WorldWideScience

Sample records for sponsored biomass power

  1. Biomass power in transition

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.K. [Zurn/NEPCO, Redmond, WA (United States)

    1996-12-31

    Electricity production from biomass fuel has been hailed in recent years as an environmentally acceptable energy source that delivers on its promise of economically viable renewable energy. A Wall Street Journal article from three years ago proclaimed wood to be {open_quotes}moving ahead of costly solar panels and wind turbines as the leading renewable energy alternative to air-fouling fossils fuels and scary nuclear plants.{close_quotes} Biomass fuel largely means wood; about 90% of biomass generated electricity comes from burning waste wood, the remainder from agricultural wastes. Biomass power now faces an uncertain future. The maturing of the cogeneration and independent power plant market, restructuring of the electric industry, and technological advances with power equipment firing other fuels have placed biomass power in a competitive disadvantage with other power sources.

  2. Power from biomass: the power utility perspective

    International Nuclear Information System (INIS)

    Serafimova, K.; Angele, H.-C.

    2008-01-01

    This article takes a look at possible strategies that electricity utilities in Switzerland could follow in order to be able to make use of biomass as a source of energy. Increasing interest in damp biomass as a relatively cheap, renewable and climate-friendly source of energy is commented on. Strategic choices that energy utilities have to make when they decide to enter into the biomass market are examined. The potentials involved are examined, including biogenic materials from domestic wastes and from agriculture. Figures on potential waste tonnage are quoted. Questions on subsidies and the free market are examined. The setting up of 'virtual power stations' - networks of installations using photovoltaic, wind and biomass - is discussed, as are various strategies that utilities can follow in this area. Examples of such 'virtual power stations' are listed.

  3. Economics of power generation from imported biomass

    International Nuclear Information System (INIS)

    Lako, P.; Van Rooijen, S.N.M.

    1998-02-01

    Attention is paid to the economics of import of biomass to the Netherlands, and subsequent utilisation for power generation, as a means to reduce dependence on (imported) fossil fuels and to reduce CO2 emission. Import of wood to the extent of 40 PJ or more from Baltic and South American states seems to be readily achievable. Import of biomass has various advantages, not only for the European Union (reduced CO2 emissions) but also for the countries of origin (employment creation). However, possible disadvantages or risks should be taken into account. With that in mind, import of biomass from Baltic states seems very interesting, although it should be noted that in some of those countries the alternative of fuel-switching to biomass seems to be more cost-effective than import of biomass from those countries. Given the expected increase in inland biomass consumption in the Baltic countries and the potential substantial future demand for biomass in other Western European countries it is expected that the biomass supply from Baltic countries will not be sufficient to fulfill the demand. An early focus on import from other countries seems advisable. Several power generation options are available with short to medium term potential and long term potential. The margin between costs of biomass-fuelled power and of coal fired power will be smaller, due to substantial improvements in power generating efficiency and reductions of investment costs of options for power generation from biomass, notably Biomass Gasification Combined Cycle. 18 refs

  4. Biomass utilization at Northern States Power Company

    International Nuclear Information System (INIS)

    Ellis, R.P.

    1994-01-01

    Northern States Power Company (open-quotes NSPclose quotes) generates, transmits and distributes electricity and distributes natural gas to customers in Minnesota, Wisconsin, North Dakota, South Dakota and Michigan. An important and growing component of the fuel needed to generate steam for electrical production is biomass. This paper describes NSP's historical use of biomass, current biomass resources and an overview of how NSP plans to expand its use of biomass in the future

  5. Lessons learned from existing biomass power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  6. 76 FR 20624 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Science.gov (United States)

    2011-04-13

    ... DEPARTMENT OF AGRICULTURE Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA. ACTION: Notice of Availability of a Draft... financial assistance to Oglethorpe Power Corporation (Oglethorpe) for the construction of a 100 megawatt (MW...

  7. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T [Aston Univ. Birmingham (United Kingdom); Beckman, D [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  8. Understanding Biomass Ignition in Power Plant Mills

    DEFF Research Database (Denmark)

    Schwarzer, Lars; Jensen, Peter Arendt; Glarborg, Peter

    2017-01-01

    Converting existing coal fired power plants to biomass is a readily implemented strategy to increase the share of renewable energy. However, changing from one fuel to another is not straightforward: Experience shows that wood pellets ignite more readily than coal in power plant mills or storages...

  9. Independent System Operators and Biomass Power

    International Nuclear Information System (INIS)

    Porter, Kevin L.

    1999-01-01

    Since the Federal Energy Regulatory Commission issued its landmark open access transmission rule in 1996, the idea of creating and establishing independent system operators (ISOs) has gained momentum. ISOs may help combine individual utility transmission systems into more regional transmission networks, which ultimately will allow biomass companies to transmit power over longer distances while paying a single transmission rate. To the extent that ISOs are combined or operated with power exchanges, however, biomass companies will likely face even more competitive market pressures. Few operators have experience with ISOs and power exchanges, but preliminary results show that short-term electricity market prices are probably too low for most biomass companies to compete against. Without policy measures, biomass companies may have to pursue strategic opportunities with short-term, spot-market sales; direct bilateral sales to customers; alternative power exchanges; and perhaps a ''green'' power market and sales to ancillary service markets. In addition, prices will likely be more volatile in a restructured market so biomass generators should be selling during those times

  10. 76 FR 77963 - Oglethorpe Power Corporation; Proposed Biomass Power Plant

    Science.gov (United States)

    2011-12-15

    ... Service Oglethorpe Power Corporation; Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA... related to possible financial assistance to Oglethorpe Power Corporation's (Oglethorpe) for the... online at the following Web site: http://www.rurdev.usda.gov/UWP-OglethorpePower.html and at the: Warren...

  11. Biomass combustion technologies for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.A. Jr. [Appel Consultants, Inc., Stevenson Ranch, CA (United States); McGowin, C.R.; Hughes, E.E. [Electric Power Research Institute, Palo Alto, CA (United States)

    1993-12-31

    Technology in power production from biomass has been advancing rapidly. Industry has responded to government incentives such as the PURPA legislation in the US and has recognized that there are environmental advantages to using waste biomass as fuel. During the 1980s many new biomass power plants were built. The relatively mature stoker boiler technology was improved by the introduction of water-cooled grates, staged combustion air, larger boiler sizes up to 60 MW, higher steam conditions, and advanced sootblowing systems. Circulating fluidized-bed (CFB) technology achieved full commercial status, and now is the leading process for most utility-scale power applications, with more complete combustion, lower emissions, and better fuel flexibility than stoker technology. Bubbling fluidized-bed (BFB) technology has an important market niche as the best process for difficult fuels such as agricultural wastes, typically in smaller plants. Other biomass power generation technologies are being developed for possible commercial introduction in the 1990s. Key components of Whole Tree Energy{trademark} technology have been tested, conceptual design studies have been completed with favorable results, and plans are being made for the first integrated process demonstration. Fluidized-bed gasification processes have advanced from pilot to demonstration status, and the world`s first integrated wood gasification/combined cycle utility power plant is starting operation in Sweden in early 1993. Several European vendors offer biomass gasification processes commercially. US electric utilities are evaluating the cofiring of biomass with fossil fuels in both existing and new plants. Retrofitting existing coal-fired plants gives better overall cost and performance results than any biomass technologies;but retrofit cofiring is {open_quotes}fuel-switching{close_quotes} that provides no new capacity and is attractive only with economic incentives.

  12. Torrefaction of biomass for power production

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti

    In order to increase the share of biomass for sustainable energy production, it will be an advantage to utilize fuels as straw, wood and waste on large suspension fired boilers. On a European scale, currently large straw resources are available that are not fully utilized for energy production...... rates, relatively low superheater temperatures have to be applied, which in turn lower the power efficiency. The idea for this Ph.D. project is to develop a biomass pretreatment method that could provide the heating value of the fuel for the boiler, but in a way such that the fuel is easily pulverized.......D. thesis focus on the following subjects: 1) the development of experimental procedures for a novel laboratory scale reactor (simultaneous torrefaction and grinding) and a study on the torrefaction of straw and wood; 2) study the influence of biomass chemical properties such as ash content, ash composition...

  13. Biomass power as a strategic business investment

    International Nuclear Information System (INIS)

    Turnbull, J.H.

    1996-01-01

    During 1994 and 1995 the Electric Power Research Institute collaborated with the US Department of Energy's National Renewable Energy Laboratory in support of seven feasibility studies of integrated biomass systems. The goal of the studies was to assess the economic viability and environmental implications of each system. The products were comprehensive business plans for implementation of the proposed systems. One general conclusion from these studies is that the feasibility of any biomass power system is determined by the costs and unique characteristics intrinsic to the specific system. Because of the limited need for new electric capacity in most of the US, and the relatively low capital investment required for implementation, cofiring currently holds more appeal than any of the more advanced conversion options. Cofiring savings accrue from offsets of coal, along with SO x allowances and any available NO x or carbon credits. The closed loop tax credit authorized by the Energy Policy Act of 1992 serves to make energy crops more nearly cost-competitive with coal and natural gas. Biomass gasification combined-cycle units give promise of economic viability after the turn of the century, and as energy crops become more cost-competitive with waste feedstocks, agricultural constituencies will become more integrally involved in the establishment of biomass energy systems. At present, corollary benefits are critical if a system is to be economically feasible. A valid no-regrets policy for global climate-change mitigation that includes near-term investments in biomass technologies should result in large payoffs over the next several decades

  14. Marine biomass power plant using methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, T.; Saito, H.; Amano, T.; Sugawara, H.; Seki, T.; Abe, T. [Technology Research Inst., Tokyo Gas Co. Ltd., Tokyo (Japan)

    2004-07-01

    This study presented an effective way to produce biogas from the large quantities of seaweed waste in Japan. A large-scale marine biomass pilot plant was built to produce biogas from marine biomass. Methane fermentation was the process used to produce biogas from Laminaria sp. The maximum treating capacity of the pilot plant is 1 ton of seaweed per day. The pilot plant includes a pretreatment facility, fermentation, biogas storage and power generation. The maximum methane yield from the biomass plant is 22 cubic ton-seaweed. The purified biogas has generated 10 kW of electricity and 23 kW of heat. The biogas was also mixed with natural gas for use in a gas engine generator. The engine operation remained stable despite changes in quantity and composition of the collected biogas caused by changes with the source of biomass and sea conditions. The thermal efficiency of the gas engine running on mixed biogas and natural gas was more than 10 per cent higher than an engine running on biogas fuel alone. 4 refs., 2 tabs., 3 figs.

  15. Understanding Biomass Ignition in Power Plant Mills

    DEFF Research Database (Denmark)

    Schwarzer, Lars; Jensen, Peter Arendt; Glarborg, Peter

    2017-01-01

    . This is not very well explained by apply-ing conventional thermal ignition theory. An experimental study at lab scale, using pinewood as an example fuel, was conducted to examine self-heating and self-ignition. Supplemental experiments were performed with bituminous coal. Instead of characterizing ignition......Converting existing coal fired power plants to biomass is a readily implemented strategy to increase the share of renewable energy. However, changing from one fuel to another is not straightforward: Experience shows that wood pellets ignite more readily than coal in power plant mills or storages...... temperature in terms of sample volume, mass-scaling seems more physically correct for the self-ignition of solids. Findings also suggest that the transition between self-heating and self-ignition is controlled both by the availability of reactive material and temperature. Comparison of experiments at 20...

  16. Biomass Supply and Trade Opportunities of Preprocessed Biomass for Power Generation

    NARCIS (Netherlands)

    Batidzirai, B.; Junginger, M.; Klemm, M.; Schipfer, F.; Thrän, D.

    2016-01-01

    International trade of solid biomass is expected to increase significantly given the global distribution of biomass resources and anticipated expansion of bioenergy deployment in key global power markets. Given the unique characteristics of biomass, its long-distance trade requires optimized

  17. The development situation of biomass gasification power generation in China

    International Nuclear Information System (INIS)

    Zhou, Zhaoqiu; Yin, Xiuli; Xu, Jie; Ma, Longlong

    2012-01-01

    This work presents the development situation of biomass gasification power generation technology in China and analyzes the difficulty and challenge in the development process. For China, a large agricultural country with abundant biomass resources, the utilization of biomass gasification power generation technology is of special importance, because it can contribute to the electricity structure diversification under the present coal-dominant electricity structure, ameliorate the environmental impact, provide energy to electricity-scarce regions and solve the problems facing agriculture. Up to now, China has developed biomass gasification power generation plants of different types and scales, including simple gas engine-based power generation systems with capacity from several kW to 3 MW and integrated gasification combined cycle systems with capacity of more than 5 MW. In recent years, due to the rising cost of biomass material, transportation, manpower, etc., the final cost of biomass power generation has increased greatly, resulting in a serious challenge in the Chinese electricity market even under present preferential policy for biomass power price. However, biomass gasification power generation technology is generally in accord with the characteristics of biomass resources in China, has relatively good adaptability and viability, and so has good prospect in China in the future. - Highlights: ► Biomass gasification power generation of 2 kW–2 MW has wide utilization in China. ► 5.5 MW biomass IGCC demonstration plant has maximum power efficiency of up to 30%. ► Biomass power generation is facing a serious challenge due to biomass cost increase.

  18. Competitiveness of biomass-fueled electrical power plants.

    Science.gov (United States)

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; John T. Chmelik

    2000-01-01

    One way countries like the United States can comply with suggested rollbacks in greenhouse gas emissions is by employing power plants fueled with biomass. We examine the competitiveness of biomass-based fuel for electrical power as opposed to coal using a mathematical programming structure. We consider fueling power plants from milling residues, whole trees, logging...

  19. Development of biomass gasification systems for gas turbine power generation

    International Nuclear Information System (INIS)

    Larson, E.D.; Svenningsson, P.

    1991-01-01

    Gas turbines are of interest for biomass applications because, unlike steam turbines, they have relatively high efficiencies and low unit capital costs in the small sizes appropriate for biomass installations. Gasification is a simple and efficient way to make biomass usable in gas turbines. The authors evaluate here the technical requirements for gas turbine power generation with biomass gas and the status of pressurized biomass gasification and hot gas cleanup systems. They also discuss the economics of gasifier-gas turbine cycles and make some comparisons with competing technologies. Their analysis indicates that biomass gasifiers fueling advanced gas turbines are promising for cost-competitive cogeneration and central station power generation. Gasifier-gas turbine systems are not available commercially, but could probably be developed in 3 to 5 years. Extensive past work related to coal gasification and pressurized combustion of solid fuels for gas turbines would be relevant in this effort, as would work on pressurized biomass gasification for methanol synthesis

  20. Biomass power: Exploring the diffusion challenges in Spain

    NARCIS (Netherlands)

    Dinica, V.

    2009-01-01

    The use of biomass resources for power generation offers numerous benefits of interest for political decision-makers: fuel security, rural and industrial development, ecological benefits. In Spain, policy instruments have been used since 1980 to stimulate biomass power generation. However, the

  1. Overview of biomass and waste fuel resources for power production

    International Nuclear Information System (INIS)

    Easterly, J.L.; Burnham, M.

    1993-01-01

    This paper provides an overview of issues and opportunities associated with the use of biomass for electric power generation. Important physical characteristics of biomass and waste fuels are summarized, including comparisons with conventional fossil fuels, primarily coal. The paper also provides an overview of the current use of biomass and waste fuels for electric power generation. Biomass and waste fuels are currently used for approximately 9,800 megawatts (MW) of electric generating capacity, including about 6,100 MW of capacity fueled by wood/wood waste and about 2,200 MW of capacity fueled with municipal solid waste. Perspectives on the future availability of biomass fuels (including energy crops) are addressed, as well as projected levels of market penetration for biomass power. By the year 2010, there is a potential for 22,000 MW, to as much as 70,000 MW of biomass-powered electric generating capacity in the U.S. Given the range of benefits offered by biomass, including reduced sulfur emissions, reduced greenhouse gas emissions, job creation, rural revitalization impacts, and new incentives under the Energy Policy Act of 1992, the potential use of biomass for power production could significantly expand in the future

  2. Opportunities for Small Biomass Power Systems. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D. D.; Pinapati, V. S.

    2000-11-15

    The purpose of this study was to provide information to key stakeholders and the general public about biomass resource potential for power generation. Ten types of biomass were identified and evaluated. The quantities available for power generation were estimated separately for five U.S. regions and Canada. A method entitled ''competitive resource profile'' was used to rank resources based on economics, utilization, and environmental impact. The results of the analysis may be used to set priorities for utilization of biomass in each U.S. region. A review of current biomass conversion technologies was accomplished, linking technologies to resources.

  3. Status of Biomass Power Generation in California, July 31, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Morris, G.

    2003-12-01

    This report describes the development of the biomass power industry in California over the past quarter century, and examines its future outlook. The development of a state biomass policy, which has been under discussion in California for the better part of the past decade, has never gotten off the ground, but a number of smaller initiatives have helped to keep the biomass power industry afloat and have promoted the use of some targeted types of residues. In this report we analyze the prospects for policy development and the application of new biomass technologies in California.

  4. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aden, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Uriarte, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Inman, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Argo, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  5. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  6. Aspects of using biomass as energy source for power generation

    Directory of Open Access Journals (Sweden)

    Tîrtea Raluca-Nicoleta

    2017-07-01

    Full Text Available Biomass represents an important source of renewable energy in Romania with about 64% of the whole available green energy. Being a priority for the energy sector worldwide, in our country the development stage is poor compared to solar and wind energy. Biomass power plants offer great horizontal economy development, local and regional economic growth with benefic effects on life standard. The paper presents an analysis on biomass to power conversion solutions compared to fossil fuels using two main processes: combustion and gasification. Beside the heating value, which can be considerably higher for fossil fuels compared to biomass, a big difference between fossil fuels and biomass can be observed in the sulphur content. While the biomass sulphur content is between 0 and approximately 1%, the sulphur content of coal can reach 4%. Using coal in power plants requires important investments in installations of flue gas desulfurization. If limestone is used to reduce SO2 emissions, then additional carbon dioxide moles will be released during the production of CaO from CaCO3. Therefore, fossil fuels not only release a high amount of carbon dioxide through burning, but also through the caption of sulphur dioxide, while biomass is considered CO2 neutral. Biomass is in most of the cases represented by residues, so it is a free fuel compared to fossil fuels. The same power plant can be used even if biomass or fossil fuels is used as a feedstock with small differences. The biomass plant could need a drying system due to high moisture content of the biomass, while the coal plant will need a desulfurization installation of flue gas and additional money will be spent with fuel purchasing.

  7. IEA Energy Technology Essentials: Biomass for Power Generation and CHP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biomass for Power Generation and CHP is the topic covered in this edition.

  8. Biomass Power Generation Industry Efficiency Evaluation in China

    Directory of Open Access Journals (Sweden)

    Qingyou Yan

    2014-12-01

    Full Text Available In this paper, we compare the properties of the traditional additive-based data envelopment analysis (hereafter, referred to as DEA models and propose two generalized DEA models, i.e., the big M additive-based DEA (hereafter, referred to as BMA model and the big M additive-based super-efficiency DEA (hereafter, referred to as BMAS model, to evaluate the performance of the biomass power plants in China in 2012. The virtues of the new models are two-fold: one is that they inherited the properties of the traditional additive-based DEA models and derived more new additive-based DEA forms; the other is that they can rank the efficient decision making units (hereafter, referred to as DMUs. Therefore, the new models have great potential to be applied in sustainable energy project evaluation. Then, we applied the two new DEA models to evaluate the performance of the biomass power plants in China and find that the efficiency of biomass power plants in the northern part of China is higher than that in the southern part of China. The only three efficient biomass power plants are all in the northern part of China. Furthermore, based on the results of the Wilcoxon-Mann-Whitney rank-sum test and the Kolmogorov-Smirnov test, there is a great technology gap between the biomass power plants in the northern part of China and those in the southern part of China.

  9. Biomass power. Exploring the diffusion challenges in Spain

    International Nuclear Information System (INIS)

    Dinica, Valentina

    2009-01-01

    The use of biomass resources for power generation offers numerous benefits of interest for political decision-makers: fuel security, rural and industrial development, ecological benefits. In Spain, policy instruments have been used since 1980 to stimulate biomass power generation. However, the diffusion outcome by 2007 was very disappointing: only 525 MW. This paper argues that two factors lie at the core of this: the conceptualization of biomass resources by political decision-makers in the instruments used, and the desire that policy instruments be in line with market liberalization principles. These generated a persistent economic obstacle for biomass power generation, and impeded the development of markets for the supply of biomass resources. The policy learning regarding the heterogeneity of biomass resources, and the investors' expectations on risks, profitability and resource markets was very slow among political decision-makers. The paper contributes to the understanding of diffusion outcomes by proposing to analyse diffusion by means of five indicators: types of resources, technologies, developers, motivations to invest and project sizes. Besides, the paper shows the usefulness of investigating policy instruments in terms of their risk and profitability characteristics. This enables a better understanding of the diffusion patterns and outcomes. (author)

  10. Indian Farmers’ Perceptions and Willingness to Supply Surplus Biomass to an Envisioned Biomass-Based Power Plant

    Directory of Open Access Journals (Sweden)

    Anas Zyadin

    2015-04-01

    Full Text Available The main objectives of this socio-technical study are to investigate the Indian farmers’ biomass production capacities and their perceptions and willingness to supply their surplus biomass to fuel an envisioned biomass-based power plant in three selected Indian states: Maharashtra, Madhya Pradesh and Tamil Nadu. For doing so, 471 farmers (about one-third from each state have been interviewed in the field with info-sheet filled in by the field investigators. The farmers from all of the states appeared very much willing to sell their surplus biomass directly to a power plant. The farmers seem to depreciate the involvement of a middleman in the biomass procurement process. The farmers, however, appeared to highly appreciate a community-based association to regulate the biomass prices, with varying perceptions regarding government intervention. The majority of the farmers perceived the establishment of a biomass-based power plant in their region with positive economic outcomes. The farmers identified several barriers to supply biomass to a power plant where transportation logistics appeared to be the main barrier. The study recommends considering biomass collection, storage and transportation logistics as a fundamental segment of any envisioned investment in a biomass-based power plant. Biomass processing, such as pelletization or briquetting is recommended for efficient transportation of biomass at longer distances to reduce the transportation costs. The study further encourages the establishment of a farmers’ association aimed at collecting and selling biomass in agriculture areas predominant for small land holdings.

  11. District heating and combined heat and power generation from biomass

    International Nuclear Information System (INIS)

    Veski, Rein

    1999-01-01

    An Altener programme seminar District Heating and Combined Heat and Power Generation from Biomass. Minitraining seminar and study tours and also Business forum, Exhibition and Short company presentations were held in Tallinn on March 21-23, 1999. The Seminar was organised by the VTT Energy, the Estonian Bioenergy Association and the Estonian Heat and Power Association in co-operation with the AFB-net. The Agricultural and Forestry Biomass Network (AFB-net) is part of the ALTENER programme. The Network aims at promoting and stimulating the implementation and commercial utilisation of energy from biomass and waste, through the initiation of business opportunities. This includes national and international co-operation and the exchange of the personnel. The Seminar was attended by consulting companies, scientists, municipal authorities and representatives of co-ordinating bodies engaged in renewable energy management as well as DH and CHP plant managers, equipment manufacturers and local energy planners from Finland, Estonia, Latvia, Lithuania, Sweden, Denmark, Belgium, Slovenia and Slovak Republic. At the Seminar minitraining issues were dealt with: the current situation and future trends in biomass DH in the Baltic Sea countries, and biomass DH and CHP in Eastern and Central Europe, planning and construction of biomass-based DH plants, biomass fuel procurement and handling technology, combustion technology, DH networks, financing of biomass projects and evaluating of projects, and case projects in Eastern and Central European countries. The following were presented: boilers with a capacity of 100 kW or more, stoker burners, wood and straw handling equipment, wood fuel harvesters, choppers, pelletisers, district heating pipelines and networks. (author)

  12. Hybrid biomass-wind power plant for reliable energy generation

    International Nuclear Information System (INIS)

    Perez-Navarro, A.; Alfonso, D.; Alvarez, C.; Ibanez, F.; Sanchez, C.; Segura, I.

    2010-01-01

    Massive implementation of renewable energy resources is a key element to reduce CO 2 emissions associated to electricity generation. Wind resources can provide an important alternative to conventional electricity generation mainly based on fossil fuels. However, wind generators are greatly affected by the restrictive operating rules of electricity markets because, as wind is naturally variable, wind generators may have serious difficulties on submitting accurate generation schedules on a day ahead basis, and on complying with scheduled obligations in real-time operation. In this paper, an innovative system combining a biomass gasification power plant, a gas storage system and stand-by generators to stabilize a generic 40 MW wind park is proposed and evaluated with real data. The wind park power production model is based on real data about power production of a Spanish wind park and a probabilistic approach to quantify fluctuations and so, power compensation needs. The hybrid wind-biomass system is analysed to obtain main hybrid system design parameters. This hybrid system can mitigate wind prediction errors and so provide a predictable source of electricity. An entire year cycle of hourly power compensations needs has been simulated deducing storage capacity, extra power needs of the biomass power plant and stand-by generation capacity to assure power compensation during critical peak hours with acceptable reliability. (author)

  13. 78 FR 26747 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Science.gov (United States)

    2013-05-08

    ... Decision. SUMMARY: The Rural Utilities Service (RUS) has issued a Record of Decision (ROD) for the.... Accordingly, comments submitted in the EIS process also informed RUS's decision making in the Section 106... Oglethorpe for RUS financing to construct the 100 megawatt (MW) biomass plant and related facilities...

  14. Integrated biomass pyrolysis with organic Rankine cycle for power generation

    Science.gov (United States)

    Nur, T. B.; Syahputra, A. W.

    2018-02-01

    The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used to generate power from waste heat available in industrial processes. Biomass pyrolysis is one of the thermochemical technologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solid biochar, and pyrolytic gas. In the application, biomass pyrolysis can be divided into three main categories; slow, fast and flash pyrolysis mainly aiming at maximizing the products of bio-oil or biochar. The temperature of synthesis gas generated during processes can be used for Organic Rankine Cycle to generate power. The heat from synthesis gas during pyrolysis processes was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. In this study, the potential of the palm oil empty fruit bunch, palm oil shell, and tree bark have been used as fuel from biomass to generate electricity by integrated with ORC. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC system. Through Aspen Plus, this study analyses the influences on performance of main thermodynamic parameters, showing the possibilities of reaching an optimum performance for different working conditions that are characteristics of different design parameters.

  15. Biomass gasification hot gas cleanup for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiant, B.C.; Bachovchin, D.M. [Westinghouse Electric Corp., Orlando, FL (United States); Carty, R.H.; Onischak, M. [Institute of Gas Technology, Chicago, IL (United States); Horazak, D.A. [Gilbert/Commonwealth, Reading, PA (United States); Ruel, R.H. [The Pacific International Center for High Technology Research, Honolulu, HI (United States)

    1993-12-31

    In support of the US Department of Energy`s Biomass Power Program, a Westinghouse Electric led team consisting of the Institute of Gas Technology (IGT), Gilbert/Commonwealth (G/C), and the Pacific International Center for High Technology Research (PICHTR), is conducting a 30 month research and development program. The program will provide validation of hot gas cleanup technology with a pressurized fluidized bed, air-blown, biomass gasifier for operation of a gas turbine. This paper discusses the gasification and hot gas cleanup processes, scope of work and approach, and the program`s status.

  16. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    International Nuclear Information System (INIS)

    Sandvig, Eric; Walling, Gary; Brown, Robert C.; Pletka, Ryan; Radlein, Desmond; Johnson, Warren

    2003-01-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW e ; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system

  17. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    Energy Technology Data Exchange (ETDEWEB)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  18. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2008-01-01

    bed on the grate, and the advanced secondary air supply (a real breakthrough in this technology) are highlighted for grate-firing systems. Amongst all the issues or problems associated with grate-fired boilers burning biomass, primary pollutant formation and control, deposition formation and corrosion......As a renewable and environmentally friendly energy source, biomass (i.e., any organic non-fossil fuel) and its utilization are gaining an increasingly important role worldwide Grate-firing is one of the main competing technologies in biomass combustion for heat and power production, because it can...... combustion mechanism, the recent breakthrough in the technology, the most pressing issues, the current research and development activities, and the critical future problems to be resolved. The grate assembly (the most characteristic element in grate-fired boilers), the key combustion mechanism in the fuel...

  19. Biomass gasification for electric power generation. Biomassa vergassing voor elektriciteitsopwekking

    Energy Technology Data Exchange (ETDEWEB)

    Croezen, H J

    1992-10-01

    Attention is paid to power generation by means of the use of synthesis gas, produced by biomass gasification, in internal combustion engines and gas turbines. Descriptions are given of the biomass gasification process and several types of gasifiers: cocurrent or downcraft gasifiers, countercurrent gasifiers, crosscurrent gasifiers and fluidized bed gasifiers. The first aim of this report is to assess which gasifier is the most appropriate gasifier to be used in combination with an internal combustion engine or a gas turbine. The second aim is to determine the quality of the biomass fuel, which must be gasified in a particular gasifier. In chapter two the notion biomass is discussed, and in chapter three attention is paid to the gasification process. An overview of the characteristics of available gasifiers is presented in chapter four (performance, quality of the synthesis gas and the biomass fuel, investment costs, and state of the art). In chapter five and six the internal combustion engine and the gas turbine are dealt with, as well as the experiences with and the consequences of the use of synthesis gas. Also the economic feasibility of the application of combined gasifier/engine systems and gasifier/gas turbine systems is discussed. 39 figs., 20 tabs., 43 refs.

  20. Exergy analysis of biomass organic Rankine cycle for power generation

    Science.gov (United States)

    Nur, T. B.; Sunoto

    2018-02-01

    The study examines proposed small biomass-fed Organic Rankine Cycle (ORC) power plant through exergy analysis. The system consists of combustion burner unit to utilize biomass as fuel, and organic Rankine cycle unit to produce power from the expander. The heat from combustion burner was transfered by thermal oil heater to evaporate ORC working fluid in the evaporator part. The effects of adding recuperator into exergy destruction were investigated. Furthermore, the results of the variations of system configurations with different operating parameters, such as the evaporating pressures, ambient temperatures, and expander pressures were analyzed. It was found that the largest exergy destruction occurs during processes are at combustion part, followed by evaporator, condenser, expander, and pump. The ORC system equipped with a recuperator unit exhibited good operational characteristics under wide range conditions compared to the one without recuperator.

  1. Pilot scale testing of biomass feedstocks for use in gasification/gas turbine based power generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Najewicz, D.J.; Furman, A.H. [General Electric Corporate Research and Development Center, Schenectady, NY (United States)

    1993-12-31

    A biomass gasification pilot program was performed at the GE Corporate Research and Development Center using two types of biomass feedstock. The object of the testing was to determine the properties of biomass product gas and its` suitability as a fuel for gas turbine based power generation cycles. The test program was sponsored by the State of Vermont, the US Environmental Protection Agency, the US Department of Energy and Winrock International/US Agency for International Development. Gasification of bagasse and wood chip feedstock was performed at a feed rate of approximately one ton per hour, using the Ge pressurized fixed bed gasifier and a single stage of cyclone particulate removal, operating at a temperature of 1,000 F. Both biomass feedstocks were found to gasify easily, and gasification capacity was limited by volumetric capacity of the fuel feed equipment. The biomass product gas was analyzed for chemical composition, particulate loading, fuel bound nitrogen levels, sulfur and alkali metal content. The results of the testing indicated the combustion characteristics of the biomass product gas are compatible with gas turbine combustor requirements. However, the particulate removal performance of the pilot facility single stage cyclone was found to be inadequate to meet turbine particulate contamination specifications. In addition, alkali metals found in biomass based fuels, which are known to cause corrosion of high temperature gas turbine components, were found to exceed allowable levels in the fuel gas. These alkali metal compounds are found in the particulate matter (at 1000 F) carried over from the gasifier, thus improved particulate removal technology, designed specifically for biomass particulate characteristics could meet the turbine requirements for both particulate and alkali loading. The paper will present the results of the biomass gasification testing and discuss the development needs in the area of gas clean-up and turbine combustion.

  2. Technical Manual for the SAM Biomass Power Generation Model

    Energy Technology Data Exchange (ETDEWEB)

    Jorgenson, J.; Gilman, P.; Dobos, A.

    2011-09-01

    This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

  3. 77 FR 9273 - WORKSHOP Sponsored by the Nuclear Regulatory Commission and the Electric Power Research Institute...

    Science.gov (United States)

    2012-02-16

    ... Commission and the Electric Power Research Institute on the Treatment of Probabilistic Risk Assessment.... SUMMARY: The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research (RES), in cooperation with the Electric Power Research Institute (EPRI), will hold a joint workshop on the Treatment of...

  4. Back to nature: Power from biomass; Zurueck zur Natur: Energie aus Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Beerbaum, S. [Hohenheim Univ. (Germany). Inst. fuer Agrarpolitik und landwirtschaftliche Marktlehre; Kappelmann, K.H. [Fachhochschule Nuertingen (Germany); Haerdtlein, M. [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung; Kaltschmitt, M. [Technische Univ. Muenchen-Weihenstephan (Germany); Ising, M. [Fraunhofer Inst. fuer Umwelt-, Sicherheits-, und Energietechnik, Oberhausen (Germany); Meier, D.; Faix, O. [Institut fuer Holzchemie und chemische Technologie des Holzes, Hamburg (Germany); Gerdes, C. [Hamburg Univ. (Germany). Inst. fuer Makromolekulare und Technische Chemie

    2000-05-01

    Excepting nuclear power, there are just two strategies to reduce global warming, i.e. either by saving energy or by using renewables, supported by public funding and guaranteed rates. The options of solar, wind, and hydroelectric power are limited in our climate and their potential is nearly completely exploited in some regions already. Biomass is an interesting option. Its introduction should be speeded up as it takes about 50 - 60 years for a new technology to be fully accepted. [German] Soll der Treibhauseffekt eingedaemmt werden, ohne in grossem Umfang auf Kernenergie zurueckzugreifen, bleiben nur zwei Moeglichkeiten: Energiesparen und verstaerkter Einsatz regenerativer Energiequellen. Finanzielle Foerderung aus oeffentlichen Mitteln und Garantiepreise bei der Stromerzeugung sollen den Weg gangbar machen. Sonne, Wind und Wasser eignen sich leider hierzulande nur begrenzt, teilweise ist ihr Potenzial schon weitgehend ausgeschoepft. Eine wichtige Ergaenzung des Angebots duerfte deshalb die Biomasse sein. Letztlich ist sie eine Speicherform von Sonnenenergie: Durch Photosynthese erzeugen Pflanzen aus Kohlendioxid und Wasser ihre eigenen Energietraeger, die Kohlenhydrate. Weil beim Verbrennen nur das aufgenommene Kohlendioxid wieder frei wird, zeigt die energetische Nutzung von Biomasse eine weitgehend ausgeglichene Klimabilanz. Doch Eile ist geboten. Die Nutzung von Kohle und Erdoel benoetigte 50 bis 60 Jahre, um sich zu etablieren; Experten halten das fuer einen typischen Zeitraum (den auch die Kernenergie noch nicht durchschritten hat). Sich erneuernde Energiequellen stehen noch am Anfang dieser Einfuehrungsphase. (orig.)

  5. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    Science.gov (United States)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  6. Biomass power for rural development. Technical progress report, October 1--December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.

    1998-05-01

    The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill Power Station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the fourth quarter of 1997 the Consortium submitted a Phase-2 proposal. A few of the other more important milestones are outlined below. The first quarter of 1998 will be dominated by pre-planting activity in the spring.

  7. Biomass Gasification for Power Generation Internal Combustion Engines. Process Efficiency

    International Nuclear Information System (INIS)

    Lesme-Jaén, René; Garcia-Faure, Luis; Oliva-Ruiz, Luis; Pajarín-Rodríguez, Juan; Revilla-Suarez, Dennis

    2016-01-01

    Biomass is a renewable energy sources worldwide greater prospects for its potential and its lower environmental impact compared to fossil fuels. By different processes and energy conversion technologies is possible to obtain solid, liquid and gaseous fuels from any biomass.In this paper the evaluation of thermal and overall efficiency of the gasification of Integral Forestry Company Santiago de Cuba is presented, designed to electricity generation from waste forest industry. The gasifier is a downdraft reactor, COMBO-80 model of Indian manufacturing and motor (diesel) model Leyland modified to work with producer gas. The evaluation was conducted at different loads (electric power generated) of the motor from experimental measurements of flow and composition of gas supplied to the engine. The results show that the motor operates with a thermal efficiency in the range of 20-32% with an overall efficiency between 12-25 %. (author)

  8. Alkali slagging problems with biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R.; Miles, T.R. Jr.; Baxter, L.L.; Jenkins, B.M.; Oden, L.L.

    1993-12-31

    Biomass fueled power boilers are unable to burn more than minor percentages of annually generated agricultural fuels. Determining the mechanisms of deposit formation, and developing means of increasing the proportion of these annual biofuels to be fired are the aims of the ongoing Alkali Deposit Investigation sponsored by DOE/NREL with matching funds from industry sponsors, combining Science, Engineering and Industry.

  9. Demonstration of a 1 MWe biomass power plant at USMC Base Camp Lejeune

    International Nuclear Information System (INIS)

    Cleland, J.; Purvis, C.R.

    1997-01-01

    A biomass energy conversion project is being sponsored by the U.S. Environmental Protection Agency (EPA) to demonstrate an environmentally and economically sound electrical power option for government installations, industrial sites, rural cooperatives, small municipalities, and developing countries. Under a cooperative agreement with EPA, Research Triangle Institute is initiating operation of the Camp Lejeune Energy from Wood (CLEW) biomass plant. Wood gasification combined with internal combustion engines was chosen because of (1) recent improvements in gas cleaning, (2) simple, economical operation for units less than 10 MW, and (3) the option of a clean, cheap fuel for the many existing facilities generating expensive electricity from petroleum fuels with reciprocating engines. The plant incorporates a downdraft, moving bed gasifier utilizing hogged waste wood from the Marine Corps Base at Camp Lejeune, NC. A moving bed bulk wood dryer and both spark ignition and diesel engines are included. Unique process design features are briefly described relative to the gasifier, wood drying, tar separation, and process control. A test plan for process optimization and demonstration of reliability, economics, and environmental impact is outlined. (author)

  10. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  11. Distributed renewable power from biomass and other waste fuels

    Science.gov (United States)

    Lyons, Chris

    2012-03-01

    The world population is continually growing and putting a burden on our fossil fuels. These fossil fuels such as coal, oil and natural gas are used for a variety of critical needs such as power production and transportation. While significant environmental improvements have been made, the uses of these fuels are still causing significant ecological impacts. Coal power production efficiency has not improved over the past thirty years and with relatively cheap petroleum cost, transportation mileage has not improved significantly either. With the demand for these fossil fuels increasing, ultimately price will also have to increase. This presentation will evaluate alternative power production methods using localized distributed generation from biomass, municipal solid waste and other waste sources of organic materials. The presentation will review various gasification processes that produce a synthetic gas that can be utilized as a fuel source in combustion turbines for clean and efficient combined heat and power. This fuel source can produce base load renewable power. In addition tail gases from the production of bio-diesel and methanol fuels can be used to produce renewable power. Being localized can reduce the need for long and costly transmission lines making the production of fuels and power from waste a viable alternative energy source for the future.

  12. Biomass Co-Firing in Suspension-Fired Power Plants

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Hvid, Søren Lovmand; Baxter, Larry

    , in the future it is expected to become relevant to cofire in more advanced plants as the trend in the power plant structure is towards older plants having fewer operating hours or being decommissioned. A major product of this project is an experimentally validated computational fluid dynamics (CFD) based...... modelling tool adapted to accommodate biomass cofiring combustion features. The CFD tool will be able to predict deposit accumulation, particle conversion, fly ash composition, temperatures, velocities, and composition of furnace gases, etc. The computer model will primarily be used in the development...

  13. Biomass power production in Amazonia: Environmentally sound, economically productive

    Energy Technology Data Exchange (ETDEWEB)

    Waddle, D.B. [National Rural Electric Cooperative Association, Washington, DC (United States); Hollomon, J.B. [Winrock International Institute for Agricultural Development, Arlington, VA (United States)

    1993-12-31

    With the support of the US Agency for International Development, the National Rural Electric Cooperative Association (NRECA) is assisting their utility counterparts in Bolivia to improve electric service in the country`s rural population. In remote areas, the cost of extending transmission lines to small communities is prohibitive, and diesel generators represent an expensive alternative, especially for baseload power. This has led to serious consideration of electric generating systems using locally available renewable resources, including biomass, hydro, wind, and solar energy. A project has recently been initiated in Riberalta, in the Amazonian region of Bolivia, to convert waste Brazil nut shells and sawmill residues to electricity. Working in tandem with diesel generators, the biomass-fired plant will produce base-load power in an integrated system that will be able to provide reliable and affordable electricity to the city. The project will allow the local rural electric cooperative to lower the price of electricity by nearly forty percent, enable the local Brazil nut industry to increase its level of mechanization, and reduce the environmental impacts of dumping waste shells around the city and in an adjacent river. The project is representative of others that will be funded in the future by NRECA/AID.

  14. Drivers of biomass co-firing in U.S. coal-fired power plants

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog

    2013-01-01

    Substantial knowledge has been generated in the U.S. about the resource base for forest and other residue-derived biomass for bioenergy including co-firing in power plants. However, a lack of understanding regarding power plant-level operations and manager perceptions of drivers of biomass co-firing remains. This study gathered information from U.S. power plant...

  15. Biomass-powered Solid Oxide Fuel Cells : Experimental and Modeling Studies for System Integrations

    NARCIS (Netherlands)

    Liu, M.

    2013-01-01

    Biomass is a sustainable energy source which, through thermo-chemical processes of biomass gasification, is able to be converted from a solid biomass fuel into a gas mixture, known as syngas or biosyngas. A solid oxide fuel cell (SOFC) is a power generation device that directly converts the chemical

  16. Waste-based biomass to power plants with high portions

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Taipale, R. (VTT Technical Research Centre of Finland, Jyvaeskylae (Finland)); Hupa, M.; Yrjas, P. (Aabo Akademi, Turku (Finland)); Jokiniemi, J.; Sippula, O. (Univ. of Kuopio (Finland))

    2009-07-01

    Recycling of chemicals back to processes as effectively as possible is sustainable development. Landfilling and agricultural use of sewage sludge (SWS) produces methane which is a strong greenhouse gas. Our earlier project 'Corraway' funded by Tekes ClimBus programme and Finnish industry indicated that iron and aluminium sulphates can destroy effectively alkali chlorides at furnace conditions preventing Cl deposition to heat transfer surfaces. Cl in the deposits is the main reason to superheater corrosion with biomass- containing feedstocks. These sulphates have been used as process chemicals in wastewater treatment, and therefore they are present in SWS. SWS-originated combustion products will pass the whole furnace when SWS is mixed to the main fuel. The furnace includes oxidising and reducing zones. Therefore it is not clear if the SWS-originated sulphur remains in an effective form in the point view of alkali chlorides destruction. The project work included thorough fuel analysis, pilot-scale combustion tests with blends of risky biomass and SWS and research of sampling techniques to detect alkali compounds. The combustion experiments proved the power of SWS originated sulphur to destroy alkali chlorides in the furnace and suggest strongly to continue this research. The order of power of the two SWS tested was different than expected indicating need to produce more thorough results. SWS may contain much minerals which lowers its value as a fuel. It can be possible to increase sulphur content and to decrease ash content in the sludge during SWS processing and dry and pelletise the sludge to strengthen further its value as a protective and as a fuel. (orig.)

  17. The determination of mercury content in the biomass untended for industrial power plant

    Directory of Open Access Journals (Sweden)

    Wiktor Magdalena

    2017-01-01

    Full Text Available Biomass is one of the oldest and most widely used renewable energy sources. The biomass is the whole organic matter of vegetable or animal origin which is biodegradable. Biomass includes leftovers from agricultural production, forestry residues, and industrial and municipal waste. The use of biomass in the power industry has become a standard and takes place in Poland and other European countries. This paper discusses the correlation of mercury content in different biomass types used in the power industry and in products of biomass combustion. Different biomass types, which are currently burned in a commercial power plant in Poland, were discussed. A photographic documentation of different biomass types, such as straw briquettes, wood briquettes, pellets from energy crops (sunflower husk and wood husk, wood pellets, wood chips, and agro-biomass (seeds was carried out. The presented paper discusses the results obtained for 15 biomass samples. Five selected biomass samples were burned in controlled conditions in the laboratory at the University of Silesia. The ash resulting from the combustion of five biomass samples was tested for mercury content. A total of twenty biomass samples and its combustion products were tested. Based on the obtained results, it was found that any supply of biomass, regardless of its type, is characterized by variable mercury content in dry matter. In the case of e.g. wood chips, the spread of results reaches 235.1 μm/kg (in dry matter. Meanwhile, the highest mercury content, 472.4 μm/kg (in dry matter was recorded in the biomass of straw, wood pellets, and pellets from energy crops (sunflower husk. In the case of combustion products of five selected biomass types, a three or four fold increase in the mercury content has been observed.

  18. Biomass Power Generation Investment in China: A Real Options Evaluation

    Directory of Open Access Journals (Sweden)

    Mingming Zhang

    2016-06-01

    Full Text Available This paper proposes a real options model for evaluating the biomass power generation investment in China. The uncertainties in the market price of electricity, CO2 price and straw price are considered. Meanwhile the dynamic relationship between installed capacity and fuel cost, as well as the long-term reduction of subsidy are described. Two scenarios, i.e., with the carbon emission trading scheme existent and non-existent, respectively, is built to empirically analyze the investment of a 25-MW straw-based power generation project. The results show that investors should undertake the investment in 2030 under two scenarios. Investment values are 14,869,254.8 and 37,608,727 Chinese Yuan (RMB, respectively. The implementation of the carbon emission trading scheme theoretically helps improve investment value and advance the most likely optimal investment time. However, the current CO2 price is not sufficient to advance the most likely optimal investment time. The impacts of several factors, including subsidy policy, CO2 price, straw price, installed capacity, correlation structure and the validity period of investment, on the optimal investment strategy are also examined. It is suggested that governments take some measures, including increasing subsidy, setting the growth pattern of subsidy and establishing and perfecting a nationwide carbon trading market, to improve the investment environment and attract more investments.

  19. Biomass

    Science.gov (United States)

    Bernard R. Parresol

    2001-01-01

    Biomass, the contraction for biological mass, is the amount of living material provided by a given area or volume of the earth's surface, whether terrestrial or aquatic. Biomass is important for commercial uses (e.g., fuel and fiber) and for national development planning, as well as for scientific studies of ecosystem productivity, energy and nutrient flows, and...

  20. EPA RE-Powering America's Lands: Kansas City Municipal Farm Site ₋ Biomass Power Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hunsberger, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing biomass at the Kansas City, Missouri, Municipal Farm site, a group of City-owned properties, is explored. The study that none of the technologies we reviewed--biomass heat, power and CHP--are economically viable options for the Municipal Farms site. However, if the site were to be developed around a future central biomass heating or CHP facility, biomass could be a good option for the site.

  1. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants

    International Nuclear Information System (INIS)

    Drescher, Ulli; Brueggemann, Dieter

    2007-01-01

    In small solid biomass power and heat plants, the ORC is used for cogeneration. This application shows constraints different from other ORC. These constraints are described and an adapted power plant design is presented. The new design influences the selection criteria of working fluids. A software has been developed to find thermodynamic suitable fluids for ORC in biomass power and heat plants. Highest efficiencies are found within the family of alkylbenzenes

  2. Evaluation on the Efficiency of Biomass Power Generation Industry in China

    Directory of Open Access Journals (Sweden)

    Jingqi Sun

    2014-01-01

    Full Text Available As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China’s energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China.

  3. Optimization of biomass fuelled systems for distributed power generation using Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Lopez, P. Reche; Reyes, N. Ruiz; Gonzalez, M. Gomez; Jurado, F.

    2008-01-01

    With sufficient territory and abundant biomass resources Spain appears to have suitable conditions to develop biomass utilization technologies. As an important decentralized power technology, biomass gasification and power generation has a potential market in making use of biomass wastes. This paper addresses biomass fuelled generation of electricity in the specific aspect of finding the best location and the supply area of the electric generation plant for three alternative technologies (gas motor, gas turbine and fuel cell-microturbine hybrid power cycle), taking into account the variables involved in the problem, such as the local distribution of biomass resources, transportation costs, distance to existing electric lines, etc. For each technology, not only optimal location and supply area of the biomass plant, but also net present value and generated electric power are determined by an own binary variant of Particle Swarm Optimization (PSO). According to the values derived from the optimization algorithm, the most profitable technology can be chosen. Computer simulations show the good performance of the proposed binary PSO algorithm to optimize biomass fuelled systems for distributed power generation. (author)

  4. Torrefied biomass for use in power station sector; Torrefizierte Biomasse zum Einsatz im Kraftwerkssektor

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Janet; Schaubach, Kay [Deutsches Biomasseforschungszentrum (DBFZ) gemeinnuetzige GmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Kiel, Jaap; Carbo, Michiel [Energy Research Centre of the Netherlands (ECN), Petten (Netherlands); Wojcik, Magdalena [OFI Austrian Research Institute for Chemistry and Technology, Vienna (Austria)

    2013-10-01

    In the torrefaction process biomass is heated up in the absence of oxygen to a temperature of at least 250 C. By combining torrefaction with pelletisation or briquetting, biomass materials can be converted into a high-energy-density bioenergy carrier with improved behaviour in (long-distance) transport, handling and storage. Torrefaction also creates superior properties for biomass in many major end-use applications. The process has the potential to provide a significant contribution to an enlarged raw material portfolio for sustainable biomass fuel production inside Europe by including both agricultural and forestry biomass (residues). The article will briefly introduce the concept and objectives of the project and the different torrefaction technologies involved and then focus on the results obtained within the first project phase of the EU-project SECTOR. This comprises production of torrefied biomass batches, subsequent densification (pelletisation and briquetting), characterisation and Round Robin testing of characterisation methods, initial logistics and end-use performance testing, material safety data sheet preparation and sustainability assessment along the value chain. (orig.)

  5. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  6. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  7. Input of biomass in power plants for power generation. Calculation of the financial gap. Final report

    International Nuclear Information System (INIS)

    Van Tilburg, X.; De Vries, H.J.; Pfeiffer, A.E.; Cleijne, J.W.

    2005-09-01

    The Ministry of Economic Affairs has requested ECN and KEMA to answer two questions. (1) Are the costs and benefits of projects in which wood-pellets are co-fired in a coal fired power plant representative for those of bio-oil fueled co-firing projects in a gas fired plant?; and (2) Are new projects representative for existing projects? To answer these questions, ECN and KEMA have calculated the financial gaps in six different situations: co-firing bio-oil in a gas fired power plant; co-firing bio-oil in a coal fired power plant; gasification of solid biomass; co-firing wood pellets in a coal fired power plant; co-firing agricultural residues in a coal fired power plant; and co-firing waste wood (A- and B-grade) in a coal fired power plant. The ranges and reference cases show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that when using waste wood or agro-residues, the financial gaps are smaller. Based on these findings it is concluded that: (1) The reference case of co-firing wood pellets in a coal fired power plant are not representative for bio-fuel options. A new category for bio-oil options seems appropriate; and (2) The financial gap of new projects as calculated in November 2004, is often higher then the ranges for existing projects indicate [nl

  8. Biomass Supply Planning for Combined Heat and Power Plants using Stochastic Programming

    DEFF Research Database (Denmark)

    Guericke, Daniela; Blanco, Ignacio; Morales González, Juan Miguel

    method using stochastic optimization to support the biomass supply planning for combined heat and power plants. Our two-phase approach combines mid-term decisions about biomass supply contracts with the short-term decisions regarding the optimal market participation of the producer to ensure......During the last years, the consumption of biomass to produce power and heat has increased due to the new carbon neutral policies. Nowadays, many district heating systems operate their combined heat and power (CHP) plants using different types of biomass instead of fossil fuel, especially to produce......, and heat demand and electricity prices vary drastically during the planning period. Furthermore, the optimal operation of combined heat and power plants has to consider the existing synergies between the power and heating systems while always fulfilling the heat demand of the system. We propose a solution...

  9. Biomass power industry: Assessment of key players and approaches for DOE and industry interaction

    International Nuclear Information System (INIS)

    1993-01-01

    This report reviews the status of the US biomass power industry. The topics of the report include current fuels and the problems associated with procuring, transporting, preparing and burning them, competition from natural gas projects because of the current depressed natural gas prices, need for incentives for biomass fueled projects, economics, market potential and expansion of US firms overseas

  10. Sewage sludge conditioning with the application of ash from biomass-fired power plant

    Science.gov (United States)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2018-02-01

    During biomass combustion, there are formed combustion products. Available data indicates that only 29.1 % of biomass ashes were recycled in Poland in 2013. Chemical composition and sorptive properties of ashes enable their application in the sewage sludge treatment. This paper analyses the impact of ashes from biomass-combustion power plant on sewage sludge dewatering and higienisation. The results obtained in laboratory tests proved the possitive impact of biomass ashes on sewage sludge hydration reduction after dewatering and the increase of filtrate volume. After sludge conditioning with the use of biomass combustion by-products, the final moisture content decreased by approximatelly 10÷25 % in comparison with raw sewage sludge depending on the method of dewatering. The application of biomass combustion products in sewage sludge management could provide an alternative method of their utilization according to law and environmental requirements.

  11. Input of biomass in power plants or the power generation. Calculation of the financial gap

    International Nuclear Information System (INIS)

    De Vries, H.J.; Van Tilburg, X.; Pfeiffer, A.E.; Cleijne, H.

    2005-09-01

    The project on the title subject concerns two questions: (1) Are projects in which wood-pellets are co-fired in a coalfired power plant representative for bio-oil fueled co-firing projects in a gas-fired plant?; and (2) are new projects representative for existing projects? To answer those questions the financial gaps have been calculated for five different situations: Co-firing bio-oil in a gas-fired power plant; Co-firing bio-oil in a coal-fired power plant; Co-firing wood pellets in a coal-fired power plant; Co-firing agro-residues in a coal-fired power plant; and Co-firing waste-wood (A- and B-grade) in a coal-fired power plant. The ranges and reference cases in this report show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that by using waste wood or agro-residues, the financial gaps can decrease [nl

  12. Advanced circulating fluidised bed technology (CFB) for large-scale solid biomass fuel firing power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jaentti, Timo; Zabetta, Edgardo Coda; Nuortimo, Kalle [Foster Wheeler Energia Oy, Varkaus (Finland)

    2013-04-01

    Worldwide the nations are taking initiatives to counteract global warming by reducing their greenhouse gas emissions. Efforts to increase boiler efficiency and the use of biomass and other solid renewable fuels are well in line with these objectives. Circulating fluidised bed boilers (CFB) are ideal for efficient power generation, capable to fire a broad variety of solid biomass fuels from small CHP plants to large utility power plants. Relevant boiler references in commercial operation are made for Finland and Poland.

  13. Permitting a biomass-fired power plant in California -- A case study

    International Nuclear Information System (INIS)

    Reisman, J.I.; Needham, G.A.

    1995-01-01

    This paper describes the process of preparing an air permit application for a proposed biomass-fired power plant. The plant is designed to produce a net electric power output of 16 megawatts (MW) for sale to Pacific Gas and Electric Company. The biomass fuel will consist of urban wood waste, construction wood waste, and waste from agricultural products, such as tree prunings and fruit pits. The site is located in an industrial park in Soledad, California

  14. Present situation, problems and solutions of China's biomass power generation industry

    International Nuclear Information System (INIS)

    Liu, Jicheng; Wang, Sijia; Wei, Qiushuang; Yan, Suli

    2014-01-01

    With the reduction of global oil reserves, developing renewable energy has become an important issue for each country. Biomass power is an important kind of clean energy, as it has abundant resource and is environmental friendly. In the past few years, China biomass power industry has developed rapidly accompanied with some problems. This paper analyzes the current situation of China biomass power generation from several aspects such as power structure, resource distribution, investment strength, and policy environment, etc. We focus on the problems existed in practical operation and analyze the outstanding problems. At last, this paper offers several suggestions for future development on the relevant fields, such as cost, strategic planning and policy. - Highlights: • Review and analyze the internal and external environment of biomass power in China. • Summarize and classify policies of China biomass power according to time sequence. • Describe the distribution of biomass resources in China accurately on the map. • Use data to draw a picture for grasping current situation. • Provide valuable suggestions for practitioners to improve their business strategies

  15. An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak

    Directory of Open Access Journals (Sweden)

    Nasrin Aghamohammadi

    2016-04-01

    Full Text Available Sarawak is the largest state in Malaysia, with 22% of the nation's oil palm plantation area, making it the second largest contributor to palm biomass production. Despite the enormous amount of palm biomass in the state, the use of biomass as fuel for power generation remains low. This study is designed to investigate the sustainability of power generation from palm biomass specifically in Sarawak by conducting a survey among the palm oil mill developers. To conduct this investigation, several key sustainability factors were identified: the security of the biomass supply, the efficiency of conversion technology, the existing network system, challenges and future prospects for power generation from palm biomass. These factors were assessed through a set of questionnaires. The returned questionnaires were then analysed using statistical tools. The results of this study demonstrate that Sarawak has biomass in abundance, and that it is ready to be exploited for large scale power generation. The key challenge to achieving the renewable energy target is the inadequate grid infrastructure that inhibits palm oil developers from benefiting from the Feed-in-Tariff payment scheme. One way forward, a strategic partnership between government and industrial players, offers a promising outcome, depending on an economic feasibility study. The decentralization of electricity generation to support rural electrification is another feasible alternative for renewable energy development in the state.

  16. Power production from biomass III. Gasification and pyrolysis R and D and D for industry

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Korhonen, M. [eds.] [VTT Energy, Espoo (Finland). New Energy Technologies

    1999-07-01

    The Seminar on Power Production from Biomass III. Gasification and Pyrolysis R and D and D for Industry, was held on 14-15 September 1998 in Espoo. The seminar was organised by VTT Energy in co-operation with the University of Groningen, EU-Thermie Programme and Technology Development Centre, Finland (Tekes). Overviews of current activities on power production from biomass and wastes in Europe and in the United States were given, and all European and U. S. demonstration projects on biomass gasification were presented. In Europe, the target is to produce additional 90 Mtoe/a of bioenergy for the market by 2010. This is a huge challenge for the bioenergy sector, including biomass production and harvesting, conversion technology, energy companies, and end users. In USA, U.S. Department of Energy is promoting the Biomass Power Programme to encourage and assist industry in the development and validation of renewable, biomass-based electricity generation systems, the objective being to double the present use of 7 000 MW biomass power by the year 2010. The new Finnish PROGAS Programme initiated by VTT was also introduced. Several gasification projects are today on the demonstration stage prior to entering the commercial level. Pyrolysis technologies are not yet on the demonstration stage on the energy market. Bio-oils can easily be transported, stored and utilised in existing boiler and diesel plants. The proceedings include the presentations given by the keynote speakers and other invited speakers, as well as some extended poster presentations. (orig.)

  17. Thermodynamic evaluation of a novel solar-biomass hybrid power generation system

    International Nuclear Information System (INIS)

    Bai, Zhang; Liu, Qibin; Lei, Jing; Wang, Xiaohe; Sun, Jie; Jin, Hongguang

    2017-01-01

    Highlights: • A solar-biomass hybrid power system with zero carbon dioxide emission is proposed. • The internal mechanisms of the solar-biomass utilization are discussed. • The on-design and off-design properties of the system are numerically investigated. • The configurations of the proposed system are optimized. - Abstract: A solar-biomass hybrid power generation system, which integrates a solar thermal energy collection subsystem, a biomass steam boiler and a steam turbine power generation block, is developed for efficiently utilizing renewable energies. The solar thermal energy is concentrated by parabolic trough collectors and is used to heat the feed-water to the superheated steam of 371 °C, then the generated solar steam is further heated to a higher temperature level of 540 °C via a second-stage heating process in a biomass boiler, the system power generation capacity is about 50 MW. The hybrid process of the solar energy and biomass contributes to ameliorating the system thermodynamic performances and reducing of the exergy loss within the steam generation process. The off-design evaluation results indicate that the annual net solar-to-electric efficiency of the hybrid power system is improved to 18.13%, which is higher than that of the typical parabolic trough solar power system as 15.79%. The levelized cost of energy drops to 0.077 $/(kW h) from 0.192 $/(kW h). The annual biomass consumption rate is reduced by 22.53% in comparison with typical biomass power systems. The research findings provide a promising approach for the efficient utilization of the abundant renewable energies resources and the reduction of carbon dioxide emission.

  18. Hybridization of concentrated solar power with biomass gasification in Brazil’s semiarid region

    International Nuclear Information System (INIS)

    Milani, Rodrigo; Szklo, Alexandre; Hoffmann, Bettina Susanne

    2017-01-01

    Highlights: • Assessment of three hybridization concepts between CSP and biomass gasification. • Modelling of a benchmark power plant for each of the hybridization concepts. • The method relies on using Aspentech Hysys and SAM for thermodynamic analysis. • Technical and economic performance of the three benchmark power plants as result. - Abstract: This study aims to propose and analyze different options for hybridizing Concentrated Solar Power (CSP) with biomass, through gasification for power generation. A hybrid CSP-biomass power plant through gasification is an innovative concept which allows the integration of combined cycle for power generation, sun-biomass hybridization and syngas storage. Therefore, this study addressed the proposition of the hybridization concept and the simulation of benchmark power plants for a suitable Brazilian site (high direct normal irradiation and low-cost biomass availability). Three power plant concepts are proposed and simulated in Aspentech Hysys and System Advisor Model (SAM): (i) Series design; (ii) Parallel design, and (iii) Steam Extraction design. For the same gasifier, the Series design holds the highest levelized cost, while the Parallel design presents the highest installed capacity, but the lowest capacity factor. Finally, the Steam Extraction design is placed between the other two proposed plants regarding the capacity factor and the annual energy generation.

  19. High efficiency power production from biomass and waste

    Energy Technology Data Exchange (ETDEWEB)

    Rabou, L.P.L.M.; Van Leijenhorst, R.J.C.; Hazewinkel, J.H.O. [ECN Biomass, Coal and Environment, Petten (Netherlands)

    2008-11-15

    Two-stage gasification allows power production from biomass and waste with high efficiency. The process involves pyrolysis at about 550C followed by heating of the pyrolysis gas to about 1300C in order to crack hydrocarbons and obtain syngas, a mixture of H2, CO, H2O and CO2. The second stage produces soot as unwanted by-product. Experimental results are reported on the suppression of soot formation in the second stage for two different fuels: beech wood pellets and Rofire pellets, made from rejects of paper recycling. Syngas obtained from these two fuels and from an industrial waste fuel has been cleaned and fed to a commercial SOFC stack for 250 hours in total. The SOFC stack showed comparable performance on real and synthetic syngas and no signs of accelerated degradation in performance over these tests. The experimental results have been used for the design and analysis of a future 25 MWth demonstration plant. As an alternative, a 2.6 MWth system was considered which uses the Green MoDem approach to convert waste fuel into bio-oil and syngas. The 25 MWth system can reach high efficiency only if char produced in the pyrolysis step is converted into additional syngas by steam gasification, and if SOFC off-gas and system waste heat are used in a steam bottoming cycle for additional power production. A net electrical efficiency of 38% is predicted. In addition, heat can be delivered with 37% efficiency. The 2.6 MWth system with only a dual fuel engine to burn bio-oil and syngas promises nearly 40% electrical efficiency plus 41% efficiency for heat production. If syngas is fed to an SOFC system and off-gas and bio-oil to a dual fuel engine, the electrical efficiency can rise to 45%. However, the efficiency for heat production drops to 15%, as waste heat from the SOFC system cannot be used effectively. The economic analysis makes clear that at -20 euro/tonne fuel, 70 euro/MWh for electricity and 7 euro/GJ for heat the 25 MWth system is not economically viable at the

  20. Gasification technologies for heat and power from biomass

    NARCIS (Netherlands)

    Beenackers, AACM; Maniatis, K; Kaltschmitt, M; Bridgwater, AV

    1997-01-01

    A critical review is presented of biomass gasifier systems presently commercially available or under development. Advantages and possible problem areas are discussed in relation to particular applications. Both large and small scale technologies are reviewed. Catalysed by the EC JOULE and AIR

  1. Intelligent Control Framework for the Feeding System in the Biomass Power Plant

    Directory of Open Access Journals (Sweden)

    Sun Jin

    2015-01-01

    Full Text Available This paper proposes an intelligent control framework for biomass drying process with flue gases based on FLC (fuzzy logic controller and CAN (Controller Area Network bus. In the operation of a biomass drying process, in order to get the biomass with the set-point low moisture content dried by waste high temperature flue gases, it is necessary to intelligent control for the biomass flow rate. Use of an experiment with varied materials at different initial moisture contents enables acquisition of the biomass flow rates as initial setting values. Set the error between actual straw moisture content and set-point, and rate of change of error as two inputs. the biomass flow rate can be acquired by the fuzzy logic computing as the output. Since the length of dryer is more than twenty meters, the integration by the CAN bus can ensure real-time reliable data acquisition and processing. The control framework for biomass drying process can be applied to a variety of biomass, such as, cotton stalk, corn stalk, rice straw, wheat straw, sugar cane. It has strong potential for practical applications because of its advantages on intelligent providing the set-point low moisture content of biomass feedstock for power generation equipment.

  2. BIOMASS UTILIZATION AS A RENEVABLE ENERGY SOURCE IN POLISH POWER INDUSTRY – CURRENT STATUS AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Beata Gołuchowska

    2015-06-01

    Full Text Available The depletion of the conventional energy sources, as well as the degradation and pollution of the environment by the exploitation of fossil fuels caused the development of renewable energy sources (RES, including biomass. In Poland, biomass is the most popular renewable energy source, which is closely related to the obligations associated with the membership in the EU. Biomass is the oldest renewable energy source, and its potential, diversity and polymorphism place it over other sources. Besides, the improvement in its parameters, including an increase in its calorific value, resulted in increasing use of biomass as energy source. In the electric power industry biomass is applied in the process of co-combustion with coal. This process may contribute, inter alia, to the reduction in the emissions of carbon, nitrogen and sulfur oxides. The article presents the characteristics of the biomass burned in power boilers of one of the largest Polish power plants, located in Opole Province (Southern Poland. Besides, the impact of biomass on the installation of co-combustion, as well as the advantages and disadvantages of the co-combustion process not only in technological, but also environmental, economic and social aspects were described.

  3. Successful experience with limestone and other sorbents for combustion of biomass in fluid bed power boilers

    Energy Technology Data Exchange (ETDEWEB)

    Coe, D.R. [LG& E Power Systems, Inc., Irvine, CA (United States)

    1993-12-31

    This paper presents the theoretical and practical advantages of utilizing limestone and other sorbents during the combustion of various biomass fuels for the reduction of corrosion and erosion of boiler fireside tubing and refractory. Successful experiences using a small amount of limestone, dolomite, kaolin, or custom blends of aluminum and magnesium compounds in fluid bed boilers fired with biomass fuels will be discussed. Electric power boiler firing experience includes bubbling bed boilers as well as circulating fluid bed boilers in commercial service on biomass fuels. Forest sources of biomass fuels fired include wood chips, brush chips, sawmill waste wood, bark, and hog fuel. Agricultural sources of biomass fuels fired include grape vine prunings, bean straw, almond tree chips, walnut tree chips, and a variety of other agricultural waste fuels. Additionally, some urban sources of wood fuels have been commercially burned with the addition of limestone. Data presented includes qualitative and quantitative analyses of fuel, sorbent, and ash.

  4. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    Wiltsee, G.A. Jr.; Easterly, J.; Vence, T.

    1993-12-01

    In this report, the Electric Power Research Institute (EPRI) intends to help utility companies evaluate biomass and wastes for power generation. These fuels may be alternatives or supplements to fossil fuels in three applications: (1) utility boiler coining; (2) dedicated combustion/energy recovery plants; and 3) dedicated gasification/combined cycle plants. The report summarizes data on biomass and waste properties, and evaluates the cost and performance of fuel preparation and power generation technologies. The primary biomass and waste resources evaluated are: (1) wood wastes (from forests, mills, construction/demolition, and orchards) and short rotation woody crops; (2) agricultural wastes (from fields, animals, and processing) and herbaceous energy crops; and (3) consumer or industrial wastes (e.g., municipal solid waste, scrap tires, sewage sludge, auto shredder waste). The major fuel types studied in detail are wood, municipal solid waste, and scrap tires. The key products of the project include the BIOPOWER model of biomass/waste-fired power plant performance and cost. Key conclusions of the evaluation are: (1) significant biomass and waste fuel resources are available; (2) biomass power technology cannot currently compete with natural gas-fired combined cycle technology; (3) coining biomass and waste fuels with coal in utility and industrial boilers is the most efficient, lowest cost, and lowest risk method of energy recovery from residual materials; (4) better biomass and waste fuel production and conversion technology must be developed, with the help of coordinated government energy and environmental policies and incentives; and (5) community partnerships can enhance the chances for success of a project

  5. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    Science.gov (United States)

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Biomass power for rural development. Quarterly report, October 3, 1998--January 1, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.T.

    1999-02-01

    Information and education activities for this quarter include both the monthly progress activities with some copies of materials developed and a copy of the annual report prepared for the Leopold Center for Sustainable Agriculture. The Leopold Center is a project partner and the primary sponsor of the information and education activities. The Leopold annual report references many prepared documents and assorted presentation materials. The Energy and Geological Resources Division of the Iowa Department of Natural Resources sponsors a meeting four times a year in order to bring members of the Iowa biomass energy community together to share information. In this quarter the Stakeholders meeting was held on October 21, 1998, in Des Moines Iowa. The first phase of the Geographic Information System (GIS) efforts have been completed and a final report with a map presentation of materials will be included in the next Quarterly Report. A meeting with Ed Gray of The Antares Group and project staff/cooperators was held October 23, 1998. The authors discussed the Niagara Project and the efforts to value the biomass material and partner contributions. Niagara has identified a value to the grid support capabilities of the dispersed generation.

  7. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Eileen Tortora

    2013-03-01

    Full Text Available The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting transient simulations with an hourly distribution. The study of the load matching of the proposed renewable power technology and the final user has been carried out by comparing two different load tracking scenarios, i.e., the thermal and the electric demands. As a result, the power output follows fairly well the given load curves, supplying, on a selected winter day, about 50 GJ/d of thermal energy and the 6 GJ/d of electric energy, with reduced energy dumps when matching the load.

  8. Tactical supply chain planning for a forest biomass power plant under supply uncertainty

    International Nuclear Information System (INIS)

    Shabani, Nazanin; Sowlati, Taraneh; Ouhimmou, Mustapha; Rönnqvist, Mikael

    2014-01-01

    Uncertainty in biomass supply is a critical issue that needs to be considered in the production planning of bioenergy plants. Incorporating uncertainty in supply chain planning models provides improved and stable solutions. In this paper, we first reformulate a previously developed non-linear programming model for optimization of a forest biomass power plant supply chain into a linear programming model. The developed model is a multi-period tactical-level production planning problem and considers the supply and storage of forest biomass as well as the production of electricity. It has a one-year planning horizon with monthly time steps. Next, in order to incorporate uncertainty in monthly available biomass into the planning, we develop a two-stage stochastic programming model. Finally, to balance the risk and profit, we propose a bi-objective model. The results show that uncertainty in availability of biomass has an additional cost of $0.4 million for the power plant. Using the proposed stochastic optimization model could reduce this cost by half. - Highlights: • Developed a two-stage stochastic optimization model to consider supply uncertainty. • Maximized the profit of a forest biomass power plant value chain. • Minimized two risk measures, variability index and downside risk, to manage risks. • Stochastic optimization model provided feasible solution for all scenarios. • Results showed a trade-off between profit and risk management

  9. Economic feasibility of biomass gasification for power generation in three selected communities of northwestern Ontario, Canada

    International Nuclear Information System (INIS)

    Upadhyay, Thakur Prasad; Shahi, Chander; Leitch, Mathew; Pulkki, Reino

    2012-01-01

    Biomass gasification is expected to be an attractive option among other competitive applications of biomass conversion for bio-energy. This study analyzes economic feasibility of biomass gasification power generating plants in three selected communities (Ignace, Nipigon and Kenora) of northwestern Ontario. The major variables considered in the model are harvesting and handling costs, logistic costs for biomass feedstock delivery and storage, capital costs of power plant by scales, operation and maintenance costs, labor costs, capital financing costs and other regulatory costs. GIS analysis was undertaken to estimate the distance class matrix to apportion the biomass feedstock supply side from different forest management units. Total cost per MW h power production at a 50 MW scale ranges from CAD 61.89 to CAD 63.79. Total cost per unit of electricity production decreases significantly as plant capacity increases due to economy of scale in the production system. Further, the locations of plants explained the cost variability. - Highlights: ► We model feasibility of gasification power plants in three rural communities. ► The variables considered in the model are logistics, operational and capital costs. ► Mean distance from each community to different forest units are estimated with GIS. ► Total cost per MWh at a 50 MW scale ranges from CAD 61.89 to CAD 63.79. ► Total cost decreases with increase in plant capacity.

  10. Biomass power for rural development. Quarterly report, July 3--December 4, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.T.

    1998-03-01

    This paper describes progress in several projects related to biomass power. These include switchgrass conversion development; switchgrass gasification development; production activities including soil studies, carbon studies, switchgrass production economics, watershed impacts, and prairie lands bio-products; information and education; and geographical information system. Attachments describe switchgrass co-firing test; switchgrass production in Iowa; cooperative agreements with ISU; Rathbun Lake watershed project; newspaper articles and information publications; Secretary of Agriculture Glickman`s visit; integration of technical aspects of switchgrass production in Iowa; and evaluation of an integrated biomass gasification/fuel cell power plant.

  11. Summary of Information Presented at an NRC-Sponsored Low-Power Shutdown Public Workshop, April 27, 1999, Rockville, Maryland

    International Nuclear Information System (INIS)

    Wheeler, Timothy A.; Whitehead, Donnie W.; Lois, Erasmia

    1999-01-01

    This report summarizes a public workshop that was held on April 27, 1999, in Rockville, Maryland. The workshop was conducted as part of the US Nuclear Regulatory Commission's (NRC) efforts to further develop its understanding of the risks associated with low power and shutdown operations at US nuclear power plants. A sufficient understanding of such risks is required to support decision-making for risk-informed regulation, in particular Regulatory Guide 1.174, and the development of a consensus standard. During the workshop the NRC staff discussed and requested feedback from the public (including representatives of the nuclear industry, state governments, consultants, private industry, and the media) on the risk associated with low-power and shutdown operations

  12. Summary of Information Presented at an NRC-Sponsored Low-Power Shutdown Public Workshop, April 27, 1999, Rockville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Timothy A.; Whitehead, Donnie W.; Lois, Erasmia

    1999-07-01

    This report summarizes a public workshop that was held on April 27, 1999, in Rockville, Maryland. The workshop was conducted as part of the US Nuclear Regulatory Commission's (NRC) efforts to further develop its understanding of the risks associated with low power and shutdown operations at US nuclear power plants. A sufficient understanding of such risks is required to support decision-making for risk-informed regulation, in particular Regulatory Guide 1.174, and the development of a consensus standard. During the workshop the NRC staff discussed and requested feedback from the public (including representatives of the nuclear industry, state governments, consultants, private industry, and the media) on the risk associated with low-power and shutdown operations.

  13. Higher efficiency, lower bonuses. Financial incentives for power from biomass according to EEG 2012; Mehr Effizienz, weniger Boni. Die Foerderung von Strom aus Biomasse nach dem EEG 2012

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Dominik [Ecologic Institute, Berlin (Germany)

    2012-07-01

    The German parliament passed a total of eight new laws for the intended energy turnaround. Apart from changes in atomic law, the focus was on a complete amendment of the Renewables Act (EEG). The contribution outlines the new regulations for power generation from biomass from 2012. It indicates the changes from former regulations and describes the structural changes required for sustainable power supply from biomass, among others.

  14. Advanced power generation using biomass wastes from palm oil mills

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Kurniawan, Tedi; Oda, Takuya; Kashiwagi, Takao

    2017-01-01

    This study focuses on the energy-efficient utilization of both solid and liquid wastes from palm oil mills, particularly their use for power generation. It includes the integration of a power generation system using empty fruit bunch (EFB) and palm oil mill effluent (POME). The proposed system mainly consists of three modules: EFB gasification, POME digestion, and additional organic Rankine cycle (ORC). EFBs are dried and converted into a syngas fuel with high calorific value through integrated drying and gasification processes. In addition, POME is converted into a biogas fuel for power generation. Biogas engine-based cogenerators are used for generating both electricity and heat. The remaining unused heat is recovered by ORC module to generate electricity. The influences of three EFB gasification temperatures (800, 900 and 1000 °C) in EFB gasification module; and working fluids and pressure in ORC module are evaluated. Higher EFB gasification leads to higher generated electricity and remaining heat for ORC module. Power generation efficiency increases from 11.2 to 24.6% in case of gasification temperature is increased from 800 to 1000 °C. In addition, cyclohexane shows highest energy efficiency compared to toluene and n-heptane in ORC module. Higher pressure in ORC module also leads to higher energy efficiency. Finally, the highest total generated power and power generation efficiency obtained by the system are 8.3 MW and 30.4%, respectively.

  15. Energy values and estimation of power generation potentials of some non-woody biomass species

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M; Patel, S K [National Institute of Technology, Rourkela (India)

    2008-07-01

    In view of high energy potentials in non-woody biomass species and an increasing interest in their utilization for power generation, an attempt has been made in this study to assess the proximate analysis and energy content of different components of Ocimum canum and Tridax procumbens biomass species (both non-woody), and their impact on power generation and land requirement for energy plantations. The net energy content in Ocimum canum was found to be slightly higher than that in Tridax procumbens. In spite of having higher ash contents, the barks from both the plant species exhibited higher calorific values. The results have shown that approximately 650 and 1,270 hectares of land are required to generate 20,000 kWh/day electricity from Ocimum canum and Tridax procumbens biomass species. Coal samples, obtained from six different local mines, were also examined for their qualities, and the results were compared with those of studied biomass materials. This comparison reveals much higher power output with negligible emission of suspended particulate matters (SPM) from biomass materials.

  16. Biomass Power Generation through Direct Integration of Updraft Gasifier and Stirling Engine Combustion System

    Directory of Open Access Journals (Sweden)

    Jai-Houng Leu

    2010-01-01

    Full Text Available Biomass is the largest renewable energy source in the world. Its importance grows gradually in the future energy market. Since most biomass sources are low in energy density and are widespread in space, small-scale biomass conversion system is therefore more competitive than a large stand-alone conversion plant. The current study proposes a small-scale solid biomass power system to explore the viability of direct coupling of an updraft fixed bed gasifier with a Stirling engine. The modified updraft fixed bed gasifier employs an embedded combustor inside the gasifier to fully combust the synthetic gas generated by the gasifier. The flue gas produced by the synthetic gas combustion inside the combustion tube is piped directly to the heater head of the Stirling engine. The engine will then extract and convert the heat contained in the flue gas into electricity automatically. Output depends on heat input. And, the heat input is proportional to the flow rate and temperature of the flue gas. The preliminary study of the proposed direct coupling of an updraft gasifier with a 25 kW Stirling engine demonstrates that full power output could be produced by the current system. It could be found from the current investigation that no auxiliary fuel is required to operate the current system smoothly. The proposed technology and units could be considered as a viable solid biomass power system.

  17. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation

    Science.gov (United States)

    Rohr, Annette C.; Campleman, Sharan L.; Long, Christopher M.; Peterson, Michael K.; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-01-01

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios—pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended. PMID:26206568

  18. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation

    Directory of Open Access Journals (Sweden)

    Annette C. Rohr

    2015-07-01

    Full Text Available Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios—pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended.

  19. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    McGowin, C.R.; Wiltsee, G.A.

    1996-01-01

    Although the environmental and other benefits of using biomass and waste fuel energy to displace fossil fuels are well known, the economic realities are such that these fuels cannot compete effectively in the current market without tax credits, subsidies and other artificial measures. In 1992, EPRI initiated a strategic analysis of biomass and waste fuels and power technologies, both to develop consistent performance and cost data for the leading fuels and technologies and to identify the conditions which favor and create market pull for biomass and waste fuel energy. Using the final results of the EPRI project, this paper compares the relative performance and cost of power generation from coal, natural gas, and biomass and waste fuels. The range of fuels includes wood, agricultural wastes, municipal solid waste, refuse-derived fuel, scrap tires and tire-derived fuel. The power technologies include pulverized coal and natural gas/combined cycle power plants, cofiring with coal in coal-fired utility boilers, direct combustion in dedicated mass burn, stoker and fluidized bed boilers, and wood gasification/combined cycle-power plants. The analysis suggests that, in the near term, the highest-efficiency, lowest-cost, lowest-risk technology is cofiring with coal in industrial and utility boilers. However, this approach is economically feasible only when the fuel is delivered at a deep discount relative to fossil fuel, or the fuel user receives a tipping fee, subsidy, or emissions credit. (author)

  20. GIS-based biomass resource utilization for rice straw cofiring in the Taiwanese power market

    International Nuclear Information System (INIS)

    Hu, Ming-Che; Huang, An-Lei; Wen, Tzai-Hung

    2013-01-01

    Rice straw, a rich agricultural byproduct in Taiwan, can be used as biomass feedstock for cofiring systems. In this study, we analyzed the penetration of rice straw cofiring systems in the Taiwanese power market. In the power generation system, rice straw is cofired with fossil fuel in existing electricity plants. The benefits of cofiring systems include increasing the use of renewable energy, decreasing the fuel cost, and lowering greenhouse gas emissions. We established a linear complementarity model to simulate the power market equilibrium with cofiring systems in Taiwan. GIS-based analysis was then used to analyze the geospatial relationships between paddy rice farms and power plants to assess potential biomass for straw-power generation. Additionally, a sensitivity analysis of the biomass feedstock supply system was conducted for various cofiring scenarios. The spatial maps and equilibrium results of rice straw cofiring in Taiwanese power market are presented in the paper. - Highlights: ► The penetration of straw cofiring systems in the power market is analyzed. ► GIS-based analysis assesses potential straw-power generation. ► The spatial maps and equilibrium results of rice straw cofiring are presented

  1. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    McGowin, C.R.; Wiltsee, G.A.

    1993-01-01

    Although the environmental and other benefits of using biomass and waste fuel energy to displace fossil fuels are well known, the economic realities are such that these fuels can not compete effectively in the current market without tax credits, subsidies, and other artificial measures. In 1992, EPRI initiated a strategic analysis of biomass and waste fuels and power technologies, both to develop consistent performance and cost data for the leading fuels and technologies and to identify the conditions that favor and create market pull for biomass and waste fuel energy. Using the interim results of the EPRI project, this paper compares the relative performance and cost of power generation from coal, natural gas, and biomass and waste fuels. The range of fuels includes wood, agricultural wastes, municipal solid waste, refuse-derived fuel, scrap tires, and tire-derived fuel, scrap tires, and tire-derived fuel. The power technologies include pulverized coal and natural gas/combined cycle power plants, cofiring with coal in coal-fired utility boilers, and wood gasification/combined cycle power plants. The analysis suggests that, in the near term, the highest-efficiency, lowest-cost, lowest-risk technology is cofiring with coal in industrial and utility boilers. However, this relative to fossil fuel, or the fuel user receives a tipping fee, subsidy, or emissions credit. In order to increase future use of biomass and waste fuels, a joint initiative, involving government, industry, and fuel suppliers, transporters, and users, is needed to develop low-cost and efficient energy crop production and power technology

  2. Danish Experiences with Deposit Probe Measurements in Grate and Pulverized Fuel Biomass Power Boilers

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2012-01-01

    Several measuring campaigns with focus on deposition behavior have been conducted at full-scale power plants firing biomass in Denmark. These campaigns have been reviewed in this work. The focus is the obtained experiences on deposit formation, shedding and chemistry. When comparing results from...

  3. Sustainable model for financial viability of decentralized biomass gasifier based power projects

    NARCIS (Netherlands)

    Palit, D.; Malhotra, R.; Kumar, Atul

    2011-01-01

    This paper made a modest attempt for designing a sustainable model for financial viability of biomass gasifier power projects for enhancing electricity access in India and other developing countries. For long term sustainability of distributed generation projects in remote rural areas, viability

  4. A financial evaluation of biomass-gasifier-based power generation in India

    International Nuclear Information System (INIS)

    Tripathi, A.K.; Iyer, P.V.R.; Kandpal, T.C.

    1997-01-01

    A preliminary financial evaluation of biomass-gasifier-based power generation in India was undertaken. Simple cost functions were developed and used for this purpose. The unit cost of electricity has been estimated for a variety of scenarios taking into account some of the uncertainties associated with this emerging technology in India. (author)

  5. An update technology for integrated biomass gasification combined cycle power plant

    International Nuclear Information System (INIS)

    Bhattacharya, P.; Dey, S.

    2014-01-01

    A discussion is presented on the technical analysis of a 6.4 M W_e integrated biomass gasification combined cycle (IBGCC) plant. It features three numbers of downdraft biomass gasifier systems with suitable gas clean-up trains, three numbers of internal combustion (IC) producer gas engines for producing 5.85 MW electrical power in open cycle and 550 kW power in a bottoming cycle using waste heat. Comparing with IC gas engine single cycle systems, this technology route increases overall system efficiency of the power plant, which in turn improves plant economics. Estimated generation cost of electricity indicates that mega-watt scale IBGCC power plants can contribute to good economies of scale in India. This paper also highlight's the possibility of activated carbon generation from the char, a byproduct of gasification process, and use of engine's jacket water heat to generate chilled water through VAM for gas conditioning. (author)

  6. Combined heat and power production through biomass gasification with 'Heatpipe-Reformer'

    International Nuclear Information System (INIS)

    Iliev, I.; Kamburova, V.; Terziev, A.

    2013-01-01

    The current report aims is to analyze the system for combined heat and power production through biomass gasification with “heatpipe-reformer” system. Special attention is paid on the process of synthetic gas production in the Reformer, its cleaning and further burning in the co-generation unit. A financial analysis is made regarding the investments and profits generated by the combined heat and power production. (authors)

  7. Combined Heat and Power Systems for the Provision of Sustainable Energy from Biomass in Buildings

    OpenAIRE

    Ortwein Andreas

    2016-01-01

    Against the background of greenhouse gases causing climate change, combined heat and power (CHP) systems fueled by biomass can efficiently supply energy with high flexibility. Such CHP systems will usually consist of one or more thermo-chemical conversion steps and at least one (the more or less separated) electric power generation unit. Depending on the main products of the previous conversion steps (e.g. combustible gases or liquids, but also flue gases with sensible heat), different techno...

  8. Gas generation from biomass for decentralized power supply systems; Gaserzeugung fuer dezentrale Energiesysteme auf der Basis von Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, H.; Papamichalis, A.; Heek, K.H. van [DMT-Inst. fuer Kokserzeugung und Brennstofftechnik, Essen (Germany)

    1996-12-31

    By a reaction with steam, bioresidues and plants can be converted into a gas consisting mainly of hydrogen, carbon monoxide and methane which can be used for electric power generation in gas engines, gas turbins and fuel cells. The conversion processes, especially the fuel cell process, are environment-friendly and efficient. For decentralized applications (i.e. for biomass volumes of 0.5 to 1 t/h), an allothermal process is recommended which is described in detail. (orig) [Deutsch] Durch Reaktion mit Wasserdampf lassen sich Bioreststoffe und Energiepflanzen zu einem Gas umsetzen, das im wesentlichen aus Wasserstoff, Kohlenmonoxid und Methan besteht und z.B. ueber Gasmotoren, Gasturbinen, vorzugsweise aber Brennstoffzellen zu Strom umgewandelt werden kann. Die Umwandlungsverfahren, insbesondere unter Benutzung von Brennstoffzellen, sind umweltfreundlich und haben einen hohen Wirkungsgrad. Als Vergasungsverfahren eignet sich fuer die dezentrale Anwendung. - d.h. fuer eine Biomassemenge von 0,5 bis 1 t/h - insbesondere das hier beschriebene allotherme Verfahren. (orig)

  9. Gas generation from biomass for decentralized power supply systems; Gaserzeugung fuer dezentrale Energiesysteme auf der Basis von Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, H; Papamichalis, A; Heek, K.H. van [DMT-Inst. fuer Kokserzeugung und Brennstofftechnik, Essen (Germany)

    1997-12-31

    By a reaction with steam, bioresidues and plants can be converted into a gas consisting mainly of hydrogen, carbon monoxide and methane which can be used for electric power generation in gas engines, gas turbins and fuel cells. The conversion processes, especially the fuel cell process, are environment-friendly and efficient. For decentralized applications (i.e. for biomass volumes of 0.5 to 1 t/h), an allothermal process is recommended which is described in detail. (orig) [Deutsch] Durch Reaktion mit Wasserdampf lassen sich Bioreststoffe und Energiepflanzen zu einem Gas umsetzen, das im wesentlichen aus Wasserstoff, Kohlenmonoxid und Methan besteht und z.B. ueber Gasmotoren, Gasturbinen, vorzugsweise aber Brennstoffzellen zu Strom umgewandelt werden kann. Die Umwandlungsverfahren, insbesondere unter Benutzung von Brennstoffzellen, sind umweltfreundlich und haben einen hohen Wirkungsgrad. Als Vergasungsverfahren eignet sich fuer die dezentrale Anwendung. - d.h. fuer eine Biomassemenge von 0,5 bis 1 t/h - insbesondere das hier beschriebene allotherme Verfahren. (orig)

  10. Efficient Biomass Fuel Cell Powered by Sugar with Photo- and Thermal-Catalysis by Solar Irradiation.

    Science.gov (United States)

    Liu, Wei; Gong, Yutao; Wu, Weibing; Yang, Weisheng; Liu, Congmin; Deng, Yulin; Chao, Zi-Sheng

    2018-06-19

    The utilization of biomass sugars has received great interesting recently. Herein, we present a highly efficient hybrid solar biomass fuel cell that utilizes thermal- and photocatalysis of solar irradiation and converts biomass sugars into electricity with high power output. The fuel cell uses polyoxometalates (POMs) as photocatalyst to decompose sugars and capture their electrons. The reduced POMs have strong visible and near-infrared light adsorption, which can significantly increase the temperature of the reaction system and largely promotes the thermal oxidation of sugars by the POM. In addition, the reduced POM functions as charge carrier that can release electrons at the anode in the fuel cell to generate electricity. The electron-transfer rates from glucose to POM under thermal and light-irradiation conditions were investigated in detail. The power outputs of this solar biomass fuel cell are investigated by using different types of sugars as fuels, with the highest power density reaching 45 mW cm -2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Development Strategies for Deployment of Biomass Resources in the Production of Biomass Power: November 6, 2001--February 28, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, J.

    2004-01-01

    The study analyzes strategies for deployment of biomass resources for biopower generation. It compares biomass supply databases and the projected biopower market penetration for several alternative incentive scenarios. It analyzes the availability of biomass to meet the projected market demands and recommends future research.

  12. The biomass valorization / the electric power in processes: innovation and challenges; valorisation de la biomasse / l'electricite dans les procedes: innovation et defis

    Energy Technology Data Exchange (ETDEWEB)

    Dahy, M. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Leclercq, M. [Ministere de l' Industrie, des Postes et Telecommunications et du Commerce Exterieur, 75 - Paris (France). Direction Generale de L' Energie et des Matieres Premieres; Gosse, G. [Institut National de Recherches Agronomiques (INRA), 75 - Paris (France); Lacour, P.A. [AFOCEL, 34 - St Clement de Riviere (France); Ballerini, D.; Duplan, J.L.; Monot, F. [Institut Francais du Petrole (IFP), 69 - Lyon (France); Seiler, J.M. [CEA Grenoble, 38 (France); Ancelme, A. [Syndicat National des Producteurs d' Alcools Agricoles (SNPAA), 92 - Neuilly (France); Vermeersch, G. [Sofiproteol, 75 - Paris (France); Hervouet, V. [Total, La Defense, 92 - Courbevoie (France); Rouveirolles, P. [Renault, 92 6 Boulogne Billancourt (France); Bellot, M. [Electricite de France (EDF), 75 - Paris (France); Pascual, C. [ELYO Cylergie, 69 - Ecully (France); Girard, M. [PRONOVIAL, 51 - Reims (France); Bernard, D. [ARKEMA, 69 - Lyon (France); Dussaud, J.; Vrevin, L. [Ahlstrom Research and Services, Edinburgh, Midlothian (United Kingdom); Mentink, L. [Roquette Freres (Italy)

    2005-07-01

    In a context of an insufficient offer on processes/technology, this day is devoted to the processes adapted to the biomass conversion in energy, fuels and other products. It provides presentations on the biomass economy and regulations, the different channels, the thermochemical processes to produce synthetic fuels and hydrogen, the ethanol production, refiners, automotive industry, an electric power, producer point of view, the byproducts. (A.L.B.)

  13. The biomass valorization / the electric power in processes: innovation and challenges; valorisation de la biomasse / l'electricite dans les procedes: innovation et defis

    Energy Technology Data Exchange (ETDEWEB)

    Dahy, M [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Leclercq, M [Ministere de l' Industrie, des Postes et Telecommunications et du Commerce Exterieur, 75 - Paris (France). Direction Generale de L' Energie et des Matieres Premieres; Gosse, G [Institut National de Recherches Agronomiques (INRA), 75 - Paris (France); Lacour, P A [AFOCEL, 34 - St Clement de Riviere (France); Ballerini, D; Duplan, J L; Monot, F [Institut Francais du Petrole (IFP), 69 - Lyon (France); Seiler, J M [CEA Grenoble, 38 (France); Ancelme, A [Syndicat National des Producteurs d' Alcools Agricoles (SNPAA), 92 - Neuilly (France); Vermeersch, G [Sofiproteol, 75 - Paris (France); Hervouet, V [Total, La Defense, 92 - Courbevoie (France); Rouveirolles, P [Renault, 92 6 Boulogne Billancourt (France); Bellot, M [Electricite de France (EDF), 75 - Paris (France); Pascual, C [ELYO Cylergie, 69 - Ecully (France); Girard, M [PRONOVIAL, 51 - Reims (France); Bernard, D [ARKEMA, 69 - Lyon (France); Dussaud, J; Vrevin, L [Ahlstrom Research and Services, Edinburgh, Midlothian (United Kingdom); Mentink, L [Roquette Freres (Italy)

    2005-07-01

    In a context of an insufficient offer on processes/technology, this day is devoted to the processes adapted to the biomass conversion in energy, fuels and other products. It provides presentations on the biomass economy and regulations, the different channels, the thermochemical processes to produce synthetic fuels and hydrogen, the ethanol production, refiners, automotive industry, an electric power, producer point of view, the byproducts. (A.L.B.)

  14. Development of biomass power plant technologies in Malaysia: niche development and the formation of innovative capabilities

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer

    The objective of this thesis is to contribute to advance further the emerging research agenda on the transfer and diffusion of low-carbon technologies in developing countries by adopting a study of the development of biomass power plant technologies in Malaysia. The main research question addresses...... successive periods of fieldwork in Malaysia. The thesis conceptualises the diffusion of biomass technologies in Malaysia as a niche development process and finds that the development of a palm oil biomass waste-to-energy niche in Malaysia has only made limited progress despite a period of twenty years...... of niche formation. The thesis identifies the reluctance to implement an efficient energy policy as the main limiting factor for niche development in this case. Although a number of donor programs have advocated the introduction of a stronger enabling framework for niche development, they have generally...

  15. Environmental and socioeconomic aspects in the strategic analysis of a biomass power plant integration

    International Nuclear Information System (INIS)

    Varela, M.; Lechon, Y.; Saez, R.

    1999-01-01

    The aim of the work was to assess the potential weaknesses and threats of the integration of a biomass power plant proposed in a depressed area of Spain as well as to analyse the inherent strengths and opportunities that such a project could have in economic, technical or environmental terms. For this purpose an analysis of site, biomass resources, problems associated to fuel mix combustion, electricity production and connection were assessed. The socioeconomic (employment, GDP effects or tax revenue impact) and environmental (human health, soil erosion, fertiliser application) outcomes associated with the proposed biomass scheme have been evaluated. Finally, a list of actions to take into account for successful implementation of this proposed project has been defined. (author)

  16. Jointly Sponsored Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson

    2009-03-31

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.

  17. Experience with a biomass-fuelled power plant in Peru. Peru kokunai no biomass nenryoka no hatsuden plant no keiken

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    This paper describes the result of operating a 25-kW biomass-fuelled power plant for 500 hours installed for people in a small village in jungle along the Amazon basin in Peru. The gasifier plant consists of two invert type gas combustors combined with series cyclone dryer filters. Filtration used activated carbons and cotton cloths. The fuel for the plant is wood chips containing water at 5.5% to 11% with calorific power of 20 mJ/kg, consumed at 2.0 kg of lumber per kWh (25 kWh). A gas analysis showed values of CO2 at 13%, CO at 14%, H2 at 18%, CH4 at 3%, and N2 at 52%. Because the fuel of wood chips may cause problems if the size is too large, a size of about 10[times]20[times]30 mm was selected finally. Pressure drop in the gas purifying system was measured using a manometer, which verified that a textile filtering material can be used. The gasoline engine rotation was fixed at 2700 rpm upon discussions. The gasoline engine had no need of modification except at a pipe to the carburetor. This system can be installed at any small village. 1 ref., 1 fig.

  18. Occupational exposure at a contemplated Belarussian power plant fired with contaminated biomass

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Fogh, C.L.; Roed, Jørn

    1999-01-01

    To meet the current demand in Belarus for remediation of the vast forest areas that were contaminated by the Chernobyl accident and at the same time establish a much needed energy production, applying contaminated forest biomass as fuel in special power plants is being considered. This paper......-called 'big bags' filled with fly ash waste. Inhalation doses were estimated to be low. External doses received while working at the power plant do not appear to be highly significant compared with the doses from environmental contamination in the area where the power plant is expected to be constructed....

  19. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Wang, Xiaohe; Lei, Jing; Jin, Hongguang

    2016-01-01

    Highlights: • Two solar-biomass hybrid combined cycle power generation systems are proposed. • The characters of the two proposed systems are compared. • The on-design and off-design properties of the system are numerically investigated. • The favorable performances of thermochemical hybrid routine are validated. - Abstract: Two solar-biomass hybrid combined cycle power generation systems are proposed in this work. The first system employs the thermochemical hybrid routine, in which the biomass gasification is driven by the concentrated solar energy, and the gasified syngas as a solar fuel is utilized in a combined cycle for generating power. The second system adopts the thermal integration concept, and the solar energy is directly used to heat the compressed air in the topping Brayton cycle. The thermodynamic performances of the developed systems are investigated under the on-design and off-design conditions. The advantages of the hybrid utilization technical mode are demonstrated. The solar energy can be converted and stored into the chemical fuel by the solar-biomass gasification, with the net solar-to-fuel efficiency of 61.23% and the net solar share of 19.01% under the specific gasification temperature of 1150 K. Meanwhile, the proposed system with the solar thermochemical routine shows more favorable behaviors, the annual system overall energy efficiency and the solar-to-electric efficiency reach to 29.36% and 18.49%, while the with thermal integration concept of 28.03% and 15.13%, respectively. The comparison work introduces a promising approach for the efficient utilization of the abundant solar and biomass resources in the western China, and realizes the mitigation of CO_2 emission.

  20. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Science.gov (United States)

    Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2014-01-01

    There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China. PMID:25383383

  1. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Directory of Open Access Journals (Sweden)

    Huacai Liu

    2014-01-01

    Full Text Available There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  2. The Use of Fire Radiative Power to Estimate the Biomass Consumption Coefficient for Temperate Grasslands in the Atlantic Forest Biome

    Directory of Open Access Journals (Sweden)

    Bibiana Salvador Cabral da Costa

    Full Text Available Abstract Every year, many active fire spots are identified in the satellite images of the southern Brazilian grasslands in the Atlantic Forest biome and Pampa biome. Fire Radiative Power (FRP is a technique that uses remotely sensed data to quantify burned biomass. FRP measures the radiant energy released per time unit by burning vegetation. This study aims to use satellite and field data to estimate the biomass consumption rate and the biomass consumption coefficient for the southern Brazilian grasslands. Three fire points were identified in satellite FRP products. These data were combined with field data, collected through literature review, to calculate the biomass consumption coefficient. The type of vegetation is an important variable in the estimation of the biomass consumption coefficient. The biomass consumption rate was estimated to be 2.237 kg s-1 for the southern Brazilian grasslands in Atlantic Forest biome, and the biomass consumption coefficient was estimated to be 0.242 kg MJ-1.

  3. Process simulation of co-firing torrefied biomass in a 220 MWe coal-fired power plant

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Xiaolei; Pawlak-Kruczek, Halina; Yang, Weihong; Kruczek, Pawel; Blasiak, Wlodzimierz

    2014-01-01

    Highlights: • The performances of torrefaction based co-firing power plant are simulated by using Aspen Plus. • Mass loss properties and released gaseous components have been studied during biomass torrefaction processes. • Mole fractions of CO 2 and CO account for 69–91% and 4–27% in total torrefied gases. • The electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. - Abstract: Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO 2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO 2 and CO account for 69–91% and 4–27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources

  4. The Sponsored Film.

    Science.gov (United States)

    Klein, Walter J.

    For public relations professionals and would-be sponsors of films, this book provides guidelines for understanding the film medium and its potential as a persuasive force in industry, government, organizations, and religious orders. For filmmakers, it brings together practical information needed to survive in the sponsored-film industry and to…

  5. Use competitions with biomass. Effects of the intensified use of biomass in the energy sector on the material utilization in the biomass processing industry and their competitive ability by means of nationally sponsored financial incentives. Final report; Nutzungskonkurrenzen bei Biomasse. Auswirkungen der verstaerkten Nutzung von Biomasse im Energiebereich auf die stoffliche Nuzung in der Biomasse verarbeitenden Industrie und deren Wettbewerbsfaehigkeit durch staatlich induzierte Foerderprogramme. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bringezu, Stefan; Schuetz, Helmut; Arnold, Karin [Wuppertal Institut fuer Klima, Umwelt, Energie GmbH, Wuppertal (DE)] (and others)

    2008-04-25

    In the contribution under consideration The Wuppertal Institute for Climate, Environment, Energy (Wuppertal, Federal Republic of Germany) and Rhenish Westphalian Institute for Economic Research e.V. (Essen, Federal Republic of Germany) report on the analysis and evaluation of technically usable biomass potentials in Germany as well as on the influence of the promotion of the utilization of biomass in the energy sector regarding to the utilization competition between different uses. The economic effects of the increasing use of biomass for non-food applications were examined for the ranges biodiesel, grain and wood. For biodiesel from rape it is stated that this biodiesel in future represents no cost-efficient climatic protection strategy. In the range of woods efforts are necessary to the activation and expansion of the existing domestic raw material. During the mobilization of forest remainder wood ecological disadvantages and an impairment of long-term yields should be excluded.

  6. Biomass power for rural development. Quarterly report, September 23, 1996--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.T.

    1997-02-01

    Goals for the biomass power for rural development include: expanded feedstock research and demonstration activities to provide soil-specific production costs and yield data, as well as better methods for harvest and transport; four thousand acres of feedstock available for fueling a commercial venture; comparison of the feasibility of gasification and cocombustion; designs for on-site switchgrass handling and feeding system; a detailed assessment of utilizing switchgrass for gasification and cocombustion to generate electricity using turbines and fuel cells.

  7. Life cycle assessment of fossil and biomass power generation chains. An analysis carried out for ALSTOM Power Services

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Ch.

    2008-12-15

    This final report issued by the Technology Assessment Department of the Paul Scherrer Institute (PSI) reports on the results of an analysis carried out on behalf of the Alstom Power Services company. Fossil and biomass chains as well as co-combustion power plants are assessed. The general objective of this analysis is an evaluation of specific as well as overall environmental burdens resulting from these different options for electricity production. The results obtained for fuel chains including hard coal, lignite, wood, natural gas and synthetic natural gas are discussed. An overall comparison is made and the conclusions drawn from the results of the analysis are presented.

  8. Combined Heat and Power Systems for the Provision of Sustainable Energy from Biomass in Buildings

    Directory of Open Access Journals (Sweden)

    Ortwein Andreas

    2016-01-01

    Full Text Available Against the background of greenhouse gases causing climate change, combined heat and power (CHP systems fueled by biomass can efficiently supply energy with high flexibility. Such CHP systems will usually consist of one or more thermo-chemical conversion steps and at least one (the more or less separated electric power generation unit. Depending on the main products of the previous conversion steps (e.g. combustible gases or liquids, but also flue gases with sensible heat, different technologies are available for the final power conversion step. This includes steam cycles with steam turbines or engines and different working fluids (water, organic fluids, but also combustion based systems like gas turbines or gas engines. Further promising technologies include fuel cells with high electric efficiency. When integrating such CHP systems in buildings, there are different strategies, especially concerning electric power generation. While some concepts are focusing on base load production, others are regulated either by thermal or by electric power demand. The paper will give a systematic overview on the combination of thermo-chemical conversion of biomass and combined heat and power production technologies. The mentioned building integration strategies will be discussed, leading to conclusions for further research and development in that field.

  9. Externalities of biomass based electricity production compared to power generation from coal in the Netherlands

    International Nuclear Information System (INIS)

    Faaij, A.; Meuleman, B.

    1997-12-01

    Externalities of electricity production from biomass and coal are investigated and compared for the Dutch context. Effects on economic activity and employment are investigated by means of Input/Output and multiplier tables. Valuations of damage from emissions to air are based on generic data from other studies. In addition, external costs are estimated for nitrogen leaching and for the use of agrochemicals for energy crop production. The average private costs for biomass and coal based power generation are projected to be 68 and 38 mECU/kWh respectively in the year 2005. It is assumed that biomass production takes place on fallow land. Coal mining is excluded from the analysis. If the quantified external damages and benefits are included the cost range for bio-electricity is 53-70 mECU/kWh and 45-72 mECU/kWh for coal. Indirect economic effects (increment of Gross Domestic Product) and the difference in CO2 emissions are the most important distinguishing factors between coal and biomass in economic terms. Damage costs of other emissions to air (NOx, SO2, dust and CO) are of the same order of magnitude for both coal and biomass (coal mining excluded). In this analysis environmental impacts of energy farming are compared mainly to fallow land focused on the use of fertilizers and agrochemicals. The related damage costs appear to be low but should be considered as a preliminary estimate only. The quantitative outcomes should not be considered as the external costs of the two fuel cycles studied. Many impacts have not been valued and large uncertainties persist e.g. with respect to the costs of climate change and numerous dose response relations. More detailed analysis is required with respect to macro-economic impacts. The results serve as a first indication, but the outcomes plead for the support of bio-electricity production and/or taxation of coal based power generation. 88 refs

  10. Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Buragohain, Buljit; Mahanta, Pinakeswar; Moholkar, Vijayanand S.

    2010-01-01

    In recent years, biomass gasification has emerged as a viable option for decentralized power generation, especially in developing countries. Another potential use of producer gas from biomass gasification is in terms of feedstock for Fischer-Tropsch (FT) synthesis - a process for manufacture of synthetic gasoline and diesel. This paper reports optimization of biomass gasification process for these two applications. Using the non-stoichometric equilibrium model (SOLGASMIX), we have assessed the outcome of gasification process for different combinations of operating conditions. Four key parameters have been used for optimization, viz. biomass type (saw dust, rice husk, bamboo dust), air or equivalence ratio (AR = 0, 0.2, 0.4, 0.6, 0.8 and 1), temperature of gasification (T = 400, 500, 600, 700, 800, 900 and 1000 o C), and gasification medium (air, air-steam 10% mole/mole mixture, air-steam 30%mole/mole mixture). Performance of the gasification process has been assessed with four measures, viz. molar content of H 2 and CO in the producer gas, H 2 /CO molar ratio, LHV of producer gas and overall efficiency of gasifier. The optimum sets of operating conditions for gasifier for FT synthesis are: AR = 0.2-0.4, Temp = 800-1000 o C, and gasification medium as air. The optimum sets of operating conditions for decentralized power generation are: AR = 0.3-0.4, Temp = 700-800 o C with gasification medium being air. The thermodynamic model and methodology presented in this work also presents a general framework, which could be extended for optimization of biomass gasification for any other application.

  11. Exergy analysis of a coal/biomass co-hydrogasification based chemical looping power generation system

    International Nuclear Information System (INIS)

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2015-01-01

    Power generation from co-utilization of coal and biomass is very attractive since this technology can not only save the coal resource but make sufficient utilization of biomass. In addition, with this concept, net carbon discharge per unit electric power generation can also be sharply reduced. In this work, a coal/biomass co-hydrogasification based chemical looping power generation system is presented and analyzed with the assistance of Aspen Plus. The effects of different operating conditions including the biomass mass fraction, R_b, the hydrogen recycle ratio, R_h_r, the hydrogasification pressure, P_h_g, the iron to fuel mole ratio, R_i_f, the reducer temperature, T_r_e, the oxidizer temperature, T_o_x, and the fuel utilization factor, U_f of the SOFC (solid oxide fuel cell) on the system operation results including the energy efficiency, η_e, the total energy efficiency, η_t_e, the exergy efficiency, η_e_x, the total exergy efficiency, η_t_e_x and the carbon capture rate, η_c_c, are analyzed. The energy and exergy balances of the whole system are also calculated and the corresponding Sankey diagram and Grassmann diagram are drawn. Under the benchmark condition, exergy efficiencies of different units in the system are calculated. η_t_e, η_t_e_x and η_c_c of the system are also found to be 43.6%, 41.2% and 99.1%, respectively. - Highlights: • A coal/biomass co-hydrogasification based chemical looping power generation system is setup. • Sankey and Grassmann diagrams are presented based on the energy and exergy balance calculations. • Sensitivity analysis is done to understand the system operation characteristics. • Total energy and exergy efficiencies of this system can be 43.6% and 41.2%, respectively. • About 99.1% of the carbon contained in coal and biomass can be captured in this system.

  12. Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System

    Directory of Open Access Journals (Sweden)

    Arnau González

    2015-09-01

    Full Text Available Hybrid renewable energy systems (HRES are a trendy alternative to enhance the renewable energy deployment worldwide. They effectively take advantage of scalability and flexibility of these energy sources, since combining two or more allows counteracting the weaknesses of a stochastic renewable energy source with the strengths of another or with the predictability of a non-renewable energy source. This work presents an optimization methodology for minimum life cycle cost of a HRES based on solar photovoltaic, wind and biomass power. Biomass power seeks to take advantage of locally available forest wood biomass in the form of wood chips to provide energy in periods when the PV and wind power generated are not enough to match the existing demand. The results show that a HRES combining the selected three sources of renewable energy could be installed in a rural township of about 1300 dwellings with an up-front investment of US $7.4 million, with a total life cycle cost of slightly more than US $30 million. Such a system would have benefits in terms of energy autonomy and environment quality improvement, as well as in term of job opportunity creation.

  13. Power production from biomass II with special emphasis on gasification and pyrolysis R and DD

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K; Korhonen, M [eds.; VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The Seminar on Power Production from Biomass II with special emphasis on gasification and pyrolysis R and DD, was organized by VTT Energy on 27 - 28 March 1995 in Espoo, Finland. All seminar speakers were invited in order to give a high-level overview of the achievements of biomass combustion, gasification and flash pyrolysis technologies. The sessions included presentations by all key industrial entrepreneurs in the field. The poster session was open to all groups interested. Globally bioenergy covers about 3 % of the primary energy consumption. Locally it has a significant role in many countries like in Finland, where bioenergy covers almost 15 % and peat 5 % of primary energy consumption. Today`s cost-effective heat and power production is based on industrial wood residues and spent cooking liquors in relatively large industrial units or municipal heating and power stations. Agricultural residues like straw and especially energy crops are becoming more interesting in co-utilization with other biomasses or fossil fuels. The seminar successfully displayed the status of present technologies as well as development targets for new gasification and flash pyrolysis technologies in the coming years. The many industrial participants showed that there are growing business possibilities in many countries all over the world. The proceedings include the most oral presentations given at the Seminar and also abstracts of poster presentations. (orig.)

  14. Power production from biomass II with special emphasis on gasification and pyrolysis R and DD

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Korhonen, M. [eds.] [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The Seminar on Power Production from Biomass II with special emphasis on gasification and pyrolysis R and DD, was organized by VTT Energy on 27 - 28 March 1995 in Espoo, Finland. All seminar speakers were invited in order to give a high-level overview of the achievements of biomass combustion, gasification and flash pyrolysis technologies. The sessions included presentations by all key industrial entrepreneurs in the field. The poster session was open to all groups interested. Globally bioenergy covers about 3 % of the primary energy consumption. Locally it has a significant role in many countries like in Finland, where bioenergy covers almost 15 % and peat 5 % of primary energy consumption. Today`s cost-effective heat and power production is based on industrial wood residues and spent cooking liquors in relatively large industrial units or municipal heating and power stations. Agricultural residues like straw and especially energy crops are becoming more interesting in co-utilization with other biomasses or fossil fuels. The seminar successfully displayed the status of present technologies as well as development targets for new gasification and flash pyrolysis technologies in the coming years. The many industrial participants showed that there are growing business possibilities in many countries all over the world. The proceedings include the most oral presentations given at the Seminar and also abstracts of poster presentations. (orig.)

  15. A roadmap for production of sustainable, consistent and reliable electric power from agricultural biomass- An Indian perspective

    International Nuclear Information System (INIS)

    Singh, Jaswinder

    2016-01-01

    The utilization of agricultural biomass for production of electric power can help to reduce the environmental emissions while achieving energy security and sustainable development. This paper presents a methodology for estimating the power production potential of agricultural biomass in a country. Further, the methodology has been applied to develop a roadmap for producing reliable power in India. The present study reveals that about 650 Mt/year of agricultural biomass is generated in India, while about one-third of this has been found to be surplus for energy applications. The cereal crops have major contribution (64.60%) in production of surplus biomass followed by sugarcane (24.60%) and cotton (10.68%). The energy potential of these resources is of the order of 3.72 EJ, which represents a significant proportion of the primary energy consumption in the country. These biomass resources can produce electric power of 23–35 GW depending upon the efficiency of thermal conversion. The delivery of biomass to the plants and selection of appropriate technology have been found as the major issues that need to be resolved carefully. In the end, the study summarizes various technological options for biomass collection and utilization that can be used for producing clean and consistent power supply. - Highlights: •The production of bioelectricity in India is imperative and inevitable. •About one-third of the agricultural biomass is available for power generation. •The power potential of these resources is of the order of 23–31 GW. •The delivery of biomass to plants and technology selection are the key issues. •India should exploit these resources for producing clean and reliable power.

  16. Combined hydraulic and biomass power - an answer to economic and ecological adaptation pressure on the energy supply system

    International Nuclear Information System (INIS)

    Pistauer, M.

    1991-01-01

    On the large scale, there will be an economic pressure in the European Communities on coal and oil from the CO 2 taxes. The economic and ecological advantages of a combination of hydraulic and biomass power in Austria are emphasized. In particular a biomass remote heating pilot project is announced. (Quittner)

  17. Gas, power and heat generation from biomass by allothermal gasification; Gas-, Strom- und Waermeerzeugung aus Biomasse durch allotherme Vergasung

    Energy Technology Data Exchange (ETDEWEB)

    Yaqub Chughtai, M [H und C Engineering GmbH, Gummersbach (Germany); Muehlen, H J [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1998-09-01

    The allothermal DMT gasification process for biomass is a newcomer. The process, its initial materials, the uses of the product gas, and advantages of the allothermal process are described here. (orig./SR) [Deutsch] Der Einsatz des allothermen DMT-Vergasungsverfahrens fuer Biomasse ist neu. Verfahren, Einsatzstoffe und Produktgasnutzung, sowie Vorteile des allothermen Verfahrens werden hier beschrieben. (orig./SR)

  18. Microbiological Contamination at Workplaces in a Combined Heat and Power (CHP Station Processing Plant Biomass

    Directory of Open Access Journals (Sweden)

    Justyna Szulc

    2017-01-01

    Full Text Available The aim of the study was to evaluate the microbial contamination at a plant biomass processing thermal power station (CHP. We found 2.42 × 103 CFU/m3 of bacteria and 1.37 × 104 CFU/m3 of fungi in the air; 2.30 × 107 CFU/g of bacteria and 4.46 × 105 CFU/g of fungi in the biomass; and 1.61 × 102 CFU/cm2 bacteria and 2.39 × 101 CFU/cm2 fungi in filtering facepiece respirators (FFRs. Using culture methods, we found 8 genera of mesophilic bacteria and 7 of fungi in the air; 10 genera each of bacteria and fungi in the biomass; and 2 and 5, respectively, on the FFRs. Metagenomic analysis (Illumina MiSeq revealed the presence of 46 bacterial and 5 fungal genera on the FFRs, including potential pathogens Candida tropicalis, Escherichia coli, Prevotella sp., Aspergillus sp., Penicillium sp.. The ability of microorganisms to create a biofilm on the FFRs was confirmed using scanning electron microscopy (SEM. We also identified secondary metabolites in the biomass and FFRs, including fumigaclavines, quinocitrinines, sterigmatocistin, and 3-nitropropionic acid, which may be toxic to humans. Due to the presence of potential pathogens and mycotoxins, the level of microbiological contamination at workplaces in CHPs should be monitored.

  19. Biomass energy technologies for rural infrastructure and village power - opportunities and challenges in the context of global climate change concerns

    International Nuclear Information System (INIS)

    Kishore, V.V.N.; Bhandari, P.M.; Gupta, P.

    2004-01-01

    The potential and role of biomass resources in developing countries for addressing global climate change concerns are highlighted using India as a case study. Promotion of technologies, which use biomass more efficiently, is seen as a key strategy to integrate the concerns of both developing countries and developed countries. The role of various biomass technologies for improving rural infrastructure and village power is discussed in detail. A vision of establishing and running a chain of rural energy service companies, operating with a basket of devices and technologies, under the general provisions of CDM, is examined for commercialization and mainstreaming of biomass technologies which have achieved reasonable levels of maturity. (author)

  20. The potential impact of externalities considerations on the market for biomass power technologies

    International Nuclear Information System (INIS)

    Swezey, B.G.; Porter, K.L.; Feher, J.S.

    1995-01-01

    Of all the renewable energy sources used for power generation, biomass energy has experienced the greatest growth over the last decade. Spurred by requirements established in the Public Utility Regulatory Policies Act of 1978 (PURPA), as well as various tax incentives, biomass-based power generation now provides more than 50 billion kWh of electric energy from 10,000 MW of installed capacity. The overwhelming majority of this capacity, primarily wood-based, has been developed by the nonutility sector. However, the biomass industry is currently facing more difficult market conditions due to a reduction in federal incentives and changes in the generation market, such as lower utility avoided costs, slower demand growth, and greater competition among both generators and fuel sources. States are increasingly contemplating the inclusion of market externalities costs and benefits associated with different generation options in electricity resource planning and procurement decisions. Market externalities, as they relate to generation resources and technologies, represent impacts that are not wholly reflected in the market price of electricity derived from these sources. These impacts, which can be either positive or negative, can encompass environmental, economic and other social factors, but state considerations have focused predominantly on environmental externalities costs, especially air emissions. The explicit quantification of externalities could measurably affect the competitive standing of various energy resources and technologies in future generation resource acquisitions. This paper summarizes work undertaken to assess the status the externalities considerations in state and utility electricity resource planning processes and to determine how externalities considerations might help or hinder future development of biomass power plants. (author)

  1. Thermodynamic simulation of a multi-step externally fired gas turbine powered by biomass

    International Nuclear Information System (INIS)

    Durante, A.; Pena-Vergara, G.; Curto-Risso, P.L.; Medina, A.; Calvo Hernández, A.

    2017-01-01

    Highlights: • A realistic model for an EFGT fueled with solid biomass is presented. • Detailed submodels for the HTHE and the chemical reactions are incorporated. • An arbitrary number of compression and expansion stages is considered. • Model validation leads to good agreement with experimental results. • A layout with two-stage compression leads to good efficiencies and power output. - Abstract: A thermodynamic model for a realistic Brayton cycle, working as an externally fired gas turbine fueled with biomass is presented. The use of an external combustion chamber, allows to burn dirty fuels to preheat pure air, which is the working fluid for the turbine. It also avoids direct contact of ashes with the turbine blades, resulting in a higher life cycle for the turbine. The model incorporates a high temperature heat exchanger and an arbitrary number of turbines and compressors, with the corresponding number of intercoolers and reheaters. It considers irreversibilities such as non-isentropic compressions and expansions, and pressure losses in heat input and release. The composition and temperature of the combustion gases, as well as the variable flow rate of air and combustion gases, are calculated for specific biomasses. The numerical model for a single stage configuration has been validated by comparing its predictions with the data sheets of two commercial turbines. Results are in good agreement. Curves on the dependence of thermal efficiency and power output with the overall pressure ratio will be shown for several plant configurations with variable number of compression/expansion stages. Also the influence of different types of biomasses and their moisture will be analyzed on parameters such as fuel consumption and exhaust gases temperature. For a single step plant layout fueled with eucalyptus wood an efficiency of 23% is predicted, whereas for a configuration with two compressors and one turbine efficiency increases up to 25%. But it is remarkable

  2. Biomass power generation in competitive markets - The impact of instruments and regulations

    International Nuclear Information System (INIS)

    Ackermann, Thomas; Soeder, Lennart

    1999-01-01

    This paper presents and briefly evaluates the most important existing market instruments and market schemes which support the development of renewable energy generation as well as the impact of market regulations on the development of biomass power generation. The evaluation of the existing instruments focuses on the incentives provided by the various instruments to reduce production costs. The instruments and schemes are: Feed-in Tariffs, Net Metering, Bidding Process, Fixed Quotas, Green Certificate Trading, Green Power Exchange, Green Pricing. Feed-in tariffs and net metering are important instruments to get the different technologies 'off the ground', however, they can only be considered an interim solution as they do not necessarily lead to cost reduction. A bidding process is one way to achieve these cost reductions, but high transaction costs will support the development of large renewable energy projects, which is not always the desired effect. Fixed quotas combined with green certificate trading or a power exchange in combination with Green Pricing seem to lead to similar costs reduction, however, so far there is only limited experience with such instruments. The analysis of the impact of market regulations focuses on international electricity markets with a power exchange. Such markets exist, for example, in Scandinavia, England and Wales, Australia, New Zealand and California. The analysis showed that new distributed generation, for example based on biomass, faces significant market barriers. Furthermore, distributed generation is not treated equally within the market regulations compared to large-scale power generation

  3. Biomass power for rural development. Technical progress report, Phase 2, July 1--September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.

    1999-01-01

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase 1 focused on initial development and testing of the technology and forging the necessary agreements to demonstrate commercial willow production. The Phase 1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boiler for 20 MW of biopower capacity; developing fuel supply plans for the project with a goal of establishing 365 ha (900 ac) of willow; obtaining power production commitments from the power companies for Phase 2; obtaining construction and environmental permits; and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system. Beyond those Phase 1 requirements, the Consortium has already successfully demonstrated cofiring at Greenidge Station and has initiated development of the required nursery capacity for acreage scale-up. In Phase 2 every aspect of willow production and power generation from willow biomass will be demonstrated. The ultimate objective of Phase 2 is to transition the work performed under the Biomass Power for Rural Development project into a thriving, self-supported energy crop enterprise.

  4. Numerical simulation of a hybrid CSP/Biomass 5 MWel power plant

    Science.gov (United States)

    Soares, João; Oliveira, Armando

    2017-06-01

    The fundamental benefit of using renewable energy systems is undeniable since they rely on a source that will not run out. Nevertheless, they strongly depend on meteorological conditions (solar, wind, etc.), leading to uncertainty of instantaneous energy supply and consequently to grid connection issues. An interesting concept is renewable hybridisation. This consists in the strategic combination of different renewable sources in the power generation portfolio by taking advantage of each technology. Hybridisation of concentrating solar power with biomass denotes a powerful way of assuring system stability and reliability. The main advantage is dispatchability through the whole extent of the operating range. Regarding concentrating solar power heat transfer fluid, direct steam generation is one of the most interesting concepts. Nevertheless, it presents itself technical challenges that are mostly related to the two-phase fluid flow in horizontal pipes, as well as the design of an energy storage system. Also, the use of reheat within the turbine is usually indirectly addressed, hindering system efficiency. These challenges can be addressed through hybridisation with biomass. In this paper, a hybrid renewable electricity generation system is presented. The system relies on a combination of solar and biomass sources to drive a 5 MWel steam turbine. System performance is analysed through numerical simulation using Ebsilon professional software. The use of direct reheat in the turbine is addressed. Results show that hybridisation results in an enhancement of system dispatchability and generation stability. Furthermore, hybridisation enhanced the annual solar field and power block efficiencies, and thus the system annual efficiency (from 7.6% to 20%). The use of direct reheat eliminates steam wetness in the last turbine stage and also improves system efficiency.

  5. Assessment of the way of biomass transportation to the coal power plant with regard to the limitation of emissions of CO2

    International Nuclear Information System (INIS)

    Adamkiewicz, A.; Zenczak, W.

    2014-01-01

    One from the activities taken in Poland in aim of limitation of CO 2 , emission is coal and biomass combustion together in one boiler. Biomass is delivered to power station Dolna Odra in Szczecin by trucks, which are also a source of CO 2 , emission. The paper presents results of comparative analysis of CO 2 , emission from trucks during transportation of biomass to power station with actual reduction of emission through power station as result of substitution of part of coal by biomass.

  6. Geographical distributions of biomass and potential sites of rubber wood fired power plants in Southern Thailand

    International Nuclear Information System (INIS)

    Krukanont, P.; Prasertsan, S.

    2004-01-01

    Biomass residues from rubber trees in rubber producing countries have immense potential for power production. This paper presents the case of the south peninsular of Thailand, where the rubber industry is intense. Mathematical models were developed to determine the maximum affordable fuel cost and optimum capacity of the power plant for a given location of known area-based fuel availability density. GIS data of rubber growing was used to locate the appropriate sites and sizes of the power plants. Along 700 km of the highway network in the region, it was found that 8 power plants are financially feasible. The total capacity is 186.5 MW e . The fuel procurement area is in the range of less than 35 km. (Author)

  7. Autothermal upgrading of biomass and wastes for clean and efficient production of power

    Energy Technology Data Exchange (ETDEWEB)

    Rafal Kobylecki; Zbigniew Bis; Wojciech Nowak [Czestochowa University of Technology (Poland)

    2005-07-01

    In this paper it is demonstrated that the main barrier of large scale heat and electricity production from biomass may be significantly reduced or eliminated by fuel upgrading and thermal treatment in a specially-designed pilot plant autothermal reactor. The process does not require significant amount of additional energy, since the whole process is run autothermal. The process final products are hot flue gases and a solid residue called a 'biocarbon' of LHV of roughly 28 MJ/kg. The properties of the biocarbon were similar, regardless of the input raw fuel type (biomass, waste, sewage sludge, energy crops, etc.). The use of the biocarbon for direct co-combustion with coal does not require installation of any additional feeding or fuel treatment systems at the power plants. Apart from its possible direct combustion, the biocarbon can be also efficiently used as a promising solid energy carrier for other processes (e.g. fuel cells). 6 refs., 6 figs.

  8. International and Domestic Market Opportunities for Biomass Power: Volumes I and II

    Energy Technology Data Exchange (ETDEWEB)

    1998-09-01

    This report examines the domestic and international markets for biopower. Domestic and foreign markets present fundamentally different challenges to private power developers. Volume I focuses on the domestic market for biopower. The domestic challenge lies in finding economically viable opportunities for biopower. Vol. I outlines the current state of the U.S. biomass industry, discusses policies affecting biomass development, describes some demonstration projects currently underway, and discusses the future direction of the industry. Volume II focuses on the international market for biopower. Recent literature states that the electricity investment and policy climate in foreign markets are the key elements in successful private project development. Vol. II discusses the financing issues, policy climate, and business incentives and barriers to biopower development. As India and China are the largest future markets for biopower, they are the focus of this volume. Three other top markets- -Brazil, Indonesia, and the Philippines--are also discussed. Potential financial resources wrap up the discussion.

  9. Thermodynamic analyses of a biomass-coal co-gasification power generation system.

    Science.gov (United States)

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2016-04-01

    A novel chemical looping power generation system is presented based on the biomass-coal co-gasification with steam. The effects of different key operation parameters including biomass mass fraction (Rb), steam to carbon mole ratio (Rsc), gasification temperature (Tg) and iron to fuel mole ratio (Rif) on the system performances like energy efficiency (ηe), total energy efficiency (ηte), exergy efficiency (ηex), total exergy efficiency (ηtex) and carbon capture rate (ηcc) are analyzed. A benchmark condition is set, under which ηte, ηtex and ηcc are found to be 39.9%, 37.6% and 96.0%, respectively. Furthermore, detailed energy Sankey diagram and exergy Grassmann diagram are drawn for the entire system operating under the benchmark condition. The energy and exergy efficiencies of the units composing the system are also predicted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Feasibility study for biomass power plants in Thailand. Volume 1. Main report. Export trade information

    International Nuclear Information System (INIS)

    1997-01-01

    This study, conducted by Black and Veatch, was funded by the U.S. Trade and Development Agency. The report presents a technical and commercial analysis for the development of three nearly identical electricity generating facilities (biomass steam power plants) in the towns of Chachoengsao, Suphan Buri, and Pichit in Thailand. The Main Report is divided into the following sections: (1.0) Executive Study; (2.0) Project Objectives; (3.0) Review of Combustion Technology for Biomass Fueled Steam Generator Units; (4.0) Conceptual Design; (5.0) Plant Descriptions; (6.0) Plant Operations Staffing; (7.0) Project Schedule; (8.0) Project Cost Estimate; (9.0) Financial Analysis; Appendix - Financial Analysis

  11. Development and delivery of a workshop methodology: planning for biomass power plant projects

    Energy Technology Data Exchange (ETDEWEB)

    Gray, A.J.; Delbridge, P.; Trevorrow, E.; Pile, C.

    2001-07-01

    This report gives details of the approach used to develop a workshop methodology to help planners and stakeholders address key issues that may arise when submitting a planning application for a biomass power plant in the light of the UK government's energy and climate change targets. The results of interviews with stakeholders (central government, regulatory authorities, developers, planners, non-governmental organisations, local community, resident groups) are summarised, and the NIMBY (not in my back yard) syndrome, the lack of trust in the developer, and lack of awareness of the use of biomass are discussed. Details are given of the design and testing of the workshop methodology and the resulting workshop methodology and workbook guide aimed at understanding the stakeholder issues and concerns through stakeholder discussions.

  12. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuvien dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P; Solantausta, Y; Wilen, C

    1996-12-31

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (a) suitability to small scale electricity production (< 5-10 MWe), (b) reliable operation with realistically available biomass feedstocks, and (c) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (a) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (b) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers

  13. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuvien dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y.; Wilen, C.

    1995-12-31

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (a) suitability to small scale electricity production (< 5-10 MWe), (b) reliable operation with realistically available biomass feedstocks, and (c) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (a) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (b) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers

  14. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuen dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y. [VTT Energy, Espoo (Finland)

    1996-12-01

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (1) suitability to small scale electricity production (<5-10 MWe), (2) reliable operation with realistically available biomass feedstocks, and (3) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (1) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (2) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers. The studies are scheduled to be completed in March 1996. (author)

  15. High Temperature Corrosion of Superheater Materials for Power Production through Biomass

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Nielsen, Karsten agersted

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures on selected materials in well-defined corrosive gas environments. An experimental...... facility has been established wherein the planned exposures are completed. Specimens were exposed in combined synthetic flue gas at temperatures up to 900C. The specimens could be cooled to 300C below the gas temperature. Gas flow and gas mixture can be varied according to the conditions found in a power......) on the corrosion progress has been investigated.In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525C, 600C and 700C. The ashes utilised are from a straw-fired power plant and a synthetic ash composed...

  16. ORC power plant for electricity production from forest and agriculture biomass

    International Nuclear Information System (INIS)

    Borsukiewicz-Gozdur, A.; Wiśniewski, S.; Mocarski, S.; Bańkowski, M.

    2014-01-01

    Highlights: • Results for three variants of CHP plant fuelled by sawmill biomass are presented. • Octamethyltrisiloxane, MDM, methanol and H 2 O working fluids was conducted in CHP. • CHP with internal regeneration and “dry” working fluid has the highest electric power. • Power output, drying heat and drying temperature depend on CHP variant and ORC fluid. - Abstract: The paper presents the calculation results for three variants of CHP plant fuelled by sawmill biomass. The plant shall produce electricity and heat for a drying chamber. An analysis of the system efficiency for four different working fluids was conducted: octamethyltrisiloxane, methylcyclohexane, methanol and water. The highest electric power was obtained for the system with internal regeneration and methylcyclohexane applied as the “dry” working fluid, the highest temperature to supply the drying chamber was obtained for the system with external regeneration and octamethyltrisiloxane applied as the working fluid. The results of the analysis indicate that, by proper choice of the working fluid and of the regeneration variant (internal or external), it is possible to “adjust” the work of the system to the needs and expectations of the plant investor (user)

  17. Waste-based biomass to power plants with high portions; Jaeteperaeistae biomassaa voimaloihin suurilla osuuksilla

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M. [VTT Technical Research Centre of Finland, Jyvaeskylae (Finland); Hupa, M. [Aabo Akademi, Process Chemistry, Turku (Finland); Jokiniemi, J. [Kuopio Univ. (Finland)

    2007-07-01

    The results of this project will strengthen significantly utilisation of demanding waste-originated biomass in combined heat and power production. The idea is to produce a combustible fuel by mixing different bio-waste in a way which maximises the synergic effects. 'Dilution' of the blend with a traditional and less risky biomass (for example bark) will also be included to this problem solution concept. Simultaneously, the disposal problems of different waste types can be solved in a reasonable way. The protective elements in the sludge-type biomass under investigation play a key role in the reactions protecting the critical parts of the furnace against the corrosive attach of alkali chlorides. In addition, sampling of critical compounds in view of operational risks at furnace conditions will be developed and the understanding what happens during the sampling will be deepened. VTT co-ordinates this research and conducts sets of experiments with an electrically stabilised FB reactor. Aabo Academi University will conduct thorough fuel and deposits analysis and develops modelling of deposit formation and control of harmful deposition. University of Kuopio will develop sampling of alkali chlorides and improves understanding on the behaviour of these compounds during furnace sampling and impactor sharing. In addition the project includes international co-operation between VTT and Tsinghua University, China, where a visiting researcher will model VTT's BFB reactor and addition of protective chemical to that reactor. (orig.)

  18. Microstructural investigations of Ni and Ni2Al3 coatings exposed in biomass power plants

    DEFF Research Database (Denmark)

    Wu, D. L.; Dahl, K. V.; Christiansen, T. L.

    2018-01-01

    The present work investigates the corrosion resistance of Ni and Ni2Al3 coated austenitic stainless steel (TP347H) tubes, which were exposed in a biomass-fired boiler with an outlet steam temperature of 540 °C for 6757 h. The Ni2Al3 coating was produced by electroplating Ni followed by low...... temperature pack cementation. After exposure, microstructural investigations were performed by light optical and electron microscopy (SEM-EDS). Electroplated Ni coatings were not protective in straw firing power plants and exhibited similar corrosion morphology as uncoated tubes. For Ni2Al3 coatings...

  19. Upgrading to lead firm position via international acquisition: learning from the global biomass power plant industry

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer; Fold, Niels; Hansen, Teis

    2016-01-01

    This article examines the case of a Chinese firm that has upgraded to lead firm position in the global biomass power plant industry mainly through acquisitions of technological frontier firms in Denmark. Sustaining the lead firm position was, however, challenged by difficulties in developing...... innovative capability. Drawing on the literature on (i) firm-level technological capability and (ii) knowledge transfer in international acquisitions, we explain the reasons for insufficient innovative capability building. Based on these empirical findings, we suggest maintaining the existing upgrading...

  20. Biomass gasification in electric power production; Gaseificacao de biomassa na producao de eletricidade

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Claudio P. de; Ennes, Sergio A.W. [Companhia Energetica de Sao Paulo, SP (Brazil); Corsetti, Marilena

    1992-12-31

    The main objective of this work is to evaluate the technical and economical viability of thermoelectric power generation based on biomass. The technology of gasification of sugar cane bagasse in fluidized bed and its influences in the generation or co-generation process in gas turbines is analysed. The potential of such kind of generation as well as the costs are indicated. Such potential are compared to those of the conventional technologies of co-generation using fuel oil and natural gas in the industry 10 refs., 2 figs., 4 tabs.

  1. Combined heat and power system with advanced gasification technology for biomass wastes

    Energy Technology Data Exchange (ETDEWEB)

    Mochida, S.; Abe, T.; Yasuda, T. [Nippon Furnace Kogyo Kaisha Ltd, Yokohama (Japan); Gupta, A.K. [Maryland Univ., College Park, MD (United States). Dept. of Mechnical Engineering

    2013-07-01

    The results obtained from an advanced gasification system utilizing high temperature steam are presented here. The results showed successful demonstration of clean syngas production having high calorific value fuel ({proportional_to}10 MJ/m{sup 3}N) using woody biomass wastes in a downdraft type gasifier. The gasification capacity of the plant on dry basis was 60 kg/h. The syngas produced can be utilized in an absorption type chiller for air conditioning. This advanced gasification technology allows one to transform wastes to clean energy at local production sites without any environmental impact and expensive waste transportation costs. The experience gained from the demonstration plant allows one to implement to other industrial applications for use as a decentralized unit and obtain clean syngas for local use. The demonstration conducted here shows that the system is favorable for onsite use of compatible combined heat and power (CHP) system including light oil supported diesel engine power generator. The biomass waste fuel from a lumber mill factory was used in this study. The factory handles a wide forests area of about 50 ha and produces about 2,500 m{sup 3}/year of wood chips from thin out trees and waste lumbers. This translates to a maximum 110 kg/h of wood chips that can be fed to a gasifier. The syngas produced was used for the combined heat and power system. Local use of biomass for fuel reforming reduces the cost of collection and transportation costs so that a sustainable business is demonstrated with profit from the generated electricity and thermal energy. The cost structure incorporates both the depreciation cost and operation cost of the system. Thermal energy from hot water can be used for drying lumbers and wood chips in a cascade manner. The drying process can be adopted for enhancing its productivity with increased variability on the quality of lumber. The results show that the combined heat and power system (CHP) offers good profitable

  2. Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Miles, T.R.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States); Jenkins, B.M. [California Univ., Davis, CA (United States); Dayton, D.C.; Milne, T.A. [National Renewable Energy Lab., Golden, CO (United States); Bryers, R.W. [Foster Wheeler Development Corp., Livingston, NJ (United States); Oden, L.L. [Bureau of Mines, Albany, OR (United States). Albany Research Center

    1996-03-01

    This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

  3. Biomass combustion power generation technologies: Background report 4.1 for the EU Joule 2+ project: Energy from biomass: An assessment of two promising systems for energy production

    International Nuclear Information System (INIS)

    Van den Broek, R.; Faaij, A.; Van Wijk, A.

    1995-05-01

    New developments in biomass combustion technology in progress tend to go towards efficiencies which come close to the present fossil fuel fired systems. The objective of this study is to give a representation of the state of the art and future prospects of biomass combustion technologies and to compare those on a location-independent basis. This will be done both by a general boiler technology description on the basis of qualitative criteria and by a comparison of most recently built and planned power plants on more quantitative grounds. The methodology which has been used in gathering, selecting, presenting and comparing the information is discussed in chapter 2. In chapter 3, a general introduction is given on some basic principles of biomass combustion technology. This includes the combustion process, the Rankine steam cycle and NO x formation. Different boiler technologies which are in use for biomass combustion power generation are discussed in chapter 4. The main groups of boilers which are discussed are the pile burners, stoker fired boilers, suspension fired boilers and fluidized bed boilers. The description focuses on aspects such as construction, operation, fuel requirements, efficiencies and emissions. Chapter 5 deals with individual existing or planned biomass combustion plants, resulting from an international inventory. All the different technologies which have been discussed in chapter 4 are discussed in chapter 5 in the context of complete power plants. The information which is presented for each plant comprises a technical description, efficiencies, emissions and investment costs. At the end of chapter 5 an overview of comparable data from the literature is given, as well as an overview of the results of the inventory. 32 figs., 28 tabs., 4 appendices., 51 refs

  4. Development of low cost systems for co-utilisation of biomass in large power plant. Mid term review report

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, W.R.

    2003-07-01

    Interest in the cofiring of biomass materials with coal in large coal-fired power stations in the UK has increased significantly in recent years in response to the potential additional income from Renewables Obligation Certificates (ROCs). It is anticipated that most coal-fired power stations in the UK will have the capability to cofire biomass materials by the end of 2003. This mid-term review report examines the various stages in the route to fully commercial operation of biomass cofiring at coal-fired power stations, the availability of suitable biomass materials in the UK and the technical options for cofiring. The factors affecting the economics of biomass cofiring in large coal-fired boilers are discussed including the delivered price of biofuels, the future value of ROCs, the development costs of cofiring projects, the 25% ceiling on cofiring imposed by the Renewables Obligation Order 2002 and the use of preblending. An overview of the current status of cofiring in the UK is presented, which includes a summary of the results of trials already carried out by operators of coal-fired power stations and a discussion of the future prospects for biomass cofiring in the UK.

  5. Comparison of metaheuristic techniques to determine optimal placement of biomass power plants

    International Nuclear Information System (INIS)

    Reche-Lopez, P.; Ruiz-Reyes, N.; Garcia Galan, S.; Jurado, F.

    2009-01-01

    This paper deals with the application and comparison of several metaheuristic techniques to optimize the placement and supply area of biomass-fueled power plants. Both, trajectory and population-based methods are applied for our goal. In particular, two well-known trajectory method, such as Simulated Annealing (SA) and Tabu Search (TS), and two commonly used population-based methods, such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are hereby considered. In addition, a new binary PSO algorithm has been proposed, which incorporates an inertia weight factor, like the classical continuous approach. The fitness function for the metaheuristics is the profitability index, defined as the ratio between the net present value and the initial investment. In this work, forest residues are considered as biomass source, and the problem constraints are: the generation system must be located inside the supply area, and its maximum electric power is 5 MW. The comparative results obtained by all considered metaheuristics are discussed. Random walk has also been assessed for the problem we deal with.

  6. Scenarios for power production with biomass in the Finnish forest industry

    International Nuclear Information System (INIS)

    Nousiainen, I.K.; Malinen, H.O.; Villa, A.O.

    1997-01-01

    This study presents three scenarios for power production with biomass in Finnish pulp and paper mills. The basic scenario assumes that the production capacity in the forest industry increases as in the past. The green energy scenario assumes that there is a strong demand from the market for sustainable green energy production. The maximum scenario assumes that the production capacity of chemical pulp increases significantly and the use of wood raw material extends to the maximum level. According to the basic scenario the use of biofuels in the pulp and paper mills will increase from starting level, 3.24 Mtoe in 1992, to 5.07 Mtoe by the year 2010. The utilization potential of biofuels will increase to 5.45 Mtoe in green energy and to 6.43 Mtoe in the maximum biofuels scenario. The power production with biomass will increase from the starting level, 572 MW in 1992, to 930 MW in the basic, to 1 100 MW in the green energy and to 1 670 MW in the maximum biofuels scenario by the year 2010. (author)

  7. Three biomass power plants in New England first five years of challenges and solutions

    International Nuclear Information System (INIS)

    LeBlanc, J.D.

    1993-01-01

    Generating electricity from biomass fuels, through stand-alone power plants, represents a renewal of a half-century old plus, renewable technology. New England has generated its electricity sequentially, and still in parallel, from hydro, coal, oil, and nuclear sources during this period, and most recently during the 1980's, from a mixture of various alternate technologies including wood waste fuels and domestic waste fuels. Three plants located in New Hampshire and Maine, of identical power-island design, were constructed in eighteen months, and began operation in the period December, 1987 through March, 1988. These plants almost from the start have experienced an outstanding record of operation, dependability, and reliability. This paper will describe how each plant has fit into its respective location and environment, the personnel, technical and administrative support required, the biomass wood waste production and supply infra-structure which has developed around these facilities; and the technical problems and challenges which arose and were resolved in the process of handling a cantankerous, bulk fuel and turning it into a reliable supply of electricity. These plants are designed around a zero discharge concept. The author will discuss the design features built in, and operating practices which have evolved, to effectively use waste water internally, minimize air emissions, and recycle 100% of its solid waste as an effective fertilizer and soil conditioner

  8. Comparison of metaheuristic techniques to determine optimal placement of biomass power plants

    Energy Technology Data Exchange (ETDEWEB)

    Reche-Lopez, P.; Ruiz-Reyes, N.; Garcia Galan, S. [Telecommunication Engineering Department, University of Jaen Polytechnic School, C/ Alfonso X el Sabio 28, 23700 Linares, Jaen (Spain); Jurado, F. [Electrical Engineering Department, University of Jaen Polytechnic School, C/ Alfonso X el Sabio 28, 23700 Linares, Jaen (Spain)

    2009-08-15

    This paper deals with the application and comparison of several metaheuristic techniques to optimize the placement and supply area of biomass-fueled power plants. Both, trajectory and population-based methods are applied for our goal. In particular, two well-known trajectory method, such as Simulated Annealing (SA) and Tabu Search (TS), and two commonly used population-based methods, such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are hereby considered. In addition, a new binary PSO algorithm has been proposed, which incorporates an inertia weight factor, like the classical continuous approach. The fitness function for the metaheuristics is the profitability index, defined as the ratio between the net present value and the initial investment. In this work, forest residues are considered as biomass source, and the problem constraints are: the generation system must be located inside the supply area, and its maximum electric power is 5 MW. The comparative results obtained by all considered metaheuristics are discussed. Random walk has also been assessed for the problem we deal with. (author)

  9. Design of Biomass Combined Heat and Power (CHP Systems based on Economic Risk using Minimax Regret Criterion

    Directory of Open Access Journals (Sweden)

    Ling Wen Choong

    2018-01-01

    Full Text Available It is a great challenge to identify optimum technologies for CHP systems that utilise biomass and convert it into heat and power. In this respect, industry decision makers are lacking in confidence to invest in biomass CHP due to economic risk from varying energy demand. This research work presents a linear programming systematic framework to design biomass CHP system based on potential loss of profit due to varying energy demand. Minimax Regret Criterion (MRC approach was used to assess maximum regret between selections of the given biomass CHP design based on energy demand. Based on this, the model determined an optimal biomass CHP design with minimum regret in economic opportunity. As Feed-in Tariff (FiT rates affects the revenue of the CHP plant, sensitivity analysis was then performed on FiT rates on the selection of biomass CHP design. Besides, design analysis on the trend of the optimum design selected by model was conducted. To demonstrate the proposed framework in this research, a case study was solved using the proposed approach. The case study focused on designing a biomass CHP system for a palm oil mill (POM due to large energy potential of oil palm biomass in Malaysia.

  10. Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage

    DEFF Research Database (Denmark)

    Zheng, Yingying; Jenkins, Bryan M.; Kornbluth, Kurt

    2018-01-01

    An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy......, utility tariff structure and technical and finical performance of the system components. Engine partial load performance was taken into consideration. Sensitivity analyses demonstrate how the optimal BCHP configuration changes with varying demands and utility tariff rates....

  11. Pellets for Power: sustainable biomass import from Ukraine : public final report

    NARCIS (Netherlands)

    Elbersen, H.W.; Poppens, R.P.; Lesschen, J.P.; Sluis, van der T.; Galytska, M.; Kulyk, M.; Jamblinne, de P.; Kraisvitnii, P.; Rii, O.; Hoekstra, T.

    2013-01-01

    This project responds to the mismatch between on the one hand a growing demand for biomass on the Dutch and EU energy markets with a limited biomass potential and on the other hand large amounts of biomass and biomass potential currently underutilised in Ukraine. Ukraine itself is seen as a very

  12. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S., E-mail: suman.mech09@gmail.com [Department of Mechanical Engineering, NIT, Agarpara, Kolkata – 700109, West Bengal (India); Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com [Department of Mechanical Engineering, IIEST, Shibpur, Howrah – 711103, West Bengal (India)

    2016-07-12

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR) cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (r{sub p}) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio

  13. Techno-economic Assessment of Biomass Pellets for Power Generation in India

    OpenAIRE

    Purohit, P.; Chaturvedi, V.

    2016-01-01

    Biomass pellet production has increased considerably in recent years, mainly due to the demand created by policies and bioenergy-use targets in the European Union (EU). Global biomass pellet production was 24.1 million tonne (Mt) in 2014. In this study, a preliminary attempt has been made to assess the techno-economic feasibility of biomass pellets for electricity generation in India produced from biomass surplus available from agriculture and forestry/wasteland. Biomass surplus availability ...

  14. High temperature corrosion of superheater materials for power production through biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gotthjaelp, K.; Broendsted, P. [Forskningscenter Risoe (Denmark); Jansen, P. [FORCE Institute (Denmark); Montgomery, M.; Nielsen, K.; Maahn, E. [Technical Univ. of Denmark, Corrosion and Surface Techn. Inst. of Manufacturing Engineering (Denmark)

    1996-08-01

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures of selected materials in well-defined corrosive gas environments. The experiments using this facility includes corrosion studies of two types of high temperature resistant steels, Sanvik 8LR30 (18Cr 10Ni Ti) and Sanicro 28 (27Cr 31Ni 4Mo), investigated at 600 deg. C in time intervals up to 300 hours. The influence of HCl (200 ppm) and of SO{sub 2} (300 ppm) on the corrosion progress has been investigated. In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525 deg. C, 600 deg. C, and 700 deg. C. The ashes utilised are from a straw fired power plant and a synthetic ash composed of potassium chloride (KCl) and potassium sulphate (K{sub 2}SO{sub 4}). Different analysis techniques to characterise the composition of the ash coatings have been investigated in order to judge the reliability and accuracy of the SEM-EDX method. The results are considered as an important step towards a better understanding of the high temperature corrosion under the conditions found in biomass fired power plants. One of the problems to solve in a suggested subsequent project is to combine the effect of the aggressive gases (SO{sub 2} and HCl) and the active ash coatings on high temperature corrosion of materials. (EG) 20 refs.

  15. Increased power to heat ratio of small scale CHP plants using biomass fuels and natural gas

    International Nuclear Information System (INIS)

    Savola, Tuula; Fogelholm, Carl-Johan

    2006-01-01

    In this paper, we present a systematic study of process changes for increased power production in 1-20 MW e combined heat and power (CHP) plants. The changes are simulated, and their economic feasibility evaluated by using existing small scale CHP case plants. Increasing power production in decentralised CHP plants that operate according to a certain heat demand could reduce the fuel consumption and CO 2 emissions per power unit produced and improve the feasibility of CHP plant investments. The CHP plant process changes were simulated under design and off design conditions and an analysis of power and heat production, investment costs and CO 2 emissions was performed over the whole annual heat demand. The results show that using biomass fuels, there are profitable possibilities to increase the current power to heat ratios, 0.23-0.48, of the small scale CHP plants up to 0.26-0.56, depending on the size of the plant. The profitable changes were a two stage district heat exchanger and the addition of a steam reheater and a feed water preheater. If natural gas is used as an additional fuel, the power to heat ratio may be increased up to 0.35-0.65 by integrating a gas engine into the process. If the CO 2 savings from the changes are also taken into account, the economic feasibility of the changes increases. The results of this work offer useful performance simulation and investment cost knowledge for the development of more efficient and economically feasible small scale CHP processes

  16. Power/heat production from biomass in Finland - Two modern Finnish examples

    International Nuclear Information System (INIS)

    Aeijaelae, M.

    1997-01-01

    According to this conference paper, Finland is a leading country in the utilization of biomass fuels for power and heat production. One reason is that peat and wood are the only indigenous fuels available in Finland. Other reasons are the strong forest industry and the widely adopted combined heat and power (CHP) production. CHP production is typical of process industry and municipal district heating. The most common boiler type in modern CHP plants is the fluidized bed type. District heating is the cheapest heating in municipalities with a few thousand inhabitants. Electric heating dominates in sparsely populated regions. CHP becomes attractive for populations of more than ten thousand. Two examples are described: (1) Rauhalahti Power Plant produces 140 MW of district heat, 65 MW of industrial steam and 87 MW of electricity. (2) Kuusamo Power Plant produces 6.1 MW electric energy and 17.6 MW district heat; its unique feature is the utilization of the bed mixing dryer for drying of the fuel prior to combustion, this dryer being the first of its kind in the world. 1 figure

  17. Biomass Thermochemical Conversion Program: 1986 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  18. Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density.

    Science.gov (United States)

    Jung, SungHoon; Myung, Yusik; Kim, Bit Na; Kim, In Gyoo; You, In-Kyu; Kim, TaeYoung

    2018-01-30

    Here, we present a facile and low-cost method to produce hierarchically porous graphene-based carbons from a biomass source. Three-dimensional (3D) graphene-based carbons were produced through continuous sequential steps such as the formation and transformation of glucose-based polymers into 3D foam-like structures and their subsequent carbonization to form the corresponding macroporous carbons with thin graphene-based carbon walls of macropores and intersectional carbon skeletons. Physical and chemical activation was then performed on this carbon to create micro- and meso-pores, thereby producing hierarchically porous biomass-derived graphene-based carbons with a high Brunauer-Emmett-Teller specific surface area of 3,657 m 2  g -1 . Owing to its exceptionally high surface area, interconnected hierarchical pore networks, and a high degree of graphitization, this carbon exhibited a high specific capacitance of 175 F g -1 in ionic liquid electrolyte. A supercapacitor constructed with this carbon yielded a maximum energy density of 74 Wh kg -1 and a maximum power density of 408 kW kg -1 , based on the total mass of electrodes, which is comparable to those of the state-of-the-art graphene-based carbons. This approach holds promise for the low-cost and readily scalable production of high performance electrode materials for supercapacitors.

  19. A Honey Bee Foraging approach for optimal location of a biomass power plant

    Energy Technology Data Exchange (ETDEWEB)

    Vera, David; Jurado, Francisco [Dept. of Electrical Engineering, University of Jaen, 23700 EPS Linares, Jaen (Spain); Carabias, Julio; Ruiz-Reyes, Nicolas [Dept. of Telecommunication Engineering, University of Jaen, 23700 EPS Linares, Jaen (Spain)

    2010-07-15

    Over eight million hectares of olive trees are cultivated worldwide, especially in Mediterranean countries, where more than 97% of the world's olive oil is produced. The three major olive oil producers worldwide are Spain, Italy, and Greece. Olive tree pruning residues are an autochthonous and important renewable source that, in most of cases, farmers burn through an uncontrolled manner. Besides, industrial uses have not yet been developed. The aim of this paper consists of a new calculation tool based on particles swarm (Binary Honey Bee Foraging, BHBF). Effectively, this approach will make possible to determine the optimal location, biomass supply area and power plant size that offer the best profitability for investor. Moreover, it prevents the accurate method (not feasible from computational viewpoint). In this work, Profitability Index (PI) is set as the fitness function for the BHBF approach. Results are compared with other evolutionary optimization algorithms such as Binary Particle Swarm Optimization (BPSO), and Genetic Algorithms (GA). All the experiments have shown that the optimal plant size is 2 MW, PI = 3.3122, the best location corresponds to coordinate: X = 49, Y = 97 and biomass supply area is 161.33 km{sup 2}. The simulation times have been reduced to the ninth of time than the greedy (accurate) solution. Matlab registered is used to run all simulations. (author)

  20. Sustainable model for financial viability of decentralized biomass gasifier based power projects

    International Nuclear Information System (INIS)

    Palit, Debajit; Malhotra, Ramit; Kumar, Atul

    2011-01-01

    This paper made a modest attempt for designing a sustainable model for financial viability of biomass gasifier power projects for enhancing electricity access in India and other developing countries. For long term sustainability of distributed generation projects in remote rural areas, viability from both project implementing agency (PIA) and the end-users need to be ensured. The minimum required prices of electricity from both PIA and end-user perspective have been estimated. While for PIA the cost recovery is the key for viability, the affordability to pay the electricity cost is crucial for the end users. Analysis carried out in this paper on the basis of data obtained from operational projects implemented in India reveal that it is essential to operate the system at a higher capacity utilization factor. While this can be achieved though creating convergence with locally relevant economic activity, it is also observed that micro-enterprises cannot pay beyond a certain price of electricity to keep it sustainable. This paper sets forth a case for developing a regulatory mechanism to extend the tariff fixation for the projects and providing cross-subsidies to ensure long term sustainability of off-grid project. - Highlights: → We design sustainable financial model for viability of biomass gasifier projects. → Analysis based on field data obtained from operational projects in India. Estimated electricity pricing from both implementing agency and end-users perspective. → A regulatory mechanism for tariff fixation and cross subsidization is recommended.

  1. Integration of biomass into urban energy systems for heat and power. Part I: An MILP based spatial optimization methodology

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of multi-biomass supply chains and biomass to biofuel processing technologies. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents a mixed integer linear programming (MILP) approach to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the representation of the relationships between the biomass processing and biofuel energy conversion steps, and on the trade-offs between centralized district heating plants and local heat generation systems. After a description of state of the art and research trends in urban energy systems and bioenergy modelling, an application of the methodology to a generic case study is proposed. With the assumed techno-economic parameters, biomass based thermal energy generation results competitive with natural gas, while district heating network results the main option for urban areas with high thermal energy demand density. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  2. Monetization of External Costs Using Lifecycle Analysis—A Comparative Case Study of Coal-Fired and Biomass Power Plants in Northeast China

    Directory of Open Access Journals (Sweden)

    Lingling Wang

    2015-02-01

    Full Text Available In this study, the structures of external costs are built in line with coal-fired and biomass power plant life cycle activities in Northeast China. The external cost of coal-fired and biomass power plants was compared, using the lifecycle approach. In addition, the external costs of a biomass power plant are calculated for each stage for comparison with those of a coal-fired power plant. The results highlight that the external costs of a coal-fired plant are 0.072 US $/kWh, which are much higher than that of a biomass power plant, 0.00012 US$/kWh. The external cost of coal-fired power generation is as much as 90% of the current price of electricity generated by coal, while the external cost of a biomass power plant is 1/1000 of the current price of electricity generated by biomass. In addition, for a biomass power plant, the external cost associated with SO2, NOX, and PM2.5 are particularly lower than those of a coal-fired power plant. The prospect of establishing precise estimations for external cost mechanisms and sustainable energy policies is discussed to show a possible direction for future energy schemes in China. The paper has significant value for supporting the biomass power industry and taxing or regulating coal-fired power industry to optimize the energy structure in China.

  3. An investigation into a laboratory scale bubble column humidification dehumidification desalination system powered by biomass energy

    International Nuclear Information System (INIS)

    Rajaseenivasan, T.; Srithar, K.

    2017-01-01

    Highlights: • A biomass based humidification dehumidification desalination system is tested. • System is analyzed with the direct and preheated air supply. • Highest distillate rate of 6.1 kg/h is collected with the preheated air supply. • The minimum fuel feed of 0.2 kg is needed to produce 1 kg of fresh water. - Abstract: This article describes a biomass powered bubble column humidification-dehumidification desalination system. This system mainly consists of a biomass stove, air heat exchanger, bubble column humidifier and dehumidifier. Saw dust briquettes are used as biomass fuel in the stove. First level of experiments are carried out in bubble column humidifier with ambient air supply to select the best water depth, bubble pipe hole diameter and water temperature. Experiments are conducted by integrating the humidifier with the dehumidifier. Air is sent to the humidifier with and without pre-heating. Preheating of air is carried out in the air heat exchanger by using the flue gas and flame from the combustion chamber. It is observed that the humidifier ability is augmented with the rise in water depth, water temperature, mass flow rate of air and cooling water flow rate, and reduction in bubble pipe hole diameter. It is found from Taguchi analysis that the water temperature dominates in controlling the humidifier performance compared to other parameters. Better specific humidity is recorded with a bubble pipe hole diameter of 1 mm, water depth of 170 mm and water temperature of 60 °C. Highest distillate of 6.1 kg/h and 3.5 kg/h is collected for the HDH desalination system with preheated air and direct air supply respectively. Recovery of waste heat using an air heat exchanger reduces the fuel consumption from 0.36 kg to 0.2 kg for producing 1 kg of distilled water. Lowest distilled water cost of 0.0133 US $/kg through preheated air supply and 0.0231 US $/kg through direct air supply is observed. A correlation is developed to estimate the mass transfer

  4. Corrosion and Materials Performance in biomass fired and co-fired power plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH; Biede, O

    2003-01-01

    not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Co-firing of straw (10...... and 20% energy basis) with coal has shown corrosion rates lower than those in straw-fired plants. With both 10 and 20% straw, no chlorine corrosion was seen. This paper will describe the results from in situ investigations undertaken in Denmark on high temperature corrosion in biomass fired plants....... Results from 100% straw-firing, woodchip and co-firing of straw with coal will be reported. The corrosion mechanisms observed are summarized and the corrosion rates for 18-8 type stainless steels are compared....

  5. Cob biomass supply for combined heat and power and biofuel in the north central USA

    International Nuclear Information System (INIS)

    Schmer, Marty R.; Dose, Heather L.

    2014-01-01

    Corn (Zea mays L.) cobs are being evaluated as a potential bioenergy feedstock for combined heat and power generation (CHP) and conversion into a biofuel. The objective of this study was to determine corn cob availability in north central United States (Minnesota, North Dakota, and South Dakota) using existing corn grain ethanol plants as a proxy for possible future co-located cellulosic ethanol plants. Cob production estimates averaged 6.04 Tg and 8.87 Tg using a 40 km radius area and 80 km radius area, respectively, from existing corn grain ethanol plants. The use of CHP from cobs reduces overall GHG emissions by 60%–65% from existing dry mill ethanol plants. An integrated biorefinery further reduces corn grain ethanol GHG emissions with estimated ranges from 13.9 g CO 2  equiv MJ −1 to 17.4 g CO 2  equiv MJ −1 . Significant radius area overlap (53% overlap for 40 km radius and 86% overlap for 80 km radius) exists for cob availability between current corn grain ethanol plants in this region suggesting possible cob supply constraints for a mature biofuel industry. A multi-feedstock approach will likely be required to meet multiple end user renewable energy requirements for the north central United States. Economic and feedstock logistics models need to account for possible supply constraints under a mature biofuel industry. - Highlights: • Corn cob biomass was estimated for the north central United States region. • Cobs were evaluated for combined heat and power generation and bioethanol. • Co-located ethanol plants showed a reduction in greenhouse gas emissions. • Biomass supply constraints may occur under a mature cellulosic ethanol scenario

  6. Opportunities for biomass-derived 'bio-oil' in European heat and power markets

    International Nuclear Information System (INIS)

    Brammer, J.G.; Lauer, M.; Bridgwater, A.V.

    2006-01-01

    Bio-oil (biomass fast pyrolysis) systems for heat, power or CHP production are nearing demonstration status. Their commercial attractiveness will depend on many factors, and will vary with the application, the scale, and importantly the location and its associated economic and logistical factors. The objective of this work, carried out as part of an EC-ALTENER project, was to evaluate the opportunities for bio-oil in the heat and power markets of Europe. Bio-oil applications were compared with conventional (fossil) alternatives for the same heat and power duty. The evaluation was carried out by a quantitative assessment of the economic competitiveness of standard applications in 14 European countries. Location-specific data were collected, and combined with technology-specific data obtained from earlier work. A competitiveness factor (c F ) was derived which represents the total annual cost of a conventional alternative relative to a bio-oil application. The results showed a wide variation across Europe. A total of six countries had at least one bio-oil application which was economically competitive. Heat-only applications were found to be the most economically competitive, followed by CHP applications, with electricity-only applications only very rarely competitive. For a given technology, the larger the scale, the better the competitiveness

  7. Opportunities for biomass-derived 'bio-oil' in European heat and power markets

    International Nuclear Information System (INIS)

    Brammer, J.G.; Bridgwater, A.V.

    2006-01-01

    Bio-oil (biomass fast pyrolysis) systems for heat, power or CHP production are nearing demonstration status. Their commercial attractiveness will depend on many factors, and will vary with the application, the scale, and importantly the location and its associated economic and logistical factors. The objective of this work, carried out as part of an EC-ALTENER project, was to evaluate the opportunities for bio-oil in the heat and power markets of Europe. Bio-oil applications were compared with conventional (fossil) alternatives for the same heat and power duty. The evaluation was carried out by a quantitative assessment of the economic competitiveness of standard applications in 14 European countries. Location-specific data were collected, and combined with technology-specific data obtained from earlier work. A competitiveness factor (c F ) was derived which represents the total annual cost of a conventional alternative relative to a bio-oil application. The results showed a wide variation across Europe. A total of six countries had at least one bio-oil application which was economically competitive. Heat-only applications were found to be the most economically competitive, followed by CHP applications, with electricity-only applications only very rarely competitive. For a given technology, the larger the scale, the better the competitiveness. (author)

  8. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material

    Directory of Open Access Journals (Sweden)

    Juan Camilo Solarte-Toro

    2018-05-01

    Full Text Available The use of nonrenewable energy sources to provide the worldwide energy needs has caused different problems such as global warming, water pollution, and smog production. In this sense, lignocellulosic biomass has been postulated as a renewable energy source able to produce energy carriers that can cover this energy demand. Biogas and syngas are two energy vectors that have been suggested to generate heat and power through their use in cogeneration systems. Therefore, the aim of this review is to develop a comparison between these energy vectors considering their main features based on literature reports. In addition, a techno-economic and energy assessment of the heat and power generation using these vectors as energy sources is performed. If lignocellulosic biomass is used as raw material, biogas is more commonly used for cogeneration purposes than syngas. However, syngas from biomass gasification has a great potential to be employed as a chemical platform in the production of value-added products. Moreover, the investment costs to generate heat and power from lignocellulosic materials using the anaerobic digestion technology are higher than those using the gasification technology. As a conclusion, it was evidenced that upgraded biogas has a higher potential to produce heat and power than syngas. Nevertheless, the implementation of both energy vectors into the energy market is important to cover the increasing worldwide energy demand.How to cite: Solarte-Toro JC, Chacón-Pérez Y, Cardona-Alzate CA. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron J Biotechnol 2018:33. https://doi.org/10.1016/j.ejbt.2018.03.005 Keywords: Anaerobic digestion, Biogas power generation, Biomass gasification, Biomethane, Energy sources, Energy vectors, Heat generation, Lignocellulosic energy production, Power generation, Renewable energy, Syngas production

  9. Characterization of biomass producer gas as fuel for stationary gas engines in combined heat and power production

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2008-01-01

    The aim of this project has been the characterization of biomass producer gas as a fuel for stationary gas engines in heat and power production. More than 3200 hours of gas engine operation, with producer gas as fuel, has been conducted at the biomass gasification combined heat and power (CHP...... different measuring methods. Likewise, no particles were detected in the gas. Considerable amounts of NH3 were measured in the produced gas.An analysis of engine operation at varying load has been carried out. Standard emissions, load and efficiency have been measured at varying operating conditions ranging...... from 50% to 90% load. Biomass producer gas is an excellent lean burn engine fuel: Operation of a natural aspirated engine has been achieved for 1.2...

  10. Purchase of power by State Electricity Boards from biomass gasifier systems: formulating a long term national policy

    International Nuclear Information System (INIS)

    Jain, B.C.

    1992-01-01

    Current policy for purchase of power from renewable sources of energy by State Electricity Boards in India is examined and certain changes in that policy are suggested. State Electricity Boards are reluctant to buy power from renewables as such a purchase is seen by the Boards as being of against their economic interests. But if socio-environmental and climatological costs of power of thermal plants are taken into consideration, it becomes imperative that a long term policy for power purchase from renewables by electricity boards will have to be followed. Such a policy is outlined. After giving formulae for unit cost of generation from thermal power plants, diesel generation (DG) sets and biomass gasification, it is recommended that basis for the purchase price for power generated through biomass gas should be the cost of generation through DG sets or cost of generation through biomass gasification whichever is lower. A clause for automatic price escalation should also be a part of such policy. Some measures to compensate electricity boards for purchase of power from renewables are suggested. They include levying of a special surcharge by boards on their electricity sales and funding by the Central Government. (M.G.B.)

  11. Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil

    International Nuclear Information System (INIS)

    Seabra, Joaquim E.A.; Macedo, Isaias C.

    2011-01-01

    This work compares the technical, economic and environmental (GHG emissions mitigation) performance of power generation and ethanol production from sugarcane residual biomass, considering conversion plants adjacent to a sugarcane mill in Brazil. Systems performances were simulated for a projected enzymatic saccharification co-fermentation plant (Ethanol option) and for a commercial steam-Rankine power plant (Electricity option). Surplus bagasse from the mill would be used as fuel/raw material for conversion, while cane trash collected from the field would be used as supplementary fuel at the mill. For the Electricity option, the sugarcane biorefinery (mill+adjacent plant) would produce 91 L of ethanol per tonne of cane and export 130 kWh/t of cane, while for the Ethanol option the total ethanol production would be 124 L/t of cane with an electricity surplus of 50 kWh/t cane. The return on investment (ROI) related to the biochemical conversion route was 15.9%, compared with 23.2% for the power plant, for the conditions in Brazil. Considering the GHG emissions mitigation, the environmentally preferred option is the biochemical conversion route: the net avoided emissions associated to the adjacent plants are estimated to be 493 and 781 kgCO 2 eq/t of dry bagasse for the Electricity and Ethanol options, respectively. - Research Highlights: → Power generation would present better profitability than ethanol production from sugarcane residues in Brazil, in the reference scenario adopted here. → The Ethanol option would be able to mitigate more GHG emissions in Brazil. → The economics for the ethanol production technology are more likely to improve in the future.

  12. Safety - a Neglected Issue When Introducing Solid Biomass Fuel in Thermal Power Plants? Some Evidence of an Emerging Risk

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess; Astad, John

    2013-01-01

    The paper examines recent evidence from Denmark and abroad with climate change projects that aim to reduce global carbon dioxide emissions by converting coal fired thermal power plants to solid biomass fuel. The paper argues that projects appear to be pursued narrow-mindedly with insufficient att...

  13. Renewable energies: the choice of invitation to tender candidates for the electric power plants supplied by biomass or biogas

    International Nuclear Information System (INIS)

    2005-01-01

    To contribute to the french objectives of renewable energies development, the Ministry of Industry proposed an invitation to tender for the realization at the first of january 2007 of electric power plants (more than 12 MW) from biomass and biogas. This document presents the selected projects. (A.L.B.)

  14. Feasibility study for biomass power plants in Thailand. Volume 2. appendix: Detailed financial analysis results. Export trade information

    International Nuclear Information System (INIS)

    1997-01-01

    This study, conducted by Black and Veatch, was funded by the U.S. Trade and Development Agency. The report presents a technical and commercial analysis for the development of three nearly identical electricity generating facilities (biomass steam power plants) in the towns of Chachgoengsao, Suphan Buri, and Pichit in Thailand. Volume 2 of the study contains the following appendix: Detailed Financial Analysis Results

  15. Phylogeny is a powerful tool for predicting plant biomass responses to nitrogen enrichment.

    Science.gov (United States)

    Wooliver, Rachel C; Marion, Zachary H; Peterson, Christopher R; Potts, Brad M; Senior, John K; Bailey, Joseph K; Schweitzer, Jennifer A

    2017-08-01

    Increasing rates of anthropogenic nitrogen (N) enrichment to soils often lead to the dominance of nitrophilic plant species and reduce plant diversity in natural ecosystems. Yet, we lack a framework to predict which species will be winners or losers in soil N enrichment scenarios, a framework that current literature suggests should integrate plant phylogeny, functional tradeoffs, and nutrient co-limitation. Using a controlled fertilization experiment, we quantified biomass responses to N enrichment for 23 forest tree species within the genus Eucalyptus that are native to Tasmania, Australia. Based on previous work with these species' responses to global change factors and theory on the evolution of plant resource-use strategies, we hypothesized that (1) growth responses to N enrichment are phylogenetically structured, (2) species with more resource-acquisitive functional traits have greater growth responses to N enrichment, and (3) phosphorus (P) limits growth responses to N enrichment differentially across species, wherein P enrichment increases growth responses to N enrichment more in some species than others. We built a hierarchical Bayesian model estimating effects of functional traits (specific leaf area, specific stem density, and specific root length) and P fertilization on species' biomass responses to N, which we then compared between lineages to determine whether phylogeny explains variation in responses to N. In concordance with literature on N limitation, a majority of species responded strongly and positively to N enrichment. Mean responses ranged three-fold, from 6.21 (E. pulchella) to 16.87 (E. delegatensis) percent increases in biomass per g N·m -2 ·yr -1 added. We identified a strong difference in responses to N between two phylogenetic lineages in the Eucalyptus subgenus Symphyomyrtus, suggesting that shared ancestry explains variation in N limitation. However, our model indicated that after controlling for phylogenetic non

  16. Committees and sponsors

    Science.gov (United States)

    2011-10-01

    International Advisory Committee Richard F CastenYale, USA Luiz Carlos ChamonSão Paulo, Brazil Osvaldo CivitareseLa Plata, Argentina Jozsef CsehATOMKI, Hungary Jerry P DraayerLSU, USA Alfredo Galindo-UribarriORNL & UT, USA James J KolataNotre Dame, USA Jorge López UTEP, USA Joseph B NatowitzTexas A & M, USA Ma Esther Ortiz IF-UNAM Stuart PittelDelaware, USA Andrés SandovalIF-UNAM Adam SzczepaniakIndiana, USA Piet Van IsackerGANIL, France Michael WiescherNotre Dame, USA Organizing Committee Libertad Barrón-Palos (Chair)IF-UNAM Roelof BijkerICN-UNAM Ruben FossionICN-UNAM David LizcanoININ Sponsors Instituto de Ciencias Nucleares, UNAMInstituto de Física, UNAMInstituto Nacional de Investigaciones NuclearesDivisión de Física Nuclear de la SMFCentro Latinoamericano de Física

  17. IMPROVING SPECIFIC POWER CONSUMPTION FOR MECHANICAL MIXING OF THE FEEDSTOCK IN A BIOGAS FERMENTER BY MECHANICAL DISINTEGRATION OF LIGNOCELLULOSE BIOMASS

    Directory of Open Access Journals (Sweden)

    Lukas Kratky

    2014-10-01

    Full Text Available Lignocellulosic biomass particles in biogas fermenter batch either sediment towards vessel bottom or rise towards batch surface, where they float and form a compact thick scum. These processes have primarily the negative influence on batch homogeneity, on evenness of batch temperature field, on removal of produced biogas bubbles out of liquid batch and also on mass transfer among microorganisms. These facts result in non-effective usage of biomass energy-potential that entails in low biogas yields. Therefore, good mixing of bioreactor batch is very important in order to stabilize anaerobic digestion process. The aims of the present study were to evaluate the impact of wheat straw disintegration and its hydration on hydrodynamic behaviour and on specific power consumption for mechanical mixing of wheat straw-water suspension. Based on experimental results, it was concluded that both hydration and mechanical disintegration of lignocellulosic biomass significantly improve homogeneity and pump-ability of biomass-water batches. Wheat straw hydration itself decreases specific power consumption for batch mixing by 60 % towards untreated straw. Moreover, mechanical disintegration itself decreases specific power consumption by 50 % at least towards untreated hydrated straw.

  18. Strategy for optimal operation of a biomass-fired cogeneration power plant

    International Nuclear Information System (INIS)

    Prasertsan, S.; Krukanont, P.; Nigamsritragul, P.; Kirirat, P.

    2001-01-01

    Biomass-fired cogeneration not only is an environmentally friendly energy production, but also possesses high energy conversion efficiency. Generally, the wood product industry requires both heat and electricity. Combined heat and power generation (cogeneration) using wood residue has a three-fold benefit: waste minimization, reduction of an energy-related production cost and additional income from selling the excess electricity to the utility. In reality, the process heat demand fluctuates according to the production activities in the factory. The fluctuation of process heat demand affects the cogeneration efficiency and the electricity output and, consequently, the financial return, since the prices of heat and electricity are different. A study by computer simulation to establish a guideline for optimum operation of a process heat fluctuating cogeneration power plant is presented. The power plant was designed for a sawmill and an adjacent plywood factory using wood wastes from these two processes. The maximum boiler thermal load is 81.9 MW while the electricity output is in the range 19-24 MW and the process heat 10-30 MW. Two modes of operation were studied, namely the full (boiler) load and the partial (boiler) load. In the full load operation, the power plant is operated at a maximum boiler thermal load, while the extracted steam is varied to meet the steam demand of the wood-drying kilns and the plywood production. The partial load operation was designed for the partially fuelled boiler to provide sufficient steam for the process and to generate electricity at a desired capacity ranging from the firmed contract of 19 MW to the turbine maximum capacity of 24 MW. It was found that the steam for process heat has an allowable extracting range, which is limited by the low pressure feed water heater. The optimum operation for both full and partial load occurs at the lower limit of the extracting steam. A guideline for optimum operation at various combinations of

  19. Economic analysis of biomass power generation schemes under renewable energy initiative with Renewable Portfolio Standards (RPS) in Korea.

    Science.gov (United States)

    Moon, Ji-Hong; Lee, Jeung-Woo; Lee, Uen-Do

    2011-10-01

    An economic analysis of biomass power generation was conducted. Two key technologies--direct combustion with a steam turbine and gasification with a syngas engine--were mainly examined. In view of the present domestic biomass infrastructure of Korea, a small and distributed power generation system ranging from 0.5 to 5 MW(e) was considered. It was found that gasification with a syngas engine becomes more economically feasible as the plant size decreases. Changes in the economic feasibilities with and without RPS or heat sales were also investigated. A sensitivity analysis of each system was conducted for representative parameters. Regarding the cost of electricity generation, electrical efficiency and fuel cost significantly affect both direct combustion and gasification systems. Regarding the internal rate of return (IRR), the heat sales price becomes important for obtaining a higher IRR, followed by power generation capacity and electrical efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Alkali deposits found in biomass power plants: A preliminary investigation of their extent and nature. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States); Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Bryers, R.W. [Foster Wheeler Development Corp., Livingston, NJ (United States); Jenkins, B.M. [California Univ., Davis, CA (United States); Oden, L.L. [Bureau of Mines, Albany, OR (United States). Albany Research Center

    1995-04-15

    Alkali in the ash of annual crop biomass fuels creates serious fouling and slagging in conventional boilers. Even with the use of sorbents and other additives, power plants can only fire limited amounts of these fuels in combination with wood. The National Renewable Energy Laboratory (NREL), US Department of Energy, and the biomass power industry carried out eight full-scale firing tests and several laboratory experiments to study the nature and occurrence of deposits with the goal of increasing the quantities of these biofuels that can be used. This report describes the results of the laboratory and power plant tests that included: tracking and analyzing fuels and deposits by various methods; recording operating conditions; and extensive laboratory testing. The paper describes the occurrence of deposits, fuel and deposit analyses, boiler design and operation, fouling and slagging indicators, and recommendations. 37 refs., 41 figs., 17 tabs.

  1. A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Mathiesen, Brian Vad; Möller, Bernd

    2010-01-01

    Aalborg Municipality, Denmark, wishes to investigate the possibilities of becoming independent of fossil fuels. This article describes a scenario for supplying Aalborg Municipality’s energy needs through a combination of low-temperature geothermal heat, wind power and biomass. Of particular focus...... in the scenario is how low-temperature geothermal heat may be utilised in district heating (DH) systems. The analyses show that it is possible to cover Aalborg Municipality’s energy needs through the use of locally available sources in combination with significant electricity savings, heat savings, reductions...... in industrial fuel use and savings and fuel-substitutions in the transport sector. With biomass resources being finite, the two marginal energy resources in Aalborg are geothermal heat and wind power. If geothermal heat is utilised more, wind power may be limited and vice versa. The system still relies...

  2. Integrated firewood production, ensures fuel security for self sustaining Biomass Power Plants reduces agricultural cost and provides livestock production

    International Nuclear Information System (INIS)

    Lim, Andre

    2010-01-01

    Growing concerns on the impact of climate change, constraints on fossil fuel electricity generation and the likelihood of oil depletion is driving unprecedented growth and investment in renewable energy across the world. The consistency of biomass power plants makes them capable of replacing coal and nuclear for base-load. However experience had shown otherwise, climate change reduces yields, uncontrolled approvals for biomass boilers increased demands and at times motivated by greedy farmers have raised price of otherwise a problematic agricultural waste to high secondary income stream forcing disruption to fuel supply to power plants and even their shutting down. The solution is to established secured fuel sources, fortunately in Asia there are several species of trees that are fast growing and have sufficient yields to make their harvesting economically viable for power production. (author)

  3. Evaluation of design and operation of fuel handling systems for 25 MW biomass fueled CFB power plants

    International Nuclear Information System (INIS)

    Precht, D.

    1991-01-01

    Two circulating fluidized bed, biomass fueled, 25MW power plants were placed into operation by Thermo Electron Energy Systems in California during late 1989. This paper discusses the initial fuel and system considerations, system design, actual operating fuel characterisitics, system operation during the first year and modifications. Biomass fuels handled by the system include urban/manufacturing wood wastes and agricultural wastes in the form of orchard prunings, vineyard prunings, pits, shells, rice hulls and straws. Equipment utilized in the fuel handling system are described and costs are evaluated. Lessons learned from the design and operational experience are offered for consideration on future biomass fueled installations where definition of fuel quality and type is subject to change

  4. Biomass analysis at palm oil factory as an electric power plant

    Science.gov (United States)

    Yusniati; Parinduri, Luthfi; Krianto Sulaiman, Oris

    2018-04-01

    Biomassa found in palm oil mill industryis a by-product such as palm shell, fiber, empty fruit bunches and pome. The material can be used as an alternative fuel for fossil fuel. On PTPN IVpalm oil millDolokSinumbah with a capacity of 30 tons tbs/hour of palm fruit fiber and palm shells has been utilized as boiler fuel to produce steam to supplyboilers power plant. With this utilization, the use of generators that using fossil fuel can be reduced, this would provide added value for the company. From the analysis, the fiber and shell materials were sufficient to supply 18 tons/hoursteam for the boiler. Shell material even excess as much as 441,5 tons per month. By utilizing the 2 types of biomass that is available alone, the electricity needs of the factory of 734 Kwh can be met. While other materials such as empty bunches and pome can be utilized to increase the added value and profitability for the palm oil mill.

  5. Biomass gasifier projects for decentralized power supply in India: A financial evaluation

    International Nuclear Information System (INIS)

    Nouni, M.R.; Mullick, S.C.; Kandpal, T.C.

    2007-01-01

    Results of a techno-economic evaluation of biomass gasifier based projects for decentralized power supply for remote locations in India are presented. Contributions of different components of diesel engine generator (DG) sets, dual fuel (DF) engine generator sets and 100% producer gas (HPG) engine generator sets to their capital costs as well as to the levelized unit cost of electricity (LUCE) delivered by the same have been analyzed. LUCE delivered to the consumers has been estimated to be varying in the range of Rs. 13.14-24.49/kWh (US$ 0.30-0.55/kWh) for DF BGPP. LUCE increases significantly if BGPP is operated at part loads. Presently available 40kW capacity HPG systems in India are expected to be financially competitive with a DG set of equivalent capacity beyond a break-even diesel price of Rs. 34.70/l. It is expected to be financially more attractive than an equivalent capacity DF BGPP for diesel prices of more than Rs. 44.29/l. In certain specific conditions operating two smaller capacity systems has been found to be attractive as against a single larger capacity system

  6. Powerful peracetic acid-ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Uju; Goto, Masahiro; Kamiya, Noriho

    2016-08-01

    The aim of this work was to design a new method for the efficient saccharification of lignocellulosic biomass (LB) using a combination of peracetic acid (PAA) pretreatment with ionic liquid (IL)-HCl hydrolysis. The pretreatment of LBs with PAA disrupted the lignin fractions, enhanced the dissolution of LB and led to a significant increase in the initial rate of the IL-HCl hydrolysis. The pretreatment of Bagasse with PAA prior to its 1-buthyl-3-methylimidazolium chloride ([Bmim][Cl])-HCl hydrolysis, led to an improvement in the cellulose conversion from 20% to 70% in 1.5h. Interestingly, the 1-buthyl-3-methylpyridium chloride ([Bmpy][Cl])-HCl hydrolysis of Bagasse gave a cellulose conversion greater than 80%, with or without the PAA pretreatment. For LB derived from seaweed waste, the cellulose conversion reached 98% in 1h. The strong hydrolysis power of [Bmpy][Cl] was attributed to its ability to transform cellulose I to II, and lowering the degree of polymerization of cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact

    International Nuclear Information System (INIS)

    Yang, Y.; Brammer, J.G.; Wright, D.G.; Scott, J.A.; Serrano, C.; Bridgwater, A.V.

    2017-01-01

    Highlights: • Performance of the Pyrolysis and CHP systems is studied and evaluated. • Overall CHP efficiency of the 1000 kg/h Pyro-CHP system is 42.5%. • Levelised Energy Cost is high, but the optimistic scenario is potentially profitable. • Life-cycle GHG analysis shows strong positive environmental benefits. - Abstract: Combined heat and power from the intermediate pyrolysis of biomass materials offers flexible, on-demand renewable energy with some significant advantages over other renewable routes. To maximise the deployment of this technology an understanding of the dynamics and sensitivities of such a system is required. In the present work the system performance, economics and life-cycle environmental impact is analysed with the aid of the process simulation software Aspen Plus. Under the base conditions for the UK, such schemes are not currently economically competitive with energy and char products produced from conventional means. However, under certain scenarios as modelled using a sensitivity analysis this technology can compete and can therefore potentially contribute to the energy and resource sustainability of the economy, particularly in on-site applications with low-value waste feedstocks. The major areas for potential performance improvement are in reactor cost reductions, the reliable use of waste feedstocks and a high value end use for the char by-product from pyrolysis.

  8. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.

    Science.gov (United States)

    Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin

    2016-01-01

    The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Biomass from agriculture in small-scale combined heat and power plants - A comparative life cycle assessment

    International Nuclear Information System (INIS)

    Kimming, M.; Sundberg, C.; Nordberg, A.; Baky, A.; Bernesson, S.; Noren, O.; Hansson, P.-A.

    2011-01-01

    Biomass produced on farm land is a renewable fuel that can prove suitable for small-scale combined heat and power (CHP) plants in rural areas. However, it can still be questioned if biomass-based energy generation is a good environmental choice with regards to the impact on greenhouse gas emissions, and if there are negative consequences of using of agricultural land for other purposes than food production. In this study, a simplified life cycle assessment (LCA) was conducted over four scenarios for supply of the entire demand of power and heat of a rural village. Three of the scenarios are based on utilization of biomass in 100 kW (e) combined heat and power (CHP) systems and the fourth is based on fossil fuel in a large-scale plant. The biomass systems analyzed were based on 1) biogas production with ley as substrate and the biogas combusted in a microturbine, 2) gasification of willow chips and the product gas combusted in an IC-engine and 3) combustion of willow chips for a Stirling engine. The two first scenarios also require a straw boiler. The results show that the biomass-based scenarios reduce greenhouse gas emissions considerably compared to the scenario based on fossil fuel, but have higher acidifying emissions. Scenario 1 has by far the best performance with respect to global warming potential and the advantage of utilizing a byproduct and thus not occupying extra land. Scenario 2 and 3 require less primary energy and less fossil energy input than 1, but set-aside land for willow production must be available. The low electric efficiency of scenario 3 makes it an unsuitable option.

  10. Reduction of CO2 emission by INCAM model in Malaysia biomass power plants during the year 2016.

    Science.gov (United States)

    Amin, Nor Aishah Saidina; Talebian-Kiakalaieh, Amin

    2018-03-01

    As the world's second largest palm oil producer and exporter, Malaysia could capitalize on its oil palm biomass waste for power generation. The emission factors from this renewable energy source are far lower than that of fossil fuels. This study applies an integrated carbon accounting and mitigation (INCAM) model to calculate the amount of CO 2 emissions from two biomass thermal power plants. The CO 2 emissions released from biomass plants utilizing empty fruit bunch (EFB) and palm oil mill effluent (POME), as alternative fuels for powering steam and gas turbines, were determined using the INCAM model. Each section emitting CO 2 in the power plant, known as the carbon accounting center (CAC), was measured for its carbon profile (CP) and carbon index (CI). The carbon performance indicator (CPI) included electricity, fuel and water consumption, solid waste and waste-water generation. The carbon emission index (CEI) and carbon emission profile (CEP), based on the total monthly carbon production, were determined across the CPI. Various innovative strategies resulted in a 20%-90% reduction of CO 2 emissions. The implementation of reduction strategies significantly reduced the CO 2 emission levels. Based on the model, utilization of EFB and POME in the facilities could significantly reduce the CO 2 emissions and increase the potential for waste to energy initiatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Development of an innovative polygeneration process in hybrid solar-biomass system for combined power, cooling and desalination

    International Nuclear Information System (INIS)

    Sahoo, U.; Kumar, R.; Pant, P.C.; Chaudhary, R.

    2017-01-01

    Highlights: • Heat utilization from solar and biomass resources are considered for hybridization. • Modeling of polygeneration process in hybrid solar-biomass power plant is considered. • Thermodynamic evaluation are performed to identify the effect of various parameters. • Primary Energy Saving of polygeneration process is determined. - Abstract: In the polygeneration process simultaneous production of power, vapor absorption refrigeration (VAR) cooling and multi-effect humidification and dehumidification (MEHD) desalination system from different heat sources in hybrid solar-biomass (HSB) system with higher energy efficiency take place. It is one of the solutions to fulfill energy requirements from renewable sources and also helps in the reduction of carbon dioxide emissions. The VAR cooling system operates using the extracted heat taken from turbine and condenser heat of the VAR cooling system is used in desalination system for production of drinking water as per demand requirement. Though the production of electricity decreases due to extraction of heat from turbine for VAR cooling and desalination, the complete system meets the energy requirements & increases the primary energy savings (PES). The thermodynamic evaluation and optimization of HSB system in polygeneration process for combined power, cooling and desalination is investigated to identify the effects of various operating parameters. Primary energy savings (PES) of polygeneration process in HSB system is achieved to 50.5%. The energy output is increased to 78.12% from this system as compared to simple power plant.

  12. Optimal Level of Woody Biomass Co-Firing with Coal Power Plant Considering Advanced Feedstock Logistics System

    Directory of Open Access Journals (Sweden)

    Sangpil Ko

    2018-05-01

    Full Text Available Co-firing from woody biomass feedstock is one of the alternatives toward increased use of renewable feedstock in existing coal power plants. However, the economic level of co-firing at a particular power plant depends on several site-specific factors. Torrefaction has been identified recently as a promising biomass pretreatment option to lead to reduction of the feedstock delivered cost, and thus facilitate an increase in the co-firing ratio. In this study, a mixed integer linear program (MILP is developed to integrate supply chain of co-firing and torrefaction process and find the optimal level of biomass co-firing in terms of minimized transportation and logistics costs, with or without tax credits. A case study of 26 existing coal power plants in three Great Lakes States of the US is used to test the model. The results reveal that torrefaction process can lead to higher levels of co-firing, but without the tax credit, the effect is limited to the low capacity of power plants. The sensitivity analysis shows that co-firing ratio has higher sensitivity to variation in capital and operation costs of torrefaction than to the variation in the transportation and feedstock purchase costs.

  13. Decentralised power generation using solid biomass - Know-how on combined heat and power generation for investors; Dezentrale Stromerzeugung mit Feststoffbiomasse

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, M.; Gaegauf, Ch.; Sattler, M.

    2007-01-15

    This comprehensive report made by the Centre of Appropriate Technology and Social Ecology in Langenbruck, Switzerland presents a summary of know-how for investors on combined heat and power generation using solid biomass in installations with an electrical rating of up to one megawatt. Topics covered include a review of the reasons for using biomass to generate electricity - with the results of an analysis of potential in Switzerland and the European Union - and of economic assessment methods for the choice of technology and manufacturers. A SWOT (strengths, weaknesses, opportunities and threats) analysis of technologies is presented and existing biomass-fired installations in Switzerland are listed. A comparison with centrally-refined combustibles is presented and examples of cost and profitability calculations are given. Finally technological background information is presented, including information on 'forgotten' technologies.

  14. Use of biomass for clean and efficient production of heat and power. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Glarborg, P.; Lans, R. van der; Frandsen, J.B.F.; Johnsson, J.E.; Jensen, A.; Kiil, S.; Dam-Johansen, K.

    2001-03-01

    The present EFP98 project is the second phase of a long-term, strategic research project, the aim of which is to facilitate the use of significant amounts of biomass in the production of power and heat. The project deals with combustion and emission issues related to the use of biomass, specifically combustion of straw on a grate and wet flue gas desulphurization. A mathematical model for combustion of straw on a grate is developed as a tool to improve the understanding of this process. The model includes heat transfer to and in the bed as well as pyrolysis and char oxidation. To verify the model and to obtain a better understanding of fixed-bed straw combustion, a number of bench-scale laboratory experiments have been conducted at TNO in Holland. Predicted combustion rates and bed temperatures were in fairly good agreement with experimental fixed-bed data. A parameter analysis has identified the sensitivity of modeling predictions towards important parameters in the model. Measuring programs on straw firing have been conducted at Enstedvaerket and Masnedoe. Measuring results include gas temperature and gas composition (O{sub 2}, CO{sub 2}, CO. SO{sub 2}, NO) from different positions in the boiler. Data from Masnedoe include also results from co-firing of straw with other biomass fuels (25-35%). The results indicate that co-firing in the quantities does not significantly affect emissions. Nitrogen oxides emissions from Masnedoevaerket were found to be significantly higher than those of Ensted. The work on wet flue gas desulphurization on aimed to provide the information necessary to optimize and further develop the process. The main focus was fuel and sorbent flexibility, use of the waste product from the semi-dry FGD process as a sorbent in wet FGD, and ways of optimizing the Wet FGD process with respect to a high degree of desulphurization, a low content of residual limestone in the gypsum and a continuous steady state operation of the FGD plant. Laboratory

  15. Power generation prior food safety? Biomass in the conflict area of energy security and hunger crisis; Energieerzeugung vor Ernaehrungssicherung? Biomasse im Spannungsfeld von Energiesicherung und Hungerkrise

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Monika C.M. (ed.)

    2011-07-01

    Within the international meeting of the Evangelische Akademie Loccum (Rehburg-Loccum, Federal Republic of Germany) at 13rd to 15th May, 2009 the following lectures were held: (1) Biomass - Energy of the future (Daniela Thraen); (2) Bio energy and cultivation of energy crops in Lower Saxony. State of the art and perspectives (Gerd Carsten Hoeher); (3) Bioenergy and food security project in FAO (Mirella Salvatore); (4) Appetite for hunger and competition in land use (Elmar Altvater); (5) Biodiesel poles in Northeast Brasilia. Efficiencies and experiences of a project for the integration of small farmers into the national Biodiesel program (Stefan Goertz); (6) Bioenergy in Africa: Chance to overcome energy poverty or driver of hunger (Hamimu Hongo); (7) Cultivation of Jatropha for direct utilization of oil: Win-Win situation for small farmers and companies? (Lorenz Kirchner); (8) Energy security by means of sufficient power generation. Energy and fuels from biomass result in renaissance of the agriculture and offer chances for fight against poverty and for avoidance of hunger to developing countries (Nasir El Bassam).

  16. Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil

    International Nuclear Information System (INIS)

    Soria, Rafael; Portugal-Pereira, Joana; Szklo, Alexandre; Milani, Rodrigo; Schaeffer, Roberto

    2015-01-01

    The production of electricity using concentrated solar power (CSP) technology is not yet possible in Brazil due to the technology’s high capital costs and the lack of a local industry. However, this study introduces a low-cost approach to CSP in Brazil by describing and simulating the operation of hybrid CSP plants that use sustainably managed biomass in Brazil’s semiarid northeast. Biomass hybridisation of a CSP plant with a solar multiple (SM) of 1.2 and a biomass fill fraction (BFF) of 30% can generate electricity at 110 USD/MWh. The high direct normal irradiation (DNI) and the availability of local low-cost biomass in Brazil’s semiarid northeast suggest the possibility of developing a CSP industry capable of supplying low-cost components under a national program framework, with the co-benefits of local job and income generation. For example, the deployment of 10 CSP plants of 30 MWe each would generate 760 direct and indirect jobs during the 24 months of plant construction and approximately 2100 annual jobs associated with the operation and maintenance (O&M) of the generating units. These 10 new units would generate additional local income on the order of USD 57 million. - Highlights: • CSP plant with supplementary biomass hybridisation is a strategic option for Brazil. • DNI and biomass availability in Brazil's semiarid can foster local CSP industry. • LCOE of CSP would cost 11 cent USD/kWh becoming competitive at solar auctions. • Co-benefits of local job and income generation due to CSP in Brazil are high.

  17. Reducing life cycle greenhouse gas emissions of corn ethanol by integrating biomass to produce heat and power at ethanol plants

    International Nuclear Information System (INIS)

    Kaliyan, Nalladurai; Morey, R. Vance; Tiffany, Douglas G.

    2011-01-01

    A life-cycle assessment (LCA) of corn ethanol was conducted to determine the reduction in the life-cycle greenhouse gas (GHG) emissions for corn ethanol compared to gasoline by integrating biomass fuels to replace fossil fuels (natural gas and grid electricity) in a U.S. Midwest dry-grind corn ethanol plant producing 0.19 hm 3 y -1 of denatured ethanol. The biomass fuels studied are corn stover and ethanol co-products [dried distillers grains with solubles (DDGS), and syrup (solubles portion of DDGS)]. The biomass conversion technologies/systems considered are process heat (PH) only systems, combined heat and power (CHP) systems, and biomass integrated gasification combined cycle (BIGCC) systems. The life-cycle GHG emission reduction for corn ethanol compared to gasoline is 38.9% for PH with natural gas, 57.7% for PH with corn stover, 79.1% for CHP with corn stover, 78.2% for IGCC with natural gas, 119.0% for BIGCC with corn stover, and 111.4% for BIGCC with syrup and stover. These GHG emission estimates do not include indirect land use change effects. GHG emission reductions for CHP, IGCC, and BIGCC include power sent to the grid which replaces electricity from coal. BIGCC results in greater reductions in GHG emissions than IGCC with natural gas because biomass is substituted for fossil fuels. In addition, underground sequestration of CO 2 gas from the ethanol plant's fermentation tank could further reduce the life-cycle GHG emission for corn ethanol by 32% compared to gasoline.

  18. KBTAC [Knowledge-Based Technology Application Center] - The EPRI [Electric Power Research Institute]-sponsored knowledge-based technology application center

    International Nuclear Information System (INIS)

    Meyer, W.; Wood, R.M.; Scherer, J.

    1990-01-01

    The Electric Power Research Institute (EPRI) has announced the establishment of the Knowledge-Based Technology Application Center (KBTAC), whose goal is to assist member utilities with expert system technology and applications. The center, established November 7, 1989, is located on the campus of Syracuse University, Syracuse, New York, and will be operated jointly by Kaman Sciences Corporation and the university. The mission of the KBTAC is to assist EPRI member utilities to develop, test, and transfer expert systems into nuclear power plant operations, maintenance, and administration

  19. Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant

    NARCIS (Netherlands)

    Miedema, Jan H.; Benders, Rene M. J.; Moll, Henri C.; Pierie, Frank

    2017-01-01

    Within this paper, biomass supply chains, with different shares of biomass co-combustion in coal fired power plants, are analysed on energy efficiency, energy consumption, renewable energy production, and greenhouse gas (GHG) emissions and compared with the performance of a 100% coal supply chain

  20. Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix

    International Nuclear Information System (INIS)

    Wang, Changbo; Zhang, Lixiao; Chang, Yuan; Pang, Mingyue

    2015-01-01

    To gain a better understanding of the options of biomass power generation in China, this study presented an integrated energy, environmental, and economic evaluation for Salix in China, and a typical Salix direct-fired power generation system (SDPGS) in Inner Mongolia was selected for case study. A tiered hybrid life cycle assessment (LCA) model was developed to calculate the “planting-to-wire” (PTW) energy consumption, greenhouse gas (GHG) emissions, and economic cost and profit of the SDPGS, including feedstock cultivation, power plant construction and operation, and on-grid price with/without government subsidies. The results show that the PTW energy consumption and GHG emissions of Salix are 0.8 MJ/kWh and 114 g CO 2 -eq/kWh, respectively, indicating an energy payback time (EPBT) of 3.2 years. The SDPGS is not economically feasible without government subsidies. The PTW costs are dominated by feedstock cultivation. The energy saving and GHG mitigation benefits are still robust, even when the power plant runs at only 60% design capacity. For future development of biomass power in China, scientific planning is necessary to guarantee a sufficient feedstock supply. In addition, technology progress, mature industrial chains, and reasonable price setting policy are required to enable potential energy and environmental advantages of biomass power moving forward. -- Highlights: •A hybrid LCA model was used to evaluate overall performance of the SDPGS. •On-site processes dominate the “planting-to-wire” footprints. •The energy saving and GHG mitigation benefits of the SDPGS are robust. •The economic profit of the SDPGS is feeble without government subsidies. •Generating efficiency promotion has a comprehensive positive effect on the system

  1. Performance analysis of an integrated biomass gasification and PEMFC (proton exchange membrane fuel cell) system: Hydrogen and power generation

    International Nuclear Information System (INIS)

    Chutichai, Bhawasut; Authayanun, Suthida; Assabumrungrat, Suttichai; Arpornwichanop, Amornchai

    2013-01-01

    The PEMFC (proton exchange membrane fuel cell) is expected to play a significant role in next-generation energy systems. Because most hydrogen that is used as a fuel for PEMFCs is derived from the reforming of natural gas, the use of renewable energy sources such as biomass to produce this hydrogen offers a promising alternative. This study is focused on the performance analysis of an integrated biomass gasification and PEMFC system. The combined heat and power generation output of this integrated system is designed for residential applications, taking into account thermal and electrical demands. A flowsheet model of the integrated PEMFC system is developed and employed to analyze its performance with respect to various key operating parameters. A purification process consisting of a water–gas shift reactor and a preferential oxidation reactor is also necessary in order to reduce the concentration of CO in the synthesis gas to below 10 ppm for subsequent use in the PEMFC. The effect of load level on the performance of the PEMFC system is investigated. Based on an electrical load of 5 kW, it is found that the electrical efficiency of the PEMFC integrated system is 22%, and, when waste heat recovery is considered, the total efficiency of the PEMFC system is 51%. - Highlights: • Performance of a biomass gasification and PEMFC integrated system is analyzed. • A flowsheet model of the PEMFC integrated system is developed. • Effect of biomass sources and key parameters on hydrogen and power generation is presented. • The PEMFC integrated system is designed for small-scale power demand. • Effect of load changes on the performance of PEMFC is investigated

  2. Design Concepts for Co-Production of Power, Fuels & Chemicals Via Coal/Biomass Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A. D.; Chen, Q.; Samuelsen, G. S.

    2012-09-30

    The overall goal of the program is to develop design concepts, incorporating advanced technologies in areas such as oxygen production, feed systems, gas cleanup, component separations and gas turbines, for integrated and economically viable coal and biomass fed gasification facilities equipped with carbon capture and storage for the following scenarios: (i) coproduction of power along with hydrogen, (ii) coproduction of power along with fuels, (iii) coproduction of power along with petrochemicals, and (iv) coproduction of power along with agricultural chemicals. To achieve this goal, specifically the following objectives are met in this proposed project: (i) identify advanced technology options and innovative preliminary design concepts that synergistically integrate plant subsections, (ii) develop steady state system simulations to predict plant efficiency and environmental signature, (iii) develop plant cost estimates by capacity factoring major subsystems or by major equipment items where required, and then capital, operating and maintenance cost estimates, and (iv) perform techno- economic analyses for the above described coproduction facilities. Thermal efficiencies for the electricity only cases with 90% carbon capture are 38.26% and 36.76% (HHV basis) with the bituminous and the lignite feedstocks respectively. For the coproduction cases (where 50% of the energy exported is in the form of electricity), the electrical efficiency, as expected, is highest for the hydrogen coproduction cases while lowest for the higher alcohols (ethanol) coproduction cases. The electrical efficiencies for Fischer-Tropsch coproduction cases are slightly higher than those for the methanol coproduction cases but it should be noted that the methanol (as well as the higher alcohol) coproduction cases produce the finished coproduct while the Fischer-Tropsch coproduction cases produce a coproduct that requires further processing in a refinery. The cross comparison of the thermal

  3. Biomass CHP Catalog of Technologies

    Science.gov (United States)

    This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.

  4. Power generation based on biomass by combined fermentation and gasification--a new concept derived from experiments and modelling.

    Science.gov (United States)

    Methling, Torsten; Armbrust, Nina; Haitz, Thilo; Speidel, Michael; Poboss, Norman; Braun-Unkhoff, Marina; Dieter, Heiko; Kempter-Regel, Brigitte; Kraaij, Gerard; Schliessmann, Ursula; Sterr, Yasemin; Wörner, Antje; Hirth, Thomas; Riedel, Uwe; Scheffknecht, Günter

    2014-10-01

    A new concept is proposed for combined fermentation (two-stage high-load fermenter) and gasification (two-stage fluidised bed gasifier with CO2 separation) of sewage sludge and wood, and the subsequent utilisation of the biogenic gases in a hybrid power plant, consisting of a solid oxide fuel cell and a gas turbine. The development and optimisation of the important processes of the new concept (fermentation, gasification, utilisation) are reported in detail. For the gas production, process parameters were experimentally and numerically investigated to achieve high conversion rates of biomass. For the product gas utilisation, important combustion properties (laminar flame speed, ignition delay time) were analysed numerically to evaluate machinery operation (reliability, emissions). Furthermore, the coupling of the processes was numerically analysed and optimised by means of integration of heat and mass flows. The high, simulated electrical efficiency of 42% including the conversion of raw biomass is promising for future power generation by biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Biomass power for rural development. Quarterly report, July 1--September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.T.

    1998-10-01

    In this quarter a large amount of time was spent doing project planning and budget preparation for the fiscal years 1998 and 1999. Many issues of long-term strategic planning and budgeting depend on the availability of Federal support, including financial, technical and political. It has become increasingly obvious that several significant barriers must be overcome in order to reach the final project goal of commercial replication of the technology. This report describes switchgrass conversion development, production activities, environmental analysis planning, and information and education. Appendices discuss the biomass project, sediment delivery, successful establishment of switchgrass, and legislative support for the biomass project.

  6. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K; Keraenen, H [Enviropower Inc., Espoo (Finland)

    1997-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  7. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

    1996-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  8. Design and process integration of organic Rankine cycle utilizing biomass for power generation

    Science.gov (United States)

    Ependi, S.; Nur, T. B.

    2018-02-01

    Indonesia has high potential biomass energy sources from palm oil mill industry activities. The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used for generating electricity from rejected waste heat to the environment in industrial processes. In this study, the potential of the palm oil empty fruit bunch, and wood chip have been used as fuel for biomass to generate electricity based ORC with combustion processes. The heat from combustion burner was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC unit. Appropriate designs integration from biomass combustion unit to ORC unit have been analyzed and proposed to generate expander shaft-work. Moreover, the effect of recuperator on the total system efficiency has also been investigated. It was observed that the fuel consumption was increased when the ORC unit equipped recuperator operated until certain pressure and decreased when operated at high pressure.

  9. Externalities of biomass based electricity production compared to power generation from coal in the Netherlands

    NARCIS (Netherlands)

    Faaij, A.; Meuleman, B.

    1997-01-01

    Externalities of electricity production from biomass and coal are investigated and compared for the Dutch context. Effects on economic activity and employment are investigated with help of Input/Output and multiplier tables. Valuations of damage from emissions to air are based on generic data from

  10. Electric power generation from biomass gasification; Geracao de eletricidade a partir da gaseificacao de biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Cristina Aparecida Vilas Boas de; Andrade, Rubenildo Vieira; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (NEST/IEM/UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Estudos em Sistemas Termicos], e-mails: cristinasales@unifei.edu.br, ruben@unifei.edu.br, electo@unifei.edu.br

    2006-07-01

    This paper presents a techno-economical evaluation of the biomass gasification utilization with different technologies such as: reciprocating engine, gas micro turbine, Stirling engine and fuel cells for small scale electricity generation. The comparative evaluation about the technologies is limited to the utilization in isolated areas. This paper shows the principal characteristics of these technologies. (author)

  11. The biomass

    International Nuclear Information System (INIS)

    Viterbo, J.

    2011-01-01

    Biomass comes mainly from forests and agriculture and is considered as a clean alternative energy that can be valorized as heat, power, bio-fuels and chemical products but its mass production is challenging in terms of adequate technology but also in terms of rethinking the use of lands. Forests can be managed to produce biomass but bio-fuels can also be generated from sea-weeds. Biomass appears very promising but on one hand we have to secure its supplying and assure its economical profitability and on another hand we have to assure a reasonable use of lands and a limited impact on the environment. The contribution of biomass to sustainable development depends on the balance between these 2 ends. (A.C.)

  12. Techno-Environmental Assessment Of Co-Gasification Of Low-Grade Turkish Lignite With Biomass In A Trigeneration Power Plant

    Directory of Open Access Journals (Sweden)

    Amirabedin Ehsan

    2014-12-01

    Full Text Available Trigeneration or Combined Cooling, Heat and Power (CCHP which is based upon combined heat and power (CHP systems coupled to an absorption chiller can be recognized as one of the best technologies recovering biomass effectively to heat, cooling and power. Co-gasification of the lignite and biomass can provide the possibility for safe and effective disposal of different waste types as well as for sustainable and environmentally-friendly production of energy. In this article, a trigeneration system based on an IC engine and gasifier reactor has been simulated and realized using Thermoflex simulation software. Performance results suggest that utilization of sustainably-grown biomass in a Tri-Generation Power Plant (TGPP can be a possibility for providing cooling, heat and power demands with local renewable sources and reducing the environmental impacts of the energy conversion systems.

  13. Cost-Benefit Analysis of a Biomass Power Plant in Morocco and a Photovoltaic Installation in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Galan, A.; Gonzalez Leal, J.; Varela, M.

    1999-07-01

    This report presents an overview of cost-benefit analysis general methodology, describing its principles and basic characteristics. This methodology was applied to two case studies analyzed in the project INTERSUDMED, one biomass power plant fed by energy crops in El Hajeb (Morocco) and the other a photovoltaic installation in Djanet (Algeria). Both cases have been selected among the ones analyzed in the INTERSUDMED Project because of their interesting social implications and possible alternatives, that make them most suitable for cost-benefit analysis application. Finally, this report addresses the conclusions of both studies and summarizes the most relevant obtained results. (Author) 13 refs.

  14. Biomass low-temperature gasification in a rotary reactor prior to cofiring of syngas in power boilers

    International Nuclear Information System (INIS)

    Ostrowski, Piotr; Maj, Izabella; Kalisz, Sylwester; Polok, Michał

    2017-01-01

    Highlights: • An innovative method of gasification with use of flue gas was investigated. • Gasification temperature ranging from 350 °C was considered. • Discussed gasification unit is connected to a power boiler. • Syngas with combustible components is recirculated to the boiler. • Wide range of biomass and waste fuels can be used as a feedstock. - Abstract: The paper presents results of the investigation of an innovative biomass and alternative fuel low-temperature gasification method before co-firing in industrial or power plant boilers. Before running industrial-size installation, laboratory tests were carried out to determine usability of alternative fuels to low-temperature gasification process. Tests were conducted in a laboratory reactor designed and constructed specifically for this purpose. The experimental stand enables recording of the weight loss of a sample and syngas composition. The process occurs for a fuel sample of a constant weight and known granulation and with a flue gas of known composition used as a gasifying agent. The aim of the laboratory research was to determine the usability of selected biomass fuel for indirect co-firing in power boilers and to build a knowledge base for industrial-size process by defining the process kinetics (time for fuel to remain in the reactor), recommended fuel granulation and process temperature. Presented industrial-size gasification unit has been successfully built in Marcel power plant in Radlin town, Poland. It consist an innovative rotary gasification reactor. Gasification process takes place with use of flue gas from coal and coke-oven fired boiler as a gasifying agent with recirculation of resulting gas (syngas) with combustible components: CO, H 2 , CH 4 . C n H m to the boiler’s combustion chamber. The construction of the reactor allows the use of a wide range of fuels (biomass, industrial waste and municipal waste). This paper presents the results of the reactor tests using coniferous

  15. Cost-Benefit Analysis of a Biomass Power Plant in Morocco and a Photovoltaic Installation in Algeria

    International Nuclear Information System (INIS)

    Galan, A.; Gonzalez Leal, J.; Varela, M.

    1999-01-01

    This report presents an overview of cost-benefit analysis general methodology, describing its principles and basic characteristics. This methodology was applied to two case studies analyzed in the project INTERSUDMED, one biomass power plant fed by energy crops in El Hajeb (Morocco) and the other a photovoltaic installation in Djanet (Algeria). Both cases have been selected among the ones analyzed in the INTERSUDMED Project because of their interesting social implications and possible alternatives, that make them most suitable for cost-benefit analysis application. Finally, this report addresses the conclusions of both studies and summarizes the most relevant obtained results. (Author) 13 refs

  16. Learning and technological capability building in emerging economies: The case of the biomass power equipment industry in Malaysia

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer; Ockwell, David

    2014-01-01

    There is increasing recognition that the transfer of foreign technology to developing countries should be considered in light of broader processes of learning, technological capability, formation and industrial development. Previous studies that have looked at this in the context of cleantech...... capabilities. This is explored via an examination of eight firms in the biomass power equipment industry in Malaysia during the period 1970–2011. The paper finds that firms relying on a combination of learning from foreign technology partners and internal learning by planned experimentation make most progress...

  17. Cocombustion of biomass in coal-fired power plants; Meestoken van biomassa in kolengestookte E-centrales

    Energy Technology Data Exchange (ETDEWEB)

    Albrink, W.G.M. [Stork Thermeq, Hengelo (Netherlands)

    2001-12-01

    The aim of the desk study is to determine to what degree several types of biomass can be cofired with existing coal fired utility boilers in the Netherlands. All results with regard to boiler performances are obtained by making use of a computer model of a typical coal fired boiler which make part of a 600 MWe coal fired power plant. Because the existing coal fired units in the Netherlands do deviate more or less from the used model all outcomes and conclusions of this study are indicative. Slagging and corrosion which become more important when firing biogas in a coal fired boiler are considered superficially. More close investigations are necessary when carry out concrete projects. Furthermore all results are based on 100% boiler load and may not be used or extrapolated to part load conditions. The extent of firing biomass gas may depend on available space in the boiler house and correlated restrictions for necessary constructive adaptations. These aspects were leave out of consideration. For information the necessary size of piping for biomass gas from gasifier to the boiler has been determined for several amounts of biomass. [Dutch] Het doel van de studie is te onderzoeken hoeveel biomassa, in percentage van het thermisch vermogen, volgens verschillende concepten kan worden meegestookt in een kolengestookte elektriciteitscentrale. Dit wordt in deze studie behandeld aan de hand van een aantal aspecten: Rookgashoeveelheden door de ketel. Hierbij kornen de volgende zaken aan de orde: snelheden, drukval, belasting van DeNox, DeSox en E-filters, capaciteit van de ventilatoren; Rookgastemperaturen. Dit betreft temperaturen uitlaat vuurhaard, uitlaat ketel en uitlaat LUVO (luchtverhitter); Verslakking en corrosie van oververhitters; Water/stoomzijdige flows. Dit betreft aspecten als flows, temperaturen, flow door de turbine (slikvermogen) en uitlaatconditie stoomturbine (vochtgehalte). Voor de verwerking van biomassa worden alleen vergassing (in hoofdzaak) en, minder

  18. Biomass CCS study

    Energy Technology Data Exchange (ETDEWEB)

    Cavezzali, S.

    2009-11-15

    The use of biomass in power generation is one of the important ways in reducing greenhouse gas emissions. Specifically, the cofiring of biomass with coal could be regarded as a common feature to any new build power plant if a sustainable supply of biomass fuel is readily accessible. IEA GHG has undertaken a techno-economic evaluation of the use of biomass in biomass fired and co-fired power generation, using post-combustion capture technology. This report is the result of the study undertaken by Foster Wheeler Italiana.

  19. Suppression of dust explosions and ignition spots in biomass-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C; Rautalin, A

    1996-12-31

    Dust explosion characteristics of forest residue dust both at normal pressure and at elevated initial pressure have been determined in previous studies. These indices give a good base for evaluating the usability of suppression systems to obtain a sufficient level of peritoneal safety in biomass fuel handling equipment. The objectives of this project were to evaluate the usability of suppression systems and to demonstrate dust explosion suppression at elevated initial pressure. Suppression tests at 1 - 20 bar pressure will be carried out in co-operation with CTDD of British Coal, Kiddy Fire Protection and Health and Safety Executive. The tests with coal and biomass dust are scheduled to be started in March 1996 in Great Britain. In the second task of the project, self-ignition properties of forest residue dust and straw dust have been measured in a flow-through system simulating slow drying of the fuel

  20. Suppression of dust explosions and ignition spots in biomass-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Rautalin, A.

    1995-12-31

    Dust explosion characteristics of forest residue dust both at normal pressure and at elevated initial pressure have been determined in previous studies. These indices give a good base for evaluating the usability of suppression systems to obtain a sufficient level of peritoneal safety in biomass fuel handling equipment. The objectives of this project were to evaluate the usability of suppression systems and to demonstrate dust explosion suppression at elevated initial pressure. Suppression tests at 1 - 20 bar pressure will be carried out in co-operation with CTDD of British Coal, Kiddy Fire Protection and Health and Safety Executive. The tests with coal and biomass dust are scheduled to be started in March 1996 in Great Britain. In the second task of the project, self-ignition properties of forest residue dust and straw dust have been measured in a flow-through system simulating slow drying of the fuel

  1. Suppression of dust explosions and ignition spots in biomass- fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C; Rautalin, A [VTT Energy, Espoo (Finland)

    1997-12-01

    Dust explosion characteristics of forest residue dust both at normal pressure and at elevated initial pressure have been determined in previous studies. These indices give a good base for evaluating the usability of suppression systems to obtain a sufficient level of operational safety in biomass fuel handling equipment. The objectives of this project were to evaluate the usability of suppression systems and to demonstrate dust explosion suppression at elevated initial pressure. Suppression tests at 1 - 20 bar pressure will be carried out in co-operation with CTDD of British Coal, Kiddy Fire Protection and Health and Safety Executive. The tests with coal and biomass dust are scheduled to be started in March 1996 in Great Britain. In the second task of the project, self-ignition properties of forest residue dust and straw dust have been measured in a flow-through system simulating slow drying of the fuel

  2. Power production from radioactively contaminated biomass and forest litter in Belarus - Phase 1b

    Energy Technology Data Exchange (ETDEWEB)

    Roed, J.; Andersson, K.G.; Fogh, C.L. [and others

    2000-03-01

    The Chernobyl accident has led to radioactive contamination of vast Belarussian forest areas. A total scheme for remediation of contaminated forest areas and utilisation of the removed biomass in safe energy production is being investigated in a Belarussian-American-Danish collaborative project. Here the total radiological impact of the scheme is considered. This means that not only the dose reductive effect of the forest decontamination is taken into account, but also the possible adverse health effects in connection with the much needed bio-energy production. This report presents the results of an in-country, commercial-scale investigation of the effect of a baghouse filter in retaining contaminants so that they are not released to the atmosphere in the biomass energy production process. Approximately 99,5 % of the activity of a commercially representative, dust-laden boiler flue gas was removed from the stream by using a combination of a cyclone and a baghouse filter. (au)

  3. Integrated gasification combined cycle and steam injection gas turbine powered by biomass joint-venture evaluation

    International Nuclear Information System (INIS)

    Sterzinger, G.J.

    1994-05-01

    This report analyzes the economic and environmental potential of biomass integrated gasifier/gas turbine technology including its market applications. The mature technology promises to produce electricity at $55--60/MWh and to be competitive for market applications conservatively estimated at 2000 MW. The report reviews the competitiveness of the technology of a stand-alone, mature basis and finds it to be substantial and recognized by DOE, EPRI, and the World Bank Global Environmental Facility

  4. Assessment of biomass cogeneration in the Great Lakes region

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.

    1994-01-01

    Many biomass cogeneration facilities have successfully entered into power sales agreements with utilities across the country, often after overcoming various difficulties or barriers. Under a project sponsored by the Great Lakes Regional Biomass Energy Program of the U.S. Department of Energy, DynCorp sm-bullet Meridian has conducted a survey of biomass facilities in the seven Great Lakes states, selecting 10 facilities for case studies with at least one facility in each of the seven states. The purpose of the case studies was to address obstacles that biomass processors face in adding power production to their process heat systems, and to provide examples of successful strategies for entering into power sales agreements with utilities. The case studies showed that the primary incentives for investing in cogeneration and power sales are to reduce operating costs through improved biomass waste management and lower energy expenditures. Common barriers to cogeneration and power sales were high utility stand-by charges for unplanned outages and low utility avoided cost payments due to excess utility generation capacity

  5. Employer-sponsored pension plans

    Directory of Open Access Journals (Sweden)

    Rakonjac-Antić Tatjana N.

    2004-01-01

    Full Text Available Apart from pension plans within social insurance, in developed pension systems there are also available to individuals schemes which may to a large extent ensure a significant part of their total pension. Among them are the following: employer-sponsored pension plans or individual pension plans. The most widely used employer-sponsored pension plan in the USA is 401(k, in which both the employer and the employee contribute to the financing of the pension. These contributions as well as the return to their investment have a preferential tax treatment, i.e. do not enter a tax base. The funds are taxed only when drawn from the account in the form of a pension. This paper aims to present the functioning of 401(k pension plan as the most widely used employer sponsored pension plan in the USA, which is likely, in a modified form, to have an important place within our future reformed pension insurance system.

  6. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    Science.gov (United States)

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity

  7. The Complex Dynamics of Sponsored Search Markets

    Science.gov (United States)

    Robu, Valentin; La Poutré, Han; Bohte, Sander

    This paper provides a comprehensive study of the structure and dynamics of online advertising markets, mostly based on techniques from the emergent discipline of complex systems analysis. First, we look at how the display rank of a URL link influences its click frequency, for both sponsored search and organic search. Second, we study the market structure that emerges from these queries, especially the market share distribution of different advertisers. We show that the sponsored search market is highly concentrated, with less than 5% of all advertisers receiving over 2/3 of the clicks in the market. Furthermore, we show that both the number of ad impressions and the number of clicks follow power law distributions of approximately the same coefficient. However, we find this result does not hold when studying the same distribution of clicks per rank position, which shows considerable variance, most likely due to the way advertisers divide their budget on different keywords. Finally, we turn our attention to how such sponsored search data could be used to provide decision support tools for bidding for combinations of keywords. We provide a method to visualize keywords of interest in graphical form, as well as a method to partition these graphs to obtain desirable subsets of search terms.

  8. Input of biomass in stand-alone small-scale installations for power generation. Calculation of the financial gap

    International Nuclear Information System (INIS)

    Van Tilburg, X.; De Vries, H.J.; Pfeiffer, A.E.; Beekes, M.; Cleijne, J.W.

    2005-09-01

    A number of new initiatives in which bio-oil is used in stand-alone plants for power generation has been reviewed. The question to be answered is whether the reference case for stand alone biomass projects based on burning of wood chips can still be considered representative for the costs and benefits in this category. ECN, in cooperation with KEMA, have determined the financial gap between the costs and benefits of projects in which bio-oil is used in stand alone plants for power generation. The ranges and reference case for bio-oil in stand alone applications show that these projects have a substantially lower financial gap than the current reference case based on wood chips [nl

  9. Comparative evaluation of power generation systems with integrated gasification of biomass; Vergleich von Systemen zur Stromerzeugung mit integrierter Biomassevergasung

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, C [Forschungszentrum Karlsruhe (Germany); Kaltschmitt, M [Stuttgart Univ. (Germany)

    1998-09-01

    Gasification of biomass followed by power generation from the lean product gas can make a significant contribution to power generation without affecting the climate or environment. It is made even more interesting by the high efficiencies and promising pollution ratings that can be achieved. To make full use of this technology, some technical problems still require solving, and some non-technical obstacles need to be removed. (orig./SR) [Deutsch] Zusammenfassend kann festgehalten werden, dass die Biomassevergasung mit anschliessender Verstromung des Schwachgases einen nennenswerten Beitrag zu einer umwelt- und klimavertraeglicheren Energiebereitstellung in Europa leisten kann. Dies gilt insbesondere vor dem Hintergrund der erreichbaren hohen Stromwirkungsgrade und der vielversprechenden Umweltkenngroessen, durch die diese Technik gekennzeichnet ist. Um die Vorteile der Biomassevergasung realisieren zu koennen, muessen jedoch noch verschiedene technische Probleme geloest und nicht technische Hindernisse aus dem Weg geraeumt werden. (orig./SR)

  10. Report on the research projects into the safety of nuclear power plants in operation sponsored by Federal Ministry of Economics and Labour. Period under report: 1 January - 30 June 2004

    International Nuclear Information System (INIS)

    2004-01-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Arbeit (BMWA) (Federal Ministry of Economics and Labour) sponsors research projects into the safety of nuclear power plants in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations and to the further development of safety technology. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWA, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The reports are published by the Research Management Division of GRS. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWA does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  11. Assessment of Hydrogen Generation Potential from Biomass and its Application for Power Generation in Andaman and Nicobar Islands: A Review

    Directory of Open Access Journals (Sweden)

    Vinaya C. Mathad

    2016-09-01

    Full Text Available The Andaman and Nicobar Islands located southeast of Bay of Bengal in the Indian Ocean comprises of several small islands separated by sea over large distances which makes it impractical for electrifying all the islands by a single grid. A population of 380,581 (Census, 2011 living in these group of islands get their electricity demand catered through Diesel Generator Sets from 34 power houses with an aggregate capacity of 67.8 MW. Unavailability of any form of conventional fossil fuel reserves in the islands makes the diesel supplied in barges from southeastern coast of India as a sole lifeline for its power generation. Hence there is an urgent need for the development of a self sustainable model from non conventional energy resources to not only cater for the power demands but also to reduce the GHG emissions related with diesel powered generator sets. This paper discusses a self sustainable model for Andaman and Nicobar Islands that would cater the electrical demand through hydrogen produced from waste biomass resource which has a potential of replacing 86.65% of the diesel utilized in the diesel generator sets. The reduction in both the GHG emission and the cost of power generation would be evaluated to understand the impact of the self sustainable model on the environment and the livelihood of the local population of Andaman and Nicobar Islands

  12. Bioethanol and power from integrated second generation biomass: A Monte Carlo simulation

    International Nuclear Information System (INIS)

    Osaki, Márcia R.; Seleghim, Paulo

    2017-01-01

    Highlights: • The impacts of integrating new sugarcane conversion using bagasse and straw. • Industrial conversion of sugarcane into energy carriers: ethanol and electricity. • A reference sugarcane industrial was simulated by the Monte Carlo method. • Simultaneously optimal ethanol production and electricity generation occur at low burning bagasse rates. - Abstract: The main objective of this work is to assess the impacts of integrating new biomass conversion technologies into an existing sugarcane industrial processing plant in terms of its multi-objective optimal operating conditions. A typical sugarcane mill is identified and a second generation ethanol production pathway is incorporated to give the operator the possibility of controlling the ratio between the rates of burning bagasse and straw (sugarcane tops and leaves) to their second generation processing to achieve optimal ethanol and electricity outputs. A set of equations describing the associated conversion unit operations and chemical reactions is simulated by the Monte Carlo method and the corresponding operating envelope is constructed and statistically analyzed. These equations permit to calculate ethanol production and electricity generation in terms of a virtually infinite number of scenarios characterized by two controlled variables (burning bagasse and straw mass flow rates) and several uncontrolled variables (biomass composition, cellulose, hemicelluloses and lignin yields, fermentation efficiencies, etc.). Results reveal that the input variables have specific statistical characteristics when the corresponding operating states lay near the maximum energy limit (Pareto frontier). For example, since the objectives being optimized are intrinsically antagonistic, i.e. the increase of one dictates the decrease of the other, it is better to convert bagasse to ethanol via second generation pathway because of the high energy requirements of its dewatering prior to combustion and low heat

  13. Power production from radioactively contaminated biomass and forest litter in Belarus - Phase 1b

    DEFF Research Database (Denmark)

    Roed, Jørn; Andersson, Kasper Grann; Fogh, C.L.

    2000-01-01

    The Chernobyl accident has led to radioactive contamination of vast Belarussian forest areas. A total scheme for remediation of contaminated forest areas and utilisation of the removed biomass in safe energy production is being investigated in aBelarussian-American-Danish collaborative project....... Here the total radiological impact of the scheme is considered. This means that not only the dose reductive effect of the forest decontamination is taken into account, but also the possible adverse healtheffects in connection with the much needed bio-energy production. This report presents the results...

  14. Novel Role of Rural Official Organization in the Biomass-Based Power Supply Chain in China: A Combined Game Theory and Agent-Based Simulation Approach

    Directory of Open Access Journals (Sweden)

    Kaiyan Luo

    2016-08-01

    Full Text Available Developing biomass-based power generation is helpful for China to reduce the dependence on fossil fuels and to release the targets of carbon emission peak. The decentralized farming method leads to Chinese farmers’ weak willingness to collect and sell crop residues to biomass-based power plants. The purpose of this paper is to solve the issue by proposing a novel biomass feedstock supply model with China’s rural official organization—villagers’ committee, which has great influence on villagers’ decision making. Introducing it into the biomass-based power supply chain is beneficial to motivating farmers’ supplying enthusiasm. A combined game theory and agent-based simulation approach is applied to study the effectiveness of this new supply model. Multiple simulation scenarios are built to study impacts of different simulation parameters, and results show that farmers tend to supply more biomass material for electricity production in the proposed villagers’ committee model, compared with the two conventional supply models, direct-deal and broker models. The supply model incorporating the rural official organization can ensure the feedstock sufficiency for plants. A proper model design depends on the feed-in tariff subsidy for biomass-based electricity, feedstock shipping distance, performance appraisal system of the villagers’ committee, as well as farmers’ utility weights on net income and public service improvement.

  15. Occupational exposure to gases, polycyclic aromatic hydrocarbons and volatile organic compounds in biomass-fired power plants.

    Science.gov (United States)

    Jumpponen, M; Rönkkömäki, H; Pasanen, P; Laitinen, J

    2013-01-01

    The combustion of fuels produces air pollutants in the form of gases, organic compounds, and particulate matter. However, although the environmental aspect of these agents has been examined, workers' exposure to them is still a neglected issue. The purpose of this study was to measure maintenance and ash removal workers' multiple exposures to gases, volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) during their work tasks in biomass-fired power plants. Our hygienic measurements revealed that carbon monoxide, nitric oxide, ammonia and sulfur dioxide were the most common gases that the workers were exposed to during their tasks. Their average concentrations were 0.45 ppm, 0.06 ppm, 0.11 ppm and 0.42 ppm, respectively. Phenanthrene and naphthalene were the most prominent PAHs. At the same sampling points, the most commonly found VOCs were aromatic and aliphatic hydrocarbons and turpentines. The calculated total PAH concentrations were less than 7% of benzo[a]pyrene's eight-hour occupational exposure limit, and the total VOC concentrations were below the Finnish reference value for the normal industrial level in all measured work tasks. The most evident health effect caused by multiple exposures to gases was upper respiratory track irritation, followed by the disruption of oxygen transport, and finally central nervous system disorders. We recommend powered air respirators with ABEK+P3 cartridges and carbon monoxide gas detectors as the minimum requirement for those working inside biomass-fired power plant boilers, and compressed air breathing apparatus as the best form of protection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature.

    Science.gov (United States)

    Tuorto, Steven J; Brown, Chris M; Bidle, Kay D; McGuinness, Lora R; Kerkhof, Lee J

    2015-01-01

    This report describes BioDry (patent pending), a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc.), freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry "field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited.

  17. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature.

    Directory of Open Access Journals (Sweden)

    Steven J Tuorto

    Full Text Available This report describes BioDry (patent pending, a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc., freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry "field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited.

  18. Deposit Probe Measurements in Danish Grate and Pulverized Fuel Biomass Power Boilers

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2012-01-01

    . Corresponding samples of fuels, ash deposits and fly ash have provided information on the transformation of inorganics in the boiler. Generally, grate fired boilers provide a fly ash containing high contents of K, Cl and S compared to the fuel ash, while suspension fired boilers fly ash has a composition nearly...... similar to the fuel ash. Inner most biomass deposits are always salt-rich, while thicker deposit layers also contain some Si and Ca. Deposit probe formation rate measurements have been performed in different ways on several boilers. Grate and suspension fired boilers seems to cause similar deposit...... formation rates. Suspension fired boilers generate more fly ash, while grate boilers form a fly ash with a higher fraction of melt formation (and thereby a higher sticking probability) at similar temperatures. For suspension fired units it is observed that wood with a lower ash content than straw gives rise...

  19. Life cycle cost of biomass power plant: Monte Carlo simulation of investment

    Directory of Open Access Journals (Sweden)

    Odavić Petrana

    2017-01-01

    Full Text Available Assessment of life cycle cost is considered as an important instrument for designing and evaluating success of every project. The aim of this work is to determine the precise impact of the investment costs and future operating and maintenance costs of CHP biomass plant. By using the Monte Carlo simulation are determined variations in the settings and the possible impact on the investment risk. The results show that the investment is justified, thanks to the positive outcome of the net present value (NPV, internal rate of return (IRR and the payback period. The greatest impact on the variability of annual profits have operating costs, which have the highest coefficient of variation of 6.44% and the largest share. Variability of net present value of 4% is acceptable, and the investment is considered as stable.

  20. Integration of biomass fast pyrolysis and precedent feedstock steam drying with a municipal combined heat and power plant

    International Nuclear Information System (INIS)

    Kohl, Thomas; Laukkanen, Timo P.; Järvinen, Mika P.

    2014-01-01

    Biomass fast pyrolysis (BFP) is a promising pre-treatment technology for converting biomass to transport fuel and in the future also for high-grade chemicals. BFP can be integrated with a municipal combined heat and power (CHP) plant. This paper shows the influence of BFP integration on a CHP plant's main parameters and its effect on the energetic and environmental performance of the connected district heating network. The work comprises full- and part-load operation of a CHP plant integrated with BFP and steam drying. It also evaluates different usage alternatives for the BFP products (char and oil). The results show that the integration is possible and strongly beneficial regarding energetic and environmental performance. Offering the possibility to provide lower district heating loads, the operation hours of the plant can be increased by up to 57%. The BFP products should be sold rather than applied for internal use as this increases the district heating network's primary energy efficiency the most. With this integration strategy future CHP plants can provide valuable products at high efficiency and also can help to mitigate global CO 2 emissions. - Highlights: • Part load simulation of a cogeneration plant integrated with biomas fast pyrolysis. • Analysis of energetic and environmental performance. • Assessment of different uses of the pyrolysis products

  1. Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant

    International Nuclear Information System (INIS)

    Miedema, Jan H.; Benders, René M.J.; Moll, Henri C.; Pierie, Frank

    2017-01-01

    Highlights: • Coal mining is more energy and CO_2 efficient than biomass production. • Co-combustion of 60% biomass with coal doubles mass transport compared to 100% coal. • Low co-combustion levels reduce GHG emissions, but the margins are small. • Total supply chain efficiency is the highest for the coal reference at 41.2%. - Abstract: Within this paper, biomass supply chains, with different shares of biomass co-combustion in coal fired power plants, are analysed on energy efficiency, energy consumption, renewable energy production, and greenhouse gas (GHG) emissions and compared with the performance of a 100% coal supply chain scenario, for a Dutch situation. The 60% biomass co-combustion supply chain scenarios show possibilities to reduce emissions up to 48%. The low co-combustion levels are effective to reduce GHG emissions, but the margins are small. Currently co-combustion of pellets is the norm. Co-combustion of combined torrefaction and pelleting (TOP) shows the best results, but is also the most speculative. The indicators from the renewable energy directive cannot be aligned. When biomass is regarded as scarce, co-combustion of small shares or no co-combustion is the best option from an energy perspective. When biomass is regarded as abundant, co-combustion of large shares is the best option from a GHG reduction perspective.

  2. Application of Biomass from Palm Oil Mill for Organic Rankine Cycle to Generate Power in North Sumatera Indonesia

    Science.gov (United States)

    Nur, T. B.; Pane, Z.; Amin, M. N.

    2017-03-01

    Due to increasing oil and gas demand with the depletion of fossil resources in the current situation make efficient energy systems and alternative energy conversion processes are urgently needed. With the great potential of resources in Indonesia, make biomass has been considered as one of major potential fuel and renewable resource for the near future. In this paper, the potential of palm oil mill waste as a bioenergy source has been investigated. An organic Rankine cycle (ORC) small scale power plant has been preliminary designed to generate electricity. The working fluid candidates for the ORC plant based on the heat source temperature domains have been investigated. The ORC system with a regenerator has higher thermal efficiency than the basic ORC system. The study demonstrates the technical feasibility of ORC solutions in terms of resources optimizations and reducing of greenhouse gas emissions.

  3. Thermodynamic Model of a Very High Efficiency Power Plant based on a Biomass Gasifier, SOFCs, and a Gas Turbine

    Directory of Open Access Journals (Sweden)

    P V Aravind

    2012-07-01

    Full Text Available Thermodynamic calculations with a power plant based on a biomass gasifier, SOFCs and a gas turbine are presented. The SOFC anode off-gas which mainly consists of steam and carbon dioxides used as a gasifying agent leading to an allothermal gasification process for which heat is required. Implementation of heat pipes between the SOFC and the gasifier using two SOFC stacks and intercooling the fuel and the cathode streams in between them has shown to be a solution on one hand to drive the allothermal gasification process and on the other hand to cool down the SOFC. It is seen that this helps to reduce the exergy losses in the system significantly. With such a system, electrical efficiency around 73% is shown as achievable.

  4. Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology

    International Nuclear Information System (INIS)

    Sebastian, F.; Royo, J.; Gomez, M.

    2011-01-01

    One way of producing nearly CO 2 free electricity is by using biomass as a combustible. In many cases, removal of CO 2 in biomass grown is almost the same as the emissions for the bioelectricity production at the power plant. For this reason, bioelectricity is generally considered CO 2 neutral. For large-scale biomass electricity generation two alternatives can be considered: biomass-only fired power plants, or cofiring in an existing coal power plant. Among other factors, two important aspects should be analyzed in order to choose between the two options. Firstly, which is the most appealing alternative if their Greenhouse Gases (GHG) Emissions savings are taken into account. Secondly, which biomass resource is the best, if the highest impact reduction is sought. In order to quantify all the GHG emissions related to each system, a Life Cycle Assessment (LCA) methodology has been performed and all the processes involved in each alternative have been assessed in a cradle-to-grave manner. Sensitivity analyses of the most dominant parameters affecting GHG emissions, and comparisons between the obtained results, have also been carried out.

  5. Assessment of the way of biomass transportation to the coal power plant with regard to the limitation of emissions of CO{sub 2}; Beurteilung der Befoerderungsweise der Biomasse in das Kohlenkraftwerk im Blick auf die Beschraenkung der Emission von CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Adamkiewicz, A. [Maritime Univ. of Szczecin (Poland). Faculty of Mechanical Engineering; Zenczak, W. [West Pomeranian Univ. of Technology, Szczecin (Poland). Fakultaet fuer Meerestechnik und Transport

    2014-07-01

    One from the activities taken in Poland in aim of limitation of CO{sub 2}, emission is coal and biomass combustion together in one boiler. Biomass is delivered to power station Dolna Odra in Szczecin by trucks, which are also a source of CO{sub 2}, emission. The paper presents results of comparative analysis of CO{sub 2}, emission from trucks during transportation of biomass to power station with actual reduction of emission through power station as result of substitution of part of coal by biomass.

  6. Thermoelectric Power Generation Utilizing the Waste Heat from a Biomass Boiler

    Science.gov (United States)

    Brazdil, Marian; Pospisil, Jiri

    2013-07-01

    The objective of the presented work is to test the possibility of using thermoelectric power to convert flue gas waste heat from a small-scale domestic pellet boiler, and to assess the influence of a thermoelectric generator on its function. A prototype of the generator, able to be connected to an existing device, was designed, constructed, and tested. The performance of the generator as well as the impact of the generator on the operation of the boiler was investigated under various operating conditions. The boiler gained auxiliary power and could become a combined heat and power unit allowing self-sufficient operation. The created unit represents an independent source of electricity with effective use of fuel.

  7. DOE-EERC jointly sponsored research program

    Energy Technology Data Exchange (ETDEWEB)

    Hendrikson, J.G.; Sondreal, E.A.

    1999-09-01

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC21-93MC30098 funded through the Office of Fossil Energy and administered at the Federal Energy Technology Center (FETC) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy and Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying efficient, nonpolluting energy technologies that can compete effectively in meeting market demands for clean fuels, chemical feedstocks, and electricity in the 21st century. The objective of the JSRP was to advance the deployment of advanced technologies for improving energy efficiency and environmental performance through jointly sponsored research on topics that would not be adequately addressed by the private sector alone. Examples of such topics include the barriers to hot-gas cleaning impeding the deployment of high-efficiency power systems and the search for practical means for sequestering CO{sub 2} generated by fossil fuel combustion. The selection of particular research projects was guided by a combination of DOE priorities and market needs, as provided by the requirement for joint venture funding approved both by DOE and the private sector sponsor. The research addressed many different energy resource and related environmental problems, with emphasis directed toward the EERC's historic lead mission in low-rank coals (LRCs), which represent approximately half of the U.S. coal resources in the conterminous states, much larger potential resources in Alaska, and a major part of the energy base in the former U.S.S.R., East Central Europe, and the Pacific Rim. The Base and JSRP agreements were tailored to the growing awareness of critical environmental issues, including water supply and quality, air toxics (e.g., mercury), fine respirable particulate matter (PM{sub 2.5}), and the goal of zero net CO{sub 2} emissions.

  8. Design of a 2.5MW(e) biomass gasification power generation module

    Energy Technology Data Exchange (ETDEWEB)

    McLellan, R.

    2000-07-01

    The purpose of this contract was to produce a detailed process and mechanical design of a gasification and gas clean up system for a 2.5MW(e) power generation module based on the generation of electrical power from a wood chip feed stock. The design is to enable the detailed economic evaluation of the process and to verify the technical performance data provided by the pilot plant programme. Detailed process and equipment design also assists in the speed at which the technology can be implemented into a demonstration project. (author)

  9. Power generation from biomass: Status report on catalytic-allothermal wood gasification. Papers; Energetische Nutzung von Biomasse: Stand der Realisierung der katalytisch-allothermen Holzvergasung. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, H.; Bauermeister, U.; Kliche, H.; Seiffarth, K. (comps.)

    2001-12-01

    The topic of this event is bound up with the activities of FOeST in the field of gasification of biomass in decentralized small plants (< 2 MW{sub el}). The start project was a research work in 1993 to select a gasification process for using wood, sludge or plastic waste, continued 1995 by a research project with gasification tests of tar oil contaminated wood in a small gasification reactor with good results in environmental compatibility. But the following planning process of a demonstration plant for 500 kW{sub el} has shown, that the biomass gasification couldn't reach economic efficiency. Due to the development of an catalytic-partial allothermal gasification process of GNS ltd. it was clear, that the technical efficiency could be increased considerably. So, in 2000, a project started to test this catalytic-partial allothermal gasification in a pilot plant. Today the results of research, development and testing of biomass gasification with catalytic-partial allothermal processing as well as practically experience with a gasification plant, general conditions and further activities for energetically utilisation of biomass in Saxonia-Anhalt will be presented. (orig.)

  10. Biomass power for rural development: Phase 2. Technical progress report, April 1--June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.

    1998-11-01

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase-1 focused on initial development and testing of the technology and agreements necessary to demonstrate commercial willow production in Phase-2. The Phase-1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boilers, developing fuel supply plans for the project, obtaining power production commitments from the power companies for Phase-2, obtaining construction and environmental permits, and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system. Beyond those Phase-1 requirements the Consortium has already successfully demonstrated cofiring at Greenidge Station and developed the required nursery capacity for acreage scale-up. This past summer 105 acres were prepared in advance for the spring planting in 1998. Having completed the above tasks, the Consortium is well positioned to begin Phase-2. In phase-2 every aspect of willow production and power generation from willow will be demonstrated. The ultimate objective of Phase-2 is to transition the work performed under the Rural Energy for the Future project into a thriving, self-supported energy crop enterprise.

  11. Electricity generation and microbial communities in microbial fuel cell powered by macroalgal biomass

    DEFF Research Database (Denmark)

    Zhao, Nannan; Jiang, Yinan; Alvarado-Morales, Merlin

    2018-01-01

    .1%), Proteobacteria (11.5%), Euryarchaeota (3.1%), Deferribacteres (1.3%), Spirochaetes (1.0%), Chloroflexi (0.7%), Actinobacteria (0.5%), and others (22.4%). The predominance of Bacteroidetes, Firmicutes and Proteobacteria demonstrated their importance for substrate degradation and simultaneous power generation...

  12. Electrifying biomass

    International Nuclear Information System (INIS)

    Kusnierczyk, D.

    2005-01-01

    British Columbia's (BC) energy plan was outlined in this PowerPoint presentation. BC Hydro is the third largest electric utility in Canada with a generating capacity of 11,000 MW, 90 per cent of which is hydro generation. Various independent power project (IPP) biomass technologies were outlined, including details of biogas, wood residue and municipal solid waste facilities. An outline of BC Hydro's overall supply mix was presented, along with details of the IPP supply mix. It was suggested that the cancellation of the Duke Point power project has driven growth in the renewable energy sector. A chart of potential energy contribution by resource type was presented, as well as unit energy cost ranges. Resources included small and large hydro; demand side management; resource smart natural gas; natural gas; coal; wind; geothermal; biomass; wave; and tidal. The acquisition process was reviewed. Details of calls for tenders were presented, and issues concerning bidder responsibility and self-selection were examined. It was observed that wood residue presents a firm source of electricity that is generally local, and has support from the public. In addition, permits for wood residue energy conversion are readily available. However, size limitations, fuel risks, and issues concerning site control may prove to be significant challenges. It was concluded that the success of biomass energy development will depend on adequate access and competitive pricing. tabs., figs

  13. Co-combustion of wood biomass in coal power plants, a contribution to energy turnaround and climate protection?; Die Mitverbrennung holzartiger Biomasse in Kohlekraftwerken. Ein Beitrag zur Energiewende und zum Klimaschutz?

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Claudia; Herr, Michael; Edel, Matthias; Seidl, Hannes

    2011-08-15

    Co-combustion of wood biomass in coal power plants is feasible at short notice and can is a low-cost option for climate protection. While other EU states have already provided funding mechanism, Germany has not followed this lead so far. Domestic wood resources are limited and unevenly distributed among the German regions, so that wood materials will have to be imported. During the past few years, the basic requirements for imports of wood were provided with the initiation of a global pellets market. Sustainability criteria for wood consumption were defined, and international certification systems were developed. The sustainability criteria should be extended to cover also wood-like materials and other biomass for power generation. The German EEG (Renewables Act) is a first step in this direction. Further, investments must be made in logistics capacities. The available logistics of coal power plants can be used with some minor modifications. In all, successful and sustainable international biomass markets may soon be available.

  14. Superheater corrosion in biomass-fired power plants: Investigation of Welds

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Carlsen, B; Biede, O

    2002-01-01

    -fired Masnedø combined heat and power (CHP) plant to investigate corrosion at temperatures higher than that of the actual plant. The highest steam temperature investigated was 570°C. Various alloys of 12-22% chromium content were welded into this test loop. Their corrosion rates were similar and increased...... condense on superheater components. This gives rise to specific corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A test superheater was built into the straw...... with temperature. The mechanism of attack was grain boundary attack as a precursor to selective chromium depletion of the alloy. In addition welds coupling various tubes sections were also investigated. It was seen that there was preferential attack around those welds that had a high nickel content. The welds...

  15. Biomass co-firing in coal power plants in the Netherlands. Effects on performance and air pollutant emissions

    Energy Technology Data Exchange (ETDEWEB)

    Smekens, K. [ECN Policy Studies, Petten (Netherlands)

    2013-07-15

    This note is intended for use in the UNECE (United Nations Economic Commission for Europe)-EGTEI (Expert Group on Techno-Economic Issues) work related to cost of emission reduction technologies for large combustion plants (LCP). This work is coordinated by KIT (Karlsruhe) and CITEPA (Paris). As the Netherlands is considered to be a valuable country for data regarding biomass co-firing in large coal fired power plants, EGTEI expressed its interest on data ECN has available. For this purpose, based on available data from annual environmental reports of power plants, ECN has looked into the relationship between the percentage of co -firing and the plant performance. It should be noted that the evaluation has been based on annual data, not on real-time simultaneous measurements of the different parameters mentioned in this note. Cumulative annual data give no insights in e.g. the effects of the load factor, of start-ups or shut-downs, seasonal circumstances, fuel qualities, etc. Therefore, the findings in this report should be treated with due care and not be generalised.

  16. Proposal and analysis of a polygeneration system for power and methanol based on natural gas and biomass as co-feed

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.Q.; Hong, H.; Jin, H.G.; Cai, R.X. [Chinese Academy of Sciences, Beijing (China). Inst. of Engineering Thermophysics

    2008-07-01

    Biomass is getting increasing attention as a potential source of renewable energy as a result of global issues such as sustainable energy and reduction of greenhouse gases. Biomass is an abundant feedstock containing mainly carbon, oxygen, hydrogen, and volatile matter. The purpose of this paper was to propose a new biomass-natural gas based polygeneration system, with partial recycling unreacted syngas and without the shift process for methanol production and power generation. The paper identified the features of the proposed system and that determine the exergy ratio of chemical production and thermodynamic performance of the system. The paper provided an introduction to individual systems such as the natural gas to methanol system and biomass to methanol system. The paper also presented the suggested polygeneration system based on biomass and natural gas as co-feed. Processes that were described included syngas preparation; distillation process; and power generation. System evaluation criteria and performance were identified. It was concluded that bio-energy made the best utilization and overcame the disadvantages of the polygeneration system, partly taking the place of natural gas which is non-renewable. Bio-energy could reduce carbon dioxide emission for it is carbon neutrality. 18 refs., 3 tabs., 9 figs.

  17. 45 CFR 1226.12 - Sponsor employees.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Sponsor employees. 1226.12 Section 1226.12 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE PROHIBITIONS ON ELECTORAL AND LOBBYING ACTIVITIES Sponsor Employee Activities § 1226.12 Sponsor employees...

  18. Potential for Coal Power Plants to Co-Fire with Woody Biomass in the U. S. North, 2010-2030: A Technical Document Supporting the Northern Forest Futures Project

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth E. Skog

    2015-01-01

    Future use of woody biomass to produce electric power in the U.S. North can have an important influence on timber production, carbon storage in forests, and net carbon emissions from producing electric power. The Northern Forest Futures Project (NFFP) has provided regional- and state-level projections of standing forest biomass, land-use change, and timber harvest,...

  19. Switchgrass biomass energy storage project. Final report, September 23, 1996--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.A.; Teel, A.; Brown, S.S. [Iowa State Univ., Ames, IA (United States)

    1996-07-01

    The Chariton Valley Biomass Power Project, sponsored by the Chariton Valley RC&D Inc., a USDA-sponsored rural development organization, the Iowa Department of Natural Resources Energy Bureau (IDNR-EB), and IES Utilities, a major Iowa energy company, is directed at the development of markets for energy crops in southern Iowa. This effort is part of a statewide coalition of public and private interests cooperating to merge Iowa`s agricultural potential and its long-term energy requirements to develop locally sustainable sources of biomass fuel. The four-county Chariton Valley RC&D area (Lucas, Wayne, Appanoose and Monroe counties) is the site of one of eleven NREL/EPRI feasibility studies directed at the potential of biomass power. The focus of renewable energy development in the region has centered around the use of swithgrass (Panicum virgatum, L.). This native Iowa grass is one of the most promising sustainable biomass fuel crops. According to investigations by the U.S. Department of Energy (DOE), switchgrass has the most potential of all the perennial grasses and legumes evaluated for biomass production.

  20. Technical, economic and environmental potential of co-firing of biomass in coal and natural gas fired power plants in the Netherlands

    International Nuclear Information System (INIS)

    Van Ree, R.; Korbee, R.; Eenkhoorn, S.; De Lange, T.; Groenendaal, B.

    2000-01-01

    In this paper the technical, economic, and environmental potential of co-firing of biomass in existing Dutch coal and natural gas fired power plants, and industrial combined-cycles (CC), is addressed. Main criteria that are considered are: the availability and contractibility of biomass for energy purposes; the (technical) operation of the conventional fossil fuel based processes may not be disturbed; the gaseous and liquid plant emissions have to comply to those applicable for power plants/CCs, the commercial applicability of the solid residues may not be negatively influenced; applicable additional biomass conversion technologies must be commercially available; the necessary additional investment costs must be acceptable from an economic point of view, and the co-firing option must result in a substantial CO 2 -emission reduction. The main result of the study described in the paper is the presentation of a clear and founded indication of the total co-firing potential of biomass in existing power plants and industrial CCs in the Netherlands. This potential is determined by considering both technical, economic, and environmental criteria. In spite of the fact that the co-firing potential for the specific Dutch situation is presented, the results of the criteria considered are more generally applicable, and therefore are also very interesting for potential co-firing initiatives outside of the Netherlands

  1. Corrosion in the Flue Gas Cleaning System of a Biomass-Fired Power Plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Olesen, R. E.; Gensmann, P.

    2017-01-01

    After only a few years operation, corrosiondamage was observed in the flue gas cleaning system of abiomass power plant. The corrosion was on the lower partof the gas/gas heat exchanger fabricated from A242weathering steel, where UNS S31600 bolts were used toattach sealing strips to the rotor. Thick...... iron oxides (up to5 mm) had formed on the weathering steel, and theseoxides also contained chlorine and sulfur. In this area of theheat exchanger, weathering steel has not had the optimalwet/dry cycles required to achieve a protective oxide. Dueto the thick growing oxide on the rotor, the UNS S31600......bolts were under stress and this together with the presenceof accumulated chlorine between the sealing strips andbolts resulted in stress corrosion cracking and rupture. Inaddition, Zn-K-Cl deposits were agglomerated in the ductafter the DeNOx unit. Zn was also a constituent of corrosionproducts...

  2. International seminar on biomass and fossil fuels co-firing in power plants and heating plants in Europe; Seminaire international sur la cocombustion de biomasse et d'energies fossiles dans les centrales electriques et les chaufferies en Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The aim of the European commission which has fixed to 12% the share of renewable energies in the total energy consumption up to 2010, is to develop the biomass sector. Co-firing is a solution that allows to increase significantly the use of biomass because it does not require important investments. Today, about 150 power plants in Europe use co-firing. An Altener project named 'Cofiring' has ben settled in order to bring together and analyze the European experience in this domain and to sustain and rationalize the design of future projects. The conclusions of this study, coordinated by VTT Energy and which involves CARMEN (Germany), CBE (Portugal), the Danish centre for landscape and planning, ITEBE (France), KOBA (Italy), SLU (Sweden), and EVA (Austria), were presented during this international seminar. (J.S.)

  3. Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Mao, Tianzhi; Sui, Jun; Jin, Hongguang

    2015-01-01

    Co-firing biomass and fossil energy is a cost-effective and reliable way to use renewable energy and offer advantages in flexibility, conversion efficiency and commercial possibility. This study proposes a co-fired CCHP (combined cooling, heating and power) system based on natural gas and biomass gasification gas that contains a down-draft gasifier, ICE (internal combustion engine), absorption chiller and heat exchangers. Thermodynamic models are constructed based on a modifying gasification thermochemical equilibrium model and co-fired ICE model for electricity and heat recovery. The performance analysis for the volumetric mixture ratio of natural gas and product gas indicates that the energy and exergy efficiencies are improved by 9.5% and 13.7%, respectively, for an increasing mixture ratio of 0–1.0. Furthermore, the costs of multi-products, including electricity, chilled water and hot water, based on exergoeconomic analysis are analyzed and discussed based on the influences of the mixture ratio of the two gas fuels, investment cost and biomass cost. - Highlights: • Propose a co-fired CCHP system by natural gas and biomass gasification gas. • Modify biomass gasification and co-fired ICE models. • Present the thermodynamic analysis of the volumetric mixture ratios of two gas fuels. • Energy and exergy efficiencies are improved 9.5% and 13.7%. • Discuss multi-products’ costs influenced by investment and fuel costs.

  4. IEA Bioenergy Task 42 - Countries report. IEA Bioenergy Task 42 on biorefineries: Co-production of fuels, chemicals, power and materials from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cherubini, F.; Jungmeier, G.; Mandl, M. (Joanneum Research, Graz (Austria)) (and others)

    2010-07-01

    This report has been developed by the members of IEA Bioenergy Task 42 on Biorefinery: Co-production of Fuels, Chemicals, Power and Materials from Biomass (www.biorefinery.nl/ieabioenergy-task42). IEA Bioenergy is a collaborative network under the auspices of the International Energy Agency (IEA) to improve international cooperation and information exchange between national bioenergy RD and D programs. IEA Bioenergy Task 42 on Biorefinery covers a new and very broad biomass-related field, with a very large application potential, and deals with a variety of market sectors with many interested stakeholders, a large number of biomass conversion technologies, and integrated concepts of both biochemical and thermochemical processes. This report contains an overview of the biomass, bioenergy and biorefinery situation, and activities, in the Task 42 member countries: Austria, Canada, Denmark, France, Germany, Ireland, and the Netherlands. The overview includes: national bioenergy production, non-energetic biomass use, bioenergy related policy goals, national oil refineries, biofuels capacity for transport purposes, existing biorefinery industries, pilot and demo plants, and other activities of research and development (such as main national projects and stakeholders). Data are provided by National Task Leaders (NTLs), whose contact details are listed at the end of the report. (author)

  5. Advanced Biomass Gasification Projects

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

  6. Bioenergy guide. Projecting, operation and economic efficiency of biomass power plants; Leitfaden Bioenergie. Planung, Betrieb und Wirtschaftlichkeit von Bioenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Deimling, S. [Stuttgart Univ. (DE). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER); Kaltschmitt, M; Schneider, B. [and others

    2000-07-01

    This guide gives an survey over planning, operation and economics of biomass conversion plants. Main topics are: production and supply of biomass fuels, combustion properties, licensing, cost and financing. It shows planning and management of projects and the legal background for Germany and the European Union.

  7. Power generation in small scale from gasification of biomass; Geracao eletrica em pequena escala a partir da gaseificacao de biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Lora, Electo Eduardo Silva; Andrade, Rubenildo Vieira; Aradas, Maria Eugenia Corria [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Excelencia em Geracao Termeletrica e Distribuida (NEST)

    2004-07-01

    This paper present a review about biomass gasifier technology and discuss its advantages, disadvantages and applications as well as shows some succeeded experiences in this area. The paper also presents an analysis of the biomass gas use in alternative engines and in new distributed generation technology such as Stirling engines and microturbines. (author)

  8. Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds.

    Science.gov (United States)

    Zhu, Baohua; Sun, Faqiang; Yang, Miao; Lu, Lin; Yang, Guanpin; Pan, Kehou

    2014-12-01

    The potential use of microalgal biomass as a biofuel source has raised broad interest. Highly effective and economically feasible biomass generating techniques are essential to realize such potential. Flue gas from coal-fired power plants may serve as an inexpensive carbon source for microalgal culture, and it may also facilitate improvement of the environment once the gas is fixed in biomass. In this study, three strains of the genus Nannochloropsis (4-38, KA2 and 75B1) survived this type of culture and bloomed using flue gas from coal-fired power plants in 8000-L open raceway ponds. Lower temperatures and solar irradiation reduced the biomass yield and lipid productivities of these strains. Strain 4-38 performed better than the other two as it contained higher amounts of triacylglycerols and fatty acids, which are used for biodiesel production. Further optimization of the application of flue gas to microalgal culture should be undertaken. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Status of biomass fuels technologies research in the US

    Energy Technology Data Exchange (ETDEWEB)

    Koontz, R.P.; Parker, S.; Glenn, B.

    1984-07-01

    Biomass is a tremendous potential source of fuel and chemical feedstocks. The US Department of Energy has sponsored a broad spectrum of research on biomass at various US government laboratories, private installations, and universities. The status of biomass fuels technologies research in the US is discussed.

  10. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  11. 77 FR 26697 - New Animal Drugs; Change of Sponsor; Change of Sponsor Address; Change of Sponsor Name and...

    Science.gov (United States)

    2012-05-07

    ... rights and interest in, abbreviated new animal drug application (ANADA) 200-472 for Fomepizole for... [Docket No. FDA-2012-N-0002] New Animal Drugs; Change of Sponsor; Change of Sponsor Address; Change of.... SUMMARY: The Food and Drug Administration (FDA) is amending the animal drug regulations to reflect a...

  12. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    International Nuclear Information System (INIS)

    McIlveen-Wright, D.R.; Huang, Y.; McMullan, J.T.; Pinto, F.; Franco, C.; Gulyurtlu, I.; Armesto, L.; Cabanillas, A.; Caballero, M.A.; Aznar, M.P.

    2006-01-01

    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  13. Feasibility of biomass as a fuel for electric power generation in the Netherlands. Haalbaarheid van biomassa als brandstof voor elektriciteitsproduktie in Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Bestebroer, S I [KEMA Milieu Services, Arnhem (Netherlands)

    1993-01-01

    Based on data from a study of the Netherlands Agency for Energy and the Environment (NOVEM) on the feasibility of biomass for the Dutch energy economy and on data from a literature study, a sensitivity analysis was carried out to determine the dependency of the energetic efficiency and the cost price on the starting points of the NOVEM study.Conclusions are drawn regarding the maximal capacity on the basis of biomass. Also attention is paid to the height of the carbon levy on the use of fossil fuels, by which the price of bio-electricity can be made competitive. It appears that electric power generation from biomass by means of an integrated biomass gasification combined cycle (IBGCC) is energetic efficient for the considered energy crops. However, the carbon levy on the use of fossil fuels must be 100% to make bio-energy competitive. It also must be taken into consideration that, next to the favourable characteristic of renewability, bio-energy bears a number of potential environmental loads

  14. GIS Methodology for Location of Biomass Power Plants Via Multi -Criteria Evaluation and Network Analysis. Location-Allocation Models for Forest Biomass Use; Metodologia SIG para la Localizacion de Centrales de Biomasa mediante Evaluacion Multicriterio y Analisis de Redes. Modelos de Localizacion-Asignacion para el Aprovechamiento de Biomasa Forestal

    Energy Technology Data Exchange (ETDEWEB)

    Paz, C de la; Dominguez, J; Perez, M E

    2013-02-01

    The main purpose of this study is to find optimal areas for the installation of Biomass Plants for electric generation and grid connected. In order to achieve this goal, a methodology based on Multi-Criteria Evaluation (MCE) and implemented by means a Geographic Information System (GIS) has been developed. Factors and restrictions for biomass resource and power plants location of biomass have been obtained through the dataset. The methodology output includes maps of greater aptitude areas for resource use (forest biomass available), as well as suitable locations for the placement of Forest Biomass facilities. Both cartographic products have been related by means Network Analysis. It generates Location-Allocation Models which allows locating Forest Biomass Facilities according with an optimization of the supply chain from the resource areas. (Author)

  15. SPONSORING, BRAND VALUE AND SOCIAL MEDIA

    Directory of Open Access Journals (Sweden)

    Alexander Zauner

    2012-10-01

    Full Text Available The increasing involvement of individuals in social media over the past decade has enabled firms to pursue new avenues in communication and sponsoring activities. Besides general research on either social media or sponsoring, questions regarding the consequences of a joint activity (sponsoring activities in social media remain unexplored. Hence, the present study analyses whether the perceived image of the brand and the celebrity endorser credibility of a top sports team influence the perceived brand value of the sponsoring firm in a social media setting. Moreover, these effects are compared between existing customers and non-customers of the sponsoring firm. Interestingly, perceived celebrity endorser credibility plays no role in forming brand value perceptions in the case of the existing customers. Implications for marketing theory and practice are derived.

  16. Paradigma Baru Sponsor sebagai Mitra Penyelenggaraan Event

    Directory of Open Access Journals (Sweden)

    Lidia Evelina

    2011-10-01

    Full Text Available The goals of this article is to know why sponsorship only to be viewed as sources of funding to implement the public relation events or marketing communication events. Method used in this article is qualitative method research to be based on observation, library study and content analysis. The result of this research seems that change happened in role of sponsorship from only fund source to become a partner of cooperation (mutual symbiotism between sponsor and event organizer. This article exploring the change of sponsorship concept from only looking for sponsor as an activity of fund mobilitation to become a partnership cooperation between event organizer and sponsor company. The mean of sponsor itself beside the fund supporter, they are also a side who takes mutual benefit from the cooperation. Conclusion, any close relationship (mutual benefit between two sides who take cooperation in event implementation (sponsor and event organiser. 

  17. Electric power generation using biomass gasification systems in nature in isolated communities of the Amazon region: project GASEIBRAS; Geracao de eletricidade utilizando sistemas de gaseificacao de biomassa in natura em comunidades isoladas da regiao amazonica: projeto GASEIBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Velazquez, Silvia M. Stortini Goncalves; Santos, Sandra M. Apolinario dos; Lora, Beatriz Acquaro [Universidade de Sao Paulo (CENBIO/USP), SP (Brazil). Centro de Referencia Nacional em Biomassa], e-mails: suani@iee.usp.br, sgvelaz@iee.usp.br, sandra@iee.usp.br, blora@iee.usp.br

    2006-07-01

    This paper will present the pioneering project of electric energy generation from renewable sources 'GASEIBRAS - Nationalization of the Biomass Gasification Technology and Formation of Human Resources in the Amazon Region', recently approved by the National Advice of Scientific and Technological Development (CNPq) and for the Ministry of Mines and Energy (MME). The GASEIBRAS project intends to use the experience previously acquired in the project GASEIFAMAZ - Comparison between Existing Technologies of Biomass Gasification in Brazil and Exterior and Formation of Human Resources in the North Region, sponsored by FINEP/CTENERG, to develop and construct a 20 kWe biomass gasification system, with total national technology, easy to operate and to maintain, and fed with local available biomass residues. Apart from contributing for the development of the national technology, this project will provide the sustainable development of the isolated communities in the Amazon region. The ongoing development of this project will enable to consolidate the national biomass gasification technology for electricity generation. The implemented prototype will allow the response of this project in other regions of the country, due its tailor made characteristic to attend to small isolated communities, thus supplying decentralized energy from renewable sources, to Amazon region. (author)

  18. Integration of biomass into urban energy systems for heat and power. Part II: Sensitivity assessment of main techno-economic factors

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • Application of a MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents the application of a mixed integer linear programming (MILP) methodology to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the assessment of the trade-offs between centralized district heating plants and local heat generation systems, and on the decoupling of the biomass processing and biofuel energy conversion steps. After a brief description of the methodology, which is presented in detail in Part I of the research, an application to a generic urban area is proposed. Moreover, the influence of energy demand typologies (urban areas energy density, heat consumption patterns, buildings energy efficiency levels, baseline energy costs and available infrastructures) and specific constraints of urban areas (transport logistics, air emission levels, space availability) on the selection of optimal bioenergy pathways for heat and power is assessed, by means of sensitivity analysis. On the basis of these results, broad considerations about the key factors influencing the use of bioenergy into urban energy systems are proposed. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  19. Observatory Sponsoring Astronomical Image Contest

    Science.gov (United States)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  20. Biomass Waste Gasification – Can Be the Two Stage Process Suitable for Tar Reduction and Power Generation?

    Czech Academy of Sciences Publication Activity Database

    Šulc, J.; Štojdl, J.; Richter, M.; Popelka, J.; Svoboda, Karel; Smetana, J.; Vacek, J.; Skoblia, S.; Buryan, P.

    2012-01-01

    Roč. 32, č. 4 (2012), s. 692-700 ISSN 0956-053X Grant - others:RFCR(XE) CT-2010-00009 Institutional research plan: CEZ:AV0Z40720504 Keywords : waste biomass * gasification * tar Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 2.485, year: 2012

  1. Gasification of wet biomass waste flows for electric power generation. Vergassing van natte biomassa-afvalstromen voor elektriciteitsproduktie

    Energy Technology Data Exchange (ETDEWEB)

    Faaij, A; Blok, K; Worrell, E

    1992-06-01

    Feasibility of gasification of biomass waste streams for electricity production is studied. An inventory of available wet biomass wastes and their features is made. A potential of at least 28 PJ/year is available in the Netherlands. On the basis of a technical survey two systems were selected. The first is a steam-injected gas turbine (STIG) of net 15 MWe, and the second system is a STIG of net 49 MWe. Both make use of the Atmospheric Circulating Fluidized Bed (ACFB) gasification technology, wet scrubber gas cleaning and of flue gas for drying the waste. Efficiencies of 27% and 30% were calculated for 160 kton and 500 kton biomass waste a year respectively. Waste treatment costs are expected to be DFl 31 and DFl 24 per ton respectively, which is significant lower than the alternatives, being compost and anaerobic digestion of biomass waste. Moreover, this technique represents a considerable potential for saving fossil fuels and reducing CO[sub 2] emissions. This indicates that gasification can become a strong competitor for anaerobic digestion, composting and incineration on biomass waste treatment. The main technical problems to be solved are optimization of pre-treatment of the waste, especially drying, the behavior of the ash and heavy metals and adaptation of gas turbines for low calorific gas, possibly combined with steam injection. Fundamental problems to prohibit further development of this option seem not to be present. It is expected that realization of the option discussed here is possible within 4-7 years. 3 figs., 6 tabs., 64 refs.

  2. Green power production by co-gasification of biomass in coal-fired oxygen-blown entrained-flow based IGCC processes

    Energy Technology Data Exchange (ETDEWEB)

    Van Ree, R; Korbee, R; De Smidt, R P; Jansen, D [ECN Fuels Conversion and Environment, Petten (Netherlands); Baumann, H R; Ullrich, N [Krupp Uhde, Dortmund (Germany); Haupt, G; Zimmerman, [Siemens, Erlangen (Germany)

    1998-11-01

    The use of coal for large scale power production meets a growing environmental concern. In spite of the fact that clean coal conversion technologies integrated with high-efficiency power production facilities, such as IGCC, are developed, the aim for sustainable development strives for a power production system based on renewable energy sources. One of the most promising renewable energy sources that can be used in the Netherlands is biomass, i.e. organic waste materials and/or energy crops. To accelerate the introduction of this material, in a technical and economically acceptable way, co-gasification with fossil fuels, in particular coal, in large scale IGCC processes is considered. In this paper the technical feasibility, economic profitability, and environmental acceptability of co-gasification of biomass in coal-fired oxygen-blown entrained-flow based IGM is discussed. Both a base-case coal-fired oxygen-blown entrained-flow based IGCC process - showing strong resemblance to the Puertollano IGCC plant in Spain - and three co-gasification concepts, viz.: (1) a concept with separate dry coal and biomass feeding systems, (2) a concept with a combined dry coal/biomass-derived pyrolysis char feeding system, and (3) a concept with parallel biomass pre-treatment/gasification and combined fuel gas clean-up/power production, were defined for further consideration. The base-case system and the co-gasification concepts as well are modelled in the flowsheet simulation package ASPEN{sup +}. Steady-state integral system calculations resulted in an overall net electrical plant efficiency for the base-case system of 50. 1 %LHV (48.3 %HHV). Replacing about 10 % of the total thermal plant input (coal) by biomass (willow) resulted in a decrease of the overall net electrical plant efficiency of 1.4 to 2.1 %-points LHV, avoided specific CO2 emissions of 40-49 g/kWh{sub e}, and total avoided CO2 emissions of about 129 to 159 kt/a, all depending on the co-gasification concept

  3. Alkali and chlorine in biomass - a problem in connection with power generation. Alkali och klor i biomassa - ett problem vid elgenerering

    Energy Technology Data Exchange (ETDEWEB)

    Gaerdenaes, S

    1991-06-04

    The literature survey gives a summary of the macronutrients and the variations in different biomass. Especially alkali is discussed. The work gives an account of difficult biomass fuels which will rather be used in hot water boilers than in gas turbines of power generation. The amount of alkali and chlorine increases from hardwood < softwood < salix < straw from Phalaris arundineral (harvested during summer). The range of variation was 10-25 between the assortments. The fraction division is the most important factor for the variation. Alkaline content also depend on age, soil fertility and storage methods. Seasonal aspects and local depositions are less important. However, great care should be taken with fuel from coastal areas because of chlorine depositions. Gasification of biomass to produce gas for combined cycle operation poses special problems. The alkali content of logging residues have to be cleaned up to approximately 99 % in the example. When the process gas is originated from straw or salix the separation have to be even more efficient. The method used for the separation could be based on wet or dry technic hotgas cleanup has not yet been tested in large scale but seems to be a promising method to attain high degree of separation and power efficiency. Difficulties of power generation make straw fuels less interesting. The content of alkali and chlorine can be considerably decreased by changing the way of fertilization and cultivation period. If everything turns out well, this would give a complementary for gasification or steam generation. To the greates part this fuels will however be used in pure heat production. (author).

  4. Energy from biomass and wastes 15

    International Nuclear Information System (INIS)

    Klass, D.L.

    1991-01-01

    This proceedings is contains 63 papers on the utilization of biomass as an energy source and as a source for materials. The specific topics discussed include: environmental issues, biomass production, biomass pretreatment and processing, chemicals and other products from biomass, fuel ethanol, thermal liquefaction, thermal gasification, combustion and power generation, and national programs. Individual papers are indexed separately

  5. State-sponsored dental terrorism?

    Science.gov (United States)

    Kelleher, M

    2017-11-24

    Has the state's manipulation of the NHS dental contract systems deliberately, or accidentally, had corrupting effects on the behaviours of some members of the dental profession? If the answer is 'possibly' or 'probably', then obvious questions that follow include, 'was this done deliberately' and if so, 'why'? Could this have been done for largely altruistic reasons, or was it done to achieve government control for minimum cost? Might this have been undertaken for political, financial or ideological reasons - regardless of any adverse longer term consequences for some patients or for some dental professionals? Might it have been done to take greater control of the dental profession on the grounds that all professions are a conspiracy against the laity, as the mildly paranoid George Bernard Shaw once alleged? Is it possible that some of this manipulation might have been done to help to disempower yet another profession, allegedly to 'modernise it', but perhaps to enslave it for its own reasons? Was this just another example of some statist politicians wanting to interfere in all aspects of UK society, regardless of their lack of specific understanding, or any proven expertise, in many areas? Could the state's manipulation of contracts and processes be regarded as an abuse of power by a virtual monopoly, which has been used to control a largely altruistic profession by imposing corrupting NHS dental contract systems with the most recent one involving 'units of dental activity' (UDAs)? Perhaps it was really about some politicians wanting ever more power, control or money - their usual drivers - with the dental and medical professions accidentally becoming casualties?

  6. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  7. Termisk forgasning af biomasse

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Birk

    2005-01-01

    The title of this Ph.D. thesis is: Thermal Gasification of Biomass. Compilation of activities in the ”Biomass Gasification Group” at Technical University of Denmark (DTU). This thesis gives a presentation of selected activities in the Biomass Gasification Group at DTU. The activities are related...... to thermal gasification of biomass. Focus is on gasification for decentralised cogeneration of heat and power, and on related research on fundamental processes. In order to insure continuity of the presentation the other activities in the group, have also been described. The group was started in the late...... of these activities has been fruitful. The two- stage gasifier was developed for gasification aiming at decentralised cogeneration of heat and power. The development ranged from lap-top scale equipment to a fully automatic plant with more than 2000 hours of operation. Compared to most other gasification processes...

  8. Biomass utilisation for combined heat and power generation: Status and perspectives for rural regions. Guelzow expert discussions; Energetische Nutzung von Biomasse mit Kraft-Waerme-Kopplung: Stand der Technik und Perspektiven fuer den laendlichen Raum. Guelzower Fachgespraeche

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Biomass has a high potential but biomass utilisation technologies have not yet reached sufficient maturity for a general breakthrough on the market. Political boundary conditions alone are not sufficient if technical conversion processes are neglected. For the time being, the potential of biomass can not be utilised.

  9. Design optimization and sensitivity analysis of a biomass-fired combined cooling, heating and power system with thermal energy storage systems

    International Nuclear Information System (INIS)

    Caliano, Martina; Bianco, Nicola; Graditi, Giorgio; Mongibello, Luigi

    2017-01-01

    Highlights: • A novel operation strategy for biomass-fired combined cooling, heating and power system is presented. • A design optimization of the system is conducted. • The effects of variation of the incentive for the electricity generation are evaluated. • The effects of the variation of the absorption chiller size and the thermal energy storage system one are evaluated. • The inclusion of a cold storage system into the combined cooling, heating and power system is also analyzed. - Abstract: In this work, an operation strategy for a biomass-fired combined cooling, heating and power system, composed of a cogeneration unit, an absorption chiller, and a thermal energy storage system, is formulated in order to satisfy time-varying energy demands of an Italian cluster of residential multi-apartment buildings. This operation strategy is adopted for performing the economical optimization of the design of two of the devices composing the combined cooling, heating and power system, namely the absorption chiller and the storage system. A sensitivity analysis is carried out in order to evaluate the impact of the incentive for the electricity generation on the optimized results, and also to evaluate, separately, the effects of the variation of the absorption chiller size, and the effects of the variation of the thermal energy storage system size on the system performance. In addition, the inclusion into the system of a cold thermal energy storage system is analyzed, as well, assuming different possible values for the cold storage system cost. The results of the sensitivity analysis indicate that the most influencing factors from the economical point of view are represented by the incentive for the electricity generation and the absorption chiller power. Results also show that the combined use of a thermal energy storage and of a cold thermal energy storage during the hot season could represent a viable solution from the economical point of view.

  10. Biomass in Germany

    International Nuclear Information System (INIS)

    Chapron, Thibaut

    2014-01-01

    This document provides, first, an overview of biomass industry in Germany: energy consumption and renewable energy production, the French and German electricity mix, the 2003-2013 evolution of renewable electricity production and the 2020 forecasts, the biomass power plants, plantations, biofuels production and consumption in Germany. Then, the legal framework of biofuels development in Germany is addressed (financial incentives, tariffs, direct electricity selling). Next, a focus is made on biogas production both in France and in Germany (facilities, resources). Finally, the French-German cooperation in the biomass industry and the research actors are presented

  11. Electricity from biomass

    International Nuclear Information System (INIS)

    Price, B.

    1998-11-01

    Electricity from biomass assesses the potential of biomass electricity for displacing other more polluting power sources and providing a relatively clean and ecologically friendly source of energy; discusses its environmental and economic effects, while analysing political and institutional initiatives and constraints; evaluates key factors, such as energy efficiency, economics, decentralisation and political repurcussions; considers the processes and technologies employed to produce electricity from biomass; and discusses the full range of incentives offered to producers and potential producers and the far-reaching implications it could have for industry, society and the environment. (author)

  12. Romania biomass energy. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, M; Easterly, J L; Mark, P E; Keller, A [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  13. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.; Mark, P.E.; Keller, A.

    1995-01-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  14. 2015 Plan. Project 4: electric power supply, technologies, cost and availability. Sub-project forest biomass. Plano 2015. Projeto 4: oferta de energia eletrica, tecnologia, custos e disponibilidades. Subprojeto biomassa florestal

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The potential and the costs of forest biomass utilization for electric power generation in Brazil are evaluated, including a discussion of the technologies and the forecasts in fuel production area (forests management) and in electric power conversion and generation areas. The socio-economics and environmental aspects referring to wood utilization as energetic resource are also described. (C.G.C.).

  15. The Political Economy of Federally Sponsored Data

    Directory of Open Access Journals (Sweden)

    Bart Ragon

    2013-11-01

    Full Text Available Librarian involvement in the Open Access (OA movement has traditionally focused on access to scholarly publications. Recent actions by the White House have focused attention on access on the data produced from federally sponsored research. Questions have emerged concerning access to the output of federally sponsored research and whether it is a public or private good. Understanding the political battle over access to federally funded research is closely tied to the ownership of the peer review process in higher education and associated revenue streams, and as a result, interest groups seeking to influence government regulation have politicized the issues. As a major funder of research in higher education, policies from the federal government are likely to drive change in research practices at higher education institutions and impact library services. The political economy of federally sponsored research data will shape research enterprises in higher education inspire a number of new services distributed throughout the research life cycle.

  16. Outsourcing ethical obligations: should the revised common rule address the responsibilities of investigators and sponsors?

    Science.gov (United States)

    Shah, Seema K

    2013-01-01

    The Common Rule creates a division of moral labor in research. It implies that investigators and sponsors can outsource their ethical obligations to IRBs and participants, thereby fostering a culture of compliance, rather than one of responsibility. The proposed revisions to the Common Rule are likely to exacerbate this problem. To harness the expressive power of the law, I propose the Common Rule be revised to include the ethical responsibilities of investigators and sponsors. © 2013 American Society of Law, Medicine & Ethics, Inc.

  17. Event seeking for sponsors: Case Helsinki Pride

    OpenAIRE

    Jaakkola, Johanna

    2014-01-01

    This thesis was done for HeSeTa Ry (Helsingin seudun seksuaalinen tasavertaisuus ry) and the goal was to find out how Helsinki Pride could get sponsors more efficiently and how the co-operation could be made more long lasting with the current sponsors. Helsinki Pride is an event organized in Helsinki each year in June. It is also the biggest LGBT event organized in Finland. The biggest event of the week is the Gay Parade and the Party in the Park. In 2014 only these events had over 20 000 par...

  18. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes...... - this collective resistance is known as "biomass recalcitrance." Breakthrough technologies are needed to overcome barriers to developing cost-effective processes for converting biomass to fuels and chemicals. This book examines the connection between biomass structure, ultrastructure, and composition......, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...

  19. Modeling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Samo, S.R.; Memon, A.S.; Akhund, M.A.

    1995-01-01

    The fuels used in industry and power sector for the last two decades have become expensive. As a result renewable energy source have been emerging increasingly important, of these, biomass appears to be the most applicable in the near future. The pyrolysis of biomass plays a key role amongst the three major and important process generally encountered in a gas producer, namely, pyrolysis, combustion and reduction of combustion products. Each biomass has its own pyrolysis characteristics and this important parameters must be known for the proper design and efficient operation of a gasification system. Thermogravimetric analysis has been widely used to study the devolatilization of solid fuels, such as biomass. It provides the weight loss history of a sample heated at a predetermined rate as a function of time and temperature. This paper presents the experimental results of modelling the weight loss curves of the main biomass components i.e. cellulose, hemicellulose and lignin. Thermogravimetric analysis of main components of biomass showed that pyrolysis is first order reaction. Furthermore pyrolysis of cellulose and hemicelluloe can be regarded as taking place in two stages, for while lignin pyrolysis is a single stage process. This paper also describes the Thermogravimetric Analysis (TGA) technique to predict the weight retained during pyrolysis at any temperature, for number of biomass species, such as cotton stalk, bagasse ad graoundnut shell. (author)

  20. RESULTS OF THE TECHNICAL AND ECONOMIC FEASIBILITY ANALYSIS FOR A NOVEL BIOMASS GASIFICATION-BASED POWER GENERATION SYSTEM FOR THE FOREST PRODUCTS INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Bryan; Joseph Rabovitser; Sunil Ghose; Jim Patel

    2003-11-01

    In 2001, the Gas Technology Institute (GTI) entered into Cooperative Agreement DE-FC26-01NT41108 with the U.S. Department of Energy (DOE) for an Agenda 2020 project to develop an advanced biomass gasification-based power generation system for near-term deployment in the Forest Products Industry (FPI). The advanced power system combines three advanced components, including biomass gasification, 3-stage stoker-fired combustion for biomass conversion, and externally recuperated gas turbines (ERGTs) for power generation. The primary performance goals for the advanced power system are to provide increased self-generated power production for the mill and to increase wastewood utilization while decreasing fossil fuel use. Additional goals are to reduce boiler NOx and CO{sub 2} emissions. The current study was conducted to determine the technical and economic feasibility of an Advanced Power Generation System capable of meeting these goals so that a capital investment decision can be made regarding its implementation at a paper mill demonstration site in DeRidder, LA. Preliminary designs and cost estimates were developed for all major equipment, boiler modifications and balance of plant requirements including all utilities required for the project. A three-step implementation plan was developed to reduce technology risk. The plant design was found to meet the primary objectives of the project for increased bark utilization, decreased fossil fuel use, and increased self-generated power in the mill. Bark utilization for the modified plant is significantly higher (90-130%) than current operation compared to the 50% design goal. For equivalent steam production, the total gas usage for the fully implemented plant is 29% lower than current operation. While the current average steam production from No.2 Boiler is about 213,000 lb/h, the total steam production from the modified plant is 379,000 lb/h. This steam production increase will be accomplished at a grate heat release rate

  1. Engineering the Pores of Biomass-Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in High-Energy Supercapacitors.

    Science.gov (United States)

    Thangavel, Ranjith; Kaliyappan, Karthikeyan; Ramasamy, Hari Vignesh; Sun, Xueliang; Lee, Yun-Sung

    2017-07-10

    Electrochemical supercapacitors with high energy density are promising devices due to their simple construction and long-term cycling performance. The development of a supercapacitor based on electrical double-layer charge storage with high energy density that can preserve its cyclability at higher power presents an ongoing challenge. Herein, we provide insights to achieve a high energy density at high power with an ultrahigh stability in an electrical double-layer capacitor (EDLC) system by using carbon from a biomass precursor (cinnamon sticks) in a sodium ion-based organic electrolyte. Herein, we investigated the dependence of EDLC performance on structural, textural, and functional properties of porous carbon engineered by using various activation agents. The results demonstrate that the performance of EDLCs is not only dependent on their textural properties but also on their structural features and surface functionalities, as is evident from the electrochemical studies. The electrochemical results are highly promising and revealed that the porous carbon with poor textural properties has great potential to deliver high capacitance and outstanding stability over 300 000 cycles compared with porous carbon with good textural properties. A very low capacitance degradation of around 0.066 % per 1000 cycles, along with high energy density (≈71 Wh kg -1 ) and high power density, have been achieved. These results offer a new platform for the application of low-surface-area biomass-derived carbons in the design of highly stable high-energy supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A comparison between two methods of generating power, heat and refrigeration via biomass based Solid Oxide Fuel Cell: A thermodynamic and environmental analysis

    International Nuclear Information System (INIS)

    Mortazaei, M.; Rahimi, M.

    2016-01-01

    Highlights: • Two novel trigeneration systems based biomass and Solid Oxide Fuel Cell are compared. • A complete environmental analysis for three different cases is conducted. • Digester based system has 14.56% more exergetic efficiency than gasifier based one. • Gasifier based system has 14.31% more energetic efficiency than Digester based one. • Gasifier, Digester and air heat exchanger have the highest exergy destruction. - Abstract: Utilization of biomass energy is of prevalence focus these days. Using these fuels to run the fuel cells is of primary interest. In this regard, two new trigeneration systems (producing power and heating alongside with cooling) based on solid oxide fuel cell fed by either the syngas or biogas are proposed. The performance of systems is analyzed and compared with each other from the thermodynamic viewpoint. Applying the conservation of mass and energy as well as the exergy for each system component and using the engineering equation solver, the system’s performance are modeled. Through a parametric study, the effects of some key variables such as the current density and the fuel utilization factor in the systems’ performance are investigated. In addition, considering the system as a combination of three subsystems, that is, the power generation system, heat and power generation system and trigeneration system, an environmental impact assessment in terms of Carbon dioxide emission is carried out for both digester based Solid Oxide Fuel Cell and gasifier based one. It is observed that using biogas from digester leads to more exergetic (which is 14.56%) and less energetic efficiency (Which is 14.31%), with a Carbon dioxide emission of 17.87 ton/MW h for the tri-generation system. The value of this parameter is 21.32 ton/MW h when gasifier is used as the supplier of fuel for solid oxide fuel cell.

  3. Biomass as a fuel: Advantages, limitations and possibilities

    International Nuclear Information System (INIS)

    McBurney, B.

    1997-01-01

    This presentation briefly outlines major issues related to the use of biomass fuels. Advantages and disadvantages of biomass fuels are identified, as well as major factors that may facilitate greater use of biomass fuels. Highlights of the US DOE Biomass Power Program, program activities, and demonstration projects are presented. Some statistical and economic data are provided, including biomass fueled electric capacity, biomass energy consumption by sector, and fuel cost savings and greenhouse gas emissions reductions for four biomass co-fired units

  4. 22 CFR 62.3 - Sponsor eligibility.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Sponsor eligibility. 62.3 Section 62.3 Foreign Relations DEPARTMENT OF STATE PUBLIC DIPLOMACY AND EXCHANGES EXCHANGE VISITOR PROGRAM General Provisions... visitor program are: (1) United States local, state and federal government agencies; (2) International...

  5. Sponsored Research & the Freedom of Publication.

    Science.gov (United States)

    Packham, David

    This paper examines conflicts and collaboration between industry and universities regarding sponsored research and freedom of publication, particularly in the United Kingdom. An opening section notes that the values of the market and the university are in fundamental conflict which presents problems for institutions attempting to work in…

  6. Use and Misuse of Industry Sponsored Materials.

    Science.gov (United States)

    DuVall, Charles R.; Krepel, Wayne J.

    A review of educational research reveals that free and inexpensive materials are used today to a much greater extent than they had been in the past. Two studies, sponsored by the American Iron and Steel Institute, are evidence of the producer's interest in determining the strengths and weaknesses of the materials being sent into classrooms and…

  7. Market Imperfections and Firm-Sponsored Training

    NARCIS (Netherlands)

    Picchio, M.; van Ours, J.C.

    2010-01-01

    Recent human capital theories predict that labor market frictions and product market competition influence firm-sponsored training. Using matched worker-firm data from Dutch manufacturing, our paper empirically assesses the validity of these predictions. We find that a decrease in labor market

  8. The University Campus: Why Military Sponsored Research.

    Science.gov (United States)

    Messing, Aubrey E.

    Military-sponsored research on the university campus has been a major issue during the past several years. Opposition has come from radicals, who wish to destroy the university itself, to critics, who feel such activities take needed funds and personnel from the more important task of solving our nation's social problems. These viewpoints and the…

  9. Summary of the ORNL-sponsored reactor radwaste management workshop

    International Nuclear Information System (INIS)

    Kibbey, A.H.

    1977-01-01

    On January 12 to 14, 1977, Oak Ridge National Laboratory (ORNL) sponsored a Radwaste Management Workshop in New Orleans, Louisiana, the object of which was to obtain operating data on the uses of evaporation, ion exchange, filtration, and on solid radwaste practices at nuclear power plants. The collected data are being used to update three earlier generic reports done by ORNL on the status of evaporation, ion exchange, and solid radwaste practices at nuclear power plants and to prepare a new one on filtration. All segments of the nuclear power industry were invited to participate, and a total of 188 representatives came. There were four major Workshop groups: volume reduction, solidification, physical and chemical separations, and corrosion. The major findings of each group are reported

  10. Utilization of new feeding technology in power production from biomass; safety aspects and techno-economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Rautalin, A. [VTT Energy, Espoo (Finland)

    1998-12-01

    The possibility to prevent the dust explosions by suppression method in the ignition stage has been investigated in the project `Suppression of dust explosions in biomass-fired plants` (Bioenergy Research programme 1995). The first stage of the dust explosion and suppression tests under elevated pressure were carried out in spring 1996 in England using the 5.6 m{sup 3} equipment constructed for this purpose. The tests were carried out both with coal and wood dusts. The tests were carried out by Coal Technology Development Division (British Coal) and Kidde Fire Protection. In the first stage of the project it was possible to suppress both the coal and wood dust explosions successfully at the 10 bar pressure level. The target of the second stage of the project is to carry out the tests also at 18 bar pressure level. These tests would, if successful, enable the extrapolation of the operational parameters the pressure levels of 20-25 bars of IGCC plants. The limiting factors for the planning of pressurized (and ambient pressure) feeding systems are now known relatively well on the basis of the knowledge gained in the dust explosion and self-ignition tests, and the dust explosion suppression tests. The total objective of the research is the comparison of pressurized feeding systems, based mainly on the lock-hopper technology, both in the economical and technical sense. Arrangement of pressurization and sufficient inertization form a significant factor. The newest pressurized double-screw and piston feeder technologies will also be considered. The second stage of the suppression tests has been carried out in the first stage of the project. The suppression tests were successful both with coal and biomass dusts when using four suppression media containers. The full pressure dust explosions were carried out successfully at 18 bar initial pressure 4 refs., 2 figs., 1 tab. Bioenergy Research programme

  11. Analysing the economy-wide impact of the supply chains activated by a new biomass power plant. The case of cardoon in Sardinia

    Directory of Open Access Journals (Sweden)

    Andrea Bonfiglio

    2016-05-01

    Full Text Available This study investigates the impact on the economy of Sardinia (Italy generated by a new biomass power plant fed by locally cultivated cardoon. The cardoon also serves the production of biopolymers. The impact is assessed at an economy-wide level using two multiregional closed Input-Output models, which allow us to take into account the entire supply chain activated and the supra-local effects generated by trade across local industries. The effects are computed under alternative scenarios simulating different levels of substitution of existing agricultural activities with the new activity (cardoon. Results show positive and locally significant impacts in terms of value added and employment. However, these impacts are substantially influenced by the degree of substitution. Results also suggest that there are specific territorial areas that are more sensitive to negative effects induced by substitution.

  12. Biomass co-firing

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized-bed combus......Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized......-bed combustion (FBC) systems, and grate-firing systems, which are employed in about 50%, 40% and 10% of all the co-firing plants, respectively. Their basic principles, process technologies, advantages, and limitations are presented, followed by a brief comparison of these technologies when applied to biomass co...

  13. Northeast Regional Biomass Program

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, R.A.

    1991-11-01

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project Characterization of Emissions from Burning Woodwaste''. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory.

  14. Northeast Regional Biomass Program

    International Nuclear Information System (INIS)

    O'Connell, R.A.

    1991-11-01

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project ''Characterization of Emissions from Burning Woodwaste''. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory

  15. Novel, cost-effective configurations of combined power plants for small-scale cogeneration from biomass: Feasibility study and performance optimization

    International Nuclear Information System (INIS)

    Amirante, Riccardo; Tamburrano, Paolo

    2015-01-01

    Highlights: • A cheap small combined cycle for cogeneration from biomass is proposed. • An optimization procedure is utilized to explore its potential. • Two configurations employing two different heat exchangers are considered. • The maximum electrical efficiency is 25%, the maximum overall efficiency is 70%. • The operation in load following mode is effective for both configurations. - Abstract: The aim of this paper is to demonstrate that, thanks to recent advances in designing micro steam expanders and gas to gas heat exchangers, the use of small combined cycles for simultaneous generation of heat and power from the external combustion of solid biomass and low quality biofuels is feasible. In particular, a novel typology of combined cycle that has the potential both to be cost-effective and to achieve a high level of efficiency is presented. In the small combined cycle proposed, a commercially available micro-steam turbine is utilized as the steam expander of the bottoming cycle, while the conventional microturbine of the topping cycle is replaced by a cheaper automotive turbocharger. The feasibility, reliability and availability of the required mechanical and thermal components are thoroughly investigated. In order to explore the potential of such a novel typology of power plant, an optimization procedure, based on a genetic algorithm combined with a computing code, is utilized to analyze the trade-off between the maximization of the electrical efficiency and the maximization of the thermal efficiency. Two design optimizations are performed: the first one makes use of the innovative “Immersed Particle Heat Exchanger”, whilst a nickel alloy heat exchanger is used in the other one. After selecting the optimum combination of the design parameters, the operation in load following mode is also assessed for both configurations

  16. Utilization of new feeding technology in power production from biomass; safety aspects and techno-economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Rautalin, A. [VTT Energy, Espoo (Finland)

    1998-12-31

    Safety-technical characteristics of fuels, primarily biomass and, as reference, coal, have been studied at VTT Energy since the year 1993. The work has been related mainly to the development work of feeding and handling systems for pressurised gasification and combustion technology. Dust explosion and self-ignition characteristics of fuels have been determined in a number of research projects. Possible prevention of dust explosions with a suppression method immediately at ignition was studied in a project on suppression of dust explosions in biomass-utilising plants (Bioenergia Programme 1995). The first phase of dust explosion and suppression tests at elevated pressure were carried out in testing equipment of 5,6 m{sup 3} constructed, in particular, for these tests in Great Britain. Tests were made both with coal and wood powders by Coal Technology Development Division (British Coal Corporation) and Kidde Fire Protection. At the first stage of the test programme both coal and wood powder explosions were successfully suppressed at 10 bar pressure level. The current 1997-98 project includes the second phase of the explosion suppression tests, which will be carried out at 18 bar. If successful these tests would enable the extrapolation of the operation values to the pressure level of IGCC plants, i.e. to 20 - 25 bar. The boundary conditions set by safety factors on the design of pressurised (and atmospheric) feeding systems are fairly well-known due to data obtained from dust explosion and self-ignition experiments and from dust explosion suppression tests. The overall aim of the research is to compare pressurised system alternatives based primarily on lock-hopper feeding technology both technically and economically. A significant issue is how to arrange pressurisation and sufficient inertisation. New alternatives to produce inert gas will be assessed. The newest equipment, plug screw and piston feeders under development, will also be included in the study. The

  17. Study into the status of co-combustion of sewage sludge, biomass and household refuse in coal-fired power stations. Final report; Untersuchungen zum Stand der Mitverbrennung von Klaerschlamm, Hausmuell und Biomasse in Kohlekraftwerken. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K.R.G.; Spliethoff, H.; Scheurer, W. [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen; Seifert, H.; Richers, U. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer technische Chemie - Thermische Abfallbehandlung

    2000-03-01

    The co-combustion of wastes in power stations is an additional option for the thermal treatment of certain waste materials and thus for complying with the specifications of the German TA-Siedlungsabfall (technical directive on disposal of municipal solid waste). The present investigation compiles the status of knowledge about co-combustion of sewage sludge, biomass and selected waste materials in coal-fired power stations. The results are meant to provide extensive assistance to evaluate the processes and thus to contribute to sort out uncertainties, both on the part of power plant operators and of the authorities. Based on the information acquired, the report shall point out the gaps in knowledge, the further need for research and development and the need for action conerning the authorities. By enquiries at disposal enterprises, power station operators as well as authorities, the literature work was completed and a comprehensive view of the current situation in Germany elaborated. The report points out the legal conditions of co-combustion and supplementary fuel potentials, presents the process engineering of co-combustion, and examines the obstacles encountered during the technical conversion, the environmental questions, and the potential for co-combustion of the above materials in existing power stations. The electrical power sector is subject to strong changes due to the liberalisation of the energy market. The pressure on costs has increased and the periods available for planning are shorter. On the one hand, this arouses an increased interest in co-combustion of waste materials because of possible additional payments for the wastes. On the other hand, however, initiatives in this respect are counteracted by high investments costs necessary for the introduction of co-combustion with the existing high environmental standards. What is more, the competitive situation reduces the exchange of experience between the power station operators. Co-combustion of sewage

  18. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The primary energy production from solid biomass in the European Union reached 79.3 Mtoe in 2010 which implies a growth rate of 8% between 2009 and 2010. The trend, which was driven deeper by Europe's particularly cold winter of 2009-2010, demonstrates that the economic down-turn failed to weaken the member states' efforts to structure the solid biomass sector. Heat consumption rose sharply: the volume of heat sold by heating networks increased by 18% and reached 6.7 Mtoe and if we consider the total heat consumption (it means with and without recovery via heating networks) the figure is 66 Mtoe in 2010, which amounts to 10.1% growth. The growth of electricity production continued through 2010 (8.3% up on 2009) and rose to 67 TWh but at a slower pace than in 2009 (when it rose by 11.3% on 2008). The situation of the main producer countries: Sweden, Finland, Germany and France is reviewed. It appears that cogeneration unit manufacturers and biomass power plant constructors are the main beneficiaries of the current biomass energy sector boom. There is a trend to replace coal-fired plants that are either obsolete or near their end of life with biomass or multi-fuel plants. These opportunities will enable the industry to develop and further exploit new technologies such as gasification, pyrolysis and torrefaction which will enable biomass to be turned into bio-coal. (A.C.)

  19. Biomass feedstock analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)

  20. Power generation with technology innovation of residual biomass utilization; Geracao de energia com inovacao tecnologica de aproveitamento de biomassa residual

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Johnson Pontes de; Selvam, P.V. Pannir [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2006-07-01

    In the present work, the introduction of alternative energy of biogas in agricultural communities for the sustainable development was studied through exploitation of residual biomass and also getting as by-product the biological fertilizer. A fast composting of the domestic residue with the organic was made possible where part of this residue after processing was taken together with effluent to the biodigester. The bibliographical research on the processes of generation of biogas, about composting and the equipment for processing had been carried through. The projects engineering with the use of computational tools had been developed with the software Super Pro 4,9 Design and ORC GPEC 2004 by our research group. Five case studies had been elaborated, where different scenes related with our innovation, that uses of the residue for the composting together with domestic effluent for digestion. Several economic parameters were obtained and our work proved the viability about the use of biogas for drying of the fruits banana. A economic feasibility study was carried where it was proven that the project with the innovation of the use of residues from the fruits possess more advantages than the conventional system of drying using electric energy. Considering the viability of this process and the use solar energy, it is intended to apply this technology in rural agricultural communities providing them an energy source of low cost in substitution of the conventional energy. (author)

  1. Biomass power for rural development. Technical progress report Phase-II. Contractual reporting period October-December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, Edward; The Salix Consortium

    2000-03-23

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase 1 focused on initial development and testing of the technology and forging the necessary agreements to demonstrate commercial willow production. The Phase 1 objectives have been successfully completed: preparing design plans for 2 utility pulverized coal boilers for 20 MW of biopower capacity; developing fuel supply plans for the project with a goal of establishing 365 ha (900 ac) of willow; obtaining power production commitments from the power companies for Phase 2; obtaining construction and environmental permits; and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system.

  2. Clean and efficient application of biomass for production of power and heat - Phase 3 in a long-term strategic research project

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Jensen, A.D.; Jensen, P.A.; Johnsson, J.E.; Dam-Johansen, K.

    2002-06-01

    This project contains activities on: Rheology of ashes from co-firing of coal and biomass; Investigation of ash and deposit formation in full-scale utility boilers; and Selective catalytic reduction: Deactivation under biomass combustion. A fly ash and deposit investigation was carried out as part of the SK Power Company test programme on co-firing of biomasses in a grate-fired boiler. The alternative biomasses (wood chips, olive stones and shea nuts) contain more K, S, and Cl, than wheat straw, and higher fly ash mass loading (mass of fly ash/volume of flue gas) was observed when co-firing alternative biomasses with wheat straw. Anyhow, no significant change in deposit structure when co-firing alkali-rich biomass was observed: KCl is glues residual ash particles together, independent of the feedstock mixture. Thus it can be concluded that co-firing of the actual biomasses in boilers designed for straw-firing, at the present shares is not problematic, from an ash formation and/or deposit build-up point-of-view. Anyhow the increase in ash mass loading in the flue gas, may cause increased build-up of particulate deposits in the convective pass of the boiler. Mature deposit samples from the Masnedoe and Ensted straw-fired boilers were investigated by SEM and EDX. Each deposit sample was classified into an inner, an intermediate, and an outer main layer. The outermost deposit layers at Masnedoe and Ensted looked chemically quite similar, even though they were of different colours. The intermediate layer at Ensted contained many Si- and Ca-rich particles glued together by melted KCI, while the intermediate deposit layers at Masnedoe were different. Since the straw fuels probably are similar, the differences observed in the deposit chemistry must be induced by the higher temperature of the Masnedoe deposit. An experimental method has been set up for viscosity determinations on ashes from co-firing with wheat straw. The method contains a pre-treatment of the ashes, where

  3. What can Bilfinger teach Olympic sponsors?

    OpenAIRE

    Mark Dodds; Mauro Palmero

    2016-01-01

    Bilfinger SE (Bilfinger) is a leading international engineering and services group (Bilfinger.com, 2015), and was a local sponsor of the 2014 FIFA World Cup. The company is accused of paying bribes through its subsidiary company, Mauell, (dw. com, 2015) to public officials in Brazil for contracts related to the 2014 World Cup (Cassin, 2015). The corruption allegations relate to orders to equip security command centers at twelve host cities during the 2014 World Cup in Brazil (dw.com, 2015). B...

  4. Biomass pyrolysis for chemicals

    Energy Technology Data Exchange (ETDEWEB)

    De Wild, P.

    2011-07-15

    The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for materials and energy where biomass provides the only renewable source for chemicals. In a biorefinery, biomass is converted via different technologies into heat, power and various products. Here, pyrolysis (thermal degradation without added oxygen) of lignocellulosic biomass can play an important role, because it leads to an array of useful chemicals. Examples are furfural and acetic acid from hemicellulose, levoglucosan from cellulose and phenols and biochar from lignin. Since the three major biomass polymers hemicellulose, cellulose and lignin possess dissimilar thermal stabilities and reactivities, type and amount of degradation products are tunable by proper selection of the pyrolysis conditions. To determine if step-wise pyrolysis would be suitable for the production of chemicals, staged degasification of lignocellulosic biomass was studied. Due to limited yields, a hot pressurized water pre-treatment (aquathermolysis) followed by pyrolysis was subsequently developed as an improved version of a staged approach to produce furfural and levoglucosan from the carbohydrate fraction of the biomass. Lignin is the only renewable source for aromatic chemicals. Lignocellulosic biorefineries for bio-ethanol produce lignin as major by-product. The pyrolysis of side-streams into valuable chemicals is of prime importance for a profitable biorefinery. To determine the added-value of lignin side-streams other than their use as fuel for power, application research including techno-economic analysis is required. In this thesis, the pyrolytic valorisation of lignin into phenols and biochar was investigated and proven possible.

  5. Biomass energy

    International Nuclear Information System (INIS)

    Pasztor, J.; Kristoferson, L.

    1992-01-01

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  6. Biomass Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunecky, Roman [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Chien-Yuan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Amore, Antonella [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wei, Hui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Xiaowen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tucker, Melvin P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Czernik, Stefan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sluiter, Amie D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Magrini, Kimberly A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sheehan, John [Formerly NREL; Dayton, David C. [Formerly NREL; Bozell, Joseph J. [Formerly NREL; Adney, William S. [Formerly NREL; Aden, Andy [Formerly NREL; Hames, Bonnie [Formerly NREL; Thomas, Steven R. [Formerly NREL; Bain, Richard L. [Formerly NREL

    2017-08-02

    Biomass constitutes all the plant matter found on our planet, and is produced directly by photosynthesis, the fundamental engine of life on earth. It is the photosynthetic capability of plants to utilize carbon dioxide from the atmosphere that leads to its designation as a 'carbon neutral' fuel, meaning that it does not introduce new carbon into the atmosphere. This article discusses the life cycle assessments of biomass use and the magnitude of energy captured by photosynthesis in the form of biomass on the planet to appraise approaches to tap this energy to meet the ever-growing demand for energy.

  7. Generation of Electricity and Analysis of Microbial Communities in Wheat Straw Biomass-Powered Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Min, Booki; Huang, L.

    2009-01-01

    Electricity generation from wheat straw hydrolysate and the microbial ecology of electricity producing microbial communities developed in two chamber microbial fuel cells (MFCs) were investigated. Power density reached 123 mW/m2 with an initial hydrolysate concentration of 1000 mg-COD/L while...

  8. Biomass [updated

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  9. Technical and economic aspects of thermo-chemical decomposition of biomass in the processes of transformation of it in power-consuming energy/carriers by the use of the concentrated gel of sun radiation, has been considered

    International Nuclear Information System (INIS)

    Sultanova, K.D.; Mustafayeva, R.M.; Rzayev, P.F.

    2007-01-01

    Full text: The technical and economic assessment of process of thermo-chemical decomposition of biomass in the processes of transformation of it in power-consuming energy/carriers by the use of the concentrated gel of sun radiation, has been considered

  10. Explanatory Power of Human and Environmental Pressures on the Fish Community of the Grand Bank before and after the Biomass Collapse

    Directory of Open Access Journals (Sweden)

    Danielle P. Dempsey

    2018-02-01

    Full Text Available Ecosystem based fisheries management will benefit from assessment of how various pressures affect the fish community, including delayed responses. The objective of this study was to identify which pressures are most directly related to changes in the fish community of the Grand Bank, Northwest Atlantic. These changes are characterized by a collapse and partial recovery of fish biomass and shifting trophic structure over the past three decades. All possible subsets of nine fishing and environmental pressure indicators were evaluated as predictors of the fish community structure (represented by the biomasses of six fish functional-feeding groups, for periods Before (1985–1995 and After (1996–2013 the collapse, and the Full time series. We modeled these relationships using redundancy analysis, an extension of multiple linear regression that simultaneously evaluates the effect of one or more predictors on several response variables. The analysis was repeated with different lengths (0–5 years and types (moving average vs. lags of time delays imposed on the predictors. Both fishing and environmental indicators were included in the best models for all types and length of time delays, reinforcing that there is no single type of pressure impacting the fish community in this region. Results show notable differences in the most influential pressures Before and After the collapse, which reflects the changes in harvester behavior in response to the groundfish moratoria in the mid-1990s. The best models for Before the collapse had strikingly high explanatory power when compared to the other periods, which we speculate is because of changes in the relationships among and within the pressures and responses. Moving average predictor sets generally had higher explanatory power than lagged sets, implying that trends in pressures are important for predicting changes in the fish community. Assigning a carefully chosen delay to each predictor further improved

  11. On a clean power generation system with the co-gasification of biomass and coal in a quadruple fluidized bed gasifier.

    Science.gov (United States)

    Yan, Linbo; He, Boshu

    2017-07-01

    A clean power generation system was built based on the steam co-gasification of biomass and coal in a quadruple fluidized bed gasifier. The chemical looping with oxygen uncoupling technology was used to supply oxygen for the calciner. The solid oxide fuel cell and the steam turbine were combined to generate power. The calcium looping and mineral carbonation were used for CO 2 capture and sequestration. The aim of this work was to study the characteristics of this system. The effects of key operation parameters on the system total energy efficiency (ŋ ten ), total exergy efficiency (ŋ tex ) and carbon sequestration rate (R cs ) were detected. The energy and exergy balance calculations were implemented and the corresponding Sankey and Grassmann diagrams were drawn. It was found that the maximum energy and exergy losses occurred in the steam turbine. The system ŋ ten and ŋ tex could be ∼50% and ∼47%, and R cs could be over unit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Economic analysis of a small-sized combined heat and power plant using forest biomass in the Republic of Korea

    Science.gov (United States)

    Yeongwan Seo; Han-Sup Han; Edward M. (Ted) Bilek; Jungkee Choi; Dusong Cha; Jungsoo Lee

    2017-01-01

    Economic analysis was conducted on the feasibility of operating a small-sized (500kW/hour) gasification power plant producing heat and electricity in a rural town surrounded by forests in the Republic of Korea. Cost factors that were considered over the plant’s 20-year life included wood procurement, a wood grab loader, a chipper, a chip dryer, a gasifier, a generator...

  13. 48 CFR 35.017-1 - Sponsoring agreements.

    Science.gov (United States)

    2010-10-01

    ... of the FFRDC's relationship with its sponsor(s). (3) A provision for the identification of retained earnings (reserves) and the development of a plan for their use and disposition. (4) A prohibition against...

  14. Biomass ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bristol, D.R.; Noel, D.J.; O`Brien, B. [HYDRA-CO Operations, Inc., Syracuse, NY (United States); Parker, B. [US Energy Corp., Fort Fairfield, ME (United States)

    1993-12-31

    This paper demonstrates that with careful analysis of ash from multiple biomass and waste wood fired power plants that most of the ash can serve a useful purpose. Some applications require higher levels of consistency than others. Examples of ash spreading for agricultural purposes as a lime supplement for soil enhancement in Maine and North Carolina, as well as a roadbase material in Maine are discussed. Use of ash as a horticultural additive is explored, as well as in composting as a filtering media and as cover material for landfills. The ash utilization is evaluated in a framework of environmental responsibility, regulations, handling and cost. Depending on the chemical and physical properties of the biomass derived fly ash and bottom ash, it can be used in one or more applications. Developing a program that utilizes ash produced in biomass facilities is environmentally and socially sound and can be financially attractive.

  15. 14 CFR 151.121 - Procedures: Offer; sponsor assurances.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Procedures: Offer; sponsor assurances. 151.121 Section 151.121 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Engineering Proposals § 151.121 Procedures: Offer; sponsor assurances. Each sponsor must adopt the following...

  16. 45 CFR 233.51 - Eligibility of sponsored aliens.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false Eligibility of sponsored aliens. 233.51 Section... CONDITIONS OF ELIGIBILITY IN FINANCIAL ASSISTANCE PROGRAMS § 233.51 Eligibility of sponsored aliens... affidavit(s) of support or similar agreement on behalf of an alien (who is not the child of the sponsor or...

  17. Modelling Emotional and Attitudinal Evaluations of Major Sponsors

    DEFF Research Database (Denmark)

    Martensen, Anne; Hansen, Flemming

    2004-01-01

    The paper reports findings from a larger study of sponsors and their relationship to sponsoredparties. In the present reporting, the focus is on sponsors. Rather than evaluating suchsponsorships in traditional effect hierarchical terms, a conceptual Sponsor Value Model isspecified as a structural...

  18. Energy from biomass: An overview

    International Nuclear Information System (INIS)

    Van der Toorn, L.J.; Elliott, T.P.

    1992-01-01

    Attention is paid to the effect of the use of energy from biomass on the greenhouse effect. An overview is given of the aspects of forest plantation, carbon dioxide fixation and energy from biomass, in particular with regard to the potential impact of the use of biomass energy on the speed of accumulation of carbon in the atmosphere. A simple model of the carbon cycle to illustrate the geochemical, biological and antropogenic characteristics of the cycle is presented and briefly discussed. Biomass, which is appropriate for energy applications, can be subdivided into three categories: polysaccharides, vegetable oils, and lignocellulosis. The costs for the latter are discussed. Three important options to use biomass as a commercial energy source are solid fuels, liquid fuels, and power generation. For each option the value of energy (on a large-scale level) is compared to the costs of several types of biomass. Recent evaluation of new techniques show that small biomass conversion plants can realize an electricity efficiency of 40%, with capitalized costs far below comparable conventional biomass conversion plants. One of the policy instruments to stimulate the use of biomass as an energy source is the carbon levy, in which the assumed external costs to reduce carbon dioxide emission are expressed. Political and administrative feasibility are important factors in the decision making with regard to carbon storage and energy plantations. 6 figs

  19. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D [VTT Energy, Espoo (Finland)

    1997-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  20. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  1. What can Bilfinger teach Olympic sponsors?

    Directory of Open Access Journals (Sweden)

    Mark Dodds

    2016-10-01

    Full Text Available Bilfinger SE (Bilfinger is a leading international engineering and services group (Bilfinger.com, 2015, and was a local sponsor of the 2014 FIFA World Cup. The company is accused of paying bribes through its subsidiary company, Mauell, (dw. com, 2015 to public officials in Brazil for contracts related to the 2014 World Cup (Cassin, 2015. The corruption allegations relate to orders to equip security command centers at twelve host cities during the 2014 World Cup in Brazil (dw.com, 2015. Because Brazil hosted the 2014 FIFA World Cup and will host the 2016 Summer Olympic Games, companies need to consider the risks of many international anti-corruption laws, such as Brazil’s anti-corruption law commonly referred as The Clean Companies Act and other applicable anticorruption law like the United States’ Foreign Corrupt Practices Act (Rogers, et. al, 2014. This paper will analyze the Bilfinger case involving corruption activity at the 2014 FIFA World Cup and offer insights for sponsors of the 2016 Summer Olympic Games.

  2. High temperature corrosion in a biomass-fired power boiler : Reducing furnace wall corrosion in a waste wood-fired power plant with advanced steam data

    OpenAIRE

    Alipour, Yousef

    2013-01-01

    The use of waste (or recycled) wood as a fuel in heat and power stations is becoming more widespread in Sweden (and Europe), because it is CO2 neutral with a lower cost than forest fuel. However, it is a heterogeneous fuel with a high amount of chlorine, alkali and heavy metals which causes more corrosion than fossil fuels or forest fuel. A part of the boiler which is subjected to a high corrosion risk is the furnace wall (or waterwall) which is formed of tubes welded together. Waterwalls are...

  3. Economic evaluation of application of nuclear power, fossil and biomass for seawater desalination in the case of Mexico

    International Nuclear Information System (INIS)

    Palacios G, N.; Gomez A, R.; Vazquez R, R.; Espinosa P, G.

    2009-10-01

    In this work the fresh water production costs are compared on base to the seawater desalination, taking advantage of the heat or the electricity generated by means of the nuclear fission, the energy fossil result of the combustion of natural gas, fuel oil and coal, as well as the electricity generated by the bio-fuels combustion. The option of generating electricity and at the same time to produce drinking water is discussed. Using electricity, the best combination of technologies as for costs, the option more cheap, it is the distillation by means of a distillation combined process of multiple effects combined with reverse osmosis using nuclear energy coming from a gas cooled reactor using a cycle Brayton. While using direct heat was as the option more economic the use of nuclear vapor of low pressure exchanging heat in a vapor generator of low pressure, as energy source of a flash distillation process of several stages. In this last case, the energy source or nuclear vapor will be the result of the operation of a nuclear power plant cooled and moderate with water and operating in a cycle Rankine. (Author)

  4. "To Teach and To Sell": Irna Phillips and Her Sponsors, 1930-1954.

    Science.gov (United States)

    Seiter, Ellen

    1989-01-01

    Examines the relationships between Irna Phillips, the most powerful woman in soap opera production from the 1930s through the 1960s, and the sponsors of her radio soap operas. Explores how Phillips represented women both in her scripts and in her public relations efforts. (MM)

  5. Optimization of Biomass-Fuelled Combined Cooling, Heating and Power (CCHP Systems Integrated with Subcritical or Transcritical Organic Rankine Cycles (ORCs

    Directory of Open Access Journals (Sweden)

    Daniel Maraver

    2014-04-01

    Full Text Available This work is focused on the thermodynamic optimization of Organic Rankine Cycles (ORCs, coupled with absorption or adsorption cooling units, for combined cooling heating and power (CCHP generation from biomass combustion. Results were obtained by modelling with the main aim of providing optimization guidelines for the operating conditions of these types of systems, specifically the subcritical or transcritical ORC, when integrated in a CCHP system to supply typical heating and cooling demands in the tertiary sector. The thermodynamic approach was complemented, to avoid its possible limitations, by the technological constraints of the expander, the heat exchangers and the pump of the ORC. The working fluids considered are: n-pentane, n-heptane, octamethyltrisiloxane, toluene and dodecamethylcyclohexasiloxane. In addition, the energy and environmental performance of the different optimal CCHP plants was investigated. The optimal plant from the energy and environmental point of view is the one integrated by a toluene recuperative ORC, although it is limited to a development with a turbine type expander. Also, the trigeneration plant could be developed in an energy and environmental efficient way with an n-pentane recuperative ORC and a volumetric type expander.

  6. Acid pre-hydrolysis of biomass as a preparation process for its utilization as thermoelectric power plants fuel; Pre-hidrolise acida da biomassa como preparacao de combustivel para termoeletrica

    Energy Technology Data Exchange (ETDEWEB)

    Pinatti, D G; Resende, R L [Fundacao de Tecnologia Industrial (FTI), Lorena, SP (Brazil)

    1991-12-31

    It is described a process of production of celulignin from biomass through acid pre-hydrolysis in continuous reactor made of advanced materials such as niobium, titanium and monel. The celulignin is a fuel of 28.50 MJ/kg of heating power. The utilization of this technology together with eucalyptus reforestation by vegetative propagation and high efficiency thermoelectric plant (triple cycle of steam turbine, gas turbine and MHD electrical generation) allow electric power production with competitive cost when compared to hydroelectric power. (author). 1 ref. 5 figs., 2 tabs

  7. Beware: this is sponsored! How disclosures of sponsored content affect persuasion knowledge and brand responses

    NARCIS (Netherlands)

    Boerman, S.; van Reijmersdal, E.; Neijens, P.

    2012-01-01

    This study examined how disclosure of sponsored content influences persuasion knowledge and brand responses (i.e., brand memory and brand attitude). Moreover, we tested whether extending disclosure duration increases its effect. We conducted an experiment (N = 116) in which we compared the effects

  8. Biomass in Switzerland. Energy production

    International Nuclear Information System (INIS)

    Guggisberg, B.

    2006-01-01

    In the long term, biomass could be used for energy production in a three times more intensive way, compared to current figures. A major contribution would be delivered to Switzerland's energy supply. Numerous biomass conversion technologies do exist, for the production of heat, power or vehicle fuel. However, the implementation of such a large-scale utilisation of biomass requires a couple of strategic decisions in order to improve the framework conditions for biomass development and precisely target the supporting measures applicable to both research and pilot plants. In short, a clear and efficient strategy is necessary in what regards biomass, that will be used for the definition of a future catalogue of measures. (author)

  9. Biomass thermochemical conversion program: 1987 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  10. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  11. Energy from biomass. Teaching material; Energie aus Biomasse. Ein Lehrmaterial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The textbook discusses the available options for power and heat generation from biomass as well as the limits of biomass-based power supply. The main obstacle apart from the high cost is a lack of knowledge, which the book intends to remedy. It addresses students of agriculture, forestry, environmental engineering, heating systems engineering and apprentice chimney sweepers, but it will also be useful to all other interested readers. [German] Biomasse kann aufgrund seiner vielfaeltigen Erscheinungs- und Umwandlungsformen sowohl als Brennstoff zur Waerme- und Stromgewinnung oder als Treibstoff eingesetzt werden. Die energetische Nutzung von Biomasse birgt zudem nicht zu verachtende Vorteile. Zum einen wegen des Beitrags zum Klimaschutz aufgrund der CO{sub 2}-Neutralitaet oder einfach, weil Biomasse immer wieder nachwaechst und von fossilen Ressourcen unabhaengig macht. All den bisher erschlossenen Moeglichkeiten der energetischen Nutzung von Biomasse moechte dieses Lehrbuch Rechnung tragen. Es zeigt aber auch die Grenzen auf, die mit der Energieversorgung durch Bioenergie einhergehen. Hohe Kosten und ein erhebliches Informationsdefizit behinderten bisher eine verstaerkte Nutzung dieses Energietraeges. Letzterem soll dieses Lehrbuch entgegenwirken. Das vorliegende Lehrbuch wurde fuer die Aus- und Weiterbildung erstellt. Es richtet sich vor allem an angehende Land- und Forstwirte, Umwelttechniker, Heizungsbauer und Schornsteinfeger, ist aber auch fuer all diejenigen interessant, die das Thema ''Energie aus Biomasse'' verstehen und ueberblicken moechten. (orig.)

  12. Biomass for electricity

    International Nuclear Information System (INIS)

    Barbucci, P.; Neri, G.; Trebbi, G.

    1995-01-01

    This paper describes the activities carried out at ENEL-Thermal research center to develop technologies suitable to convert biomass into power with high conversion efficiency: a demonstration project, Energy Farm, to build an Integrated Gasification Combined Cycle (IGCC) plant fed by wood chips; a demonstration plant for converting wood chips into oil by thermal conversion (pyrolysis oil); combustion tests of different oils produced by thermal conversion. 3 figs., 1 tab

  13. Jointly Sponsored Research Program Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental

  14. Feasibility Study of Economics and Performance of Biomass Power Generation at the Former Farmland Industries Site in Lawrence, Kansas. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Tomberlin, G.; Mosey, G.

    2013-03-01

    Under the RE-Powering America's Land initiative, the U.S. Environmental Protection Agency (EPA) provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of biomass renewable energy generation at the former Farmland Industries site in Lawrence, Kansas. Feasibility assessment team members conducted a site assessment to gather information integral to this feasibility study. Information such as biomass resources, transmission availability, on-site uses for heat and power, community acceptance, and ground conditions were considered.

  15. Biomass Characterization | Bioenergy | NREL

    Science.gov (United States)

    Characterization Biomass Characterization NREL provides high-quality analytical characterization of biomass feedstocks, intermediates, and products, a critical step in optimizing biomass conversion clear, amber liquid Standard Biomass Laboratory Analytical Procedures We maintain a library of

  16. Measuring Consumer Reactions to Sponsoring Partnerships Based upon Emotional and Attitudinal Responses

    DEFF Research Database (Denmark)

    Riis Christensen, Sverre

    2004-01-01

    Consumers' reactions from being exposed to sponsorships has primarily been measured and docu-mented applying cognitive information processing models to the phenomenon. In the paper it is argued that such effects are probably better modelled applying models of peripheral information processing...... in consumer reactions towards sponsored objects of different natures as well as towards potential sponsoring organisations. For instance, the charitable institutions measured in the study elicit larger negative emotional re-sponses than positive responses, corresponding to a negative Net Emotional Response...... to the net scores and to the full evaluations on the attitude and emotion batteries and it seems as if the latter approach will be richer in explanatory power for a potential sponsor....

  17. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  18. Biomass Energy Basics | NREL

    Science.gov (United States)

    Biomass Energy Basics Biomass Energy Basics We have used biomass energy, or "bioenergy" keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can landfills (which are methane, the main component in natural gas) can be used as a biomass energy source. A

  19. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  20. Fiscal 2000 project of inviting proposals for international joint research - invitation for international proposal (Power generation No.18). Achievement report on development of device for monitoring biomass decomposing enzyme gene expression; 2000 nendo kokusai kyodo kenkyu teian kobo jigyo - kokusai teian kobo (hatsuden No.18). Biomass bunkai koso idenshi hatsugen monitoring device no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A fuel production system is under development to supply fuel for power generation, in which biomass is efficiently fermented. In this connection, based on biomass decomposing enzyme related gene information provided by Japan and the U.S., a DNA (deoxyribonucleic acid) chip is built, wherein biomass decomposing enzymes, control factors, and enzyme secretion enhancing genes are densely deposited. Efforts are made, using the chip for the monitoring of the enzyme production process during the culture of mold, to develop technologies for collecting information simultaneously and comprehensively concerning the expression of great numbers of biomass decomposing enzyme genes and concerning other genes that control the production or enhance the secretion of enzymes. In concrete terms, approximately 2000 types of genes are selected out of the Aspergillus EST database held by the Japanese and U.S. members, and cDNA from the original clones is amplified and purified for each DNA of the 2000 genes. The purified DNA is spotted and fixed on the glass plate for a DNA chip and applied to the mRNA pool whose gene expression profile is known, and the detection conditions are studied for the DNA chip and specifications are optimized. (NEDO)

  1. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  2. List of Organizing Committees and Sponsors

    Science.gov (United States)

    2012-03-01

    Organizers DIRECTORS Maria L CalvoPresident of International Commission for Optics, Spain Aram V PapoyanDirector of Institute for Physical Research of NAS, Armenia HEADS OF PROJECT Tigran Dadalyan YSU, Armenia Artsrun MartirosyanIPR, Armenia COORDINATOR Narine GevorgyanIPR, Armenia / ICTP, Italy MANAGERS Paytsar MantashyanIPR, Armenia Karen VardanyanIPR, Armenia INTERNATIONAL ADVISORY COMMITTEE Marcis AuzinshLatvia Roland AvagyanArmenia Tapash ChakrabortyCanada Yuri ChilingaryanArmenia Eduard KazaryanArmenia Albert KirakosyanArmenia Radik KostanyanArmenia Avinash PandeyIndia Marat SoskinUkraine INTERNATIONAL PROGRAM COMMITTEE David Sarkisyan (Chair)Armenia Roman AlaverdyanArmenia Dan ApostolRomania Levon AslanyanArmenia Aranya BhattacherjeeIndia Gagik BuniatyanArmenia Vigen ChaltykyanArmenia Roldao Da RochaBrazil Miltcho DanailovItaly Vladimir GerdtRussia Samvel GevorgyanArmenia Gayane GrigoryanArmenia Rafik HakobyanArmenia Takayuki MiyaderaJapan Levon MouradianArmenia Atom MuradyanArmenia Simon RochesterUSA Hayk SarkisyanArmenia Aleksandr VardanyanArmenia LOCAL ORGANIZING COMMITTEE Narek AghekyanArmenia Anahit GogyanArmenia Melanya GrigoryanArmenia Armen HovhannisyanArmenia Lilit HovhannisyanArmenia Tatevik KhachatryanArmenia Astghik KuzanyanArmenia Satenik KuzanyanArmenia Vladimir LazarevRussia Lilit MantashyanArmenia Hripsime MkrtchyanArmenia Pavel MuzhikyanArmenia Wahi NarsisianArmenia Sahak OrdukhanyanArmenia Anna ReymersArmenia Narine TorosyanArmenia The Symposium was organized by YSU & NAS SPIE Armenian Student Chapter Institute for Physical Research (IPR) of National Academy of Sciences (NAS) Russian-Armenian (Slavonic) University (RAU) LT-PYRKAL cjsc Yerevan State University (YSU) Official Sponsors of the Symposium LT-PYRKAlRussian ArmenianSPIE LT-PYRKAL cjscRussian-Armenian UniversityYSU & NAS SPIE Student Chapter Further sponsors NFSATICTPSCSADevout Generation National Foundation of Science and Advanced TechnologiesThe Abdus Salam International Centre

  3. Co-firing Bosnian coals with woody biomass: Experimental studies on a laboratory-scale furnace and 110 MWe power unit

    Directory of Open Access Journals (Sweden)

    Smajevic Izet

    2012-01-01

    Full Text Available This paper presents the findings of research into cofiring two Bosnian cola types, brown coal and lignite, with woody biomass, in this case spruce sawdust. The aim of the research was to find the optimal blend of coal and sawdust that may be substituted for 100% coal in large coal-fired power stations in Bosnia and Herzegovina. Two groups of experimental tests were performed in this study: laboratory testing of co-firing and trial runs on a large-scale plant based on the laboratory research results. A laboratory experiment was carried out in an electrically heated and entrained pulverized-fuel flow furnace. Coal-sawdust blends of 93:7% by weight and 80:20% by weight were tested. Co-firing trials were conducted over a range of the following process variables: process temperature, excess air ratio and air distribution. Neither of the two coal-sawdust blends used produced any significant ash-related problems provided the blend volume was 7% by weight sawdust and the process temperature did not exceed 1250ºC. It was observed that in addition to the nitrogen content in the co-fired blend, the volatile content and particle size distribution of the mixture also influenced the level of NOx emissions. The brown coal-sawdust blend generated a further reduction of SO2 due to the higher sulphur capture rate than for coal alone. Based on and following the laboratory research findings, a trial run was carried out in a large-scale utility - the Kakanj power station, Unit 5 (110 MWe, using two mixtures; one in which 5%/wt and one in which 7%/wt of brown coal was replaced with sawdust. Compared to a reference firing process with 100% coal, these co-firing trials produced a more intensive redistribution of the alkaline components in the slag in the melting chamber, with a consequential beneficial effect on the deposition of ash on the superheater surfaces of the boiler. The outcome of the tests confirms the feasibility of using 7%wt of sawdust in combination

  4. Biomass energy in the making

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Wood, straw, agricultural residues, organic wastes, biomass is everywhere you look. But the efficient use of this source of green electricity - the world's second largest renewable energy source - requires optimization of biomass collection and combustion processes. Biomass is back on the political agenda. In mid-June of this year, the French government gave this renewable energy a boost by selecting twenty-two projects to generate power and heat with biomass. The plants, to be commissioned by 2010, will be located in eleven different regions and will consume energy from organic plant matter. The power generated will be bought at a firm price of 128 euros per megawatt-hour. Most of the fuel will come from forest and paper industry waste, but straw and even grape pomace will be used in some cases. The plants will have a combined generating capacity of 300 MWh, raising France's installed biomass capacity to a total of 700 MWe. A drop of water in the ocean in the overall scheme of France's electricity. It is true that France has long neglected biomass. In 2004, electricity generated from biological resources represented a mere 1.74 TWhe in France, just 0.3% of its power consumption. This will rise to 0.6% once the new plants have come on line. The trend is the same in all of the EU's 27 member states, according to Eurostat, the statistical office of the European Communities: the amount of electricity generated from biomass (including biogas, municipal waste and wood) has practically doubled in six years, rising from 40 to 80 TWhe between 2000 and 2005. This is an improvement, but it still only represents 2.5% of the electricity supplied to Europeans. On a global scale, biomass contributes just 1% of total electric power generation. Yet biomass is an energy resource found all over the world, whether as agricultural waste, wood chips, or dried treatment plant sludge, to name but a few. Biomass power plants have managed to gain a foothold mainly in countries that produce

  5. Biomass, a 750 billion euros bet

    International Nuclear Information System (INIS)

    Remoue, A.

    2010-01-01

    Despite the check of its previous attempts to develop power generation from biomass fuels, the French government has announced the financing of 32 new projects of biomass fueled power plants representing 266 MW of additional power. Today's production represents 700 MW and the goal is to raise this production to 1230 MW by 2012 and 3530 MW by 2020. The development of biomass projects requires more important shareholders equity than wind power or solar energy projects and a good organization of the supply chain. (J.S.)

  6. Coping with change: a challenge for sponsors.

    Science.gov (United States)

    McGuire, T P; McGowan, K

    1987-04-01

    In the past 25 years a trend away from lifetime commitment in religious institutes, a rising number of retired religious,, and the Second Vatican Council's call for greater lay involvement in all aspects of ministry have led to many changes in Catholic-sponsored health care facilities. The development process of religious institutes parallels that of individuals as they mature from infancy to late adulthood. After Vatican II, religious institutes underwent an "intimacy versus isolation" stage similar to that experienced by people in their twenties, in which interpersonal relationships became more important. Now institutes are in a stage of "ego integrity versus despair," where they must consider changes--closing facilities, mergers, affiliations,, or divestiture of sponsorship--and how they can keep their mission alive afterward. Religious leaders must be energetic in creating programs that allow laypersons who share the institute's mission, charism, and philosophy to carry out its ministry. But in the midst of these changes, religious members also will experience grief at the loss of their sponsorship or control over their facility. They pass through the same stages people experience after the death of a loved one: denial, anger, bargaining, depression, and acceptance. Only by confronting and accepting their grief can institute members go on to either new ministries or reaffirmed commitment to their current work.

  7. Great Lakes Regional Biomass Energy Program

    International Nuclear Information System (INIS)

    Kuzel, F.

    1993-01-01

    The Great Lakes Regional Biomass Energy Program (GLRBEP) was initiated September, 1983, with a grant from the Office of Energy Efficiency and Renewable Energy of the US Department of Energy (DOE). The program provides resources to public and private organizations in the Great Lakes region to increase the utilization and production of biomass fuels. The objectives of the GLRBEP are to: (1) improve the capabilities and effectiveness of biomass energy programs in the state energy offices; (2) assess the availability of biomass resources for energy in light of other competing needs and uses; (3) encourage private sector investments in biomass energy technologies; (4) transfer the results of government-sponsored biomass research and development to the private sector; (5) eliminate or reduce barriers to private sector use of biomass fuels and technology; (6) prevent or substantially mitigate adverse environmental impacts of biomass energy use. The Program Director is responsible for the day-to-day activities of the GLRBEP and for implementing program mandates. A 40 member Technical Advisory Committee (TAC) sets priorities and recommends projects. The governor of each state in the region appoints a member to the Steering Council, which acts on recommendations of the TAC and sets basic program guidelines. The GLRBEP is divided into three separate operational elements. The State Grants component provides funds and direction to the seven state energy offices in the region to increase their capabilities in biomass energy. State-specific activities and interagency programs are emphasized. The Subcontractor component involves the issuance of solicitations to undertake projects that address regional needs, identified by the Technical Advisory Committee. The Technology Transfer component includes the development of nontechnical biomass energy publications and reports by Council staff and contractors, and the dissemination of information at conferences, workshops and other events

  8. Team sponsors in community-based health leadership programs.

    Science.gov (United States)

    Patterson, Tracy Enright; Dinkin, Donna R; Champion, Heather

    2017-05-02

    Purpose The purpose of this article is to share the lessons learned about the role of team sponsors in action-learning teams as part of community-based health leadership development programs. Design/methodology/approach This case study uses program survey results from fellow participants, action learning coaches and team sponsors to understand the value of sponsors to the teams, the roles they most often filled and the challenges they faced as team sponsors. Findings The extent to which the sponsors were perceived as having contributed to the work of the action learning teams varied greatly from team to team. Most sponsors agreed that they were well informed about their role. The roles sponsors most frequently played were to provide the teams with input and support, serve as a liaison to the community and serve as a sounding board, motivator and cheerleader. The most common challenges or barriers team sponsors faced in this role were keeping engaged in the process, adjusting to the role and feeling disconnected from the program. Practical implications This work provides insights for program developers and community foundations who are interested in building the capacity for health leadership by linking community sponsors with emerging leaders engaged in an action learning experience. Originality/value This work begins to fill a gap in the literature. The role of team sponsors has been studied for single organization work teams but there is a void of understanding about the role of sponsors with multi-organizational teams working to improve health while also learning about leadership.

  9. The bioenergy village. Prerequisites and consequences of an independent heat supply and power supply by biomass for the agriculture, ecology and lifestyle culture in the rural area; Das Bioenergiedorf. Voraussetzungen und Folgen einer eigenstaendigen Waerme- und Stromversorgung durch Biomasse fuer Landwirtschaft, Oekologie und Lebenskultur im laendlichen Raum

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, Hans [Goettingen Univ. (Germany). Geowissenschaftliches Zentrum; Goettingen Univ. (Germany). Interdisziplinaeres Zentrum fuer Nachhaltige Entwicklung; Schmuck, Peter (eds.) [Goettingen Univ. (Germany). Interdisziplinaeres Zentrum fuer Nachhaltige Entwicklung; UMC Potsdam (Germany). Inst. fuer Nachhaltigkeit und Umweltpolitik

    2010-07-01

    The transformation of the power supply and heat supply in the bioenergy village Juende (Federal Republic of Germany) on the basis of the energy source biomass was completed in the autumn 2005. Within this flagship project it could be shown that new ways are passable if the persons concerned design the new concepts. The contribution under consideration reports on the results of the final phase of this project describing the socio-economic and ecologic impacts of the implementation of the energy supply on the biomass in Juende. Within this part of project the disciplines crop science, soil science, geosciences, economy, psychology and sociology interact. The most important results of the single disciplines are presented in this final report.

  10. Symposium on development and utilization of biomass energy resources in developing countries. Proceedings. V. 2: Country case studies

    International Nuclear Information System (INIS)

    1995-12-01

    The present publication presents the results of three UNIDO-sponsored case studies, each with a separate abstract, concerned with perspectives of development and utilisation of biomass energy resources in Brazil, Philippines and Romania. Emphasis is put on identifying regional biomass energy resources. Policies and strategies governing as well as barriers limiting the development and utilization of biomass energy are discussed. Innovative technologies as well as technology transfer related to biomass energy utilisation are dealt with, together with economic and environmental issues

  11. Fouling control in biomass boilers

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Luis M.; Gareta, Raquel [Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain)

    2009-05-15

    One of the important challenges for biomass combustion in industrial applications is the fouling tendency and how it affects to the boiler performance. The classical approach for this question is to activate sootblowing cycles with different strategies to clean the boiler (one per shift, one each six hours..). Nevertheless, it has been often reported no effect on boiler fouling or an excessive steam consumption for sootblowing. This paper illustrates the methodology and the application to select the adequate time for activating sootblowing in an industrial biomass boiler. The outcome is a control strategy developed with artificial intelligence (Neural Network and Fuzzy Logic Expert System) for optimizing the biomass boiler cleaning and maximizing heat transfer along the time. Results from an optimize sootblowing schedule show savings up to 12 GWh/year in the case-study biomass boiler. Extra steam generation produces an average increase of turbine power output of 3.5%. (author)

  12. Biomass energy conversion: conventional and advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Young, B C; Hauserman, W B [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  13. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  14. 42 CFR 423.401 - General requirements for PDP sponsors.

    Science.gov (United States)

    2010-10-01

    ... sponsor is organized and licensed under State law as a risk bearing entity eligible to offer health insurance or health benefits coverage in each State in which it offers a prescription drug plan. If not... with State Law and Preemption by Federal Law § 423.401 General requirements for PDP sponsors. (a...

  15. Blauwe ogen schieten tekort. Lessen voor sponsoring van landschap

    NARCIS (Netherlands)

    Overbeek, M.M.M.; Graaff, de R.P.M.

    2010-01-01

    Literatuuronderzoek en gesprekken met (ervarings)deskundigen en vertegenwoordigers van bedrijven in Amstelland en in Het Groene Woud over het proces en de voorwaarden van bedrijven om sponsoring van landschap te realiseren. Sponsoring gebeurt meestal in het kader van mvo, waarbij bedrijven de

  16. 45 CFR 1226.13 - Obligations of sponsors.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Obligations of sponsors. 1226.13 Section 1226.13 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE PROHIBITIONS ON ELECTORAL AND LOBBYING ACTIVITIES Sponsor Employee Activities § 1226.13...

  17. Sponsors of Nebraska Indochinese Refugees: Meeting the Challenges.

    Science.gov (United States)

    Meredith, William H.; Cramer, Sheran L.

    This report summarizes the response of 80 sponsors of Indochinese refugees in Nebraska to a survey designed to explore their sponsorship experience. Problem solving areas for sponsors and refugees are named as: acculturation, emotional adjustments, communication, health, housing, transportation, employment, and legal, financial and consumer…

  18. Biomass energy: its important and future trends

    International Nuclear Information System (INIS)

    Rao, P.S.

    1997-01-01

    The development of photo-biological energy conversion systems has long-term implication from the energy, wood fibre and chemical points etc. Power generation through biomass combustion and gasification has proved to be very successful venture. The energy needs of the people in the remote, rural and even urban areas of the country can be met economically by the energy from the renewable source such as biomass. The biomass energy is full of opportunities, and future trends are emerging towards renewable energy

  19. Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste

    Energy Technology Data Exchange (ETDEWEB)

    H. Carrasco; H. Sarper

    2006-06-30

    The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow

  20. Using JPSS VIIRS Fire Radiative Power Data to Forecast Biomass Burning Emissions and Smoke Transport by the High Resolution Rapid Refresh Model

    Science.gov (United States)

    Ahmadov, R.; Grell, G. A.; James, E.; Alexander, C.; Stewart, J.; Benjamin, S.; McKeen, S. A.; Csiszar, I. A.; Tsidulko, M.; Pierce, R. B.; Pereira, G.; Freitas, S. R.; Goldberg, M.

    2017-12-01

    We present a new real-time smoke modeling system, the High Resolution Rapid Refresh coupled with smoke (HRRR-Smoke), to simulate biomass burning (BB) emissions, plume rise and smoke transport in real time. The HRRR is the NOAA Earth System Research Laboratory's 3km grid spacing version of the Weather Research and Forecasting (WRF) model used for weather forecasting. Here we make use of WRF-Chem (the WRF model coupled with chemistry) and simulate fine particulate matter (smoke) emissions emitted by BB. The HRRR-Smoke modeling system ingests fire radiative power (FRP) data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (S-NPP) satellite to calculate BB emissions. The FRP product is based on processing 750m resolution "M" bands. The algorithms for fire detection and FRP retrieval are consistent with those used to generate the MODIS fire detection data. For the purpose of ingesting VIIRS fire data into the HRRR-Smoke model, text files are generated to provide the location and detection confidence of fire pixels, as well as FRP. The VIIRS FRP data from the text files are processed and remapped over the HRRR-Smoke model domains. We process the FRP data to calculate BB emissions (smoldering part) and fire size for the model input. In addition, HRRR-Smoke uses the FRP data to simulate the injection height for the flaming emissions using concurrently simulated meteorological fields by the model. Currently, there are two 3km resolution domains covering the contiguous US and Alaska which are used to simulate smoke in real time. In our presentation, we focus on the CONUS domain. HRRR-Smoke is initialized 4 times per day to forecast smoke concentrations for the next 36 hours. The VIIRS FRP data, as well as near-surface and vertically integrated smoke mass concentrations are visualized for every forecast hour. These plots are provided to the public via the HRRR-Smoke web-page: https

  1. Legal, administrative and financial aspects concerning the implementation of biomass thermoelectric power plants; Esquema legal-administrativo-financeiro da implantacao de usinas termoeletricas baseadas na biomassa (Dendroeletricas)

    Energy Technology Data Exchange (ETDEWEB)

    Pinatti, D G [Fundacao de Tecnologia Industrial (FTI), Lorena, SP (Brazil); [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica; Fernandes Filho, G E.F. [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia

    1991-12-31

    The new technologies in forestry, biomass processing and electrical generation through MHD, gas turbine, and steam turbine allows the implantation of agricultural and industrial conglomerates working in the scheme of cogeneration of electrical energy, vapor, chemical products, animal food and other products. The present work starts with the present cogeneration rules and analysis legal, administrative and financing aspects for the formation of industrial conglomerates in four levels: forestry companies (forestry and biomass residue); biomass processing companies (cellulignin and products from hemicellulosis hydro lysate); utility companies (electric energy, vapor, gases, water, etc.); and a consumer companies. Although it is possible that the conglomerate be operated by only one group it is shown that the nature of the enterprise points to the direction of a multi proprietary conglomerate of several incorporated companies. 3 refs

  2. The influence of the size of the CHP (combined heat and power) system integrated with a biomass fueled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity and heat generation

    International Nuclear Information System (INIS)

    Skorek-Osikowska, Anna; Bartela, Łukasz; Kotowicz, Janusz; Sobolewski, Aleksander; Iluk, Tomasz; Remiorz, Leszek

    2014-01-01

    This paper analyzes the possibility and the cost of using gas from biomass gasification in the production of electricity and generation of heat using a piston engine in which the power in the supplied biomass is no more than 50 MW. A mathematical model that allows for thermodynamic and economic analysis was designed. The input data regarding the gas generator and the process gas were collected in real experiments on the research installation. Electricity and heat production efficiencies and the electric and heat power of the system were primarily used as indicators of the thermodynamic effectiveness. For the economic analysis, discount methods were adopted that consider the legal and economic environment of such investments. Given the assumptions, the analysis shows that positive economic indicators can characterize the considered systems. The work also included sensitivity analysis of change of the selected characteristic quantities on the evaluation indices. The economic viability of such systems is strongly influenced by many factors, mainly price of fuel and green certificates. When the price of fuel is higher than 9.62 €/GJ or the price of certificates lower than 26.75 €/MWh the NPV (net present value) and NPVR (net present value ratio) indices do not reach positive values for any size of installation. - Highlights: • CHP systems integrated with biomass gasification and piston engine(s) were examined. • An experiment with a biomass-fed gasifier was conducted and the data were used for calculations. • The conditions for economic profitability were determined. • Sensitivity analyses of the influence of the selected quantities were performed. • Price of green certificates and price of fuel are the most important for economic viability

  3. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  4. Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal

    Science.gov (United States)

    H. Viana; Warren B. Cohen; D. Lopes; J. Aranha

    2010-01-01

    Following the European Union strategy concerning renewable energy (RE), Portugal established in their national policy programmes that the production of electrical energy from RE should reach 45% of the total supply by 2010. Since Portugal has large forest biomass resources, a significant part of this energy will be obtained from this source. In addition to the two...

  5. Modeling integrated biomass gasification business concepts

    Science.gov (United States)

    Peter J. Ince; Ted Bilek; Mark A. Dietenberger

    2011-01-01

    Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...

  6. 75 FR 6263 - Biomass Crop Assistance Program

    Science.gov (United States)

    2010-02-08

    ... guidelines followed for any harvesting, collecting, storing or transporting of such material from such... for the purposes of transport and delivery to eligible biomass conversion facilities. As specified in... or proposes to convert renewable biomass into heat, power, biobased products, advanced biodiesel, or...

  7. Overview of biomass conversion technologies

    International Nuclear Information System (INIS)

    Noor, S.; Latif, A.; Jan, M.

    2011-01-01

    A large part of the biomass is used for non-commercial purposes and mostly for cooking and heating, but the use is not sustainable, because it destroys soil-nutrients, causes indoor and outdoor pollution, adds to greenhouse gases, and results in health problems. Commercial use of biomass includes household fuelwood in industrialized countries and bio-char (charcoal) and firewood in urban and industrial areas in developing countries. The most efficient way of biomass utilization is through gasification, in which the gas produced by biomass gasification can either be used to generate power in an ordinary steam-cycle or be converted into motor fuel. In the latter case, there are two alternatives, namely, the synthesis of methanol and methanol-based motor fuels, or Fischer-Tropsch hydrocarbon synthesis. This paper deals with the technological overview of the state-of-the-art key biomass-conversion technologies that can play an important role in the future. The conversion routes for production of Heat, power and transportation fuel have been summarized in this paper, viz. combustion, gasification, pyrolysis, digestion, fermentation and extraction. (author)

  8. The relationship between absenteeism and employer-sponsored ...

    African Journals Online (AJOL)

    Establishing on- site employer-sponsored child-care facilities is an example of such ..... The sample size and characteristics of each of the groups are presented in Table 1. Table 1: ...... 'A qualitative and quantitative review of antecedents.

  9. 7 CFR 226.16 - Sponsoring organization provisions.

    Science.gov (United States)

    2010-01-01

    ... comparison, reviewers must determine whether the meal counts were accurate. If there is a discrepancy between...) Program payments. The sponsoring organization must continue to pay any claims for reimbursement for...

  10. An industry-sponsored, school-focused model for continuing ...

    African Journals Online (AJOL)

    An industry-sponsored, school-focused model for continuing professional ... HEIs and Departments of Education (DoE), could change the traditional concept that CPTD is the responsibility of DoEs into a new model where the business

  11. Biomass Energy Data Book: Edition 4

    Energy Technology Data Exchange (ETDEWEB)

    Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL; Wright, Lynn L [ORNL; Davis, Stacy Cagle [ORNL

    2011-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  12. Biomass Energy Data Book: Edition 2

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Badger, Philip C [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL

    2009-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  13. Biomass Energy Data Book: Edition 3

    Energy Technology Data Exchange (ETDEWEB)

    Boundy, Robert Gary [ORNL; Davis, Stacy Cagle [ORNL

    2010-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  14. Biomass Energy Data Book: Edition 1

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL; Saulsbury, Bo [ORNL

    2006-09-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  15. Biomass energy in Central America

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J M [Biomass Users` Network, Regional Office for Central America and the Caribbean, San Jose (Costa Rica)

    1995-12-01

    of the century an even lower proportion of the population-only one out of three Central Americans-will have access to the national grid). Finally, the paper recommends some actions to enhance alternative options for the conversion of biomass resources to energy in order to address the ever-increasing demand for power in the region. A key recommendation is a biomass technology assessment initiative that would facilitate the effective transfer of technology within the region. (author) 3 refs, 3 tabs

  16. Biomass energy in Central America

    International Nuclear Information System (INIS)

    Blanco, J.M.

    1995-01-01

    of the century an even lower proportion of the population-only one out of three Central Americans-will have access to the national grid). Finally, the paper recommends some actions to enhance alternative options for the conversion of biomass resources to energy in order to address the ever-increasing demand for power in the region. A key recommendation is a biomass technology assessment initiative that would facilitate the effective transfer of technology within the region. (author)

  17. Production of hydrogen driven from biomass waste to power Remote areas away from the electric grid utilizing fuel cells and internal combustion engines vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Hazem [Farmingdale State College, NY (United States)

    2017-03-10

    Recent concerns over the security and reliability of the world’s energy supply has caused a flux towards the research and development of renewable sources. A leading renewable source has been found in the biomass gasification of biological materials derived from organic matters such as wood chips, forest debris, and farm waste that are found in abundance in the USA. Accordingly, there is a very strong interest worldwide in the development of new technologies that provide an in-depth understanding of this economically viable energy source. This work aims to allow the coupling of biomass gasification and fuel cell systems as well as Internal Combustion Engines (ICE) to produce high-energy efficiency, clean environmental performance and near-zero greenhouse gas emissions. Biomass gasification is a process, which produces synthesis gas (syngas) that contains 19% hydrogen and 20% carbon monoxide from inexpensive organic matter waste. This project main goal is to provide cost effective energy to the public utilizing remote farms’ waste and landfill recycling area.

  18. Market dynamics of biomass fuel in California

    International Nuclear Information System (INIS)

    Delaney, W.F.; Zane, G.A.

    1991-01-01

    The California market for biomass fuel purchased by independent power producers has grown substantially since 1980. The PURPA legislation that based power purchase rates upon the 'avoided cost' of public utilities resulted in construction of nearly 900 Megawatts of capacity coming online by 1991. Until 1987, most powerplants were co-sited at sawmills and burned sawmill residue. By 1990 the installed capacity of stand-alone powerplants exceeded the capacity co-sited at wood products industry facilities. The 1991 demand for biomass fuel is estimated as 6,400,000 BDT. The 1991 market value of most biomass fuel delivered to powerplants is from $34 to $47 per BDT. Biomass fuel is now obtained from forest chips, agriculture residue and urban wood waste. The proportion of biomass fuel from the wood products industry is expected to decline and non-traditional fuels are expected to increase in availability

  19. Biomass Pyrolysis in DNS of Turbulent Particle-Laden Flow

    NARCIS (Netherlands)

    Russo, E; Fröhlich, Jochen; Kuerten, Johannes G.M.; Geurts, Bernardus J.; Armenio, Vincenzo

    2015-01-01

    Biomass is important for co-firing in coal power plants thereby reducing CO2 emissions. Modeling the combustion of biomass involves various physical and chemical processes, which take place successively and even simultaneously [1, 2]. An important step in biomass combustion is pyrolysis, in which

  20. The road from photon to biomass. Van foton tot biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Schaafsma, T J [Landbouwuniversiteit Wageningen (Netherlands)

    1989-10-01

    The photosynthesis of biomass is outlined. Concentration of the lowpower density of sunlight by means of biomass production makes biomasscomparable to fossil fuels with respect to power density. Efficiency ofthe photosynthesis process and use of biomass conversion processestogether with their costs are discussed. Possible future utilization ofbiological solar cells is mentioned. 5 figs., 8 refs., 3 tabs.

  1. Biomass treatment method

    Science.gov (United States)

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  2. Rheology of concentrated biomass

    Science.gov (United States)

    J.R. Samaniuk; J. Wang; T.W. Root; C.T. Scott; D.J. Klingenberg

    2011-01-01

    Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained...

  3. Major Biomass Conference

    Science.gov (United States)

    Top Scientists, Industry and Government Leaders to Gather for Major Biomass Conference America, South America and Europe will focus on building a sustainable, profitable biomass business at the Third Biomass Conference of the Americas in Montreal. Scheduled presentations will cover all biomass

  4. Biomass Feedstocks | Bioenergy | NREL

    Science.gov (United States)

    Feedstocks Biomass Feedstocks Our mission is to enable the coordinated development of biomass generic biomass thermochemical conversion process (over a screened-back map of the United States) showing U.S. Biomass Resources, represented by photos of timber, corn stover, switchgrass, and poplar. All

  5. Conditions of bids relative to the electric power installations from biomass; Conditions de l'appel d'offres portant sur les installations de production d'electricite a partir de biomasse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conditions concern the energy and technical characteristics of the installations (primary energy, implementation region, part of the renewable energy, techniques of the electric power production, energy efficiency), the economical and financial conditions (connection, prices, involvement of the candidate), delay and industrial commissioning, weighting and prioritization principles, the nature of the resource, the environmental impact and the weighting criteria. (A.L.B.)

  6. Methods for pretreating biomass

    Science.gov (United States)

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2017-05-09

    A method for pretreating biomass is provided, which includes, in a reactor, allowing gaseous ammonia to condense on the biomass and react with water present in the biomass to produce pretreated biomass, wherein reactivity of polysaccharides in the biomass is increased during subsequent biological conversion as compared to the reactivity of polysaccharides in biomass which has not been pretreated. A method for pretreating biomass with a liquid ammonia and recovering the liquid ammonia is also provided. Related systems which include a biochemical or biofuel production facility are also disclosed.

  7. The impacts of the power plant generation using biomass in the price of energy in Brazil and its incorporation to the mechanism for reallocation of energy; Os impactos da geracao de usinas a biomassa no preco da energia no Brasil e sua incorporacao ao mecanismo de realocacao de energia

    Energy Technology Data Exchange (ETDEWEB)

    Tardin, Thiago V.; Souza, Luiz Eduardo de; Ribeiro, Paulo [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil)], Emails: thiago@engenho.com, luizeduardo_jf@yahoo.com.br, pfribeiro@ieee.org; Leite, Paula Beatriz Cerqueira [Engenho Pesquisa, Desenvolvimento e Consultoria Ltda, Rio de Janeiro RJ (Brazil)], E-mail: Paula@engenho.com

    2009-07-01

    The energy reallocation mechanism (ERM) is a compulsory scheme used to reduce the hydrology risk. The aim of this paper is to present a proposed merger of biomass power plants in ERM. This merger will bring great benefits to the power system as a whole in that the generation of biomass is complementary to the system, reducing thus, the hydrological risk and improve safety of supply, but without raising the price of energy, since that the variable cost of production of biomass is very down. Furthermore, biomass has also benefits to be incorporated into the ERM, as it may commercialize energy to a wider range of buyers, not only during the harvest period, but also in the off season, since the ERM 'donate' energy during the period between harvests, reducing the risk of exposure to the spot market.

  8. Integrated resource management of biomass

    International Nuclear Information System (INIS)

    Goodwin, E.R.

    1992-01-01

    An overview is presented of the use of biomass, with emphasis on peat, as an alternative energy source, from an integrated resource management perspective. Details are provided of the volume of the peat resource, economics of peat harvesting, and constraints to peat resource use, which mainly centre on its high water content. Use of waste heat to dry peat can increase the efficiency of peat burning for electric power generation, and new technologies such as gasification and turbo expanders may also find utilization. The burning or gasification of biomass will release no more carbon dioxide to the atmosphere than other fuels, has less sulfur content than solid fuels. The removal of peat reduces methane emissions and allows use of produced carbon dioxide for horticulture and ash for fertilizer, and creates space that may be used for forestry or agricultural biomass growth. 38 refs

  9. EU-sponsored photovoltaic systems for rural electrification

    Energy Technology Data Exchange (ETDEWEB)

    Riesch, Gerhard [Joint Research Centre of the European Union, JRC, Ispra (Italy)

    1995-12-31

    Development and proliferation of renewable energies are sponsored since 1983 by the European Union, normally up to 40% of the cost. (Programme THERMIE and predecessors). In the frame of this programme for more than one hundred projects of all kinds with thousands of photovoltaic energy supply systems have been implemented in Europe, 29 of these projects with 939 single pv-systems concern electrification of rural sites (e.g. agriculture) or isolated sites (e.g. mountain huts). Most of the single systems are of small size, 50 to 1000 Wp. A few of the systems are larger, up to 25 kWp, and supply local isolated mini-grids. In this paper the main features of the systems in six european countries are presented: The technical, economical and social results as well as the contributions of the Electric Power Utility (EPU`s) to these electrification are discussed. [Espanol] Desde 1983 la Union Europea ha auspiciado normalmente hasta el 40% del costo del desarrollo y proliferacion de las energias renovables. (Programa THERMIE y predecesores). En el marco de este programa con mas de cien proyectos de todos tipos, con miles de sistemas fotovoltaicos de suministro de energia, han sido implantados en Europa, 29 de estos proyectos con 929 sistemas fotovoltaicos sencillos se relacionan con la electrificacion de sitios rurales (por ejemplo agricultura) o de sitios aislados (por ejemplo cabanas en la montana). La mayoria de los sistemas sencillos son de pequeno tamano, 50 a 1000 Wp. Unos pocos de los sistemas son mas grandes, hasta de 25 kWp y alimentan mini-redes locales aisladas. En este articulo se presentan las caracteristicas principales de los sistemas en seis paises europeos: se analizan los resultados tecnicos, economicos y sociales, asi como las contribuciones de las empresas electricas.

  10. EU-sponsored photovoltaic systems for rural electrification

    Energy Technology Data Exchange (ETDEWEB)

    Riesch, Gerhard [Joint Research Centre of the European Union, JRC, Ispra (Italy)

    1996-12-31

    Development and proliferation of renewable energies are sponsored since 1983 by the European Union, normally up to 40% of the cost. (Programme THERMIE and predecessors). In the frame of this programme for more than one hundred projects of all kinds with thousands of photovoltaic energy supply systems have been implemented in Europe, 29 of these projects with 939 single pv-systems concern electrification of rural sites (e.g. agriculture) or isolated sites (e.g. mountain huts). Most of the single systems are of small size, 50 to 1000 Wp. A few of the systems are larger, up to 25 kWp, and supply local isolated mini-grids. In this paper the main features of the systems in six european countries are presented: The technical, economical and social results as well as the contributions of the Electric Power Utility (EPU`s) to these electrification are discussed. [Espanol] Desde 1983 la Union Europea ha auspiciado normalmente hasta el 40% del costo del desarrollo y proliferacion de las energias renovables. (Programa THERMIE y predecesores). En el marco de este programa con mas de cien proyectos de todos tipos, con miles de sistemas fotovoltaicos de suministro de energia, han sido implantados en Europa, 29 de estos proyectos con 929 sistemas fotovoltaicos sencillos se relacionan con la electrificacion de sitios rurales (por ejemplo agricultura) o de sitios aislados (por ejemplo cabanas en la montana). La mayoria de los sistemas sencillos son de pequeno tamano, 50 a 1000 Wp. Unos pocos de los sistemas son mas grandes, hasta de 25 kWp y alimentan mini-redes locales aisladas. En este articulo se presentan las caracteristicas principales de los sistemas en seis paises europeos: se analizan los resultados tecnicos, economicos y sociales, asi como las contribuciones de las empresas electricas.

  11. LCA from Biomass Powerplants: from Soil to Electricity

    OpenAIRE

    François , Jessica; Fortin , Mathieu; Patisson , Fabrice; Mauviel , Guillain; Feidt , Michel; Rogaume , Caroline; Rogaume , Yann; Mirgaux , Olivier; Dufour , Anthony

    2013-01-01

    International audience; Biomass is one of the most promising renewable energy. The sustainability of biomass to energy chains needs to be assessed from the soil, including forest management, to the biomass valorization process. A strategy is presented to model the whole life cycle inventory of power production from biomass (beech). The forest growth, management and the wood valorization chain (including pulp, timber, etc., and energy) are modeled by a dedicated platform (called "CAPSIS"). It ...

  12. Pressurized thermal shock program sponsored by EPRI

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.

    1983-01-01

    The potential for long term neutron embrittlement of reactor vessels has been recognized for a number of years. Reactor vessel thermal shock is not a new concern, but with a growing number of plants approaching their mid-lives, it is a concern that must be understood and dealt with. Recent attention has focused on the performance of vessels during overcooling transients. This concern was designated as Unresolved Safety Issue A-49 by the Nuclear Regulatory Commission in December 1981. The USNRC staff has identified eight overcooling events of concern in U.S. PWRs. The concern is currently limited to Pressurized Water Reactors. The Electric Power Research Institute (EPRI) has supported research on reactor vessel integrity for a number of years and has supported an extensive effort on reactor vessel pressurized thermal shock (PTS) over the last three years. In addition, EPRI has developed a linked set of computer codes to simulate the pressurized thermal shock transients and assess the integrity of the nuclear reactor vessels for various overcooling transients. This paper focuses on the integrated analysis approach being used by EPRI in performing such analysis. (orig.)

  13. Fiscalini Farms Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of

  14. Biomass co-firing opportunities and experiences

    Energy Technology Data Exchange (ETDEWEB)

    Lyng, R. [Ontario Power Generation Inc., Niagara Falls, ON (Canada). Nanticoke Generating Station

    2006-07-01

    Biomass co-firing and opportunities in the electricity sector were described in this presentation. Biomass co-firing in a conventional coal plant was first illustrated. Opportunities that were presented included the Dutch experience and Ontario Power Generation's (OPG) plant and production mix. The biomass co-firing program at OPG's Nantucket generating station was presented in three phases. The fuel characteristics of co-firing were identified. Several images and charts of the program were provided. Results and current status of tests were presented along with conclusions of the biomass co-firing program. It was concluded that biomass firing is feasible and following the Dutch example. Biomass firing could considerably expand renewable electricity generation in Ontario. In addition, sufficient biomass exists in Ontario and the United States to support large scale biomass co-firing. Several considerations were offered such as electricity market price for biomass co-firing and intensity targets and credit for early adoption and banking. tabs., figs.

  15. Seasonal abundance, biomass, diversity, and trophic structure of fish in a salt-marsh tidal creek affected by a coastal power plant

    International Nuclear Information System (INIS)

    Homer, M.

    1976-01-01

    Monthly measurements were made of the seasonal abundance, biomass, species diversity, and trophic composition of fish inhabiting the tidal creeks of salt marshes receiving thermal discharge near Crystal River, Fla. In the warm months (May through September 1974), mean abundance in the creek receiving thermal discharge was 0.46 individuals/m 2 and mean biomass was 2.2 g (preserved weight)/m 2 . In a control area, creek values in the warm months were 6.77 individuals/m 2 and 9.1 g (preserved weight)/m 2 , respectively. During the cold months (October 1974 through February 1975) there were 0.48 individuals/m 2 and 8.3 g (preserved weight)/m 2 in the discharge area and 0.58 individuals/m 2 and 7.4 g preserved weight/m 2 in the control area. In all months except May 1974 and February 1975, species diversity as species per 1000 individuals was higher in the control creek than in the discharge creek. No apparent differences in fish trophic structure were observed

  16. Biomass a fast growing energy resource

    International Nuclear Information System (INIS)

    Hansen, Ulf

    2003-01-01

    Biomass as an energy resource is as versatile as the biodiversity suggests. The global net primary production, NPP, describes the annual growth of biomass on land and in the seas. This paper focuses on biomass grown on land. A recent estimate for the NPP on land is 120 billion tons of dry matter. How much of this biomass are available for energy purposes? The potential contribution of wood fuel and energy plants from sustainable production is limited to some 5% of NPP, i.e. 6 Bt. One third of the potential is energy forests and energy plantations which at present are not economic. One third is used in rural areas as traditional fuel. The remaining third would be available for modern biomass energy conversion. Biomass is assigned an expanding role as a new resource in the world's energy balance. The EU has set a target of doubling the share of renewable energy sources by 2010. For biomass the target is even more ambitious. The challenge for biomass utilization lies in improving the technology for traditional usage and expanding the role into other areas like power production and transportation fuel. Various technologies for biomass utilization are available among those are combustion, gasification, and liquefaction. Researchers have a grand vision in which the chemical elements in the hydrocarbon molecules of biomass are separated and reformed to yield new tailored fuels and form the basis for a new world economy. The vision of a new energy system based on fresh and fossilized biomass to be engineered into an environmentally friendly and sustainable fuel is a conceivable technical reality. One reason for replacing exhaustible fossil fuels with biomass is to reduce carbon emissions. The most efficient carbon dioxide emission reduction comes from replacing brown coal in a steam-electric unit, due to the efficiency of the thermal cycle and the high carbon intensity of the coal. The smallest emission reduction comes from substituting natural gas. (BA)

  17. Ecosystems and biomass energy

    International Nuclear Information System (INIS)

    Trossero, M.A.

    1995-01-01

    Biomass, particularly fuelwood and charcoal, is one of the main sources of fuel to meet the energy needs of traditional, commercial and industrial activities in developing countries. While it satisfies only about 14% of the world's primary energy needs, in some countries it satisfies up to 80% of those needs. As a result of population growth, urbanization, economic reforms, restructuring and new development targets in most of these countries, new forms of energy and a more intensive use of energy are expected for the years ahead. This additional demand for energy will be met mainly by hydroelectricity, coal and fossil fuels. However, where biomass is available or can be planted, bio fuels can be converted into new forms of energy (electricity and power) and energy carriers (liquid and gaseous fuels) to meet not only the energy needs of the modem sectors but also to maintain a sustainable supply to traditional users. In fact, FAO estimates that biomass could provide nearly three times more energy than it does without affecting the current supply of other commodities and goods such as food, fodder, fuel, timber and non-wood fuel products. The benefits derived from the utilization of biomass as a source of energy are twofold: (a) the task of supplying bio fuels can help to attract new investment, create new employment and income opportunities in rural areas, raise the value of natural resources and preserve the environment and (b) new forms of energy and energy carriers could foster increased production and productivity at the rural and community level, particularly in remote areas where conventional fuels are not easily available at affordable prices. Bioenergy can be easily developed in modular and decentralized schemes and offers many advantages. It could be an inexpensive source of energy, even at present energy prices, and it requires less capital investment for its implementation than alternative solutions. However, there are many disadvantages, too. For

  18. Ecosystems and biomass energy

    Energy Technology Data Exchange (ETDEWEB)

    Trossero, M A [Food and Agriculture Organization of the United Nations (FAO), Rome (Italy)

    1995-12-01

    Biomass, particularly fuelwood and charcoal, is one of the main sources of fuel to meet the energy needs of traditional, commercial and industrial activities in developing countries. While it satisfies only about 14% of the world`s primary energy needs, in some countries it satisfies up to 80% of those needs. As a result of population growth, urbanization, economic reforms, restructuring and new development targets in most of these countries, new forms of energy and a more intensive use of energy are expected for the years ahead. This additional demand for energy will be met mainly by hydroelectricity, coal and fossil fuels. However, where biomass is available or can be planted, bio fuels can be converted into new forms of energy (electricity and power) and energy carriers (liquid and gaseous fuels) to meet not only the energy needs of the modem sectors but also to maintain a sustainable supply to traditional users. In fact, FAO estimates that biomass could provide nearly three times more energy than it does without affecting the current supply of other commodities and goods such as food, fodder, fuel, timber and non-wood fuel products. The benefits derived from the utilization of biomass as a source of energy are twofold: (a) the task of supplying bio fuels can help to attract new investment, create new employment and income opportunities in rural areas, raise the value of natural resources and preserve the environment and (b) new forms of energy and energy carriers could foster increased production and productivity at the rural and community level, particularly in remote areas where conventional fuels are not easily available at affordable prices. Bioenergy can be easily developed in modular and decentralized schemes and offers many advantages. It could be an inexpensive source of energy, even at present energy prices, and it requires less capital investment for its implementation than alternative solutions. However, there are many disadvantages, too. For

  19. [Criminal implication of sponsoring in medicine: legal ramifactions and recommendations].

    Science.gov (United States)

    Mahnken, A H; Theilmann, M; Bolenz, M; Günther, R W

    2005-08-01

    As a consequence of the so-called "Heart-Valve-Affair" in 1994, the German public became aware of the potential criminal significance of industrial sponsoring and third-party financial support in medicine. Since 1997, when the German Anti-Corruption Law came into effect, the penal regulations regarding bribery and benefits for public officers were tightened. Due to the lack of explicit and generally accepted guidelines in combination with regional differences of jurisdiction, there is a lingering uncertainty regarding the criminal aspects of third-party funding and industrial sponsoring. The aim of this review is to summarize the penal and professional implications of third-party funding and sponsoring in medicine including recent aspects of jurisdiction. The currently available recommendations on this issue are introduced.

  20. Criminal implication of sponsoring in medicine: legal ramifactions and recommendations

    International Nuclear Information System (INIS)

    Mahnken, A.H.; Guenther, R.W.; Theilmann, M.; Bolenz, M.

    2005-01-01

    As a consequence of the so-called ''Heart-Valve-Affair'' in 1994, the German public became aware of the potential criminal significance of industrial sponsoring and third-party financial support in medicine. Since 1997, when the German Anti-Corruption Law came into effect, the penal regulations regarding bribery and benefits for public officers were tightened. Due to the lack of explicit and generally accepted guidelines in combination with regional differences of jurisdiction, there is a lingering uncertainty regarding the criminal aspects of third-party funding and industrial sponsoring. The aim of this review is to summarize the penal and professional implications of third-party funding and sponsoring in medicine including recent aspects of jurisdiction. The currently available recommendations on this issue are introduced. (orig.)

  1. Biomass plantations - energy farming

    Energy Technology Data Exchange (ETDEWEB)

    Paul, S.

    1981-02-01

    Mounting oil import bills in India are restricting her development programmes by forcing the cutting down of the import of other essential items. But the countries of the tropics have abundant sunlight and vast tracts of arable wastelands. Energy farming is proposed in the shape of energy plantations through forestry or energy cropping through agricultural media, to provide power fuels for transport and the industries and also to provide fuelwoods for the domestic sector. Short rotation cultivation is discussed and results are given of two main species that are being tried, ipil-ipil and Casuarina. Evaluations are made on the use of various crops such as sugar cane, cassava and kenaf as fuel crops together with hydrocarbon plants and aquatic biomass. (Refs. 20)

  2. Sponsorship investments: do they deliver brand awareness for all sponsors?

    Directory of Open Access Journals (Sweden)

    Mpolokeng Sephapo Catherine

    2017-03-01

    Full Text Available Sponsorship as a marketing communications tool is well adopted in South Africa across various areas such as sports and entertainment. Although world markets have experienced economic turmoil in the last few years, the sponsorship market may be considered to be thriving as companies use this marketing communication tool as a vehicle to create and maintain relationships. The purpose of this study was to explore which sponsors of the South African National Rugby team are sports consumers aware of as a result of the sponsorship. Literature states that awareness also influences the judgments about brands in the consideration set, even without any brand associations in the consumer’s mind. In low involvement decision; where consumers do not need to search extensively for information in order to make a decision; minimal brand awareness levels may be enough to convince the consumer to make their final choice. The study is exploratory in nature however provides a South African perspective on how effective the sponsorship of the Springbok is with regards to creating awareness of the sponsors among sports consumers. The study made use of a qualitative approach whereby primary data was collected by means of focus groups and naïve sketches. Data collected was analyzed by means of content analysis. The findings suggest that participants were predominantly aware of the key sponsors of the Springboks; these were sponsors who had their branding on the Springbok jersey worn during rugby matches. The factors that participants mentioned to contribute to their awareness of the sponsors were the branding on the Springbok playing jersey as well as television adverts along with other promotional tools. This study urges sponsors to not only rely on the sponsorship initiative to create awareness but rather leverage the sponsorship with tools that are relevant to their target audience. This study contributes to sponsorship literature relating to the effectiveness of

  3. Biomass gasification for production of 'green energy'

    International Nuclear Information System (INIS)

    Mambre, V.

    2008-01-01

    This paper presents the differences between biomass gasification and biomass methanation, two ways of using biomass for decentralized production of energy. The stakes of biomass and biomass gasification for meeting the European and national energy goals and environmental targets are summarized. The gasification principle is described and in particular the FICFB optimized process from Repotec for the production of concentrated syngas. The four different ways of syngas valorization (combined heat and power (CHP), 'green methane' (SNG), 'green hydrogen' (gas shift) and liquid biofuels of 2. generation (Fisher-Tropsch)) are recalled and compared with each other. Finally, the economical and environmental key issues of the global chain are summarized with their technological and scientific key locks. The GAYA R and D project of Gaz de France Suez group, which aims at developing gasification and methanation demonstration plants through different programs with European partners, is briefly presented. (J.S.)

  4. Assessment of Biomass Resources in Liberia

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.

    2009-04-01

    Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

  5. Production of 800 kW of electrical power using medium calorific gas from a biomass gasifier integrated in a combined cycle

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Cabrita, I. [Instituto Nacional de Engenharia e Tecnologia Industrial, Lisboa (Portugal)

    1993-12-31

    An allothermal fluidized bed biomass gasifier is under construction to operate at a pressure slightly above atmospheric to produce a gaseous fuel of medium heating value. The output of the gasifier is 2.5 {times} 10{sup 6} kcal/h and will be attached to a gas turbine that is specifically modified to burn the gas produced. The amount of electricity to be generated will be 800 kW. The gasifying medium used is superheated steam at 2.5 bars and 400{degrees}C and the amount needed will be 280 kg/h. The gasifier will have a cross sectional area of 2.1 m{sup 2} with dimensions of 1 500 mm {times} 1 400 mm. There is a heat exchanger to provide the heat needed for the gasification reactions. The gasifier will operate at about 850{degrees}C and the biomass throughput will be about 950 kg/h. The amount of gas that is to be produced will be about 1 300 kg/h or 1 900 Nm{sup 3}/h. Part of the gas obtained will be burned in an external combustor to provide the heat for the gasifier. The gas turbine to be employed is a single shaft turbine designed to drive 750 kVA electrical generator. The turbine combustion chamber is somewhat modified to allow for the lower heating value of the gas. However, there is no loss of efficiency in the turbine output due to lower calorific value of the fuel. The turbine inlet temperature is 900/{degrees}C and that of the exhaust will be 500{degrees}C. The amount of gas to be used is about 745 Nm{sup 3}/h. The paper reports the experimental results obtained from a pilot-scale gasifier operating under similar conditions. The results of test runs carried out with a gas turbine are also presented.

  6. Developing business in emerging biomass energy markets

    International Nuclear Information System (INIS)

    Kadyszewski, J.

    2005-01-01

    Global market trends for forest products were reviewed in this PowerPoint presentation. The status of biomass energy products in relation to climate change and renewable energy portfolio standards was also examined. It was noted that China has increased investment in processing capacity and has increased imports of raw logs. India has doubled its imports of raw logs. Details of major tropical log producers and consumers were presented. Details of the biomass industry in the United States were presented, as well as data on fuel use at biomass energy plants and biomass energy capacity. An overview of biomass energy in the Russian far east and Siberia was presented, as well as details of activities and opportunities in Brazil and Indonesia. An economic analysis for small dry kilns was presented. Issues concerning boiler capacity in Russian companies for 2001-2005 were discussed. A case study of a biomass project from Congo was presented. It was noted that projects that replace fossil fuels can obtain revenues from the sale of carbon benefits, and that biomass energy offers the most attractive current option for the removal of carbon dioxide (CO 2 ) from the atmosphere. Details of a district heating project in Siberia were presented, and it was noted that in remote regions, costs for heat and power from biomass can be lower than costs from diesel and coal. It was concluded that there will be significant growth for biomass energy systems in the developing world, and that climate change will be an increasingly important element in advancing biomass energy. tabs., figs

  7. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  8. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H; Morris, M; Rensfelt, E [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1998-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  9. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  10. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    and creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable....... It is thus a central point that power is not necessarily something that breaks down and represses. On the contrary, an explicit focus on the dynamics of power in relation to creativity can be productive for the organisation. Our main focus is to elaborate the implications of this for practice and theory...

  11. Comparative analysis of large biomass & coal co-utilization units

    NARCIS (Netherlands)

    Liszka, M.; Nowak, G.; Ptasinski, K.J.; Favrat, D.; Marechal, F.

    2010-01-01

    The co-utilization of coal and biomass in large power units is considered in many countries (e.g. Poland) as fast and effective way of increasing renewable energy share in the fuel mix. Such a method of biomass use is especially suitable for power systems where solid fuels (hard coal, lignite) are

  12. The economics of biomass energy: a case study from Hawaii

    International Nuclear Information System (INIS)

    Gopalakrishnan, Chennat; Gadepalli, K.S.; Cox, L.J.; Pingsun Leung

    1993-01-01

    The thesis that the cost-effective conversion of Hawaii's biomass sources to electricity can be best accomplished by a central power plant is developed and empirically tested using a multiperiod linear programming model. The results also suggest that it is cheaper to produce electric power from a biomass-fueld plant than from a fuel oil-based facility. (author)

  13. Importance of biomass energy sources for Turkey

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    Various agricultural residues such as grain dust, crop residues and fruit tree residues are available in Turkey as the sources of biomass energy. Among the biomass energy sources, fuelwood seems to be one of the most interesting because its share of the total energy production of Turkey is high at 21% and the techniques for converting it to useful energy are not necessarily sophisticated. Selection of a particular biomass for energy requirements is influenced by its availability, source and transportation cost, competing uses and prevalent fossil fuel prices. Utilization of biomass is a very attractive energy resource, particularly for developing countries since biomass uses local feedstocks and labor. Like many developing countries, Turkey relies on biomass to provide much of its energy requirement. More efficient use of biomass in producing energy, both electrical and thermal, may allow Turkey to reduce petroleum imports, thus affecting its balance of payments dramatically. Turkey has always been one of the major agricultural countries in the world. The importance of agriculture is increasing due to biomass energy being one of the major resources in Turkey. Biomass waste materials can be used in Turkey to provide centralized, medium- and large-scale production of process heat for electricity production. Turkey's first biomass power project is under development in Adana province, at an installed capacity of 45 MW. Two others, at a total capacity of 30 MW, are at the feasibility study stage in Mersin and Tarsus provinces. Electricity production from biomass has been found to be a promising method in the nearest future in Turkey

  14. Assessment of Biomass Resources in Afghanistan

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.; Overend, R.

    2011-01-01

    Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistan for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.

  15. Gender and the Effect of Working Hours on Firm-Sponsored Training

    OpenAIRE

    Picchio, Matteo; van Ours, Jan C.

    2015-01-01

    Using employees' longitudinal data, we study the effect of working hours on the propensity of firms to sponsor training of their employees. We show that, whereas male part-time workers are less likely to receive training than male full-timers, part-time working women are as likely to receive training as full-time working women. Although we cannot rule out gender-working time specific monopsony power, we speculate that the gender-specific effect of working hours on training has to do with gend...

  16. 14 CFR 151.51 - Performance of construction work: Sponsor force account.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Performance of construction work: Sponsor... Development Projects § 151.51 Performance of construction work: Sponsor force account. (a) Before undertaking any force account construction work, the sponsor (or any public agency acting as agent for the sponsor...

  17. Transport and supply logistics of biomass fuels: Vol. 1. Supply chain options for biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J; Browne, M; Palmer, H; Hunter, A; Boyd, J

    1996-10-01

    The study which forms part of a wider project funded by the Department of Trade and Industry, looks at the feasibility of generating electricity from biomass-fuelled power stations. Emphasis is placed on supply availabilty and transport consideration for biomass fuels such as wood wastes from forestry, short rotation coppice products, straw, miscanthus (an energy crop) and farm animal slurries. The study details the elements of the supply chain for each fuel from harvesting to delivery at the power station. The delivered cost of each fuel, the environmental impact of the biomass fuel supply and other relevant non-technical issues are addressed. (UK)

  18. Exclusion of pregnant women from industry-sponsored clinical trials.

    Science.gov (United States)

    Shields, Kristine E; Lyerly, Anne Drapkin

    2013-11-01

    The lack of human data available to inform evidence-based treatment for illness during pregnancy has led to calls for greater inclusion of pregnant women in research, but the extent of their current representation is poorly characterized. Our objective was to measure the current exclusion of pregnant women from industry-sponsored clinical trials as a baseline for future comparison. We compiled data from studies enrolling women of childbearing potential posted on www.ClinicalTrials.gov between 1 October 2011 and 31 January 2012. The review was limited to open United States-based phase IV interventional studies sponsored by the pharmaceutical industry evaluating treatment of conditions that may be experienced by but are not limited to pregnant women and did not involve a medication classified as potentially teratogenic. If there was no mention of pregnancy in the inclusion or exclusion criteria, we contacted a study representative to confirm that pregnant women could be enrolled. Of 558 qualifying industry-sponsored studies, five (1%) were designed specifically for pregnant women. Of 367 phase IV clinical trials with verified inclusion and exclusion criteria, 348 (95%) excluded pregnant women and 19 (5%) did not. We found the exclusion of pregnant women from industry-sponsored clinical trials to be common practice. Moving beyond reflexive exclusion and developing thoughtful criteria for inclusion of pregnant women in clinical research would likely advance the evidence base to inform treatment decisions during pregnancy and lead to better health outcomes for women and children.

  19. A Commentary on Literacy Narratives as Sponsors of Literacy

    Science.gov (United States)

    Brandt, Deborah

    2015-01-01

    This brief commentary first clarifies Brandt's concept of sponsors of literacy in light of the way the concept has been taken up in writing studies. Then it treats Brandt's methods for handling accounts of literacy learning in comparison with other ways of analyzing biographical material. Finally it takes up Lawrence's argument about literacy…

  20. Highlight: IDRC sponsors Caribbean symposium on impact of ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    12 mai 2015 ... An IDRC-sponsored symposium exploring the impact of the Internet on economic ... Le symposium commandité par le CRDI, qui a eu lieu à Saint Andrew, ... Une nouvelle recherche fait état d'arguments convaincants pour ...

  1. Undergraduates with Employer-Sponsored Aid: Comparing Group Differences

    Science.gov (United States)

    Faulk, Dagney G.; Wang, Zhenlei

    2014-01-01

    Tuition assistance offered by employers is an understudied area of financial aid research. The purpose of this study is to compare the demographic, socioeconomic, academic and financial aid characteristics of college students who receive employer-sponsored financial aid with students who receive traditional financial aid (institutional, state, or…

  2. 14 CFR 152.309 - Availability of sponsor's records.

    Science.gov (United States)

    2010-01-01

    ... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Accounting and Reporting Requirements § 152.309 Availability of... the purposes of accounting and audit. (b) The sponsor or planning agency shall allow appropriate FAA...-term retention value, the FAA may require transfer of custody of those records to the FAA. ...

  3. 76 FR 2807 - New Animal Drugs; Change of Sponsor

    Science.gov (United States)

    2011-01-18

    .... FDA-2010-N-0002] New Animal Drugs; Change of Sponsor AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal drug regulations to...., Cambridge, MA 02141 has informed FDA that it has transferred ownership of, and all rights and interest in...

  4. 22 CFR 42.31 - Family-sponsored immigrants.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Family-sponsored immigrants. 42.31 Section 42.31 Foreign Relations DEPARTMENT OF STATE VISAS VISAS: DOCUMENTATION OF IMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Immigrants Subject to Numerical Limitations § 42.31 Family...

  5. Risk sharing between competing health plans and sponsors

    NARCIS (Netherlands)

    E.M. van Barneveld (Erik); W.P.M.M. van de Ven (Wynand); R.C.J.A. van Vliet (René)

    2001-01-01

    textabstractIn many countries, competing health plans receive capitation payments from a sponsor, whether government or a private employer. All capitation payment methods are far from perfect and have raised concerns about risk selection. Paying health plans partly on the basis

  6. 7 CFR 225.14 - Requirements for sponsor participation.

    Science.gov (United States)

    2010-01-01

    ... 225.14 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SUMMER FOOD SERVICE PROGRAM Sponsor and Site Provisions... Youth Sports Program; and (5) Private nonprofit organizations as defined in § 225.2. (c) General...

  7. Recycling: Establishing a Citizen-Sponsored Reclamation Center.

    Science.gov (United States)

    Keep America Beautiful, Inc., New York, NY.

    This booklet applies the Clean Community System (CCS) of Keep America Beautiful, Inc. to the development of citizen-sponsored recycling projects. Six initial steps in establishing a reclamation center are given and include information gathering, market analysis, legal requirements, and site location. Suggestions are included for recruiting staff…

  8. Consumer Perceptions of Sponsors of Disease Awareness Advertising

    Science.gov (United States)

    Hall, Danika V.; Jones, Sandra C.; Iverson, Donald C.

    2011-01-01

    Purpose: In many countries there is emerging concern regarding alliances between the pharmaceutical industry and health non-profit organizations (NPOs), and the increase of co-sponsored marketing activities such as disease awareness advertising. The current study aims to explore Australian women's perceptions of disease awareness advertising with…

  9. School-Sponsored Health Insurance: Planning for a New Reality

    Science.gov (United States)

    Liang, Bryan A.

    2010-01-01

    Health care reform efforts in both the Clinton and Obama administrations have attempted to address college and university health. Yet, although the world of health care delivery has almost universally evolved to managed care, school health programs have not. In general, school-sponsored health plans do little to improve access and have adopted…

  10. 76 FR 48714 - New Animal Drugs; Change of Sponsor; Moxidectin

    Science.gov (United States)

    2011-08-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Parts 520, 522, and 524 [Docket No. FDA-2011-N-0003] New Animal Drugs; Change of Sponsor; Moxidectin AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal...

  11. Media exposure and sponsor recall: Cricket World Cup 2003 | Van ...

    African Journals Online (AJOL)

    This paper reports on a study into the relationship between media exposure and sponsor recall relating to an international event, namely the Cricket World Cup 2003 (CWC 2003). The application of sponsorship as a communication construct and recall as a media vehicle effect is investigated. Recall has been widely ...

  12. Environmental implications of increased biomass energy use

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. (Miles (Thomas R.), Portland, OR (United States))

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  13. deNOx catalysts for biomass combustion

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus

    The present thesis revolves around the challenges involved in removal of nitrogen oxides in biomass fired power plants. Nitrogen oxides are unwanted byproducts formed to some extent during almost any combustion. In coal fired plants these byproducts are removed by selective catalytic reduction......, however the alkali in biomass complicate matters. Alkali in biomass severely deactivates the catalyst used for the selective catalytic reduction in matter of weeks, hence a more alkali resistant catalyst is needed. In the thesis a solution to the problem is presented, the nano particle deNOx catalyst...

  14. Wallowa County Integrated Biomass Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, Nils [Wallowa Resources Community Solutions Inc., Wallowa, OR (United States)

    2014-05-02

    The Integrated Biomass Energy Center (IBEC) is an approximately 0.1 MW CHP integrated biorefinery in Northeastern Oregon which will demonstrate and validate small-scale combined heat and power from lignin intermediates/residues. IBEC will be co-located with feedstock suppliers and thermal and power customers for distributed generation. The project was developed by Wallowa Resources Community Solutions Inc.

  15. Economic and environmental considerations of biomass fuels

    International Nuclear Information System (INIS)

    Booth, Roger

    1992-01-01

    The economic and environmental aspects of biomass fuels are considered. Close to source, the cost of useful energy in the form of lignocellulose is often competitive with fossil fuels, say $1-3 per GJ. There are three main options to divert this biomass into commercial energy channels: solid fuels for underboiler use; liquid fuels for automotive use and electric power generation, each of which is discussed. The social, economic and environmental advantages of an afforestation programme are highlighted. (Author)

  16. CALLA ENERGY BIOMASS COFIRING PROJECT

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1

  17. The bioenergy village - preconditions and consequences of autonomous heat and power supply on the basis of biomass for agricultrue, ecology and lifestyle in rural regions. Final report phase I; Das Bioenergiedorf - Voraussetzungen und Folgen einer eigenstaendigen Waerme- und Stromversorgung durch Biomasse fuer Landwirtschaft, Oekologie und Lebenskultur im laendlichen Raum. Endbericht Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, H.; Ahl, C.; Girschner, W.; Krumbein, W.; Marggraf, R.; Scheffer, K.; Schmuck, P. (eds.)

    2003-07-01

    With support from the Federal Minister of Consumer Protection, Nutrition and Agriculture through the Fachagentur Nachwachsende Rohstoffe e.V. (Renewable Fuels Agency), a project group of Goettingen University was able to demonstrate how complete conversion to biomass of heat and power supply can be achieved for a whole village with maximum social acceptance, environmental compatibility, and economic and technical efficiency. This and further projects will provide flexible, generally applicable concepts for wider use and are expected to give new impetus to bioenergy and help reduce CO2 emissions. This documentation presents the results of the first project phase, which lasted from October 2000 through November 2002. After describing the criteria for which the model village was selected, the work carried out by the various scientific disciplines cooperating in the project (environmental geoscience, crop research, soil research, agricultural economy, psychology, sociology and political science) is described, and the current project status is outlined. (orig.) [German] Mit Unterstuetzung des Bundesministeriums fuer Verbraucherschutz, Ernaehrung und Landwirtschaft durch die Fachagentur Nachwachsende Rohstoffe e.V. konnte die Projektgruppe der Universitaet damit beginnen, beispielhaft in einem Dorf zu demonstrieren, wie eine komplette Umstellung der Strom- und Waermeversorgung auf den Energietraeger Biomasse sozial, umweltvertraeglich, wirtschaftlich und technisch erfolgen kann. Auf der Basis dieser konkreten Umstellugsarbeiten und Erfahrungen aus anderen aehnlichen Projekten sollen uebertragbare, flexible Konzepte erarbeitet werden, die der Nutzung der Bioenergie einen deutlichen Auftrieb geben und dadurch auch erhebliche Kohlendioxid-Einsparpotentiale erschliessen koennen. In dieser Dokumentation sind die Ergebnisse der ersten Phase des Projektes 'Das Bioenergiedorf' vom Oktober 2000 bis November 2002 niedergelegt. Es wird zunaechst in einem Ueberblick

  18. Small scale power production

    Energy Technology Data Exchange (ETDEWEB)

    Muoniovaara, M [IVO International Ltd, Vantaa (Finland)

    1997-12-31

    IVO International is a major constructor of biomass power plants in Finland and abroad. As a subsidiary of Imatran Voima Oy, the largest power utility in Finland, it has designed and constructed ten power plants owned by IVO Group or others capable of burning biomasses. Sizes of the plants vary from the world`s largest condensing peat-fired power plant of 155 MWe to a 6 MWe combined heat and power producing unit. This article describes the biomass power plants designed and constructed by IVO Group 3 refs.

  19. Small scale power production

    Energy Technology Data Exchange (ETDEWEB)

    Muoniovaara, M. [IVO International Ltd, Vantaa (Finland)

    1996-12-31

    IVO International is a major constructor of biomass power plants in Finland and abroad. As a subsidiary of Imatran Voima Oy, the largest power utility in Finland, it has designed and constructed ten power plants owned by IVO Group or others capable of burning biomasses. Sizes of the plants vary from the world`s largest condensing peat-fired power plant of 155 MWe to a 6 MWe combined heat and power producing unit. This article describes the biomass power plants designed and constructed by IVO Group 3 refs.

  20. Biomass Support for the China Renewable Energy Law: Final Report, December 2005

    Energy Technology Data Exchange (ETDEWEB)

    2006-10-01

    Final subcontractor report giving an overview of the biomass power generation technologies used in China. Report covers resources, technologies, foreign technologies and resources for comparison purposes, biomass potential in China, and finally government policies in China that support/hinder development of the using biomass in China for power generation.

  1. Biomass energy utilisation in Malaysia - prospects and problems

    International Nuclear Information System (INIS)

    Kong, Hoi Why

    1999-01-01

    An assessment of the contribution of biomass fuels in the rubber, palm oil, cocoa, brick and charcoal industries is given with biomass accounting for about 16% of the total power demand; equivalent to about 2.48 MTOE. The use of biomass in Malaysia is by the direct combustion of wood for heat and power and by gasification with power production via a diesel engine. Challenges facing Malaysia include a rapid increase in demand for power, the need for development funding, environmental issues, and increases in the price of rubber wood, the main fuel source. (uk)

  2. Driftless Area Initiative Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Angie [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Bertjens, Steve [Natural Resources Conservation Service, Madison, WI (United States); Lieurance, Mike [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Berguson, Bill [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.; Buchman, Dan [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.

    2012-12-31

    The Driftless Area Initiative Biomass Energy Project evaluated the potential for biomass energy production and utilization throughout the Driftless Region of Illinois, Iowa, Minnesota and Wisconsin. The research and demonstration aspect of the project specifically focused on biomass energy feedstock availability and production potential in the region, as well as utilization potential of biomass feedstocks for heat, electrical energy production, or combined heat and power operations. The Driftless Region was evaluated because the topography of the area offers more acres of marginal soils on steep slopes, wooded areas, and riparian corridors than the surrounding “Corn Belt”. These regional land characteristics were identified as potentially providing opportunity for biomass feedstock production that could compete with traditional agriculture commodity crops economically. The project researched establishment methods and costs for growing switchgrass on marginal agricultural lands to determine the economic and quantitative feasibility of switchgrass production for biomass energy purposes. The project was successful in identifying the best management and establishment practices for switchgrass in the Driftless Area, but also demonstrated that simple economic payback versus commodity crops could not be achieved at the time of the research. The project also analyzed the availability of woody biomass and production potential for growing woody biomass for large scale biomass energy production in the Driftless Area. Analysis determined that significant resources exist, but costs to harvest and deliver to the site were roughly 60% greater than that of natural gas at the time of the study. The project contributed significantly to identifying both production potential of biomass energy crops and existing feedstock availability in the Driftless Area. The project also analyzed the economic feasibility of dedicated energy crops in the Driftless Area. High commodity crop prices

  3. SSP Power Management and Distribution

    Science.gov (United States)

    Lynch, Thomas H.; Roth, A. (Technical Monitor)

    2000-01-01

    Space Solar Power is a NASA program sponsored by Marshall Space Flight Center. The Paper presented here represents the architectural study of a large power management and distribution (PMAD) system. The PMAD supplies power to a microwave array for power beaming to an earth rectenna (Rectifier Antenna). The power is in the GW level.

  4. Cofiring biomass with coal: Opportunities for Malaysia

    International Nuclear Information System (INIS)

    Rahman, A A; Shamsuddin, A H

    2013-01-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  5. Cofiring biomass with coal: Opportunities for Malaysia

    Science.gov (United States)

    Rahman, A. A.; Shamsuddin, A. H.

    2013-06-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  6. Biopharmaceutical industry-sponsored global clinical trials in emerging countries.

    Science.gov (United States)

    Alvarenga, Lenio Souza; Martins, Elisabeth Nogueira

    2010-01-01

    To evaluate biopharmaceutical industry-sponsored clinical trials placed in countries previously described as emerging regions for clinical research, and potential differences for those placed in Brazil. Data regarding recruitment of subjects for clinical trials were retrieved from www.clinicaltrials.gov on February 2nd 2009. Proportions of sites in each country were compared among emerging countries. Multiple logistic regressions were performed to evaluate whether trial placement in Brazil could be predicted by trial location in other countries and/or by trial features. A total of 8,501 trials were then active and 1,170 (13.8%) included sites in emerging countries (i.e., Argentina, Brazil, China, Czech Republic, Hungary, India, Mexico, Poland, Russia, South Korea, and South Africa). South Korea and China presented a significantly higher proportion of sites when compared to other countries (pattractiveness for biopharmaceutical industry-sponsored clinical trials.

  7. Unfulfilled translation opportunities in industry sponsored clinical trials

    DEFF Research Database (Denmark)

    Smed, Marie; Getz, Kenneth A.

    2013-01-01

    in the industry and site representatives are changing. The process of clinical trials has increased in complexity over the years, resulting in additional management layers. Besides an increase in internal management layers, sponsors often also outsource various tasks related to clinical trials to a CRO (Contract...... Research Organization) and thereby adding another link in the relationships between site and sponsor. These changes are intended to optimize the time-consuming and costly trial phases; however, there is a need to study whether valuable knowledge and experience is compromised in the process. Limited......' knowledge gained in clinical trials is utilized by the industry. Responses from 451 global investigative site representatives are included in the study. The analysis of the extensive dataset reveals that the current processes of collaboration between sites and the industry restrict the leverage of valuable...

  8. On a State-Sponsored Sport System in China.

    Science.gov (United States)

    Cao, Jie; Zhiwei, Pan

    The gold medal success of China in recent Olympic Games can be traced to the advancement of the state-sponsored sport system (SSSS). While the program was developed initially through socialist ideals, it is more than a centralized government system to monopolize resources for glorified sport performance. Participation in competition is an inherent part of the human condition. Success in athletics is associated with national identity and has economic, social, and cultural implications. Because of this, it is essential that the SSSS adjust and improve to keep pace with other facets of China's quickly changing national reform. In association with emerging economic reform, some sports now receive equal or more funds from private investments compared to government allocation. The state-sponsored sport system must continue to adapt to maintain the Chinese tradition of excellence in competition.

  9. A New Typology for State-Sponsored International Terrorism

    Science.gov (United States)

    2011-12-01

    tolerated the stacks of books with “ scary people” on the covers. xiv THIS PAGE INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION State sponsorship of...sponsors of terrorism list in August of 1993.133 The explanation of the State Department’s update to the list stated that despite warnings , “the... warning signs, Qaddafi directed his associates to attempt to re- establish communications with the U.S in 1992. At that point, however, the U.S. was not

  10. Budget constraints and optimization in sponsored search auctions

    CERN Document Server

    Yang, Yanwu

    2013-01-01

    The Intelligent Systems Series publishes reference works and handbooks in three core sub-topic areas: Intelligent Automation, Intelligent Transportation Systems, and Intelligent Computing. They include theoretical studies, design methods, and real-world implementations and applications. The series' readership is broad, but focuses on engineering, electronics, and computer science. Budget constraints and optimization in sponsored search auctions takes into account consideration of the entire life cycle of campaigns for researchers and developers working on search systems and ROI maximization

  11. Searching for sponsors for four national rugby teams in Finland

    OpenAIRE

    Ylönen, Niina

    2017-01-01

    How to get more sponsors to four national rugby teams in Finland? Finnish Rugby Federation and its four national teams are in the need of new long lasting sponsorship deals to fund the national teams’ tournaments in Finland and abroad. Since rugby is quite unknown sports in Finland it faces challenges in getting new sponsorship deals and also its visibility is currently very low. The purpose of this thesis is to analyse the current situation of rugby, sponsorship contracts Finnish rugby F...

  12. Safety research programs sponsored by Office of Nuclear Regulatory Research

    International Nuclear Information System (INIS)

    Weiss, A.J.; Azarm, A.; Baum, J.W.

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988

  13. The effect of cleaning on materials wastage in biomass and waste fired power plants; Sotningens inverkan paa materialfoerluster foer bio- och avfallseldade pannor

    Energy Technology Data Exchange (ETDEWEB)

    Hjoernhede, Anders; Henderson, Pamela

    2006-03-15

    The reason for this study is the relatively large material loss caused by soot blowing of heat exchange surface in waste- and biomass fired boilers. The material losses depend on the method of cleaning: Normally soot blowing with a relatively high pressure is used in order to remove deposits on super heater tubes. However, this also damages the tube material. Earlier theories state that the material losses are caused by erosion or rather erosion-corrosion of the tube surface. There is a clear evidence for the existence for this type of damage, but it is often caused by badly adjusted soot blowing equipment. However, even well adjusted equipment causes accelerated metal loss, albeit lower than with badly adjusted soot blowers. This type of material loss is caused by the removal of the outer molten deposit layer. This outer layer of deposit actually acts as a barrier to corrosive species diffusing inwards towards the oxide and uncorroded metal. There is a lamellar oxide under this deposit, which is especially protective if it contains Cr{sub 2}O{sub 3}, MoO{sub 3} or Nb{sub 2}O{sub 5}. The lamellar oxide is damaged by the defects produced by the soot blowing and the diffusion of corrosive species into the metal tube. Since molybdenum probably through molybdenum oxide seems to reduce metal losses due to soot blowing, alloys containing molybdenum should be used. The addition of sulphur, or sulphur compounds like ammonium sulphate reduces the deposit growth rate by about 50%. This means that the soot blowing frequency and therefore metal losses are reduced. There is also an indication that certain metals or alloys reduce the tendency for deposits to stick to tubes. Coating with pure nickel is one example of this, but as nickel is sensitive to soot blowing it is not possible to use nickel in areas affected by soot blowing. A common way of reducing metal losses is to mount tube shields on the most affected tubes. These shields are changed regularly. Normally expensive

  14. Modelling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Kazakova, Nadezhda; Petkov, Venko; Mihailov, Emil

    2015-01-01

    Pyrolysis is an essential preliminary step in a gasifier. The first step in modelling the pyrolysis process of biomass is creating a model for the chemical processes taking place. This model should describe the used fuel, the reactions taking place and the products created in the process. The numerous different polymers present in the organic fraction of the fuel are generally divided in three main groups. So, the multistep kinetic model of biomass pyrolysis is based on conventional multistep devolatilization models of the three main biomass components - cellulose, hemicelluloses, and lignin. Numerical simulations have been conducted in order to estimate the influence of the heating rate and the temperature of pyrolysis on the content of the virgin biomass, active biomass, liquid, solid and gaseous phases at any moment. Keywords: kinetic models, pyrolysis, biomass pyrolysis.

  15. Redactions in protocols for drug trials: what industry sponsors concealed.

    Science.gov (United States)

    Marquardsen, Mikkel; Ogden, Michelle; Gøtzsche, Peter C

    2018-04-01

    Objective To describe the redactions in contemporary protocols for industry-sponsored randomised drug trials with patient relevant outcomes and to evaluate whether there was a legitimate rationale for the redactions. Design Cohort study. Under the Freedom of Information Act, we requested access to trial protocols approved by a research ethics committee in Denmark from October 2012 to March 2013. We received 17 consecutive protocols, which had been redacted before we got them, and nine protocols without redactions. In five additional cases, the companies refused to let the committees give us access, and in three other cases, documents were missing. Participants Not applicable. Setting Not applicable. Main outcome measure Amount and nature of redactions in 22 predefined key protocol variables. Results The redactions were most widespread in those sections of the protocol where there is empirical evidence of substantial problems with the trustworthiness of published drug trials: data analysis, handling of missing data, detection and analysis of adverse events, definition of the outcomes, interim analyses and premature termination of the study, sponsor's access to incoming data while the study is running, ownership to the data and investigators' publication rights. The parts of the text that were redacted differed widely, both between companies and within the same company. Conclusions We could not identify any legitimate rationale for the redactions. The current mistrust in industry-sponsored drug trials can only change if the industry offers unconditional access to its trial protocols and other relevant documents and data.

  16. Use of financial and economic analyses by federal forest managers for woody biomass removal

    Science.gov (United States)

    Todd A. Morgan; Jason P. Brandt; John D. Baldridge; Dan R. Loeffler

    2011-01-01

    This study was sponsored by the Joint Fire Science Program to understand and enhance the ability of federal land managers to address financial and economic (F&E) aspects of woody biomass removal as a component of fire hazard reduction. Focus groups were conducted with nearly 100 federal land managers throughout the western United States. Several issues and...

  17. Biomass cogeneration: A business assessment

    Science.gov (United States)

    Skelton, J. C.

    1981-11-01

    The biomass cogeneration was reviewed. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  18. The regional environmental impact of biomass production

    International Nuclear Information System (INIS)

    Graham, R.L.

    1994-01-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops. The subject is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of the alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing energy crops. I present an approach for quantitatively evaluating the potential environmental impact of growing energy crops at a regional scale that accounts for the environmental and economic context of the crops. However, to set the stage for this discussion, I begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics

  19. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  20. Biomass gasification : The understanding of sulfur, tar, and char reaction in fluidized bed gasifiers

    NARCIS (Netherlands)

    Meng, X.

    2012-01-01

    As one of the currently available thermo-chemical conversion technologies, biomass gasification has received considerable interest since it increases options for combining with various power generation systems. The product gas or syngas produced from biomass gasification is environmental friendly