both conventional and PCCI combustion modes. → Capability of resolving the contribution to HRR of each injection pulse in multiple injection schedule. → Ignition delay and model parameters estimated through physically consistent and easy-to-tune correlations. - Abstract: An innovative zero-dimensional predictive combustion model has been developed for the estimation of HRR (heat release rate) and in-cylinder pressure traces. This model has been assessed and applied to conventional and PCCI (premixed charge compression ignition) DI diesel engines for model-based feed-forward control purposes. The injection rate profile is calculated on the basis of the injected fuel quantities and on the injection parameters, such as SOI (start of injection), ET (energizing time), and DT (dwell time), taking the injector NOD (nozzle opening delay) and NCD (nozzle closure delay) into account. The injection rate profile in turn allows the released chemical energy Q ch to be estimated. The approach starts from the assumption that, at each time instant, the HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber. The main novelties of the proposed approach consist of the method that is adopted to estimate the fuel ignition delay and of injection rate splitting for HRR estimation. The procedure allows an accurate calculation to be made of the different combustion parameters that are important for engine calibration, such as SOC (start of combustion) and MFB50 (50% of fuel mass fraction burned angle). On the basis of an estimation of the fuel released chemical energy, of the heat globally exchanged from the charge with the walls and of the energy associated with the fuel evaporation, the charge net energy is calculated, for a subsequent evaluation of the in

  8. Optimization and control for CO2 compression and purification unit in oxy-combustion power plants

    International Nuclear Information System (INIS)

    Jin, Bo; Zhao, Haibo; Zheng, Chuguang


    High CO 2 purity products can be obtained from oxy-combustion power plants through a CO 2 CPU (compression and purification unit) based on phase separation method. To ensure that CPU (with double flash separators) can be operated under optimal conditions, this paper focuses on single variable analysis, multi-variable optimization, dynamic simulation and control system design for CPU in oxy-combustion power plants. It is found that optimal operating conditions are 30 bar, 30.42 °C, −24.64 °C, and −55 °C for multi-stage CO 2 compressor discharge pressure, flue gas temperature after compression, first flash separator temperature, and second flash separator temperature, respectively. The designed double temperature control structure based on a systematic top-down analysis and bottom-up design method is more suitable than the single temperature control structure under different operating scenarios (load change and flue gas composition ramp change). To bear operating disturbances, operating strategies like elevating temperature, manipulating valves and adjusting setpoints are proposed. Influence of SOx would be more obvious than that of NOx, whilst the k ij mixing parameters in Peng–Robinson property method affects little on process optimization and control system design. Comprehensive dynamic model with specified control system provides possibility to integrate CPU with full-train oxy-combustion power plants. - Highlights: • Dynamic model of CO 2 compression and purification unit is established. • Double temperature control system for compression and purification unit is designed. • The designed control system is tested successfully under load change and disturbance. • Comprehensive dynamic behavior for key operating parameters is obtained. • Alternative control structure is also investigated and compared

  9. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono


    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  10. Spontaneous ignition characteristics of coal in a large-scale furnace: An experimental and numerical investigation

    International Nuclear Information System (INIS)

    Wen, Hu; Yu, Zhijin; Deng, Jun; Zhai, Xiaowei


    Highlights: • Three coal spontaneous combustion coupled models based on various flow equations were constructed and compared. • The airflow behavior in loose coal should be defined as a Brinkman flow. • The self-heating of coal in a large-scale reactor was numerically reappeared. • The effect of heat dissipated conditions on temperature profiles of broken coal was presented. - Abstract: A comprehensive understanding of the spontaneous combustion characteristics of coal in various surroundings is necessary for developing reliable test platform and predictive models. In this study, the characteristics of oxidation and self-heating combining various gas flow equations in loose coal were investigated separately and used to simulate the experimental procedure of spontaneous combustion. The main focus was to investigate the effect of thermal boundary on temperature profiles as well as spontaneous combustion period. The results showed that the numerical approach was validated by comparison with the test data. Furthermore, the model based upon Brinkman equation showed a higher accuracy, which indicated that airflow behavior influences the balances of coal oxidation and heat dissipation, thus impacts the temperature profiles of loose coal. The areas of high temperature zones would be evidently expanded and the spontaneous ignition time would be significantly accelerated if the thermal exchange between the coal and its surroundings decreased. Our results, especially for the field of engineering, have substantial effects for grasping and controlling coal spontaneous combustion disaster.

  11. Design and Testing of a Breadboard Electrical Power Control Unit for the Fluid Combustion Facility Experiment (United States)

    Kimnach, Greg L.; Lebron, Ramon C.


    The Fluid Combustion Facility (FCF) Project and the Power Technology Division at the NASA Glenn Research Center (GRC) at Lewis Field in Cleveland, OH along with the Sundstrand Corporation in Rockford, IL are jointly developing an Electrical Power Converter Unit (EPCU) for the Fluid Combustion Facility to be flown on the International Space Station (ISS). The FCF facility experiment contains three racks: A core rack, a combustion rack, and a fluids rack. The EPCU will be used as the power interface to the ISS 120V(sub dc) power distribution system by each FCF experiment rack which requires 28V(sub dc). The EPCU is a modular design which contains three 120V(sub dc)-to-28V(sub dc) full-bridge, power converters rated at 1 kW(sub e) each bus transferring input relays and solid-state, current-limiting input switches, 48 current-limiting, solid-state, output switches; and control and telemetry hardware. The EPCU has all controls required to autonomously share load demand between the power feeds and--if absolutely necessary--shed loads. The EPCU, which maximizes the usage of allocated ISS power and minimizes loss of power to loads, can be paralleled with other EPCUs. This paper overviews the electrical design and operating characteristics of the EPCU and presents test data from the breadboard design.


    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley


    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  13. Axisymmetric vortex method for low-Mach number, diffusion-controlled combustion

    CERN Document Server

    Lakkis, I


    A grid-free, Lagrangian method for the accurate simulation of low-Mach number, variable-density, diffusion-controlled reacting flow is presented. A fast-chemistry model in which the conversion rate of reactants to products is limited by the local mixing rate is assumed in order to reduce the combustion problem to the solution of a convection-diffusion-generation equation with volumetric expansion and vorticity generation at the reaction fronts. The solutions of the continuity and vorticity equations, and the equations governing the transport of species and energy, are obtained using a formulation in which particles transport conserved quantities by convection and diffusion. The dynamic impact of exothermic combustion is captured through accurate integration of source terms in the vorticity transport equations at the location of the particles, and the extra velocity field associated with volumetric expansion at low Mach number computed to enforced mass conservation. The formulation is obtained for an axisymmet...

  14. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes (United States)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai


    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  15. Continuously tunable sub-half-wavelength localization via coherent control of spontaneous emission

    International Nuclear Information System (INIS)

    Wang Fei; Tan Xin-Yu; Gong Cheng; Shi Wen-Xing


    We propose a continuously tunable method of sub-half-wavelength localization via the coherent control of the spontaneous emission of a four-level Y-type atomic system, which is coupled to three strong coupling fields including a standing-wave field together with a weak probe field. It is shown that the sub-half-wavelength atomic localization is realized for both resonance and off-resonance cases. Furthermore, by varying the probe detuning in succession, the positions of the two localization peaks are tuned continuously within a wide range of probe field frequencies, which provides convenience for the realization of sub-half-wavelength atomic localization experimentally

  16. Controlled vs Spontaneous Ventilation for Bronchoscopy in Children with Tracheobronchial Foreign Body

    Directory of Open Access Journals (Sweden)

    Leila Mashhadi


     Results: Fifty-one patients (31 male and 20 female entered the study. The mean age was 26.76 months, ranging from 6 to 100 months. Choking and cough were present in 94% and 96.1% of the patients, respectively. Nuts were the most common foreign body (76.9%. The controlled ventilation group had significantly fewer complications, and surgeon comfort was significantly higher in this group. Oxygen desaturation was significantly more prevalent in the spontaneous ventilation group during laryngoscopy and bronchoscopy (P

  17. Passive control of thermoacoustic instabilities in swirl-stabilized combustion at elevated pressures

    Directory of Open Access Journals (Sweden)

    L Justin Williams


    Full Text Available In this study, a porous insert is placed at the dump plane of a swirl-stabilized lean premixed combustor to passively suppress thermoacoustic instabilities. The diffuser-shaped annular ring of porous inert material influences the turbulent flow field directly, including recirculation zones and vortical and/or shear layer structures to passively control the acoustic performance of the combustor. The porous inert material is made of silicon carbide–hafnium carbide coated, high-strength, high-temperature-resistant open-cell foam materials. In this study, the porous insert concept is investigated at above-ambient operating pressures to demonstrate its suitability for practical combustion applications. Experiments are conducted in quartz and metal combustors, without and with the porous insert while varying operating pressure, equivalence ratio, and reactant flow rate. Measurements show that the porous insert, and consequent changes in the combustor flow field, decrease the sound pressure levels at the frequency of combustion instability at all operating conditions investigated in this study. The porous insert also decreases the broadband combustion noise, i.e. the measured sound pressure levels over a wide frequency range.


    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley


    This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

  19. Robust active combustion control for the optimization of environmental performance and energy efficiency (United States)

    Demayo, Trevor Nat

    Criteria pollutant regulations, climate change concerns, and energy conservation efforts are placing strict constraints in the design and operation of advanced, stationary combustion systems. To ensure minimal pollutant emissions and maximal efficiency at every instant of operation while preventing reaction blowout, combustion systems need to react and adapt in real-time to external changes. This study describes the development, demonstration, and evaluation of a multivariable feedback control system, designed to maximize the performance of natural gas-fired combustion systems. A feedback sensor array was developed to monitor reaction stability and measure combustion performance as a function of NOx, CO, and O, emissions. Acoustic and UV chemiluminescent emissions were investigated for use as stability indicators. Modulated signals of CH* and CO2* chemiluminescence were found to correlate well with the onset of lean blowout. A variety of emissions sensors were tested and evaluated, including conventional CEMS', micro-fuel cells, a zirconia NOx transducer, and a rapid response predictive NOx sensor based on UV flame chemiluminescence. A dual time-scale controller was designed to actively optimize operating conditions by maximizing a multivariable performance function J using a linear direction set search algorithm. The controller evaluated J under slow, quasi steady-state conditions, while dynamically monitoring the reaction zone at high speed for pre-blowout instabilities or boundary condition violations. To establish the input control parameters, two burner systems were selected: a 30 kW air-swirl, generic research burner, and a 120 kW scaled, fuel-staged, industrial boiler burner. The parameters, chosen to most affect burner performance, consisted of air swirl intensity and excess air for the generic burner, and fuel-staging and excess air for the boiler burner. A set of optimization parameters was also established to ensure efficient and deterministic

  20. Exhaust gas recirculation – Zero dimensional modelling and characterization for transient diesel combustion control

    International Nuclear Information System (INIS)

    Asad, Usman; Tjong, Jimi; Zheng, Ming


    Highlights: • Zero-dimensional EGR model for transient diesel combustion control. • Detailed analysis of EGR effects on intake, cylinder charge and exhaust properties. • Intake oxygen validated as an operating condition-independent measure of EGR. • Quantified EGR effectiveness in terms of NOx emission reduction. • Twin lambda sensor technique for estimation of EGR/in-cylinder parameters. - Abstract: The application of exhaust gas recirculation (EGR) during transient engine operation is a challenging task since small fluctuations in EGR may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency. Moreover, the intake charge dilution at any EGR ratio is a function of engine load and intake pressure, and typically changes during transient events. Therefore, the management of EGR during transient engine operation or advanced combustion cycles (that are inherently less stable) requires a fundamental understanding of the transient EGR behaviour and its impact on the intake charge development. In this work, a zero-dimensional EGR model is described to estimate the transient (cycle-by-cycle) progression of EGR and the time (engine cycles) required for its stabilization. The model response is tuned to a multi-cylinder engine by using an overall engine system time-constant and shown to effectively track the transient EGR changes. The impact of EGR on the actual air–fuel ratio of the cylinder charge is quantified by defining an in-cylinder excess-air ratio that accounts for the oxygen in the recycled exhaust gas. Furthermore, a twin lambda sensor (TLS) technique is implemented for tracking the intake dilution and in-cylinder excess-air ratio in real-time. The modelling and analysis results are validated against a wide range of engine operations, including transient and steady-state low temperature combustion tests

  1. Chirality-controlled spontaneous twisting of crystals due to thermal topochemical reaction. (United States)

    Rai, Rishika; Krishnan, Baiju P; Sureshan, Kana M


    Crystals that show mechanical response against various stimuli are of great interest. These stimuli induce polymorphic transitions, isomerizations, or chemical reactions in the crystal and the strain generated between the daughter and parent domains is transcribed into mechanical response. We observed that the crystals of modified dipeptide LL (N 3 -l-Ala-l-Val-NHCH 2 C≡CH) undergo spontaneous twisting to form right-handed twisted crystals not only at room temperature but also at 0 °C over time. Using various spectroscopic techniques, we have established that the twisting is due to the spontaneous topochemical azide-alkyne cycloaddition (TAAC) reaction at room temperature or lower temperatures. The rate of twisting can be increased by heating, exploiting the faster kinetics of the TAAC reaction at higher temperatures. To address the role of molecular chirality in the direction of twisting the enantiomer of dipeptide LL, N 3 -d-Ala-d-Val-NHCH 2 C≡CH (DD), was synthesized and topochemical reactivity and mechanoresponse of its crystals were studied. We have found that dipeptide DD not only underwent TAAC reaction, giving 1,4-triazole-linked pseudopolypeptides of d-amino acids, but also underwent twisting with opposite handedness (left-handed twisting), establishing the role of molecular chirality in controlling the direction of mechanoresponse. This paper reports ( i ) a mechanical response due to a thermal reaction and ( ii ) a spontaneous mechanical response in crystals and ( iii ) explains the role of molecular chirality in the handedness of the macroscopic mechanical response.

  2. Control concepts for a gasoline HCCI combustion engine; Strategien zur Regelung von HCCI-Brennverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Karrelmeyer, Roland; Fischer, Wolfgang [Robert Bosch GmbH, Stuttgart (Germany). CR/AEH; Graf, Gerald [Robert Bosch GmbH, Stuttgart (Germany). DGS-EC/ESG; Scherrer, Daniel [Robert Bosch GmbH, Stuttgart (Germany). GS/ECS1; Hathout, Jean-Pierre [Bosch Thermotechnology Sanayi ve Ticaret, A.S. Organize Sanayi Boelgesi, Manisa (Turkey)


    In this paper, we discuss an in-cylinder-pressure based controls concept for a HCCI-engine with internal exhaust-gas trapping. Combustion is controlled via the fuel- and air-path. The controls concept is based upon a combination of a feed-forward and a feed-back path. The work has been carried out on gasoline engines with direct-injection and different types of flexible valve trains. In a first step it will be considered a fully flexible type of valve train. On based of cost optimal aspects flexibility will be decreased which resulted in a partly flexible valve train with cam phasers an e. g. two step lift control. A control strategy based on this type of valve train also will be considered. (orig.)

  3. A high-temperature shape memory alloy sensor for combustion monitoring and control (United States)

    Shaw, Greg S.; Snyder, Joseph T.; Prince, Troy S.; Willett, Michael C.


    Innovations in the use of thin film SMA materials have enabled the development of a harsh environment pressure sensor useful for combustion monitoring and control. Development of such active combustion control has been driven by rising fuel costs and environmental pressures. Active combustion control, whether in diesel, spark ignited or turbine engines requires feedback to the engine control system in order to adjust the quantity, timing, and placement of fuel charges. To be fully effective, sensors must be integrated into each engine in a manner that will allow continuous combustion monitoring (turbine engines) or monitoring of each discrete combustion event (diesel and SI engines). To date, the sensors available for detection of combustion events and processes have suffered from one or more of three problems: 1) Low sensitivity: The sensors are unable to provide and adequate signal-to-noise ratio in the high temperature and electrically noisy environment of the engine compartment. Attempts to overcome this difficulty have focused on heat removal and/or temperature compensation or more challenging high temperature electronics. 2) Low reliability: Sensors and/or sensor packages have been unable to withstand the engine environment for extended periods of time. Issues have included gross degradation and more subtle issues such as migration of dopants in semiconductor sensor materials. 3) High cost: The materials that have been used, the package concepts employed, and the required support electronics have all contributed to the high cost of the few sensor systems available. Prices have remained high due to the limited demand associated with the poor reliability and the high price itself. Ternary titanium nickel alloys, with platinum group metal substitution for the nickel, are deposited as thin films on MEMS-based diaphragms and patterned to form strain gages of a standard metal film configuration. The strain induced phase transformation of the SMA is used as a

  4. Assessment of groundwater quality impacts due to use of coal combustion byproducts to control subsidence from underground mines. (United States)

    Singh, G; Paul, B C


    Coal combustion byproducts are to be placed in an underground coal mine to control subsidence. The materials were characterized to determine potential groundwater impacts. No problems were found with respect to heavy or toxic metals. Coal combustion byproduct leachates are high in dissolved solids and sulfates. Chloride and boron from fly ash may also leach in initially high concentrations. Because the demonstration site is located beneath deep tight brine-bearing aquifers, no problems are anticipated at the demonstration site.

  5. Manual versus target-controlled infusion remifentanil administration in spontaneously breathing patients. (United States)

    Moerman, Annelies T; Herregods, Luc L; De Vos, Martine M; Mortier, Eric P; Struys, Michel M R F


    The combination of propofol-remifentanil for procedural deep sedation in spontaneously breathing patients is characterized by the frequent incidence of side effects, especially respiratory depression. These side effects may be due to either the drug combination or the drug delivery technique. Target-controlled infusion (TCI) might optimize drug delivery. In this prospective, randomized, double-blind study in patients undergoing elective colonoscopy, we thus tried to answer two questions: first, if adding remifentanil to propofol surpasses the disadvantages of the combination of these two products, and second, if administration of remifentanil via TCI decreases the incidence of side effects, compared to manually controlled administration. Patients undergoing elective colonoscopy were randomly assigned to receive remifentanil via manually controlled continuous infusion (MCI) (0.125 microg x kg(-1) x min(-1) for 2 min followed by a continuous infusion of 0.05 microg x kg(-1) x min(-1)), TCI remifentanil (1 ng/mL), or placebo (normal saline either as TCI or manual infusion of equivalent rate). All patients received TCI propofol, adjusted to a target concentration level that provided deep sedation in which patients were not responsive to verbal commands, but maintained spontaneous ventilation without assistance. Significantly more patients in the placebo group showed movement, cough and hiccup, which transiently interfered with the examination. There were no clinically significant differences in hemodynamic or recovery variables among all groups. Remifentanil administered via TCI resulted in a decrease in propofol requirements. The incidence of hypopnea and apnea was less frequent when remifentanil was administered via TCI compared to MCI (TCI n = 7, MCI n = 16, P n = 7, MCI n = 16, P < 0.05), compared to manually controlled administration of remifentanil.

  6. Catalytic converters for exhaust emission control of commercial equipment powered by internal combustion engines. (United States)

    Cohn, J G


    The development of PTX, monolithic catalytic exhaust purifiers, is outlined, and their first use for exhaust emissions control of commercial equipment is described. The main use of PTX converters is on forklift trucks. The purification achievable with PTX-equipped fork-lift trucks under various operational conditions is discussed, and examples from the field are given. During more than ten years of operation, no adverse health effects have been reported, and PTX-equipped internal combustion engines appear safe for use in confined areas.

  7. Atom localization via controlled spontaneous emission in a five-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhiping; Yu Benli; Zhu Jun; Cao Zhigang; Zhen Shenglai; Wu Xuqiang; Xu Feng


    We investigate the one- and two-dimensional atom localization behaviors via spontaneous emission in a coherently driven five-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of atom localization behaviors can be significantly improved via adjusting the system parameters. More importantly, the two-dimensional atom localization patterns reveal that the maximal probability of finding an atom within the sub-wavelength domain of the standing waves can reach unity when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization. - Highlights: ► One- and two-dimensional atom localization behaviors via spontaneous emission in five-level atoms are investigated. ► An assisting radio-frequency field is used to control the atom localization behaviors. ► High-precision and high-resolution two-dimensional atom localization can be realized in this scheme.

  8. Molecular actions of Escherichia coli MutT for control of spontaneous mutagenesis. (United States)

    Setoyama, Daiki; Ito, Riyoko; Takagi, Yasumitsu; Sekiguchi, Mutsuo


    MutT protein of Escherichia coli hydrolyzes oxidized guanine nucleotides, 8-oxo-dGTP and 8-oxoGTP, to the corresponding monophosphates, thereby preventing misincorporation of 8-oxoguanine into DNA and RNA, respectively. Although the biological significance of the MutT has been established, how MutT protein actually works in vivo remains to be elucidated. The current study shows the molecular behavior of the MutT protein in vivo and in vitro with special reference to control of spontaneous mutagenesis. A single E. coli cell carries about 70-75 molecules of the MutT protein and that this number does not change even when the cells were cultured in anaerobic and hyper-oxidative conditions. Conditional gene silencing analyses revealed that about a half number of MutT molecules are needed for keeping the spontaneous mutation frequency at the normal level. The MutT functions are not needed under anaerobic condition, yet the level of the MutT protein in cell is kept constant, probably for preparing for sudden changes of oxygen pressure. There is a possibility that MutT functions in close association with other proteins, and evidence is presented that MutT protein can interact with some proteins in vivo. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Solution combustion synthesis of calcium phosphate particles for controlled release of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junfeng, E-mail: [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Zhao, Junjie; Qian, Yu; Zhang, Xiali; Zhou, Feifei; Zhang, Hong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Lu, Hongbin [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing (China); Chen, JianHua; Wang, XuHong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Yu, Wencong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China)


    Four different phase compositions of calcium phosphate (CaP) particles were prepared via a solution combustion method. X-ray diffraction (XRD) and Rietveld analysis results revealed that the variations in the nominal Ca/P (molar) ratios were found to provide a favorable control in the different proportions of CaP materials. Bovine serum albumin (BSA) was used as a model protein to study the loading and release behavior. The release profile indicated that the BSA release rates depended on the phase compositions of the CaP particles, and showed an order of TCP-BSA > BCP-1-BSA > BCP-2-BSA > HA-BSA. The results suggested that the BSA protein release rate can be controlled by varying the phase compositions of CaP carriers. Moreover, the release process involved two stages: firstly surface diffusion via ion exchange and secondly intraparticle diffusion. - Highlights: • Solution combustion method was an efficient way to produced CaP powders. • Ca/P (molar) ratios provided a favorable control in the different proportions of phase composition. • BSA release rate varied depending on the phase composition of the CaP particles. • Two kinetic models were chosen to simulate the release kinetics of the drugs from CaP carriers.

  10. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.


    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  11. Consumption of a dark roast coffee decreases the level of spontaneous DNA strand breaks: a randomized controlled trial. (United States)

    Bakuradze, T; Lang, R; Hofmann, T; Eisenbrand, G; Schipp, D; Galan, J; Richling, E


    Coffee consumption has been reported to decrease oxidative damage in peripheral white blood cells (WBC). However, effects on the level of spontaneous DNA strand breaks, a well established marker of health risk, have not been specifically reported yet. We analyzed the impact of consuming a dark roast coffee blend on the level of spontaneous DNA strand breaks. Healthy men (n = 84) were randomized to consume daily for 4 weeks either 750 ml of fresh coffee brew or 750 ml of water, subsequent to a run in washout phase of 4 weeks. The study coffee was a blend providing high amounts of both caffeoylquinic acids (10.18 ± 0.33 mg/g) and the roast product N-methylpyridinium (1.10 ± 0.05 mg/g). Before and after the coffee/water consumption phase, spontaneous strand breaks were determined by comet assay. At baseline, both groups exhibited a similar level of spontaneous DNA strand breaks. In the intervention phase, spontaneous DNA strand breaks slightly increased in the control (water only) group whereas they significantly decreased in the coffee group, leading to a 27% difference within both arms (p = 0.0002). Food frequency questionnaires indicated no differences in the overall diet between groups, and mean body weight during the intervention phases remained stable. The consumption of the study coffee substantially lowered the level of spontaneous DNA strand breaks in WBC. We conclude that regular coffee consumption contributes to DNA integrity.

  12. Controls on boreal peat combustion and resulting emissions of carbon and mercury (United States)

    Kohlenberg, Andrew J.; Turetsky, Merritt R.; Thompson, Dan K.; Branfireun, Brian A.; Mitchell, Carl P. J.


    Warming in the boreal forest region has already led to changes in the fire regime. This may result in increasing fire frequency or severity in peatlands, which could cause these ecosystems to shift from a net sink of carbon (C) to a net source of C to the atmosphere. Similar to C cycling, peatlands serve as a net sink for mercury (Hg), which binds strongly to organic matter and accumulates in peat over time. This stored Hg is also susceptible to re-release to the atmosphere during peat fires. Here we investigate the physical properties that influence depth of burn in experimental peat columns and the resulting emissions of CO, CO2, CH4, and gaseous and particulate Hg. As expected, bulk density and soil moisture content were important controls on depth of burn, CO2 emissions, and CO emissions. However, our results show that CH4 and Hg emissions are insensitive to combustion temperature or fuel moisture content. Emissions during the burning of peat, across a wide range of moisture conditions, were associated with low particulate Hg and high gaseous Hg release. Due to strong correlations between total Hg and CO emissions and because high Hg emissions occurred despite incomplete combustion of total C, our results suggest that Hg release during peat burning is governed by the thermodynamics of Hg reduction more so than by the release of Hg associated with peat combustion. Our measured emissions ratios, particularly for CH4:CO2, are higher than values typically used in the upscaling of boreal forest or peatland fire emissions. These emission ratios have important implications not only for our understanding of smouldering chemistry, but also for potential influences of peat fires on the Earth’s climate system.

  13. Effects on Glycemic Control in Impaired Wound Healing in Spontaneously Diabetic Torii (SDT) Fatty Rats. (United States)

    Katsuhiro, Miyajima; Hui Teoh, Soon; Yamashiro, Hideaki; Shinohara, Masami; Fatchiyah, Fatchiyah; Ohta, Takeshi; Yamada, Takahisa


    Impaired diabetic wound healing is an important issue in diabetic complications. The present study aims to evaluate the protective effect on glycemic control against impaired diabetic wound healing using a diabetic rat model. We investigated the wound healing process and effect on the impaired wound repair by glycemic control in the Spontaneously Diabetic Torii (SDT) fatty rat, which is a new animal model of obese type 2 diabetes and may be a good model for study impaired wound healing. Male SDT fatty rats at 15 weeks of age were administered orally with sodium glucose co-transporter (SGLT) 2 inhibitor for 3 weeks. Wounds were induced at 2 weeks after SGLT 2 inhibitor treatment, and the wound areas were periodically examined in morphological and histological analyses. The SDT fatty rats showed a delayed wound healing as compared with the normal rats, but a glycemic control improved the impaired wound healing. In histological analysis in the skin of SDT fatty rats showed severe infiltration of inflammatory cell, hemorrhage and many bacterial masses in the remaining and slight fibrosis of crust on skin tissue . Thought that this results skin performance to be a delay of crust formation and regeneration of epithelium; however, these findings were ameliorated in the SGLT 2 inhibitor treated group. Glycemic control is effective for treatment in diabetic wounds and the SDT fatty rat may be useful to investigate pathophysiological changes in impaired diabetic wound healing.

  14. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype (United States)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie


    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  15. Processes subject to integrated pollution control. Combustion processes: reheat and heat treatment furnaces 50 MW(th) and over

    International Nuclear Information System (INIS)


    This document, part of a series offering guidance on pollution control regulations issued by Her Majesty's Inspectorate of Pollution, focuses on combustion processes involved with reheat and heat treatment furnaces of 50 MW (th) and over. Techniques for controlling releases into air, water and to land are detailed as are the various pollution monitoring strategies. (UK)

  16. Investigation of Combustion Control in a Dump Combustor Using the Feedback Free Fluidic Oscillator (United States)

    Meier, Eric J.; Casiano, Matthew J.; Anderson, William E.; Heister, Stephen D.


    A feedback free fluidic oscillator was designed and integrated into a single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. The fluidic oscillator uses internal fluid dynamics to create an unsteady outlet jet at a specific frequency. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the combustor dump plane. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide with an overall O/F ratio of 11.7. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics enabling the study of a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared against equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 67% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. Additionally, computational fluid dynamics analysis of the combustor gives insight into the flow field interaction of the fluidic oscillators. The results indicate that open loop high frequency propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate.


    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley


    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  18. Multifunctional (NOx/CO/O2) Solid-State Sensors For Coal Combustion Control

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman


    Solid-state sensors were developed for coal combustion control and the understanding of sensing mechanisms was advanced. Several semiconducting metal oxides (p-type and n-type) were used to fabricate sensor electrodes. The adsorption/desorption characteristics and catalytic activities of these materials were measured with Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction (TPR) experiments. The sensitivity, selectivity, and response time of these sensors were measured for steps of NO, NO{sub 2}, CO, CO{sub 2}, O{sub 2}, and H{sub 2}O vapor in simple N{sub 2}-balanced and multi-component, simulated combustion-exhaust streams. The role of electrode microstructure and fabrication parameters on sensing performance was investigated. Proof for the proposed sensing mechanism, Differential Electrode Equilibria, was demonstrated by relating the sensing behavior (sensitivities and cross-sensitivities) of the various electrode materials to their gas adsorption/desorption behaviors and catalytic activities. A multifunctional sensor array consisting of three sensing electrodes and an integrated heater and temperature sensors was fabricated with tape-casting and screen-printing and its NO{sub x} sensing performance was measured. The multifunctional sensor demonstrated it was possible to measure NO{sub 2} independent of NO by locally heating one of the sensing electrodes. The sensor technology was licensed to Fuel FX International, Inc. Fuel FX has obtained investor funding and is developing prototype sensors as a first step in their commercialization strategy for this technology.

  19. Tunable Diode Laser Sensor for Monitoring and Control of Harsh Combustion Environments

    Energy Technology Data Exchange (ETDEWEB)

    VonDrasek, William; Melsio-Pubill, Anna


    This work represents the collaborative effort between American Air Liquide and Physical Sciences, Inc. for developing a sensor based on near-IR tunable diode lasers (TDL). The multi-species capability of the sensor for simultaneous monitoring of CO, O2, and H2O concentration as well as gas temperature is ideal for in-situ monitoring on industrial furnaces. The chemical species targeted are fundamental for controlling the combustion space for improved energy efficiency, reduced pollutants, and improved product quality, when coupling the measurement to a combustion control system. Several add-on modules developed provide flexibility in the system configuration for handling different process monitoring applications. For example, the on-Demand Power Control system for the 1.5 ?m laser is used for high particle density exhaust streams where laser transmission is problematic. For long-distance signal collection a fiber optic communication system is used to reduce noise pick-up. Finally, hardened modules to withstand high ambient temperatures, immune to EMF interference, protection from flying debris, and interfaced with pathlength control laser beam shielding probes were developed specifically for EAF process monitoring. Demonstration of these different system configurations was conducted on Charter Steel's reheat furnace, Imco Recycling, Inc. (now Aleris International, Inc.) aluminum reverberatory furnace, and Gerdau Ameristeel's EAF. Measurements on the reheat furnace demonstrated zone monitoring with the measurement performed close to the steel billet. Results from the aluminum furnace showed the benefit of measuring in-situ near the bath. In this case, low-level furnace optimization was performed and demonstrated 5% fuel savings. Monitoring tests on the EAF off-gas demonstrated the level of industrialization of the sensor to survive the harsh EAF environment. Long-term testing on the EAF has been on-going for over 6 months with essentially zero maintenance

  20. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing (United States)

    Saxena, Samveg

    Homogeneous Charge Compression Ignition (HCCI) engines are one of the most promising engine technologies for the future of energy conversion from clean, efficient combustion. HCCI engines allow high efficiency and lower CO2 emission through the use of high compression ratios and the removal of intake throttle valves (like Diesel), and allow very low levels of urban pollutants like nitric oxide and soot (like Otto). These engines, however, are not without their challenges, such as low power density compared with other engine technologies, and a difficulty in controlling combustion timing. This dissertation first addresses the power output limits. The particular strategies for enabling high power output investigated in this dissertation focus on avoiding five critical limits that either damage an engine, drastically reduce efficiency, or drastically increase emissions: (1) ringing limits, (2) peak in-cylinder pressure limits, (3) misfire limits, (4) low intake temperature limits, and (5) excessive emissions limits. The research shows that the key factors that enable high power output, sufficient for passenger vehicles, while simultaneously avoiding the five limits defined above are the use of: (1) high intake air pressures allowing improved power output, (2) highly delayed combustion timing to avoid ringing limits, and (3) using the highest possible equivalence ratio before encountering ringing limits. These results are revealed by conducting extensive experiments spanning a wide range of operating conditions on a multi-cylinder HCCI engine. Second, this dissertation discusses strategies for effectively sensing combustion characteristics on a HCCI engine. For effective feedback control of HCCI combustion timing, a sensor is required to quantify when combustion occurs. Many laboratory engines use in-cylinder pressure sensors but these sensors are currently prohibitively expensive for wide-scale commercialization. Instead, ion sensors made from inexpensive sparkplugs

  1. Controlling Crystallization of All-Inorganic Perovskite Films for Ultralow-Threshold Amplification Spontaneous Emission. (United States)

    Yong, Zi-Jun; Zhou, Yang; Ma, Ju-Ping; Chen, Ya-Meng; Yang, Jun-Yi; Song, Ying-Lin; Wang, Jing; Sun, Hong-Tao


    All-inorganic lead halide perovskites have gained considerable interest owing to their potential applications in an array of high-performance optoelectronic devices. However, producing highly luminescent, nearly pinhole-free, all-inorganic perovskite films through a simple solution process remains challenging. Here, we provide a detailed investigation of the crystallization control of inorganic perovskite films fabricated by a one-step spin-coating process. Our results reveal that the coating temperature in the fabrication process is of paramount importance in influencing perovskite crystallization and that lowering the coating temperature and fine stoichiometry modification of the precursors favor the suppression of trap states in CsPbBr 3 perovskite films. A broad range of experimental characterizations help us identify that nonsynergistic assembly of solutes, resulting from poor diffusion capability of inorganic salts, is the dominant cause for the inhomogeneous element distribution, low luminescence yield, and poor surface coverage of the resulting films. Importantly, we find that polyethylene glycol can also be used for tailoring the crystallization process, which enables the attainment of high-quality CsPbBr 3 films with a maximum luminescence yield of ∼30%. Finally, we demonstrate that amplification spontaneous emission with an ultralow threshold can be readily accomplished by using the developed film as an emissive component. Our findings provide deep insights into the crystallization control of CsPbBr 3 perovskite films and establish a systematic route to high-quality all-inorganic perovskite films, paving the way for widespread optoelectronic applications.

  2. System catalytic neutralization control of combustion engines waste gases in mining technologies (United States)

    Korshunov, G. I.; Solnitsev, R. I.


    The paper presents the problems solution of the atmospheric air pollution with the exhaust gases of the internal combustion engines, used in mining technologies. Such engines are used in excavators, bulldozers, dump trucks, diesel locomotives in loading and unloading processes and during transportation of minerals. NOx, CO, CH emissions as the waste gases occur during engine operation, the concentration of which must be reduced to the standard limits. The various methods and means are used for the problem solution, one of which is neutralization based on platinum catalysts. A mathematical model of a controlled catalytic neutralization system is proposed. The simulation results confirm the increase in efficiency at start-up and low engine load and the increase in the catalyst lifetime.

  3. Non-linear model-based predictive control of a low-temperature gasoline combustion engine


    Hoffmann, Kai


    Topic of this thesis is the development of a non-linear MPC for the lowtemperature gasoline combustion (CAI) in a four-stroke single-cylinder engine. This process must be steered without the actuator of the spark plug. Moreover, smallest changes in the ambient conditions move the self-ignition towards disadvantageous timings and a rough combustion. For actuating the combustion in the single-cylinder demonstrator, the valve timings of the electro-mechanical valve train and the direct injection...

  4. Constant speed control of four-stroke micro internal combustion swing engine (United States)

    Gao, Dedong; Lei, Yong; Zhu, Honghai; Ni, Jun


    The increasing demands on safety, emission and fuel consumption require more accurate control models of micro internal combustion swing engine (MICSE). The objective of this paper is to investigate the constant speed control models of four-stroke MICSE. The operation principle of the four-stroke MICSE is presented based on the description of MICSE prototype. A two-level Petri net based hybrid model is proposed to model the four-stroke MICSE engine cycle. The Petri net subsystem at the upper level controls and synchronizes the four Petri net subsystems at the lower level. The continuous sub-models, including breathing dynamics of intake manifold, thermodynamics of the chamber and dynamics of the torque generation, are investigated and integrated with the discrete model in MATLAB Simulink. Through the comparison of experimental data and simulated DC voltage output, it is demonstrated that the hybrid model is valid for the four-stroke MICSE system. A nonlinear model is obtained from the cycle average data via the regression method, and it is linearized around a given nominal equilibrium point for the controller design. The feedback controller of the spark timing and valve duration timing is designed with a sequential loop closing design approach. The simulation of the sequential loop closure control design applied to the hybrid model is implemented in MATLAB. The simulation results show that the system is able to reach its desired operating point within 0.2 s, and the designed controller shows good MICSE engine performance with a constant speed. This paper presents the constant speed control models of four-stroke MICSE and carries out the simulation tests, the models and the simulation results can be used for further study on the precision control of four-stroke MICSE.

  5. Spontaneous cell polarization: Feedback control of Cdc42 GTPase breaks cellular symmetry. (United States)

    Martin, Sophie G


    Spontaneous polarization without spatial cues, or symmetry breaking, is a fundamental problem of spatial organization in biological systems. This question has been extensively studied using yeast models, which revealed the central role of the small GTPase switch Cdc42. Active Cdc42-GTP forms a coherent patch at the cell cortex, thought to result from amplification of a small initial stochastic inhomogeneity through positive feedback mechanisms, which induces cell polarization. Here, I review and discuss the mechanisms of Cdc42 activity self-amplification and dynamic turnover. A robust Cdc42 patch is formed through the combined effects of Cdc42 activity promoting its own activation and active Cdc42-GTP displaying reduced membrane detachment and lateral diffusion compared to inactive Cdc42-GDP. I argue the role of the actin cytoskeleton in symmetry breaking is not primarily to transport Cdc42 to the active site. Finally, negative feedback and competition mechanisms serve to control the number of polarization sites. © 2015 WILEY Periodicals, Inc.

  6. Dynamics of Spontaneous Emission Controlled by Local Density of States in Photonic Crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter; Nikolaev, Ivan S.; van Driel, A. Floris


    We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter.......We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter....

  7. Effect of secondary air supply rate on the combustion of volatile gas in a controlled-air incinerator

    International Nuclear Information System (INIS)

    Jangsawang, W.; Vallikul, P.; Kerdsuwan, S.; Fungtammasan, B.


    Experiments have been carried out to study the effect of secondary air supply rate on the combustion of volatile gas in a controlled-air incinerator. The secondary air supply was varied at flow rates of 0.56, 1.026, 1.73 Nm 3 /min. The waste in this study was categorized into three types: namely those containing low, medium and high combustible matter. The significant results of the experimental investigation showed that increasing secondary air supply rate reduces the chamber temperature in both chambers and strong effect on CO reduction for waste with high combustible content. NO formation increases slightly as secondary air supply increases and SO 2 formation depends on the sulfur content in the waste and is insensitive to secondary air for the range of flow rate tested. (Author)

  8. Controlled combustion tests and bottom ash analysis using household waste with varying composition. (United States)

    Hu, Yanjun; Bakker, Maarten; Brem, Gerrit; Chen, Guanyi


    The influence of the co-combustion of household waste with either sewage sludge, shredder fluff, electronic and electrical waste (WEEE) or PVC on the bottom ash quality and content was investigated under controlled laboratory conditions using a pot furnace. This laboratory approach avoids the interpretation problems related to large variations in input waste composition and combustion conditions that are observed in large scale MSW incinerators. The data for metals content, transfer coefficients and leaching values are presented relative to data for a base household waste composition that did not contain any of the added special wastes. The small WEEE invited direct measurement of precious metals content in the ashes, where measurement accuracy is facilitated by using only mobile phone scrap for small WEEE. The analyses were carried out for different particle size ranges that are of relevance to the recyclability of metals and minerals in the ashes. Positive correlations were found between elements content of the input waste and the bottom ashes, and also between increased levels of Cl, Mo and Cu in the input waste and their leaching in the bottom ashes. These correlations indicate that addition of PVC, small WEEE and shredder fluff in input waste can have a negative influence on the quality of the bottom ashes. Enrichment of Au and Ag occurred in the fractions between 0.15 and 6 mm. The precious metals content represents an economically interesting intrinsic value, even when the observed peak values are properly averaged over a larger volume of ashes. Overall, it has been shown that changes in quality and content of bottom ashes may be traced back to the varied input waste composition. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Towards Control-Oriented Modeling of Natural Gas-Diesel RCCI Combustion

    NARCIS (Netherlands)

    Bekdemir, C.; Baert, R.; Willems, F.; Somers, B.


    For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The

  10. Controlled and spontaneous magnetic field generation in a gun-driven spheromak

    International Nuclear Information System (INIS)

    Woodruff, S.; Cohen, B.I.; Hooper, E.B.; Mclean, H.S.; Stallard, B.W.; Hill, D.N.; Holcomb, C.T.; Romero-Talamas, C.; Wood, R.D.; Cone, G.; Sovinec, C.R.


    In the Sustained Spheromak Physics Experiment, SSPX [E. B. Hooper, D. Pearlstein, and D. D. Ryutov, Nucl. Fusion 39, 863 (1999)], progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1 m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations (δB/B∼1% on the midplane edge) yields T e profiles peaked at >200 eV. Trends indicate a limiting beta (β e ∼4%-6%), and so we have been motivated to increase T e by operating with stronger magnetic field. Two new operating modes are observed to increase the magnetic field: (A) Operation with constant current and spontaneous gun voltage fluctuations. In this case, the gun is operated continuously at the threshold for ejection of plasma from the gun: stored magnetic energy of the spheromak increases gradually with δB/B∼2% and large voltage fluctuations (δV∼1 kV), giving a 50% increase in current amplification, I tor /I gun . (B) Operation with controlled current pulses. In this case, spheromak magnetic energy increases in a stepwise fashion by pulsing the gun, giving the highest magnetic fields observed for SSPX (∼0.7 T along the geometric axis). By increasing the time between pulses, a quasisteady sustainment is produced (with periodic good confinement), comparing well with resistive magnetohydrodynamic simulations. In each case, the processes that transport the helicity into the spheromak are inductive and exhibit a scaling of field with current that exceeds those previously obtained. We use our newly found scaling to suggest how to achieve higher temperatures with a series of pulses

  11. Controlled and Spontaneous Magnetic Field Generation in a Gun-Driven Spheromak

    International Nuclear Information System (INIS)

    Woodruff, S; Cohen, B I; Hooper, E B; McLean, H S; Stallard, B W; Hill, D N; Holcomb, C T; Romero-Talamas, C; Wood, R D; Cone, G; Sovinec, C R


    In the Sustained Spheromak Physics Experiment, SSPX, progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1-m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations ((delta)B/B∼1% on the midplane edge) yields T e profiles peaked at > 200eV. Trends indicate a limiting beta (β e ∼ 4-6%), and so we have been motivated to increase T e by operating with stronger magnetic field. Two new operating modes are observed to increase the magnetic field: (A) Operation with constant current and spontaneous gun voltage fluctuations. In this case, the gun is operated continuously at the threshold for ejection of plasma from the gun: stored magnetic energy of the spheromak increases gradually with (delta)B/B ∼2% and large voltage fluctuations ((delta)V ∼ 1kV), giving a 50% increase in current amplification, I tor /I gun . (B) Operation with controlled current pulses. In this case, spheromak magnetic energy increases in a stepwise fashion by pulsing the gun, giving the highest magnetic fields observed for SSPX (∼0.7T along the geometric axis). By increasing the time between pulses, a quasi-steady sustainment is produced (with periodic good confinement), comparing well with resistive MHD simulations. In each case, the processes that transport the helicity into the spheromak are inductive and exhibit a scaling of field with current that exceeds those previously obtained. We use our newly found scaling to suggest how to achieve higher temperatures with a series of pulses

  12. Shuttle Payload Ground Command and Control: An Experiment Implementation Combustion Module-2 Software Development, STS-107 (United States)

    Carek, David Andrew


    This presentation covers the design of a command and control architecture developed by the author for the Combustion Module-2 microgravity experiment, which flew aboard the STS-107 Shuttle mission, The design was implemented to satisfy a hybrid network that utilized TCP/IP for both the onboard segment and ground segment, with an intermediary unreliable transport for the space to ground segment. With the infusion of Internet networking technologies into Space Shuttle, Space Station, and spacecraft avionics systems, comes the need for robust methodologies for ground command and control. Considerations of high bit error links, and unreliable transport over intermittent links must be considered in such systems. Internet protocols applied to these systems, coupled with the appropriate application layer protections, can provide adequate communication architectures for command and control. However, there are inherent limitations and additional complexities added by the use of Internet protocols that must be considered during the design. This presentation will discuss the rationale for the: framework and protocol algorithms developed by the author. A summary of design considerations, implantation issues, and learned lessons will be will be presented. A summary of mission results using this communications architecture will be presented. Additionally, areas of further needed investigation will be identified.


    Directory of Open Access Journals (Sweden)

    Joner Oliveira Alves


    Full Text Available Brazilian production of PET (polyethylene terephthalate in 2010 was of 505,000 tones. The PET waste may be used to generate energy by controlled burning. In this study, emissions of light hydrocarbons generated during combustion of these wastes are characterized. Samples of post-consumer PET bottles were inserted in an electric furnace at temperatures of 600, 800 and 1000°C under an atmosphere of 15% O2 and 85% N2. The effluents were subjected to a SiC filter and channeled into the second furnace at 1000°C. Stainless steel meshes were placed in the second furnace in order to work as catalyst. Gas chromatography is used to evaluate the effluent with and without the catalyst use, wherein is showed a significant reduction in the emissions using the meshes. Results allow a characterization of the hydrocarbons generated during the controlled burning of PET waste providing information for control and recovery of these gases emissions

  14. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control. (United States)

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M


    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  15. Mult-Pollutant Control Through Novel Approaches to Oxygen Enhanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Richard Axelbaum; Pratim Biswas


    Growing concerns about global climate change have focused effortss on identifying approaches to stabilizing carbon dioxide levels in the atmosphere. One approach utilizes oxy-fuel combustion to produce a concentrated flue gas that will enable economical CO{sub 2} capture by direct methods. Oxy-fuel combustion rewuires an Air Separation Unit (ASU) to provide a high-purity stream of oxygen as well as a Compression and Purification Unit (CPU) to clean and compress the CO{sub 2} for long term storage. Overall plant efficiency will suffer from the parasitic load of both the ASU and CPU and researchers are investigating techniques to enhance other aspects of the combustion and gas cleanup proceses to improve the benefit-to-cost ratio. This work examines the influence of oxy-fuel combustion and non-carbon based sorbents on the formation and fate of multiple combustion pollutants both numerically and experimentally.

  16. Dry low combustion system with means for eliminating combustion noise (United States)

    Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.


    A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.


    Directory of Open Access Journals (Sweden)

    D. N. Gerasimov


    Full Text Available Subject of Research. Internal combustion engine as a plant is a highly nonlinear complex system that works mostly in dynamic regimes in the presence of noise and disturbances. A number of engine characteristics and parameters is not known or known approximately due to the complex structure and multimode operating of the engine. In this regard the problem of torque control is not trivial and motivates the use of modern techniques of control theory that give the possibility to overcome the mentioned problems. As a consequence, a relatively simple algorithm of adaptive torque control of injector engine is proposed in the paper. Method. Proposed method is based on nonlinear dynamic model with parametric and functional uncertainties (static characteristics which are suppressed by means of adaptive control algorithm with single adjustable parameter. The algorithm is presented by proportional control law with adjustable feedback gain and provides the exponential convergence of the control error to the neighborhood of zero equilibrium. It is shown that the radius of the neighborhood can be arbitrary reduced by the change of controller design parameters. Main Results. A dynamical nonlinear model of the engine has been designed for the purpose of control synthesis and simulation of the closed-loop system. The parameters and static functions of the model are identified with the use of data aquired during Federal Test Procedure (USA of Chevrolet Tahoe vehicle with eight cylinders 5,7L engine. The algorithm of adaptive torque control is designed, and the properties of the closed-loop system are analyzed with the use of Lyapunov functions approach. The closed-loop system operating is verified by means of simulation in the MatLab/Simulink environment. Simulation results show that the controller provides the boundedness of all signals and convergence of the control error to the neighborhood of zero equilibrium despite significant variations of engine speed. The

  18. Progress in analytical methods to predict and control azimuthal combustion instability modes in annular chambers (United States)

    Bauerheim, M.; Nicoud, F.; Poinsot, T.


    Longitudinal low-frequency thermoacoustic unstable modes in combustion chambers have been intensively studied experimentally, numerically, and theoretically, leading to significant progress in both understanding and controlling these acoustic modes. However, modern annular gas turbines may also exhibit azimuthal modes, which are much less studied and feature specific mode structures and dynamic behaviors, leading to more complex situations. Moreover, dealing with 10-20 burners mounted in the same chamber limits the use of high fidelity simulations or annular experiments to investigate these modes because of their complexity and costs. Consequently, for such circumferential acoustic modes, theoretical tools have been developed to uncover underlying phenomena controlling their stability, nature, and dynamics. This review presents recent progress in this field. First, Galerkin and network models are described with their pros and cons in both the temporal and frequency framework. Then, key features of such acoustic modes are unveiled, focusing on their specificities such as symmetry breaking, non-linear modal coupling, forcing by turbulence. Finally, recent works on uncertainty quantifications, guided by theoretical studies and applied to annular combustors, are presented. The objective is to provide a global view of theoretical research on azimuthal modes to highlight their complexities and potential.

  19. Women with spontaneous 46,XX primary ovarian insufficiency (hypergonadotropic hypogonadism) have lower perceived social support than control women (United States)

    Orshan, Susan A.; Ventura, June L.; Covington, Sharon N.; Vanderhoof, Vien H.; Troendle, James F.; Nelson, Lawrence M.


    Objective To test the hypothesis that women with spontaneous primary ovarian insufficiency differ from control women with regard to perceived social support and to investigate the relationship between perceived social support and self-esteem. Design Cross-sectional Setting Mark O. Hatfield Clinical Research Center, National Institutes of Health. Patient(s) Women diagnosed with spontaneous primary ovarian insufficiency (N=154) at a mean age of 27 years and healthy control women (N=63). Intervention(s) Administration of validated self-reporting instruments. Main Outcome Measure(s) Personal Resource Questionnaire-85 (PRQ85), Rosenberg Self-Esteem Scale Result(s) Women with primary ovarian insufficiency had significantly lower scores than controls on the perceived social support scale and the self-esteem scale. The findings remained significant after modeling with multivariate regression for differences in age, marital status, and having children. In patients there was a significant positive correlation between self-esteem scores and perceived social support. We found no significant differences in perceived social support or self-esteem related to marital status, whether or not they had children, or time since diagnosis. Conclusion(s) This evidence supports the need for prospective controlled studies. Strategies to improve social support and self-esteem might provide a therapeutic approach to reduce the emotional suffering that accompanies the life-altering diagnosis of spontaneous primary ovarian insufficiency. PMID:18829005

  20. Operative hysteroscopy versus vacuum aspiration for incomplete spontaneous abortion (HY-PER): study protocol for a randomized controlled trial. (United States)

    Huchon, Cyrille; Koskas, Martin; Agostini, Aubert; Akladios, Cherif; Alouini, Souhail; Bauville, Estelle; Bourdel, Nicolas; Fernandez, Hervé; Fritel, Xavier; Graesslin, Olivier; Legendre, Guillaume; Lucot, Jean-Philippe; Matheron, Isabelle; Panel, Pierre; Raiffort, Cyril; Fauconnier, Arnaud


    Incomplete spontaneous abortions are defined by the intrauterine retention of the products of conception after their incomplete or partial expulsion. This condition may be managed by expectant care, medical treatment or surgery. Vacuum aspiration is currently the standard surgical treatment in most centers. However, operative hysteroscopy has the advantage over vacuum aspiration of allowing the direct visualization of the retained conception product, facilitating its elective removal while limiting surgical complications. Inadequately powered retrospective studies reported subsequent fertility to be higher in patients treated by operative hysteroscopy than in those treated by vacuum aspiration. These data require confirmation in a randomized controlled trial comparing fertility rates between women undergoing hysteroscopy and those undergoing vacuum aspiration for incomplete spontaneous abortion. After providing written informed consent, 572 women with incomplete spontaneous abortion recruited from 15 centers across France will undergo randomization by a centralized computer system for treatment by either vacuum aspiration or operative hysteroscopy. Patients will not be informed of the type of treatment that they receive and will be cared for during their hospital stay in accordance with standard practices at each center. The patients will be monitored for pregnancy or adverse effects by a telephone conversation or questionnaire sent by e-mail or post over a period of two years. In cases of complications, failure of the intervention or diagnosis of uterine cavity disease, patient care will be left to the discretion of the medical center team. If our hypothesis is confirmed, this study will provide evidence that the use of operative hysteroscopy can increase the number of pregnancies continuing beyond 22 weeks of gestation in the two-year period following incomplete spontaneous abortion without increasing the incidence of morbidity and peri- and postoperative

  1. Low dose aspirin in the prevention of recurrent spontaneous preterm labour - the APRIL study: a multicenter randomized placebo controlled trial. (United States)

    Visser, Laura; de Boer, Marjon A; de Groot, Christianne J M; Nijman, Tobias A J; Hemels, Marieke A C; Bloemenkamp, Kitty W M; Bosmans, Judith E; Kok, Marjolein; van Laar, Judith O; Sueters, Marieke; Scheepers, Hubertina; van Drongelen, Joris; Franssen, Maureen T M; Sikkema, J Marko; Duvekot, Hans J J; Bekker, Mireille N; van der Post, Joris A M; Naaktgeboren, Christiana; Mol, Ben W J; Oudijk, Martijn A


    Preterm birth (birth before 37 weeks of gestation) is a major problem in obstetrics and affects an estimated 15 million pregnancies worldwide annually. A history of previous preterm birth is the strongest risk factor for preterm birth, and recurrent spontaneous preterm birth affects more than 2.5 million pregnancies each year. A recent meta-analysis showed possible benefits of the use of low dose aspirin in the prevention of recurrent spontaneous preterm birth. We will assess the (cost-)effectiveness of low dose aspirin in comparison with placebo in the prevention of recurrent spontaneous preterm birth in a randomized clinical trial. Women with a singleton pregnancy and a history of spontaneous preterm birth in a singleton pregnancy (22-37 weeks of gestation) will be asked to participate in a multicenter, randomized, double blinded, placebo controlled trial. Women will be randomized to low dose aspirin (80 mg once daily) or placebo, initiated from 8 to 16 weeks up to maximal 36 weeks of gestation. The primary outcome measure will be preterm birth, defined as birth at a gestational age (GA) aspirin is effective in preventing preterm birth, we expect that there will be cost savings, because of the low costs of aspirin. To evaluate this, a cost-effectiveness analysis will be performed comparing preventive treatment with aspirin with placebo. This trial will provide evidence as to whether or not low dose aspirin is (cost-) effective in reducing recurrence of spontaneous preterm birth. Clinical trial registration number of the Dutch Trial Register: NTR 5675 . EudraCT-registration number: 2015-003220-31.

  2. Tubular combustion

    CERN Document Server

    Ishizuka, Satoru


    Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion--some of it only now coming out of private proprietary protection. Plentiful examples of current applications along with a good explanation of background theory will offer readers an invaluable guide on this promising energy technology. Highlights include: * An introduction to the theory of tubular flames * The "how to" of maintaining stability of tubular flames through continuous combustion * Examples of both small-scal...

  3. Investigation of Active Control of Combustion Instabilities in Liquid Propellant Rocket Motors

    National Research Council Canada - National Science Library

    Zinn, B


    ... indicating that they could be employed to damp combustion instabilities. Furthermore, cold and reactive flow tests have shown that the performance of the liquid fuel actuators depends upon the injector's design and the characteristics...

  4. Formulation and analyses of vaporization and diffusion-controlled combustion of fuel sprays


    Arrieta Sanagustín, Jorge


    This dissertation focuses on the modelling of vaporization and combustion of sprays. A general two-continua formulation is given for the numerical computation of spray flows, including the treatment of the droplets as homogenized sources. Group combustion is considered, with the reaction between the fuel coming from the vaporizing droplets and the oxygen of the air modeled in the Burke-Schumann limit of infinitely fast chemical reaction, with nonunity Lewis numbers allowed for the different r...

  5. Highly controlled, reproducible measurements of aerosol emissions from combustion of a common African biofuel source

    Directory of Open Access Journals (Sweden)

    S. L. Haslett


    Full Text Available Particulate emissions from biomass burning can both alter the atmosphere's radiative balance and cause significant harm to human health. However, due to the large effect on emissions caused by even small alterations to the way in which a fuel burns, it is difficult to study particulate production of biomass combustion mechanistically and in a repeatable manner. In order to address this gap, in this study, small wood samples sourced from Côte D'Ivoire in West Africa were burned in a highly controlled laboratory environment. The shape and mass of samples, available airflow and surrounding thermal environment were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. This methodology produced remarkably repeatable results, allowing aerosol emissions to be mapped directly onto different phases of combustion. Emissions from pyrolysis were visible as a distinct phase before flaming was established. After flaming combustion was initiated, a black-carbon-dominant flame was observed during which very little organic aerosol was produced, followed by a period that was dominated by organic-carbon-producing smouldering combustion, despite the presence of residual flaming. During pyrolysis and smouldering, the two phases producing organic aerosol, distinct mass spectral signatures that correspond to previously reported variations in biofuel emissions measured in the atmosphere are found. Organic aerosol emission factors averaged over an entire combustion event were found to be representative of the time spent in the pyrolysis and smouldering phases, rather than reflecting a coupling between emissions and the mass loss of the sample. Further exploration of aerosol yields from similarly carefully controlled fires and a careful comparison with data from macroscopic fires and real-world emissions will help to deliver

  6. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Zhongxian Cheng; Yan Cao; John Smith


    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2006 through September 30, 2006. The following activities have been completed: the steel floor grating around the riser in all levels and the three-phase power supply for CFBC System was installed. Erection of downcomers, loop seals, ash bunker, thermal expansion joints, fuel and bed material bunkers with load cells, rotary air-lock valves and fuel flow monitors is underway. Pilot-scale slipstream tests conducted with bromine compound addition were performed for two typical types of coal. The purposes of the tests were to study the effect of bromine addition on mercury oxidization. From the test results, it was observed that there was a strong oxidization effect for Powder River Basin (PRB) coal. The proposed work for next quarter and project schedule are also described.

  7. Genetic control of spontaneous arthritis in a four-way advanced intercross line.

    Directory of Open Access Journals (Sweden)

    Laura Mellado Ranea

    Full Text Available Identifying the genetic basis of complex diseases, such as rheumatoid arthritis, remains a challenge that requires experimental models to reduce the genetic and environmental variability. Numerous loci for arthritis have been identified in induced animal models; however, few spontaneous models have been genetically studied. Therefore, we generated a four-way advanced intercross line (AIL from four inbred strains, including BXD2/TyJ which spontaneously develops autoimmune arthritis. A genome-wide scan for spontaneous arthritis was performed in a cohort of 366 mice of the fourth generation (G4 of this cross. Five loci contributing to clinical phenotypes were identified in chromosomes 3, 7, 13, 18, and X. Three of the loci found in this study, confirm previously identified loci; whereas two of them are novel loci. Interesting candidate genes for the loci are highlighted. This study provides a genetic overview of spontaneous arthritis in mice and aids to solve the genetic etiology of rheumatoid arthritis and to gain a better understanding of the disease.

  8. Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej


    Full Text Available Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.

  9. A Robust Model Predictive Control for efficient thermal management of internal combustion engines

    International Nuclear Information System (INIS)

    Pizzonia, Francesco; Castiglione, Teresa; Bova, Sergio


    Highlights: • A Robust Model Predictive Control for ICE thermal management was developed. • The proposed control is effective in decreasing the warm-up time. • The control system reduces coolant flow rate under fully warmed conditions. • The control strategy operates the cooling system around onset of nucleate boiling. • Little on-line computational effort is required. - Abstract: Optimal thermal management of modern internal combustion engines (ICE) is one of the key factors for reducing fuel consumption and CO 2 emissions. These are measured by using standardized driving cycles, like the New European Driving Cycle (NEDC), during which the engine does not reach thermal steady state; engine efficiency and emissions are therefore penalized. Several techniques for improving ICE thermal efficiency were proposed, which range from the use of empirical look-up tables to pulsed pump operation. A systematic approach to the problem is however still missing and this paper aims to bridge this gap. The paper proposes a Robust Model Predictive Control of the coolant flow rate, which makes use of a zero-dimensional model of the cooling system of an ICE. The control methodology incorporates explicitly the model uncertainties and achieves the synthesis of a state-feedback control law that minimizes the “worst case” objective function while taking into account the system constraints, as proposed by Kothare et al. (1996). The proposed control strategy is to adjust the coolant flow rate by means of an electric pump, in order to bring the cooling system to operate around the onset of nucleate boiling: across it during warm-up and above it (nucleate or saturated boiling) under fully warmed conditions. The computationally heavy optimization is carried out off-line, while during the operation of the engine the control parameters are simply picked-up on-line from look-up tables. Owing to the little computational effort required, the resulting control strategy is suitable for

  10. Effect of main injection timing for controlling the combustion phasing of a homogeneous charge compression ignition engine using a new dual injection strategy

    International Nuclear Information System (INIS)

    Das, Pranab; Subbarao, P.M.V.; Subrahmanyam, J.P.


    Highlights: • A new dual injection concept is developed by minimum geometry modification. • The occurrence of combustion parameters strongly depend on main injection timing. • At higher load, premixed equivalence ratio dominates over main injection timing. • Retarded of main injection timing tends to retard combustion phasing. • Slightly retarded main injection timing is recommended to avoid intense knocking. - Abstract: Homogeneous charge compression ignition combustion of diesel fuel is implemented using a novel dual injection strategy. A new experimental technique is developed to modify a single cylinder direct injection diesel engine to run on homogeneous combustion mode. Effect of main injection timing is investigated covering a range from 26 to 8 crank angle degrees before top dead center with an interval of 3°. Retarded main injection timing is identified as a control strategy for delaying combustion phasing and a means of controlled combustion phasing of direct injection homogeneous charge compression ignition combustion. Two load conditions were investigated and it was observed that at higher load, start of combustion depends more on fuel air equivalence ratio than main injection timing, whereas at low load, it significantly varies with varying main injection timing. Significant improvements in smoke and oxides of nitrogen emissions are observed when compared with the baseline conventional combustion. By studying different combustion parameters, it is observed that there is an improvement in performance and emissions with marginal loss in thermal efficiency when the main injection timing is 20° before top dead center. This is identified as the optimum main injection timing for such homogeneous combustion under the same operating condition

  11. Testing of the Engineering Model Electrical Power Control Unit for the Fluids and Combustion Facility (United States)

    Kimnach, Greg L.; Lebron, Ramon C.; Fox, David A.


    The John H. Glenn Research Center at Lewis Field (GRC) in Cleveland, OH and the Sundstrand Corporation in Rockford, IL have designed and developed an Engineering Model (EM) Electrical Power Control Unit (EPCU) for the Fluids Combustion Facility, (FCF) experiments to be flown on the International Space Station (ISS). The EPCU will be used as the power interface to the ISS power distribution system for the FCF's space experiments'test and telemetry hardware. Furthermore. it is proposed to be the common power interface for all experiments. The EPCU is a three kilowatt 12OVdc-to-28Vdc converter utilizing three independent Power Converter Units (PCUs), each rated at 1kWe (36Adc @ 28Vdc) which are paralleled and synchronized. Each converter may be fed from one of two ISS power channels. The 28Vdc loads are connected to the EPCU output via 48 solid-state and current-limiting switches, rated at 4Adc each. These switches may be paralleled to supply any given load up to the 108Adc normal operational limit of the paralleled converters. The EPCU was designed in this manner to maximize allocated-power utilization. to shed loads autonomously, to provide fault tolerance. and to provide a flexible power converter and control module to meet various ISS load demands. Tests of the EPCU in the Power Systems Facility testbed at GRC reveal that the overall converted-power efficiency, is approximately 89% with a nominal-input voltage of 12OVdc and a total load in the range of 4O% to 110% rated 28Vdc load. (The PCUs alone have an efficiency of approximately 94.5%). Furthermore, the EM unit passed all flight-qualification level (and beyond) vibration tests, passed ISS EMI (conducted, radiated. and susceptibility) requirements. successfully operated for extended periods in a thermal/vacuum chamber, was integrated with a proto-flight experiment and passed all stability and functional requirements.

  12. Virus-driven Inflammation Is Associated With the Development of bNAbs in Spontaneous Controllers of HIV. (United States)

    Dugast, Anne-Sophie; Arnold, Kelly; Lofano, Giuseppe; Moore, Sarah; Hoffner, Michelle; Simek, Melissa; Poignard, Pascal; Seaman, Michael; Suscovich, Todd J; Pereyra, Florencia; Walker, Bruce D; Lauffenburger, Doug; Kwon, Douglas S; Keele, Brandon F; Alter, Galit


    Understanding the mechanism(s) by which broadly neutralizing antibodies (bNAbs) emerge naturally following infection is crucial for the development of a protective vaccine against human immunodeficiency virus (HIV). Although previous studies have implicated high viremia and associated immune activation as potential drivers for the development of bNAbs, here we sought to unlink the effect of these 2 parameters by evaluating the key inflammatory predictors of bNAb development in HIV-infected individuals who spontaneously control HIV in the absence of antiretroviral therapy ("controllers"). The breadth of antibody-mediated neutralization against 11 tier 2 or 3 viruses was assessed in 163 clade B spontaneous controllers of HIV. Plasma levels of 17 cytokines were screened in the same set of subjects. The relationship of the inflammatory signature was assessed in the context of viral blips or viral RNA levels in peripheral blood or gastrointestinal biopsies from aviremic controllers (HIV controllers who developed bNAbs. Interestingly, viral load and tissue viremia, but not intermittent viral blips, were associated with these cytokine profiles. However, viral diversity was not significantly associated with increased breadth in controllers. These results suggest that low antigenic diversity in the setting of a unique inflammatory profile associated with antigen persistence may be linked to the evolution of neutralizing antibody breadth. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail:

  13. [Effects of mechanical ventilation and controlled spontaneous respiration on pulmonary function during short duration of general anesthesia with tracheal intubation]. (United States)

    Jiang, Hai; Jin, San-Qing; Lin, Shi-Qing; Jiang, Xiao-Pu; Chen, Xi-Hui


    To evaluate the effects of mechanical ventilation on pulmonary function during short duration of general anesthesia with tracheal intubation, and assess the safety of controlled spontaneous respiration during general anesthesia. Fifty-three adult patients (aged 18-55 years, ASA physical status I-II) scheduled for elective unilateral tympanoplasty were randomly assigned into mechanical ventilation group (group M, n=28) and spontaneous respiration group (group S, n=25). Anesthesia induction was performed in group M with intravenous propofol (2 mg/kg), fentanyl (3 microgmechanical ventilation began with VT 8 ml0.05). The pH and SpO(2) [ (97.9-/+1.00)% at the lowest] and PaO(2) in group S were significantly lower and the PaCO(2) was higher than those in group M (P0.05), nor were moving, bucking, swallowing and awareness recorded during the surgical procedures. In essentially normal lungs, short-term mechanical ventilation during general anesthesia with tracheal intubation does not damage the lung functions, and spontaneous respiration can offer sufficient oxygen supply without causing harmful carbon dioxide retention.

  14. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process (United States)

    Cooper, Beth A.; Young, Judith A.


    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  15. Passive autocatalytic recombiners for combustible gas control in advanced light water reactors

    International Nuclear Information System (INIS)

    Wolff, U.; Sliter, G.


    A key aspect of the worldwide effort to develop advanced nuclear power plants is designing to address severe accident phenomena, including the generation of hydrogen during core melt progression (metal-water and core-concrete reactions). This design work not only resolves safety concerns with hydrogen, but also supports the development of a technical basis for simplification of off-site emergency planning. The dominant challenge to any emergency planning approach is a large, early containment failure due to pressure excursions. Among the potential contributors to large and rapid increases in containment pressure is hydrogen combustion. The more improbable a containment-threatening combustion becomes, the more appropriate the argument for significant emergency planning simplification. As discussed in this paper, catalytic recombiners provide a means to passively and reliably limit hydrogen combustion to a continuous oxidation process with virtually no potential for containment failure in passive advanced light water reactors (ALWRs). (author)

  16. Controle de ruídos em postos de combustíveis: estudo de caso

    Directory of Open Access Journals (Sweden)

    Flávio Eduardo Amaral Herzer


    Full Text Available Os altos níveis de ruído urbano têm se transformado nas últimas décadas em uma das formas de poluição que mais tempreocupado os agentes de saúde. Os valores registrados acusam níveis de desconforto tão altos que a poluição sonora urbanapassou a ser considerada como a forma de poluição que atinge o maior número de pessoas. Existem medidas eficazes no seucontrole, mas ainda são poucas as empresas que adotam medidas de controle e programas de conservação auditiva. Dessa forma, oobjetivo do trabalho foi de avaliar o nível de ruído aos quais os funcionários e usuários de postos de combustíveis estão expostosdiariamente. O levantamento de dados quantitativos foi feito medindo-se o nível de ruído diretamente na fonte emissora e fazendomedias aritméticas com as amostras obtidas. As médias obtidas revelaram que o ambiente de trabalho não é ideal, ou seja, o ruídopode afetar diretamente a comunicação e a produtividade dos trabalhadores. Com o objetivo de prevenir ou estabilizar as perdasauditivas aos quais estão sujeitos os trabalhadores e freqüentadores do referido posto foram propostas medidas para a implantaçãode um Programa de Conservação Auditiva (PCA.Abstract The high noise level in urban has changed, inthe last decades, in some way of pollution that has worriedthe health agents. The value registered accused levels of sohigh discomfort that the urban sound pollution passed to beconsidered as a kind of pollution that hit the outnumberedpeople. There are efficient measures in its control, but stillthere are few companies that adopt measure control andauditive conservation program. This way, the objective ofthe work was to evaluate the noise level in which theemployees and users of the gas station are daily exposed.The survey of quantitative datum was done measuring thenoise level right in the emission source and makingarithmetic means with the gotten sample. The averageobtained revealed that the working

  17. A practical approach for modelling and control of biomass pyrolysis pilot plant with heat recovery from combustion of pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Abbassi, Mohamed Ammar; Grioui, Najla; Halouani, Kamel [Micro-Electro-Thermal Systems - Industrial Energy Systems Group (METS-ENIS), IPEIS, University of Sfax, B.P: 1172 - 3018, Sfax (Tunisia); Zoulalian, Andre [Laboratoire d' Etudes et de Recherches sur le Materiau Bois (LERMAB), Universite Henri Poincare Nancy 1 (UHP), B.P: 239 - 54506 Vandoeuvre, les Nancy Cedex (France); Zeghmati, Belkacem [LAMPS-GME, Universite de Perpignan Via Domitia, 52, Avenue Paul Alduy 66860 Perpignan Cedex (France)


    A pilot plant of biomass pyrolysis using pyrolysis products as fuel has been tested and shown to improve energy balance of the process and to be environmentally friendly by avoiding rejection of pyrolysis pollutants fumes into the atmosphere. The high number of parameters involved in a pyrolysis process makes it difficult to specify an optimum procedure for charcoal yield and pyrolysis cycle durability. So the knowledge of the essential parameters which govern the kinetics mechanisms of the biomass thermal decomposition and the combustion of pyrolysis gases is very useful to understand the operating cycle of the plant. In the present study a thermochemical model is developed in order to simulate and control the operating cycle of the system. The effect of the inlet molar air flow rate on the temporal evolution of biomass mass loss rate and temperatures in the different active zones of the pilot plant as well as the determination of the critical inlet molar air flow rate for which accidental runaway of combustion reactions occurs are presented. To avoid this accidental phenomenon a Proportional-Integral-Derived (PID) anticipated regulation is used in order to control temperatures evolution in the different zones of the device and avoid the runaway of combustion reactions. (author)

  18. Alkali injection system with controlled CO.sub.2 /O.sub.2 ratios for combustion of coal (United States)

    Berry, Gregory F.


    A high temperature combustion process for an organic fuel containing sulfur n which the nitrogen of air is replaced by carbon dioxide for combination with oxygen with the ratio of CO.sub.2 /O.sub.2 being controlled to generate combustion temperatures above 2000 K. for a gas-gas reaction with SO.sub.2 and an alkali metal compound to produce a sulfate and in which a portion of the carbon-dioxide rich gas is recycled for mixing with oxygen and/or for injection as a cooling gas upstream from heating exchangers to limit fouling of the exchangers, with the remaining carbon-dioxide rich gas being available as a source of CO.sub.2 for oil recovery and other purposes.

  19. Dry sorbent injection of trona to control acid gases from a pilot-scale coal-fired combustion facility

    Directory of Open Access Journals (Sweden)

    Tiffany L. B. Yelverton


    Full Text Available  Gaseous and particulate emissions from the combustion of coal have been associated with adverse effects on human and environmental health, and have for that reason been subject to regulation by federal and state governments. Recent regulations by the United States Environmental Protection Agency have further restricted the emissions of acid gases from electricity generating facilities and other industrial facilities, and upcoming deadlines are forcing industry to consider both pre- and post-combustion controls to maintain compliance. As a result of these recent regulations, dry sorbent injection of trona to remove acid gas emissions (e.g. HCl, SO2, and NOx from coal combustion, specifically 90% removal of HCl, was the focus of the current investigation. Along with the measurement of HCl, SO2, and NOx, measurements of particulate matter (PM, elemental (EC, and organic carbon (OC were also accomplished on a pilot-scale coal-fired combustion facility. Gaseous and particulate emissions from a coal-fired combustor burning bituminous coal and using dry sorbent injection were the focus of the current study. From this investigation it was shown that high levels of trona were needed to achieve the goal of 90% HCl removal, but with this increased level of trona injection the ESP and BH were still able to achieve greater than 95% fine PM control. In addition to emissions reported, measurement of acid gases by standard EPA methods were compared to those of an infrared multi-component gas analyzer. This comparison revealed good correlation for emissions of HCl and SO2, but poor correlation in the measurement of NOx emissions.

  20. Controlling the heat release in HCCI combustion of DME with methanol and EGR

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper; Yanai, Tadanori


    The effects of methanol and EGR on HCCI combustion of dimethyl ether have been tested separately in a diesel engine. The engine was equipped with a common rail injection system which allowed for random injection of DME. The engine could therefore be operated either as a normal DI CI engine or...

  1. Intelligent Combustion. A gas boiler with a new control and safety device using the signals of a semiconductor-sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rusche, S.; Kostrzewa, G.


    The present controls of small gas boilers use an actual differential pressure of the flowing air to regulate the gas valve. It is also possible to combine the change of the gas flow rate and the air volume mechanically. In both of these methods, it is neglected that the air volume required for complete combustion is strongly affected by changing gas quality. The article discusses the use of a BaSnO3 semiconductor control sensor, which is heated by the flame and changes electrical resistance with temperature, O2 and CO content in the burning chamber. It also describes a new burner concept using the sensor.

  2. Controls and measurements of KU engine test cells for biodiesel, SynGas, and assisted biodiesel combustion (United States)

    Cecrle, Eric Daniel

    This thesis is comprised of three unique data acquisition and controls (CDAQ) projects. Each of these projects differs from each other; however, they all include the concept of testing renewable or future fuel sources. The projects were the following: University of Kansas's Feedstock-to-Tailpipe Initiative's Synthesis Gas Reforming rig, Feedstock-to-Tailpipe Initiative's Biodiesel Single Cylinder Test Stand, and a unique Reformate Assisted Biodiesel Combustion architecture. The main responsibility of the author was to implement, develop and test CDAQ systems for the projects. For the Synthesis Gas Reforming rig, this thesis includes a report that summarizes the analysis and solution of building a controls and data acquisition system for this setup. It describes the purpose of the sensors selected along with their placement throughout the system. Moreover, it includes an explanation of the planned data collection system, along with two models describing the reforming process useful for system control. For the Biodiesel Single Cylinder Test Stand, the responsibility was to implement the CDAQ system for data collection. This project comprised a variety of different sensors that are being used collect the combustion characteristics of different biodiesel formulations. This project is currently being used by other graduates in order to complete their projects for subsequent publication. For the Reformate Assisted Biodiesel Combustion architecture, the author developed a reformate injection system to test different hydrogen and carbon monoxide mixtures as combustion augmentation. Hydrogen combustion has certain limiting factors, such as pre-ignition in spark ignition engines and inability to work as a singular fuel in compression ignition engines. To offset these issues, a dual-fuel methodology is utilized by injecting a hydrogen/carbon monoxide mixture into the intake stream of a diesel engine operating on biodiesel. While carbon monoxide does degrade some of the

  3. Combustion control and model based optimization. Modeling of combustion process and development of supporting control systems for plant operation; Palamisprosessin saeaetoe ja mallipohjainen optimointi; Voimalaitoksen polttoprosessin mallitus ja saeaetoe sekae operoinnin tukiohjelmien kehitys ja testaus

    Energy Technology Data Exchange (ETDEWEB)

    Kortela, U.; Mononen, J.; Leppaekoski, K.; Hiltunen, J.; Jouppila, M.; Karppinen, R. [Oulu Univ. (Finland). Systems Engineering Lab.


    The aims of the project are to develop the combustion control strategies and to minimize the flue gas emissions. The common goal of the studies has been the reduction of flue gas emissions by using advanced control and optimization methods. The behaviour of different kind of boilers and fuels has been modelled using experimental data from fullscale plants, such as a 42 MW bubbling fluidized bed boiler, 23 MW bubbling fluidized bed boiler and a 300 MW circulating fluidized bed boiler. Many of the individual observations and modelled correlations between control variables and flue gas emissions have lead to operation instructions and/or re-organized control schemes which help to control total emissions. The most part of this knowledge can be formed to the standard IF- THEN - type rules which contain some uncertainty or fuzziness. Rule-based instruction system for the reduction of flue gas emissions is under work. (orig.)

  4. A stochastic logical system approach to model and optimal control of cyclic variation of residual gas fraction in combustion engines

    International Nuclear Information System (INIS)

    Wu, Yuhu; Kumar, Madan; Shen, Tielong


    Highlights: • An in-cylinder pressure based measuring method for the RGF is derived. • A stochastic logical dynamical model is proposed to represent the transient behavior of the RGF. • The receding horizon controller is designed to reduce the variance of the RGF. • The effectiveness of the proposed model and control approach is validated by the experimental evidence. - Abstract: In four stroke internal combustion engines, residual gas from the previous cycle is an important factor influencing the combustion quality of the current cycle, and the residual gas fraction (RGF) is a popular index to monitor the influence of residual gas. This paper investigates the cycle-to-cycle transient behavior of the RGF in the view of systems theory and proposes a multi-valued logic-based control strategy for attenuation of RGF fluctuation. First, an in-cylinder pressure sensor-based method for measuring the RGF is provided by following the physics of the in-cylinder transient state of four-stroke internal combustion engines. Then, the stochastic property of the RGF is examined based on statistical data obtained by conducting experiments on a full-scale gasoline engine test bench. Based on the observation of the examination, a stochastic logical transient model is proposed to represent the cycle-to-cycle transient behavior of the RGF, and with the model an optimal feedback control law, which targets on rejection of the RGF fluctuation, is derived in the framework of stochastic logical system theory. Finally, experimental results are demonstrated to show the effectiveness of the proposed model and the control strategy.

  5. Combustion noise (United States)

    Strahle, W. C.


    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  6. Related or not? Development of spontaneous Creutzfeldt-Jakob disease in a patient with chronic, well-controlled HIV: A case report and review of the literature. (United States)

    Babi, M-Alain; Kraft, Bryan D; Sengupta, Sweta; Peterson, Haley; Orgel, Ryan; Wegermann, Zachary; Lugogo, Njira L; Luedke, Matthew W


    We report a novel case of a rare disease: spontaneous Creutzfeldt-Jakob disease in a patient with well-controlled HIV. We explore the relationship between spontaneous Creutzfeldt-Jakob disease and HIV. A 66-year-old man with long-standing, well-controlled HIV infection presented with 3 months of progressive, subacute neurocognitive decline. His symptoms included conceptual apraxia, apathy, memory impairment, and gait disturbance, and were initially attributed to depressive "pseudo-dementia." Unfortunately, the patient's symptoms rapidly progressed and he ultimately succumbed to his illness. Autopsy confirmed the clinical diagnosis of spontaneous Creutzfeldt-Jakob disease. This case highlights spontaneous Creutzfeldt-Jakob disease as a rare terminal illness in the setting of well-controlled chronic HIV. To our knowledge, this is the first report of a patient with chronic and previously well-controlled HIV infection dying from a prion disease. Despite the very different epidemiology and pathophysiology of HIV and spontaneous Creutzfeldt-Jakob disease, this case does raise questions of whether certain host genetic factors could predispose to both conditions, albeit currently, there is no clear causal link between HIV and spontaneous Creutzfeldt-Jakob disease.

  7. Pilot Testing of WRI'S Novel Mercury Control Technology by Pre-Combustion Thermal Treatment of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Alan Bland; Jesse Newcomer; Kumar Sellakumar


    The challenges to the coal-fired power industry continue to focus on the emission control technologies, such as mercury, and plant efficiency improvements. An alternate approach to post-combustion control of mercury, while improving plant efficiency deals with Western Research Institute's (WRI)'s patented pre-combustion mercury removal and coal upgrading technology. WRI was awarded under the DOE's Phase III Mercury program, to evaluate the effectiveness of WRI's novel thermal pretreatment process to achieve >50% mercury removal, and at costs of <$30,000/lb of Hg removed. WRI has teamed with Etaa Energy, Energy and Environmental Research Center (EERC), Foster Wheeler North America Corp. (FWNA), and Washington Division of URS (WD-URS), and with project co-sponsors including Electric Power Research Institute (EPRI), Southern Company, Basin Electric Power Cooperative (BEPC), Montana-Dakota Utilities (MDU), North Dakota Industrial Commission (NDIC), Detroit Edison (DTE), and SaskPower to undertake this evaluation. The technical objectives of the project were structured in two phases: Phase I--coal selection and characterization, and bench-and PDU-scale WRI process testing and; and Phase II--pilot-scale pc combustion testing, design of an integrated boiler commercial configuration, its impacts on the boiler performance and the economics of the technology related to market applications. This report covers the results of the Phase I testing. The conclusion of the Phase I testing was that the WRI process is a technically viable technology for (1) removing essentially all of the moisture from low rank coals, thereby raising the heating value of the coal by about 30% for subbituminous coals and up to 40% for lignite coals, and (2) for removing volatile trace mercury species (up to 89%) from the coal prior to combustion. The results established that the process meets the goals of DOE of removing <50% of the mercury from the coals by pre-combustion methods

  8. The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age.

    Directory of Open Access Journals (Sweden)

    Raja Kittappa


    Full Text Available Parkinson disease affects more than 1% of the population over 60 y old. The dominant models for Parkinson disease are based on the use of chemical toxins to kill dopamine neurons, but do not address the risk factors that normally increase with age. Forkhead transcription factors are critical regulators of survival and longevity. The forkhead transcription factor, foxa2, is specifically expressed in adult dopamine neurons and their precursors in the medial floor plate. Gain- and loss-of-function experiments show this gene, foxa2, is required to generate dopamine neurons during fetal development and from embryonic stem cells. Mice carrying only one copy of the foxa2 gene show abnormalities in motor behavior in old age and an associated progressive loss of dopamine neurons. Manipulating forkhead function may regulate both the birth of dopamine neurons and their spontaneous death, two major goals of regenerative medicine.

  9. Modelling spontaneous combustion in wet lignite (United States)

    Gong, Rose; Burnell, John G.; Wake, Graeme C.


    A model of self-heating of wet coal is presented. This involves coupled heat and mass transport within a coal pile, together with an exothermic reaction and phase changes of water. There are four state variables: temperature, oxygen, water vapour and liquid water concentrations. Heat and mass are conducted or diffused through the pile, while simultaneously undergoing chemical reaction. As demonstrated by experiment, the heat release rate depends in a quadratic fashion on the liquid water content and this feature is a distinctive aspect of the model. After development of the model, an illustrative spatially uniform model of just three state variables (temperature, oxygen and liquid water concentrations) is analysed for its bifurcational structure of steady states, periodic solutions and their stability. By this means, thresholds for the onset of ignition can be determined as a function of the physical and chemical parameters.

  10. 1995 EPRI/EPA joint symposium on stationary combustion NO{sub x} control

    Energy Technology Data Exchange (ETDEWEB)

    Herzau, J.; Kubik, D.; Wanninger, K. [and others


    Combustion Modification (CM) is an often used technique for reducing NO{sub X}. formation from utility boilers. CM can be implemented by changing boiler operation parameters using the existing firing equipment, or through hardware modifications. Achievable potential NO{sub x} reduction levels and long term operational effects of either approach are boiler specific. Implementation of either methodology can lead to changes in boiler operating efficiency, reliability, availability, and maintenance costs. An economic analysis of alternatives must accurately reflect associated costs. Proper implementation of the selected NO{sub x} reduction technology is essential in preventing the transformation of an emission problem into an operational problem. In a joint effort by ComEd, EPRI, and Radian Corporation, a technique has been developed to facilitate the comparison of the long term cost effectiveness of each means of implementing combustion modification. The approach begins with Baseline and Exploratory Combustion Modification (ECM) testing. Baseline tests identify critical operational design parameters. ECM testing determines the flexibility of the existing furnace to accommodate operational and/or hardware changes. The resultant test data is integrated into the Radian Furnace Simulation Model (FSM). The Radian FSM is state-of-the-art three dimensional, 2 phase flow, fluid dynamic model of the boiler furnace. The model simulates furnace conditions by drawing extensively from experience and combustion data. The model computes NO{sub x} values and operational rating factors used to compare CM approaches. These factors may include emissions concentrations, staging, waterwall corrosion potential, and flue gas temperature. These calculated factors can then be used to evaluate long term effects of CM alternatives.

  11. Intelligent emissions controller for substance injection in the post-primary combustion zone of fossil-fired boilers (United States)

    Reifman, Jaques; Feldman, Earl E.; Wei, Thomas Y. C.; Glickert, Roger W.


    The control of emissions from fossil-fired boilers wherein an injection of substances above the primary combustion zone employs multi-layer feedforward artificial neural networks for modeling static nonlinear relationships between the distribution of injected substances into the upper region of the furnace and the emissions exiting the furnace. Multivariable nonlinear constrained optimization algorithms use the mathematical expressions from the artificial neural networks to provide the optimal substance distribution that minimizes emission levels for a given total substance injection rate. Based upon the optimal operating conditions from the optimization algorithms, the incremental substance cost per unit of emissions reduction, and the open-market price per unit of emissions reduction, the intelligent emissions controller allows for the determination of whether it is more cost-effective to achieve additional increments in emission reduction through the injection of additional substance or through the purchase of emission credits on the open market. This is of particular interest to fossil-fired electrical power plant operators. The intelligent emission controller is particularly adapted for determining the economical control of such pollutants as oxides of nitrogen (NO.sub.x) and carbon monoxide (CO) emitted by fossil-fired boilers by the selective introduction of multiple inputs of substances (such as natural gas, ammonia, oil, water-oil emulsion, coal-water slurry and/or urea, and combinations of these substances) above the primary combustion zone of fossil-fired boilers.

  12. Spontaneous pneumothorax

    Directory of Open Access Journals (Sweden)

    Davari R


    Full Text Available A case with bilateral spontaneous pneumothorax was presented. Etiology, mechanism, and treatment were discussed on the review of literature. Spontaneous Pneumothorax is a clinical entity resulting from a sudden non traumatic rupture of the lung. Biach reported in 1880 that 78% of 916 patients with spontaneous pneumothorax had tuberculosis. Kjergaard emphasized 1932 the primary importance of subpleural bleb disease. Currently the clinical spectrum of spontaneous pneumothorax seems to have entered a third era with the recognition of the interstitial lung disease and AIDS as a significant etiology. Standard treatment is including: observation, thoracocentesis, tube thoracostomy. Chemical pleurodesis, bullectomy or wedge resection of lung with pleural abrasion and occasionally pleurectomy. Little information has been reported regarding the efficacy of such treatment in spontaneous pneumothorax secondary to non bleb disease

  13. Study on the combustion process in a modern diesel engine controlled by pre-injection strategy (United States)

    Punov, P.; Milkov, N.; Perilhon, C.; Podevin, P.; Evtimov, T.


    The paper aims to study the combustion process in a modern diesel engine over the engine operating map. In order to study the rate of heat release (ROHR), an automotive diesel engine was experimentally tested using the injection parameters factory defined. The experimental test was conducted over the engine operating map as the engine speed was limited to 2400 rpm. Then, an engine simulation model was developed in AVL Boost. By means of that model the ROHR was estimated and approximated by means of double Vibe function. In all engine operating points we found two peaks at the ROHR. The first is a result of the pilot injection as the second corresponds to the main injection. There was not found an overlap between both peaks. It was found that the first peak of ROHR occurs closely before top dead center (BTDC) at partial load than full load. The ROHR peak as a result of main injection begins from 4°BTDC to 18°ATDC. It starts earlier with increasing engine speed and load. The combustion duration varies from 30 ºCA to 70 °CA. In order to verify the results pressure curve was estimated by means of defined Vibe function parameters and combustion duration. As a result, we observed small deviation between measured and simulated pressure curves.

  14. Flash Atomization: A New Concept to Control Combustion Instability in Water-Injected Gas Turbines

    Directory of Open Access Journals (Sweden)

    Vishwas Iyengar


    Full Text Available The objective of this work is to explore methods to reduce combustor rumble in a water-injected gas turbine. Attempts to use water injection as a means to reduce NOX emissions in gas turbines have been largely unsuccessful because of increased combustion instability levels. This pulsation causes chronic fretting, wear, and fatigue that damages combustor components. Of greater concern is that liberated fragments could cause extensive damage to the turbine section. Combustion instability can be tied to the insufficient atomization of injected water; large water droplets evaporate non-uniformly that lead to energy absorption in chaotic pulses. Added pulsation is amplified by the combustion process and acoustic resonance. Effervescent atomization, where gas bubbles are injected, is beneficial by producing finely atomized droplets; the gas bubbles burst as they exit the nozzles creating additional energy to disperse the liquid. A new concept for effervescent atomization dubbed “flash atomization” is presented where water is heated to just below its boiling point in the supply line so that some of it will flash to steam as it leaves the nozzle. An advantage of flash atomization is that available heat energy can be used rather than mechanical energy to compress injection gas for conventional effervescent atomization.

  15. Review of best available techniques for the control of pollution from the combustion of fuels manufactured from or including waste

    International Nuclear Information System (INIS)


    This report is a technical review of the techniques available for controlling pollution from combustion processes burning fuels (over 3 MW thermal input) manufactured from or including the following: Waste and recovered oil; Refuse derived fuel; Rubber tyres and other rubber waste; Poultry litter; Wood and straw. This review forms the basis for the revision of the Chief Inspector's Guidance Notes referring to the prescribed processes listed with special emphasis on recommending achievable releases to all environmental media. In formulating achievable releases account is taken of technologies in operation in the UK and overseas. (UK)

  16. Measures for a quality combustion (combustion chamber exit and downstream); Mesures pour une combustion de qualite (sortie de chambre de combustion et en aval)

    Energy Technology Data Exchange (ETDEWEB)

    Epinat, G. [APAVE Lyonnaise, 69 (France)


    After a review of the different pollutants related to the various types of stationary and mobile combustion processes (stoichiometric, reducing and oxidizing combustion), measures and analyses than may be used to ensure the quality and efficiency of combustion processes are reviewed: opacimeters, UV analyzers, etc. The regulation and control equipment for combustion systems are then listed, according to the generator capacity level

  17. Methods for the control of NOx and particles in the combustion; Metodos para el control de NOx y particulas en la combustion

    Energy Technology Data Exchange (ETDEWEB)

    Romo Millares, Cesar A. [Instituto de Investigaciones Electrica, Cuernavaca (Mexico)


    This present the techniques and equipment of control of transmissions for thermoelectric power stations appear that have mayor possibilities of being considered in the future immediate within the national energetic panorama and the frame established by the environmental normative. The subject polluting compounds to overhaul are oxides of nonburned nitrogen and particles [Espanol] Se presentan las tecnicas y equipos de control de emisiones para centrales termoelectricas que tienen mayores posibilidades de ser consideradas en el futuro inmediato dentro del panorama energetico nacional y el marco establecido por la normatividad ambiental. Los compuestos contaminantes sujetos a revision son los oxidos de nitrogeno y las particulas inquemadas

  18. Homogeneous surface oxidation of organosilicates by controlled combustion of adsorbed fuels: a facile method for low-temperature processing. (United States)

    Feller, Bob E; Deline, Vaughn R; Bass, John; Knoesen, André; Miller, Robert D


    We have developed a method for the oxidation of organosilicate materials at temperatures considerably lower than those typically required for uncatalyzed oxidation. The process utilizes a combustible fuel delivered to the surface in an oxidizing environment to locally oxidize materials with carbon-silicon bonds. It also provides a level of control that cannot be achieved through standard high-energy top-to-bottom oxidative procedures such as UV-ozone and O2 plasmas. While the latter processes attack the outer interface, local oxidation can be achieved using our process by manipulating the distribution of the combustible fuel. We use this technique to generate oxidized porous organosilicate films with either a sharp oxidation front or uniform oxidation where the relative carbon content can be controlled through the film thickness depending on processing conditions. Further, we show that this process can also be used to seal bulk interconnected microporosity in films (<1 nm) without substantially changing the refractive index of the material. For both the nominally dense and porous films, the surface oxidation is accompanied by an increase in the Young's modulus and the oxidized films can be readily functionalized using standard silane chemistry to provide a variety of chemical functionalities.

  19. Low emission internal combustion engine (United States)

    Karaba, Albert M.


    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  20. Pulse-mediated chemotherapy enhances local control and survival in a spontaneous canine model of primary mucosal melanoma. (United States)

    Spugnini, Enrico P; Dragonetti, Emanuele; Vincenzi, Bruno; Onori, Nicoletta; Citro, Gennaro; Baldi, Alfonso


    Mucosal melanomas account for 1% of all malignant melanomas in humans. Treatment options include surgery, chemotherapy, immunotherapy and radiation therapy; however, local recurrence and distant dissemination are still frequent. We treated locally aggressive spontaneous canine oral melanomas that, because of their advanced stage, were not treatable with conventional strategies. A cohort of 10 dogs with oral melanoma was enrolled over a 4-year period. The dogs received two sessions of local bleomycin, followed by the application of trains of biphasic pulses. The treatment was well tolerated and resulted in an overall response rate of 80% with 50% long-term control. Of interest, only one of the dogs died of metastatic disease, and four of the long-term survivors showed a vitiligo-like discoloration at the site of treatment, potentially suggesting a recruitment of the immune system by the therapy. Further studies are needed to characterize this approach and to determine its suitability for head and neck mucosal melanoma.

  1. Chronic baroreflex activation restores spontaneous baroreflex control and variability of heart rate in obesity-induced hypertension. (United States)

    Iliescu, Radu; Tudorancea, Ionut; Irwin, Eric D; Lohmeier, Thomas E


    The sensitivity of baroreflex control of heart rate is depressed in subjects with obesity hypertension, which increases the risk for cardiac arrhythmias. The mechanisms are not fully known, and there are no therapies to improve this dysfunction. To determine the cardiovascular dynamic effects of progressive increases in body weight leading to obesity and hypertension in dogs fed a high-fat diet, 24-h continuous recordings of spontaneous fluctuations in blood pressure and heart rate were analyzed in the time and frequency domains. Furthermore, we investigated whether autonomic mechanisms stimulated by chronic baroreflex activation and renal denervation-current therapies in patients with resistant hypertension, who are commonly obese-restore cardiovascular dynamic control. Increases in body weight to ∼150% of control led to a gradual increase in mean arterial pressure to 17 ± 3 mmHg above control (100 ± 2 mmHg) after 4 wk on the high-fat diet. In contrast to the gradual increase in arterial pressure, tachycardia, attenuated chronotropic baroreflex responses, and reduced heart rate variability were manifest within 1-4 days on high-fat intake, reaching 130 ± 4 beats per minute (bpm) (control = 86 ± 3 bpm) and ∼45% and baroreflex activation and renal denervation abolished the hypertension. However, only baroreflex activation effectively attenuated the tachycardia and restored cardiac baroreflex sensitivity and heart rate variability. These findings suggest that baroreflex activation therapy may reduce the risk factors for cardiac arrhythmias as well as lower arterial pressure.

  2. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W


    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  3. Different patients, different outcomes: A case-control study of spontaneous coronary artery dissection versus acute coronary syndrome. (United States)

    Adams, Heath; Paratz, Elizabeth; Somaratne, Jithendra; Layland, Jamie; Burns, Andrew; Palmer, Sonny; MacIsaac, Andrew; Whitbourn, Robert


    There is progressive interest worldwide in spontaneous coronary artery dissection (SCAD). To identify a SCAD cohort and compare risk factors, presentation, and management outcomes compared to acute coronary syndrome (ACS) matched controls. Retrospective analysis was performed from 2000 to 2015. Clinical data included a neuropsychiatric history, with management and clinical outcomes assessed at 12 months. Patients were matched on a 1:3 case-control basis according to type of ACS. Twenty-two SCAD patients were matched to 66 controls by ACS type (ST-elevation myocardial infarction 45%, Non-ST-elevation myocardial infarction 41%, unstable angina 14%). The SCAD group were more likely female (77.3% vs 19.7%, P SCAD patients had a high prevalence of anxiety, depression or previous neuropsychiatric history (52.4% SCAD vs 1.5% ACS, P SCAD patients (13.6% SCAD vs 83.3% ACS, P SCAD vs 27.3% ACS P = NS). SCAD affects young females with a paucity of cardiovascular risk factors. The major risk factor for SCAD was a history of anxiety, depression, or neuropsychiatric illness. A conservative approach to SCAD revascularization led to similar MACCE when compared to ACS controls undergoing guideline revascularization at 12 months. © 2017, Wiley Periodicals, Inc.


    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman


    We have made great progress in both developing solid state sensors for coal combustion control and understanding the mechanism by which they operate. We have fabricated and tested numerous sensors and identified the role electrode microstructure plays in sensor response. We have developed both p-type (La{sub 2}CuO{sub 4}) and n-type (WO{sub 3}) semiconducting NO{sub x} sensing electrodes. We have demonstrated their respective sensing behavior (sensitivities and cross-sensitivities), related this behavior to their gas adsorption/desorption behavior and catalytic activity, and in so doing verified that our proposed Differential Electrode Equilibria is a more comprehensive sensing mechanism. These investigations and their results are summarized below. The composition and microstructure of the sensing electrode is the key parameters that influence the sensing performance. We investigated the effect of electrode microstructure on the NO{sub x} sensitivity and response time using a La{sub 2}CuO{sub 4}-based potentiometric sensor. Temperature dependence, cross-sensitivity and selectivities of a La{sub 2}CuO{sub 4}- and WO{sub 3}-based potentiometric NO{sub x} sensor were investigated both in N{sub 2} and in a simulated exhaust gas. We performed temperature programmed reaction (TPR) and desorption (TPD) experiments to determine the reaction and adsorption characteristics of O{sub 2}, NO{sub x}, CO, CO{sub 2}, and their mixtures on the electrodes, and related the results to sensor performance. In order to optimize the sensor electrode microstructure, powders were prepared using four different powder synthesis routes, resulting in different particle size distributions and BET surface areas. Different sintering conditions were also applied. The microstructure of electrodes, synthesized with the same composition, has a dramatic effect on both sensitivity and response time of potentiometric NO sensors, showing that large surface areas generate a porous morphology with smaller

  5. Primer on spontaneous heating and pyrophoricity

    Energy Technology Data Exchange (ETDEWEB)


    This primer was prepared as an information resource for personnel responsible for operation of DOE nuclear facilities. It has sections on combustion principles, spontaneous heating/ignition of hydrocarbons and organics, pyrophoric gases and liquids, pyrophoric nonmetallic solids, pyrophoric metals (including Pu and U), and accident case studies. Although the information in this primer is not all-encompassing, it should provide the reader with a fundamental knowledge level sufficient to recognize most spontaneous combustion hazards and how to prevent ignition and widespread fires. This primer is provided as an information resource only, and is not intended to replace any fire protection or hazardous material training.

  6. Spontaneous Swallowing during All-Night Sleep in Patients with Parkinson Disease in Comparison with Healthy Control Subjects. (United States)

    Uludag, Irem Fatma; Tiftikcioglu, Bedile Irem; Ertekin, Cumhur


    Spontaneous saliva swallows (SS) appear especially during sleep. The rate of SS was rarely investigated in all-night sleep in patients with Parkinson disease (PD). Dysphagia is a frequent symptom in PD, but the rate of SS was never studied with an all-night sleep electroencephalogram (EEG). A total of 21 patients with PD and 18 age-matched healthy controls were included in the study. Frequencies of SS and coughing were studied in all-night sleep recordings of patients with PD and controls. During all-night sleep, video-EEG 12-channel recording was used including the electromyography (EMG) of the swallowing muscles, nasal airflow, and recording of vertical laryngeal movement using a pair of EEG electrodes over the thyroid cartilage. The total number of SS was increased while the mean duration of sleep was decreased in PD when compared to controls. Sialorrhea and clinical dysphagia, assessed by proper questionnaires, had no effect in any patient group. The new finding was the so-called salvo type of consecutive SS in one set of swallowing. The amount of coughing was significantly increased just after the salvo SS. In PD, the rate of SS was not sufficient to demonstrate the swallowing disorder, such as oropharyngeal dysphagia, but the salvo type of SS was quite frequent. This is a novel finding and may contribute to the understanding of swallowing problems in patients with dysphagic or nondysphagic PD. © 2016 Associated Professional Sleep Societies, LLC.

  7. Spontaneous pre-stimulus fluctuations in the activity of right fronto-parietal areas influence inhibitory control performance

    Directory of Open Access Journals (Sweden)

    Camille F. Chavan


    Full Text Available Inhibitory control refers to the ability to suppress planned or ongoing cognitive or motor processes. Electrophysiological indices of inhibitory control failure have been found to manifest even before the presentation of the stimuli triggering the inhibition, suggesting that pre-stimulus brain-states modulate inhibition performance. However, previous electrophysiological investigations on the state-dependency of inhibitory control were based on averaged event-related potentials, a method eliminating the variability in the ongoing brain activity not time-locked to the event of interest. These studies thus left unresolved whether spontaneous variations in the brain-state immediately preceding unpredictable inhibition-triggering stimuli also influence inhibitory control performance.To address this question, we applied single-trial EEG topographic analyses on the time interval immediately preceding NoGo stimuli in conditions where the responses to NoGo trials were correctly inhibited (correct rejection vs. committed (false alarms during an auditory spatial Go/NoGo task.We found a specific configuration of the EEG voltage field manifesting more frequently before correctly inhibited responses to NoGo stimuli than before false alarms. There was no evidence for an EEG topography occurring more frequently before false alarms than before correct rejections. The visualization of distributed electrical source estimations of the EEG topography preceding successful response inhibition suggested that it resulted from the activity of a right fronto-parietal brain network.Our results suggest that the fluctuations in the ongoing brain activity immediately preceding stimulus presentation contribute to the behavioral outcomes during an inhibitory control task. Our results further suggest that the state-dependency of sensory-cognitive processing might not only concern perceptual processes, but also high-order, top-down inhibitory control mechanisms.

  8. Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine

    International Nuclear Information System (INIS)

    Andwari, Amin Mahmoudzadeh; Aziz, Azhar Abdul; Said, Mohd Farid Muhamad; Latiff, Zulkarnain Abdul


    Highlights: • Investigate the effect of In-EGR, Ex-EGR and octane number on a CAI 2-stroke engine. • Effect of In-EGR, Ex-EGR and octane number on combustion phasing of the engine. • Effect of In-EGR, Ex-EGR and octane number on cyclic variability of the engine. • Identify the CAI combustion upper and lower boundary for operating regions. - Abstract: A two-stroke cycle engine incorporated with a controlled auto-ignition combustion approach presents a high thermodynamic efficiency, ultra-low exhaust emissions and high power-to-weight ratio features for future demand of prime movers. The start of auto-ignition, control of the auto-ignition and its cyclic variability, are major concerns that should be addressed in the combustion timing control of controlled auto-ignition engines. Several studies have been performed to examine the effect of internal exhaust gas recirculation utilization on auto-ignited two-stroke cycle engines. However, far too little attention has been devoted to study on the influence of external exhaust gas recirculation on the cyclic variation and the combustion characteristics of controlled auto-ignition two-stroke cycle engines. The purpose of this study is to examine the influence of external exhaust gas recirculation in combination with internal exhaust gas recirculation on the combustion characteristics and the cyclic variability of a controlled auto-ignition two-stroke engine using fuel with different octane numbers. In a detailed experimental investigation, the combustion-related and pressure-related parameters of the engine are examined and statistically associated with the coefficient of variation and the standard deviation. The outcomes of the investigation indicates that the most influential controlled auto-ignition combustion phasing parameters can be managed appropriately via regulating the internal and external exhaust gas recirculation and fuel octane number. In general, start of auto-ignition and its cyclic variability are

  9. Electrical control of spontaneous emission and strong coupling for a single quantum dot

    DEFF Research Database (Denmark)

    Laucht, A.; Hofbauer, F.; Hauke, N.


    coupling regime, and electrical control of zerodimensional polaritons is demonstrated for the highest-Q cavities (Q > 12 000). Vacuum Rabi splittings up to 120μeV are observed, larger than the linewidths of either the decoupled exciton ( 6 40μeV) or cavity mode. These observations represent a voltage...

  10. Internal combustion engine control for series hybrid electric vehicles by parallel and distributed genetic programming/multiobjective genetic algorithms (United States)

    Gladwin, D.; Stewart, P.; Stewart, J.


    This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control

  11. Spontaneous deregulation

    NARCIS (Netherlands)

    Edelman, Benjamin; Geradin, Damien

    Platform businesses such as Airbnb and Uber have risen to success partly by sidestepping laws and regulations that encumber their traditional competitors. Such rule flouting is what the authors call “spontaneous private deregulation,” and it’s happening in a growing number of industries. The authors

  12. Microbiota and metabolome during controlled and spontaneous fermentation of Nocellara Etnea table olives. (United States)

    Randazzo, Cinzia Lucia; Todaro, Aldo; Pino, Alessandra; Pitino, Iole; Corona, Onofrio; Caggia, Cinzia


    This study is aimed to investigate bacterial community and its dynamics during the fermentation of Nocellara Etnea table olives and to study its effect on metabolome formation. Six different combination of bacterial cultures (BC1-BC6) were used as starters for table olive fermentation and one additional process, conducted without addition of any starters, was used as control (C). The processes were conducted in triplicate and, overall, 21 vessels were performed at industrial scale. The fermentation was monitored for 120 days through culture-dependent and -independent approaches. Microbial counts of the main microbial groups revealed slight differences among brine samples, with the exception of LAB counts and Enterobacteriaceae, which were higher and lower, respectively, in most of the inoculated samples than the control ones. In addition, results demonstrated that the use of bacterial cultures (except the BC1), singly or in different combinations, clearly influenced the fermentation process reducing the final pH value below 4.50. When microbiota was investigated through sequencing analysis, data revealed the presence of halophilic bacteria and, among lactobacilli, the dominance of Lactobacillus plantarum group at the initial stage of fermentation, in all brine samples, except in the BC5 in which dominated Lactobacillus casei group. At 60 and 120 days of fermentation, an overturned bacterial ecology and an increase of biodiversity was observed in all samples, with the occurrence of Lactobacillus paracollinoides, Lactobacillus acidipiscis and Pediococcus parvulus. Correlation between bacterial OTU and volatile organic compounds (VOCs) revealed that, aldehydes and alcohol compounds exhibited a positive correlation with Proteobacteria, while several esters with LAB and Hafnia. In particular, esters, associated with fruity and floral notes, were positively correlated to L. paracollinoides, L. acidipiscis, and P. parvulus species. Although the VOCs amounts were sample

  13. The status and control countermeasure of SO{sub 2} and other pollutants emission by coal combustion in some cities of China

    Energy Technology Data Exchange (ETDEWEB)

    Qin Junjie; Liu Wenxin; Li Wenhua [Beijing Research Institute of Coal Chemistry, Beijing (China)


    The state of atmospheric pollution in China's cities is described, and in particular, environmental pollution caused by coal combustion in Beijing, Shanghai, Chongqing, Guiyang and Guilin. Coal consumption and coal quality in these cities, and countermeasures for pollution control, are considered. 2 refs.

  14. Improved Recovery Boiler Performance Through Control of Combustion, Sulfur, and Alkali Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Larry L.


    This project involved the following objectives: 1. Determine black liquor drying and devolatilization elemental and total mass release rates and yields. 2. Develop a public domain physical/chemical kinetic model of black liquor drop combustion, including new information on drying and devolatilization. 3. Determine mechanisms and rates of sulfur scavenging in recover boilers. 4. Develop non-ideal, public-domain thermochemistry models for alkali salts appropriate for recovery boilers 5. Develop data and a one-dimensional model of a char bed in a recovery boiler. 6. Implement all of the above in comprehensive combustion code and validate effects on boiler performance. 7. Perform gasification modeling in support of INEL and commercial customers. The major accomplishments of this project corresponding to these objectives are as follows: 1. Original data for black liquor and biomass data demonstrate dependencies of particle reactions on particle size, liquor type, gas temperature, and gas composition. A comprehensive particle submodel and corresponding data developed during this project predicts particle drying (including both free and chemisorbed moisture), devolatilization, heterogeneous char oxidation, char-smelt reactions, and smelt oxidation. Data and model predictions agree, without adjustment of parameters, within their respective errors. The work performed under these tasks substantially exceeded the original objectives. 2. A separate model for sulfur scavenging and fume formation in a recovery boiler demonstrated strong dependence on both in-boiler mixing and chemistry. In particular, accurate fume particle size predictions, as determined from both laboratory and field measurements, depend on gas mixing effects in the boilers that lead to substantial particle agglomeration. Sulfur scavenging was quantitatively predicted while particle size required one empirical mixing factor to match data. 3. Condensed-phase thermochemistry algorithms were developed for salt

  15. Combustion physics (United States)

    Jones, A. R.


    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  16. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)


    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  17. Improvement of spontaneous language in stroke patients with chronic aphasia treated with music therapy: a randomized controlled trial. (United States)

    Raglio, Alfredo; Oasi, Osmano; Gianotti, Marta; Rossi, Agnese; Goulene, Karine; Stramba-Badiale, Marco


    The aim of this research is to evaluate the effects of active music therapy (MT) based on free-improvisation (relational approach) in addition to speech language therapy (SLT) compared with SLT alone (communicative-pragmatic approach: Promoting Aphasic's Communicative Effectiveness) in stroke patients with chronic aphasia. The experimental group (n = 10) was randomized to 30 MT individual sessions over 15 weeks in addition to 30 SLT individual sessions while the control group (n = 10) was randomized to only 30 SLT sessions during the same period. Psychological and speech language assessment were made before (T0) and after (T1) the treatments. The study shows a significant improvement in spontaneous speech in the experimental group (Aachener Aphasie subtest: p = 0.020; Cohen's d = 0.35); the 50% of the experimental group showed also an improvement in vitality scores of Short Form Health Survey (chi-square test = 4.114; p = 0.043). The current trial highlights the possibility that the combined use of MT and SLT can lead to a better result in the rehabilitation of patients with aphasia than SLT alone.

  18. Spontaneous control of HIV-1 viremia in a subject with protective HLA-B plus HLA-C alleles and HLA-C associated single nucleotide polymorphisms


    Moroni, M.; Ghezzi, S.; Baroli, P.; Heltai, S.; De Battista, D.; Pensieroso, S.; Cavarelli, M.; Dispinseri, S.; Vanni, I.; Pastori, C.; Zerbi, P.; Tosoni, A.; Vicenzi, E.; Nebuloni, M.; Wong, K.


    Introduction Understanding the mechanisms by which some individuals are able to naturally control HIV-1 infection is an important goal of AIDS research. We here describe the case of an HIV-1+ woman, CASE1, who has spontaneously controlled her viremia for the last 14 of her 20 years of infection. Methods CASE1 has been clinically monitored since 1993. Detailed immunological, virological and histological analyses were performed on samples obtained between 2009 and 2011. Results As for other Eli...

  19. Formation and Control of Sulfur Oxides in Sour Gas Oxy-Combustion: Prediction Using a Reactor Network Model

    KAUST Repository

    Bongartz, Dominik


    © 2015 American Chemical Society. Sour natural gas currently requires expensive gas cleanup before it can be used in power generation because it contains large amounts of hydrogen sulfide (H2S) and carbon dioxide (CO2) that entail a low heating value and highly corrosive combustion products. A potential alternative is to use the gas directly in a gas turbine process employing oxy-fuel combustion, which could eliminate the need for gas cleanup while also enabling the application of carbon capture and sequestration, possibly combined with enhanced oil recovery (EOR). However, the exact influence of an oxy-fuel environment on the combustion products of sour gas has not been quantified yet. In this work, we used a reactor network model for the combustor and the gas turbine together with our recently assembled and validated detailed chemical reaction mechanism for sour gas combustion to investigate the influence of some basic design parameters on the combustion products of natural gas and sour gas in CO2 or H2O diluted oxy-fuel combustion as well as in conventional air combustion. Our calculations show that oxy-fuel combustion produces up to 2 orders of magnitude less of the highly corrosive product sulfur trioxide (SO3) than air combustion, which clearly demonstrates its potential in handling sulfur containing fuels. Unlike in air combustion, in oxy-fuel combustion, SO3 is mainly formed in the flame zone of the combustor and is then consumed as the combustion products are cooled in the dilution zone of the combustor and the turbine. In oxy-fuel combustion, H2O dilution leads to a higher combustion efficiency than CO2 dilution. However, if the process is to be combined with EOR, CO2 dilution makes it easier to comply with the very low levels of oxygen (O2) required in the EOR stream. Our calculations also show that it might even be beneficial to operate slightly fuel-rich because this simultaneously decreases the O2 and SO3 concentration further. The flame zone

  20. Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine


    Broatch Jacobi, Jaime Alberto; Margot , Xandra; Novella Rosa, Ricardo; Gómez-Soriano, Josep


    In the last decade, different advanced combustion concepts based on generating totally or partially premixed conditions have been investigated in CI (compression ignition) engines with the aim of achieving lower NOx (nitrous oxides) and soot emissions. Most of the drawbacks inherent to this type of combustions, such as the combustion phasing control or combustion stability, can be mitigated by combining the PPC (Partially Premixed Combustion) concept fueled by gasoline and a small...

  1. Y2 receptor signalling in NPY neurons controls bone formation and fasting induced feeding but not spontaneous feeding. (United States)

    Qi, Yue; Fu, Melissa; Herzog, Herbert


    Y2 receptors have been implicated in the development of obesity and are a potential target for obesity treatment due to their known role of inhibiting neuropeptide Y (NPY) induced feeding responses. However, the precise neuronal population on which Y2 receptors act to fulfil this role is less clear. Here we utilise a novel inducible, postnatal onset NPY neurons specific deletion model to investigate the functional consequences of loss of Y2 signalling in this population of neurons on feeding and energy homeostasis regulation. While the consequences of lack of Y2 signalling in NPY neurons are confirmed in terms of the uncoupling of suppression/increasing of NPY and pro-opiomelanocortin (POMC) mRNA expression in the arcuate nuclei (Arc), respectively, this lack of Y2 signalling surprisingly does not have any significant effect on spontaneous food intake. Fasting induced food intake, however, is strongly increased but only in the first 1h after re-feeding. Consequently no significant changes in body weight are being observed although body weight gain is increased in male mice after postnatal onset Y2 deletion. Importantly, another known function of central Y2 receptor signalling, the suppression of bone formation is conserved in this conditional model with whole body bone mineral content being decreased. Taken together this model confirms the critical role of Y2 signalling to control NPY and associated POMC expression in the Arc, but also highlights the possibility that others, non-NPY neuronal Y2 receptors, are also involved in controlling feeding and energy homeostasis regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Handbook of air pollution from internal combustion engines: pollutant formation and control

    National Research Council Canada - National Science Library

    Sher, Eran


    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix PART I OVERViEW . 1. Motor Vehicle Emissions Control: Achievements, Future Prospects Past 3 John B. Heywood Sun Jae Professor of Mechanical Engineering...

  3. Controllability and flexibility analysis of CO2 post-combustion capture using piperazine and MEA

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Ricardez-Sandoval, Luis; Jørgensen, John Bagterp


    In this study, we developed a decentralized control scheme and investigate the performance of the piperazine (PZ) and monoethanolamine (MEA) CO2 capture process for industrially-relevant operation scenarios. The base for the design of the control schemes is Relative Gain Array (RGA) analysis comb...

  4. Central command does not suppress baroreflex control of cardiac sympathetic nerve activity at the onset of spontaneous motor activity in the decerebrate cat. (United States)

    Matsukawa, Kanji; Ishii, Kei; Asahara, Ryota; Idesako, Mitsuhiro


    Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in animals. We have examined whether baroreflex control of cardiac sympathetic nerve activity (CSNA) and/or cardiovagal baroreflex sensitivity are altered at the onset of spontaneously occurring motor behavior, which was monitored with tibial nerve activity in paralyzed, decerebrate cats. CSNA exhibited a peak increase (126 ± 17%) immediately after exercise onset, followed by increases in HR and mean arterial pressure (MAP). With development of the pressor response, CSNA and HR decreased near baseline, although spontaneous motor activity was not terminated. Atropine methyl nitrate (0.1-0.2 mg/kg iv) with little central influence delayed the initial increase in HR but did not alter the response magnitudes of HR and CSNA, while atropine augmented the pressor response. The baroreflex-induced decreases in CSNA and HR elicited by brief occlusion of the abdominal aorta were challenged at the onset of spontaneous motor activity. Spontaneous motor activity blunted the baroreflex reduction in HR by aortic occlusion but did not alter the baroreflex inhibition of CSNA. Similarly, atropine abolished the baroreflex reduction in HR but did not influence the baroreflex inhibition of CSNA. Thus it is likely that central command increases CSNA and decreases cardiac vagal outflow at the onset of spontaneous motor activity while preserving baroreflex control of CSNA. Accordingly, central command must attenuate cardiovagal baroreflex sensitivity against an excess rise in MAP as estimated from the effect of muscarinic blockade. Copyright © 2016 the American Physiological Society.

  5. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph


    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  6. Biofuels Combustion (United States)

    Westbrook, Charles K.


    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  7. Biofuels combustion. (United States)

    Westbrook, Charles K


    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  8. Effects of Prenatal Micronutrient Supplementation on Spontaneous Preterm Birth: A Double-Blind Randomized Controlled Trial in China. (United States)

    Li, Zhiwen; Mei, Zuguo; Zhang, Le; Li, Hongtian; Zhang, Yali; Li, Nan; Ye, Rongwei; Ren, Aiguo; Liu, Jian-Meng; Serdula, Mary K


    In this secondary analysis of data from a double-blind randomized controlled trial carried out in northern China, we aimed to assess the effect of prenatal supplementation with multiple micronutrients (MMN) or iron + folic acid (IFA), versus folic acid (FA) alone, on risk of spontaneous preterm birth (SPB) and the impact of supplementation timing on SPB. A total of 18,775 nulliparous pregnant women enrolled between 2006 and 2009 were randomly assigned to receive daily FA, IFA, or MMN from the period before 20 weeks' gestation to delivery. The incidences of SPB for women consuming FA, IFA, and MMN were 5.7%, 5.6% and 5.1%, respectively. Compared with women given FA, the relative risks of SPB for those using MMN and IFA were 0.99 (95% confidence interval: 0.85, 1.16) and 0.89 (95% confidence interval: 0.79, 1.05), respectively. SPB incidence in women who started consuming FA, IFA, and MMN before the 12th week of gestation (4.6%, 4.2%, and 3.9%, respectively) was significantly reduced compared with starting supplement use on or after the 12th gestational week (6.9%, 7.2%, and 6.4%, respectively). Starting use of FA, IFA, or MMN supplements before the 12th week of gestation produced a 41%-45% reduction in risk of SPB. Early prenatal enrollment and micronutrient use during the first trimester of pregnancy appeared to be of particular importance for prevention of SPB, regardless of supplement group. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail:

  9. β- and α2-Adrenoceptor Control of Vascular Tension and Catecholamine Release in Female Normotensive and Spontaneously Hypertensive Rats. (United States)

    Berg, Torill


    As in humans, young, female, spontaneously hypertensive rats (SHR) have a lower blood pressure than male SHR. In male, normotensive rats (WKY), α 2 - and β 1+2 -adrenoceptors (AR) reciprocally controlled catecholamine release and vascular smooth muscle tension. This interaction was malfunctioning in male SHR. The present study analyzed if a favorable shift in the α 2 /β 1+2 AR interaction may represent an antihypertensive protection in females. Female SHR (early hypertension, 12-14 weeks) and age-matched WKY were infused with tyramine (15 min) to stimulate norepinephrine (NE) release through the reuptake transporter, consequently preventing reuptake. Presynaptic control of vesicular release was therefore reflected as differences in overflow to plasma. The released NE increased total peripheral vascular resistance (TPR). The results showed that β 1>2 AR facilitated tyramine-stimulated NE release in both strains, also in the presence of α 2 AR-antagonist (L-659,066). βAR-antagonist (atenolol-β 1 , ICI-118551-β 2 , nadolol-β 1+2 ) had no effect on the increased secretion of epinephrine after L-659,066 in WKY, but β 1>2 AR-antagonist augmented the L-659,066-induced increase in the secretion of epinephrine in SHR. Nadolol increased the TPR response to tyramine with a greater effect in WKY than SHR, whereas β 1or2 -selective antagonists did not. One βAR-subtype may therefore substitute for the other. When both β 1+2 AR were blocked, α 2 AR-antagonist still reduced the TPR response in WKY but not SHR. Thus, α 2 /β 1+2 AR reciprocally controlled catecholamine release, with a particular negative β 1 AR-influence on α 2 AR-auto-inhibition of epinephrine secretion in SHR. Moreover, in these female rats, β 1/2 AR-independent α 2 AR-mediated vasoconstriction was seen in WKY but not SHR, but β 1/2 AR-mediated vasodilation downregulated adrenergic vasoconstriction, not only in WKY but also in SHR.

  10. Active lubrication applied to internal combustion engines - evaluation of control strategies

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar


    of reducing friction losses and vibrations between the crankshaft and the bearings. The conventional hydrodynamic lubrication is combined with hydrostatic lubrication which is actively modified by radially injecting oil at controllable pressures, through orifices circumferentially located around the bearing....... The behaviour of such parameters is compared to the case when the bearing operates with conventional hydrodynamic lubrication....

  11. Dynamic behavior and control requirements of an atmospheric fluidized-bed coal combustion power plant: A conceptual study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, O.L.


    A first-principles model of a nominal 20-MW atmospheric-pressure fluidized-bed coal combustion (AFBC) power plant was developed to provide insight into fundamental dynamic behavior of fluidized-bed systems. The control system included major loops for firing rate, steam pressure and temperature, forced and induced draft air flow, SO/sub 2/ emission, drum water level, evaporator recirculation, and bed level. The model was used to investigate system sensitivity to design features such as the distribution of heat transfer surface among the bed boiler and superheater and the out-of-bed superheater. Also calculated were the sensitivities of temperatures, pressures, and flow rates to changes in throttle, attemperator, and feedwater valve settings and forced and induced draft damper settings. The large bed mass, accounting for approx.40% of the active heat capacity, may vary under load change and could impact controller tuning. Model analysis indicated, however, that for the design studied, the change in bed mass does not appear to significantly affect controller tuning even if the bed mass varies appreciably under load-following conditions. Several bed designs are being considered for AFBC plants, some with partitions between bed sections and some without, and these differences may significantly affect the load-following capability of the plant. The results indicated that the slumping mode of operation can cause distortion of the heat source/sink distribution in the bed such that the load-following capability (rate of load change) of the plant may be reduced by as much as a factor of 5 compared with the mode in which tube surface is exposed. 9 refs., 13 figs., 6 tabs.

  12. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika


    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  13. Experiences of co-combustion and quality control of industrial waste in Sweden and Europe; Erfarenheter av samfoerbraenning och kvalitetssaekring av verksamhetsavfall i Sverige och Europa

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Elisabet; Ekvall, Annika; Gustavsson, Lennart; Robertson, Kerstin; Sundqvist, Jan-Olov [Swedish National Testing and Research Inst. (SP), Boraas (Sweden)


    the fuel has a stable quality over time, and that fuel particle size is even and suitable. In several cases, problems with slagging and fouling on heat exchanger surfaces and also corrosion has been experienced. The content of zinc and chlorine e.g. in surface coatings as well as PVC plastics plays a significant role. Sorting out such material as well as pre-treatment improve the situation considerably. In other cases, co-combustion can lead to positive synergistic effects, e,g, concerning emissions. In most cases, complete QA systems for the fuel are not employed. However, some kind of specification of heating value, PVC content, content of CCA treated wood etc are often used, which are mainly controlled by the eye. QA systems which correspond to those used in Finland and Germany has not yet been established in Sweden. The report is concluded by an assessment of the need for further R and D within the field.

  14. Coherent control of cooperative spontaneous emission from two identical three-level atoms in a photonic crystal (United States)

    Woldeyohannes, Mesfin; Idehenre, Ighodalo; Hardin, Tyler


    The coherent control of cooperative spontaneous emission from two identical non-overlapping three-level atoms in the V-configuration located within a photonic band gap (PBG) material with two resonant frequencies near the upper band edge of the PBG and confined to a region small in comparison to their radiation wavelengths but still greater than their atomic sizes is investigated. The dependencies of cooperative effects in which a photon emitted by one atom is reabsorbed by the other atom on the inter-atomic separation, on the initial state of the two-atom system, on the strength of the driving control laser field, and on the detuning of the atomic resonant frequencies from the upper band edge frequency is analyzed so as to identify the conditions for which these cooperative effects are enhanced or inhibited. Cooperative effects between atoms are shown to be influenced more by the PBG than by the nature of the atomic transitions involved. Excited state populations as well as coherences between excited levels are expressed in terms of time-dependent amplitudes which are shown to satisfy coupled integro-differential equations for which analytic solutions are derived under special conditions. Unlike for the case of one atom in a PBG where the fractional non-zero steady state populations on the excited levels as well as the coherence between the excited levels are constants independent of time, in the case of two atoms in PBG these quantities continuously oscillate as a manifestation of beating due to the continuous exchange between the two atoms of the photon trapped by the PBG. The values of these quantities as well as the amplitudes and frequencies of their oscillations depend of the parameters of the system, providing different ways of manipulating the system. The general formalism presented here is shown to recapture the special results of investigations of similar systems in free space when the non-Markovian memory kernels of the PBG are replaced by delta

  15. Turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)


    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  16. Low dose aspirin in the prevention of recurrent spontaneous preterm labour the APRIL study : a multicenter randomized placebo controlled trial

    NARCIS (Netherlands)

    Visser, Laura; de Boer, Marjon A.; de Groot, Christianne J. M.; Nijman, Tobias A. J.; Hemels, Marieke A. C.; Bloemenkamp, Kitty W. M.; Bosmans, Judith E.; Kok, Marjolein; van Laar, Judith O.; Sueters, Marieke; Scheepers, Hubertina; van Drongelen, Joris; Franssen, Maureen T. M.; Sikkema, J. Marko; Duvekot, Hans J. J.; Bekker, Mireille N.; van der Post, Joris A. M.; Naaktgeboren, Christiana; Mol, Ben W. J.; Oudijk, Martijn A.


    Background: Preterm birth (birth before 37 weeks of gestation) is a major problem in obstetrics and affects an estimated 15 million pregnancies worldwide annually. A history of previous preterm birth is the strongest risk factor for preterm birth, and recurrent spontaneous preterm birth affects more

  17. Low dose aspirin in the prevention of recurrent spontaneous preterm labour - the APRIL study: a multicenter randomized placebo controlled trial

    NARCIS (Netherlands)

    Visser, L de; Boer, M.A. de; Groot, C.J. de; Nijman, T.A.; Hemels, M.A.C.; Bloemenkamp, K.W.; Bosmans, J.E.; Kok, M. de; Laar, J.O. van; Sueters, M.; Scheepers, H.; Drongelen, J. van; Franssen, M.T.; Sikkema, J.M.; Duvekot, H.J.; Bekker, M.N.; Post, J.A. van der; Naaktgeboren, C.; Mol, B.W.; Oudijk, M.A.


    BACKGROUND: Preterm birth (birth before 37 weeks of gestation) is a major problem in obstetrics and affects an estimated 15 million pregnancies worldwide annually. A history of previous preterm birth is the strongest risk factor for preterm birth, and recurrent spontaneous preterm birth affects more

  18. Low dose aspirin in the prevention of recurrent spontaneous preterm labour - the APRIL study : a multicenter randomized placebo controlled trial

    NARCIS (Netherlands)

    Visser, Laura; de Boer, Marjon A; de Groot, Christianne J M; Nijman, Tobias A J; Hemels, Marieke A C; Bloemenkamp, Kitty W M; Bosmans, Judith E; Kok, Marjolein; van Laar, Judith O; Sueters, Marieke; Scheepers, Hubertina; van Drongelen, Joris; Franssen, Maureen T M; Sikkema, J Marko; Duvekot, Hans J J; Bekker, Mireille N; van der Post, Joris A M; Naaktgeboren, Christiana; Mol, Ben W J; Oudijk, Martijn A


    BACKGROUND: Preterm birth (birth before 37 weeks of gestation) is a major problem in obstetrics and affects an estimated 15 million pregnancies worldwide annually. A history of previous preterm birth is the strongest risk factor for preterm birth, and recurrent spontaneous preterm birth affects more

  19. Low dose aspirin in the prevention of recurrent spontaneous preterm labour - the APRIL study: a multicenter randomized placebo controlled trial

    NARCIS (Netherlands)

    Visser, Laura; de Boer, Marjon A.; de Groot, Christianne J. M.; Nijman, Tobias A. J.; Hemels, Marieke A. C.; Bloemenkamp, Kitty W. M.; Bosmans, Judith E.; Kok, Marjolein; van Laar, Judith O.; Sueters, Marieke; Scheepers, Hubertina; van Drongelen, Joris; Franssen, Maureen T. M.; Sikkema, J. Marko; Duvekot, Hans J. J.; Bekker, Mireille N.; van der Post, Joris A. M.; Naaktgeboren, Christiana; Mol, Ben W. J.; Oudijk, Martijn A.


    Preterm birth (birth before 37 weeks of gestation) is a major problem in obstetrics and affects an estimated 15 million pregnancies worldwide annually. A history of previous preterm birth is the strongest risk factor for preterm birth, and recurrent spontaneous preterm birth affects more than 2.5

  20. Ministerial Decree of 30 March 1978 on the exclusion of nuclear installations from the application of the requirements on combustion control

    International Nuclear Information System (INIS)


    This Decree was made by the Italian Minister for Industry, Commerce and Crafts; it lays down that nuclear installations governed by Act No. 1860 of 31 December 1962 on the Peaceful Uses of Nuclear Energy and by Presidential Decree No. 185 of 13 February 1964 on Radiation Protection and excluded from the scope of are Royal Order No. 824 of 12 May 1927 on combustion control. (NEA) [fr

  1. Role of hindbrain melanocortin-4 receptor activity in controlling cardiovascular and metabolic functions in spontaneously hypertensive rats. (United States)

    do Carmo, Jussara M; da Silva, Alexandre A; Hall, John E


    Although we previously demonstrated that activation of central nervous system (CNS) melanocortin3/4 receptors (MC3/4R) play a key role in blood pressure (BP) regulation, especially in spontaneously hypertensive rats (SHRs), the importance of hindbrain MC4R is still unclear. In the present study, we examined the cardiovascular and metabolic effects of chronic inhibition of MC3/4R in the hindbrain of SHRs and normotensive Wistar-Kyoto (WKY) rats. Male WKY rats (n = 6) and SHRs (n = 7) were implanted with telemetry probes to measure BP and heart rate (HR) 24 h/day, and an intracerebroventricular cannula was placed into the fourth ventricle. After 10 days of recovery and 5 days of control measurements, the MC3/4R antagonist (SHU-9119) was infused into the fourth ventricle (1 nmol/h) to antagonize hindbrain MC4R for 10 days, followed by a 5-day recovery period. Chronic hindbrain MC3/4R antagonism significantly increased food intake and body weight in WKY rats (17 ± 1 to 35 ± 2 g/day and 280 ± 8 to 353 ± 8 g) and SHRs (19 ± 2 to 35 ± 2 g/day and 323 ± 7 to 371 ± 11 g), and markedly increased fasting insulin and leptin levels while causing no changes in blood glucose levels (99 ± 4 to 87 ± 4 and 89 ± 5 to 89 ± 4 mg/dl, respectively, for WKY rats and SHRs). Chronic SHU-9119 infusion reduced mean arterial pressure and HR similarly in WKY rats (-8 ± 1 mmHg and -47 ± 3 b.p.m.) and SHRs (-11 ± 3 mmHg and -44 ± 3 b.p.m.). These results suggest that although hindbrain MC4R activity contributes to appetite and HR regulation, it does not play a major role in mediating the elevated BP in SHRs.

  2. Combustible caramel pour reacteurs de recherche: Experience acquise en fabrication, controles et irradiation du coeur d'osiris (United States)

    de Contenson, Ghislain; Foulquier, Henri; Trotabas, Maria; Vignesoult, Nicole; Cerles, Jean-Marie; Delafosse, Jacques


    L'un des aboutissements des différentes actions menées en France concernant la conception, la fabrication et le développement des combustibles nucléaires a été la mise au point par le CEA d'un combustible de type plaque (combustible CARAMEL) susceptible d'être adapté a différentes catégories de réacteurs à eau (réacteur de puissance, propulsion navale, chauffage urbain, pile de recherche). Ces travaux ont été couronnés par la réalisation de tout un coeur et des recharges du réacteur de recherche à hautes performances, Osiris, à Saclay. L'ancien combustible en alliage U Al fortement enrichi a eté remplacé par un combustible caramel de faible enrichissement (7%), non proliférant. Ce nouveau coeur fonctionne avec satisfaction, depuis janvier 1980. Après une brève description des caractéristiques du combustible caramel et de ses principaux avantages, on présente sa fabrication ainsi que l'ensemble des contrôles de qualité auxquels il est soumis. Le programme de qualification ainsi que les principaux résultáts qui en ont été tirés sont exposés. On décrit également le programme de suivi du combustible en pile dont le but est de s'assurer du bon comportement du combustible sous irradiation. Le bon fonctionnement d'Osiris, qui a terminé 11 cycles d'irradiation le 21 avril 1981, a permis de montrer le bien fondé des choix effectués et l'excellent comportement de l'élément combustible dans les conditions pourtant sévères d'un réacteur de recherche à hautes performances.

  3. Mechanochemical modification of the composition and structure of plant raw materials to control the combustion of alternative fuel

    Directory of Open Access Journals (Sweden)

    Bychkov Aleksey


    Full Text Available The possibilities of mechanochemistry in processing of renewable lignocellulose raw material into solid kinds of biofuel are demonstrated in this work. A review of lignocellulose raw materials promising for our country is presented. These raw materials include wastes from agriculture and forestry, and the biomass of rapidly growing plants. The physicochemical properties of lignocellulose materials with different delignification degrees were modeled with the help of the artificial mixtures of plant raw material with purified cellulose and lignin. The data illustrating the effect of disperse state and lignin content on the reactivity of the material in subsequent combustion are presented. The tests at the combustion bench with the thermal power up to 5 MW allowed determining the optimal combustion parameters for the obtained biofuel in the autothermal mode.

  4. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL


    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  5. Spatial and temporal patterns of spontaneous grass cover as a control measure of soil loss: a study case in an olive orchard microcatchment (United States)

    Taguas, Encarnación; Vanderlinden, Karl; Pedrera-Parrilla, Aura; Giráldez, Juan V.; Gómez, Jose A.


    Spatial and temporal patterns of vegetal communities control local biogeophysical processes.. The use of cover crops and spontaneous grass cover as a soil erosion control measure is quite common, particularly in hilly agricultural areas. Spontaneous covers show usually irregular spatial and temporal patterns, resulting in a questionable efficiency and and unresolved management requirements. However, due to its zero cost, it is a helpful alternative for soil erosion control in marginal farms (Taguas et al., 2015). The main aim of this work was to characterize the spatial and temporal patterns of spontaneous grass cover in an olive orchard microcatchment to interpret its dependences on other physical features as well as its influence on soil loss control. The specific objectives were: i) to evaluate the relationships between the mean cover and the variables: accumulated precipitation, accumulated evapotranspiration and average minimum temperature for the preceding 5, 15, 30 and 60 days to the sampling date; ii) study the spatial aggregation degree of the cover, its temporal stability and its correlation with different topographical properties, the richness of species and the apparent electrical conductivity as a measure of soil variability; and iii) describe the influence of the cover on runoff and soil loss in the catchments. Cover percentage corresponding to spontaneous grass was evaluated on a seaonsal basis during 3 years (2011-2013), resulting in 12 surveys. A permanent and regular grid of 36 points covering the entire catchment (5-6 samples/ha) was used in each survey. At each location cover percentage was determined through image analyses. In order to explore the relations between cover percentage and meteorological variables, multiple linear regression was applied whereas the SADIE approach (Spatial analysis by distance indices; Perry, 1998) was used to describe possible spatial aggregation patterns and the correlation with features such as aspect, slope

  6. Assessment of vision and hearing in children conceived spontaneously and by ICSI: a prospective controlled, single-blinded follow-up study. (United States)

    Ludwig, A K; Hansen, A; Katalinic, A; Sutcliffe, A G; Diedrich, K; Ludwig, M; Thyen, Ute


    Long-term follow-up studies on the health of children born after assisted reproduction technologies are mandatory. Vision and hearing are the most important senses that continue to develop during childhood. There are few reports on vision and hearing in preschool children born after assisted conception. This prospective controlled blinded follow-up study examined 276 term-born singleton intracytoplasmic injection (ICSI) children and 273 spontaneously conceived controls at a mean age of 5.5 years and performed detailed vision and hearing test and clinically examined eyes and ears. There was no significant difference between ICSI and control children regarding the occurrence of vision or hearing impairments. Unsurprisingly, children with abnormalities in otoscopy were more likely to have an abnormal hearing test compared with children without abnormalities. Only 8.5% of ICSI parents and 25.4% of control parents whose children showed an abnormal hearing test knew about the hearing problems of their child. In conclusion, there was no difference in the development of hearing and vision in ICSI children and spontaneously conceived controls. But only few parents knew about hearing problems of their child after undergoing routine screening examinations. Parental interviews would therefore not be sufficient in order to assess vision and hearing in follow-up studies. Copyright 2009 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  7. Marine omega-3 polyunsaturated fatty acids induce sex-specific changes in reinforcer-controlled behaviour and neurotransmitter metabolism in a spontaneously hypertensive rat model of ADHD

    Directory of Open Access Journals (Sweden)

    Dervola Kine S


    Full Text Available Abstract Background Previous reports suggest that omega-3 (n-3 polyunsaturated fatty acids (PUFA supplements may reduce ADHD-like behaviour. Our aim was to investigate potential effects of n-3 PUFA supplementation in an animal model of ADHD. Methods We used spontaneously hypertensive rats (SHR. SHR dams were given n-3 PUFA (EPA and DHA-enriched feed (n-6/n-3 of 1:2.7 during pregnancy, with their offspring continuing on this diet until sacrificed. The SHR controls and Wistar Kyoto (WKY control rats were given control-feed (n-6/n-3 of 7:1. During postnatal days (PND 25–50, offspring were tested for reinforcement-dependent attention, impulsivity and hyperactivity as well as spontaneous locomotion. The animals were then sacrificed at PND 55–60 and their neostriata were analysed for monoamine and amino acid neurotransmitters with high performance liquid chromatography. Results n-3 PUFA supplementation significantly enhanced reinforcement-controlled attention and reduced lever-directed hyperactivity and impulsiveness in SHR males whereas the opposite or no effects were observed in females. Analysis of neostriata from the same animals showed significantly enhanced dopamine and serotonin turnover ratios in the male SHRs, whereas female SHRs showed no change, except for an intermediate increase in serotonin catabolism. In contrast, both male and female SHRs showed n-3 PUFA-induced reduction in non-reinforced spontaneous locomotion, and sex-independent changes in glycine levels and glutamate turnover. Conclusions Feeding n-3 PUFAs to the ADHD model rats induced sex-specific changes in reinforcement-motivated behaviour and a sex-independent change in non-reinforcement-associated behaviour, which correlated with changes in presynaptic striatal monoamine and amino acid signalling, respectively. Thus, dietary n-3 PUFAs may partly ameliorate ADHD-like behaviour by reinforcement-induced mechanisms in males and partly via reinforcement-insensitive mechanisms

  8. Manganite perovskite nanoparticles for self-controlled magnetic fluidhyperthermia: about the suitability of an aqueous combustion synthesis route

    Czech Academy of Sciences Publication Activity Database

    Epherre, R.; Duguet, E.; Mornet, S.; Pollert, Emil; Louguet, S.; Lecommandoux, S.; Schatz, Ch.; Goglio, G.


    Roč. 21, č. 12 (2011), s. 4393-4401 ISSN 0959-9428 Institutional research plan: CEZ:AV0Z10100521 Keywords : manganese perovskite nanoparticles * aqueouc combustion synthesis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.968, year: 2011


    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  10. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix D. Assessment of NO/sub x/ control technology for coal fired utility boilers. [Low-excess-air, staged combustion, flu gas recirculation and burner design

    Energy Technology Data Exchange (ETDEWEB)


    An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Close control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.

  11. Combustion and regulation; Combustion et reglementation

    Energy Technology Data Exchange (ETDEWEB)



    This conference was organized after the publication of the French by-law no 2010 relative to combustion installations and to the abatement of atmospheric pollution. Five topics were discussed during the conference: the new regulations, their content, innovations and modalities of application; the means of energy suppliers to face the new provisions and their schedule; the manufacturers proposals for existing installations and the new equipments; the administration control; and the impact of the new measures on exploitation and engineering. Twenty papers and 2 journal articles are reported in these proceedings. (J.S.)

  12. High-risk and low-risk human papilloma virus in association to spontaneous preterm labor: a case-control study in a tertiary center, Egypt. (United States)

    Mosbah, Alaa; Barakat, Rafik; Nabiel, Yasmin; Barakat, Ghada


    This study aimed to detect the correlation between human papillomavirus (HPV) and spontaneous preterm labor in Egyptian women and its association to the human papilloma viral load and MPP2 gene expression. We performed an observational comparative case-control study in Department of Obstetric and Gynecology, Mansoura University Hospitals over women presented with spontaneous preterm labor, besides females admitted for giving birth at full term to detect conserved sequence in HPV-L1 gene (GP5/GP6) followed by genotype detection of high- and low-risk HPVs with quantification of the viral load and the MMP2 gene expression using real-time polymerase chain reaction (PCR). The prevalence of HPV was 18.1% in preterm females, but only 4% in full-term women (p value = 0.019*). Twenty percent were PCR positive for HPV 16 and 40% for HPV 18 whereas none of the control was positive for any of the studied high-risk genotypes. Thirty percent were PCR positive for HPV 6 and 10% were positive for HPV 11. MMP2 gene expression was significantly higher in preterm than full term. Human papilloma viral load was found to be positively correlated to the rate of MMP2 expression and the gestational age was significantly related to the viral load and the rate of expression of MMP2 gene. Human pabilloma virus especially high-risk genotypes was correlated to spontaneous preterm labor in Egyptian females through increasing early expression of MMP2 gene. The time of occurrence of preterm labor was affected by the viral load and so the rate of expression of MMP2 gene.

  13. High Combustion Research Facility (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  14. Combustion Research Laboratory (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  15. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)


    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  16. Nitrous Oxide from Combustion and Industry: Chemistry, Emissions and Control Protoxyde d'azote provenant de la combustion et de l'industrie : chimie, émissions et techniques de réduction

    Directory of Open Access Journals (Sweden)

    De Soete G.


    Full Text Available After an Introductory Part, presenting a survey of the present knowledge of nitrous oxide chemistry related to fossil fuel combustion and flue gas treatment, as a background for the understanding of emission factors, the paper deals successively with the average N2O emission factors from combustion and other industrial sources, and gives guidelines for appropriate N2O control technology ; with respect to the former item, some comments and criticisms on the 1991 OEDC/IPCC Report are formulated. As far as updated emission sources are concerned, emphasis is put on those which presently constitute issues : emissions from fluidized bed combustors, emissions caused by non catalytic selective NO reduction by ammonia and urea injection, N2O emissions caused by the use of automotive three-way catalysts as well as emissions from nitric acid and adipic acid manufacturing and from municipal wastes and sewage sludges incineration. Comments on the 1991 OEDC/IPCC Report mainly emphasize : (1 the surprising absence of emission factors from stationary combustion facilities and the inadequacy of some of the scarcely presented data, (2 the strange ignorance of the important effect of aging of three-way catalysts on the emission of N2O from gasoline vehicles. These omissions are the more surprising since reliable information in these two fields were already available at the period the OEDC Report was issued and or revised. For the assessment of adequate N2O control technologies, there is an urgent need for further R&D work. Presently existing understanding of homogeneous and heterogeneous N2O chemistry may provide interesting hints for N2O control, either by gas phase treatment or by catalytic reduction, depending on the concentration levels present in the off-gases to be treated. Le but de cet article est double : d'une part il fait le point sur les facteurs d'émission de N2O provenant de la combustion des combustibles fossiles et de certains autres secteurs de l

  17. Sodium nitrate combustion limit tests

    International Nuclear Information System (INIS)

    Beitel, G.A.


    Sodium nitrate is a powerful solid oxidant. Energetically, it is capable of exothermically oxidizing almost any organic material. Rate-controlling variables such as temperature, concentration of oxidant, concentration of fuel, thermal conductivity, moisture content, size, and pressure severely limit the possibility of a self-supported exothermic reaction (combustion). The tests reported in this document were conducted on one-gram samples at atmospheric pressure. Below 380 0 C, NaNO 3 was stable and did not support combustion. At moisture concentrations above 22 wt percent, exothermic reactions did not propagate in even the most energetic and reactive compositions. Fresh resin and paraffin were too volatile to enable a NaNO 2 -supported combustion process to propagate. Concentrations of NaNO 3 above 95 wt percent or below 35 wt percent did not react with enough energy release to support combustion. The influence of sample size and confining pressure, both important factors, was not investigated in this study

  18. A model for premixed combustion oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Janus, M.C.; Richards, G.A.


    This paper describes a simulation based on a time dependent, nonlinear control volume analysis. The combustion is modeled as a well-stirred reactor having finite kinetics. Flow properties and species in the nozzle, combustion, and tailpipe regions are determined using a control volume formulation of the conservation equation.

  19. Endoscopic surgery versus conservative treatment for the moderate-volume hematoma in spontaneous basal ganglia hemorrhage (ECMOH: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Zan Xin


    Full Text Available Abstract Background Spontaneous intracerebral hemorrhage is a disease with high morbidity, high disability rate, high mortality, and high economic burden. Whether patients can benefit from surgical evacuation of hematomas is still controversial, especially for those with moderate-volume hematomas in the basal ganglia. This study is designed to compare the efficacy of endoscopic surgery and conservative treatment for the moderate-volume hematoma in spontaneous basal ganglia hemorrhage. Methods Patients meet the criteria will be randomized into the endoscopic surgery group (endoscopic surgery for hematoma evacuation and the best medical treatment or the conservative treatment group (the best medical treatment. Patients will be followed up at 1, 3, and 6 months after initial treatment. The primary outcomes include the Extended Glasgow Outcome Scale and the Modified Rankin Scale. The secondary outcomes consist of the National Institutes of Health Stroke Scale and the mortality. The Barthel Index(BI will also be evaluated. The sample size is 100 patients. Discussion The ECMOH trial is a randomized controlled trial designed to evaluate if endoscopic surgery is better than conservative treatment for patients with moderate-volume hematomas in the basal ganglia. Trial registration Chinese Clinical Trial Registry: ChiCTR-TRC-11001614 (

  20. Modeling and Control of Fuel Distribution in a Dual-Fuel Internal Combustion Engine Leveraging Late Intake Valve Closings

    Energy Technology Data Exchange (ETDEWEB)

    Kassa, Mateos; Hall, Carrie; Ickes, Andrew; Wallner, Thomas


    Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process encountered across cylinders and between cycles. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with exhaust gas recirculation (EGR), a variable geometry turbocharger, and a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production and the underlying uneven fuel distribution that causes these variations. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode in which a high reactivity fuel is directly injected into the cylinders and a low reactivity fuel is port injected into the cylinders. Both dual fuel implementation and late intake valve closing (IVC) timings have been shown to improve thermal efficiency. However, experimental data from this study reveal that when late IVC timings are used on a multi-cylinder dual fuel engine a significant variation in IMEP across cylinders results and as such, leads to efficiency losses. The difference in IMEP between the different cylinders ranges from 9% at an IVC of 570°ATDC to 38% at an IVC of 610°ATDC and indicates an increasingly uneven fuel distribution. These experimental observations along with engine simulation models developed using GT-Power have been used to better understand the distribution of the port injected fuel across cylinders under various operating conditions on such dual fuel engines. This study revealed that the fuel distribution across cylinders in this dual fuel application is significantly affected by changes in the effective compression ratio as determined by the intake valve close timing as well as the design of the intake system (specifically the length of the intake runners). Late intake valve closures allow a portion of the trapped air

  1. Equation for Combustion Noise (United States)

    Liu, T. M.


    Mathematical relationship derived for interactions between turbulent flame and combustion noise. Relationship is rigorous theoretical correlation of combustion noise and combustion process. Establishes foundation for acoustic measurements as tool for investigating structure of turbulent flames. Mathematical relationship is expected to aid researchers in field of noise generated by combustion.

  2. Reduced capacity of autonomic and baroreflex control associated with sleep pattern in spontaneously hypertensive rats with a nondipping profile. (United States)

    Chen, Chieh-Wen; Kuo, Terry B J; Chen, Chun-Yu; Yang, Cheryl C H


    Ambulatory blood pressure (BP) monitoring with a lack of nocturnal BP fall (BP nondipping) has been reported to be more prevalent among hypertensive populations and is a risk factor for cardiovascular disease than in patients with dipping pattern. However, its underlying mechanism is not fully understood. This study hypothesized that spontaneously hypertensive rats (SHRs) with a nondipping profile have an exaggerated disruption of both autonomic functioning and sleep compared with Wistar-Kyoto rats (WKYs) with a nondipping profile. Continuous power spectral analysis of electroencephalogram, electromyogram, and cardiovascular variability was performed in WKYs and SHRs over 24 h. BP dipping was assessed as the percentage decline in SBP from dark active waking to light quiet sleep (lQS). According to the human definition of BP dipping (10%), we divided WKYs and SHRs into dipper and nondipper groups individually. Of the four groups, both parasympathetic activity and baroreflex sensitivity in sleep were the lowest in the SHR nondippers. Compared with the WKY nondippers, the SHR nondippers spent more time awake and less time asleep during the light period and the opposite during the dark period. Moreover, they showed more interruptions and a lower delta power percentage of lQS. Correlation analysis revealed that baroreflex sensitivity during lQS was correlated with the BP dipping percentage in SHRs. SHR nondippers exhibit poor sleep quality and impaired autonomic functioning to a greater degree than do SHR dippers and WKY nondippers, which may account for a higher cardiovascular risk in this population.

  3. Oxygen-enhanced combustion

    CERN Document Server

    Baukal, Charles E


    Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, a

  4. Smoldering Combustion Experiments in Microgravity (United States)

    Walther, David C.; Fernandez-Pello, A. Carlos; Urban, David L.


    The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a microgravity environment. Smoldering is a non-flaming form of combustion that takes place in the interior of porous materials and takes place in a number of processes ranging from smoldering of porous insulation materials to high temperature synthesis of metals. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal-gravity. As with many forms of combustion, gravity affects the availability of oxidizer and transport of heat, and therefore the rate of combustion. Microgravity smolder experiments, in both a quiescent oxidizing environment, and in a forced oxidizing flow have been conducted aboard the NASA Space Shuttle (STS-69 and STS-77 missions) to determine the effect of the ambient oxygen concentration and oxidizer forced flow velocity on smolder combustion in microgravity. The experimental apparatus is contained within the NASA Get Away Special Canister (GAS-CAN) Payload. These two sets of experiments investigate the propagation of smolder along the polyurethane foam sample under both diffusion driven and forced flow driven smoldering. The results of the microgravity experiments are compared with identical ones carried out in normal gravity, and are used to verify present theories of smolder combustion. The results of this study will provide new insights into the smoldering combustion process. Thermocouple histories show that the microgravity smolder reaction temperatures (Ts) and propagation velocities (Us) lie between those of identical normal-gravity upward and downward tests. These observations indicate the effect of buoyancy on the transport of oxidizer to the reaction front.

  5. Application of bioethanol/RME/diesel blend in a Euro5 automotive diesel engine: Potentiality of closed loop combustion control technology

    International Nuclear Information System (INIS)

    Guido, Chiara; Beatrice, Carlo; Napolitano, Pierpaolo


    Highlights: ► Effects of a bioethanol/biodiesel/diesel blend on Euro5 diesel engine. ► Potentiality of combustion control technology with alternative fuels. ► Strong smoke and NOx emissions reduction. ► No power penalties burning bioethanol blend by means of combustion control activation. -- Abstract: The latest European regulations require the use of biofuels by at least 10% as energy source in transport by 2020. This goal could be reached by means of the use of different renewable fuels; bioethanol (BE) is one of the most interesting for its low production cost and availability. BE usually replaces gasoline in petrol engines but it can be also blended in low concentrations to feed diesel engines. In this paper the results of an experimental activity aimed to study the impact of a BE/biodiesel/mineral diesel blend on performance and emissions in a last generation automotive diesel engine are presented. The tests were performed in steady-state in eight partial load engine conditions and at 2500 rpm in full load. Two fuel blends have been compared: the Rapeseed Methyl Ester (RME)/diesel with 10% of biodiesel by volume (B10), and the BE/RME/diesel with 20% of BE and 10% of biodiesel by volume (E20B10). The experimental campaign was carried out on a 2.0 L diesel engine compliant with Euro5 regulation. The engine features the closed loop combustion control (CLCC), which enables individual and real-time control of injection phasing and cylinder inner torque by means of in-cylinder pressure sensors connected with the Electronic Control Unit (ECU). As expected, the results showed a strong smoke emissions reduction for E20B10 in all tested conditions, mainly due to the high oxygen content of BE. Also a reduction of NOx emissions were observed with BE addiction. The results confirm that the CLCC adoption enables a significant improvement in the robustness of the engine performance and emissions when blends with low heat content and very low cetane number (as BE

  6. [A case-control study on association between OAS1 polymorphism and susceptibility to spontaneous preterm birth and preterm premature rupture of membranes]. (United States)

    Yang, Xiao; Zhang, Xiao-Ai; Wu, Zhi-Hao; Peng, Wei; Zhu, Li-Na; Wang, Yan


    To investigate the association between the genetic polymorphism of 2',5'-oligoadenylate synthetase 1 (OAS1) and susceptibility to spontaneous preterm birth (SPTB) and preterm premature rupture of membranes (PPROM). The case-control study consisted of 599 preterm infants including 171 cases of PPROM, and 673 full-term infants without maternal histories of SPTB and PPROM as controls. The single nucleotide polymorphism (SNP) at OAS1 intron 5, rs10774671, was analyzed by polymerase chain reaction-restriction fragment length polymorphism. No significant differences were observed between the case and control groups in the frequencies of genotypes (AA, GA, and GG) and alleles (A and G) of OAS1 rs10774671. When the case group was divided into two subgroups with or without PPROM, no significant differences in the genotype and allele frequencies were found between each subgroup and the control group. When the case group was divided into three subgroups with different gestational ages at SPTB, no significant differences in the genotype and allele frequencies were detected between each subgroup and the control group. No association is identified between OAS1 SNP and susceptibility to SPTB and PPROM.

  7. HCCI Combustion: Analysis and Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Salvador M. Aceves; Daniel L. Flowers; Joel Martinez-Frias; J. Ray Smith; Robert Dibble; Michael Au; James Girard


    Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work. On analysis, we have developed two powerful tools: a single zone model and a multi-zone model. The single zone model has proven very successful in predicting start of combustion and providing reasonable estimates for peak cylinder pressure, indicated efficiency and NOX emissions. This model is being applied to develop detailed engine performance maps and control strategies, and to analyze the problem of engine startability. The multi-zone model is capable of very accurate predictions of the combustion process, including HC and CO emissions. The multi-zone model h as applicability to the optimization of combustion chamber geometry and operating conditions to achieve controlled combustion at high efficiency and low emissions. On experimental work, we have done a thorough evaluation of operating conditions in a 4-cylinder Volkswagen TDI engine. The engine has been operated over a wide range of conditions by adjusting the intake temperature and the fuel flow rate. Satisfactory operation has been obtained over a wide range of operating conditions. Cylinder-to-cylinder variations play an important role in limiting maximum power, and should be controlled to achieve satisfactory performance.

  8. Candidate gene analysis of spontaneous preterm delivery: New insights from re-analysis of a case-control study using case-parent triads and control-mother dyads

    Directory of Open Access Journals (Sweden)

    Myking Solveig


    Full Text Available Abstract Background Spontaneous preterm delivery (PTD has a multifactorial etiology with evidence of a genetic contribution to its pathogenesis. A number of candidate gene case-control studies have been performed on spontaneous PTD, but the results have been inconsistent, and do not fully assess the role of how two genotypes can impact outcome. To elucidate this latter point we re-analyzed data from a previously published case-control candidate gene study, using a case-parent triad design and a hybrid design combining case-parent triads and control-mother dyads. These methods offer a robust approach to genetic association studies for PTD compared to traditional case-control designs. Methods The study participants were obtained from the Norwegian Mother and Child Cohort Study (MoBa. A total of 196 case triads and 211 control dyads were selected for the analysis. A case-parent triad design as well as a hybrid design was used to analyze 1,326 SNPs from 159 candidate genes. We compared our results to those from a previous case-control study on the same samples. Haplotypes were analyzed using a sliding window of three SNPs and a pathway analysis was performed to gain biological insight into the pathophysiology of preterm delivery. Results The most consistent significant fetal gene across all analyses was COL5A2. The functionally similar COL5A1 was significant when combining fetal and maternal genotypes. PON1 was significant with analytical approaches for single locus association of fetal genes alone, but was possibly confounded by maternal effects. Focal adhesion (hsa04510, Cell Communication (hsa01430 and ECM receptor interaction (hsa04512 were the most constant significant pathways. Conclusion This study suggests a fetal association of COL5A2 and a combined fetal-maternal association of COL5A1 with spontaneous PTD. In addition, the pathway analysis implied interactions of genes affecting cell communication and extracellular matrix.

  9. Sandia Combustion Research Program: Annual report, 1986

    Energy Technology Data Exchange (ETDEWEB)


    This report presents research results of the past year, divided thematically into some ten categories. Publications and presentations arising from this work are included in the appendix. Our highlighted accomplishment of the year is the announcement of the discovery and demonstration of the RAPRENOx process. This new mechanism for the elimination of nitrogen oxides from essentially all kinds of combustion exhausts shows promise for commercialization, and may eventually make a significant contribution to our nation's ability to control smog and acid rain. The sections of this volume describe the facility's laser and computer system, laser diagnostics of flames, combustion chemistry, reacting flows, liquid and solid propellant combustion, mathematical models of combustion, high-temperature material interfaces, studies of engine/furnace combustion, coal combustion, and the means of encouraging technology transfer. 182 refs., 170 figs., 12 tabs.

  10. Engine Valve Actuation For Combustion Enhancement (United States)

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul


    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  11. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap


    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  12. Control and reduction of NOx emissions on light hydrocarbons combustion in fluidized bed combustors: a technological prospection surveys; Controle e reducao de emissoes de NOx durante queima de hidrocarbonetos leves em combustores a leito fluidizado: um estudo de prospeccao tecnologica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas Alves; Winter, Eduardo [Instituto Nacional da Propriedade Industrial (INPI), Rio de Janeiro, RJ (Brazil)


    The present paper aims a technological prospecting study of the main technological agents involved in industrial light hydrocarbons combustion process. More specifically, the work approaches technologies applied to nitrogen oxides emissions control and reduction. Nitrogen oxides are typically known as 'NOx' (NO, N{sub 2}O, NO{sub 2}). 'NOx' are byproducts from fuel burning in combustion systems, including also in fluidized bed combustion systems. The technological prospecting study employed 'technology foresight' as tool for evaluating the technological perspectives of the thermal generation, basis on environment protection. Such technological perspectives of the thermal generation were evaluated through invention patent documents. The query methodology for obtaining of patent documents employed a free patent base, known as ESPACENET. Additionally, the documents obtained were evaluated, considering beyond the countries and the publication dates, technological perspectives employed to 'NOx' emissions control and reduction. It is very important to highlight around 70% of the industrial technological information are just found in invention patent documents. (author)

  13. Reduced NOX combustion method

    International Nuclear Information System (INIS)

    Delano, M.A.


    This patent describes a method for combusting fuel and oxidant to achieve reduced formation of nitrogen oxides. It comprises: It comprises: heating a combustion zone to a temperature at least equal to 1500 degrees F.; injecting into the heated combustion zone a stream of oxidant at a velocity within the range of from 200 to 1070 feet per second; injecting into the combustion zone, spaced from the oxidant stream, a fuel stream at a velocity such that the ratio of oxidant stream velocity to fuel stream velocity does not exceed 20; aspirating combustion gases into the oxidant stream and thereafter intermixing the aspirated oxidant stream and fuel stream to form a combustible mixture; combusting the combustible mixture to produce combustion gases for the aspiration; and maintaining the fuel stream substantially free from contact with oxidant prior to the intermixture with aspirated oxidant

  14. A propulsion injury following a spontaneous electronic cigarette explosion

    Directory of Open Access Journals (Sweden)

    Cherrie Chan Yiru


    Full Text Available Electronic cigarettes (e-cigarettes have become increasingly popular at an alarming rate. This coincides with the public perception that they are a safer mean of nicotine consumption. Unregulated devices carry unrecognized safety risks that have led to numerous cases of burns, associating with spontaneous combustions of e-cigarettes.

  15. Spontaneous pneumothorax in weightlifters. (United States)

    Marnejon, T; Sarac, S; Cropp, A J


    Spontaneous pneumothorax is infrequently caused by strenuous exertion. To our knowledge there has only been one case of spontaneous pneumothorax associated with weightlifting reported in the medical literature. We describe three consecutive cases of spontaneous pneumothorax associated with weightlifting. We postulate that spontaneous pneumothorax in these patients may be secondary to improper breathing techniques. It is important that physicians and weight trainers be aware of the association between weight lifting and spontaneous pneumothorax and assure that proper instruction is given to athletes who work with weights.

  16. Combustion synthesis and photoluminescence study of silicate ...

    Indian Academy of Sciences (India)

    Silicate based bioceramics are promising candidates as biomaterials for tissue engineering. The combustion synthesis method provides control on the morphology and particle size of the synthesized material. This paper discusses the combustion synthesis of akermanite (Ca2MgSi2O7 and Sr2MgSi2O7), which has been ...

  17. Flue Gas Emissions from Fluidized Bed Combustion

    NARCIS (Netherlands)

    Bramer, E.A.; Valk, M.


    During the past decades fluidized bed coal combustion was developed as a technology for burning coal in an effective way meeting the standards for pollution control. During the earlier years of research on fluidized bed combustion, the potential for limiting the S02 emission by adding limestone to

  18. A randomized placebo-controlled double-blind pilot study of methotrexate in the treatment of H1 antihistamine-resistant chronic spontaneous urticaria

    Directory of Open Access Journals (Sweden)

    Vinod K Sharma


    Full Text Available Background: Chronic urticaria not responsive to antihistamines is a difficult disease to manage. Methotrexate has been used in difficult chronic urticarias with some benefit. Objective: To evaluate the efficacy of methotrexate in the treatment of chronic spontaneous urticaria poorly responsive to H1 antihistaminics. Methods: In a randomized double-blind trial at the Department of Dermatology and Venereology of a tertiary care centre, 29 patients with chronic spontaneous urticaria not responding well to H1 antihistaminics were recruited. Patients were randomly allocated to receive either a weekly dose of oral methotrexate 15 mg or placebo (calcium carbonate for a total duration of 12 weeks, after which treatment was stopped and patients were followed up for relapse of urticaria. Each group also received levocetrizine 5 mg once daily for symptom control. Primary outcome measured was a reduction by >2/3 rd of baseline urticaria scores after 12 week therapy. Secondary outcome was a reduction in antihistamine requirement after stopping therapy. Results: Fourteen patients were randomized to the methotrexate group and fifteen patients to the placebo group. Out of 17 patients who completed therapy, the primary outcome was achieved by 3.5 ± 1.9 (out of 10 patients in the methotrexate group and by 3.67 ± 1.03 (out of 7 patients in the placebo group (P > 0.05. Ten patients followed up, after stopping therapy, for a mean period of 3.5 ± 2.4 months; 3 remained in remission and 7 had relapsed. One patient had uncontrollable nausea and vomiting after taking methotrexate and was withdrawn from the study. The placebo group did not experience any side effects. Conclusions: Methotrexate 15 mg weekly for 3 months did not provide any additional benefit over H1 antihistamines in this study but an adequately powered study with longer follow up is required to assess its utility.

  19. Combustion Research Facility (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  20. Health behaviors, periodontal conditions, and periodontal pathogens in spontaneous preterm birth: a case-control study in Korea. (United States)

    Ryu, Jae-In; Oh, Kyungjoon; Yang, Hyejin; Choi, Bong-Kyu; Ha, Jung-Eun; Jin, Bo-Hyoung; Kim, Hyun-Duck; Bae, Kwang-Hak


    This study aims to determine whether periodontal conditions or dental health behaviors are risk factors for preterm birth (PTB), and whether periodontal pathogens are risk indicators for PTB among Korean mothers. This study was designed as a hospital-based case-control study. Examiner masking was ensured for the validity of the examinations. The mothers included those who gave birth between November 2007 and July 2009 at the obstetrics clinic of a general hospital in Seoul, Korea. Information on demographic and health conditions, periodontal conditions, and microbacterial data was collected. A total of 172 women met the inclusion criteria, 59 mothers who delivered a preterm neonate were assigned to the case group while the other 113 were assigned to the control group. There were no significant differences in demographic information, oral health conditions, and obstetric characteristics. Among health-related behaviors, only scaling within 12 months before pregnancy showed a significant difference (P = 0.031). Even in the adjusted logistic model, only the difference in the experience of scaling before pregnancy was significant between the PTB cases and the controls (P = 0.039). Periodontal disease did not exhibit a significant relationship with PTB even after adjustment for potential confounding factors. Among the microbacterial factors, only Porphyromonas gingivalis showed a slight difference (P = 0.060). There was a significant difference in scaling experience within 12 months before pregnancy and P. gingivalis showed a marginal difference between the PTB and the control groups but clinical periodontal conditions showed no association with PTB.

  1. Metformin Improves Endothelial Function and Reduces Blood Pressure in Diabetic Spontaneously Hypertensive Rats Independent from Glycemia Control : Comparison to Vildagliptin

    NARCIS (Netherlands)

    Hamidi Shishavan, Mahdi; Henning, Robert H; van Buiten, Azuwerus; Goris, Maaike; Deelman, Leo E; Buikema, Hendrik


    Metformin confers vascular benefits beyond glycemia control, possibly via pleiotropic effects on endothelial function. In type-1-diabetes-mellitus (T1DM-)patients metformin improved flow-mediated dilation but also increased prostaglandin(PG)-F-2 alpha, a known endothelial-contracting factor. To


    Energy Technology Data Exchange (ETDEWEB)

    Ruby N. Ghosh; Peter Tobias


    A sensor based on the wide bandgap semiconductor, silicon carbide (SiC), has been developed for the detection of combustion products in power plant environments. The sensor is a catalytic gate field effect device that can detect hydrogen containing species in chemically reactive, high temperature environments. The response of these metal/insulator/SiC (MISiC) devices to reducing gases has been assumed to be due to the reduction in the metal work function at the metal/oxide interface that shifts the capacitance to lower voltages. From in-situ capacitance-voltage measurements taken under sensor operating conditions we have discovered that two independent mechanisms are responsible for the sensor response to hydrogen and oxygen. We present a model of the device response based on the chemically induced shift of the metal/semiconductor barrier height as well as the passivation and creation of charged states at the SiO{sub 2}/SiC interface. The latter mechanism is much slower than the barrier height shift. Preliminary photoemission experiments have been performed to independently monitor the contribution of the two phenomena. We discuss in detail the effect of these results on sensor design and the choice of operating point for high temperature operation.

  3. 30 CFR 56.4103 - Fueling internal combustion engines. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  4. 30 CFR 57.4103 - Fueling internal combustion engines. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  5. Combustion chemistry - activities in the CHEK research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K.; Johnsson, J.E.; Glarborg, P.; Frandsen, F.; Jensen, A.; Oestberg, M. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering


    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This presentation describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control) Research Programme. (orig.)

  6. Development of a NO/x/-free combustion system (United States)

    Sadakata, M.; Furusawa, T.; Kunii, D.; Imagawa, M.; Nawada, M.


    The development of a NO(x)-free combustion-heating system realizing both pollution control and energy savings is described. An experiment was carried out by using a small model plant. The system consists of a combustion furnace and a new-type multifunctional heat exchanger. The heat exchanger is a rotary continuous type designed for soot collection and for catalytic combustion of CO and H2 as well as for preheating combustion air.

  7. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James


    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  8. An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel

    International Nuclear Information System (INIS)

    Benajes, Jesús; García, Antonio; Monsalve-Serrano, Javier; Balloul, Iyad; Pradel, Gérard


    Highlights: • Reactivity controlled compression ignition regime utilized from 25% to 35% load. • Dual-mode reduces the regeneration periods of the diesel particulate filter. • The use of near-term available biofuels allows good performance and emissions. • Dual-mode leads to 2% greater efficiency than diesel combustion at high engine speeds. - Abstract: This work investigates the capabilities of the dual-mode reactivity controlled compression ignition/conventional diesel combustion engine operation to cover the full operating range of a EURO VI medium-duty diesel engine with compression ratio of 17.5:1. This concept is based on covering all the engine map switching between the reactivity controlled compression ignition and the conventional diesel combustion operating modes. Specifically, the benefits of reactivity controlled compression ignition combustion are exploited whenever possible according to certain restrictions, while the conventional diesel combustion operation is used to cover the zones of the engine map in which the reactivity controlled compression ignition operation is limited. The experiments were conducted using a single-cylinder research diesel engine derived from the multi-cylinder production engine. In addition, considering the mandatory presence of biofuels in the future context of road transport and the ability of ethanol to be blended with gasoline, the low reactivity fuel used in the study is a blend of 20% ethanol by volume with 80% of 95 octane number gasoline. Moreover, a diesel containing 7% of biodiesel has been used as high reactivity fuel. Firstly, a reactivity controlled compression ignition mapping is performed to check the operational limits of the concept in this engine platform. Later, based on the results, the potential of the dual-mode concept is discussed. Results suggest that, under the constraints imposed, reactivity controlled compression ignition combustion can be utilized between 25% and 35% load. In this region

  9. Application of erosion-control materials and spontaneous vegetation in the protection of reservoirs in southern and eastern Serbia

    Directory of Open Access Journals (Sweden)

    Matić Vjačeslava


    Full Text Available The quality and stability of erosion-control materials in protection of reservoirs in Southern and Eastern Serbia have been examined both in the field and in accredited laboratories in our country. Field investigations have been carried out over a period of 15 years in Eastern Serbia and for up to 30 years in Southern Serbia, and they are still being conducted by monitoring the state and possible damage of consolidation-retention check dams, walls, and other erosion-control structures. The materials used in protection of the Selova and Grlište Reservoirs are typical construction materials, such as resistant natural stone, concrete of the BI group, i.e., MB 20, aggregate, synthetic elements, etc. Long-term monitoring of their state and minor deformations has shown that the materials were well-chosen and stable, and that there has been no significant damage, except for some minor crumbling and smaller cracks due to negligible scouring. This is all the result of prior thorough empirical and laboratory testing of applied materials, which helped to achieve stability and functionality of structures erected to prevent silting-up of the reservoir. Such a state has contributed to stabilization of erosion processes and reduction of sediment quantities, improvement of water quality, and advancement of the autochthonous vegetation (Salix L., Cornus L., Quercus L.. Vegetation has further mitigated erosion, decreased floods, and consolidated the structures, thereby improving the ecological quality of the catchments as well as the entire study area.

  10. Uncertainties in hydrogen combustion

    International Nuclear Information System (INIS)

    Stamps, D.W.; Wong, C.C.; Nelson, L.S.


    Three important areas of hydrogen combustion with uncertainties are identified: high-temperature combustion, flame acceleration and deflagration-to-detonation transition, and aerosol resuspension during hydrogen combustion. The uncertainties associated with high-temperature combustion may affect at least three different accident scenarios: the in-cavity oxidation of combustible gases produced by core-concrete interactions, the direct containment heating hydrogen problem, and the possibility of local detonations. How these uncertainties may affect the sequence of various accident scenarios is discussed and recommendations are made to reduce these uncertainties. 40 references

  11. Subframe burst gating for Raman spectroscopy in combustion. (United States)

    Kojima, Jun; Fischer, David; Nguyen, Quang-Viet


    We describe an architecture for spontaneous Raman scattering utilizing a frame-transfer CCD sensor operating in a subframe burst-gating mode to realize time-resolved combustion diagnostics. The technique permits all-electronic optical gating with microsecond shutter speeds (noise.

  12. Combustion of hydrogen-oxygen mixture in nanobubbles

    NARCIS (Netherlands)

    Svetovoy, Vitaly; Sanders, Remco G.P.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt; Starik, A.M.; Frolov, S.M.; Roy, G.D.

    Observation of a spontaneous reaction between hydrogen and oxygen in bubbles in water whose diameter is smaller than a threshold value around 150 nm is presented. The effect is attributed to high Laplace pressure and to fast dynamics in nanobubbles and is the first indication on combustion in the

  13. New class of combustion processes

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Borovinskaya, I.P.


    A short review is given of the results of work carried out since 1967 on studying the combustion processes caused by the interaction of chemical elements in the condensed phase and leading to the formation of refractory compounds. New phenomena and processes are described which are revealed when investigating the combustion of the systems of this class, viz solid-phase combustion, fast combustion in the condensed phase, filtering combustion, combustion in liquid nitrogen, spinning combustion, self-oscillating combustion, and repeated combustion. A new direction in employment of combustion processes is discussed, viz. a self-propagating high-temperature synthesis of refractory nitrides, carbides, borides, silicides and other compounds

  14. Opportunities in pulse combustion (United States)

    Brenchley, D. L.; Bomelburg, H. J.


    In most pulse combustors, the combustion occurs near the closed end of a tube where inlet valves operate in phase with the pressure amplitude variations. Thus, within the combustion zone, both the temperature and the pressure oscillate around a mean value. However, the development of practical applications of pulse combustion has been hampered because effective design requires the right combination of the combustor's dimensions, valve characteristics, fuel/oxidizer combination, and flow pattern. Pulse combustion has several additional advantages for energy conversion efficiency, including high combustion and thermal efficiency, high combustion intensity, and high convective heat transfer rates. Also, pulse combustion can be self-aspirating, generating a pressure boost without using a blower. This allows the use of a compact heat exchanger that may include a condensing section and may obviate the need for a chimney. In the last decade, these features have revived interest in pulse combustion research and development, which has resulted in the development of a pulse combustion air heater by Lennox, and a pulse combustion hydronic unit by Hydrotherm, Inc. To appraise this potential for energy savings, a systematic study was conducted of the many past and present attempts to use pulse combustion for practical purposes. The authors recommended areas where pulse combustion technology could possibly be applied in the future and identified areas in which additional R and D would be necessary. Many of the results of the study project derived from a special workshop on pulse combustion. This document highlights the main points of the study report, with particular emphasis on pulse combustion application in chemical engineering.

  15. Interactions of low-power photons with natural opals—PBG materials, photonic control, natural metamaterials, spontaneous laser emissions, and band-gap boundary responses

    International Nuclear Information System (INIS)

    Four views of each of the opal research specimens in white light (for in-article or cover), in the same order as the specimens depicted in Fig. 3 of the main manuscript. A.On the left: 1.5 carat oval cabochon precious fire opal. B.In the center: 2.5 carats faceted fancy shield precious fire contra luz with mild adularescence. C.On the right: 5.0 carats round cabochon precious crystal opal with blue adularescence. Highlights: ► Emission of micro-lasers from microspheroid cluster boundary zones (quantum dots). ► Lasers illuminated or fluoresced the intra-opal structures of microspheroid photonic glass clusters. ► Microspheroid boundaries are durable to low power light sources. ► Display of previously unknown low power photonic optic properties. ► The research specimens are natural metamaterials. - Abstract: One overall goal of this research was to examine types of naturally-occurring opals that exhibit photonic control to learn about previously-unknown properties of naturally occurring photonic control that may be developed for broader applications. Three different photon sources were applied consecutively to three different types of natural, flawless, gem-quality precious opals. Two photon sources were lasers (green and red) and one was simulated daylight tungsten white. As each type of precious opal was exposed to each of the photon sources, the respective refractions, reflections, and transmissions were studied. This research is the first to show that applying various pleochroic and laser photon sources to these types of opals revealed significant information regarding naturally occurring photonic control, metamaterials, spontaneous laser emissions, and microspheroid cluster (inter-PBG zone) boundary effects. Plus, minimizing ambient light and the use of low power photon sources were critical to observing the properties regarding this photonic materials research. This research yielded information applicable to the development of materials to advance

  16. An open-label prospective clinical study to assess the efficacy of increasing levocetirizine dose up to four times in chronic spontaneous urticaria not controlled with standard dose. (United States)

    Sharma, Vinod Kumar; Gupta, Vishal; Pathak, Mona; Ramam, M


    The EAACI/GA 2 LEN/EDF/WAO recommendation of increasing antihistamines' dose up to four times in urticaria not adequately controlled with the standard dose is largely based on expert opinion. The objective of this study is to test the current urticaria guidelines of up-dosing antihistamines as second-line treatment. This was an open-label study conducted prospectively on 113 patients with chronic spontaneous urticaria. All patients were treated with sequentially increasing doses of levocetrizine (5 mg, 10 mg, 15 mg and 20 mg/day) every week till the patients became completely asymptomatic or dose of 20 mg/day reached. Urticaria Activity Score (UAS)-7, urticaria-related quality-of-life (CU-Q2oL) and patients' global assessment were used to assess treatment response. Twenty-one (18.58%) patients became asymptomatic with levocetirizine 5 mg/day, while 50 required higher doses of levocetirizine for complete control: 29/92 (31.52%), 6/63 (9.52%) and 15/57 (26.31%) with 10 mg, 15 mg and 20 mg/day, respectively. The percentage of patients experiencing >75% improvement increased with increasing doses of levocetirizine: 26.54%, 53.98%, 60.17% and 69.91% with 5 mg, 10 mg, 15 mg and 20 mg/day, respectively. Sequential up-dosing of levocetirizine produced a progressive improvement in both urticaria control (UAS-7) and quality-of-life (CU-Q2oL) without significantly increasing somnolence. Our results support the current recommendations of increasing antihistamines up to four times the standard dose in patients who fail the first-line treatment.

  17. Fuzzy control for the operation of an electrical energy generation system based on standard fuel cells PEM; Control difuso para la operacion de un sistema de generacion de energia electrica basado en celdas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez R, Miguel; Gutierrez A, Ruben [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Rodriguez P, Alejandro [Centro Nacional de Investigacion y Desarrollo Tecnologico (Cenidet), Cuernavaca, Morelos (Mexico)


    Fuel cells, as totally clean power plants, have many applications in the industry in general, in the transport system, in the electricity generation for domestic consumption and in the communication systems, among others. When developing new forms of generation with renewable energy sources, it must be considered that petroleum will stop in being an available power resource. The interest in the study of the fuel cells has been increased in the last years because it is considered a solution to the supply of distributed energy problem. Therefore, already exist research institutions that are developing work on this technology. A generation of electrical energy system based on fuel cells is a nonlinear system where the control of the variables of the process, such as the temperature of the system and the pressurization of the reactants, are an important aspect for its proper operation, since it influences in the water balance and therefore in the global efficiency of the system. [Spanish] Las celdas de combustible, como fuente de energia totalmente limpia, tienen muchas aplicaciones en la industria en general: en el sistema de transporte, en la generacion de electricidad para consumo domestico y en los sistemas de comunicacion, entre otros. Al desarrollar nuevas formas de generacion con fuentes de energia renovables, se debe considerar que el petroleo dejara de ser un recurso energetico disponible. El interes en el estudio de las celdas de combustible se ha incrementado en los ultimos anos debido a que se le considera una solucion al problema de abasto de energia distribuida. Por lo tanto, ya existen instituciones de investigacion que estan desarrollando trabajos sobre esta tecnologia. Un sistema de generacion de energia electrica basado en celdas de combustible es un sistema no lineal en donde el control de las variables del proceso, tales como la temperatura del sistema y la presurizacion de los reactantes, es un aspecto importante para su buen funcionamiento, ya que

  18. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States); Sheppard, E.J. [Tuskeggee Univ., Tuskegee, AL (United States). Dept. of Aerospace Engineering


    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  19. A randomized controlled clinical trial comparing small buccal dehiscence defects around dental implants treated with guided bone regeneration or left for spontaneous healing. (United States)

    Jung, Ronald E; Herzog, Milan; Wolleb, Karin; Ramel, Christian F; Thoma, Daniel S; Hämmerle, Christoph H F


    The aim of the present randomized controlled clinical study was to test whether small bony dehiscence defects (≤5 mm) left to heal spontaneously result in the same clinical and radiological outcome as defects treated with guided bone regeneration (GBR). Twenty-two patients who received at least one implant with a small bony dehiscence defect were enrolled in the study. If the defect height was ≤5 mm, the site was randomly assigned to either the spontaneous healing (SH) group or the GBR group. In the SH group, the defect was left without any treatment. In the GBR group, the defects around the implants were grafted with deproteinized bovine bone mineral (DBBM) and covered with a native collagen membrane. Clinical and radiographic measurements were performed 6 months after implant placement with a reentry surgery and at the time of crown insertion and the subsequent follow-up appointments at 3, 6, 12 and 18 months after loading. For statistical analyses, the mixed linear model was applied for the clinical and radiographic measurements observed around the implants. Simple comparisons of the location of the measurements in the two independent groups are performed with the Mann-Whitney U-test. In addition, the mixed model assumptions were checked. The implant and crown survival rate 18 months after loading was 100%, revealing no serious biologic or prosthetic complication. The mean changes of the buccal vertical bone height between implant placement and reentry surgery after 6 months revealed a small bone loss of -0.17 ± 1.79 mm (minimum -4 mm and maximum 2.5 mm) for the SH group and a bone gain of 1.79 ± 2.24 mm (minimum of -2.5 mm and maximum of 5 mm) for the GBR group, respectively (P = 0.017). Radiographic measurements demonstrated a slight bone loss of -0.39 ± 0.49 mm for the SH group and a stable bone level of 0.02 ± 0.48 mm for GBR group after 18 months. All peri-implant soft tissue parameters revealed healthy tissues with no

  20. The (perceived) meaning of spontaneous thoughts. (United States)

    Morewedge, Carey K; Giblin, Colleen E; Norton, Michael I


    Spontaneous thoughts, the output of a broad category of uncontrolled and inaccessible higher order mental processes, arise frequently in everyday life. The seeming randomness by which spontaneous thoughts arise might give people good reason to dismiss them as meaningless. We suggest that it is precisely the lack of control over and access to the processes by which they arise that leads people to perceive spontaneous thoughts as revealing meaningful self-insight. Consequently, spontaneous thoughts potently influence judgment. A series of experiments provides evidence supporting two hypotheses. First, we hypothesize that the more a thought is perceived to be spontaneous, the more it is perceived to provide meaningful self-insight. Participants perceived more spontaneous kinds of thought (e.g., intuition) to reveal greater self-insight than did more controlled kinds of thought in Study 1 (e.g., deliberation). In Studies 2 and 3, participants perceived thoughts with the same content and target to reveal greater self-insight when spontaneously rather than deliberately generated (i.e., childhood memories and impressions formed). Second, we hypothesize that the greater self-insight attributed to thoughts that are (perceived to be) spontaneous leads those thoughts to more potently influence judgment. Participants felt more sexually attracted to an attractive person whom they thought of spontaneously than deliberately in Study 4, and reported their commitment to a current romantic relationship would be more affected by the spontaneous rather than deliberate recollection of a good or bad experience with their romantic partner in Study 5. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  1. Spontaneous uterine rupture

    African Journals Online (AJOL)

    ABSTRACT. Rupture of a gravid uterus is a surgical emergency. Predisposing factors include a scarred uterus. Spontaneous rupture of an unscarred uterus during pregnancy is a rare occurrence. We hereby present the case of a spontaneous complete uterine rupture at a gestational age of 34 weeks in a 35 year old patient ...

  2. Spontaneous intracranial hypotension.

    LENUS (Irish Health Repository)

    Fullam, L


    INTRODUCTION: Spontaneous\\/primary intracranial hypotension is characterised by orthostatic headache and is associated with characteristic magnetic resonance imaging findings. CASE REPORT: We present a case report of a patient with typical symptoms and classical radiological images. DISCUSSION: Spontaneous intracranial hypotension is an under-recognised cause of headache and can be diagnosed by history of typical orthostatic headache and findings on MRI brain.

  3. Sandia combustion research program: Annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.E.; Sanders, B.R.; Ivanetich, C.A. (eds.)


    More than a decade ago, in response to a national energy crisis, Sandia proposed to the US Department of Energy a new, ambitious program in combustion research. Our strategy was to apply the rapidly increasing capabilities in lasers and computers to combustion science and technology. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''User Facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative--involving US universities, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions of several research projects which have been stimulated by Working Groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship Program has been instrumental in the success of some of the joint efforts. The remainder of this report presents research results of calendar year 1987, separated thematically into nine categories. Refereed journal articles appearing in print during 1987, along with selected other publications, are included at the end of Section 10. In addition to our ''traditional'' research--chemistry, reacting flow, diagnostics, engine combustion, and coal combustion--you will note continued progress in somewhat recent themes: pulse combustion, high temperature materials, and energetic materials, for example. Moreover, we have just started a small, new effort to understand combustion-related issues in the management of toxic and hazardous materials.

  4. Control of a post-combustion CO2 capture plant during process start-up and load variations

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Jørgensen, John Bagterp; Fosbøl, Philip Loldrup


    capture. The study demonstrates that the implemented control structure keeps the carbon capture process at 90% CO2 removal rate with a deviation up to 8% during load variations. In addition, it reveals that the control structure brings the process to the desired set point in approximately 10 min during...... and control system design are crucial. In this paper, we present a dynamic mathematical model for the absorption and desorption columns in a carbon capture plant. Moreover, we implement a decentralized proportional-integral (PI) based control scheme and we evaluate the performance of the control structure...... for various operational procedures, e.g. start-up, load changes, noise on the flue gas flow rate and composition. Note that the carbon capture plant is based on the solvent storage configuration. To the authors knowledge, this is the first paper addressing the issue of start-up operation and control of carbon...

  5. Distributed combustion in a cyclonic burner (United States)

    Sorrentino, Giancarlo; Sabia, Pino; de Joannon, Mara; Cavaliere, Antonio; Ragucci, Raffaele


    Distributed combustion regime occurs in several combustion technologies were efficient and environmentally cleaner energy conversion are primary tasks. For such technologies (MILD, LTC, etc…), working temperatures are enough low to boost the formation of several classes of pollutants, such as NOx and soot. To access this temperature range, a significant dilution as well as preheating of reactants is required. Such conditions are usually achieved by a strong recirculation of exhaust gases that simultaneously dilute and pre-heat the fresh reactants. However, the intersection of low combustion temperatures and highly diluted mixtures with intense pre-heating alters the evolution of the combustion process with respect to traditional flames, leading to significant features such as uniformity and distributed ignition. The present study numerically characterized the turbulence-chemistry and combustion regimes of propane/oxygen mixtures, highly diluted in nitrogen, at atmospheric pressure, in a cyclonic combustor under MILD Combustion operating conditions. The velocity and mixing fields were obtained using CFD with focus on mean and fluctuating quantities. The flow-field information helped differentiate between the impact of turbulence levels and dilution ones. The integral length scale along with the fluctuating velocity is critical to determine Damköhler and Karlovitz numbers. Together these numbers identify the combustion regime at which the combustor is operating. This information clearly distinguishes between conventional flames and distributed combustion. The results revealed that major controllers of the reaction regime are dilution and mixing levels; both are significantly impacted by lowering oxygen concentration through entrainment of hot reactive species from within the combustor, which is important in distributed combustion. Understanding the controlling factors of distributed regime is critical for the development and deployment of these novel combustion

  6. Combustion modeling in internal combustion engines (United States)

    Zeleznik, F. J.


    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  7. Management of intractable spontaneous epistaxis (United States)

    Rudmik, Luke


    Background: Epistaxis is a common otolaryngology emergency and is often controlled with first-line interventions such as cautery, hemostatic agents, or anterior nasal packing. A subset of patients will continue to bleed and require more aggressive therapy. Methods: Intractable spontaneous epistaxis was traditionally managed with posterior nasal packing and prolonged hospital admission. In an effort to reduce patient morbidity and shorten hospital stay, surgical and endovascular techniques have gained popularity. A literature review was conducted. Results: Transnasal endoscopic sphenopalatine artery ligation and arterial embolization provide excellent control rates but the decision to choose one over the other can be challenging. The role of transnasal endoscopic anterior ethmoid artery ligation is unclear but may be considered in certain cases when bleeding localizes to the ethmoid region. Conclusion: This article will focus on the management of intractable spontaneous epistaxis and discuss the role of endoscopic arterial ligation and embolization as it pertains to this challenging clinical scenario. PMID:22391084

  8. Hypothalamic control systems show differential gene expression during spontaneous daily torpor and fasting-induced torpor in the Djungarian hamster (Phodopus sungorus.

    Directory of Open Access Journals (Sweden)

    Ceyda Cubuk

    Full Text Available Djungarian hamsters are able to use spontaneous daily torpor (SDT during the winter season as well as fasting-induced torpor (FIT at any time of the year to cope with energetically challenging environmental conditions. Torpor is a state of severely reduced metabolism with a pronounced decrease in body temperature, which enables animals to decrease their individual energy requirements. Despite sharing common characteristics, such as reduced body mass before first torpor expression and depressed metabolism and body temperature during the torpid state, FIT and SDT differ in several physiological properties including torpor bout duration, minimal body temperature, fuel utilization and circadian organization. It remains unclear, whether SDT and FIT reflect the same phenomenon or two different physiological states. The hypothalamus has been suggested to play a key role in regulating energy balance and torpor. To uncover differences in molecular control mechanisms of torpor expression, we set out to investigate hypothalamic gene expression profiles of genes related to orexigenic (Agrp/Npy, circadian clock (Bmal1/Per1 and thyroid hormone (Dio2/Mct8 systems of animals undergoing SDT and FIT during different torpor stages. Orexigenic genes were mainly regulated during FIT and remained largely unaffected by SDT. Expression patterns of clock genes showed disturbed circadian clock rhythmicity in animals undergoing FIT, but not in animals undergoing SDT. During both, SDT and FIT, decreased Dio2 expression was detected, indicating reduced hypothalamic T3 availability in both types of torpor. Taken together, our results provide evidence that SDT and FIT also differ in certain central control mechanisms and support the observation that animals undergoing SDT are in energetical balance, whereas animals undergoing FIT display a negative energy balance. This should be carefully taken into account when interpreting data in torpor research, especially from animal

  9. Development of a Premixed Combustion Capability for Scramjet Combustion Experiments (United States)

    Rockwell, Robert D.; Goyne, Christopher P.; Rice, Brian E.; Chelliah, Harsha; McDaniel, James C.; Edwards, Jack R.; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.


    Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.

  10. Lump wood combustion process (United States)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan


    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  11. Internal and surface phenomena in metal combustion (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.


    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  12. Variable compression ratio device for internal combustion engine (United States)

    Maloney, Ronald P.; Faletti, James J.


    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  13. Clock frequency estimation under spontaneous emission (United States)

    Qin, Xi-Zhou; Huang, Jia-Hao; Zhong, Hong-Hua; Lee, Chaohong


    We investigate the quantum dynamics of a driven two-level system under spontaneous emission and its application in clock frequency estimation. By using the Lindblad equation to describe the system, we analytically obtain its exact solutions, which show three different regimes: Rabi oscillation, damped oscillation, and overdamped decay. From the analytical solutions, we explore how the spontaneous emission affects the clock frequency estimation. We find that under a moderate spontaneous emission rate, the transition frequency can still be inferred from the Rabi oscillation. Our results enable potential practical applications in frequency measurement and quantum control under decoherence.

  14. Clinical outcomes of spontaneous bacterial peritonitis due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species: A retrospective matched case-control study

    Directory of Open Access Journals (Sweden)

    Lee Hyo-Suk


    Full Text Available Abstract Background Clinical outcomes of spontaneous bacterial peritonitis (SBP due to extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella species (ESBL-EK have not been adequately investigated. Methods We conducted a retrospective matched case-control study to evaluate the outcomes of SBP due to ESBL-EK compared with those due to non-ESBL-EK. Cases were defined as patients with liver cirrhosis and SBP due to ESBL-EK isolated from ascites. Control patients with liver cirrhosis and SBP due to non-ESBL-EK were matched in a 3:1 ratio to cases according to the following five variables: age (± 5 years; gender; species of infecting organism; Child-Pugh score (± 2; Acute Physiological and Chronic Health Evaluation II score (± 2. 'Effective initial therapy' was defined as less than 72 hours elapsing between the time of obtaining a sample for culture and the start of treatment with an antimicrobial agent to which the EK was susceptible. Cephalosporin use for ESBL-EK was considered 'ineffective', irrespective of the minimum inhibitory concentration. ESBL production was determined according to the Clinical and Laboratory Standards Institute guidelines on stored isolates. Results Of 1026 episodes of SBP in 958 patients from Jan 2000 through Dec 2006, 368 (35.9% episodes in 346 patients were caused by SBP due to EK, isolated from ascites. Of these 346 patients, twenty-six (7.5% patients with SBP due to ESBL-EK were compared with 78 matched controls. Treatment failure, evaluated at 72 hours after initial antimicrobial therapy, was greater among the cases (15/26, 58% vs. 10/78, 13%, P = .006; 30-day mortality rate was also higher than in the controls (12/26, 46% vs. 11/78, 15%, P = .001. When the case were classified according to the effectiveness of the initial therapy, 'ineffective initial therapy' was associated with higher 30-day mortality rate (11/18, 61% vs. 1/8, 13%, P = .036. Conclusion SBP due to ESBL-EK had poorer outcomes

  15. Control of a post-combustion CO2 capture plantduring process start-up and load variations

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Jørgensen, John Bagterp; Fosbøl, Philip Loldrup


    Dynamic and flexible operation of a carbon capture plant is important as thermal power plants must be operated very flexibly to accommodate large shares of intermittent energy sources such as wind and solar energy. To facilitate such operation, dynamic models for simulation, optimization and cont......Dynamic and flexible operation of a carbon capture plant is important as thermal power plants must be operated very flexibly to accommodate large shares of intermittent energy sources such as wind and solar energy. To facilitate such operation, dynamic models for simulation, optimization...... and control system design are crucial. In this paper, we present a dynamic mathematical model for the absorption and desorption columns in a carbon capture plant. Moreover, we implement a decentralized proportional-integral (PI) based control scheme and we evaluate the performance of the control structure...

  16. Environmental optimisation of waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Robert [AaF Energikonsult, Stockholm (Sweden); Berge, Niclas; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)


    The regulations concerning waste combustion evolve through R and D and a strive to get better and common regulations for the European countries. This study discusses if these rules of today concerning oxygen concentration, minimum temperature and residence time in the furnace and the use of stand-by burners are needed, are possible to monitor, are the optimum from an environmental point of view or could be improved. No evidence from well controlled laboratory experiments validate that 850 deg C in 6 % oxygen content in general is the best lower limit. A lower excess air level increase the temperature, which has a significant effect on the destruction of hydrocarbons, favourably increases the residence time, increases the thermal efficiency and the efficiency of the precipitators. Low oxygen content is also necessary to achieve low NO{sub x}-emissions. The conclusion is that the demands on the accuracy of the measurement devices and methods are too high, if they are to be used inside the furnace to control the combustion process. The big problem is however to find representative locations to measure temperature, oxygen content and residence time in the furnace. Another major problem is that the monitoring of the operation conditions today do not secure a good combustion. It can lead to a false security. The reason is that it is very hard to find boilers without stratifications. These stratifications (stream lines) has each a different history of residence time, mixing time, oxygen and combustible gas levels and temperature, when they reach the convection area. The combustion result is the sum of all these different histories. The hydrocarbons emission is in general not produced at a steady level. Small clouds of unburnt hydrocarbons travels along the stream lines showing up as peaks on a THC measurement device. High amplitude peaks has a tendency to contain higher ratio of heavy hydrocarbons than lower peaks. The good correlation between some easily detected

  17. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower


    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  18. Flameless Combustion Workshop

    National Research Council Canada - National Science Library

    Gutmark, Ephraim


    .... "Flameless Combustion" is characterized by high stability levels with virtually no thermoacoustic instabilities, very low lean stability limits and therefore extremely low NOx production, efficient...

  19. Research Combustion Laboratory (RCL) (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  20. Combustion noise and combustion instabilities in propulsion systems (United States)

    Culick, F. E. C.; Paparizos, L.; Sterling, J.; Burnley, V.


    This paper is concerned with some aspects of non-linear behavior of unsteady motions in combustion chambers. The emphasis is on conditions under which organized oscillations having discrete frequencies may exist in the presence of random motions. In order to treat the two types of motions together, and particularly to investigate coupling between noise and combustion instabilities, the unsteady field is represented as a synthesis of acoustic modes having time-varying amplitudes. Each of the amplitudes are written as the sum of two parts, one associated with the random field and the remainder representing the organized oscillations. After spatial averaging, the general problem is reduced to solution of a set of second-order ordinary differential equations whose structure depends on the sorts of nonlinear processes accounted for. This formulation accommodates any physical process; in particular, terms are included to represent noise sources, although only limited modeling is discussed. Our results suggest that random sources of noise have only small effects on combustion instabilities and seem not to be a cause of unstable motions. However, the coupling between the two sorts of unsteady motions may be important as an essential process in a proposed scheme for noise control. It is now a familiar observation that many nonlinear deterministic systems are capable of exhibiting apparently random motions called 'chaos.' This is a particularly interesting possibility for systems which also executed non-deterministic random motions. In combustion chambers, a nonlinear deterministic system (acoustical motions) exists in the presence of noise produced by flow separation, turbulent motions, and energy released by combustion processes. The last part of the paper is directed to the matter of discovering whether or not chaotic motions exist in combustion systems. Analysis has not progressed sufficiently far to answer the question. We report here recent results of processing data

  1. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic

    International Nuclear Information System (INIS)

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos


    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 deg. C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher

  2. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic. (United States)

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos


    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 degrees C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher

  3. Spontaneous oscillations in microfluidic networks (United States)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson


    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  4. Strobes: An oscillatory combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.


    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  5. Catalytically enhanced combustion process

    International Nuclear Information System (INIS)

    Rodriguez, C.


    This patent describes a fuel having improved combustion efficiency. It comprises a petroleum based liquid hydrocarbon; and a combustion catalyst comprising from about 18 to about 21 weight percent naphthalene, from about 75 to about 80 weight percent toluene, and from about 2.8 to about 3.2 weight percent benzyl alcohol

  6. Strobes: An Oscillatory Combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; van Lingen, J.N.J.; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.


    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  7. Fifteenth combustion research conference

    International Nuclear Information System (INIS)


    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers

  8. Fifteenth combustion research conference

    Energy Technology Data Exchange (ETDEWEB)



    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

  9. Simple Wound Irrigation in the Postoperative Treatment for Surgically Drained Spontaneous Soft Tissue Abscesses: Study Protocol for a Prospective, Single-Blinded, Randomized Controlled Trial. (United States)

    Rühle, Annika; Oehme, Florian; Börnert, Katja; Fourie, Lana; Babst, Reto; Link, Björn-Christian; Metzger, Jürg; Beeres, Frank Jp


    Skin abscesses are a frequent encountered health care problem and lead to a significant source of morbidity. They consequently have an essential impact on the quality of life and work. To date, the type of aftercare for surgically drained abscesses remains under debate. This leads to undesirable practice variations. Many clinical standard protocols include sterile wound dressings twice a day by a home-care service to reduce the chance of a recurrent wound infection. It is unknown, however, whether reinfection rates are comparable to adequate wound irrigation with a nonsterile solution performed by the patient. Our hypothesis is that simple wound irrigation with nonsterile water for postoperative wound care after an abscess is surgically drained is feasible. We assume that in terms of reinfection and reintervention rates unsterile wound irrigation is equal to sterile wound irrigation. The primary aim of this study is therefore to investigate if there is a need for sterile wound irrigation after surgically drained spontaneous skin abscesses. In a prospective, randomized controlled, single-blinded, single-center trial based on a noninferiority design, we will enroll 128 patients randomized to either the control or the intervention group. The control group will be treated according to our current, standard protocol in which all patients receive a sterile wound irrigation performed by a home-care service twice a day. Patients randomized to the intervention group will be treated with a nonsterile wound irrigation (shower) twice a day. All patients will have a routine clinical control visit after 1, 3, 6, and 12 weeks in the outpatient clinic. Primary outcome is the reinfection and reoperation rate due to insufficient wound healing diagnosed either at the outpatient control visit or during general practitioner visits. Secondary outcome measures include a Short Form Health Survey, Visual Analog Scale, Patient and Observer Scar Assessment Scale, Vancouver Scar Scale, and

  10. Real time identification of the internal combustion engine combustion parameters based on the vibration velocity signal (United States)

    Zhao, Xiuliang; Cheng, Yong; Wang, Limei; Ji, Shaobo


    Accurate combustion parameters are the foundations of effective closed-loop control of engine combustion process. Some combustion parameters, including the start of combustion, the location of peak pressure, the maximum pressure rise rate and its location, can be identified from the engine block vibration signals. These signals often include non-combustion related contributions, which limit the prompt acquisition of the combustion parameters computationally. The main component in these non-combustion related contributions is considered to be caused by the reciprocating inertia force excitation (RIFE) of engine crank train. A mathematical model is established to describe the response of the RIFE. The parameters of the model are recognized with a pattern recognition algorithm, and the response of the RIFE is predicted and then the related contributions are removed from the measured vibration velocity signals. The combustion parameters are extracted from the feature points of the renovated vibration velocity signals. There are angle deviations between the feature points in the vibration velocity signals and those in the cylinder pressure signals. For the start of combustion, a system bias is adopted to correct the deviation and the error bound of the predicted parameters is within 1.1°. To predict the location of the maximum pressure rise rate and the location of the peak pressure, algorithms based on the proportion of high frequency components in the vibration velocity signals are introduced. Tests results show that the two parameters are able to be predicted within 0.7° and 0.8° error bound respectively. The increase from the knee point preceding the peak value point to the peak value in the vibration velocity signals is used to predict the value of the maximum pressure rise rate. Finally, a monitoring frame work is inferred to realize the combustion parameters prediction. Satisfactory prediction for combustion parameters in successive cycles is achieved, which

  11. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt


    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  12. PDF Modeling of Turbulent Combustion

    National Research Council Canada - National Science Library

    Pope, Stephen B


    .... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...

  13. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de


    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  14. Study of experimental validation for combustion analysis of GOTHIC code

    International Nuclear Information System (INIS)

    Lee, J. Y.; Yang, S. Y.; Park, K. C.; Jeong, S. H.


    In this study, present lumped and subdivided GOTHIC6 code analyses of the premixed hydrogen combustion experiment at the Seoul National University and comparison with the experiment results. The experimental facility has 16367 cc free volume and rectangular shape. And the test was performed with unit equivalence ratio of the hydrogen and air, and with various location of igniter position. Using the lumped and mechanistic combustion model in GOTHIC6 code, the experiments were simulated with the same conditions. In the comparison between experiment and calculated results, the GOTHIC6 prediction of the combustion response does not compare well with the experiment results. In the point of combustion time, the lumped combustion model of GOTHIC6 code does not simulate the physical phenomena of combustion appropriately. In the case of mechanistic combustion model, the combustion time is predicted well, but the induction time of calculation data is longer than the experiment data remarkably. Also, the laminar combustion model of GOTHIC6 has deficiency to simulate combustion phenomena unless control the user defined value appropriately. And the pressure is not a proper variable that characterize the three dimensional effect of combustion

  15. LIEKKI 2 - Combustion and gasification research programme 1993- 1998. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M. [ed.


    The six-year Combustion and Gasification Research Programme LIEKKI 2 (1993-1998) was oriented towards research serving the development of energy production technologies based on combustion and gasification. The programme was divided into six research areas: 1. Modelling of the furnace processes (39 projects); 2. Chemistry of gaseous emission components (28); 3. Particle behaviour, ash, aerosols (42); 4. New combustion and gasification technologies (27); 5. Black liquor (33) and 6. Conventional combustion technologies, waste incineration (19). The main aim of the research has been to develop new, more efficient and environmentally friendly techniques. The development of conventional combustion technology has also been an important part of the programme. Another important goal has been to maintain and develop maintain the competence of the research organisations in the combustion area and to intensify their collaboration. Concerning its research contents and its objectives LIEKKI 2, like its forerunner, has not been fuel-specific. The programme has investigated the thermal conversion of oil, gas, black liquor, and coal as well as that of peat, biofuels, and various waste materials, and it has further advanced the know-how concerning the utilisation of these fuels. This approach differs from the usual fuel-specific differentiation, which, for instance, IEA (International Energy Agency) and EU have applied in their research activities. This approach seems in retrospect to have been the right choice. It has been appropriate to stimulate co-operation between parties who would not seek co-operation spontaneously. One example of this is the development of a steelmaking process by a Finnish steel manufacturer under the LIEKKI programme. The programme has also provided synergetic advantages to the development of the recovery boiler processes of the pulp industry. Assessing the impact of the programme is a matter of many facets. The six-year research work and a total

  16. Spectroscoping analysis of ignition in a spark ignition engine with jet-controlled combustion; Spektroskopische Untersuchung der Entflammung an einem Ottomotor mit strahlgefuehrtem Brennverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Palaveev, S. [MOT Forschungs- und Entwicklungsgesellschaft fuer Motorentechnik, Optik und Thermodynamik GmbH, Karlsruhe (Germany); Buri, S.; Xander, B.; Spicher, U. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Kolbenmaschinen


    The gasoline direct injection engine is one of the most promising strategies today to reduce the fuel consumption and CO{sub 2}-emissions of spark-ignition engines. The commercial launch of that combustion system was possible only through the development of new optical measurement techniques, which have been a major contribution for understanding the basics of the combustion in a stratified mode. In terms of space and time, compared to the homogeneous approach, the air-fuel-ratio for a stratified mode may vary significantly. This fluctuation affects in a critical way the process of ignition and combustion. The knowledge of the air-fuel-ratio in the spark plug area both at time of ignition and in during the combustion is therefore critical for the development of this combustion system and it components. This paper presents the spark-emission spectroscopy as a non invasive optical technique for measuring the air-fuel-ratio {lambda} in the spark gap at time of ignition. (orig.)

  17. Combustion stratification study of partially premixed combustion using Fourier transform analysis of OH* chemiluminescence images

    KAUST Repository

    Izadi Najafabadi, Mohammad


    A relatively high level of stratification (qualitatively: lack of homogeneity) is one of the main advantages of partially premixed combustion over the homogeneous charge compression ignition concept. Stratification can smooth the heat release rate and improve the controllability of combustion. In order to compare stratification levels of different partially premixed combustion strategies or other combustion concepts, an objective and meaningful definition of “stratification level” is required. Such a definition is currently lacking; qualitative/quantitative definitions in the literature cannot properly distinguish various levels of stratification. The main purpose of this study is to objectively define combustion stratification (not to be confused with fuel stratification) based on high-speed OH* chemiluminescence imaging, which is assumed to provide spatial information regarding heat release. Stratification essentially being equivalent to spatial structure, we base our definition on two-dimensional Fourier transforms of photographs of OH* chemiluminescence. A light-duty optical diesel engine has been used to perform the OH* bandpass imaging on. Four experimental points are evaluated, with injection timings in the homogeneous regime as well as in the stratified partially premixed combustion regime. Two-dimensional Fourier transforms translate these chemiluminescence images into a range of spatial frequencies. The frequency information is used to define combustion stratification, using a novel normalization procedure. The results indicate that this new definition, based on Fourier analysis of OH* bandpass images, overcomes the drawbacks of previous definitions used in the literature and is a promising method to compare the level of combustion stratification between different experiments.

  18. Potential of Porous-Media Combustion Technology as Applied to Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Miroslaw Weclas


    Full Text Available The paper summarizes the knowledge concerning porous media combustion techniques as applied in engines. One of most important reasons of this review is to introduce this still not well known technology to researchers doing with internal combustion engine processes, thermal engines, reactor thermodynamics, combustion, and material science. The paper gives an overview of possible applications of a highly porous open cell structures to in-cylinder processes. This application means utilization of unique features of porous media for supporting engine processes, especially fuel distribution in space, vaporization, mixing with air, heat recuperation, ignition and combustion. There are three ways for applying porous medium technology to engines: support of individual processes, support of homogeneous combustion process (catalytic and non-catalytic with temperature control, and utilization of the porous structure as a heat capacitor only. In the first type of application, the porous structure may be utilized for fuel vaporization and improved fuel distribution in space making the mixture more homogeneous in the combustion chamber. Extension of these processes to mixture formation and ignition inside a combustion reactor allows the realization of a homogeneous and a nearly zero emissions level combustion characterized by a homogeneous temperature field at reduced temperature level.

  19. The epigenetic control of transposable elements and imprinted genes in newborns is affected by the mode of conception: ART versus spontaneous conception without underlying infertility. (United States)

    Choux, C; Binquet, C; Carmignac, V; Bruno, C; Chapusot, C; Barberet, J; Lamotte, M; Sagot, P; Bourc'his, D; Fauque, P


    Do assisted reproductive technologies alter DNA methylation and/or transcription of transposable elements and imprinted genes in cord blood and placenta? After ART, DNA methylation and/or transcription changes of some transposable elements and imprinted genes were found in placenta samples while transcription modifications for some transposable elements were also discovered in cord blood. Recent studies have confirmed the increased risk of placenta-related adverse pregnancy outcomes and the excess of imprinted disorders with abnormal methylation patterns after ART, which raises the issue of a potential ART-induced epigenetic risk. A total of 51 IVF/ICSI (15 conventional and 36 ICSI) singleton pregnancies were prospectively included from January 2013 to April 2015 and compared to 48 spontaneously conceived singleton pregnancies. The DNA methylation and transcription of three imprinted loci (H19/IGF2, KCNQ1OT1 and SNURF DMRs) and four transposon families (LINE-1, ERVFRD, AluYa5 and ERVW) in cord blood and placenta obtained at birth were assessed by pyrosequencing and quantitative RT-PCR, respectively. All data were adjusted for gestational age at delivery, sex of the newborn, parity and maternal age. DNA methylation levels of H19/IGF2, KCNQ1OT1, LINE-1Hs and ERVFRD-1 were significantly lower in IVF/ICSI placentas than in control placentas, while there was no difference for cord blood. Moreover, the expression of ERVFRD-1 and LINE-1 ORF2 in cord blood and ERVFRD-1 in placenta was lower in the IVF/ICSI group than in controls. The expression of ERVFRD-1 in placenta correlated positively with birth weight and placenta weight, but only in the control group, thus pointing to the potential deregulation of syncytin function after ART. N/A. The control group of fertile couples having conceived within 1 year prevented us from deciphering the distinct roles of ART and infertility. These novel findings of ERVFRD (syncytin-2) expression correlating with birth weight and placenta

  20. Efficacy and Safety of Omalizumab in Patients with Chronic Idiopathic/Spontaneous Urticaria Who Remain Symptomatic on H1 Antihistamines: A Randomized, Placebo-Controlled Study (United States)

    Saini, Sarbjit S; Bindslev-Jensen, Carsten; Maurer, Marcus; Grob, Jean-Jacques; Bülbül Baskan, Emel; Bradley, Mary S; Canvin, Janice; Rahmaoui, Abdelkader; Georgiou, Panayiotis; Alpan, Oral; Spector, Sheldon; Rosén, Karin


    ASTERIA I was a 40-week, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of subcutaneous omalizumab as add-on therapy for 24 weeks in patients with chronic idiopathic urticaria/spontaneous urticaria (CIU/CSU) who remained symptomatic despite H1 antihistamine treatment at licensed doses. Patients aged 12–75 years with CIU/CSU who remained symptomatic despite treatment with approved doses of H1 antihistamines were randomized (1:1:1:1) in a double-blind manner to subcutaneous omalizumab 75 mg, 150 mg, or 300 mg or placebo every 4 weeks for 24 weeks followed by 16 weeks of follow-up. The primary end point was change from baseline in weekly itch severity score (ISS) at week 12. Among randomized patients (N=319: placebo n=80, omalizumab 75 mg n=78, 150 mg n=80, 300 mg n=81), 262 (82.1%) completed the study. Compared with placebo (n=80), mean weekly ISS was reduced from baseline to week 12 by an additional 2.96 points (95% confidence interval (CI): −4.71 to −1.21; P=0.0010), 2.95 points (95% CI: −4.72 to −1.18; P=0.0012), and 5.80 points (95% CI: −7.49 to −4.10; Pomalizumab 75-mg (n=77), 150-mg (n=80), and 300-mg groups (n=81), respectively. The omalizumab 300-mg group met all nine secondary end points, including a significant decrease in the duration of time to reach minimally important difference response (⩾5-point decrease) in weekly ISS (Pomalizumab 75-mg, 150-mg, 300-mg, and placebo groups, respectively, experienced a serious adverse event. Omalizumab 300 mg administered subcutaneously every 4 weeks reduced weekly ISS and other symptom scores versus placebo in CIU/CSU patients who remained symptomatic despite treatment with approved doses of H1 antihistamines. PMID:25046337

  1. Time-dependent effects of training on cardiovascular control in spontaneously hypertensive rats: role for brain oxidative stress and inflammation and baroreflex sensitivity.

    Directory of Open Access Journals (Sweden)

    Gustavo S Masson

    Full Text Available Baroreflex dysfunction, oxidative stress and inflammation, important hallmarks of hypertension, are attenuated by exercise training. In this study, we investigated the relationships and time-course changes of cardiovascular parameters, pro-inflammatory cytokines and pro-oxidant profiles within the hypothalamic paraventricular nucleus of the spontaneously hypertensive rats (SHR. Basal values and variability of arterial pressure and heart rate and baroreflex sensitivity were measured in trained (T, low-intensity treadmill training and sedentary (S SHR at weeks 0, 1, 2, 4 and 8. Paraventricular nucleus was used to determine reactive oxygen species (dihydroethidium oxidation products, HPLC, NADPH oxidase subunits and pro-inflammatory cytokines expression (Real time PCR, p38 MAPK and ERK1/2 expression (Western blotting, NF-κB content (electrophoretic mobility shift assay and cytokines immunofluorescence. SHR-S vs. WKY-S (Wistar Kyoto rats as time control showed increased mean arterial pressure (172±3 mmHg, pressure variability and heart rate (358±7 b/min, decreased baroreflex sensitivity and heart rate variability, increased p47phox and reactive oxygen species production, elevated NF-κB activity and increased TNF-α and IL-6 expression within the paraventricular nucleus of hypothalamus. Two weeks of training reversed all hypothalamic changes, reduced ERK1/2 phosphorylation and normalized baroreflex sensitivity (4.04±0.31 vs. 2.31±0.19 b/min/mmHg in SHR-S. These responses were followed by increased vagal component of heart rate variability (1.9-fold and resting bradycardia (-13% at the 4th week, and, by reduced vasomotor component of pressure variability (-28% and decreased mean arterial pressure (-7% only at the 8th week of training. Our findings indicate that independent of the high pressure levels in SHR, training promptly restores baroreflex function by disrupting the positive feedback between high oxidative stress and increased pro

  2. The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. (United States)

    Garland, Theodore; Schutz, Heidi; Chappell, Mark A; Keeney, Brooke K; Meek, Thomas H; Copes, Lynn E; Acosta, Wendy; Drenowatz, Clemens; Maciel, Robert C; van Dijk, Gertjan; Kotz, Catherine M; Eisenmann, Joey C


    Mammals expend energy in many ways, including basic cellular maintenance and repair, digestion, thermoregulation, locomotion, growth and reproduction. These processes can vary tremendously among species and individuals, potentially leading to large variation in daily energy expenditure (DEE). Locomotor energy costs can be substantial for large-bodied species and those with high-activity lifestyles. For humans in industrialized societies, locomotion necessary for daily activities is often relatively low, so it has been presumed that activity energy expenditure and DEE are lower than in our ancestors. Whether this is true and has contributed to a rise in obesity is controversial. In humans, much attention has centered on spontaneous physical activity (SPA) or non-exercise activity thermogenesis (NEAT), the latter sometimes defined so broadly as to include all energy expended due to activity, exclusive of volitional exercise. Given that most people in Western societies engage in little voluntary exercise, increasing NEAT may be an effective way to maintain DEE and combat overweight and obesity. One way to promote NEAT is to decrease the amount of time spent on sedentary behaviours (e.g. watching television). The effects of voluntary exercise on other components of physical activity are highly variable in humans, partly as a function of age, and have rarely been studied in rodents. However, most rodent studies indicate that food consumption increases in the presence of wheels; therefore, other aspects of physical activity are not reduced enough to compensate for the energetic cost of wheel running. Most rodent studies also show negative effects of wheel access on body fat, especially in males. Sedentary behaviours per se have not been studied in rodents in relation to obesity. Several lines of evidence demonstrate the important role of dopamine, in addition to other neural signaling networks (e.g. the endocannabinoid system), in the control of voluntary exercise. A

  3. Time-dependent effects of training on cardiovascular control in spontaneously hypertensive rats: role for brain oxidative stress and inflammation and baroreflex sensitivity. (United States)

    Masson, Gustavo S; Costa, Tassia S R; Yshii, Lidia; Fernandes, Denise C; Soares, Pedro Paulo Silva; Laurindo, Francisco R; Scavone, Cristoforo; Michelini, Lisete C


    Baroreflex dysfunction, oxidative stress and inflammation, important hallmarks of hypertension, are attenuated by exercise training. In this study, we investigated the relationships and time-course changes of cardiovascular parameters, pro-inflammatory cytokines and pro-oxidant profiles within the hypothalamic paraventricular nucleus of the spontaneously hypertensive rats (SHR). Basal values and variability of arterial pressure and heart rate and baroreflex sensitivity were measured in trained (T, low-intensity treadmill training) and sedentary (S) SHR at weeks 0, 1, 2, 4 and 8. Paraventricular nucleus was used to determine reactive oxygen species (dihydroethidium oxidation products, HPLC), NADPH oxidase subunits and pro-inflammatory cytokines expression (Real time PCR), p38 MAPK and ERK1/2 expression (Western blotting), NF-κB content (electrophoretic mobility shift assay) and cytokines immunofluorescence. SHR-S vs. WKY-S (Wistar Kyoto rats as time control) showed increased mean arterial pressure (172±3 mmHg), pressure variability and heart rate (358±7 b/min), decreased baroreflex sensitivity and heart rate variability, increased p47phox and reactive oxygen species production, elevated NF-κB activity and increased TNF-α and IL-6 expression within the paraventricular nucleus of hypothalamus. Two weeks of training reversed all hypothalamic changes, reduced ERK1/2 phosphorylation and normalized baroreflex sensitivity (4.04±0.31 vs. 2.31±0.19 b/min/mmHg in SHR-S). These responses were followed by increased vagal component of heart rate variability (1.9-fold) and resting bradycardia (-13%) at the 4th week, and, by reduced vasomotor component of pressure variability (-28%) and decreased mean arterial pressure (-7%) only at the 8th week of training. Our findings indicate that independent of the high pressure levels in SHR, training promptly restores baroreflex function by disrupting the positive feedback between high oxidative stress and increased pro

  4. Two phase exhaust for internal combustion engine (United States)

    Vuk, Carl T [Denver, IA


    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  5. System and method for engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Sczomak, David P.; Gallon, Robert J.; Solomon, Arun S.


    A combustion system for use with one or more cylinder bores of an internal combustion engine includes at least one cylinder head defining first and second intake ports in fluid communication with the one or more cylinder bores. A flap is adjustably connected to the at least one cylinder head. The flap includes a first flap portion cooperating with the first intake port extending from an arm and a second flap portion cooperating with the second intake port extending from the arm and disposed adjacent the first flap portion. A controller in electrical communication with an actuator monitors the condition of the engine and actuates the flap to position the first and second flap portions between first and second positions to create a first combustion condition and a second combustion condition.

  6. Control of combustion systems; Control de sistemas de combustion

    Energy Technology Data Exchange (ETDEWEB)



    The main objective of this research project is the development and numerical resolution, by computer of a mathematical model in order to get the simulation of the performance and behaviour of a pulverized coal boiler. It is a three-dimensional model to be able to give all the thermodynamic variables in each boiler point. After several executions of the simulation programme incorporating the possible improvements of the performance conditions and even changing some design data is was possible the optimization of the process. It was been taken data from real boiler operating situation, in order to approach the model to the real conditions. The model is structured in two phases: The solid phase and the gas phase. The independent solid phase model is integrated into the more general model of the gas phase. All the model has been implemented in a Fortran programme of high calculate capacity. Finally, all the results date are showing in adequate graphics. It has been used in the real case of ENDESA power station, allocated in As Pontes (La Coruna).

  7. Free-radicals aided combustion with scramjet applications (United States)

    Yang, Yongsheng; Kumar, Ramohalli


    Theoretical and experimental investigations aimed at altering 'nature-prescribed' combustion rates in hydrogen/hydrocarbon reactions with (enriched) air are presented. The intent is to anchor flame zones in supersonic streams, and to ensure proper and controllable complete combustion in scramjets. The diagnostics are nonintrusive through IR thermograms and acoustic emissions in the control and free-radicals altered flame zones.

  8. Demonstration of advanced combustion NO(sub X) control techniques for a wall-fired boiler. Project performance summary, Clean Coal Technology Demonstration Program

    International Nuclear Information System (INIS)



    The project represents a landmark assessment of the potential of low-NO(sub x) burners, advanced overtire air, and neural-network control systems to reduce NO(sub x) emissions within the bounds of acceptable dry-bottom, wall-fired boiler performance. Such boilers were targeted under the Clean Air Act Amendments of 1990 (CAAA). Testing provided valuable input to the Environmental Protection Agency ruling issued in March 1994, which set NO(sub x) emission limits for ''Group 1'' wall-fired boilers at 0.5 lb/10(sup 6) Btu to be met by January 1996. The resultant comprehensive database served to assist utilities in effectively implementing CAAA compliance. The project is part of the U.S. Department of Energy's Clean Coal Technology Demonstration Program established to address energy and environmental concerns related to coal use. Five nationally competed solicitations sought cost-shared partnerships with industry to accelerate commercialization of the most advanced coal-based power generation and pollution control technologies. The Program, valued at over$5 billion, has leveraged federal funding twofold through the resultant partnerships encompassing utilities, technology developers, state governments, and research organizations. This project was one of 16 selected in May 1988 from 55 proposals submitted in response to the Program's second solicitation. Southern Company Services, Inc. (SCS) conducted a comprehensive evaluation of the effects of Foster Wheeler Energy Corporation's (FWEC) advanced overfire air (AOFA), low-NO(sub x) burners (LNB), and LNB/AOFA on wall-fired boiler NO(sub x) emissions and other combustion parameters. SCS also evaluated the effectiveness of an advanced on-line optimization system, the Generic NO(sub x) Control Intelligent System (GNOCIS). Over a six-year period, SCS carried out testing at Georgia Power Company's 500-MWe Plant Hammond Unit 4 in Coosa, Georgia. Tests proceeded in a logical sequence using rigorous statistical analyses to

  9. [Impact of prepregnancy body mass index on pregnancy outcome in women with a singleton conceived by assisted reproductive technology and spontaneously conceived pregnancy: a case-control study]. (United States)

    Kim, Ju Hee; Shin, Hye Sook; Park, Bo Kyung; Yang, Kwang Moon; Lee, Young Ho; Ryu, Hyun Mee


    To compare and confirm the impact of prepregnancy body mass index on pregnancy outcome in women with a singleton conceived by assisted reproductive technology and spontaneously conceived pregnancy. A sample of 165 and 247 pregnant women with and without assisted reproductive technology were retrospectively recruited from electronic medical charts of C hospital. There were significant differences between the two groups for maternal age, paternal age, length of marriage, prepregnancy body mass index, parity, spontaneous abortion experience, and preterm delivery. A prepregnancy body mass index of ≥25 was associated with higher risk for maternal and neonatal complication in the assisted reproductive technology group. The results indicate that a higher prepregnancy body mass index is associated with increased risks for adverse pregnancy outcomes for women using assisted reproductive technology. So these women need appropriate care to compensate for the risk.

  10. Spontaneous Atraumatic Mediastinal Hemorrhage

    Directory of Open Access Journals (Sweden)

    Morkos Iskander BSc, BMBS, MRCS, PGCertMedEd


    Full Text Available Spontaneous atraumatic mediastinal hematomas are rare. We present a case of a previously fit and well middle-aged lady who presented with acute breathlessness and an increasing neck swelling and spontaneous neck bruising. On plain chest radiograph, widening of the mediastinum was noted. The bruising was later confirmed to be secondary to mediastinal hematoma. This life-threatening diagnostic conundrum was managed conservatively with a multidisciplinary team approach involving upper gastrointestinal and thoracic surgeons, gastroenterologists, radiologists, intensivists, and hematologists along with a variety of diagnostic modalities. A review of literature is also presented to help surgeons manage such challenging and complicated cases.

  11. Time-Dependent Effects of Training on Cardiovascular Control in Spontaneously Hypertensive Rats: Role for Brain Oxidative Stress and Inflammation and Baroreflex Sensitivity


    Masson, Gustavo S.; Costa, Tassia S. R.; Yshii, Lidia; Fernandes, Denise C.; Soares, Pedro Paulo Silva; Laurindo, Francisco R.; Scavone, Cristoforo; Michelini, Lisete C.


    Baroreflex dysfunction, oxidative stress and inflammation, important hallmarks of hypertension, are attenuated by exercise training. In this study, we investigated the relationships and time-course changes of cardiovascular parameters, pro-inflammatory cytokines and pro-oxidant profiles within the hypothalamic paraventricular nucleus of the spontaneously hypertensive rats (SHR). Basal values and variability of arterial pressure and heart rate and baroreflex sensitivity were measured in traine...

  12. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)



    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  13. Indoor combustion and asthma. (United States)

    Belanger, Kathleen; Triche, Elizabeth W


    Indoor combustion produces both gases (eg, nitrogen dioxide, carbon monoxide) and particulate matter that may affect the development or exacerbation of asthma. Sources in the home include both heating devices (eg, fireplaces, woodstoves, kerosene heaters, flued [ie, vented] or nonflued gas heaters) and gas stoves for cooking. This article highlights the recent literature examining associations between exposure to indoor combustion and asthma development and severity. Since asthma is a chronic condition affecting both children and adults, both age groups are included in this article. Overall, there is some evidence of an association between exposure to indoor combustion and asthma, particularly asthma symptoms in children. Some sources of combustion such as coal stoves have been more consistently associated with these outcomes than other sources such as woodstoves.

  14. Optimization of control bars patterns and fuel recharges of coupled form; Optimizacion de patrones de barras de control y recargas de combustible de forma acoplada

    Energy Technology Data Exchange (ETDEWEB)

    Mejia S, D.M.; Ortiz S, J.J. [ININ, 52750 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail:


    In this work a system coupled for the optimization of fuel recharges and control bars patterns in boiling water reactors (BWR by its initials in English) is presented. It was used a multi state recurrent neural net like optimization technique. This type of neural net has been used in the solution of diverse problems, in particular the design of patterns of control bars and the design of the fuel recharge. However, these problems have been resolved in an independent way with different optimization techniques. The system was developed in FORTRAN 77 language, it calls OCORN (Optimization of Cycles of Operation using Neural Nets) and it solves both problems of combinatory optimization in a coupled way. OCORN begins creating a seed recharge by means of an optimization through the Haling principle. Later on a pattern of control bars for this recharge seed is proposed. Then a new fuel recharge is designed using the control bars patterns previously found. By this way an iterative process begins among the optimization of control bars patterns and the fuel recharge until a stop criteria it is completed. The stop criteria is completed when the fuel recharges and the control bars patterns don't vary in several successive iterations. The final result is an optimal fuel recharge and its respective control bars pattern. In this work the obtained results by this system for a cycle of balance of 18 months divided in 12 steps of burnt are presented. The obtained results are very encouraging, since the fuel recharge and the control bars pattern, its fulfill with the restrictions imposed in each one of the problems. (Author)

  15. Spontaneous Appendicocutaneous Fistula I

    African Journals Online (AJOL)

    M T0k0de* MB, BS and. Dr 0. A. AWOj0bi+ FMCS (Nig). ABSTRACT. Ruptured appendicitis is not a common cause of spontaneous enterocutaneous fistula. A case of ruptured retrocaecal appendicitis presenting as an enterocutaneous fistula in a Nigerian woman is presented. The literature on this disorder is also reviewed.

  16. [Spontaneous bacterial peritonitis]. (United States)

    Strauss, Edna; Caly, Wanda Regina


    Spontaneous bacterial peritonitis occurs in 30% of patients with ascites due to cirrhosis leading to high morbidity and mortality rates. The pathogenesis of spontaneous bacterial peritonitis is related to altered host defenses observed in end-stage liver disease, overgrowth of microorganisms, and bacterial translocation from the intestinal lumen to mesenteric lymph nodes. Clinical manifestations vary from severe to slight or absent, demanding analysis of the ascitic fluid. The diagnosis is confirmed by a number of neutrophils over 250/mm3 associated or not to bacterial growth in culture of an ascites sample. Enterobacteriae prevail and Escherichia coli has been the most frequent bacterium reported. Mortality rates decreased markedly in the last two decades due to early diagnosis and prompt antibiotic treatment. Third generation intravenous cephalosporins are effective in 70% to 95% of the cases. Recurrence of spontaneous bacterial peritonitis is common and can be prevented by the continuous use of oral norfloxacin. The development of bacterial resistance demands the search for new options in the prophylaxis of spontaneous bacterial peritonitis; probiotics are a promising new approach, but deserve further evaluation. Short-term antibiotic prophylaxis is recommended for patients with cirrhosis and ascites shortly after an acute episode of gastrointestinal bleeding.

  17. Spontaneous Grammar Explanations. (United States)

    Tjoo, Hong Sing; Lewis, Marilyn


    Describes one New Zealand university language teacher's reflection on her own grammar explanations to university-level students of Bahasa Indonesian. Examines form-focused instruction through the teacher's spontaneous answers to students' questions about the form of the language they are studying. The teacher's experiences show that it takes time…


    African Journals Online (AJOL)


    Spontaneous bacterial peritonitis (SBP) frequent]y occurs in patients with liver cirrhosis and ascites. It is defined as an infection of previously sterile ascitic fluid without any demonstrable intrabdominal source of infection. It is now internationally agreed that a polymorphonuclear (PMN) cell count in the ascitic fluid of over 250 ...

  19. Spontaneous dimensional reduction? (United States)

    Carlip, Steven


    Over the past few years, evidence has begun to accumulate suggesting that spacetime may undergo a "spontaneous dimensional reduction" to two dimensions near the Planck scale. I review some of this evidence, and discuss the (still very speculative) proposal that the underlying mechanism may be related to short-distance focusing of light rays by quantum fluctuations.

  20. Project of multiple controller models for the maintenance of air/fuel ratio in natural gas internal combustion motors; Projeto de controladores multiplos modelos para manutencao da relacao ar/combustivel em motores de combustao interna movidos a gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Freitas Junior, Fernando Sousa e; Fleury, Agenor de Toledo [Sao Paulo Univ. SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mails:;


    The objective of this work is the study of advanced control techniques for the reduction of pollutant gases generated by internal combustion engines powered by natural gas. In this paper three techniques are applied to control the fuel injection and the ignition timing: the Generalized Predictive Control (GPC), the Linear Quadratic Regulator (LQR) and H{infinity} Control by Linear Matrix Inequalities (LMI). To each one of those techniques were developed a multiple model structure seeking to include the vast operation region of the engine. The controller's performance is measured by the efficiency in maintaining the fuel/air ratio around 1% of maximum deviation in relation to the stoichiometric value. The results show the possibility of controlling pollutant emission generated by this kind of engine to conform to international emission standards, improving life quality. (author)

  1. Combustion and emissions control in diesel-methane dual fuel engines: The effects of methane supply method combined with variable in-cylinder charge bulk motion

    International Nuclear Information System (INIS)

    Carlucci, Antonio P.; Laforgia, Domenico; Saracino, Roberto; Toto, Giuseppe


    Highlights: → We studied dual fuel combustion in diesel engines. → Bulk flow structure of in-cylinder charge and methane supply method were investigated. → Swirl charge motion is capable to enhance air-methane mixture oxidation at low loads. → Methane port injection is capable to reduce unburned hydrocarbons and nitric oxides. - Abstract: In this paper, the results of an extensive experimental campaign about dual fuel combustion development and the related pollutant emissions are reported, paying particular attention to the effect of both the in-cylinder charge bulk motion and methane supply method. A diesel common rail research engine was converted to operate in dual fuel mode and, by activating/deactivating the two different inlet valves of the engine (i.e. swirl and tumble), three different bulk flow structures of the charge were induced inside the cylinder. A methane port injection method was proposed, in which the gaseous fuel was injected into the inlet duct very close to the intake valves, in order to obtain a stratified-like air-fuel mixture up to the end of the compression stroke. For comparison purposes, a homogeneous-like air-fuel mixture was obtained injecting methane more upstream the intake line. Combining the different positions of the methane injector and the three possible bulk flow structures, seven different engine inlet setup were tested. In this way, it was possible to evaluate the effects on dual fuel combustion due to the interaction between methane injector position and charge bulk motion. In addition, methane injection pressure and diesel pilot injection parameters were varied setting the engine at two operating conditions. For some interesting low load tests, the combustion development was studied more in detail by means of direct observation of the process, using an in-cylinder endoscope and a digital CCD camera. Each combustion image was post-processed by a dedicated software, in order to extract only those portions with flame

  2. Soot formation and control in industrial combustion systems. A critical evaluation; Formacao e controle da fuligem em sistemas de combustao industrial. Uma avaliacao critica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Alex Alisson Bandeira; Goldstein Junior, Leonardo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia Termica e de Fluidos]. E-mail:


    This paper perform a critical analysis of the available information, evaluating and opening the discussions on the present models and theories focusing the mechanisms and the variables acting on the soot formation, and the control mechanisms namely the using of the chemical additives as well.

  3. Combustion chemistry. Activities in the CHEC research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K.; Johnsson, J.E.; Glarborg, P.; Frandsen, F.; Jensen, A.; Oestberg, M. [Technical Univ. of Denmark, Dept. of Chemical Engineering, Lyngby (Denmark)


    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This paper describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control Research Programme). (au) 173 refs.

  4. Combustion behavior of spent solvent in a submerged combustion process

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Maeda, Mitsuru; Fujine, Sachio; Amakawa, Masayuki; Uchida, Katsuhide.


    An experimental study has been conducted in order to evaluate the applicability of a submerged combustion technique to the treatment of spent solvents contaminated with TRU elements. A bench-scale equipment of submerged combustor having combustion capacity of 1.39 liter of tri-n-butyl phosphate (TBP) per hour was used to obtain process data such as the distribution behavior of radioactive nuclides in the submerged combustion process. This report describes the experimental results on the combustion characteristics of the simulated spent solvents of TBP and/or n-dodecane, and on the distribution behaviors of combustion products such as ruthenium and iodine in the submerged combustion process. (author)

  5. Spontaneous healing of spontaneous coronary artery dissection. (United States)

    Almafragi, Amar; Convens, Carl; Heuvel, Paul Van Den


    Spontaneous coronary artery dissection (SCAD) is a rare cause of acute coronary syndrome and sudden cardiac death. It should be suspected in every healthy young woman without cardiac risk factors, especially during the peripartum or postpartum periods. It is important to check for a history of drug abuse, collagen vascular disease or blunt trauma of the chest. Coronary angiography is essential for diagnosis and early management. We wonder whether thrombolysis might aggravate coronary dissection. All types of treatment (medical therapy, percutaneous intervention or surgery) improve the prognosis without affecting survival times if used appropriately according to the clinical stability and the angiographic features of the involved coronary arteries. Prompt recognition and targeted treatment improve outcomes. We report a case of SCAD in a young female free of traditional cardiovascular risk factors, who presented six hours after thrombolysis for ST elevation myocardial infarction. Coronary angiography showed a dissection of the left anterior descending and immediate branch. She had successful coronary artery bypass grafting, with complete healing of left anterior descending dissection.

  6. Sulfur Chemistry in Combustion II

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Kiil, Søren


    Several options are available to control the emission of SO2 from combustion processes. One possibility is to use a cleaner technology, i.e. fuel switching from oil and coal to natural gas or biomass, or to desulphurize coal and oil. Another possibility is to change to a different technology...... for power production, such as sun, wind or nuclear power. However, presently and in the near future the most important technology to reduce SO2 emissions from power production is flue gas desulphurization (FGD). There are several methods of FGD, but the majority of the plants are wet scrubbers...

  7. Maternal smoking predicts the risk of spontaneous abortion

    DEFF Research Database (Denmark)

    Nielsen, Ann; Hannibal, Charlotte Gerd; Lindekilde, Bodil Eriksen


    BACKGROUND: Few studies have examined smoking prior to pregnancy and the occurrence of spontaneous abortion, as most studies have addressed the risk of spontaneous abortion in relation to smoking during pregnancy. However, results are not entirely consistent. The aim of the present study...... was to assess the risk of spontaneous abortion considering smoking prior to pregnancy. METHODS: We performed a nested case-control study using prospective data from a population-based cohort comprising 11,088 women aged 20-29 years. From this cohort, women who experienced either a spontaneous abortion (n=343......) or who gave birth (n=1,578) during follow-up were selected. Associations between self-reported smoking at enrollment and subsequent spontaneous abortion were analyzed by means of multiple logistic regression. RESULTS: The risk of spontaneous abortion in relation to pre-pregnancy smoking showed a clear...

  8. Spontaneous spinal epidural abscess.

    LENUS (Irish Health Repository)

    Ellanti, P


    Spinal epidural abscess is an uncommon entity, the frequency of which is increasing. They occur spontaneously or as a complication of intervention. The classical triad of fever, back pain and neurological symptoms are not always present. High index of suspicion is key to diagnosis. Any delay in diagnosis and treatment can have significant neurological consequences. We present the case of a previously well man with a one month history of back pain resulting from an epidural abscess.


    Energy Technology Data Exchange (ETDEWEB)



    I explore the regions of quark masses where CP will be spontaneously broken in the strong interactions. The boundaries of these regions are controlled by the chiral anomaly, which manifests itself in ambiguities in the definition of non-degenerate quark masses. In particular, the concept of a single massless quark is ill defined.

  10. Grooming behavior of spontaneously hypertensive rats

    NARCIS (Netherlands)

    Buuse, M. van den; Jong, Wybren de


    In an open field spontaneously hypertensive rats (SHR) exhibited lower scores for grooming when compared to their normotensive controls, the Wistar Kyoto rats (WKY). After i.c.v. injection of 1 μg ACTH1–24 cumulative 50-min grooming scores were lower in SHR. Analysis of subscores indicated that the

  11. Internal combustion engine (United States)

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.


    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  12. Role of ascitic fluid C3 in spontaneous bacterial peritonitis

    African Journals Online (AJOL)

    Amany Talaat Kamal


    Feb 29, 2012 ... [13] Terg R, Fassio E, Guevara M. Ciprofloxacin in primary prophy- laxis of spontaneous bacterial peritonitis: a randomized, placebo controlled study. J Hepatol 2008;48(5):774–9. [14] Akriviadis EA, Runyon BA. Utility of an algorithm in differen- tiating spontaneous from secondary bacterial peritonitis. Gastro ...

  13. Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist

    DEFF Research Database (Denmark)

    Huys, Raoul; Jirsa, Viktor K; Darokhan, Ziauddin


    by evoked spiking. This study of laminar recordings of spontaneous spiking and visually evoked spiking of neurons in the ferret primary visual cortex shows that the spiking dynamics does not change: the spontaneous spiking as well as evoked spiking is controlled by a stable and persisting fixed point...

  14. Cursed lamp: the problem of spontaneous abortion. (United States)

    Simkulet, William


    Many people believe human fetuses have the same moral status as adult human persons, that it is wrong to allow harm to befall things with this moral status, and thus voluntary, induced abortion is seriously morally wrong. Recently, many prochoice theorists have argued that this antiabortion stance is inconsistent; approximately 60% of human fetuses die from spontaneous abortion, far more than die from induced abortion, so if antiabortion theorists really believe that human fetuses have significant moral status, they have strong moral obligations to oppose spontaneous abortion. Yet, few antiabortion theorists devote any effort to doing so. Many prochoice theorists argue that to resolve this inconsistency, antiabortion theorists should abandon their opposition to induced abortion. Here, I argue that those who do not abandon their opposition to induced abortion but continue to neglect spontaneous abortion act immorally. Aristotle argues that moral responsibility requires both control and awareness; I argue that once an antiabortion theorist becomes aware of the frequency of spontaneous abortion, they have a strong moral obligation to redirect their efforts towards combating spontaneous abortion; failure to do so is morally monstrous. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Liquid rocket combustion chamber acoustic characterization

    Directory of Open Access Journals (Sweden)

    Cândido Magno de Souza


    Full Text Available Over the last 40 years, many solid and liquid rocket motors have experienced combustion instabilities. Among other causes, there is the interaction of acoustic modes with the combustion and/or fluid dynamic processes inside the combustion chamber. Studies have been showing that, even if less than 1% of the available energy is diverted to an acoustic mode, combustion instability can be generated. On one hand, this instability can lead to ballistic pressure changes, couple with other propulsion systems such as guidance or thrust vector control, and in the worst case, cause motor structural failure. In this case, measures, applying acoustic techniques, must be taken to correct/minimize these influences on the combustion. The combustion chamber acoustic behavior in operating conditions can be estimated by considering its behavior in room conditions. In this way, acoustic tests can be easily performed, thus identifying the cavity modes. This paper describes the procedures to characterize the acoustic behavior in the inner cavity of four different configurations of a combustion chamber. Simple analytical models are used to calculate the acoustic resonance frequencies and these results are compared with acoustic natural frequencies measured at room conditions. Some comments about the measurement procedures are done, as well as the next steps for the continuity of this research. The analytical and experimental procedures results showed good agreement. However, limitations on high frequency band as well as in the identification of specific kinds of modes indicate that numerical methods able to model the real cavity geometry and an acoustic experimental modal analysis may be necessary for a more complete analysis. Future works shall also consider the presence of passive acoustic devices such as baffles and resonators capable of introducing damping and avoiding or limiting acoustic instabilities.

  16. Quality control in nuclear fuel fabrication on the inspection basis; Control de calidad para fabricacion de combustible nuclear en base a inspecciones

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes S, A. [Instituto Tecnologico de Toluca, Toluca (Mexico)


    Every plant productive of electric power requires the use of energetics for the transformation to electricity. In the nucleo electric plant the energetic is the uranium, in which it makes ensembles and is used as fuel in the reactor. To assure that the fuel ensembles fulfill the specifications and requirements of design stipulated in the nucleo electric plant is that under a quality control through inspections during the fabrication process. The purpose of this work is to study and verify that the lineaments of the standard 10 CFR 50 appendix B `Quality assurement for nuclear plants` specially in the criteria `Inspections` that is used to guarantee the quality of the ensembles. This standard is the one that rules every activity and operation inside the pilot plant and its established in the quality program in the production of nuclear fuel for the Laguna Verde plant. The quality of the assemble is verified through each one of the tests or inspections due to the importance of it in the fabrication of fuel. (Author)

  17. Transition nozzle combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Wook; McMahan, Kevin Weston; Maldonado, Jaime Javier


    The present application provides a combustion system for use with a cooling flow. The combustion system may include a head end, an aft end, a transition nozzle extending from the head end to the aft end, and an impingement sleeve surrounding the transition nozzle. The impingement sleeve may define a first cavity in communication with the head end for a first portion of the cooling flow and a second cavity in communication with the aft end for a second portion of the cooling flow. The transition nozzle may include a number of cooling holes thereon in communication with the second portion of the cooling flow.

  18. Studies in combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)


    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  19. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani


    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  20. Modeling the effect of seal leakage on spontaneous heating in a longwall gob area

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.C.; Yuan, L. [National Inst. for Occupational Safety and Health, Pittsburgh, PA (United States). Office of Mine Safety and Health Research


    Three coal mines in the United States with a history of spontaneous combustion use a bleederless ventilation system as a control measure. In a bleederless system, one of the headgate entries is used as the tailgate entry of the succeeding panel and is isolated from the gob of the active panel by gob seals that are installed in the headgate entry as the face advances. An active longwall panel using a Y-type bleederless ventilation system was simulated in this study. As longwall mining progresses, some seals are known to leak. Computational fluid dynamics (CFD) simulations were performed to study the effect of seal leakage on spontaneous heating of coal in the longwall gob area. The simulation results showed that under typical bleederless ventilation conditions, the maximum temperature in the gob increased with an increase in leakage rate. The maximum temperature occurred at the headgate side corner at the back end of the panel. When only 1 or 2 seals were leaking, the maximum temperature occurred around the seal. The results demonstrate that complex interactions between pressure differential and gob permeability at different locations in the gob cause ventilation pathways. The interactions depend greatly on gob permeability and seal leakage rates. 8 refs., 1 tab., 14 figs.

  1. Combuster. [low nitrogen oxide formation (United States)

    Mckay, R. A. (Inventor)


    A combuster is provided for utilizing a combustible mixture containing fuel and air, to heat a load fluid such as water or air, in a manner that minimizes the formation of nitrogen oxide. The combustible mixture passes through a small diameter tube where the mixture is heated to its combustion temperature, while the load fluid flows past the outside of the tube to receive heat. The tube is of a diameter small enough that the combustible mixture cannot form a flame, and yet is not subject to wall quench, so that combustion occurs, but at a temperature less than under free flame conditions. Most of the heat required for heating the combustible mixture to its combustion temperature, is obtained from heat flow through the walls of the pipe to the mixture.

  2. Toxicology of Biodiesel Combustion products (United States)

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  3. Combustion mode switching with a turbocharged/supercharged engine (United States)

    Mond, Alan; Jiang, Li


    A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.

  4. 46 CFR 32.56-50 - Combustible veneers-T/ALL. (United States)


    ... 46 Shipping 1 2010-10-01 2010-10-01 false Combustible veneers-T/ALL. 32.56-50 Section 32.56-50....56-50 Combustible veneers—T/ALL. (a) Except as provided in paragraph (b) of this section combustible veneers on bulkheads, linings, and ceilings within accommodation, service, or control spaces must be 2...

  5. Surgical management of spontaneous ruptured hepatocellular adenoma

    Directory of Open Access Journals (Sweden)

    Marcelo Augusto Fontenelle Ribeiro Junior


    Full Text Available AIMS: Spontaneous ruptured hepatocellular adenoma (SRHA is a rare life-threatening condition that may require surgical treatment to control hemorrhaging and also stabilize the patient. We report a series of emergency surgeries performed at our institution for this condition. METHODS: We reviewed medical records and radiology files of 28 patients (from 1989 to 2006 with a proven diagnosis of hepatocellular adenoma (HA. Three (10.7% of 28 patients had spontaneous ruptured hepatocellular adenoma, two of which were associated with intrahepatic hemorrhage while one had intraperitoneal bleeding. Two patients were female and one was male. Both female patients had a background history of oral contraceptive use. Sudden abdominal pain associated with hemodynamic instability occurred in all patients who suffered from spontaneous ruptured hepatocellular adenoma. The mean age was 41.6 years old. The preoperative assessment included liver function tests, ultrasonography and computed tomography. RESULTS: The surgical approaches were as follows: right hemihepatectomy for controlling intraperitoneal bleeding, and right extended hepatectomy and non-anatomic resection of the liver for intrahepatic hemorrhage. There were no deaths, and the postoperative complications were bile leakage and wound infection (re-operation, as well as intraperitoneal abscess (re-operation and pleural effusion. CONCLUSION: Spontaneous ruptured hepatocellular adenoma may be treated by surgery for controlling hemorrhages and stabilizing the patient, and the decision to operate depends upon both the patient's condition and the expertise of the surgical team.

  6. Spontaneous Hedonic Reactions to Social Media Cues. (United States)

    van Koningsbruggen, Guido M; Hartmann, Tilo; Eden, Allison; Veling, Harm


    Why is it so difficult to resist the desire to use social media? One possibility is that frequent social media users possess strong and spontaneous hedonic reactions to social media cues, which, in turn, makes it difficult to resist social media temptations. In two studies (total N = 200), we investigated less-frequent and frequent social media users' spontaneous hedonic reactions to social media cues using the Affect Misattribution Procedure-an implicit measure of affective reactions. Results demonstrated that frequent social media users showed more favorable affective reactions in response to social media (vs. control) cues, whereas less-frequent social media users' affective reactions did not differ between social media and control cues (Studies 1 and 2). Moreover, the spontaneous hedonic reactions to social media (vs. control) cues were related to self-reported cravings to use social media and partially accounted for the link between social media use and social media cravings (Study 2). These findings suggest that frequent social media users' spontaneous hedonic reactions in response to social media cues might contribute to their difficulties in resisting desires to use social media.

  7. Internal Combustion Engine Principles with Vehicle Applications

    DEFF Research Database (Denmark)

    Sorenson, Spencer C

    The book is an introductory text on the subject of internal combustion engines, intended for use in engineering courses at the senior or introductory graduate student level. The focus in on describing the basic principles of engine operation on a broad basis, to provide a foundation for further...... exchange processes, combustion in different engine types, exhaust emissions, engine control including mean value engine models, pressure charging, fuels and fuel systems, balancing, friction, and heat transfer. In addition, methods to establish the connection between engine characteristics and vehicle...

  8. Fuel and Additive Characterization for HCCI Combustion

    International Nuclear Information System (INIS)

    Aceves, S M; Flowers, D; Martinez-Frias, J; Espinosa-Loza, F; Pitz, W J; Dibble, R


    This paper shows a numerical evaluation of fuels and additives for HCCl combustion. First, a long list of candidate HCCl fuels is selected. For all the fuels in the list, operating conditions (compression ratio, equivalence ratio and intake temperature) are determined that result in optimum performance under typical operation for a heavy-duty engine. Fuels are also characterized by presenting Log(p)-Log(T) maps for multiple fuels under HCCl conditions. Log(p)-Log(T) maps illustrate important processes during HCCl engine operation, including compression, low temperature heat release and ignition. Log(p)-Log(T) diagrams can be used for visualizing these processes and can be used as a tool for detailed analysis of HCCl combustion. The paper also includes a ranking of many potential additives. Experiments and analyses have indicated that small amounts (a few parts per million) of secondary fuels (additives) may considerably affect HCCl combustion and may play a significant role in controlling HCCl combustion. Additives are ranked according to their capability to advance HCCl ignition. The best additives are listed and an explanation of their effect on HCCl combustion is included

  9. Dioxins and polyvinylchloride in combustion and fires. (United States)

    Zhang, Mengmei; Buekens, Alfons; Jiang, Xuguang; Li, Xiaodong


    This review on polyvinylchloride (PVC) and dioxins collects, collates, and compares data from selected sources on the formation of polychlorinated dibenzofurans (PCDFs) and dibenzo-p-dioxins (PCDDs), or in brief dioxins, in combustion and fires. In professional spheres, the incineration of PVC as part of municipal solid waste is seldom seen as a problem, since deep flue gas cleaning is required anyhow. Conversely, with its high content of chlorine, PVC is frequently branded as a major chlorine donor and spitefully leads to substantial formation of dioxins during poorly controlled or uncontrolled combustion and open fires. Numerous still ill-documented and diverse factors of influence may affect the formation of dioxins during combustion: on the one hand PVC-compounds represent an array of materials with widely different formulations; on the other hand these may all be exposed to fires of different nature and consequences. Hence, attention should be paid to PVC with respect to the ignition and development of fires, as well as attenuating the emission of objectionable compounds, such as carbon monoxide, hydrogen chloride, polycyclic aromatic hydrocarbons, and dioxins. This review summarises available dioxin emissions data, gathers experimental and simulation studies of fires and combustion tests involving PVC, and identifies and analyses the effects of several local factors of influence, affecting the formation of dioxins during PVC combustion. © The Author(s) 2015.

  10. Two-Color Pyrometry with Diesel Combustion (United States)

    Burn, Katharine; Bittle, Joshua


    Diesel combustion lasts only milliseconds and takes place inside a closed engine cylinder. Because of this, the mixing and subsequent combustion processes are still not completely understood. Using optically accessible experimental apparatuses and various highspeed optical diagnostic techniques can give insight into the effects of different types of fuels on their subsequent combustion. Two-color pyrometry is an example of such techniques, and has been proven to give accurate temperature measurements of a flame while requiring no physical contact with the surface of interest. A two-color pyrometer has been designed, built, and tested with a Bunsen burner, with the intent of applying the pyrometer to a combustion spray chamber in the future. Initial testing has been made at various fuel rates using a controlled Bunsen burner flame. Temperature maps have been generated from the pyrometer images showing trends that flames with higher fuel flow rates burned at lower mean temperatures. A preliminary video of diesel spray has been captured, showing that future application to diesel combustion is possible with the pyrometer setup.

  11. Vulnerability of dry containments against hydrogen combustion

    International Nuclear Information System (INIS)

    Robledo, F.


    The containment building is the last barrier to prevent the radioactive release of the fission products in a potential challenge from hydrogen combustion events in case of a severe accidents. The article also refers to the hydrogen control techniques and their implementation in several western countries. (Author)

  12. 75 FR 32142 - Combustible Dust (United States)


    ... Combustible Dust AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Notice of combustible dust Web Chat. SUMMARY: OSHA invites interested parties to participate in a Web Chat on the workplace hazards of combustible dust. OSHA plans to use the information gathered in response to this Web...

  13. Dorsomedial prefontal cortex supports spontaneous thinking per se. (United States)

    Raij, T T; Riekki, T J J


    Spontaneous thinking, an action to produce, consider, integrate, and reason through mental representations, is central to our daily experience and has been suggested to serve crucial adaptive purposes. Such thinking occurs among other experiences during mind wandering that is associated with activation of the default mode network among other brain circuitries. Whether and how such brain activation is linked to the experience of spontaneous thinking per se remains poorly known. We studied 51 healthy subjects using a comprehensive experience-sampling paradigm during 3T functional magnetic resonance imaging. In comparison with fixation, the experiences of spontaneous thinking and spontaneous perception were related to activation of wide-spread brain circuitries, including the cortical midline structures, the anterior cingulate cortex and the visual cortex. In direct comparison of the spontaneous thinking versus spontaneous perception, activation was observed in the anterior dorsomedial prefrontal cortex. Modality congruence of spontaneous-experience-related brain activation was suggested by several findings, including association of the lingual gyrus with visual in comparison with non-verbal-non-visual thinking. In the context of current literature, these findings suggest that the cortical midline structures are involved in the integrative core substrate of spontaneous thinking that is coupled with other brain systems depending on the characteristics of thinking. Furthermore, involvement of the anterior dorsomedial prefrontal cortex suggests the control of high-order abstract functions to characterize spontaneous thinking per se. Hum Brain Mapp 38:3277-3288, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Processing of hydroxyapatite obtained by combustion synthesis

    International Nuclear Information System (INIS)

    Canillas, M.; Rivero, R.; García-Carrodeguas, R.; Barba, F.; Rodríguez, M.A.


    One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties. [es

  15. Processing of hydroxyapatite obtained by combustion synthesis

    Directory of Open Access Journals (Sweden)

    M. Canillas


    Full Text Available One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties.

  16. Starting procedure for internal combustion vessels (United States)

    Harris, Harry A.


    A vertical vessel, having a low bed of broken material, having included combustible material, is initially ignited by a plurality of ignitors spaced over the surface of the bed, by adding fresh, broken material onto the bed to buildup the bed to its operating depth and then passing a combustible mixture of gas upwardly through the material, at a rate to prevent back-firing of the gas, while air and recycled gas is passed through the bed to thereby heat the material and commence the desired laterally uniform combustion in the bed. The procedure permits precise control of the air and gaseous fuel mixtures and material rates, and permits the use of the process equipment designed for continuous operation of the vessel.

  17. Spontaneous Thigh Compartment Syndrome

    Directory of Open Access Journals (Sweden)

    Khan, Sameer K


    Full Text Available A young man presented with a painful and swollen thigh, without any history of trauma, illness, coagulopathic medication or recent exertional exercise. Preliminary imaging delineated a haematoma in the anterior thigh, without any fractures or muscle trauma. Emergent fasciotomies were performed. No pathology could be identified intra-operatively, or on follow-up imaging. A review of thigh compartment syndromes described in literature is presented in a table. Emergency physicians and traumatologists should be cognisant of spontaneous atraumatic presentations of thigh compartment syndrome, to ensure prompt referral and definitive management of this limb-threatening condition. [West J Emerg Med. 2011;12(1:134-138].

  18. Optical Tomography in Combustion

    DEFF Research Database (Denmark)

    Evseev, Vadim

    . JQSRT 113 (2012) 2222, 10.1016/j.jqsrt.2012.07.015] included in the PhD thesis as an attachment. The knowledge and experience gained in the PhD project is the first important step towards introducing the advanced optical tomography methods of combustion diagnostics developed in the project to future...

  19. Incidences and range of spontaneous findings in the lymphoid and haemopoietic system of control Charles River CD-1 mice (Crl: CD-1(ICR) BR) used in chronic toxicity studies. (United States)

    Bradley, Alys; Mukaratirwa, Sydney; Petersen-Jones, Morven


    The authors performed a retrospective study to determine the incidences and range of spontaneous pathology findings in the lymphoid and haemopoietic systems of control Charles River CD-1 mice (Crl: CD-1(ICR) BR). Data was collected from 2,560 mice from control dose groups (104-week and 80-week carcinogenicity studies; 13-week studies), from regulatory studies evaluated at the authors' laboratory between 2005 and 2010. Lesions of the lymphoid and hematopoietic systems were uncommon in 13-week studies but were of high incidence in the carcinogenicity studies (80- or 104-week duration). The most common finding overall was lymphoid hyperplasia within the spleen, thymus, and lymph nodes. The finding of benign lymphoid hyperplasia of the thymus is unusual in other mouse strains. The most common cause of death in the carcinogenicity studies was lymphoma. It is hoped that the results presented here will provide a useful database of incidental pathology findings in CD-1 mice on carcinogenicity studies.

  20. Experimental investigation on the combustion characteristics of aluminum in air (United States)

    Feng, Yunchao; Xia, Zhixun; Huang, Liya; Yan, Xiaoting


    With the aim of revealing the detailed process of aluminum combustion in air, this paper reports an experimental study on the combustion of aluminum droplets. In this work, the aluminum wires were exposed and heated by a CO2 laser to produce aluminum droplets, and then these droplets were ignited and burnt in air. The changing processes of aluminum wires, droplets and flames were directly recorded by a high-speed camera, which was equipped with a high magnification zoom lens. Meanwhile, the spectrum distribution of the flame was also registered by an optical spectrometer. Besides, burning residuals were collected and analyzed by the methods of Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). Experimental results show that, during combustion, the aluminum droplet is covered by a spherical vapor-phase flame, and the diameter of this flame is about 1.4 times of the droplet diameter, statistically. In the later stages of combustion, the molten aluminum and condensed oxide products can react to generate gaseous Al and Al2O spontaneously. Little holes are found on the surface of residuals, which are the transport channels of gaseous products, namely the gaseous Al and Al2O. The combustion residuals are consisted by lots of aluminum oxide particles with diameters less than 1 μm.

  1. Spontaneous Tumor Lysis Syndrome

    Directory of Open Access Journals (Sweden)

    Alicia C. Weeks MD


    Full Text Available Tumor lysis syndrome (TLS is a known complication of malignancy and its treatment. The incidence varies on malignancy type, but is most common with hematologic neoplasms during cytotoxic treatment. Spontaneous TLS is thought to be rare. This case study is of a 62-year-old female admitted with multisystem organ failure, with subsequent diagnosis of aggressive B cell lymphoma. On admission, laboratory abnormalities included renal failure, elevated uric acid (20.7 mg/dL, and 3+ amorphous urates on urinalysis. Oliguric renal failure persisted despite aggressive hydration and diuretic use, requiring initiation of hemodialysis prior to chemotherapy. Antihyperuricemic therapy and hemodialysis were used to resolve hyperuricemia. However, due to multisystem organ dysfunction syndrome with extremely poor prognosis, the patient ultimately expired in the setting of a terminal ventilator wean. Although our patient did not meet current TLS criteria, she required hemodialysis due to uric acid nephropathy, a complication of TLS. This poses the clinical question of whether adequate diagnostic criteria exist for spontaneous TLS and if the lack of currently accepted guidelines has resulted in the underestimation of its incidence. Allopurinol and rasburicase are commonly used for prevention and treatment of TLS. Although both drugs decrease uric acid levels, allopurinol mechanistically prevents formation of the substrate rasburicase acts to solubilize. These drugs were administered together in our patient, although no established guidelines recommend combined use. This raises the clinical question of whether combined therapy is truly beneficial or, conversely, detrimental to patient outcomes.

  2. The effects of embodied rhythm and robotic interventions on the spontaneous and responsive verbal communication skills of children with Autism Spectrum Disorder (ASD): A further outcome of a pilot randomized controlled trial. (United States)

    Srinivasan, Sudha M; Eigsti, Inge-Marie; Gifford, Timothy; Bhat, Anjana N


    The current manuscript is the second in a mini-series of manuscripts reporting the effects of alternative, movement-based, rhythm and robotic interventions on the social communication skills of 36 school-age children with ASD. This pilot randomized controlled trial compared the effects of 8-weeks of rhythm and robotic interventions to those of a standard-of-care, comparison intervention. The first manuscript reported intervention effects on the spontaneous and responsive social attention skills of children. In this manuscript, we report intervention effects on the spontaneous and responsive verbal communication skills of children. Communication skills were assessed within a standardized test of responsive communication during the pretest and posttest as well as using training-specific measures of social verbalization during early, mid, and late training sessions. The rhythm and comparison groups improved on the standardized test in the posttest compared to the pretest. The rhythm and robot groups increased levels of social verbalization across training sessions. Movement-based and stationary contexts afforded different types and amounts of communication in children with ASD. Overall, movement-based interventions are a promising tool to enhance verbal and non-verbal communication skills in children with ASD.

  3. A chemometric investigation of aromatic emission profiles from a marine engine in comparison with residential wood combustion and road traffic: Implications for source apportionment inside and outside sulphur emission control areas (United States)

    Czech, Hendryk; Stengel, Benjamin; Adam, Thomas; Sklorz, Martin; Streibel, Thorsten; Zimmermann, Ralf


    Ship emissions are known to cause severe impacts on human health, but are less restricted than land-based emissions. A regulation to improve air quality in coastal regions and frequented waterways is the limitation of fuel sulphur content to 0.1% in sulphur emission control areas (SECAs), which has caused a switch from heavy fuel oil (HFO) towards diesel-like marine gas oil (MGO) or marine diesel oil (MDO). The fraction of aromatic organic vapours in the exhaust from a marine engine, operating on HFO and MGO, was investigated by resonance-enhanced multi-photon ionisation time-of-flight mass spectrometry (REMPI-TOFMS). MGO with fuel sulphur content (FSC) below 0.1% and HFO with an average FSC of 2.7% denote representative marine fuels inside and outside SECAs, respectively. The obtained emission spectra were combined with data of previous REMPI-TOFMS studies of combustion engines and wood combustion in statistical analyses to derive marker substances for ship emissions inside and outside SECAs. A diagnostic ratio of C2-naphthalenes to methyl-naphthalenes was found to hold for a good discriminator between ship emissions on the one hand and road traffic and wood combustion on the other hand. Furthermore, random REMPI spectra from all emission sources were mixed with different proportions in a simulation to create a model based on partial least square (PLS) regression for the prediction of ship contribution to aromatic organic vapours. We point out that in particular PAHs with higher degree of alkylation are significant markers for primary ship emissions which may support source apportionment studies inside and outside SECAs to assess the benefits of fuel sulphur content regulation on air quality.

  4. Sulfur Chemistry in Combustion I

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Glarborg, Peter


    Most fossil fuels contain sulphur and also biofuels and household waste have a sulphur content. As a consequence sulphur species will often be present in combustion processes. In this paper the fate and influence of fuel sulphur species in combustion will be treated. First a description...... of the sulphur compounds in fossil fuels and the possibilities to remove them will be given. Then the combustion of sulphur species and their influence on the combustion chemistry and especially on the CO oxidation and the NOx formation will be described. Finally the in-situ removal of sulphur in the combustion...

  5. A model for premixed combustion oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Janus, M.C.; Richards, G.A.


    Combustion oscillations are receiving renewed research interest due to increasing application of lean premix (LPM) combustion to gas turbines. A simple, nonlinear model for premixed combustion is described; it was developed to explain experimental results and to provide guidance for developing active control schemes based on nonlinear concepts. The model can be used to quickly examine instability trends associated with changes in equivalence ratio, mass flow rate, geometry, ambient conditions, etc. The model represents the relevant processes occurring in a fuel nozzle and combustor analogous to current LPM turbine combustors. Conservation equations for the nozzle and combustor are developed from simple control volume analysis, providing ordinary differential equations that can be solved on a PC. Combustion is modeled as a stirred reactor, with bimolecular reaction between fuel and air. Although focus is on the model, it and experimental results are compared to understand effects of inlet air temperature and open loop control schemes. The model shows that both are related to changes in transport time.

  6. Association between Nutritional Status with Spontaneous Abortion

    Directory of Open Access Journals (Sweden)

    Rahimeh Ahmadi


    Full Text Available Background: Spontaneous abortion is the most common adverse pregnancy outcome. We aimed to investigate a possible link between nutrient deficiencies and the risk of spontaneous abortion. Materials and Methods: This case-control study included the case group (n=331 experiencing a spontaneous abortion before 14 weeks of pregnancy and the control group (n=331 who were healthy pregnant women over 14 weeks of pregnancy. The participants filled out Food Frequency Questionnaire (FFQ, in which they reported their frequency of consumption for a given serving of each food item during the past three months, on a daily, weekly or monthly basis. The reported frequency for each food item was converted to a daily intake. Then, consumption of nutrients was compared between the two groups. Results: There are significant differences between the two groups regarding consumed servings/day of vegetables, bread and cereal, meat, poultry, fish, eggs, beans, fats, oils and dairy products (P=0.012, P<0.001, P=0.004, P<0.001, P=0.019, respectively. There are significant differences between the two groups in all micronutrient including folic acid, iron, vitamin C, vitamin B6, vitamin B12 and zinc (P<0.001. Conclusion: Poor nutrientions may be correlated with increased risk of spontaneous abortion

  7. Night-time sedating H1-antihistamine increases daytime somnolence but not treatment efficacy in chronic spontaneous urticaria: a randomized controlled trial (United States)

    Staevska, M; Gugutkova, M; Lazarova, C; Kralimarkova, T; Dimitrov, V; Zuberbier, T; Church, MK; Popov, TA


    Background Many physicians believe that the most effective way to treat chronic urticaria is to take a nonsedating second-generation H1-antihistamine in the morning and a sedating first-generation H1-antihistamine, usually hydroxyzine, at night to enhance sleep. But is this belief well founded? Objectives To test this belief by comparing the effectiveness and prevalence of unwanted sedative effects when treating patients with chronic spontaneous urticaria (CSU) with levocetirizine 15 mg daily plus hydroxyzine 50 mg at night (levocetirizine plus hydroxyzine) vs. levocetirizine 20 mg daily (levocetirizine monotherapy). Methods In this randomized, double-blind, cross-over study, 24 patients with difficult-to-treat CSU took levocetirizine plus hydroxyzine or levocetirizine monotherapy for periods of 5 days each. At the end of each treatment period, assessments were made of quality of life (Chronic Urticaria Quality of Life Questionnaire, CU-Q2oL), severity of urticaria symptoms (Urticaria Activity Score, UAS), sleep disturbance during the night and daytime somnolence. Results Both treatments significantly decreased UAS, night-time sleep disturbances and CU-Q2oL scores (P urticaria guidelines, which state that first-line treatment for urticaria should be new-generation, nonsedating H1-antihistamines only. PMID:24472058

  8. Design principles and fabrication method for a miniaturized fuel gas combustion reactor

    NARCIS (Netherlands)

    Zhao, Yiyuan; Veltkamp, Henk-Willem; de Boer, Meint J.; Zeng, Yaxiang; Groenesteijn, Jarno; Wiegerink, Remco J.; Lötters, Joost Conrad


    Wobbe Index meter is widely used to reflect the energy content and gas quality of a fuel gas mixture. It is highly in demand to downscale from the conventionally large Wobbe Index facility to a miniaturized Wobbe Index meter. Therefore spontaneously combustion of the fuel gas/air mixtures on a

  9. Mixing and combustion enhancement of Turbocharged Solid Propellant Ramjet (United States)

    Liu, Shichang; Li, Jiang; Zhu, Gen; Wang, Wei; Liu, Yang


    Turbocharged Solid Propellant Ramjet is a new concept engine that combines the advantages of both solid rocket ramjet and Air Turbo Rocket, with a wide operation envelope and high performance. There are three streams of the air, turbine-driving gas and augment gas to mix and combust in the afterburner, and the coaxial intake mode of the afterburner is disadvantageous to the mixing and combustion. Therefore, it is necessary to carry out mixing and combustion enhancement research. In this study, the numerical model of Turbocharged Solid Propellant Ramjet three-dimensional combustion flow field is established, and the numerical simulation of the mixing and combustion enhancement scheme is conducted from the aspects of head region intake mode to injection method in afterburner. The results show that by driving the compressed air to deflect inward and the turbine-driving gas to maintain strong rotation, radial and tangential momentum exchange of the two streams can be enhanced, thereby improving the efficiency of mixing and combustion in the afterburner. The method of injecting augment gas in the transverse direction and making sure the injection location is as close as possible to the head region is beneficial to improve the combustion efficiency. The outer combustion flow field of the afterburner is an oxidizer-rich environment, while the inner is a fuel-rich environment. To improve the efficiency of mixing and combustion, it is necessary to control the injection velocity of the augment gas to keep it in the oxygen-rich zone of the outer region. The numerical simulation for different flight conditions shows that the optimal mixing and combustion enhancement scheme can obtain high combustion efficiency and have excellent applicability in a wide working range.

  10. Methylation status of imprinted genes DLK1-GTL2, MEST (PEG1), ZAC (PLAGL1), and LINE-1 elements in spermatozoa of normozoospermic men, unlike H19 imprinting control regions, is not associated with idiopathic recurrent spontaneous miscarriages. (United States)

    Ankolkar, Mandar; Salvi, Vinita; Warke, Himangi; Vundinti, Babu Rao; Balasinor, N H


    To study methylation aberrations in spermatozoa at developmentally important imprinted regions to ascertain their role in early embryo loss in idiopathic recurrent spontaneous miscarriages (RSM). Case-control study. Academic research setting at National Institute for Research in Reproductive Health, Parel, Mumbai. Male partners of couples with a history of RSM and male partners of couples with proven fertility (control group). None. DNA methylation levels at imprinting control regions of DLK1-GTL2, MEST (PEG1), and ZAC (PLAGL1) by Epityper Massarray and global methylation levels as measured by LINE-1 methylation and anti-5-methyl cytosine antibody in spermatozoa of 23 men in control group and 23 men in RSM group. We did not observe any aberration in the total methylation levels in any of the imprinted genes or global methylation analyzed. Our results indicate that paternal methylation aberrations at imprinting control regions of DLK1-GTL2, MEST (PEG1), and ZAC (PLAGL1) and global methylation levels are not associated with idiopathic RSM and may not be good epigenetic markers (unlike the H-19 imprinting control region) for diagnosis of idiopathic RSM. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Chemistry and the Internal Combustion Engine II: Pollution Problems. (United States)

    Hunt, C. B.


    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  12. Modelagem, controle e otimização de consumo de combustível para um veículo híbrido elétrico série-paralelo.


    Ivan Miguel Trindade


    O principal objetivo dos veículos híbridos é diminuir o consumo de combustível em relação a veículos convencionais. Para isso, existe a necessidade de realizar a integração dos diferentes sistemas do trem-de-força e coordenar o seu funcionamento através de estratégias de controle. Tais estratégias são desenvolvidas e simuladas em conjunto com um modelo computacional da planta do veículo antes de serem aplicadas em uma unidade de controle eletrônica. O presente estudo tem como objetivo analisa...

  13. Spontaneous Intracranial Hypotension

    International Nuclear Information System (INIS)

    Joash, Dr.


    Epidemiology is not only rare but an important cause of new daily persistent headaches among young & middle age individuals. The Etiology & Pathogenesis is generally caused by spinal CSF leak. Precise cause remains largely unknown, underlying structural weakness of spinal meninges is suspected. There are several MR Signs of Intracranial Hypotension that include:- diffuse pachymeningeal (dural) enhancement; bilateral subdural, effusion/hematomas; Downward displacement of brain; enlargement of pituitary gland; Engorgement of dural venous sinuses; prominence of spinal epidural venous plexus and Venous sinus thrombosis & isolated cortical vein thrombosis. The sum of volumes of intracranial blood, CSF & cerebral tissue must remain constant in an intact cranium. Treatment in Many cases can be resolved spontaneously or by use Conservative approach that include bed rest, oral hydration, caffeine intake and use of abdominal binder. Imaging Modalities for Detection of CSF leakage include CT myelography, Radioisotope cisternography, MR myelography, MR imaging and Intrathecal Gd-enhanced MR

  14. Spontaneous wave packet reduction

    International Nuclear Information System (INIS)

    Ghirardi, G.C.


    There are taken into account the main conceptual difficulties met by standard quantum mechanics in dealing with physical processes involving macroscopic system. It is stressed how J.A.Wheeler's remarks and lucid analysis have been relevant to pinpoint and to bring to its extreme consequences the puzzling aspects of quantum phenomena. It is shown how the recently proposed models of spontaneous dynamical reduction represent a consistent way to overcome the conceptual difficulties of the standard theory. Obviously, many nontrivial problems remain open, the first and more relevant one being that of generalizing the model theories considered to the relativistic case. This is the challenge of the dynamical reduction program. 43 refs, 2 figs

  15. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.


    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  16. Combustion engine system (United States)

    Houseman, John (Inventor); Voecks, Gerald E. (Inventor)


    A flow through catalytic reactor which selectively catalytically decomposes methanol into a soot free hydrogen rich product gas utilizing engine exhaust at temperatures of 200 to 650 C to provide the heat for vaporizing and decomposing the methanol is described. The reactor is combined with either a spark ignited or compression ignited internal combustion engine or a gas turbine to provide a combustion engine system. The system may be fueled entirely by the hydrogen rich gas produced in the methanol decomposition reactor or the system may be operated on mixed fuels for transient power gain and for cold start of the engine system. The reactor includes a decomposition zone formed by a plurality of elongated cylinders which contain a body of vapor permeable, methanol decomposition catalyst preferably a shift catalyst such as copper-zinc.

  17. Dynamic features of combustion (United States)

    Oppenheim, A. K.


    The dynamic features of combustion are discussed for four important cases: ignition, inflammation, explosion, and detonation. Ignition, the initiation of a self-sustained exothermic process, is considered in the simplest case of a closed thermodynamic system and its stochastic distribution. Inflammation, the initiation and propagation of self-sustained flames, is presented for turbulent flow. Explosion, the dynamic effects caused by the deposition of exothermic energy in a compressible medium, is illustrated by self-similar blast waves with energy deposition at the front and the adiabatic non-self-similar wave. Detonation, the most comprehensive illustration of all the dynamic effects of combustion, is discussed with a phenomenological account of the development and structure of the wave.

  18. Effect of omalizumab on angioedema in H1 -antihistamine-resistant chronic spontaneous urticaria patients: results from X-ACT, a randomized controlled trial. (United States)

    Staubach, P; Metz, M; Chapman-Rothe, N; Sieder, C; Bräutigam, M; Canvin, J; Maurer, M


    Chronic spontaneous urticaria (CSU) severely impacts quality of life (QoL), especially in patients with wheals and angioedema. Omalizumab is approved as add-on therapy for CSU patients; however, its effect on patients who are double-positive for wheals and angioedema has not been systematically studied. The primary objective was to evaluate the efficacy of omalizumab vs placebo at week 28 using the Chronic Urticaria Quality of Life (CU-Q2oL) questionnaire. Number of angioedema-burdened days, time interval between successive angioedema episodes, disease activity, angioedema-specific and overall QoL impairment were secondary objectives. X-ACT was a phase III, randomized, double-blind study conducted in 24 centres (Germany), which selectively included CSU patients with angioedema and wheals. Patients were randomized (1 : 1) to omalizumab 300 mg or placebo (every 4 weeks up to week 24) ( number: NCT01723072). Of the 91 patients randomized to omalizumab (n = 44) or placebo (n = 47) at baseline, 68 completed the 28-week treatment phase (omalizumab, 35; placebo, 33). Omalizumab was superior to placebo in improving CU-Q2oL scores at week 28 (P omalizumab (0.3) vs placebo (1.1). The median time to first recurrence of angioedema was 57-63 days with omalizumab and Omalizumab significantly improved angioedema-specific QoL (P omalizumab. Omalizumab was an effective treatment option for patients with moderate-to-severe CSU symptoms and angioedema unresponsive to high doses of antihistamine treatment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Orexin signaling in rostral lateral hypothalamus and nucleus accumbens shell in the control of spontaneous physical activity in high- and low-activity rats. (United States)

    Perez-Leighton, Claudio; Little, Morgan R; Grace, Martha; Billington, Charles; Kotz, Catherine M


    Spontaneous physical activity (SPA) describes activity outside of formal exercise and shows large interindividual variability. The hypothalamic orexin/hypocretin peptides are key regulators of SPA. Orexins drive SPA within multiple brain sites, including rostral lateral hypothalamus (LH) and nucleus accumbens shell (NAcSh). Rats with high basal SPA (high activity, HA) show higher orexin mRNA expression and SPA after injection of orexin-A in rostral LH compared with low-activity (LA) rats. Here, we explored the contribution of orexin signaling in rostral LH and NAcSh to the HA/LA phenotype. We found that HA rats have higher sensitivity to SPA after injection of orexin-A in rostral LH, but not in NAcSh. HA and LA rats showed similar levels of orexin receptor expression in rostral LH, and activation of orexin-producing neurons after orexin-A injection in rostral LH. Also, in HA and LA rats, the coinjection of orexin-A in rostral LH and NAcSh failed to further increase SPA beyond the effects of orexin-A in rostral LH. Pretreatment with muscimol, a GABA A receptor agonist, in NAcSh potentiated SPA produced by orexin-A injection in rostral LH in HA but not in LA rats. Our results suggest that a feedback loop from orexin-responsive neurons in rostral LH to orexin neurons and a the NAcSh-orexin neuron-rostral LH circuit regulate SPA. Overall, our data suggest that differences in orexin sensitivity in rostral LH and its modulation by GABA afferents from NAcSh contribute to individual SPA differences. Copyright © 2017 the American Physiological Society.

  20. Development of High Efficiency and Low Emission Low Temperature Combustion Diesel Engine with Direct EGR Injection (United States)

    Ho, R. J.; Kumaran, P.; Yusoff, M. Z.


    Focus on energy and environmental sustainability policy has put automotive research & development directed to developing high efficiency and low pollutant power train. Diffused flame controlled diesel combustion has reach its limitation and has driven R&D to explore other modes of combustions. Known effective mode of combustion to reduce emission are Low temperature combustion (LTC) and homogeneous charge combustion ignition by suppressing Nitrogen Oxide(NOx) and Particulate Matter (PM) formation. The key control to meet this requirement are chemical composition and distribution of fuel and gas during a combustion process. Most research to accomplish this goal is done by manipulating injected mass flow rate and varying indirect EGR through intake manifold. This research paper shows viable alternative direct combustion control via co-axial direct EGR injection with fuel injection process. A simulation study with OpenFOAM is conducted by varying EGR injection velocity and direct EGR injector diameter performed with under two conditions with non-combustion and combustion. n-heptane (C7H16) is used as surrogate fuel together with 57 species 290 semi-detailed chemical kinetic model developed by Chalmers University is used for combustion simulation. Simulation result indicates viability of co-axial EGR injection as a method for low temperature combustion control.

  1. Combustion science and engineering

    CERN Document Server

    Annamalai, Kalyan


    Introduction and Review of Thermodynamics Introduction Combustion Terminology Matter and Its Properties Microscopic Overview of Thermodynamics Conservation of Mass and Energy and the First Law of Thermodynamics The Second Law of Thermodynamics Summary Stoichiometry and Thermochemistry of Reacting Systems Introduction Overall Reactions Gas Analyses Global Conservation Equations for Reacting Systems Thermochemistry Summary Appendix Reaction Direction and Equilibrium Introduction Reaction Direction and Chemical Equilibrium Chemical Equilibrium Relations Vant Hoff Equation Adi

  2. Fluid-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, G.; Schoebotham, N.


    In Energy Equipment Company's two-stage fluidized bed system, partial combustion in a fluidized bed is followed by burn-off of the generated gases above the bed. The system can be retrofitted to existing boilers, and can burn small, high ash coal efficiently. It has advantages when used as a hot gas generator for process drying. Tests on a boiler at a Cadbury Schweppes plant are reported.

  3. Issues in waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Lennart; Robertson, Kerstin; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden); Sundquist, Lena; Wrangensten, Lars [AaF-Energikonsult AB, Stockholm (Sweden); Blom, Elisabet [AaF-Processdesign AB, Stockholm (Sweden)


    The main purpose of this review is to provide an overview of the state-of-the-art on research and development issues related to waste combustion with relevance for Swedish conditions. The review focuses on co-combustion in grate and fluidised bed furnaces. It is primarily literature searches in relevant databases of scientific publications with to material published after 1995. As a complement, findings published in different report series, have also been included. Since the area covered by this report is very wide, we do not claim to cover the issues included completely and it has not been possitile to evaluate the referred studies in depth. Basic knowledge about combustion issues is not included since such information can be found elsewhere in the literature. Rather, this review should be viewed as an overview of research and development in the waste-to-energy area and as such we hope that it will inspire scientists and others to further work in relevant areas.

  4. Contrôle de combustion en transitoires des moteurs à combustion interne


    Hillion, Mathieu


    This thesis addresses the problem of combustion control for automotive engines. A method is proposed to complement existing controllers, which uses look-up tables based on steady-state operation. During transients, the new control method adjusts fast control variables (ignition or injection time) to compensate for deviations in the cylinder initial conditions from their optimal values due to the inherent slow processes involved. The necessary adjustments are determined from a sensitivity anal...

  5. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang


    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  6. Internal combustion engine using premixed combustion of stratified charges (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI


    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  7. Spontaneous mutation rates and the rate-doubling dose

    International Nuclear Information System (INIS)

    Von Borstel, R.C.; Moustaccki, E.; Latarjet, R.


    The amount of radiation required to double the frequency of mutations or tumours over the rate of those that occur spontaneously is called the rate-doubling dose. An equivalent concept has been proposed for exposure to other environmental mutagens. The doubling dose concept is predicated on the assumption that all human populations have the same spontaneous mutation rate, and that this spontaneous mutation rate is known. It is now established for prokaryotes and lower eukaryotes that numerous genes control the spontaneous mutation rate, and it is likely that the same is true for human cells as well. Given that the accepted mode of evolution of human populatons is from small, isolated groups of individuals, it seems likely that each population would have a different spontaneous mutation rate. Given that a minimum of twenty genes control or affect the spontaneous mutation rate, and that each of these in turn is susceptible to spontaneously arising or environmentally induced mutations, it seems likely that every individual within a population (except for siblings from identical multiple births) will have a unique spontaneous mutation rate. If each individual in a population does have a different spontaneous mutation rate, the doubling dose concept, in rigorous terms, is fallacious. Therefore, as with other concepts of risk evaluation, the doubling dose concept is subject to criticism. Nevertheless, until we know individual spontaneous mutation rates with precision, and can evaluate risks based on this information, the doubling dose concept has a heuristic value and is needed for practical assessment of risks for defined populations. (author)

  8. Spontaneous compactification to homogeneous spaces

    International Nuclear Information System (INIS)

    Mourao, J.M.


    The spontaneous compactification of extra dimensions to compact homogeneous spaces is studied. The methods developed within the framework of coset space dimensional reduction scheme and the most general form of invariant metrics are used to find solutions of spontaneous compactification equations

  9. Screening for spontaneous preterm birth

    NARCIS (Netherlands)

    van Os, M.A.; van Dam, A.J.E.M.


    Preterm birth is the most important cause of perinatal morbidity and mortality worldwide. In this thesis studies on spontaneous preterm birth are presented. The main objective was to investigate the predictive capacity of mid-trimester cervical length measurement for spontaneous preterm birth in a

  10. Development of flameless combustion; Desarrollo de la combustion sin flama

    Energy Technology Data Exchange (ETDEWEB)

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail:;


    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  11. Spontaneous Pneumomediastinum: Hamman Syndrome

    Directory of Open Access Journals (Sweden)

    Tushank Chadha, BS


    significant fat stranding. The image also showed an intraluminal stent traversing the gastric antrum and gastric pylorus with no indication of obstruction. Circumferential mural thickening of the gastric antrum and body were consistent with the patient’s history of gastric adenocarcinoma. The shotty perigastric lymph nodes with associated fat stranding, along the greater curvature of the distal gastric body suggested local regional nodal metastases and possible peritoneal carcinomatosis. The thoracic CT scans showed extensive pneumomediastinum that tracked into the soft tissues of the neck, which given the history of vomiting also raised concern for esophageal perforation. There was still no evidence of mediastinal abscess or fat stranding. Additionally, a left subclavian vein port catheter, which terminates with tip at the cavoatrial junction of the superior vena cava can also be seen on the image. Discussion: Spontaneous Pneumomediastinum, also known as Hamman syndrome, is defined by the uncommon incidence of free air in the mediastinum due to the bursting of alveoli, as a result of extended spells of shouting, coughing, or vomiting.1,2 The condition is diagnosed when a clear cause (aerodigestive rupture, barotrauma, infection secondary to gas-forming organisms3 for pneumomediastinum cannot be clearly identified on diagnostic studies. Macklin and Macklin were the first to note the pathogenesis of the syndrome and explained that the common denominator to spontaneous pneumomediastinum was that increased alveolar pressure leads to alveolar rupture.3 Common clinical findings for spontaneous pneumomediastinum include: chest pain, dyspnea, cough, and emesis.4 The condition is not always readily recognized on initial presentation in part for its rare incidence, estimated to be approximately 1 in every 44,500 ED patients3and also because of the non-specific presenting symptoms. For this patient, there was no clear singular cause, and therefore she received care for spontaneous

  12. Cigarette, alcohol, and caffeine consumption: risk factors for spontaneous abortion

    DEFF Research Database (Denmark)

    Rasch, Vibeke


    OBJECTIVE: To study the association between cigarette, alcohol, and caffeine consumption and the occurrence of spontaneous abortion. METHODS: The study population consisted of 330 women with spontaneous abortion and 1168 pregnant women receiving antenatal care. A case-control design was utilized......; cases were defined as women with a spontaneous abortion in gestational week 6-16 and controls as women with a live fetus in gestational week 6-16. The variables studied comprise age, parity, occupational situation, cigarette, alcohol, and caffeine consumption. The association between cigarette, alcohol......, and caffeine consumption was studied using logistic regression analyzes while controlling for confounding variables. In addition stratified analyzes of the association between caffeine consumption and spontaneous abortion on the basis of cigarette and alcohol consumption were performed. RESULTS: Women who had...

  13. Cigarette, alcohol, and caffeine consumption: risk factors for spontaneous abortion

    DEFF Research Database (Denmark)

    Rasch, Vibeke


    , and caffeine consumption was studied using logistic regression analyzes while controlling for confounding variables. In addition stratified analyzes of the association between caffeine consumption and spontaneous abortion on the basis of cigarette and alcohol consumption were performed. RESULTS: Women who had......OBJECTIVE: To study the association between cigarette, alcohol, and caffeine consumption and the occurrence of spontaneous abortion. METHODS: The study population consisted of 330 women with spontaneous abortion and 1168 pregnant women receiving antenatal care. A case-control design was utilized......; cases were defined as women with a spontaneous abortion in gestational week 6-16 and controls as women with a live fetus in gestational week 6-16. The variables studied comprise age, parity, occupational situation, cigarette, alcohol, and caffeine consumption. The association between cigarette, alcohol...

  14. Implicit versus explicit measures of self-concept of self-control and their differential predictive power for spontaneous trait-relevant behaviors

    NARCIS (Netherlands)

    Huntjens, Rafaële J C; Rijkeboer, Marleen M; Krakau, Andrej; de Jong, Peter J

    BACKGROUND AND OBJECTIVES: Low trait self-control constitutes a core criterion in various psychiatric disorders. Personality traits such as low self-control are mostly indexed by self-report measures. However, several theorists emphasized the importance of differentiating between explicit and

  15. Implicit versus explicit measures of self-concept of self-control and their differential predictive power for spontaneous trait-relevant behaviors

    NARCIS (Netherlands)

    Huntjens, Rafaele J. C.; Rijkeboer, Marleen M.; Krakau, Andrej; de Jong, Peter J.

    BACKGROUND AND OBJECTIVES: Low trait self-control constitutes a core criterion in various psychiatric disorders. Personality traits such as low self-control are mostly indexed by self-report measures. However, several theorists emphasized the importance of differentiating between explicit and

  16. Propellant combustion at low pressures

    Energy Technology Data Exchange (ETDEWEB)

    Schoyer, H.F.R.; Korting, P.A.O.G.


    The combustion characteristics of a family of composite propellants have been investigated at low (i.e., subatmospheric) pressures and three different temperatures. Although a de Vieille-type burning rate law appeared to be applicable, the burning rate exponent and coefficient vary strongly with the initial temperatures. Indications are that this is primarily due to the presence of nitroguanidine and oxalate. Combustion efficiency proved to be poor. At low pressures, all propellants are susceptible to irregular burning: above 50 kPa oscillatory combustion was hardly observed. All propellants exhibit distinct preferred frequencies for oscillatory combustion. These frequencies, being much lower than the acoustic frequency of the test system, are associated with the combustion characteristics of the propellants. They depend strongly on the combustion pressure and the initial propellant temperature.

  17. International evaluation of the programme on engine-related combustion

    Energy Technology Data Exchange (ETDEWEB)

    Arcoumanis, D. [Imperial College, London (United Kingdom); Greenhalgh, D. [Cranfield Univ. (United Kingdom); Magnusson, B.F. [Norwegian Univ. of Science and Technology, Trondheim (Norway); Peters, N. [Institut fuer Technische Mechanik, RWTH Aachen (Germany)


    The 12 projects in the engine related combustion programme cover the entire range from fundamental and theoretical aspects of combustion to more applied subjects such as engine control. The common denominator in the programme clearly is the internal combustion engine, both the reciprocating as well as the gas turbine engine. Such a large coverage by a relatively small number of projects necessarily leads to an isolation of some of the projects in terms of their subject as well as the methodology that is used. On the other hand, all the research areas of interest in combustion technology are represented by at least one of the projects. These are: mathematical and numerical methods in combustion; modelling of turbulent combustion; laser diagnostics of flows with combustion; studies of engine performance and their control; semi-empirical model development for practical applications. As a conclusion, the evaluation committee believes that the programme is well balanced between fundamental and applied projects. It covers the entire range of modern methodologies that are used on the international level and thereby contributes to the application and further development of these research tools in Sweden

  18. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen


    Full Text Available Black carbon in carbonaceous combustion aerosol warms the climate by absorbing solar radiation, meaning reductions in black carbon emissions are often perceived as an attractive global warming mitigation option. However, carbonaceous combustion aerosol can also act as cloud condensation nuclei (CCN so they also cool the climate by increasing cloud albedo. The net radiative effect of carbonaceous combustion aerosol is uncertain because their contribution to CCN has not been evaluated on the global scale. By combining extensive observations of CCN concentrations with the GLOMAP global aerosol model, we find that the model is biased low (normalised mean bias = −77 % unless carbonaceous combustion aerosol act as CCN. We show that carbonaceous combustion aerosol accounts for more than half (52–64 % of global CCN with the range due to uncertainty in the emitted size distribution of carbonaceous combustion particles. The model predicts that wildfire and pollution (fossil fuel and biofuel carbonaceous combustion aerosol causes a global mean cloud albedo aerosol indirect effect of −0.34 W m−2, with stronger cooling if we assume smaller particle emission size. We calculate that carbonaceous combustion aerosol from pollution sources cause a global mean aerosol indirect effect of −0.23 W m−2. The small size of carbonaceous combustion particles from fossil fuel sources means that whilst pollution sources account for only one-third of the emitted mass they cause two-thirds of the cloud albedo aerosol indirect effect that is due to carbonaceous combustion aerosol. This cooling effect must be accounted for, along with other cloud effects not studied here, to ensure that black carbon emissions controls that reduce the high number concentrations of fossil fuel particles have the desired net effect on climate.

  19. Example Problems in LES Combustion (United States)


    memorandum is the evaporation and subsequent combustion of liquid fuel droplets. Kerosene, a complex hydrogen mixture, is explored from the standpoint of...AFRL-RW-EG-TP-2016-002 Example Problems in LES Combustion Douglas V. Nance Air Force Research Laboratory Munitions...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Example Problem in LES Combustion 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  20. Gasoline Combustion Fundamentals DOE FY17 Report

    Energy Technology Data Exchange (ETDEWEB)

    Ekoto, Isaac W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)


    Advanced automotive gasoline engines that leverage a combination of reduced heat transfer, throttling, and mechanical losses; shorter combustion durations; and higher compression and mixture specific heat ratios are needed to meet aggressive DOE VTP fuel economy and pollutant emission targets. Central challenges include poor combustion stability at low-power conditions when large amounts of charge dilution are introduced and high sensitivity of conventional inductive coil ignition systems to elevated charge motion and density for boosted high-load operation. For conventional spark ignited operation, novel low-temperature plasma (LTP) or pre-chamber based ignition systems can improve dilution tolerances while maintaining good performance characteristics at elevated charge densities. Moreover, these igniters can improve the control of advanced compression ignition (ACI) strategies for gasoline at low to moderate loads. The overarching research objective of the Gasoline Combustion Fundamentals project is to investigate phenomenological aspects related to enhanced ignition. The objective is accomplished through targeted experiments performed in a single-cylinder optically accessible research engine or an in-house developed optically accessible spark calorimeter (OASC). In situ optical diagnostics and ex situ gas sampling measurements are performed to elucidate important details of ignition and combustion processes. Measurements are further used to develop and validate complementary high-fidelity ignition simulations. The primary project audience is automotive manufacturers, Tier 1 suppliers, and technology startups—close cooperation has resulted in the development and execution of project objectives that address crucial mid- to long-range research challenges.

  1. Quantitative Analysis of Variability and Uncertainty in Environmental Data and Models. Volume 2. Performance, Emissions, and Cost of Combustion-Based NOx Controls for Wall and Tangential Furnace Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H. Christopher [North Carolina State University, Raleigh, NC (United States); Tran, Loan K. [North Carolina State University, Raleigh, NC (United States)


    This is Volume 2 of a two-volume set of reports describing work conducted at North Carolina State University sponsored by Grant Number DE-FG05-95ER30250 by the U.S. Department of Energy. The title of the project is “Quantitative Analysis of Variability and Uncertainty in Acid Rain Assessments.” The work conducted under sponsorship of this grant pertains primarily to two main topics: (1) development of new methods for quantitative analysis of variability and uncertainty applicable to any type of model; and (2) analysis of variability and uncertainty in the performance, emissions, and cost of electric power plant combustion-based NOx control technologies. These two main topics are reported separately in Volumes 1 and 2.

  2. Checking the sealing of fuel elements by helium sweating - case of the reactors G2 (1960); Controle de l'etancheite des elements combustibles par ressuage d'helium - cas du reacteur G2 (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, B.; D' Orival, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Choumoff, S. [Compagnie Francaise Thomson-Houston, 75 - Paris (France)


    The G2 slug is a welded, hermetically sealed unit; the seal is checked by placing the fuel element in a helium atmosphere under pressure, then measuring the quantity of helium it releases in a vessel under vacuum. The theoretical aspect and the conditions of industrial application are reviewed, and the installations described. (author) [French] La cartouche G2 se presente comme un ensemble soude, hermetique; le controle d'etancheite s'effectue en immergeant l'element combustible dans une atmosphere d'helium sous pression puis en mesurant la quantite d'helium qu'il restitue dans une enceinte sous vide. L'aspect theorique et les conditions d'exploitation industrielle sont evoques et les installations decrites. (auteur)

  3. The modes of gaseous combustion

    CERN Document Server

    Rubtsov, Nickolai M


    This book provides an analysis of contemporary problems in combustion science, namely flame propagation, detonation and heterophaseous combustion based on the works of the author. The current problems in the area of gas combustion, as well as the methods allowing to calculate and estimate limiting conditions of ignition, and flame propagation on the basis of experimental results are considered. The book focuses on the virtually inaccessible works of Russian authors and will be useful for experienced students and qualified scientists in the area of experimental studies of combustion processes.

  4. Mathematical Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao


    An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.

  5. Combustion from basics to applications

    CERN Document Server

    Lackner, Maximilian; Winter, Franz


    Combustion, the process of burning, is defined as a chemical reaction between a combustible reactant (the fuel) and an oxidizing agent (such as air) in order to produce heat and in most cases light while new chemical species (e.g., flue gas components) are formed. This book covers a gap on the market by providing a concise introduction to combustion. Most of the other books currently available are targeted towards the experienced users and contain too many details and/or contain knowledge at a fairly high level. This book provides a brief and clear overview of the combustion basics, suitable f

  6. Spontaneous breaking of supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Zumino, B.


    There has been recently a revival of interest in supersymmetric gauge theories, stimulated by the hope that supersymmetry might help in clarifying some of the questions which remain unanswered in the so called Grand Unified Theories and in particular the gauge hierarchy problem. In a Grand Unified Theory one has two widely different mass scales: the unification mass M approx. = 10/sup 15/GeV at which the unification group (e.g. SU(5)) breaks down to SU(3) x SU(2) x U(1) and the mass approx. = 100 GeV at which SU(2) x U(1) is broken down to the U(1) of electromagnetism. There is at present no theoretical understanding of the extreme smallness of the ratio of these two numbers. This is the gauge hierarchy problem. This lecture attempts to review the various mechanisms for spontaneous supersymmetry breaking in gauge theories. Most of the discussions are concerned with the tree approximation, but what is presently known about radiative correction is also reviewed.

  7. Spontaneous intracranial hypotension

    International Nuclear Information System (INIS)

    Haritanti, A.; Karacostas, D.; Drevelengas, A.; Kanellopoulos, V.; Paraskevopoulou, E.; Lefkopoulos, A.; Economou, I.; Dimitriadis, A.S.


    Spontaneous intracranial hypotension (SIH) is an uncommon but increasingly recognized syndrome. Orthostatic headache with typical findings on magnetic resonance imaging (MRI) are the key to diagnosis. Delayed diagnosis of this condition may subject patients to unnecessary procedures and prolong morbidity. We describe six patients with SIH and outline the important clinical and neuroimaging findings. They were all relatively young, 20-54 years old, with clearly orthostatic headache, minimal neurological signs (only abducent nerve paresis in two) and diffuse pachymeningeal gadolinium enhancement on brain MRI, while two of them presented subdural hygromas. Spinal MRI was helpful in detecting a cervical cerebrospinal fluid leak in three patients and dilatation of the vertebral venous plexus with extradural fluid collection in another. Conservative management resulted in rapid resolution of symptoms in five patients (10 days-3 weeks) and in one who developed cerebral venous sinus thrombosis, the condition resolved in 2 months. However, this rapid clinical improvement was not accompanied by an analogous regression of the brain MR findings that persisted on a longer follow-up. Along with recent literature data, our patients further point out that SIH, to be correctly diagnosed, necessitates increased alertness by the attending physician, in the evaluation of headaches

  8. Spontaneous lateral temporal encephalocele. (United States)

    Tuncbilek, Gokhan; Calis, Mert; Akalan, Nejat


    A spontaneous encephalocele is one that develops either because of embryological maldevelopment or from a poorly understood postnatal process that permits brain herniation to occur. We here report a rare case of lateral temporal encephalocele extending to the infratemporal fossa under the zygomatic arch. At birth, the infant was noted to have a large cystic mass in the right side of the face. After being operated on initially in another center in the newborn period, the patient was referred to our clinic with a diagnosis of temporal encephalocele. He was 6 months old at the time of admission. Computerized tomography scan and magnetic resonance imaging studies revealed a 8 × 9 cm fluid-filled, multiloculated cystic mass at the right infratemporal fossa. No intracranial pathology or connection is seen. The patient was operated on to reduce the distortion effect of the growing mass. The histopathological examination of the sac revealed well-differentiated mature glial tissue stained with glial fibrillary acid protein. This rare clinical presentation of encephaloceles should be taken into consideration during the evaluation of the lateral facial masses in the infancy period, and possible intracranial connection should be ruled out before surgery to avoid complications.

  9. Psychiatric symptoms and pregnancy distress in subsequent pregnancy after spontaneous abortion history. (United States)

    Haghparast, Elahe; Faramarzi, Mahbobeh; Hassanzadeh, Ramezan


    Spontaneous abortion is one of the most important complications of pregnancy with short and long adverse psychological effects on women. This study assesses the implications of a spontaneous abortion history has on women's psychiatric symptoms and pregnancy distress in subsequent pregnancy less than one years after spontaneous abortion. A case-control study was conducted on pregnant women of Babol city from September 2014 to May 2015. In this study, 100 pregnant women with spontaneous abortion history during a year ago and 100 pregnant women without spontaneous abortion history were enrolled. All the participants in two groups completed the Symptom Checklist-90-Revised (SCL-90-R), and pregnancy Distress Questionnaire (PDQ). Women with spontaneous abortion history had significantly higher mean of many subscales of SCL-90 (depression, anxiety, somatization, obsessive-compulsiveness, interpersonal sensitivity, psychoticism, hostility, paranoid, and Global Severity Index) more than women without spontaneous abortion history. Also, women with spontaneous abortion history had significantly higher mean of two subscales of PDQ concerns about birth and the baby, concerns about emotions and relationships) and total PDQ more than women without spontaneous abortion history. Pregnant women with less than a year after spontaneous abortion history are at risk of psychiatric symptoms and pregnancy distress more than controls. This study supports those implications for planning the post spontaneous abortion psychological care for women, especially women who wanted to be pregnant during 12 month after spontaneous abortion.

  10. Factors affecting the spontaneous mutational spectra in somatic mammalian cells

    Directory of Open Access Journals (Sweden)

    О.А. Ковальова


    Full Text Available  In our survey of references we are discussed the influence of factors biological origin on the spontaneous mutation specters in mammalian. Seasonal and age components influence on the frequence of cytogenetic anomalies. The immune and endocrinous systems are take part in control of the alteration of the spontaneous mutation specters. Genetical difference of sensibility in animal and human at the alteration of factors enviroment as and  genetical differences of repair systems activity are may influence on individual variation of spontaneous destabilization characters of chromosomal apparatus.

  11. Objetivo: Ahorro de combustible


    Cabrero Sopena, Rosa María; Catalán Mogorrón, Heliodoro Fco.


    Con los precios de la energía en escalada imparable y particularmente, el gasóleo en precios históricos, se hace indispensable que el agricultor intente ahorrar en la partida energética de su explotación agrícola. El tractor se pondrá en el punto de mira del ahorro. Curioso paradigma, el gran amigo del agricultor, el tractor, se convierte en el máximo responsable de la partida energética. Una cifra, el consumo de combustible puede llegar incluso al 50% del coste horario total en la vida de...

  12. Alternate fuels; Combustibles alternos

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)


    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se

  13. Status on the Verification of Combustion Stability for the J-2X Engine Thrust Chamber Assembly (United States)

    Casiano, Matthew; Hinerman, Tim; Kenny, R. Jeremy; Hulka, Jim; Barnett, Greg; Dodd, Fred; Martin, Tom


    Development is underway of the J -2X engine, a liquid oxygen/liquid hydrogen rocket engine for use on the Space Launch System. The Engine E10001 began hot fire testing in June 2011 and testing will continue with subsequent engines. The J -2X engine main combustion chamber contains both acoustic cavities and baffles. These stability aids are intended to dampen the acoustics in the main combustion chamber. Verification of the engine thrust chamber stability is determined primarily by examining experimental data using a dynamic stability rating technique; however, additional requirements were included to guard against any spontaneous instability or rough combustion. Startup and shutdown chug oscillations are also characterized for this engine. This paper details the stability requirements and verification including low and high frequency dynamics, a discussion on sensor selection and sensor port dynamics, and the process developed to assess combustion stability. A status on the stability results is also provided and discussed.

  14. Investigation of combustion in miniaturised combustor for application to micro gas turbines (United States)

    Guidez, J.; Roux, P.; Poirson, N.; Jourdanneau, E.; Orain, M.; Grisch, F.


    Assessing the feasibility of combustion in miniaturised combustors (volume less than 1 cm3) is a key point for the development of micro gas turbines. This paper presents the results obtained in a combustion chamber operating with a hydrogen-air mixture. A stable combustion was obtained with an output power between 100 and 1200 W, for air mass flow rate from 0.1 to 0.5 g/s, and equivalence ratio between 0.3 and 0.7. Experimental results were obtained using thermocouples to measure temperature of the burnt gases at the outlet of the combustor, and information on combustion efficiency and output power was derived. In addition, laser-based measurements were performed using spontaneous Raman spectroscopy and Rayleigh scattering to determine radial profiles of temperature and main species concentrations at the outlet of the combustor.

  15. Towards Ideal NOx and CO2 Emission Control Technology for Bio-Oils Combustion Energy System Using a Plasma-Chemical Hybrid Process

    International Nuclear Information System (INIS)

    Okubo, M; Fujishima, H; Yamato, Y; Kuroki, T; Tanaka, A; Otsuka, K


    A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NO x removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NO x removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO 2 removal using a Na 2 SO 3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 – 50% waste vegetable oil). Properties of flue gas—e.g., O 2 , CO 2 and NO x —when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm 3 /h. NO x concentrations at the boiler outlet are 90 – 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NO x removal efficiency of more than 90% (less than 10 ppm NO x emission) is confirmed. In addition, the CO 2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NO x removal and the conventional technology.

  16. Bilateral spontaneous carotid artery dissection. (United States)

    Townend, Bradley Scott; Traves, Laura; Crimmins, Denis


    Bilateral internal carotid artery dissections have been reported, but spontaneous bilateral dissections are rare. Internal carotid artery dissection can present with a spectrum of symptoms ranging from headache to completed stroke. Two cases of spontaneous bilateral carotid artery dissection are presented, one with headache and minimal symptoms and the other with a stroke syndrome. No cause could be found in either case, making the dissections completely spontaneous. Bilateral internal carotid artery dissection (ICAD) should be considered in young patients with unexplained head and neck pain with or without focal neurological symptoms and signs. The increasing availability of imaging would sustain the higher index of suspicion.

  17. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.


    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  18. Combustion synthesis of bulk nanocrystalline iron alloys

    Directory of Open Access Journals (Sweden)

    Licai Fu


    Full Text Available The controlled synthesis of large-scale nanocrystalline metals and alloys with predefined architecture is in general a big challenge, and making full use of these materials in applications still requires greatly effort. The combustion synthesis technique has been successfully extended to prepare large-scale nanocrystalline metals and alloys, especially iron alloy, such as FeC, FeNi, FeCu, FeSi, FeB, FeAl, FeSiAl, FeSiB, and the microstructure can be designed. In this issue, recent progress on the synthesis of nanocrystalline metals and alloys prepared by combustion synthesis technique are reviewed. Then, the mechanical and tribological properties of these materials with microstructure control are discussed.

  19. Cigarette, alcohol, and caffeine consumption: risk factors for spontaneous abortion

    DEFF Research Database (Denmark)

    Rasch, Vibeke


    given birth twice or more previously had increased odds ratio (OR), 1.78 (1.27-2.49), whereas women who were students had decreased OR, 0.55 (0.34-0.91) for having spontaneous abortions. Regarding lifestyle factors, the adjusted ORs among women who consumed 5 units or more alcohol per week or 375 mg......OBJECTIVE: To study the association between cigarette, alcohol, and caffeine consumption and the occurrence of spontaneous abortion. METHODS: The study population consisted of 330 women with spontaneous abortion and 1168 pregnant women receiving antenatal care. A case-control design was utilized......; cases were defined as women with a spontaneous abortion in gestational week 6-16 and controls as women with a live fetus in gestational week 6-16. The variables studied comprise age, parity, occupational situation, cigarette, alcohol, and caffeine consumption. The association between cigarette, alcohol...

  20. Effects of humeral intraosseous versus intravenous epinephrine on pharmacokinetics and return of spontaneous circulation in a porcine cardiac arrest model: A randomized control trial

    Directory of Open Access Journals (Sweden)

    Don Johnson


    Seven HIO swine, 4 IV swine, and no control swine had ROSC. There were no significant differences in ROSC, maximum concentration; except at 30 s, and time-to-concentration-maximum between the HIO and IV groups. Significant differences existed between the experimental groups and the control. The HIO delivers a higher concentration of epinephrine than the IV route at 30 s which may be a survival advantage. Clinicians may consider using the IO route to administer epinephrine during CA when there is no preexisting IV access or when IV access is unobtainable.

  1. Some Factors Affecting Combustion in an Internal-Combustion Engine (United States)

    Rothrock, A M; Cohn, Mildred


    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  2. Preliminary assessment of combustion modes for internal combustion wave rotors (United States)

    Nalim, M. Razi


    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  3. Path planning during combustion mode switch (United States)

    Jiang, Li; Ravi, Nikhil


    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  4. Plasma igniter for internal-combustion engines (United States)

    Breshears, R. R.; Fitzgerald, D. J.


    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  5. The Relation between Gas Flow and Combustibility using Actual Engine (Basic Experiment of Gas Flow and Combustibility under Low Load Condition)


    田坂, 英紀; 泉, 立哉; 木村, 正寿


    Abstract ###Consideration of the global environment problems by exhaust gas is becoming important in recent years. ###Especially about internal combustion engine, social demand has been increasing about low pollution, high ###efficiency and so on. Controlling gas flow in cylinder becomes the key getting good combustion state in ###various driving states. ###The purpose of the research is analysis about the relation between gas flow and combustibility in the cylinder. ###So we measured gas flo...

  6. Biosecurity on Poultry Farms from On-Farm Fluidized Bed Combustion and Energy Recovery from Poultry Litter

    Directory of Open Access Journals (Sweden)

    Kevin McDonnell


    Full Text Available The spreading of poultry litter in recent years has led to a serious increase in levels of eutrophication, nitrate leaching, high Biological Oxygen Demand (BOD, ammonia toxicity, high chlorine concentrations and pathogen contamination. The review presented here details the optimum standards that should be met when storing litter for On-Farm Fluidized Bed Combustion. Storage conditions are paramount to a fuel combusting to its highest possible potential. Safety measures such as the prevention of leaching and spontaneous combustion must be adhered to, so too should the prevention and containment of possible diseases and pathogens to minimize the effects of contamination.

  7. Hybrid lean premixing catalytic combustion system for gas turbines (United States)

    Critchley, Ian L.


    A system and method of combusting a hydrocarbon fuel is disclosed. The system combines the accuracy and controllability of an air staging system with the ultra-low emissions achieved by catalytic combustion systems without the need for a pre-heater. The result is a system and method that is mechanically simple and offers ultra-low emissions over a wide range of power levels, fuel properties and ambient operating conditions.

  8. Challenges in assessing air pollution from residential wood combustion

    DEFF Research Database (Denmark)

    Olesen, Helge Rørdam


    The paper highlights a number of important challenges in quantifying the impact of residential wood combustion on air quality. The fact that real life emissions are controlled by the behaviour of the users makes it a challenge to determine representative emission factors. Further, in respect...... to determination of particle emissions factors, there are inconsistences between countries due to different handling of condensable gases released from wood combustion. These and other challenges are discussed in the paper....

  9. Tools for the efficient use of the gas: Combustion diagrams

    International Nuclear Information System (INIS)

    Amell Andres; Maya Ruben D


    In this work the results of an investigation carried out with the purpose of developing a fundamental tool related to the process of optimization of the combustion are presented: The combustion diagrams with the optimization are looked for using the maximum heat generated in the reaction and to avoid the production of pollutants, product of an incomplete combustion. This is carried out controlling the stability of the flame and the composition of the smoke by means of the adjustment of the ratio air/combustible basically and with a homogeneous mixture. A constant pursuit of the dry smoke allows to determine the presence of pollutants and to establish the combustion type. A valuable tool to establish the conditions in which this process is carried out, this is the combustion diagram; this diagram uses the values of the concentration of O2 and CO2 in the dry smoke, starting from the sampling of the products by an analyzer to determine the composition of these smoke, the percentage of air really used, the air in excess and the combustion type

  10. Spontaneous Metacognition in Rhesus Monkeys. (United States)

    Rosati, Alexandra G; Santos, Laurie R


    Metacognition is the ability to think about thinking. Although monitoring and controlling one's knowledge is a key feature of human cognition, its evolutionary origins are debated. In the current study, we examined whether rhesus monkeys (Macaca mulatta; N = 120) could make metacognitive inferences in a one-shot decision. Each monkey experienced one of four conditions, observing a human appearing to hide a food reward in an apparatus consisting of either one or two tubes. The monkeys tended to search the correct location when they observed this baiting event, but engaged in information seeking-by peering into a center location where they could check both potential hiding spots-if their view had been occluded and information seeking was possible. The monkeys only occasionally approached the center when information seeking was not possible. These results show that monkeys spontaneously use information about their own knowledge states to solve naturalistic foraging problems, and thus provide the first evidence that nonhumans exhibit information-seeking responses in situations with which they have no prior experience. © The Author(s) 2016.

  11. Spontaneous flocking in human groups. (United States)

    Belz, Michael; Pyritz, Lennart W; Boos, Margarete


    Flocking behaviour, as a type of self-organised collective behaviour, is described as the spatial formation of groups without global control and explicit inter-individual recruitment signals. It can be observed in many animals, such as bird flocks, shoals or herds of ungulates. Spatial attraction between humans as the central component of flocking behaviour has been simulated in a number of seminal models but it has not been detected experimentally in human groups so far. The two other sub-processes of this self-organised collective movement - collision avoidance and alignment - are excluded or held constant respectively in this study. We created a computer-based, multi-agent game where human players, represented as black dots, moved on a virtual playground. The participants were deprived of social cues about each other and could neither communicate verbally nor nonverbally. They played two games: (1) Single Game, where other players were invisible, and (2) Joint Game, where each player could see players' positions in a local radius around himself/herself. We found that individuals approached their neighbours spontaneously if their positions were visible, leading to less spatial dispersion of the whole group compared to moving alone. We conclude that human groups show the basic component of flocking behaviour without being explicitly instructed or rewarded to do so. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Thermal influences on spontaneous rock dome exfoliation (United States)

    Collins, Brian D.; Stock, Greg M.; Eppes, Martha C.; Lewis, Scott W.; Corbett, Skye C.; Smith, Joel B.


    Rock domes, with their onion-skin layers of exfoliation sheets, are among the most captivating landforms on Earth. Long recognized as integral in shaping domes, the exact mechanism(s) by which exfoliation occurs remains enigmatic, mainly due to the lack of direct observations of natural events. In August 2014, during the hottest days of summer, a granitic dome in California, USA, spontaneously exfoliated; witnesses observed extensive cracking, including a ~8000 kg sheet popping into the air. Subsequent exfoliation episodes during the following two summers were recorded by instrumentation that captured—for the first time—exfoliation deformation and stress conditions. Here we show that thermal cycling and cumulative dome surface heating can induce subcritical cracking that culminates in seemingly spontaneous exfoliation. Our results indicate that thermal stresses—largely discounted in dome formation literature—can play a key role in triggering exfoliation and therefore may be an important control for shaping domes worldwide.

  13. Spontaneous abortion and physical strain around implantation

    DEFF Research Database (Denmark)

    Hjøllund, Niels Henrik Ingvar; Jensen, T.K.; Bonde, J.P.


    Existing studies of physical strain and spontaneous abortion are mainly retrospective or based only on pregnancies that have survived the first trimester. Furthermore, almost all studies have relied on averaged measures of physical strain, which tend to blur an effect if peak values during short...... time periods are the relevant measure. We followed a cohort of first pregnancy planners from termination of birth control until pregnancy for a maximum of six menstrual cycles. The analyses include 181 pregnancies, of which 32 were subclinical pregnancies detected by hCG analysis only. During early...... pregnancy the women recorded physical strain prospectively in a structured diary. Physical strain around the time of implantation was associated with later spontaneous abortion. The adjusted risk ratio for women who reported physical strain higher than average at day 6 to 9 after the estimated date...

  14. Spontaneous intraorbital hematoma: case report

    Directory of Open Access Journals (Sweden)

    Vinodan Paramanathan


    Full Text Available Vinodan Paramanathan, Ardalan ZolnourianQueen's Hospital NHS Foundation Trust, Burton on Trent, Staffordshire DE13 0RB, UKAbstract: Spontaneous intraorbital hematoma is an uncommon clinical entity seen in ophthalmology practice. It is poorly represented in the literature. Current evidence attributes it to orbital trauma, neoplasm, vascular malformations, acute sinusitis, and systemic abnormalities. A 65-year-old female presented with spontaneous intraorbital hematoma manifesting as severe ocular pains, eyelid edema, proptosis, and diplopia, without a history of trauma. Computer tomography demonstrated a fairly well defined extraconal lesion with opacification of the paranasal sinuses. The principal differential based on all findings was that of a spreading sinus infection and an extraconal tumor. An unprecedented finding of a spontaneous orbital hematoma was discovered when the patient was taken to theater. We discuss the rarity of this condition and its management.Keywords: hemorrhage, ophthalmology, spontaneous, intra-orbital, hematoma

  15. 75 FR 3881 - Combustible Dust (United States)


    ... Combustible Dust AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Notice of stakeholder meetings. SUMMARY: OSHA invites interested parties to participate in informal stakeholder meetings on the workplace hazards of combustible dust. OSHA plans to use the information gathered at these...

  16. 75 FR 10739 - Combustible Dust (United States)


    ... Combustible Dust AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Notice of stakeholder meetings. SUMMARY: OSHA invites interested parties to participate in informal stakeholder meetings on the workplace hazards of combustible dust. OSHA plans to use the information gathered at these...

  17. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett


    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  18. Spontaneous ischaemic stroke in dogs

    DEFF Research Database (Denmark)

    Gredal, Hanne Birgit; Skerritt, G. C.; Gideon, P.


    Translation of experimental stroke research into the clinical setting is often unsuccessful. Novel approaches are therefore desirable. As humans, pet dogs suffer from spontaneous ischaemic stroke and may hence offer new ways of studying genuine stroke injury mechanisms.......Translation of experimental stroke research into the clinical setting is often unsuccessful. Novel approaches are therefore desirable. As humans, pet dogs suffer from spontaneous ischaemic stroke and may hence offer new ways of studying genuine stroke injury mechanisms....

  19. Spontaneity and international marketing performance


    Souchon, Anne L.; Hughes, Paul; Farrell, Andrew M.; Nemkova, Ekaterina; Oliveira, Joao S.


    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link. Purpose – The purpose of this paper is to ascertain how today’s international marketers can perform better on the global scene by harnessing spontaneity. Design/methodology/approach – The authors draw on contingency theory to develop a model of the spontaneity – international marketing performance relationship, and identify three potential m...

  20. Effects of intake air temperature on homogenous charge compression ignition combustion and emissions with gasoline and n-heptane

    Directory of Open Access Journals (Sweden)

    Zhang Jianyong


    Full Text Available In a port fuel injection engine, Optimized kinetic process (OKP technology is implemented to realize HCCI combustion with dual-fuel injection. The effects of intake air temperature on HCCI combustion and emissions are investigated. The results show that dual-fuel control prolongs HCCI combustion duration and improves combustion stability. Dual-fuel HCCI combustion needs lower intake air temperature than gasoline HCCI combustion, which reduces the requirements on heat management system. As intake air temperature decreases, air charge increases and maximum pressure rising rate decreases. When intake air temperature is about 55ºC, HCCI combustion becomes worse and misfire happens. In fixed dual fuel content condition, HC and CO emission decreases as intake air temperature increases. The combination of dual-fuel injection and intake air temperature control can expand operation range of HCCI combustion.