WorldWideScience

Sample records for sponge production batch

  1. Simulated Batch Production of Penicillin

    Science.gov (United States)

    Whitaker, A.; Walker, J. D.

    1973-01-01

    Describes a program in applied biology in which the simulation of the production of penicillin in a batch fermentor is used as a teaching technique to give students experience before handling a genuine industrial fermentation process. Details are given for the calculation of minimum production cost. (JR)

  2. Resins production: batch plant automation

    International Nuclear Information System (INIS)

    Banti, M.; Mauri, G.

    1996-01-01

    Companies that look for automation in their plants without external resources, have at their disposal flexible, custom and easy to use DCS, open towards PLC. In this article it is explained why Hoechts has followed this way of new plants for resins production automation

  3. Uneven batch data alignment with application to the control of batch end-product quality.

    Science.gov (United States)

    Wan, Jian; Marjanovic, Ognjen; Lennox, Barry

    2014-03-01

    Batch processes are commonly characterized by uneven trajectories due to the existence of batch-to-batch variations. The batch end-product quality is usually measured at the end of these uneven trajectories. It is necessary to align the time differences for both the measured trajectories and the batch end-product quality in order to implement statistical process monitoring and control schemes. Apart from synchronizing trajectories with variable lengths using an indicator variable or dynamic time warping, this paper proposes a novel approach to align uneven batch data by identifying short-window PCA&PLS models at first and then applying these identified models to extend shorter trajectories and predict future batch end-product quality. Furthermore, uneven batch data can also be aligned to be a specified batch length using moving window estimation. The proposed approach and its application to the control of batch end-product quality are demonstrated with a simulated example of fed-batch fermentation for penicillin production. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Bioactive Natural Products of Marine Sponges from the Genus Hyrtios

    Directory of Open Access Journals (Sweden)

    Nourhan Hisham Shady

    2017-05-01

    Full Text Available Marine sponges are known as a rich source for novel bioactive compounds with valuable pharmacological potential. One of the most predominant sponge genera is Hyrtios, reported to have various species such as Hyrtios erectus, Hyrtios reticulatus, Hyrtios gumminae, Hyrtios communis, and Hyrtios tubulatus and a number of undescribed species. Members of the genus Hyrtios are a rich source of natural products with diverse and valuable biological activities, represented by different chemical classes including alkaloids, sesterterpenes and sesquiterpenes. This review covers the literature until June 2016, providing a complete survey of all compounds isolated from the genus Hyrtios with their corresponding biological activities whenever applicable.

  5. Development of Production Control in Small Batch Production

    Directory of Open Access Journals (Sweden)

    Németh Péter

    2016-01-01

    Full Text Available Our aim with this paper is to develop a new performance measurement and control system for small batch production in the automotive industry. For this reason, we present our previous research results for warehouse performance measurement and adopt its methodology to production control. The proposed method is based on artificial intelligence (neural networks.

  6. Production and characterization of cast aluminum sponges

    International Nuclear Information System (INIS)

    Rivarola, M.E; Marmo Lupano, J.M; Malachevsky, M.T

    2004-01-01

    Cellular materials have unique physical features that make them particularly appropriate for applications that require high mechanical resistance and low weight. They can be produced in different ways: by powder metallurgy, by infiltration over plastic foams, adding a releasing agent of gas to a fused metal or simply injecting gas into it. Cellular structures can also be formed by casting onto a pore forming material. This work proposes a method that is basically similar to the last one mentioned but that allows the resulting material's porosity and topology to be controlled. Thus, the mechanical or thermal features of the material that is being manufactured can be predicted and/or designed. First the three dimensional print of a mold is made in a 3D printer, which is the negative of the piece that will be produced. Then a vacuum assisted aluminum cast is made. A preliminary study is presented for the applicability of this method and the mechanical properties of the resulting sponges (CW)

  7. Cytotoxic Natural Products from Marine Sponge-Derived Microorganisms

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2017-03-01

    Full Text Available A growing body of evidence indicates that marine sponge-derived microbes possess the potential ability to make prolific natural products with therapeutic effects. This review for the first time provides a comprehensive overview of new cytotoxic agents from these marine microbes over the last 62 years from 1955 to 2016, which are assorted into seven types: terpenes, alkaloids, peptides, aromatics, lactones, steroids, and miscellaneous compounds.

  8. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis.

    Science.gov (United States)

    Cho, Young-Han; Song, Jae Yong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Sang Bum; Kim, Hyeon Shup; Han, Nam Soo; Lee, Bong Hee; Kim, Beom Soo

    2010-09-30

    Nattokinase was produced by batch and fed-batch culture of Bacillus subtilis in flask and fermentor. Effect of supplementing complex media (peptone, yeast extract, or tryptone) was investigated on the production of nattokinase. In flask culture, the highest cell growth and nattokinase activity were obtained with 50 g/L of peptone supplementation. In this condition, nattokinase activity was 630 unit/ml at 12 h. In batch culture of B. subtilis in fermentor, the highest nattokinase activity of 3400 unit/ml was obtained at 10h with 50 g/L of peptone supplementation. From the batch kinetics data, it was shown that nattokinase production was growth-associated and culture should be harvested before stationary phase for maximum nattokinase production. In fed-batch culture of B. subtilis using pH-stat feeding strategy, cell growth (optical density monitored at 600 nm) increased to ca. 100 at 22 h, which was 2.5 times higher than that in batch culture. The highest nattokinase activity was 7100 unit/ml at 19 h, which was also 2.1 times higher than that in batch culture. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Simulation of a Sponge Iron Production Process

    Directory of Open Access Journals (Sweden)

    Tor Onshus

    1983-07-01

    Full Text Available A model for reduction of FeO with hydrogen in a countercurrent moving bed reactor is summarized. This model is a special case of a mor ecomplete model which also includes reduction of the higher oxides, hematite and magnetite, with a mixture of reducing gases, thus describing the production of direct-reduced iron from iron ores. Equations governing the heat and mass transfer between the gas and solid phase are not given here, but play an important role in the dynamic bahviour of the model.

  10. [Batch release of immunoglobulin and monoclonal antibody products].

    Science.gov (United States)

    Gross, S

    2014-10-01

    The Paul-Ehrlich Institute (PEI) is an independent institution of the Federal Republic of Germany responsible for performing official experimental batch testing of sera. The institute decides about the release of each batch and performs experimental research in the field. The experimental quality control ensures the potency of the product and also the absence of harmful impurities. For release of an immunoglobulin batch the marketing authorization holder has to submit the documentation of the manufacture and the results of quality control measures together with samples of the batch to the PEI. Experimental testing is performed according to the approved specifications regarding the efficacy and safety. Since implementation of the 15th German drug law amendment, the source of antibody is not defined anymore. According to § 32 German drug law, all batches of sera need to be released by an official control laboratory. Sera are medicinal products, which contain antibodies, antibody fragments or fusion proteins with a functional antibody portion. Therefore, all batches of monoclonal antibodies and derivatives must also be released by the PEI and the marketing authorization holder has to submit a batch release application. Under certain circumstances a waiver for certain products can be issued with regard to batch release. The conditions for such a waiver apply to the majority of monoclonal antibodies.

  11. Production of ethanol in batch and fed-batch fermentation of soluble sugar

    International Nuclear Information System (INIS)

    Chaudhary, M.Y.; Shah, M.A.; Shah, F.H.

    1991-01-01

    Keeping in view of the demand and need for alternate energy source, especially liquid fuels and the availability of raw materials in Pakistan, we have carried out biochemical and technological studies for ethanol through fermentation of renewable substrates. Molasses and sugar cane have been used as substrate for yeast fermentation. Selected yeast were used in both batch and semi continuous fermentation of molasses. Clarified dilute molasses were fermented with different strains of Saccharomyces cerevisiae. Ethanol concentration after 64 hours batch fermentation reached 9.4% with 90% yield based on sugar content. During feed batch system similar results were obtained after a fermentation cycle of 48 hours resulting in higher productivity. Similarly carbohydrates in fruit juices and hydro lysates of biomass can be economically fermented to ethanol to be used as feed stock for other chemicals. (author)

  12. Medium optimization for protopectinase production by batch culture of

    African Journals Online (AJOL)

    Medium optimization for protopectinase production by batch culture of. C Fan, Z Liu, L Yao. Abstract. Optimization of medium compositions for protopectinase production by Aspergillus terreus in submerged culture was carried out. The medium components having significant effect on protopectinase production were reported ...

  13. Marine Sponge Derived Natural Products between 2001 and 2010: Trends and Opportunities for Discovery of Bioactives

    Science.gov (United States)

    Mehbub, Mohammad Ferdous; Lei, Jie; Franco, Christopher; Zhang, Wei

    2014-01-01

    Marine sponges belonging to the phylum Porifera (Metazoa), evolutionarily the oldest animals are the single best source of marine natural products. The present review presents a comprehensive overview of the source, taxonomy, country of origin or geographical position, chemical class, and biological activity of sponge-derived new natural products discovered between 2001 and 2010. The data has been analyzed with a view to gaining an outlook on the future trends and opportunities in the search for new compounds and their sources from marine sponges. PMID:25196730

  14. Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Beyer, Michael; Nielsen, Jens

    2000-01-01

    The Aspergillus niger strain BO-1 was grown in batch, continuous (chemostat) and fed-batch cultivations in order to study the production of the extracellular enzyme glucoamylase under different growth conditions. In the pH range 2.5-6.0, the specific glucoamylase productivity and the specific...

  15. Batch-to-batch quality consistency evaluation of botanical drug products using multivariate statistical analysis of the chromatographic fingerprint.

    Science.gov (United States)

    Xiong, Haoshu; Yu, Lawrence X; Qu, Haibin

    2013-06-01

    Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many kinds of industrial products. In this paper, the combined use of multivariate statistical analysis and chromatographic fingerprinting is presented here to evaluate batch-to-batch quality consistency of botanical drug products. A typical botanical drug product in China, Shenmai injection, was selected as the example to demonstrate the feasibility of this approach. The high-performance liquid chromatographic fingerprint data of historical batches were collected from a traditional Chinese medicine manufacturing factory. Characteristic peaks were weighted by their variability among production batches. A principal component analysis model was established after outliers were modified or removed. Multivariate (Hotelling T(2) and DModX) control charts were finally successfully applied to evaluate the quality consistency. The results suggest useful applications for a combination of multivariate statistical analysis with chromatographic fingerprinting in batch-to-batch quality consistency evaluation for the manufacture of botanical drug products.

  16. Sequencing for Batch Production in a Group Flowline Machine Shop ...

    African Journals Online (AJOL)

    The purpose of the paper is to develop a useful technique for sequencing batches of components through machine shops arranged under the group flowline production system. The approach is to apply a modified version of Petrov's group flowline technique for machining components which follow a unidirectional route.

  17. A parametric study ot protease production in batch and fed-batch cultures of Bacillus firmus.

    Science.gov (United States)

    Moon, S H; Parulekar, S J

    1991-03-05

    Proteolytic enzymes produced by Bacillus species find a wide variety of applications in brewing, detergent, food, and leather industries. Owing to significant differences normally observed in culture conditions promoting cell growth and those promoting production of metabolites such as enzymes, for increased efficacy of bioreactor operations it is essential to identify these sets of conditions (including medium formulation). This study is focused on formulation of a semidefined medium that substantially enhances synthesis and secretion of an alkaline protease in batch cultures of Bacillus firmus NRS 783, a known superior producer of this enzyme. The series of experiments conducted to identify culture conditions that lead to improved protease production also enables investigation of the regulatory effects of important culture parameters including pH, dissolved oxygen, and concentrations of nitrogen and phosphorous sources and yeast extract in the medium on cell growth, synthesis and secretion of protease, and production of two major nonbiomass products, viz., acetic acid and ethanol. Cell growth and formation of the three nonbiomass products are hampered significantly under nitrogen, phosphorous, or oxygen limitation, with the cells being unable to grow in an oxygen-free environment. Improvement in protease production is achieved with respect to each culture parameter, leading in the process to 80% enhancement in protease activity over that attained using media reported in the literature. Results of a few fed-batch experiments with constant feed rate, conducted to examine possible enhancement in protease production and to further investigate repression of protease synthesis by excess of the principal carbon and nitrogen sources, are also discussed. The detailed investigation of stimulatory and repressory effects of simple and complex nutrients on protease production and metabolism of Bacillus firmus conducted in this study will provide useful guidelines for design

  18. Productivity and abundance of large sponge populations on Flinders Reef flats, Coral Sea

    Science.gov (United States)

    Wilkinson, Clive R.

    1987-04-01

    Large populations of flattened sponges with cyanobacterial symbionts were observed on the shallow reef-flats of the Flinders Reefs, Coral Sea. Estimates of these populations indicated as many as 60 individuals with a total wet biomass of 1.2 kg per m2 in some areas. Along a metre wide transect across 1.3 km of reef flat the population was estimated at 530 kg wet weight sponge (mean 411 g m-2). The four prominent species had instantaneous P/R ratios between 1.3 and 1.8 at optimum light such that photosynthetic productivity was calculated to provide between 61 and 80% of sponge energy requirements in summer and 48 to 64% in winter. While such sponge beds are a prominent feature of these reefs, they appear to contribute less than 10% of gross reef-flat productivity.

  19. Metagenomic Analysis of the Sponge Discodermia Reveals the Production of the Cyanobacterial Natural Product Kasumigamide by 'Entotheonella'.

    Science.gov (United States)

    Nakashima, Yu; Egami, Yoko; Kimura, Miki; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-01-01

    Sponge metagenomes are a useful platform to mine cryptic biosynthetic gene clusters responsible for production of natural products involved in the sponge-microbe association. Since numerous sponge-derived bioactive metabolites are biosynthesized by the symbiotic bacteria, this strategy may concurrently reveal sponge-symbiont produced compounds. Accordingly, a metagenomic analysis of the Japanese marine sponge Discodermia calyx has resulted in the identification of a hybrid type I polyketide synthase-nonribosomal peptide synthetase gene (kas). Bioinformatic analysis of the gene product suggested its involvement in the biosynthesis of kasumigamide, a tetrapeptide originally isolated from freshwater free-living cyanobacterium Microcystis aeruginosa NIES-87. Subsequent investigation of the sponge metabolic profile revealed the presence of kasumigamide in the sponge extract. The kasumigamide producing bacterium was identified as an 'Entotheonella' sp. Moreover, an in silico analysis of kas gene homologs uncovered the presence of kas family genes in two additional bacteria from different phyla. The production of kasumigamide by distantly related multiple bacterial strains implicates horizontal gene transfer and raises the potential for a wider distribution across other bacterial groups.

  20. Batch-to-Batch Quality Consistency Evaluation of Botanical Drug Products Using Multivariate Statistical Analysis of the Chromatographic Fingerprint

    OpenAIRE

    Xiong, Haoshu; Yu, Lawrence X.; Qu, Haibin

    2013-01-01

    Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many ...

  1. Production Leveling (Heijunka) Implementation in a Batch Production System: A Case Study

    OpenAIRE

    Araujo , Luciano Fonseca; Queiroz , Abelardo Alves

    2009-01-01

    International audience; This paper presents a case study of an implementation of a new method for Production Leveling designed for batch production. It includes prioritizing criteria of products and level production plan. Moreover, it was applied on a subsidiary of a multinational enterprise located on Brazil, which manufacturing processes comprise batch production in a make-to-stock policy. Regarding a qualitative assessment, evidences show that the company had deficient practices related to...

  2. A Conceptual Model for Production Leveling (Heijunka) Implementation in Batch Production Systems

    OpenAIRE

    De Araujo , Luciano Fonseca; De Queiroz , Abelardo Alves

    2009-01-01

    International audience; This paper explains an implementation model for a new method for Production Leveling designed for batch production system. The main structure of this model is grounded on three constructs: traditional framework for Operations Planning, Lean Manufacturing concepts for Production Leveling and case study guidelines. By combining the first and second construct, a framework for Production Leveling has been developed for batch production systems. Then, case study guidelines ...

  3. Biological treatment of potato processing wastewater for red pigment production by immobilized cells of UV-irradiated monascus sp. in repeated batch

    International Nuclear Information System (INIS)

    Khalaf, S.A.

    2004-01-01

    Potato processing wastewater (PPW) was collected and analyzed for biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen and starch content. A fungal strain isolated from PPW identified as Monascus sp. PPW was evaluated for its ability to grow and produce red pigment, biomass and reduce the starch content of the ,PPW. Active UV-irradiated isolate of the above strain was obtained by exposing the parent strain to UV-radiation and coded Monascus. sp. PPW-UV7 and used as immobilized cell system for PPW treatment process in repeated batch fermentation. The immobilized cells (in sponge cubes) were able to reduce COD by about 85.7 %, with biomass production of 9.22 gl+ l and over productivity of red pigment of 2.6 gl+ 1 after 8 days fermentation (2 batches). The immobilized cells showed stability and viability for 8 batches (32 days) during the process treatment

  4. Xylitol production by Candida parapsilosis under fed-batch culture

    Directory of Open Access Journals (Sweden)

    Sandra A. Furlan

    2001-06-01

    Full Text Available Xylitol production by Candida parapsilosis was investigated under fed-batch cultivation, using single (xylose or mixed (xylose and glucose sugars as substrates. The presence of glucose in the medium induced the production of ethanol as secondary metabolite and improved specific rates of growth, xylitol formation and substrate consumption. Fractionated supply of the feed medium at constant sugar concentration did not promote any increase on the productivity compared to the single batch cultivation.A produção de xylitol por Candida parapsilosis foi investigada em regime de batelada alimentada, usando substratos açucarados de composição simples (xilose ou composta (xilose e glicose. A presença de glicose no meio induziu a formação de etanol como metabólito secundário. A suplementação fracionada do meio de alimentação numa concentração fixa de açúcar não resultou em aumento da produtividade em relação àquela alcançada em batelada simples.

  5. Utilization potentiality of coal as a reductant for the production of sponge iron. [5 refs

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, H P

    1976-10-01

    With the ambitious plan of the Government of India to produce about 70 million tonnes of steel per annum towards the end of the century, the requirement of coal would be enormous. This calls for judicious planning and conservation of coal. Modern trend in steel plant practice is to use blast furnaces of capacity 10,000 to 12,000 t/day requiring superior quality coke of low ash content which will become scarce. Concerted efforts should be made to by-pass blast furnace technique by adopting direct reduction for the production of metallized iron ore, that is sponge iron, and using this as feed stock in electric furnaces. Experience has shown that the use of sponge iron as feed stock for electric arc furnaces instead of the scrap available from various fabrication and steel works results in better production of alloy steels. The use of non-coking coal as reductant for production of sponge iron will help conserve coking coal for bigger steel plants. In the solid state reduction process the technological design of the sponge iron plant has to be tailored to the type of feed stock to be used, particularly iron ore and coal. In India, non-coking coal is available at close proximity to the iron ore mines containing high grade iron ore. Planning for sponge iron, utilizing large reserves of non-coking coal as feed stock therefore has considerable potentiality. India has vast reserves of high grade iron ore and comparatively meager amount of coking coal. This calls for planning for sponge iron using non-coking coal as feed stock.

  6. Multi-objective optimization of glycopeptide antibiotic production in batch and fed batch processes

    DEFF Research Database (Denmark)

    Maiti, Soumen K.; Eliasson Lantz, Anna; Bhushan, Mani

    2011-01-01

    batch operations using process model for Amycolatopsis balhimycina, a glycopeptide antibiotic producer. This resulted in a set of several pareto optimal solutions with the two objectives ranging from (0.75gl−1, 3.97g$-1) to (0.44gl−1, 5.19g$-1) for batch and from (1.5gl−1, 5.46g$-1) to (1.1gl−1, 6.34g...

  7. Characterisation of Non-Autoinducing Tropodithietic Acid (TDA) Production from Marine Sponge Pseudovibrio Species

    DEFF Research Database (Denmark)

    Harrington, Catriona; Reen, F. Jerry; Mooij, Marlies J.

    2014-01-01

    is the antibacterial compound tropodithietic acid (TDA). The aim of this study was to provide insight into the bioactivity of and the factors governing the production of TDA in marine Pseudovibrio isolates from a collection of marine sponges. The TDA produced by these Pseudovibrio isolates exhibited potent...

  8. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates

    Directory of Open Access Journals (Sweden)

    Wiebe Marilyn G

    2012-05-01

    Full Text Available Abstract Background Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. Methods R. toruloides was grown in batch and fed-batch cultures in 0.5 L bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100 media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. Results Lipid production was most efficient with glucose (up to 25 g lipid L−1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L−1 h−1 as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass. Lipid production was low (15–19% lipid in biomass with arabinose as sole carbon source and was lower than expected (30% lipid in biomass when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L−1, with 49% lipid in the biomass and fed-batch (35 to 47 g L−1, with 50 to 75% lipid in the biomass cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. Conclusions Lipid production in R. toruloides was lower from arabinose and mixed

  9. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation.

    Science.gov (United States)

    Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin

    2013-07-20

    Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Comparative study of trapping parameters of LiF(TLD-100) from different production batches

    Energy Technology Data Exchange (ETDEWEB)

    Bos, A.J.J.; Piters, T.M.; Vries, W. de; Hoogenboom, J.E. (Delft Univ. of Technology (Netherlands). Interfaculty Reactor Institute)

    1990-01-01

    Computerised glow curve analysis has been used to determine the trapping parameters of the main peaks of the thermoluminescent (TL) material LiF(TLD-100). The TL material (solid state chips) originated from six different production batches with at least 19 chips per batch. The maxima of glow peaks 2 to 5 are found at the same temperature within very small limits. The activation energy and frequency factor of the main glow peak (peak 5) of TLD-100 originating from two batches differ significantly from those of the other four investigated batches. Nevertheless, the sensitivity of glow peak 5 is more or less the same for all batches. The trapping parameters of glow peaks 2 to 4 of TLD-100 vary little from batch to batch. The measured half-life of peak 2 differed strongly from batch to batch. For all investigated peaks no correlation has been found between glow peak sensitivity and trapping parameters. The results of this study suggest that both defect concentration and nature of the trapping centres vary from batch to batch. It would appear that as a consequence of selection by the manufacturer, the differences between the batches in terms of total light output are small. (author).

  11. An Explanatory Study of Lean Practices in Job Shop Production/ Special Job Production/ Discrete Production/ Batch Shop Production Industries

    OpenAIRE

    Lavlesh Kumar Sharma; Ravindra Mohan Saxena

    2014-01-01

    In this paper, the study explores the benefits and advantages of Lean Practices or Lean Thinking in Job shop production/ Special job production/ Discrete production/ Batch shop production industries. The Lean Practices have been applied more compatible in Job shop production than in the continuous/ mass production because of several barriers and hurdles in the industrial context that influence the whole processes again and again, this happens due to the lack of knowledge about...

  12. Optimization of the Production of Polygalacturonase from Aspergillus kawachii Cloned in Saccharomyces cerevisiae in Batch and Fed-Batch Cultures

    Directory of Open Access Journals (Sweden)

    Diego Jorge Baruque

    2011-01-01

    Full Text Available Polygalacturonases (PG; EC 3.2.1.15 catalyze the hydrolysis of pectin and/or pectic acid and are useful for industrial applications such as juice clarification and pectin extraction. Growth and heterologous expression of recombinant Saccharomyces cerevisiae which expresses an acidic PG from Aspergillus kawachii has been studied in batch and fed-batch cultures. Kinetics and stoichiometric parameters of the recombinant yeast were determined in batch cultures in a synthetic medium. In these cultures, the total biomass concentration, protein concentration, and enzyme activity achieved were 2.2 g/L, 10 mg/L, and 3 U/mL, respectively, to give a productivity of 0.06 U/(mL·h. In fed-batch cultures, various strategies for galactose feeding were used: (i after a glucose growth phase, the addition of a single pulse of galactose which gave a productivity of 0.19 U/(mL·h; (ii after a glucose growth phase, a double pulse of galactose at the same final concentration was added, resulting in a productivity of 0.21 U/(mL·h; (iii a simultaneous feeding of glucose and galactose, yielding a productivity of 1.32 U/(mL·h. Based on these results, the simultaneous feeding of glucose and galactose was by far the most suitable strategy for the production of this enzyme. Moreover, some biochemical characteristics of the recombinant enzyme such as a molecular mass of ~60 kDa, an isoelectric point of 3.7 and its ability to hydrolyze polygalacturonic acid at pH=2.5 were determined.

  13. Virtual Sensors for Biodiesel Production in a Batch Reactor

    Directory of Open Access Journals (Sweden)

    Betty Y. López-Zapata

    2017-03-01

    Full Text Available Fossil fuel combustion produces around 98% of coal emissions. Therefore, liquid and gaseous biofuels have become more attractive due to their environmental benefits. The biodiesel production process requires measurements that help to control and supervise the variables involved in the process. The measurements provide valuable information about the operation conditions and give estimations about the critical variables of the process. The information from measurements is essential for monitoring the state of a process and verifying if it has an optimal performance. The objective of this study was the conception of a virtual sensor based on the Extended Kalman Filter (EKF and the model of a batch biodiesel reactor for estimating concentrations of triglycerides (TG, diglycerides (DG, monoglycerides (MG, methyl ester (E, alcohol (A, and glycerol (GL in real-time through measurement of the temperature and pH. Estimation of the TG, DG, MG, E, A, and Gl through this method eliminates the need for additional sensors and allows the use of different types of control. For the performance analysis of the virtual sensor, the data obtained from the EKF are compared with experimental data reported in the literature, with the mean square error of the estimate then being calculated. In addition, the results of this approach can be implemented in a real system, since it only uses measurements available in a reactor such as temperature and pH.

  14. Limiting factors in Escherichia colifed-batch production of recombinant proteins

    DEFF Research Database (Denmark)

    Sanden, A.M.; Prytz, I.; Tubelekas, I.

    2003-01-01

    recombinant protein production, fed-batch, specific growth rate, feed profile, induction, mRNA, transcription, translation, acetic acid formation......recombinant protein production, fed-batch, specific growth rate, feed profile, induction, mRNA, transcription, translation, acetic acid formation...

  15. Ethanol production from Sorghum bicolor using both separate and simultaneous saccharification and fermentation in batch and fed batch systems

    DEFF Research Database (Denmark)

    Mehmood, Sajid; Gulfraz, M.; Rana, N. F.

    2009-01-01

    The objective of this work was to find the best combination of different experimental conditions during pre-treatment, enzymatic saccharification, detoxification of inhibitors and fermentation of Sorghum bicolor straw for ethanol production. The optimization of pre-treatment using different...... were used in order to increase the monomeric sugar during enzymatic hydrolysis and it has been observed that the addition of these surfactants contributed significantly in cellulosic conversion but no effect was shown on hemicellulosic hydrolysis. Fermentability of hydrolyzate was tested using...... Saccharomyces cerevisiae Ethanol Red (TM) and it was observed that simultaneous saccharification and fermentation ( SSF) with both batch and fed batch resulted in better ethanol yield as compared to separate hydrolysis and fermentation ( SHF). Detoxification of furan during SHF facilitated reduction...

  16. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality.

    Science.gov (United States)

    Yang, William C; Lu, Jiuyi; Kwiatkowski, Chris; Yuan, Hang; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2014-01-01

    Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof-of-concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high-seed fed-batch production cultures. First, we optimized the perfusion N-1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N-1 duration, reaching >40 × 10(6) vc/mL at the end of the perfusion N-1 stage. The cultures were subsequently split into high-seed (10 × 10(6) vc/mL) fed-batch production cultures. This strategy significantly shortened the culture duration. The high-seed fed-batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low-seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N-1 and high-seed fed-batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low-seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers.

  17. From Fed-batch to Continuous Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John M.

    2015-01-01

    In this this paper, we use mechanistic modelling to guide the development of acontinuous enzymatic process that is performed as a fed-batch operation. In this workwe use the enzymatic biodiesel process as a case study. A mechanistic model developedin our previous work was used to determine...... measured components (triglycerides, diglycerides, monoglycerides, free fatty acid and fatty acid methyl esters(biodiesel)) much better than using fed-batch data alone given the smaller residuals. We also observe a reduction in the correlation between the parameters.The model was then used to predict that 5...... reactors are required (with a combined residence time of 30 hours) to reach a final biodiesel concentration within 2 % of the95.6 mass % achieved in a fed-batch operation, for 24 hours....

  18. Production of tea vinegar by batch and semicontinuous fermentation

    OpenAIRE

    Kaur, Pardeep; Kocher, G. S.; Phutela, R. P.

    2010-01-01

    The fermented tea vinegar combines the beneficial properties of tea and vinegar. The complete fermentation takes 4 to 5 weeks in a batch culture and thus can be shortened by semi continuous/ continuous fermentation using immobilized bacterial cells. In the present study, alcoholic fermentation of 1.0 and 1.5% tea infusions using Saccharomyces cerevisae G was carried out that resulted in 84.3 and 84.8% fermentation efficiency (FE) respectively. The batch vinegar fermentation of these wines wit...

  19. Integrating Preventive Maintenance Scheduling As Probability Machine Failure And Batch Production Scheduling

    Directory of Open Access Journals (Sweden)

    Zahedi Zahedi

    2016-06-01

    Full Text Available This paper discusses integrated model of batch production scheduling and machine maintenance scheduling. Batch production scheduling uses minimize total actual flow time criteria and machine maintenance scheduling uses the probability of machine failure based on Weibull distribution. The model assumed no nonconforming parts in a planning horizon. The model shows an increase in the number of the batch (length of production run up to a certain limit will minimize the total actual flow time. Meanwhile, an increase in the length of production run will implicate an increase in the number of PM. An example was given to show how the model and algorithm work.

  20. Fed-batch fermentation dealing with nitrogen limitation in microbial transglutaminase production by Streptoverticillium mobaraense

    NARCIS (Netherlands)

    Rinzema, A; Tramper, J; de Bruin, E; Bol, J

    In the later stages of a batch fermentation for microbial transglutaminase production by Streptoverticillium mobaraense the availability of a nitrogen source accessible to the microorganism becomes critical. Fed-batch fermentation is investigated with the aim of avoiding this substrate limitation.

  1. Fed-batch coculture of Lactobacillus kefiranofaciens with Saccharomyces cerevisiae for effective production of kefiran.

    Science.gov (United States)

    Tada, Shiori; Katakura, Yoshio; Ninomiya, Kazuaki; Shioya, Suteaki

    2007-06-01

    In a batch coculture of kefiran-producing lactic acid bacteria Lactobacillus kefiranofaciens and lactate-assimilating yeast Saccharomyces cerevisiae, lactate accumulation in the medium was observed, which inhibited kefiran production. To enhance kefiran productivity by preventing lactate accumulation, we conducted lactose-feeding batch operation with feedforward/feedback control during the coculture, so that the lactate production rate of L. kefiranofaciens was balanced with the lactate consumption rate of S. cerevisiae. The lactate concentration was maintained at less than 6 g l(-1) throughout the fed-batch coculture using a 5 l jar fermentor, although the concentration reached 33 g l(-1) in the batch coculture. Kefiran production was increased to 6.3 g in 102 h in the fed-batch coculture, whereas 4.5 g kefiran was produced in 97 h in the batch coculture. The kefiran yield on lactose basis was increased up to 0.033 g g(-1) in the fed-batch coculture, whereas that in the batch coculture was 0.027 g g(-1).

  2. Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor.

    Science.gov (United States)

    Corona-González, Rosa Isela; Varela-Almanza, Karla María; Arriola-Guevara, Enrique; Martínez-Gómez, Álvaro de Jesús; Pelayo-Ortiz, Carlos; Toriz, Guillermo

    2016-04-01

    The aim of this work was to obtain fermentable sugars by enzymatic or acid hydrolyses of Agave tequilana Weber bagasse in order to produce succinic acid with Actinobacillus succinogenes. Hydrolyses were carried out with mineral acids (sulfuric and hydrochloric acids) or a commercial cellulolytic enzyme, and were optimized statistically by a response surface methodology, having as factors the concentration of acid/enzyme and time of hydrolysis. The concentration of sugars obtained at optimal conditions for each hydrolysis were 21.7, 22.4y 19.8g/L for H2SO4, HCl and the enzymatic preparation respectively. Concerning succinic acid production, the enzymatic hydrolyzates resulted in the highest yield (0.446g/g) and productivity (0.57g/Lh) using A. succinogenes in a batch reactor system. Repeated batch fermentation with immobilized A. succinogenes in agar and with the enzymatic hydrolyzates resulted in a maximum concentration of succinic acid of 33.6g/L from 87.2g/L monosaccharides after 5 cycles in 40h, obtaining a productivity of 1.32g/Lh. Copyright © 2016. Published by Elsevier Ltd.

  3. Repeated batch production of ethanol from Jerusalem artichoke tubers using recycled immobilized cells of Kluyveromyces fragilis

    Energy Technology Data Exchange (ETDEWEB)

    Margaritis, A.; Bajpai, P.

    1981-01-01

    Recycled immobilized cells of K. fragilis ATCC 28244 were used for repeated batch production of EtOH from the inulin sugars derived from Jerusalem artichoke tubers. Using 10% initial sugar concentration, a maximum EtOH concentration of 48 g/l was achieved in 7 h when the immobilized cell concentration in the Ca alginate beads was 72 g dry weight immobilized cell/l bioreactor vol.-h. The same Ca alginate beads containing the cells were used repeatedly for 11 batch runs starting with fresh medium at the beginning of each run. The EtOH yield was almost constant at 96% of the theoretical for all 11 batch runs, while the maximum EtOH production rate during the last batch run was 70% of the original EtOH rate obtained in the 1st batch run.

  4. Research on AO/FO batch management technology in aircraft production

    Directory of Open Access Journals (Sweden)

    Yin Haijun

    2018-01-01

    Full Text Available Based on the analysis of the characteristics and significance of AO/FO in the process of aircraft production, this paper analyzes the format rules of AO/FO batch management from the perspective of technology realization, and details the AO/FO The change of the query and the change status tracking, introduces the AO/FO single-stand status display in the batch management, increases the structure definition of the attribute table in the batch management, and designs the relevant algorithm to store and calculate the batch information. Finally, based on the above theory support AO/FO batch management system successfully used in the production of a machine.

  5. Microbial and sponge loops modify fish production in phase-shifting coral reefs.

    Science.gov (United States)

    Silveira, Cynthia B; Silva-Lima, Arthur W; Francini-Filho, Ronaldo B; Marques, Jomar S M; Almeida, Marcelo G; Thompson, Cristiane C; Rezende, Carlos E; Paranhos, Rodolfo; Moura, Rodrigo L; Salomon, Paulo S; Thompson, Fabiano L

    2015-10-01

    Shifts from coral to algae dominance of corals reefs have been correlated to fish biomass loss and increased microbial metabolism. Here we investigated reef benthic and planktonic primary production, benthic dissolved organic carbon (DOC) release and bacterial growth efficiency in the Abrolhos Bank, South Atlantic. Benthic DOC release rates are higher while water column bacterial growth efficiency is lower at impacted reefs. A trophic model based on the benthic and planktonic primary production was able to predict the observed relative fish biomass in healthy reefs. In contrast, in impacted reefs, the observed omnivorous fish biomass is higher, while that of the herbivorous/coralivorous fish is lower than predicted by the primary production-based model. Incorporating recycling of benthic-derived carbon in the model through microbial and sponge loops explains the difference and predicts the relative fish biomass in both reef types. Increased benthic carbon release rates and bacterial carbon metabolism, but decreased bacterial growth efficiency could lead to carbon losses through respiration and account for the uncoupling of benthic and fish production in phase-shifting reefs. Carbon recycling by microbial and sponge loops seems to promote an increase of small-bodied fish productivity in phase-shifting coral reefs. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Batch production of microchannel plate photo-multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, Henry J.; Wetstein, Matthew; Elagin, Andrey

    2018-03-06

    In-situ methods for the batch fabrication of flat-panel micro-channel plate (MCP) photomultiplier tube (PMT) detectors (MCP-PMTs), without transporting either the window or the detector assembly inside a vacuum vessel are provided. The method allows for the synthesis of a reflection-mode photocathode on the entrance to the pores of a first MCP or the synthesis of a transmission-mode photocathode on the vacuum side of a photodetector entrance window.

  7. Simulation of kefiran production of Lactobacillus kefiranofaciens JCM6985 in fed-batch reactor

    Directory of Open Access Journals (Sweden)

    Benjamas Cheirsilp

    2006-09-01

    Full Text Available Kinetics of kefiran production by Lactobacillus kefiranofaciens JCM6985 has been investigated. A mathematical model taking into account the mechanism of exopolysaccharides production has been developed. Experiments were carried out in batch mode in order to obtain kinetic model parameters that were further applied to simulate fed-batch processes. A simplification of parameter fitting was also introduced for complicated model. The fed-batch mode allows more flexibility in the control of the substrate concentration as well as product concentration in the culture medium. Based on the batch mathematical model, a fed-batch model was developed and simulations were done. Simulation study in fed-batch reactor resulted that substrate concentration should be controlled at 20 g L-1 to soften the product inhibition and also to stimulate utilization of substrate and its hydrolysate. From simulation results of different feeding techniques, it was found that constant feeding at 0.01 L h-1 was most practically effective feeding profile for exopolysaccharides production in fed-batch mode.

  8. Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture.

    Science.gov (United States)

    Thanapimmetha, Anusith; Suwaleerat, Tharatron; Saisriyoot, Maythee; Chisti, Yusuf; Srinophakun, Penjit

    2017-01-01

    Production of carotenoids by Rhodococcus opacus PD630 is reported. A modified mineral salt medium formulated with glycerol as an inexpensive carbon source was used for the fermentation. Ammonium acetate was the nitrogen source. A dry cell mass concentration of nearly 5.4 g/L could be produced in shake flasks with a carotenoid concentration of 0.54 mg/L. In batch culture in a 5 L bioreactor, without pH control, the maximum dry biomass concentration was ~30 % lower than in shake flasks and the carotenoids concentration was 0.09 mg/L. Both the biomass concentration and the carotenoids concentration could be raised using a fed-batch operation with a feed mixture of ammonium acetate and acetic acid. With this strategy, the final biomass concentration was 8.2 g/L and the carotenoids concentration was 0.20 mg/L in a 10-day fermentation. A control of pH proved to be unnecessary for maximizing the production of carotenoids in this fermentation.

  9. Fed-batch CHO cell culture for lab-scale antibody production

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Ley, Daniel; Andersen, Mikael Rørdam

    2017-01-01

    Fed-batch culture is the most commonly used upstream process in industry today for recombinant monoclonal antibody production using Chinese hamster ovary cells. Developing and optimizing this process in the lab is crucial for establishing process knowledge, which enable rapid and predictable tech......-transfer to manufacturing scale. In this chapter, we will describe stepwise how to carry out fed-batch CHO cell culture for lab-scale antibody production....

  10. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy.

    Science.gov (United States)

    Han, Xiaolong; Song, Wenxia; Liu, Guodong; Li, Zhonghai; Yang, Piao; Qu, Yinbo

    2017-03-01

    Medium optimization and repeated fed-batch fermentation were performed to improve the cellulase productivity by P. oxalicum RE-10 in submerged fermentation. First, Plackett-Burman design (PBD) and central composite design (CCD) were used to optimize the medium for cellulase production. PBD demonstrated wheat bran and NaNO 3 had significant influences on cellulase production. The CCD results showed the maximum filter paper activity (FPA) production of 8.61U/mL could be achieved in Erlenmeyer flasks. The maximal FPA reached 12.69U/mL by submerged batch fermentation in a 7.5-L stirred tank, 1.76-fold higher than that on the original medium. Then, the repeated fed-batch fermentation strategy was performed successfully for increasing the cellulase productivity from 105.75U/L/h in batch fermentation to 158.38U/L/h. The cellulase activity and the glucan conversion of delignined corn cob residue hydrolysis had no significant difference between the enzymes sampled from different cycles of the repeated fed-batch fermentation and that from batch culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation.

    Science.gov (United States)

    Liu, Xiaoyan; Lv, Jinshun; Zhang, Tong; Deng, Yuanfang

    2015-01-01

    In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg(2+) were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.

  12. Estimation of the Maximum Theoretical Productivity of Fed-Batch Bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Bomble, Yannick J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); St. John, Peter C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-18

    A key step towards the development of an integrated biorefinery is the screening of economically viable processes, which depends sharply on the yields and productivities that can be achieved by an engineered microorganism. In this study, we extend an earlier method which used dynamic optimization to find the maximum theoretical productivity of batch cultures to explicitly include fed-batch bioreactors. In addition to optimizing the intracellular distribution of metabolites between cell growth and product formation, we calculate the optimal control trajectory of feed rate versus time. We further analyze how sensitive the productivity is to substrate uptake and growth parameters.

  13. Use of lignite in the production of sponge iron and processing of waste oxides in rotary kilns

    Energy Technology Data Exchange (ETDEWEB)

    Eichberger, H; Schnabel, W; Serbent, H

    1978-11-01

    Based on a study of the situation of fossil energy reserves, processes are described in which non-coking coals, in particular lignite, are used for reduction in the rotary kiln, i.e. for sponge iron production and for zinc volatilization from waste oxides).

  14. Fructose production by Zymomonas mobilis in fed-batch culture with minimal sorbitol formation

    Energy Technology Data Exchange (ETDEWEB)

    Edye, L A; Johns, M R; Ewings, K N

    1989-08-01

    Fed-batch cultures of Zymomonas mobilis (UQM 2864), a mutant unable to metabolise fructose, grown on diluted sugar cane syrup (200 g/l sucrose) achieved yields of 90.5 g/l fructose and 48.3 g/l ethanol with minimal sorbitol formation and complete utilization of the substrate. The effect of inoculum size on sorbitol formation in the batch stage of fed-batch fermentation are reported. Fermentation of sucrose (350 g/l) supplemented with nutrients yielded 142 g/l fructose and 76.5 g/l ethanol. Some fructose product loss at high fructose concentrations was observed. The fed-batch fermentation process offers a method for obtaining high concentrations of fructose and ethanol from sucrose materials. (orig.).

  15. Production of alpha-amylase in batch and chemostat culture by bacillus stearothermophilus

    Energy Technology Data Exchange (ETDEWEB)

    Davis, P E; Cohen, D L; Whitaker, A

    1980-01-01

    The production of alpha-amylase by a strain of B.stearothermophilus isolated from leaf litter was investigated in a tryptone-maltose medium at 55 degrees in batch and chemostat culture. Amylase production was growth-limited and restricted to the exponential phase in batch culture. The enzyme yield was reduced by 40% when the culture pH was maintained at pH 7.2. Amylase production in chemostat culture was influenced by the growth rate throughout the dilution rate range used.

  16. Fed-batch production of concentrated fructose syrup and ethanol using Saccharomyces cerevisiae ATCC 36859

    Energy Technology Data Exchange (ETDEWEB)

    Koren, D W [CANMET, Ottawa, ON (Canada); Duvnjak, Z [Univ. of Ottawa, ON (Canada). Dept. of Chemical Engineering

    1992-01-01

    A fed-batch process is used for the production of concentrated pure fructose syrup and ethanol from various glucose/fructose mixtures by S.cerevisiae ATCC 36859. Applying this technique, glucose-free fructose syrups with over 250 g/l of this sugar were obtained using High Fructose Corn Syrup and hydrolyzed Jerusalem artichoke juice. Bey encouraging ethanol evaporation from the reactor and condensing it, a separate ethanol product with a concentration of up to 350 g/l was also produced. The rates of glucose consumption and ethanol production were higher than in classical batch ethanol fermentation processes. (orig.).

  17. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer.

    Science.gov (United States)

    Salehmin, M N I; Annuar, M S M; Chisti, Y

    2013-11-01

    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

  18. Techno-economic evaluation of residue exhaustion in batch rectification ethanol production plant

    Directory of Open Access Journals (Sweden)

    Jaćimović Branislav M.

    2017-01-01

    Full Text Available This paper presents the techno-economic optimization of batch plant for production of rectified alcohol based on the concentration of ethanol in residue. The aim of the analysis was to determine the extent to which it is economically profitable to exhaust the residual liquid in boiler. The "profit production" criterion is used for calculations.

  19. Optimization of cyclosporin A production by Beauveria nivea in continuous fed-batch fermentation

    Directory of Open Access Journals (Sweden)

    Dong Huijun

    2011-01-01

    Full Text Available To develop the effective control method for fed-batch culture of cyclosporin A production, we chose fructose, L-valine and (NH42HPO4 as feeding nutrients and compared their productivities in relation to different concentrations. The feeding rate of three kinds of feeding materials was controlled to maintain the suitable residual concentration. The fed-batch fermentation results indicated that the optimal concentrations of fructose, L-valine and (NH42HPO4 were about 20 g/L, 0.5 g/L and 0.6 g/L for cyclosporin A production, respectively. The cultivation of Beauveria nivea could produce cyclosporin A up to 6.2 g/L for 240 hrs through a continuous feeding-rate-controlled-batch process under the optimal feeding conditions.

  20. Repeated batch production of vancomycin using synthetic cotton fibers

    African Journals Online (AJOL)

    Administrator

    2011-09-28

    Sep 28, 2011 ... The production of vancomycin by free and immobilized cells of Amycolatopsis orientalis was .... ceutical Industries Company (EIPICO)] and the inhibition zone ... production medium showed a marked loss in the first ... secondary metabolic enzymes of immobilized cells, as ... of cells in an economic way.

  1. Improvement of xanthan gum production in batch culture using ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... Fermentation was carried out in 500 ml Erlenmeyer flask with 200 ml of a ... The effect of acetic acid on xanthan production was studied with ... improvement when compared with the control. No .... in a plunging jet reactor.

  2. Optimization of the liquid biofertilizer production in batch fermentation with by-product from MSG

    Science.gov (United States)

    Namfon, Panjanapongchai; Ratchanok, Sahaworarak; Chalida, Daengbussade

    2017-03-01

    The long term use of chemical fertilizers destroyed the friability of soil which obviously decreased quantity and quality of crops and especially affect microorganisms living in soils. The bio-fertilizer with microbial consortium is an environmental friendly alternative to solve this bottleneck due to harboring soil microorganisms such as Bacillus sp., Micrococcus sp., Pseudomonas sp., Staphylococcus sp. and Deinococcus sp. produced with natural by-product or waste from industries that is alternative and sustainable such as nutrient-rich (by-product) from Mono Sodium Glutamate (MSG) for producing liquid biofertilizer by batch fermentation. In this work, the concentration of reducing sugar from substrate as main carbon source was evaluated in shake flask with mixed cultures. The optimal conditions were studied comparing with two levels of reducing sugar concentration (10, 20 g/L) and inoculums concentration (10, 20 %v/v) with using (2×2) full factorial design. The results indicated that the by-product from monosodium glutamate is feasible for fermentation and inoculums concentration is mainly influenced the batch fermentation process. Moreover, the combined 20 g/L and 10%v/v were considerably concluded as an optimal condition, of which the concentration of vegetative cells and spores attained at 8.29×109 CFU/mL and 1.97×105 CFU/mL, respectively. Their spores cell yields from reducing sugar (Yx/s) were obtained at 1.22×106 and 3.34×105 CFU/g were markedly different. In conclusion, the liquid Biofertilizer was produced satisfactorily at 20 g/L reducing sugar and 10% v/v inoculums in shake flask culture. Moreover, these results suggested that the by-product from monosodium glutamate is feasible for low-cost substrate in economical scale and environmental-friendly.

  3. Batch fermentative production of lactic acid from green- sugarcane juices

    Directory of Open Access Journals (Sweden)

    Liliana Serna Cock

    2004-07-01

    Full Text Available Juice from the CC85-92 variety of green (unburned sugar cane was tested as a suitable substrate in lactic-acid production. Fermentations were carried out with a homo-fermentative strain isolated from crops of the same variety of cane. Both the centrifugation pre-treatment and concentrated-nitrogen effects on substrate conversion, lactic-acid concentration and yield were evaluated. After a fermentation time of 48 h at 32° C with 5% of yeast extract as nitrogen source, 40,78 g/L of lactic-acid concentration, 0.58 g/g of product yield and 33% of substrate conversion were obtained. Centrifugation did not affect lactic acid production. Key words: Lactic acid, green sugar cane, Lactococcus lactis subs. lactis.

  4. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.

    Science.gov (United States)

    Kim, J-H; Han, K-C; Koh, Y-H; Ryu, Y-W; Seo, J-H

    2002-07-01

    Xylitol, a functional sweetener, was produced from xylose by biological conversion using Candida tropicalis ATCC 13803. Based on a two-substrate fermentation using glucose for cell growth and xylose for xylitol production, fed-batch fermentations were undertaken to increase the final xylitol concentration. The effects of xylose and xylitol on xylitol production rate were studied to determine the optimum concentrations for fed-batch fermentation. Xylose concentration in the medium (100 g l(-1)) and less than 200 g l(-1) total xylose plus xylitol concentration were determined as optimum for maximum xylitol production rate and xylitol yield. Increasing the concentrations of xylose and xylitol decreased the rate and yield of xylitol production and the specific cell growth rate, probably because of an increase in osmotic stress that would interfere with xylose transport, xylitol flux to secretion to cell metabolism. The feeding rate of xylose solution during the fed-batch mode of operation was determined by using the mass balance equations and kinetic parameters involved in the equations in order to increase final xylitol concentration without affecting xylitol and productivity. The optimized fed-batch fermentation resulted in 187 g l(-1) xylitol concentration, 0.75 g xylitol g xylose(-1) xylitol yield and 3.9 g xylitol l(-1) h(-1) volumetric productivity.

  5. Fed-Batch Feeding Strategies for Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John

    2014-01-01

    of the differences in the interfacial and bulk concentrations of the enzyme. The model is then used to evaluate various feeding strategies to improve the enzymatic biodiesel production. The feeding strategies investigated, gave insight into how the methanol should be fed to potentially mitigate enzyme deactivation...... while improving the biodiesel yield. The best experimental results gave a yield of 703 .76 g FAME L-1 and a reactor productivity of 28.12 g FAME L-1 h-1. In comparison, to reach the same yield, the optimised two step feeding strategy took 6.25 hours less, which equates to an increase the reactor...

  6. PENENTUAN PRODUCTION LOT SIZES DAN TRANSFER BATCH SIZES DENGAN PENDEKATAN MULTISTAGE

    Directory of Open Access Journals (Sweden)

    Purnawan Adi W

    2012-02-01

    Full Text Available Pengendalian dan perawatan inventori merupakan suatu permasalahan yang sering dihadapi seluruh organisasi dalam berbagai sektor ekonomi. Salah satu tantangan yang yang harus dihadapi dalam pengendalian inventori adalah bagaimana menentukan ukuran lot yang optimal pada suatu sistem produksi dengan berbagai tipe. Analisis batch produksi (production lot dengan pendekatan hybrid simulasi analitik merupakan salah satu penelitian mengenai ukuran lot optimal. Penelitian tersebut menggunakan pendekatan sistem singlestage dimana tidak adanya hubungan antar proses di setiap stage atau dengan kata lain, proses yang satu independen terhadap proses yang lain. Dengan menggunakan objek penelitian yang sama dengan objek penelitian diatas, penelitian ini kemudian mengangkat permasalahan penentuan ukuran production lot dengan pendekatan multistage. Pertama, dengan menggunakan data-data yang sama dengan penelitian sebelumnya ditentukan ukuran production lot yang optimal dengan metode programa linier. Selanjutnya ukuran production lot digunakan sebegai input simulasi untuk menentukan ukuran transfer batch. Rata-rata panjang antrian dan waktu tunggu menjadi ukuran performansi yang digunakan sebagai acuan penentuan ukuran transfer batch dari beberapa alternatif ukuran yang ada. Pada penelitian ini, ukuran production lot yang dihasilkan sama besarnya dengan demand tiap periode. Sedangkan untuk ukuran transfer batch, hasil penentuan dengan menggunakan simulasi kemudian dimplementasikan ke dalam model. Hasilnya adalah adanya penurunan inventori yang terjadi sebesar 76,35% untuk produk connector dan 50,59% untuk produk box connector dari inventori yang dihasilkan dengan pendekatan singlestage. Kata kunci : multistage, production lot, transfer batch     Abstract   Inventory maintenance and inventory control is a problem that often faced by all organization in many economic sectors. One of challenges that must be faced in inventory control is how to determine the

  7. Fed-Batch Biomolecule Production by Bacillus subtilis: A State of the Art Review.

    Science.gov (United States)

    Ÿztürk, Sibel; Ÿalık, Pınar; Ÿzdamar, Tunçer H

    2016-04-01

    Bacillus subtilis is a highly promising production system for various biomolecules. This review begins with the algorithm of fed-batch operations (FBOs) and then illustrates the approaches to design the initial production medium and/or feed stream. Additionally, the feeding strategies developed with or without feedback control for fed-batch B. subtilis fermentations were compiled with a special emphasis on recombinant protein (r-protein) production. For biomolecule production by wild-type B. subtilis, due to the different intracellular production patterns, no consensus exists on the FBO strategy that gives the maximum productivity, whereas for r-protein production appropriate feeding strategies vary depending on the promoter used. Thus, we conclude that the B. subtilis community is still seeking an approved strong promoter and generalized FBO strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Medium optimization for protopectinase production by batch culture ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-11

    Nov 11, 2011 ... Optimization of medium compositions for protopectinase production by ... food industry, pharmacy and cosmetic manufacture due to ... energy intensive and industrial wastes (Iglesias and ... group of enzymes, which produce the enzymatic ... development time and overall costs (Pan et al., 2008; Ren.

  9. Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum

    International Nuclear Information System (INIS)

    Ortigueira, Joana; Pinto, Tiago; Gouveia, Luísa; Moura, Patrícia

    2015-01-01

    The biological hydrogen production from Spirogyra sp. biomass was studied in a SBR (sequential batch reactor) equipped with a biogas collecting and storage system. Two acid hydrolysis pre-treatments (1N and 2N H 2 SO 4 ) were applied to the Spirogyra biomass and the subsequent fermentation by Clostridium butyricum DSM 10702 was compared. The 1N and 2N hydrolyzates contained 37.2 and 40.8 g/L of total sugars, respectively, and small amounts of furfural and HMF (hydroxymethylfurfural). These compounds did not inhibit the hydrogen production from crude Spirogyra hydrolyzates. The fermentation was scaled up to a batch operated bioreactor coupled with a collecting system that enabled the subsequent characterization and storage of the biogas produced. The cumulative hydrogen production was similar for both 1N and 2N hydrolyzate, but the hydrogen production rates were 438 and 288 mL/L.h, respectively, suggesting that the 1N hydrolyzate was more suitable for sequential batch fermentation. The SBR with 1N hydrolyzate was operated continuously for 13.5 h in three consecutive batches and the overall hydrogen production rate and yield reached 324 mL/L.h and 2.59 mol/mol, respectively. This corresponds to a potential daily production of 10.4 L H 2 /L Spirogyra hydrolyzate, demonstrating the excellent capability of C. butyricum to produce hydrogen from microalgal biomass. - Highlights: • Production of biohydrogen from crude Spirogyra hydrolyzates. • Set-up of a collecting and storage system for continuous biogas sampling. • The hydrogen production rate is 324 mL/L.h in the SBR (sequential batch reactor). • The SBR produces daily an equivalent to 10.4 L H 2 /L of crude Spirogyra hydrolyzate

  10. Moving from batch towards continuous organic‐chemical pharmaceutical production

    DEFF Research Database (Denmark)

    Cervera Padrell, Albert Emili

    process understanding. Developing a process within a more flexible design space based on sound engineering judgment potentially allows process optimization once the product has already been approved. Micro‐ and mini‐chemical systems have been envisaged as the optimal scale for pharmaceutical production...... are the highest benefits found? How can a continuous process be designed and implemented? Are continuous processes compatible with slow reactions? Do they allow problem free processing of solid particles? What is the cost needed to implement a continuous process? This PhD thesis tries to answer some of those...... questions through the development of a systematic framework that takes advantage of continuous processing technologies and process systems engineering for the efficient design of continuous pharmaceutical processes. The framework consists of a step‐by‐step procedure that guides the user from drug discovery...

  11. An analysis of the sponge Acanthostrongylophora igens’ microbiome yields an actinomycete that produces the natural product manzamine A

    Directory of Open Access Journals (Sweden)

    Amanda Leigh Waters

    2014-10-01

    Full Text Available Sponges have generated significant interest as a source of bioactive and elaborate secondary metabolites that hold promise for the development of novel therapeutics for the control of an array of human diseases. However, research and development of marine natural products can often be hampered by the difficulty associated with obtaining a stable and sustainable production source. Herein we report the first successful characterization and utilization of the microbiome of a marine invertebrate to identify a sustainable production source for an important natural product scaffold. Through molecular-microbial community analysis, optimization of fermentation conditions and MALDI-MS imaging, we provide the first report of a sponge-associated bacterium (Micromonospora sp. that produces the manzamine class of antimalarials from the Indo-Pacific sponge Acanthostrongylophora ingens (Thiele, 1899 (Class Demospongiae, Order Haplosclerida, Family Petrosiidae. These findings suggest that a general strategy of analysis of the macroorganism’s microbiome could significantly transform the field of natural products drug discovery by gaining access to not only novel drug leads, but the potential for sustainable production sources and biosynthetic genes at the same time.

  12. Increasing the production of desulfurizing biocatalysts by means of fed - batch culture

    International Nuclear Information System (INIS)

    Berdugo, C I; Mena, J A; Acero, J R; Mogollon, L

    2001-01-01

    Over the past years, environmental regulations have driven a lot of effort for the development of new technologies for the upgrading of fossil fuels. Biotechnology offers an alternative way to process fossil fuels by means of a biodesulfurization technology where the production of the biocatalyst is one of the key topics. Traditionally, the production is carried out in batch culture where the maximum cellular concentration is restricted by inherent limitations of the culture type and the microorganism growth rate. This work addresses the production of two desulfurizing microorganisms: Rhodococcus erythropolis IGTS8 and gordona rubropertinctus ICP172 using fed-batch culture. Fed-batch cultures were conducted in a 12 L fermentor using ICP 4 medium containing glucose and DMSO as carbon and sulfur sources. As a result, cell concentration was increased 1.5 and 3 times with fed-batch cultures using constant and exponential flow respectively, achieving a maximum cell concentration of 7.3 g DCW/L of biocatalyst igts8 and 12.85 gGDCW/L of the new biocatalyst ICP172. Both biocatalysts presented biodesulfurization activity in a spiked matrix DBT/HXD and in diesel matrix with the detection of 2-HBP which is the end-product of DBT degradation pathway

  13. 21 CFR 111.255 - What is the requirement to establish a batch production record?

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What is the requirement to establish a batch production record? 111.255 Section 111.255 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN...

  14. Biodiesel production from microbial granules in sequencing batch reactor.

    Science.gov (United States)

    Liu, Lin; Hong, Yuling; Ye, Xin; Wei, Lili; Liao, Jie; Huang, Xu; Liu, Chaoxiang

    2018-02-01

    Effect of reaction variables of in situ transesterification on the biodiesel production, and the characteristic differences of biodiesel obtained from aerobic granular sludge (AG) and algae-bacteria granular consortia (AAG) were investigated. The results indicated that the effect of variables on the biodiesel yield decreased in the order of methanol quantity > catalyst concentration > reaction time, yet the parameters change will not significantly affect biodiesel properties. The maximum biodiesel yield of AAG was 66.21 ± 1.08 mg/g SS, what is significant higher than that of AG (35.44 ± 0.92 mg/g SS). Although methyl palmitate was the dominated composition of biodiesel obtained from both granules, poly-unsaturated fatty acid in the AAG showed a higher percentage (21.86%) than AG (1.2%) due to Scenedesmus addition. Further, microbial analysis confirmed that the composition of biodiesel obtained from microbial granules was also determined by bacterial community, and Xanthomonadaceae and Rhodobacteraceae were the dominant bacteria of AG and AAG, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    OpenAIRE

    Wei Han; Yingting Yan; Yiwen Shi; Jingjing Gu; Junhong Tang; Hongting Zhao

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35?g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen prod...

  16. Variation in Sensory Profile of Individual Rainbow Trout (Oncorhynchus mykiss) from the Same Production Batch

    DEFF Research Database (Denmark)

    Green-Petersen, Ditte; Hyldig, Grethe

    2010-01-01

    The variation in sensory profile of rainbow trout (Oncorhynchus mykiss), belonging to the same aquaculture production batch and handled the same way, was explored by using objective sensory profiling on heat-treated minced fillets. In addition, quality index, mechanical texture, pH, fat, and water...... content were measured. Different groups of fish were sampled 3 different times during a production day. The results showed significant differences in the sensory profiles of individual fish within all 3 groups as well as significant differences between the groups. Differences in mechanical texture were...... not explain the differences in the sensory profiling or in the mechanical texture measurements. The results showed that significant differences in the sensory profiles of individual fish from the same aquaculture production batch may occur. Furthermore, the results also showed sensory differences between...

  17. Production of nattokinase by high cell density fed-batch culture of Bacillus subtilis.

    Science.gov (United States)

    Kwon, Eun-Yeong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Beom Soo

    2011-09-01

    Bacillus subtilis was cultivated to high cell density for nattokinase production by pH-stat fed-batch culture. A concentrated mixture solution of glucose and peptone was automatically added by acid-supplying pump when culture pH rose above high limit. Effect of the ratio of glucose to peptone in feeding solution was investigated on cell growth and nattokinase production by changing the ratio from 0.2 to 5 g glucose/g peptone. The highest cell concentration was 77 g/L when the ratio was 0.2 g glucose/g peptone. Cell concentration decreased with increasing the ratio of glucose to peptone in feeding solution, while the optimum condition existed for nattokinase production. The highest nattokinase activity was 14,500 unit/mL at a ratio of 0.33 g glucose/g peptone, which was 4.3 times higher than that in batch culture.

  18. Bacteriocin Production with Lactobacillus amylovorus DCE 471 Is Improved and Stabilized by Fed-Batch Fermentation

    Science.gov (United States)

    Callewaert, Raf; De Vuyst, Luc

    2000-01-01

    Amylovorin L471 is a small, heat-stable, and hydrophobic bacteriocin produced by Lactobacillus amylovorus DCE 471. The nutritional requirements for amylovorin L471 production were studied with fed-batch fermentations. A twofold increase in bacteriocin titer was obtained when substrate addition was controlled by the acidification rate of the culture, compared with the titers reached with constant substrate addition or pH-controlled batch cultures carried out under the same conditions. An interesting feature of fed-batch cultures observed under certain culture conditions (constant feed rate) is the apparent stabilization of bacteriocin activity after obtaining maximum production. Finally, a mathematical model was set up to simulate cell growth, glucose and complex nitrogen source consumption, and lactic acid and bacteriocin production kinetics. The model showed that bacterial growth was dependent on both the energy and the complex nitrogen source. Bacteriocin production was growth associated, with a simultaneous bacteriocin adsorption on the producer cells dependent on the lactic acid accumulated and hence the viability of the cells. Both bacteriocin production and adsorption were inhibited by high concentrations of the complex nitrogen source. PMID:10653724

  19. Direct Injection of Blood Products Versus Gelatin Sponge as a Technique for Local Hemostasis

    Energy Technology Data Exchange (ETDEWEB)

    Haaga, John [University Hospitals Case Medical Center, Department of Radiology (United States); Rahim, Shiraz, E-mail: Shiraz.rahim@uhhospitals.org

    2017-02-15

    PurposeTo provide a method of reducing risk of minimally invasive procedures on patients with abnormal hemostasis and evaluate efficacy of direct fresh frozen plasma injection through a procedure needle tract compared to Gelfoam (gelatin sponge) administration.Materials and MethodsEighty patients with elevated international standardized ratio (INR) undergoing minimally invasive procedures using imaging guidance were selected retrospectively. Forty patients had received Gelfoam as a means of tract embolization during the procedure. The other 40 received local fresh frozen plasma (FFP) through the needle tract. The number of complications and clinically significant bleeding events were recorded. A threshold of 30 cc of blood loss after a procedure was used to identify excess bleeding.ResultsNo patients experienced clinically significant bleeding after administration of FFP. Five patients experienced postoperative drops in hemoglobin or hematomas after administration of Gelfoam.ConclusionLocal injection of blood products can reduce postprocedure bleeding in patients undergoing minimally invasive procedures and provides a safe alternative to the use of synthetic fibrin plugs.

  20. Characterisation of Non-Autoinducing Tropodithietic Acid (TDA Production from Marine Sponge Pseudovibrio Species

    Directory of Open Access Journals (Sweden)

    Catriona Harrington

    2014-12-01

    Full Text Available The search for new antimicrobial compounds has gained added momentum in recent years, paralleled by the exponential rise in resistance to most known classes of current antibiotics. While modifications of existing drugs have brought some limited clinical success, there remains a critical need for new classes of antimicrobial compound to which key clinical pathogens will be naive. This has provided the context and impetus to marine biodiscovery programmes that seek to isolate and characterize new activities from the aquatic ecosystem. One new antibiotic to emerge from these initiatives is the antibacterial compound tropodithietic acid (TDA. The aim of this study was to provide insight into the bioactivity of and the factors governing the production of TDA in marine Pseudovibrio isolates from a collection of marine sponges. The TDA produced by these Pseudovibrio isolates exhibited potent antimicrobial activity against a broad spectrum of clinical pathogens, while TDA tolerance was frequent in non-TDA producing marine isolates. Comparative genomics analysis suggested a high degree of conservation among the tda biosynthetic clusters while expression studies revealed coordinated regulation of TDA synthesis upon transition from log to stationary phase growth, which was not induced by TDA itself or by the presence of the C10-acyl homoserine lactone quorum sensing signal molecule.

  1. Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment.

    Science.gov (United States)

    Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi

    2016-03-01

    A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season. Copyright © 2016. Published by Elsevier Ltd.

  2. THE EFFECT OF THE ADDITION OF INVERT SUGAR ON THE PRODUCTION OF CEPHALOSPORIN C IN A FED-BATCH BIOREACTOR

    Directory of Open Access Journals (Sweden)

    A.S. Silva

    1998-12-01

    Full Text Available Cephalosporin C, a b -lactam antibiotic, is the starting molecule for industrial production of semi-synthetic cephalosporins. The bioprocess for its production is carried out in batch stirred and aerated tank reactors utilizing strains of the filamentous fungus Cephalosporium acremonium. In this work a comparison was made between the processes of production of cephalosporin C in a conventional batch bioreactor, with synthetic medium containing glucose and sucrose, and in a fed-batch reactor at several flowrates of supplementary medium containing invert sucrose. In general, the fed-batch process was shown to be more efficient than the conventional batch one, and the process in which the lowest supplementation flowrate was used presented an antibiotic production significantly higher than those obtained under the other conditions.

  3. Fast Batch Production of High-Quality Graphene Films in a Sealed Thermal Molecular Movement System.

    Science.gov (United States)

    Xu, Jianbao; Hu, Junxiong; Li, Qi; Wang, Rubing; Li, Weiwei; Guo, Yufen; Zhu, Yongbo; Liu, Fengkui; Ullah, Zaka; Dong, Guocai; Zeng, Zhongming; Liu, Liwei

    2017-07-01

    Chemical vapor deposition (CVD) growth of high-quality graphene has emerged as the most promising technique in terms of its integrated manufacturing. However, there lacks a controllable growth method for producing high-quality and a large-quantity graphene films, simultaneously, at a fast growth rate, regardless of roll-to-roll (R2R) or batch-to-batch (B2B) methods. Here, a stationary-atmospheric-pressure CVD (SAPCVD) system based on thermal molecular movement, which enables fast B2B growth of continuous and uniform graphene films on tens of stacked Cu(111) foils, with a growth rate of 1.5 µm s -1 , is demonstrated. The monolayer graphene of batch production is found to nucleate from arrays of well-aligned domains, and the films possess few defects and exhibit high carrier mobility up to 6944 cm 2 V -1 s -1 at room temperature. The results indicate that the SAPCVD system combined with single-domain Cu(111) substrates makes it possible to realize fast batch-growth of high-quality graphene films, which opens up enormous opportunities to use this unique 2D material for industrial device applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The morphology of Ganoderma lucidum mycelium in a repeated-batch fermentation for exopolysaccharide production

    Directory of Open Access Journals (Sweden)

    Wan Abd Al Qadr Imad Wan-Mohtar

    2016-09-01

    Full Text Available The morphology of Ganoderma lucidum BCCM 31549 mycelium in a repeated-batch fermentation (RBF was studied for exopolysaccharide (EPS production. RBF was optimised for time to replace and volume to replace. G. lucidum mycelium showed the ability to self-immobilise and exhibited high stability for repeated use in RBF with engulfed pellets. Furthermore, the ovoid and starburst-like pellet morphology was disposed to EPS production in the shake flask and bioreactor, respectively. Seven RBF could be carried out in 500 mL flasks, and five repeated batches were performed in a 2 L bioreactor. Under RBF conditions, autolysis of pellet core in the shake flask and shaving off of the outer hairy region in the bioreactor were observed at the later stages of RBF (R4 for the shake flask and R6 for the bioreactor. The proposed strategy showed that the morphology of G. lucidum mycelium can withstand extended fermentation cycles.

  5. Variation in sensory profile between individual Rainbow trout from the same production batch

    DEFF Research Database (Denmark)

    Hyldig, Grethe; Green-Petersen, Ditte

    The variation in sensory properties between individual Rainbow trout (Oncorhynchus mykiss) belonging to the same aquaculture production batch was explored by using objective sensory profiling on minced and heat treated fillets. Additionally, Quality Index, mechanical texture, pH, fat and water...... content were measured. 30 fish, all from the same production batch, were sampled at three different times making three groups (ten fish each time). The results showed differences in the sensory profile between individual fish within all three groups. Also sensory differences between the three groups...... of fish were found. Similar differences in mechanical texture were found between individuals in two of the three groups and between the groups. No differences were found in Quality Index neither between individuals nor groups. A significant correlation between lipid content and firm texture was observed...

  6. The Kinetic of Biogas Production Rate from Cattle Manure in Batch Mode

    OpenAIRE

    Budiyono; I N. Widiasa; S. Johari; Sunarso

    2010-01-01

    In this study, the kinetic of biogas production was studied by performing a series laboratory experiment using rumen fluid of animal ruminant as inoculums. Cattle manure as substrate was inoculated by rumen fluid to the anaerobic biodigester. Laboratory experiments using 400 ml biodigester were performed in batch operation mode. Given 100 grams of fresh cattle manure was fed to each biodigester and mixed with rumen fluid by manure : rumen weight ratio of 1:1 (MR11). The operating temperatures...

  7. Modelling of Fed-batch Fermentation Process with Droppings for L-lysine Production

    Directory of Open Access Journals (Sweden)

    Velitchka Ivanova

    2006-04-01

    Full Text Available The aim of the article is the development of dynamic unstructured model of L-lysine fed-batch fermentation process with droppings. This approach includes the following procedures: description of the process by generalized stoichiometric equations; preliminary data processing; identification of the specific rates (growth rate (mu , substrate utilization rate (nu, production rate (rho; establishment and optimization of the dynamic model of the process; simulation researches.

  8. Fuel ethanol production from sweet sorghum using repeated-batch fermentation.

    Science.gov (United States)

    Chohnan, Shigeru; Nakane, Megumi; Rahman, M Habibur; Nitta, Youji; Yoshiura, Takanori; Ohta, Hiroyuki; Kurusu, Yasurou

    2011-04-01

    Ethanol was efficiently produced from three varieties of sweet sorghum using repeated-batch fermentation without pasteurization or acidification. Saccharomyces cerevisiae cells could be recycled in 16 cycles of the fermentation process with good ethanol yields. This technique would make it possible to use a broader range of sweet sorghum varieties for ethanol production. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. On-line Biomass Estimation in a Batch Biotechnological Process: Bacillus thuringiensis δ - endotoxins production.

    OpenAIRE

    Amicarelli, Adriana

    2010-01-01

    In this Chapter it has been addressed the problem of the biomass estimation in a batch biotechnological process: the Bacillus thuringiensis (Bt) δ-endotoxins production process. Different alternatives that can be successfully used in this sense were presented. It has been exposed the design of various biomass estimators, namely: a phenomenological biomass estimator, a standard EKF biomass estimator, a biomass estimator based on ANN, a decentralized Kalman Filter, and a biomass concentration ...

  10. Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions

    DEFF Research Database (Denmark)

    Zhang, Yuming; Chen, Xiangrong; Qi, Benkun

    2014-01-01

    to eliminate the sequential utilization of mixed sugar and feedback inhibition during batch fermentation, membrane integrated repeated batch fermentation (MIRB) was used to improve LA productivity. With MIRB, a high cell density was obtained and the simultaneous fermentation of glucose, xylose and arabinose...

  11. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-02-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternative clean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended with gasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewable resources and the product has low emission which means environmental friendly. Ethanol can be produced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentation batch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivity and cell growth can be overcome by taking the product continuously from the fermentor. The process can be done by using a vacuum fermentation. The objective of this research is to investigate the effect of pressure and glucose concentration in ethanol fermentation. The research was conducted in laboratory scale and batch process. Equipment consists of fermentor with vacuum system. The observed responses were dried cells of yeast, concentration of glucose, and concentration of ethanol. Observations were made every 4 hours during a day of experiment. The results show that the formation of ethanol has a growth-associated product characteristic under vacuum operation. Vacuum condition can increase the cell formation productivity and the ethanol formation, as it is compared with fermentation under atmospheric condition. The maximum cells productivity and ethanol formation in batch operation under vacuum condition was reached at 166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at 141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivity and the yield of ethanol.

  12. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    Science.gov (United States)

    Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield. PMID:27910937

  13. Fed-batch production of vanillin by Bacillus aryabhattai BA03.

    Science.gov (United States)

    Paz, Alicia; Outeiriño, David; Pinheiro de Souza Oliveira, Ricardo; Domínguez, José Manuel

    2018-01-25

    Bacillus aryabhattai BA03, a strain isolated in our laboratory, has interesting properties related to the production of natural aromas and flavors. Specifically, we have found that it was able to produce vanillin from ferulic acid (FA). Furthermore, this strain produces high amounts of 4-vinylguaiacol in only 14h, this being the only intermediate metabolite observed in the process. FA is an inexpensive feedstock for the production of natural value-added compounds when extracted from lignocellulosic wastes. In this study, we optimized the operational conditions (temperature, pH and agitation), medium composition and bioconversion technology (batch or fed-batch) to produce vanillin. In a fed-batch process conducted with just one additional supplementation after 24h, the maximal concentration of vanillin (147.1±0.9mg/L) was observed after 216h (Q V =0.681mg/Lh; Y V/fFA =0.082mg/mg) after degrading 90.3% FA. In view of our data, we postulate that Bacillus aryabhattai BA03 carries out a decarboxylation of ferulic acid as a metabolic pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. CONWIP card setting in a flow-shop system with a batch production machine

    Directory of Open Access Journals (Sweden)

    Marcello Braglia

    2011-01-01

    Full Text Available This paper presents an analytical technique to determine the optimum number of cards to control material release in a CONWIP system. The work focuses on the card setting problem for a flow-shop system characterised by the presence of a batch processing machine (e.g. a kiln for long heat treatment. To control production, two different static approaches are developed: the first one is used when the bottleneck coincides with the batch processing machine and the second one is proposed when the bottleneck is another machine of the flow shop. In both contexts, by means of the appropriate model, one can optimize the performance of the flow-shop by maximizing the throughput and keeping the work in process at a minimum level. Numerical examples are also included in the paper to confirm the validity of the models and to demonstrate their practical utility.

  15. Batch Fermentative Biohydrogen Production Process Using Immobilized Anaerobic Sludge from Organic Solid Waste

    Directory of Open Access Journals (Sweden)

    Patrick T. Sekoai

    2016-12-01

    Full Text Available This study examined the potential of organic solid waste for biohydrogen production using immobilized anaerobic sludge. Biohydrogen was produced under batch mode at process conditions of 7.9, 30.3 °C and 90 h for pH, temperature and fermentation time, respectively. A maximum biohydrogen fraction of 48.67%, which corresponded to a biohydrogen yield of 215.39 mL H2/g Total Volatile Solids (TVS, was achieved. Therefore, the utilization of immobilized cells could pave the way for a large-scale biohydrogen production process.

  16. Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous.

    Science.gov (United States)

    Xie, Dongming; Miller, Edward; Sharpe, Pamela; Jackson, Ethel; Zhu, Quinn

    2017-04-01

    The omega-3 fatty acid, cis-5,8,11,14,17-eicosapentaenoic acid (C20:5; EPA) has wide-ranging benefits in improving heart health, immune function, and mental health. A sustainable source of EPA production through fermentation of metabolically engineered Yarrowia lipolytica has been developed. In this paper, key fed-batch fermentation conditions were identified to achieve 25% EPA in the yeast biomass, which is so far the highest EPA titer reported in the literature. Dynamic models of the EPA fermentation process were established for analyzing, optimizing, and scaling up the fermentation process. In addition, model simulations were used to develop a two-stage continuous process and compare to single-stage continuous and fed- batch processes. The two stage continuous process, which is equipped with a smaller growth fermentor (Stage 1) and a larger production fermentor (Stage 2), was found to be a superior process to achieve high titer, rate, and yield of EPA. A two-stage continuous fermentation experiment with Y. lipolytica strain Z7334 was designed using the model simulation and then tested in a 2 L and 5 L fermentation system for 1,008 h. Compared with the standard 2 L fed-batch process, the two-stage continuous fermentation process improved the overall EPA productivity by 80% and EPA concentration in the fermenter by 40% while achieving comparable EPA titer in biomass and similar conversion yield from glucose. During the long-term experiment it was also found that the Y. lipolytica strain evolved to reduce byproduct and increase lipid production. This is one of the few continuous fermentation examples that demonstrated improved productivity and concentration of a final product with similar conversion yield compared with a fed-batch process. This paper suggests the two-stage continuous fermentation could be an effective process to achieve improved production of omega-3 and other fermentation products where non-growth or partially growth associated kinetics

  17. Modeling of thermal mode of drying special purposes ceramic products in batch action chamber dryers

    Science.gov (United States)

    Lukianov, E. S.; Lozovaya, S. Yu; Lozovoy, N. M.

    2018-03-01

    The article is devoted to the modeling of batch action chamber dryers in the processing line for producing shaped ceramic products. At the drying stage, for various reasons, most of these products are warped and cracked due to the occurrence of irregular shrinkage deformations due to the action of capillary forces. The primary cause is an untruly organized drying mode due to imperfection of chamber dryers design specifically because of the heat-transfer agent supply method and the possibility of creating a uniform temperature field in the whole volume of the chamber.

  18. Perfusion cell culture decreases process and product heterogeneity in a head-to-head comparison with fed-batch.

    Science.gov (United States)

    Walther, Jason; Lu, Jiuyi; Hollenbach, Myles; Yu, Marcella; Hwang, Chris; McLarty, Jean; Brower, Kevin

    2018-05-30

    In this study, we compared the impacts of fed-batch and perfusion platforms on process and product attributes for IgG1- and IgG4-producing cell lines. A "plug-and-play" approach was applied to both platforms at bench scale, using commercially available basal and feed media, a standard feed strategy for fed-batch, and ATF filtration for perfusion. Product concentration in fed-batch was 2.5 times greater than perfusion, while average productivity in perfusion was 7.5 times greater than fed-batch. PCA revealed more variability in the cell environment and metabolism during the fed-batch run. LDH measurements showed that exposure of product to cell lysate was 7-10 times greater in fed-batch. Product analysis shows larger abundances of neutral species in perfusion, likely due to decreased bioreactor residence times and extracellular exposure. The IgG1 perfusion product also had higher purity and lower half-antibody. Glycosylation was similar across both culture modes. The first perfusion harvest slice for both product types showed different glycosylation than subsequent harvests, suggesting that product quality lags behind metabolism. In conclusion, process and product data indicate that intra-lot heterogeneity is decreased in perfusion cultures. Additional data and discussion is required to understand the developmental, clinical and commercial implications, and in what situations increased uniformity would be beneficial. This article is protected by copyright. All rights reserved.

  19. Exponential fed-batch strategy for enhancing biosurfactant production by Bacillus subtilis.

    Science.gov (United States)

    Amin, G A

    2014-01-01

    Surfactin produced by Bacillus subtilis BDCC-TUSA-3 from Maldex-15 was used as a growth-associated product in a conventional batch process. Maldex-15 is a cheap industrial by-product recovered during manufacturing of high fructose syrup from corn starch. Surfactin production was greatly improved in exponential fed-batch fermentation. Maldex-15 and other nutrients were exponentially fed into the culture based on the specific growth rate of the bacterium. In order to maximize surfactin yield and productivity, conversion of different quantities of Maldex-15 into surfactin was investigated in five different fermentation runs. In all runs, most of the Maldex-15 was consumed and converted into surfactin and cell biomass with appreciable efficiencies. The best results were obtained with the fermentation run supplied with 204 g Maldex-15. Up to 36.1 g l(-1) of surfactin and cell biomass of 31.8 g l(-1) were achieved in 12 h. Also, a marked substrate yield of 0.272 g g(-1) and volumetric reactor productivity of 2.58 g 1(-1) h(-1) were obtained, confirming the establishment of a cost-effective commercial surfactin production.

  20. Cloning, multicopy expression and fed-batch production of Rhodotorula araucariae epoxide hydrolase in yarrowia lipolytica

    CSIR Research Space (South Africa)

    Ramduth, D

    2008-05-01

    Full Text Available demonstrated a 4 fold enhanced EH activity over the transformant. The transformant was then evaluated in batch and fed batch fermentations, where the batch fermentations resulted in - 50% improved EH activity from flask evaluations. In fed batch fermentations...

  1. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-04-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternativeclean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended withgasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewableresources and the product has low emission which means environmental friendly. Ethanol can beproduced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentationbatch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivityand cell growth can be overcome by taking the product continuously from the fermentor. Theprocess can be done by using a vacuum fermentation. The objective of this research is toinvestigate the effect of pressure and glucose concentration in ethanol fermentation. The researchwas conducted in laboratory scale and batch process. Equipment consists of fermentor withvacuum system. The observed responses were dried cells of yeast, concentration of glucose, andconcentration of ethanol. Observations were made every 4 hours during a day of experiment. Theresults show that the formation of ethanol has a growth-associated product characteristic undervacuum operation. Vacuum condition can increase the cell formation productivity and the ethanolformation, as it is compared with fermentation under atmospheric condition. The maximum cellsproductivity and ethanol formation in batch operation under vacuum condition was reached at166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivityand the yield of ethanol.

  2. Fructose Production by Inulinase Covalently Immobilized on Sepabeads in Batch and Fluidized Bed Bioreactor

    Directory of Open Access Journals (Sweden)

    Gabriele Iorio

    2010-03-01

    Full Text Available The present work is an experimental study of the performance of a recently designed immobilized enzyme: inulinase from Aspergillus sp. covalently immobilized on Sepabeads. The aim of the work is to test the new biocatalyst in conditions of industrial interest and to assess the feasibility of the process in a fluidized bed bioreactor (FBBR. The catalyst was first tested in a batch reactor at standard conditions and in various sets of conditions of interest for the process. Once the response of the catalyst to different operating conditions was tested and the operational stability assessed, one of the sets of conditions tested in batch was chosen for tests in FBBR. Prior to reaction tests, preliminary fluidization tests were realized in order to define an operating range of admissible flow rates. As a result, the FBR was run at different feed flow rates in a closed cycle configuration and its performance was compared to that of the batch system. The FBBR proved to be performing and suitable for scale up to large fructose production.

  3. Ethanol production potential from fermented rice noodle wastewater treatment using entrapped yeast cell sequencing batch reactor

    Science.gov (United States)

    Siripattanakul-Ratpukdi, Sumana

    2012-03-01

    Fermented rice noodle production generates a large volume of starch-based wastewater. This study investigated the treatment of the fermented rice noodle wastewater using entrapped cell sequencing batch reactor (ECSBR) compared to traditional sequencing batch reactor (SBR). The yeast cells were applied because of their potential to convert reducing sugar in the wastewater to ethanol. In present study, preliminary treatment by acid hydrolysis was performed. A yeast culture, Saccharomyces cerevisiae, with calcium alginate cell entrapment was used. Optimum yeast cell loading in batch experiment and fermented rice noodle treatment performances using ECSBR and SBR systems were examined. In the first part, it was found that the cell loadings (0.6-2.7 × 108 cells/mL) did not play an important role in this study. Treatment reactions followed the second-order kinetics with the treatment efficiencies of 92-95%. In the second part, the result showed that ECSBR performed better than SBR in both treatment efficiency and system stability perspectives. ECSBR maintained glucose removal of 82.5 ± 10% for 5-cycle treatment while glucose removal by SBR declined from 96 to 40% within the 5-cycle treatment. Scanning electron microscopic images supported the treatment results. A number of yeast cells entrapped and attached onto the matrix grew in the entrapment matrix.

  4. Modeling of Fusarium redolens Dzf2 mycelial growth kinetics and optimal fed-batch fermentation for beauvericin production.

    Science.gov (United States)

    Xu, Li-Jian; Liu, Yuan-Shuai; Zhou, Li-Gang; Wu, Jian-Yong

    2011-09-01

    Beauvericin (BEA) is a cyclic hexadepsipeptide mycotoxin with notable phytotoxic and insecticidal activities. Fusarium redolens Dzf2 is a highly BEA-producing fungus isolated from a medicinal plant. The aim of the current study was to develop a simple and valid kinetic model for F. redolens Dzf2 mycelial growth and the optimal fed-batch operation for efficient BEA production. A modified Monod model with substrate (glucose) and product (BEA) inhibition was constructed based on the culture characteristics of F. redolens Dzf2 mycelia in a liquid medium. Model parameters were derived by simulation of the experimental data from batch culture. The model fitted closely with the experimental data over 20-50 g l(-1) glucose concentration range in batch fermentation. The kinetic model together with the stoichiometric relationships for biomass, substrate and product was applied to predict the optimal feeding scheme for fed-batch fermentation, leading to 54% higher BEA yield (299 mg l(-1)) than in the batch culture (194 mg l(-1)). The modified Monod model incorporating substrate and product inhibition was proven adequate for describing the growth kinetics of F. redolens Dzf2 mycelial culture at suitable but not excessive initial glucose levels in batch and fed-batch cultures.

  5. Status of the first batch of niobium resonator production for the New Delhi booster linac

    International Nuclear Information System (INIS)

    Potukuchi, P. N.

    1999-01-01

    This paper reports the status and details of the costs of construction of niobium superconducting resonant cavities for a linear accelerator, presently being built as a booster for the 15 UD tandem Pelletron accelerator at the Nuclear Science Centre, New Delhi. The linear accelerator will have three cryostat modules, each holding eight quarter-wave resonators. Construction of a batch of ten resonators for the linac started at Argonne National Laboratory in May 1997. For production, all fabrication and all electron beam welding is being done through commercial vendors. Details of construction and present status of the project are presented

  6. Pilot plant studies on the production of ductile titanium sponge from pure titanium tetrachloride

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, H S; Kulkarni, A P; Vijay, P L; Subramanian, C; Swaminathan, K; Rajagopalan, P K; Rao, Ch S; Sundaram, C V

    1974-12-31

    Three different routes were examined, namely: (i) magnesium reduction and pyro-vacuum treatment, (ii) magnesium reduction and acid leaching, and (iii) two-stage reduction with sodium, followed by aqueous processing. Magnesium- reduced and vacuumtreated titanium sponge was of uniformly good quality, contained less than 1000 ppm oxygen, and corresponded to a button hardness of 90 to 100 VPN. Acid-leached sponge from magnesium reduction had a relatively higher oxygen content (l000 to 1500 ppm), but was still of acceptable quality (hardness 125 VPN). A significant portion of the metal from sodium reduction was in the form of shiny crystals, of very low button hardness (60 to 90 VPN). The operations established the satisfactory performance of the various equipment designs and also the optimum process conditions. (auth)

  7. The mechanism of improved pullulan production by nitrogen limitation in batch culture of Aureobasidium pullulans.

    Science.gov (United States)

    Wang, Dahui; Chen, Feifei; Wei, Gongyuan; Jiang, Min; Dong, Mingsheng

    2015-08-20

    Batch culture of Aureobasidium pullulans CCTCC M 2012259 for pullulan production at different concentrations of ammonium sulfate and yeast extract was investigated. Increased pullulan production was obtained under nitrogen-limiting conditions, as compared to that without nitrogen limitation. The mechanism of nitrogen limitation favoring to pullulan overproduction was revealed by determining the activity as well as gene expression of key enzymes, and energy supply for pullulan biosynthesis. Results indicated that nitrogen limitation increased the activities of α-phosphoglucose mutase and glucosyltransferase, up-regulated the transcriptional levels of pgm1 and fks genes, and supplied more ATP intracellularly, which were propitious to further pullulan biosynthesis. The economic analysis of batch pullulan production indicated that nitrogen limitation could reduce more than one third of the cost of raw materials when glucose was supplemented to a total concentration of 70 g/L. This study also helps to understand the mechanism of other polysaccharide overproduction by nitrogen limitation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Separation of magnesium from magnesium chloride and zirconium and/or hafnium subchlorides in the production of zirconium and/or hafnium sponge metal

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Adams, R.J.; Kearl, S.R.

    1992-01-01

    This patent describes the producing of a refractory metal wherein a sponge refractory metal is produced as an intermediate product by the use of magnesium with the incidental production of magnesium chloride, and wherein residual magnesium is separated from the magnesium chloride and from refractory metal to a vacuum distillation step which fractionally distills the magnesium, the magnesium chloride, and the metal sub-chlorides; the steps of: recovering fractionally distilled vapors of magnesium chloride and metal sub-chlorides from a sponge refractory metal; separately condensing the vapors as separately recovered; and recycling the separately recovered magnesium at a purity of at least about 96%

  9. Process for purifying zirconium sponge

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Kimball, L.S.

    1992-01-01

    This patent describes a Kroll reduction process wherein a zirconium sponge contaminated with unreacted magnesium and by-product magnesium chloride is produced as a regulus, a process for purifying the zirconium sponge. It comprises: distilling magnesium and magnesium chloride from: a regulus containing a zirconium sponge and magnesium and magnesium chloride at a temperature above about 800 degrees C and at an absolute pressure less than about 10 mmHg in a distillation vessel to purify the zirconium sponge; condensing the magnesium and the magnesium chloride distilled from the zirconium sponge in a condenser; and then backfilling the vessel containing the zirconium sponge and the condenser containing the magnesium and the magnesium chloride with a gas; recirculating the gas between the vessel and the condenser to cool the zirconium sponge from above about 800 degrees C to below about 300 degrees C; and cooling the recirculating gas in the condenser containing the condensed magnesium and the condensed magnesium chloride as the gas cools the zirconium sponge to below about 300 degrees C

  10. Pilot batch production of cocoa butter-like fats from chinese vegetable tallow by enzymatic interesterification

    DEFF Research Database (Denmark)

    Xu, Xuebing; Hu, X.; Balchen, Steen

    1997-01-01

    -8%. And about 90% of the present PPP and PPSt triglycerides were separated from the product. Under above parameters, the final pilot products had similar compositions to those of cocoa butter. In this research, IPPL showed initial interesterification activity at the similar level as Lipozyme IM from Novo......There is a long term interest of lipase applications in lipid modifications because of the inherent advantages over chemical methods such as more specific reactions involved, less energy used, moderate reaction conditions and so on. In this work, cocoa butter-like fats (CBF) were produced using....../w) 1.3-1.7/1, hexane/substrates(v/w): 1.0:1-1.2:1. Based on the pilot batch plant, the total process is following: substrates, drying, reaction, filtration, fractionation, neutralisation, de-solventization and drying, and product. The fractionation process reduced the free fatty acid content to 5...

  11. Bio-ethanol Production from Green Onion by Yeast in Repeated Batch.

    Science.gov (United States)

    Robati, Reza

    2013-09-01

    Considered to be the cleanest liquid fuel, bio-ethanol can be a reliable alternative to fossil fuels. It is produced by fermentation of sugar components of plant materials. The common onions are considered to be a favorable source of fermentation products as they have high sugar contents as well as contain various nutrients. This study focused on the effective production of ethanol from Green onion (Allium fistulosum L.) by the yeast "Saccharomyces cerevisiae" in repeated batch. The results showed that the total sugar concentration of onion juice was 68.4 g/l. The maximum rate of productivity, ethanol yield and final bio-ethanol percentage was 7 g/l/h (g ethanol per liter of onion juice per hour), 35 g/l (g ethanol per liter of onion juice) and 90 %, respectively.

  12. Production and partial characterization of alkaline feruloyl esterases by Fusarium oxysporum during submerged batch cultivation

    DEFF Research Database (Denmark)

    Topakas, E.; Christakopoulos, Paul

    2004-01-01

    Production of feruloyl esterases (FAEs) by Fusarium oxysporum was enhanced by optimization of initial pH of the culture medium, the type and concentration of nitrogen and carbon source. Submerged batch cultivation in a laboratory bioreactor (17 1) produced activity at 82 nkat g(-1) dry substrate....... Production of FAE does not therefore, require FA, however, production is diminished by the removal of esterified FA from the growth substrate. Optimal FAE activity was observed at pH 7 and 50 degreesC with 68 and 55% activity at pH 8 and pH 9, respectively. The esterase was fully stable at pH 5-8 and up...

  13. Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control

    Directory of Open Access Journals (Sweden)

    Andrea Meitz

    2016-03-01

    Full Text Available The Bacterial Ghost (BG platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8–10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology.

  14. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations.

    Science.gov (United States)

    Seong, Yeong-Je; Park, Haeseong; Yang, Jungwoo; Kim, Soo-Jung; Choi, Wonja; Kim, Kyoung Heon; Park, Yong-Cheol

    2017-05-01

    The SPT15 gene encodes a Saccharomyces cerevisiae TATA-binding protein, which is able to globally control the transcription levels of various metabolic and regulatory genes. In this study, a SPT15 gene mutant (S42N, S78R, S163P, and I212N) was expressed in S. cerevisiae BY4741 (BSPT15-M3), of which effects on fermentative yeast properties were evaluated in a series of culture types. By applying different nitrogen sources and air supply conditions in batch culture, organic nitrogen sources and microaerobic condition were decided to be more favorable for both cell growth and ethanol production of the BSPT15-M3 strain than the control S. cerevisiae BY4741 strain expressing the SPT15 gene (BSPT15wt). Microaerobic fed-batch cultures of BSPT15-M3 with glucose shock in the presence of high ethanol content resulted in a 9.5-13.4% higher glucose consumption rate and ethanol productivity than those for the BSPT15wt strain. In addition, BSPT15-M3 showed 4.5 and 3.9% increases in ethanol productivity from cassava hydrolysates and corn starch in simultaneous saccharification and fermentation processes, respectively. It was concluded that overexpression of the mutated SPT15 gene would be a potent strategy to develop robust S. cerevisiae strains with enhanced cell growth and ethanol production abilities.

  15. Hydrogen production from formic acid in pH-stat fed-batch operation for direct supply to fuel cell.

    Science.gov (United States)

    Shin, Jong-Hwan; Yoon, Jong Hyun; Lee, Seung Hoon; Park, Tai Hyun

    2010-01-01

    Enterobacter asburiae SNU-1 harvested after cultivation was used as a whole cell biocatalyst, for the production of hydrogen. Formic acid was efficiently converted to hydrogen using the harvested cells with an initial hydrogen production rate and total hydrogen production of 491 ml/l/h and 6668 ml/l, respectively, when 1 g/l of whole cell enzyme was used. Moreover, new pH-stat fed-batch operation was conducted, and total hydrogen production was 1.4 times higher than that of batch operation. For practical application, bio-hydrogen produced from formic acid using harvested cells was directly applied to PEMFC for power generation.

  16. Production of Medium-Chain-Length Poly(3-Hydroxyalkanoates from Saponified Palm Kernel Oil by Pseudomonas putida: Kinetics of Batch and Fed-Batch Fermentations

    Directory of Open Access Journals (Sweden)

    Annuar, M. S. M.

    2006-01-01

    Full Text Available The kinetics of medium-chain-length poly(3-hydroxyalkanoates, PHAMCL production by Pseudomonas putida PGA1 in batch and fed-batch fermentations were studied. With saponified palm kernel oil (SPKO supplying the free fatty acids mixture as the sole carbon and energy source, PHAMCL accumulation is encouraged under ammonium-limited condition, which is a nitrogen stress environment. The amount of PHAMCL accumulated and its specific production rate, qPHA were influenced by the residual ammonium concentration level in the culture medium. It was observed that in both fermentation modes, when the residual ammonium was exhausted (< 0.05 gL-1, the PHAMCL accumulation (11.9% and qPHA (0.0062 h-1 were significantly reduced. However, this effect can be reversed by feeding low amount of ammonium to the culture, resulting in significantly improved PHAMCL yield (71.4% and specific productivity (0.6 h-1. It is concluded that the feeding of low ammonium concentration to the culture medium during the PHAMCL accumulation has a positive effect on sustaining the PHAMCL biosynthetic capability of the organism. It was also found that increasing SPKO concentration in the medium significantly reduced (up to 50% the volumetric oxygen transfer coefficient (KLa of the fermentation system.

  17. Fed-batch production of hydrophobin RodB from Aspergillus fumigatus in host Pichia pastoris

    DEFF Research Database (Denmark)

    Pedersen, Mona Højgaard; Borodina, Irina; Frisvad, Jens Christian

    was dependent on the methanol-induced AOX1 promoter. Later production was scaled up to a 2 L fed-batch fermentor. Protein production was analyzed by SDS-PAGE, coomassie and silver-stained, as well as western blotting using an anti-his detection antibody. RodB was purified using His-select Nickel Affinity gel....... The emulsifying property of rRodB was investigated using olive oil stained with Sudan black suspended in tris-buffer. The stability of oil micelles were studied by light microscopy. Results: Protein bands of expected size were detected by SDS-PAGE and western blotting in both the fermentation broth and excess...

  18. Ethanol Production from Whey by Kluyveromyces marxianus in Batch Fermentation System: Kinetics Parameters Estimation

    Directory of Open Access Journals (Sweden)

    Dessy Ariyanti

    2013-03-01

    Full Text Available Whey is the liquid remaining after milk has been curdled and strained. It is a by-product of the manufacture of cheese or casein and has several commercial uses. In environmental point of view, whey is kind of waste which has high pollution level due to it’s contain high organic compound with BOD and COD value 50 and 80 g/L respectively. On the other side, whey also contain an amount of lactose (4.5%-5%; lactose can be used as carbon source and raw material for producing ethanol via fermentation using yeast strain Kluyveromyces marxianus. The objective of this research is to investigate the ethanol production kinetics from crude whey through fermentation using Kluyveromyces marxianus and to predict the model kinetics parameter. The yeast was able to metabolize most of the lactose within 16 h to give 8.64 g/L ethanol, 4.43 g/L biomass, and remain the 3.122 g/L residual lactose. From the results presented it also can be concluded that common kinetic model for microbial growth, substrate consumption, and product formation is a good alternative to describe an experimental batch fermentation of Kluyveromyces marxianus grown on a medium composed of whey. The model was found to be capable of reflecting all batch culture phases to a certain degree of accuracy, giving the parameter value: μmax, Ks, YX/S, α, β : 0.32, 10.52, 0.095, 1.52, and 0.11 respectively. © 2013 BCREC UNDIP. All rights reserved(Selected Paper from International Conference on Chemical and Material Engineering (ICCME 2012Received: 27th September 2012; Revised: 29th November 2012; Accepted: 7th December 2012[How to Cite: D. Ariyanti, H. Hadiyanto, (2013. Ethanol Production from Whey by Kluyveromyces marxianus in Batch Fermentation System: Kinetics Parameters Estimation. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 179-184. (doi:10.9767/bcrec.7.3.4044.179-184][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4044.179-184 ] View in  |

  19. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    International Nuclear Information System (INIS)

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A.

    2016-01-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H 2 S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H 2 S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H 2 S produced by different types of sulfur-containing wastes in a relatively fast (30 days) and inexpensive (125 mL serum bottles) batch assay. This study confirmed the toxic effect of H 2 S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H 2 S by base adsorption was effective for mitigating inhibition. H 2 S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30 days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8 mL H 2 S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H 2 S yield. A 60 day incubation in selected samples resulted in 39–86% additional sulfide production. H 2 S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H 2 S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the

  20. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mei, E-mail: msun8@uncc.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Sun, Wenjie, E-mail: wsun@smu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Department of Civil and Environmental Engineering, Southern Methodist University, PO Box 750340, Dallas, TX (United States); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States)

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H{sub 2}S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H{sub 2}S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H{sub 2}S produced by different types of sulfur-containing wastes in a relatively fast (30 days) and inexpensive (125 mL serum bottles) batch assay. This study confirmed the toxic effect of H{sub 2}S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H{sub 2}S by base adsorption was effective for mitigating inhibition. H{sub 2}S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30 days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8 mL H{sub 2}S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H{sub 2}S yield. A 60 day incubation in selected samples resulted in 39–86% additional sulfide production. H{sub 2}S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H{sub 2}S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating

  1. Production of Polystyrene Open-celled Microcellular Foam in Batch Process by Super Critical CO2

    Directory of Open Access Journals (Sweden)

    M.S. Enayati

    2010-12-01

    Full Text Available Open-celled foams are capable to allow the passage of fluids through their structure, because of interconnections between the open cells or bubbles and therefore these structures can be used as a membrane and filter. In thiswork, we have studied the production of polystyrene open-celled microcellular foam by using CO2 as blowing agent. To achieve such structures, it is necessary to control the stages of growth in such a way that the cells would connect to each other through the pores without any coalescence. The required processing condition to achieve open-celled structures is predictable by a model theory of opened-cell. This model suggests that at least a 130 bar saturation pressure and foaming time between 9 and 58 s are required for this system. The temperature range has been selected for to be both higher than polymer glass transition temperature and facilitating the foaming process. Experimental results in the batch foaming process has verified the model quite well. The SEM and mercury porousimetry tests show the presence of pores between the cells with open-celled structure. Experimental results show that by increasing the saturation pressure and the foaming temperature, there is a drop in the time required for open-celled structure formation. A 130 bar saturation pressure, 150o C foaming temperature and 60 s foaming time, suggest the attainment of open-celled microcellular foam based on polystyrene/CO2 system in the batch process.

  2. Nisin production of Lactococcus lactis N8 with hemin-stimulated cell respiration in fed-batch fermentation system.

    Science.gov (United States)

    Kördikanlıoğlu, Burcu; Şimşek, Ömer; Saris, Per E J

    2015-01-01

    In this study, nisin production of Lactococcus lactis N8 was optimized by independent variables of glucose, hemin and oxygen concentrations in fed-batch fermentation in which respiration of cells was stimulated with hemin. Response surface model was able to explain the changes of the nisin production of L. lactis N8 in fed-batch fermentation system with high fidelity (R(2) 98%) and insignificant lack of fit. Accordingly, the equation developed indicated the optimum parameters for glucose, hemin, and dissolved oxygen were 8 g L(-1) h(-1) , 3 μg mL(-1) and 40%, respectively. While 1711 IU mL(-1) nisin was produced by L. lactis N8 in control fed-batch fermentation, 5410 IU mL(-1) nisin production was achieved within the relevant optimum parameters where the respiration of cell was stimulated with hemin. Accordingly, nisin production was enhanced 3.1 fold in fed-batch fermentation using hemin. In conclusion the nisin production of L. lactis N8 was enhanced extensively as a result of increasing the biomass by stimulating the cell respiration with adding the hemin in the fed-batch fermentation. © 2015 American Institute of Chemical Engineers.

  3. Contraceptive Sponge

    Science.gov (United States)

    ... cause: Vaginal irritation or dryness Urinary tract or vaginal infection An increased risk of contracting STIs Toxic shock ... 24 hours to reduce the risk of an infection. Remove the contraceptive ... If your vaginal muscles are still holding the contraceptive sponge tightly, ...

  4. Importance of consumer perceptions in fiber-enriched food products. A case study with sponge cakes.

    Science.gov (United States)

    Tarrega, Amparo; Quiles, Amparo; Morell, Pere; Fiszman, Susana; Hernando, Isabel

    2017-02-22

    Sponge cakes enriched with fiber from different sources (maltodextrin, wheat, apple, blackcurrant and a mixture of potato and Plantago ovata) were studied. Profiling of the different cakes was carried out, first using a check-all-that-apply (CATA) question then evaluating the consumers' likings using a hedonic scale. The consumers also completed a nutrition knowledge (NK) questionnaire that was used to classify them according to their NK level. The instrumental texture of the cakes was evaluated by the texture profile analysis (TPA) method. The consumers' response was not linked to their NK level, but it mainly depended on the importance they gave to the cakes' distinctive sensory characteristics. In general, liking increased for samples considered easy to chew, spongy, soft and sweet, and decreased for samples perceived as tasteless, dry or having a fruity or an odd flavor. The sponge cakes containing maltodextrin or wheat fiber, which mostly resembled a conventional cake, were the most liked in general. Those containing the other three fibers were rejected by part of the consumers, for being tasteless in the case of potato plus Plantago ovata fiber, for being dry and doughy in the case of apple fiber and for having an odd flavor in the case of blackcurrant fiber.

  5. On the batch cut and products quality procedures in multi-product pipelines; Corte de interfaces e integridade de produtos em polidutos e terminais

    Energy Technology Data Exchange (ETDEWEB)

    Tepedino, A [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil); Baptista, R M [PETROBRAS, Rio de Janeiro, RJ (Brazil); Rachid, F B Freitas; Araujo, J.H.Carneiro de [Universidade Federal Fluminense, Niteroi, RJ (Brazil)

    2005-07-01

    The increasing complexity in specifying the quality of petroleum products has a great impact on the way it is transported in pipelines so as to avoid degradation and contamination. This work aims to presenting a global and preliminary approach about the transport of petroleum products in batches in pipelines and in multi-product terminal lines towards its automation. Emphasis is placed on the batch formation and batch cut procedures, as well as on the features associated with the installation and instrumentation required to perform this task. The main factors responsible for increasing the mixing volume in batch transfers and for threatening the integrity of the products are highlighted. Several effective measures are pointed out to minimize the mixing volume generation. Among other benefits, they can promote reduction in the cost of transportation and in the amount of degraded products, simplified operational procedures and a minimum need for stocks to cope with its logistic. (author)

  6. Optimization of culture conditions for biological hydrogen production by Citrobacter freundii CWBI952 in batch, sequenced-batch and semicontinuous operating mode

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Christopher; Hiligsmann, Serge; Beckers, Laurent; Masset, Julien; Thonart, Philippe [Walloon Centre of Industrial Biology, Bd du Rectorat, 29, B.40 - P.70, B-4000 Liege (Belgium); Wilmotte, Annick [Center for Protein Engineering, Institute of Chemistry, B.6-P.14, B-4000 Liege (Belgium)

    2010-02-15

    Investigations were carried out to determine the effect of the pH, the nitrogen source, iron and the dilution rate (h{sup -1}) on fermentative hydrogen production from glucose by the newly isolated strain Citrobacter freundii CWBI952. The hydrogen production rate (HPR), hydrogen yield, biomass and soluble metabolites were monitored at 30 C in 100 mL serum bottles and in a 2.3 L bioreactor operated in batch, sequenced-batch and semicontinuous mode. The results indicate that hydrogen production activity, formate biosynthesis and glucose intake rates are very sensitive to the culture pH, and that additional formate bioconversion and production of hydrogen with lower biomass yields can be obtained at pH 5.9. In a further series of cultures casein peptone was replaced by (NH{sub 4}){sub 2}SO{sub 4}, a low cost alternative nitrogen source. The ammonia-based substitute was found to be suitable for H{sub 2} production when a concentration of 0.045 g/L FeSO{sub 4} was provided. Optimal overall performances (ca. an HPR of 33.2 mL H{sub 2}/L h and a yield of 0.83mol{sub H{sub 2}}/mol{sub glucose}) were obtained in the semicontinuous culture applying the previously optimized parameters for pH, nitrogen, and iron with a dilution rate of 0.012 h{sup -1} and degassing of biogas by N{sub 2} at a 28 mL/min flow rate. (author)

  7. Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor.

    Science.gov (United States)

    Deepanraj, B; Sivasubramanian, V; Jayaraj, S

    2015-11-01

    In the present study, biogas production from food waste through anaerobic digestion was carried out in a 2l laboratory-scale batch reactor operating at different temperatures with a hydraulic retention time of 30 days. The reactors were operated with a solid concentration of 7.5% of total solids and pH 7. The food wastes used in this experiment were subjected to characterization studies before and after digestion. Modified Gompertz model and Logistic model were used for kinetic study of biogas production. The kinetic parameters, biogas yield potential of the substrate (B), the maximum biogas production rate (Rb) and the duration of lag phase (λ), coefficient of determination (R(2)) and root mean square error (RMSE) were estimated in each case. The effect of temperature on biogas production was evaluated experimentally and compared with the results of kinetic study. The results demonstrated that the reactor with operating temperature of 50°C achieved maximum cumulative biogas production of 7556ml with better biodegradation efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The effects of furfural on ethanol production by Saccharomyces cerevisiae in batch culture

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, L.J.; Vega, J.L.; Klasson, K.T.; Clausen, E.C.; Gaddy, J.L. (Arkansas Univ., Fayetteville, AR (US). Dept. of Chemical Engineering)

    1992-01-01

    Browning reaction products such as furfural and 5-hydroxy-methyl-furfural (HMF) have been shown to inhibit microbial growth and metabolism in ethanol fermentations using Saccharomyces cerevisiae. This paper quantifies the extent of furfural inhibition and yeast growth, glucose utilization, and ethanol production as a function of inoculum size (0.1-9 gl{sup -1}). Batch culture experiments were conducted using furfural concentrations in the range of 0 to 2.0 gl{sup -1} and mathematical correlations were proposed and tested. The results indicate that the specific growth rate decreased with increasing furfural concentration and inoculum size, while the maintenance coefficients were unaffected. The apparent and true cell yield coefficients on glucose were depressed with the addition of furfural. Specific production rates were unaffected at the furfural levels used but ethanol inhibition was apparent. The specific production rate was less inhibited by ethanol at higher inoculum sizes. Global specific productivities were not affected by the presence of furfural. At a 0.1 gl{sup -1} inoculum size, furfural depletion was complete within 15-20 h, depending upon the furfural concentration employed. At higher incoculum levels (2-9 gl{sup -1}), all furfural was depleted in less than 5 h. (author).

  9. Advanced control of dissolved oxygen concentration in fed batch cultures during recombinant protein production.

    Science.gov (United States)

    Kuprijanov, A; Gnoth, S; Simutis, R; Lübbert, A

    2009-02-01

    Design and experimental validation of advanced pO(2) controllers for fermentation processes operated in the fed-batch mode are described. In most situations, the presented controllers are able to keep the pO(2) in fermentations for recombinant protein productions exactly on the desired value. The controllers are based on the gain-scheduling approach to parameter-adaptive proportional-integral controllers. In order to cope with the most often appearing distortions, the basic gain-scheduling feedback controller was complemented with a feedforward control component. This feedforward/feedback controller significantly improved pO(2) control. By means of numerical simulations, the controller behavior was tested and its parameters were determined. Validation runs were performed with three Escherichia coli strains producing different recombinant proteins. It is finally shown that the new controller leads to significant improvements in the signal-to-noise ratio of other key process variables and, thus, to a higher process quality.

  10. Batch production of FAEE-biodiesel using a liquid lipase formulation

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard; Nordblad, Mathias; Nielsen, Per Munk

    2014-01-01

    % was achieved by combining a 50% stoichiometric excess of ethanol (1.5 equivalents) with 20% (w/w) water relative to the oil. The rate of reaction was directly proportional to the amount of lipase added in this system (500-2000 LU per gram oil). Addition of glycerol to the initial reaction mixture reduced...... the initial reaction rate, but also improved the final yield of biodiesel by suppressing hydrolysis. © 2014 Published by Elsevier B.V....... competitive option for the conversion of oils and fats to biodiesel. This study investigates the impact of several process parameters on the production of fatty acid ethyl esters from rapeseed oil in a pure batch process on the liquid lipase formulation Callera™ Trans L. Oil conversion in excess of 98...

  11. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian

    2015-01-01

    optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylationrelated product quality. In this work, different fed-batch processes with two chemically defined proprietary media......Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process...... and glutamine concentrations and uptake rates were positively correlated with intracellular UDP-Gal availability. All these findings are important for optimization of fed-batch culture for improving IgG production and directing glycosylation quality....

  12. Clinical efficacy and health implications of inconsistency in different production batches of antimycotic drugs in a developing country.

    Science.gov (United States)

    Ogunshe, Adenike A O; Adepoju, Adedayo A; Oladimeji, Modupe E

    2011-01-01

    This study aimed at evaluating the in vitro efficacy and health implications of inconsistencies in different production batches of antimycotic drugs. in vitro susceptibility profiles of 36 Candida spp. - C. albicans (19.4%), C. glabrata (30.6%), C. tropicalis (33.3%), and C. pseudotropicalis (16.7%) - obtained from human endocervical and high vaginal swabs (ECS/HVS) to two different batches (B1 and B2) of six antimycotic drugs (clotrimazole, doxycycline, iconazole, itraconazole, metronidazole and nystatin) was determined using modified agar well-diffusion method. None of the Candida strains had entirely the same (100%) susceptibility / resistance profiles in both batches of corresponding antimycotic drugs; while, different multiple antifungal susceptibility (MAS) rates were also recorded in batches 1 and 2 for corresponding antifungals. Only 14.3%, 27.3%, 16.7-33.3%, and 8.3-25.0% of C. albicans, C. glabrata, C. pseudotropicalis, and C. tropicalis strains, respectively, had similar susceptibility/resistance profiles toward coressponding antifungal agents in both batches; while up to 57.1% of C. albicans, 45.5% of C. glabrata, 66.7% of C. pseudotropicalis, and 50.0% of C. tropicalis strains were susceptible to one batch of antifungals but resistant to corresponding antifungals in the second batch. As high as 71.4% (C. albicans), 73.0% (C. glabrata), 50.0% (C. pseudotropicalis), and 66.74% (C. tropicalis) strains had differences of ≥ 10.0 mm among corresponding antimycotic agents. Candida strains exhibited different in vitro susceptibility / resistance patterns toward two batches of corresponding antimycotic agents, which has clinical implications on the efficacy of the drugs and treatment of patients. The findings of the present study will be of benefit in providing additional information in support of submission of drugs for registration to appropriate regulatory agencies.

  13. Batch fermentation of whey ultra filtrate by Lactobacillus helveticus for lactic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D; Goulet, J; Le Duy, Q

    1986-06-01

    Cheese whey ultrafiltrate (WU) was used as the carbon source for the production of lactic acid by batch fermentation with Lactobacillus helveticus strain milano. The fermentation was conducted in a 400 ml fermentor at an agitation rate of 200 revolutions per minute and under conditions of controlled temperature (42 degrees C) and pH. In the whey ultrafiltrate-corn steep liquor (WU-CSL) medium, the optimal pH for fermentation was 5.9. Inoculum propagated in skim milk (SM) medium or in lactose synthetic (LS) medium resulted in the best performance in fermentation (in terms of growth, lactic acid production, lactic acid yield and maximum productivity of lactic acid), as compared to that propagated in glucose synthetic (GS) medium. The yeast extract ultrafiltrate (YEU) used as the nitrogen/growth factor source in the WU medium at 1.5% (w/v) gave the highest maximum productivity of lactic acid of 2.70 g/l-h, as compared to the CSL and the tryptone ultrafiltrate (TU). 27 references.

  14. Fed batch fermentation scale up in the production of recombinant streptokinase

    Directory of Open Access Journals (Sweden)

    Salvador Losada-Nerey

    2017-01-01

    Full Text Available Due to the high international demand of the recombinant streptokinase (Skr produced at the National Center for Bioproducts (BioCen, it was necessary to increase the production capacity of the drug, since the current production volume does not cover the demand. A scale up of the process of fermentation of the recombinant streptokinase was made using a fed batch culture, from the bank scale towards a 300L fermenter. The scaling criteria used were: the intensive variables of the process, the relationships of volumes of the fermentation medium and inoculum, the volumetric coefficient of oxygen transfer and air volume to liquid flow relationship which were kept constant. With this scale up procedure it was possible to reproduce the results obtained at the bank scale of and to double the biomass production volume with the same equipment, fulfilling all the quality requirements of the product and to cover the current demand of the market. Techno-economic indicators demonstrated the feasibility of this option.

  15. Bioaggregate of photo-fermentative bacteria for enhancing continuous hydrogen production in a sequencing batch photobioreactor.

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Rui-Qing; Ding, Jie; Ren, Hong-Yu; Zhou, Xu; Ren, Nan-Qi

    2015-11-05

    Hydrogen recovery through solar-driven biomass conversion by photo-fermentative bacteria (PFB) has been regarded as a promising way for sustainable energy production. However, a considerable fraction of organic substrate was consumed for the growth of PFB as biocatalysts, furthermore, these PFB were continuously washed out from the photobioreactor in continuous operation because of their poor flocculation. In this work, PFB bioaggregate induced by L-cysteine was applied in a sequencing batch photobioreactor to enhance continuous hydrogen production and reduce biomass washout. The effects of the hydraulic retention time (HRT), influent concentration and light intensity on hydrogen production of the photobioreactor were investigated. The maximum hydrogen yield (3.35 mol H2/mol acetate) and production rate (1044 ml/l/d) were obtained at the HRT of 96 h, influent concentration of 3.84 g COD/l, and light intensity of 200 W/m(2). With excellent settling ability, biomass accumulated in the photobioreactor and reached 2.15 g/l under the optimum conditions. Structural analysis of bioaggregate showed that bacterial cells were covered and tightly linked together by extracellular polymeric substances, and formed a stable structure. Therefore, PFB bioaggregate induced by L-cysteine is an efficient strategy to improve biomass retention capacity of the photobioreactor and enhance hydrogen recovery efficiency from organic wastes.

  16. Bioaggregate of photo-fermentative bacteria for enhancing continuous hydrogen production in a sequencing batch photobioreactor

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Rui-Qing; Ding, Jie; Ren, Hong-Yu; Zhou, Xu; Ren, Nan-Qi

    2015-11-01

    Hydrogen recovery through solar-driven biomass conversion by photo-fermentative bacteria (PFB) has been regarded as a promising way for sustainable energy production. However, a considerable fraction of organic substrate was consumed for the growth of PFB as biocatalysts, furthermore, these PFB were continuously washed out from the photobioreactor in continuous operation because of their poor flocculation. In this work, PFB bioaggregate induced by L-cysteine was applied in a sequencing batch photobioreactor to enhance continuous hydrogen production and reduce biomass washout. The effects of the hydraulic retention time (HRT), influent concentration and light intensity on hydrogen production of the photobioreactor were investigated. The maximum hydrogen yield (3.35 mol H2/mol acetate) and production rate (1044 ml/l/d) were obtained at the HRT of 96 h, influent concentration of 3.84 g COD/l, and light intensity of 200 W/m2. With excellent settling ability, biomass accumulated in the photobioreactor and reached 2.15 g/l under the optimum conditions. Structural analysis of bioaggregate showed that bacterial cells were covered and tightly linked together by extracellular polymeric substances, and formed a stable structure. Therefore, PFB bioaggregate induced by L-cysteine is an efficient strategy to improve biomass retention capacity of the photobioreactor and enhance hydrogen recovery efficiency from organic wastes.

  17. Batch Test Screening of Industrial Product/Byproduct Filter Materials for Agricultural Drainage Water Treatment

    Directory of Open Access Journals (Sweden)

    Barry J. Allred

    2017-10-01

    Full Text Available Filter treatment may be a viable means for removing the nitrate (NO3−, phosphate (PO43−, and pesticides discharged with agricultural drainage waters that cause adverse environmental impacts within the U.S. on local, regional, and national scales. Laboratory batch test screening for agricultural drainage water treatment potential was conducted on 58 industrial product/byproduct filter materials grouped into six categories: (1 high carbon content media; (2 high iron content media; (3 high aluminum content media; (4 surfactant modified clay/zeolite; (5 coal combustion residuals; and (6 spent foundry sands. Based on a percent contaminant removal criteria of 75% or greater, seven industrial products/byproducts were found to meet this standard for NO3− alone, 44 met this standard for PO43−, and 25 met this standard for the chlorinated triazine herbicide, atrazine. Using a 50% or greater contaminant removal criteria, five of the industrial product/byproduct filter materials exhibited potential for removing NO3−, PO43−, and atrazine together; eight showed capability for combined NO3− and PO43− removal; 21 showed capability for combined PO43− and atrazine removal; and nine showed capability for combined NO3− and atrazine removal. The results of this study delineated some potential industrial product/byproduct filter materials for drainage water treatment; however, a complete feasibility evaluation for drainage water treatment of any of these filter materials will require much more extensive testing.

  18. Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture.

    Science.gov (United States)

    Liang, Shaobo; McDonald, Armando G; Coats, Erik R

    2015-11-01

    Lactic acid (LA) is a necessary industrial feedstock for producing the bioplastic, polylactic acid (PLA), which is currently produced by pure culture fermentation of food carbohydrates. This work presents an alternative to produce LA from potato peel waste (PPW) by anaerobic fermentation in a sequencing batch reactor (SBR) inoculated with undefined mixed culture from a municipal wastewater treatment plant. A statistical design of experiments approach was employed using set of 0.8L SBRs using gelatinized PPW at a solids content range from 30 to 50 g L(-1), solids retention time of 2-4 days for yield and productivity optimization. The maximum LA production yield of 0.25 g g(-1) PPW and highest productivity of 125 mg g(-1) d(-1) were achieved. A scale-up SBR trial using neat gelatinized PPW (at 80 g L(-1) solids content) at the 3 L scale was employed and the highest LA yield of 0.14 g g(-1) PPW and a productivity of 138 mg g(-1) d(-1) were achieved with a 1 d SRT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Vaginal sponge and spermicides

    Science.gov (United States)

    ... counter; Contraceptives - over the counter; Family planning - vaginal sponge; Contraception - vaginal sponge ... Spermicides and vaginal sponges do not work as well at preventing pregnancy as some other forms of birth control. However, using a spermicide ...

  20. An Overview on Marine Sponge-Symbiotic Bacteria as Unexhausted Sources for Natural Product Discovery

    Directory of Open Access Journals (Sweden)

    Candice M. Brinkmann

    2017-09-01

    Full Text Available Microbial symbiotic communities of marine macro-organisms carry functional metabolic profiles different to the ones found terrestrially and within surrounding marine environments. These symbiotic bacteria have increasingly been a focus of microbiologists working in marine environments due to a wide array of reported bioactive compounds of therapeutic importance resulting in various patent registrations. Revelations of symbiont-directed host specific functions and the true nature of host-symbiont interactions, combined with metagenomic advances detecting functional gene clusters, will inevitably open new avenues for identification and discovery of novel bioactive compounds of biotechnological value from marine resources. This review article provides an overview on bioactive marine symbiotic organisms with specific emphasis placed on the sponge-associated ones and invites the international scientific community to contribute towards establishment of in-depth information of the environmental parameters defining selection and acquisition of true symbionts by the host organisms.

  1. Biogas production from anaerobic codigestion of cowdung and elephant grass (Pennisetum Purpureum) using batch digester

    Science.gov (United States)

    Haryanto, Agus; Hasanudin, Udin; Afrian, Chandra; Zulkarnaen, Iskandar

    2018-03-01

    This study aimed at determining biogas production from codigestion of Elephant grass and cowdung using batch digester. Fresh grass was manually chopped with a maximum length of 3 cm. Chopped grass (25 kg) was perfectly mixed with fresh cowdung (25 kg). The mixture was introduced into a 220-liter batch drum digester. The substrate was diluted with water at different rates (P1 = 50 L, P2 = 75 L, and P3 = 100 L) and was stirred thoroughly. Six digesters were prepared as duplicate for each treatment. Two other digesters containing only 25 kg cowdung diluted with 25 L water were also provided as control treatment (P0). The digesters were air tightly sealed for 70 days. Observation was conducted on daily temperature, substrate pH (initial and final), TS and VS content, biogas yield and biogas composition. Results showed that final pH of grass containing substrate was in the acidic range, namely 4.50, 4.62, 6.82, whereas that of control (P0) was normal with pH of 7.30. Digester with substrate composition 25:25:100 (cowdung:grass:water) produced the highest biogas total (524.3 L). Biogas yield of codigestion, however, was much lower as compared to that of control, namely 7.35, 16.75, and 111.72 L/kg VS r respectively for treatment P1, P2, P3. with dilution rate of 50, 75, and 100 L. Biogas produced from control digester had methane content of 53.88%. In contrast, biogas resulted from all treatments contained low methane (the highest was 31.37%). Methane yield of 39.3 L/kg TS removal was achieved from digester with dilution 100 L (P3). Mechanical pretreatment is suggested to break Elephant grass down into smaller particles prior to introducing it into the digestion process.

  2. Inhibitory Activity of Marine Sponge-Derived Natural Products against Parasitic Protozoa

    Directory of Open Access Journals (Sweden)

    Deniz Tasdemir

    2010-01-01

    Full Text Available In this study, thirteen sponge-derived terpenoids, including five linear furanoterpenes: furospinulosin-1 (1, furospinulosin-2 (2, furospongin-1 (3, furospongin-4 (4, and demethylfurospongin-4 (5; four linear meroterpenes: 2-(hexaprenylmethyl-2-methylchromenol (6, 4-hydroxy-3-octaprenylbenzoic acid (7, 4-hydroxy-3-tetraprenyl-phenylacetic acid (8, and heptaprenyl-p-quinol (9; a linear triterpene, squalene (10; two spongian-type diterpenes dorisenone D (11 and 11β-acetoxyspongi-12-en-16-one (12; a scalarane-type sesterterpene; 12-epi-deoxoscalarin (13, as well as an indole alkaloid, tryptophol (14 were screened for their in vitro activity against four parasitic protozoa; Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum. Cytotoxic potential of the compounds on mammalian cells was also assessed. All compounds were active against T. brucei rhodesiense, with compound 8 being the most potent (IC50 0.60 μg/mL, whereas 9 and 12 were the most active compounds against T. cruzi, with IC50 values around 4 μg/mL. Compound 12 showed the strongest leishmanicidal activity (IC50 0.75 µg/mL, which was comparable to that of miltefosine (IC50 0.20 µg/mL. The best antiplasmodial effect was exerted by compound 11 (IC50 0.43 µg/mL, followed by compounds 7, 10, and 12 with IC50 values around 1 µg/mL. Compounds 9, 11 and 12 exhibited, besides their antiprotozoal activity, also some cytotoxicity, whereas all other compounds had low or no cytotoxicity towards the mammalian cell line. This is the first report of antiprotozoal activity of marine metabolites 1–14, and points out the potential of marine sponges in discovery of new antiprotozoal lead compounds.

  3. The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus.

    Science.gov (United States)

    Nancib, Aicha; Nancib, Nabil; Boubendir, Abdelhafid; Boudrant, Joseph

    2015-01-01

    The production of lactic acid from date juice by Lactobacillus caseisubsp. rhamnosus in batch and fed-batch cultures has been investigated. The fed-batch culture system gave better results for lactic acid production and volumetric productivity. The aim of this work is to determine the effects of the feeding rate and the concentration of the feeding medium containing date juice glucose on the cell growth, the consumption of glucose and the lactic acid production by Lactobacillus casei subsp. rhamnosus in fed-batch cultures. For this study, two concentrations of the feeding medium (62 and 100 g/L of date juice glucose) were tested at different feeding rates (18, 22, 33, 75 and 150 mL/h). The highest volumetric productivity (1.3 g/L.h) and lactic acid yield (1.7 g/g) were obtained at a feeding rate of 33 mL/h and a date juice glucose concentration of 62 g/L in the feeding medium. As a result, most of the date juice glucose was completely utilised (residual glucose 1 g/L), and a maximum lactic acid production level (89.2 g/L) was obtained.

  4. Potential of biogas production with young bulls manure on batch biodigesters

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Monica Sarolli S. de M.; Costa, Luiz A. de Mendonca [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil)], E-mail: monicas@unioeste.br; Lucas Junior, Jorge de [Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias

    2008-07-01

    The feedlot system concerning the young bull model allows that animals gain weight in a shorter time since there is higher daily intake of protein when compared to fiber. This change on animals' diet alters particularly manure characteristics and thus interferes on performance of biological systems of treatment. This study aimed at evaluating the potential of biogas production using manure of young bulls that received two different diets on batch biodigesters under three temperatures, with and without inoculum use. The results showed that manure from animals that received more protein on diet (80% concentrate + 20% roughage) had greater reductions on volatile solids when submitted to anaerobic biodigestion. Although the speed of biogas production was superior on treatments with inoculum, it was observed negative effect on inoculum use. There was no effect on temperature during biogas production. Regarding diet effect, manure of animals fed on diet with more protein produced larger amounts of biogas per kg of total added solids (0.2543) when compared to those who received less protein on diet (65% concentrate + 35% roughage), which meant 0.1001 m{sup 3} biogas/kg/total solids. (author)

  5. Biogas Production from Batch Anaerobic Co-Digestion of Night Soil with Food Waste

    Directory of Open Access Journals (Sweden)

    Assadawut Khanto

    2016-01-01

    Full Text Available The objective of this study is to investigate the biogas production from Anaerobic Co-Digestion of Night Soil (NS with Food Waste (FW. The batch experiment was conducted through the NS and FW with a ratio of 70:30 by weight. The experiment is mainly evaluated by the characteristic of Co-Digestion and Biogas Production. In addition of food waste was inflating the COD loading from 17,863 to 42,063 mg/L which is 135 % increased. As the result, it shows that pH has dropped off in the beginning of 7-day during digestion and it was slightly increased into the range of optimum anaerobic condition. After digestion of the biogas production was 2,184 l and 56.5 % of methane fraction has obtained within 31 days of experimentation. The investigation of Biochemical Methane Potential (BMP and Specific Methanogenic Activities (SMA were highly observed. And the results were obtained by 34.55 mL CH4/gCODremoval and 0.38 g CH4-COD/gVSS-d. While the average COD removal from the 4 outlets got 92%, 94%, 94 % and 92 % respectively. However, the effluent in COD concentration was still high and it needs further treatment before discharge.

  6. Improved production of an enzyme that hydrolyses raw yam starch by Penicillium sp. S-22 using fed-batch fermentation.

    Science.gov (United States)

    Sun, Hai-Yan; Ge, Xiang-Yang; Zhang, Wei-Guo

    2006-11-01

    A newly isolated strain, Penicillium sp. S-22, was used to produce an enzyme that hydrolyses raw yam starch [raw yam starch digesting enzyme (RYSDE)]. The enzyme activity and overall enzyme productivity were respectively 16 U/ml and 0.19 U/ml h in the batch culture. The enzyme activity increased to 85 U/ml by feeding of partially hydrolyzed raw yam starch. When a mixture containing partially hydrolyzed raw yam starch and peptone was fed by a pH-stat strategy, the enzyme activity reached 366 U/ml, 23-fold of that obtained in the batch culture, and the overall productivity reached 3.4 U/ml h, which was 18-fold of that in the batch culture.

  7. Fermentative hydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor

    Science.gov (United States)

    Wu, Xiao

    2009-12-01

    The idea of coupling renewable energy production and agricultural waste management inspired this thesis. The production of an important future fuel---hydrogen gas---from high strength waste stream-liquid swine manure---using anaerobic treatment processes makes the most sustainable sense for both wastewater utilization and energy generation. The objectives of this thesis were to develop a fermentation process for converting liquid swine manure to hydrogen and to maximize hydrogen productivity. Anaerobic sequencing batch reactor (ASBR) systems were constructed to carry out this fermentation process, and seed sludge obtained from a dairy manure anaerobic digester and pretreated by nutrient acclimation, heat and pH treatment was used as inoculum. High system stability was indicated by a short startup period of 12 days followed by stable hydrogen production, and successful sludge granulation occurred within 23 days of startup at a hydraulic retention time (HRT) of 24 hours. Operation at a progressively decreasing HRT from 24 to 8h gave rise to an increasing biogas production rate from 15.2-34.4L/d, while good linear relationships were observed between both total biogas and hydrogen production rates correlated to HRT, with R2 values of 0.993 and 0.997, respectively. The maximum hydrogen yield of 1.63 mol-H 2/mol-hexose-feed occurred at HRT of 16h, while the HRT of 12h was highly suggested to achieve both high production rate and efficient yield. Hexose utilization efficiencies over 98%, considerable hydrogen production rate up to 14.3 L/d and hydrogen percentage of off-gas up to 43% (i.e., a CO 2/H2 ratio of 1.2) with the absence of CH4 production throughout the whole course of experiment at a pH of 5.0 strongly validated the feasibility of the fermentative H2 production from liquid swine manure using an ASBR system. Ethanol as well as acetic, butyric and valeric acids were produced in the system accompanying the hydrogen production, with acetic acid being the dominant

  8. High solid fed-batch butanol fermentation with simultaneous product recovery: part II - process integration.

    Science.gov (United States)

    In these studies liquid hot water (LHW) pretreated and enzymatically hydrolyzed Sweet Sorghum Bagasse (SSB) hydrolyzates were fermented in a fed-batch reactor. As reported in the preceding paper, the culture was not able to ferment the hydrolyzate I in a batch process due to presence of high level o...

  9. Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation

    International Nuclear Information System (INIS)

    Kafle, Gopi Krishna; Kim, Sang Hun

    2013-01-01

    Highlights: ► Apple waste (AW) was co-digested with swine manure (SM). ► Mixture of AW and SM produced a higher biogas yield than SM only. ► Mixture of AW and SM produced a higher biogas yield at 55 °C than at 36.5 °C. ► Modified Gompertz model best fitted to the substrates used. ► Positive synergetic effect up to 33% AW during continuous digestion. -- Abstract: This study evaluated the performance of anaerobic digesters using a mixture of apple waste (AW) and swine manure (SM). Tests were performed using both batch and continuous digesters. The batch test evaluated the gas potential, gas production rate of the AW and SM (Experiment I), and the effect of AW co-digestion with SM (33:67,% volatile solids (VSs) basis) (Experiment II) at mesophilic and thermophilic temperatures. The first-order kinetic model and modified Gompertz model were also evaluated for methane yield. The continuous test evaluated the performance of a single stage completely stirred tank reactor (CSTR) with different mixture ratios of AW and SM at mesophilic temperature. The ultimate biogas and methane productivity of AW in terms of total chemical oxygen demand (TCOD) was determined to be 510 and 252 mL/g TCOD added, respectively. The mixture of AW and SM improved the biogas yield by approximately 16% and 48% at mesophilic and thermophilic temperatures, respectively, compared to the use of SM only, but no significant difference was found in the methane yield. The difference between the predicted and measured methane yield was higher with a first order kinetic model (4.6–18.1%) than with a modified Gompertz model (1.2–3.4%). When testing continuous digestion, the methane yield increased from 146 to 190 mL/g TCOD added when the AW content in the feed was increased from 25% to 33% (VS basis) at a constant organic loading rate (OLR) of 1.6 g VS/L/d and a hydraulic retention time (HRT) of 30 days. However, the total volatile fatty acids (TVFA) accumulation increased rapidly and the p

  10. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guanghua [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China); Guangzhou municipal engineering design and research institute, Guangzhou, 510060 (China); Sui Jun [Guangzhou municipal engineering design and research institute, Guangzhou, 510060 (China); Shen Huishan; Liang Shukun [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China); He Xiangming; Zhang Minju; Xie Yizhong; Li Lingyun [Nanhai Limited Liability Development Company, Foshan, 528200 (China); Hu Yongyou, E-mail: ppyyhu@scut.edu.cn [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China) and State Key Lab of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology; Guangzhou, 510640 (China)

    2011-08-15

    In this study, chlorine dioxide (ClO{sub 2}) instead of chlorine (Cl{sub 2}) was proposed to minimize the formation of chlorine-based by-products and was incorporated into a sequencing batch reactor (SBR) for excess sludge reduction. The results showed that the sludge disintegrability of ClO{sub 2} was excellent. The waste activated sludge at an initial concentration of 15 g MLSS/L was rapidly reduced by 36% using ClO{sub 2} doses of 10 mg ClO{sub 2}/g dry sludge which was much lower than that obtained using Cl{sub 2} based on similar sludge reduction efficiency. Maximum sludge disintegration was achieved at 10 mg ClO{sub 2}/g dry sludge for 40 min. ClO{sub 2} oxidation can be successfully incorporated into a SBR for excess sludge reduction without significantly harming the bioreactor performance. The incorporation of ClO{sub 2} oxidation resulted in a 58% reduction in excess sludge production, and the quality of the effluent was not significantly affected.

  11. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation

    International Nuclear Information System (INIS)

    Wang Guanghua; Sui Jun; Shen Huishan; Liang Shukun; He Xiangming; Zhang Minju; Xie Yizhong; Li Lingyun; Hu Yongyou

    2011-01-01

    In this study, chlorine dioxide (ClO 2 ) instead of chlorine (Cl 2 ) was proposed to minimize the formation of chlorine-based by-products and was incorporated into a sequencing batch reactor (SBR) for excess sludge reduction. The results showed that the sludge disintegrability of ClO 2 was excellent. The waste activated sludge at an initial concentration of 15 g MLSS/L was rapidly reduced by 36% using ClO 2 doses of 10 mg ClO 2 /g dry sludge which was much lower than that obtained using Cl 2 based on similar sludge reduction efficiency. Maximum sludge disintegration was achieved at 10 mg ClO 2 /g dry sludge for 40 min. ClO 2 oxidation can be successfully incorporated into a SBR for excess sludge reduction without significantly harming the bioreactor performance. The incorporation of ClO 2 oxidation resulted in a 58% reduction in excess sludge production, and the quality of the effluent was not significantly affected.

  12. Control of algal production in a high rate algal pond: investigation through batch and continuous experiments.

    Science.gov (United States)

    Derabe Maobe, H; Onodera, M; Takahashi, M; Satoh, H; Fukazawa, T

    2014-01-01

    For decades, arid and semi-arid regions in Africa have faced issues related to water availability for drinking, irrigation and livestock purposes. To tackle these issues, a laboratory scale greywater treatment system based on high rate algal pond (HRAP) technology was investigated in order to guide the operation of the pilot plant implemented in the 2iE campus in Ouagadougou (Burkina Faso). Because of the high suspended solids concentration generally found in effluents of this system, the aim of this study is to improve the performance of HRAPs in term of algal productivity and removal. To determine the selection mechanism of self-flocculated algae, three sets of sequencing batch reactors (SBRs) and three sets of continuous flow reactors (CFRs) were operated. Despite operation with the same solids retention time and the similarity of the algal growth rate found in these reactors, the algal productivity was higher in the SBRs owing to the short hydraulic retention time of 10 days in these reactors. By using a volume of CFR with twice the volume of our experimental CFRs, the algal concentration can be controlled during operation under similar physical conditions in both reactors.

  13. The digester modification for biogas production from palm oil mill effluent by Fed-batch

    Science.gov (United States)

    Aznury, M.; Amin, J. M.; Hasan, A.; Harsyah, A.

    2018-03-01

    The purpose of this research is to biogas production in the digester modification equipment by Fed-batch of the palm oil mill effluent (POME) to determine the quality of POME after a treatment and the concentration of biogas that is formed every 24 hours within 10 days. The raw materials used are POME from PT Mitra Ogan, Tbk. In the initial stage is sedimentation process in the first digester tank at a flow rate 6 liters/minute and then observing the retention time of 24 hours. POME flowed into the second digester tank for fermentation process with the addition of active microbes seed every 24 hours to produce biogas. After the fermentation process is complete, POME flowed to third digester tank for water treatment stage before being released into the environment. COD content test values obtained after processing are 766, 362 and 350 mg/L, approximately. While the BOD value is 212.75; 125 and 110.9 mg/L, approximately. Biogas production for 10 days fermentation are 10.88% methane, 19.2% oxygen and 75.83% nitrogen, approximately.

  14. Who Produces Ianthelline? The Arctic Sponge Stryphnus fortis or its Sponge Epibiont Hexadella dedritifera: a Probable Case of Sponge-Sponge Contamination.

    Science.gov (United States)

    Cárdenas, Paco

    2016-04-01

    The bromotyrosine derivative ianthelline was isolated recently from the Atlantic boreo-arctic deep-sea sponge Stryphnus fortis, and shown to have clear antitumor and antifouling effects. However, chemosystematics, field observations, and targeted metabolic analyses (using UPLC-MS) suggest that ianthelline is not produced by S. fortis but by Hexadella dedritifera, a sponge that commonly grows on S. fortis. This case highlights the importance of combining taxonomic and ecological knowledge to the field of sponge natural products research.

  15. Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage.

    Science.gov (United States)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Wang, Wen; Zhou, Qi

    2010-02-01

    Anaerobic sludges, pretreated by chloroform, base, acid, heat and loading-shock, as well as untreated sludge were evaluated for their thermophilic fermentative hydrogen-producing characters from cassava stillage in both batch and continuous experiments. Results showed that the highest hydrogen production was obtained by untreated sludge and there were significant differences (pstillage.

  16. Multi products single machine economic production quantity model with multiple batch size

    Directory of Open Access Journals (Sweden)

    Ata Allah Taleizadeh

    2011-04-01

    Full Text Available In this paper, a multi products single machine economic order quantity model with discrete delivery is developed. A unique cycle length is considered for all produced items with an assumption that all products are manufactured on a single machine with a limited capacity. The proposed model considers different items such as production, setup, holding, and transportation costs. The resulted model is formulated as a mixed integer nonlinear programming model. Harmony search algorithm, extended cutting plane and particle swarm optimization methods are used to solve the proposed model. Two numerical examples are used to analyze and to evaluate the performance of the proposed model.

  17. Model-based intensification of a fed-batch microbial process for the maximization of polyhydroxybutyrate (PHB) production rate.

    Science.gov (United States)

    Penloglou, Giannis; Vasileiadou, Athina; Chatzidoukas, Christos; Kiparissides, Costas

    2017-08-01

    An integrated metabolic-polymerization-macroscopic model, describing the microbial production of polyhydroxybutyrate (PHB) in Azohydromonas lata bacteria, was developed and validated using a comprehensive series of experimental measurements. The model accounted for biomass growth, biopolymer accumulation, carbon and nitrogen sources utilization, oxygen mass transfer and uptake rates and average molecular weights of the accumulated PHB, produced under batch and fed-batch cultivation conditions. Model predictions were in excellent agreement with experimental measurements. The validated model was subsequently utilized to calculate optimal operating conditions and feeding policies for maximizing PHB productivity for desired PHB molecular properties. More specifically, two optimal fed-batch strategies were calculated and experimentally tested: (1) a nitrogen-limited fed-batch policy and (2) a nitrogen sufficient one. The calculated optimal operating policies resulted in a maximum PHB content (94% g/g) in the cultivated bacteria and a biopolymer productivity of 4.2 g/(l h), respectively. Moreover, it was demonstrated that different PHB grades with weight average molecular weights of up to 1513 kg/mol could be produced via the optimal selection of bioprocess operating conditions.

  18. Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Gregor Drago Zupančič

    2017-01-01

    Full Text Available Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer’s yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer’s yeast is higher than its energy value. Due to the increase of energy prices, brewer’s yeast has become of interest as energy substrate despite its difficult degradability in anaerobic conditions. The anaerobic co-digestion of brewer’s yeast and anaerobically treated brewery wastewater was studied using a pilot-scale anaerobic sequencing batch reactor (ASBR seeded with granular biomass. The experiments showed very good and stable operation with an organic loading rate of up to 8.0 kg/(m3·day, and with a maximum achieved organic loading rate of 13.6 kg/(m3·day in a single cycle. A specific biogas productivity of over 0.430 m3/kg of the total chemical oxygen demand (COD inserted, and total COD removal efficiencies of over 90 % were achieved. This study suggests that the brewer’s yeast can be successfully digested in an ASBR without adverse effects on the biogas production from brewer’s yeast/wastewater mixtures of up to 8 % (by volume. By using the brewer’s yeast in the ASBR process, the biogas production from brewery wastewater could be increased by 50 %.

  19. Continuous citric acid production in repeated-fed batch fermentation by Aspergillus niger immobilized on a new porous foam.

    Science.gov (United States)

    Yu, Bin; Zhang, Xin; Sun, Wenjun; Xi, Xun; Zhao, Nan; Huang, Zichun; Ying, Zhuojun; Liu, Li; Liu, Dong; Niu, Huanqing; Wu, Jinglan; Zhuang, Wei; Zhu, Chenjie; Chen, Yong; Ying, Hanjie

    2018-03-24

    The efficiency of current methods for industrial production of citric acid is limited. To achieve continuous citric acid production with enhanced yield and reduced cost, immobilized fermentation was employed in an Aspergillus niger 831 repeated fed-batch fermentation system. We developed a new type of material (PAF201), which was used as a carrier for the novel adsorption immobilization system. Hydrophobicity, pore size and concentration of carriers were researched in A. niger immobilization. The efficiency of the A. niger immobilization process was analyzed by scanning electron microscopy. Then eight-cycle repeated fed-batch cultures for citric acid production were carried out over 600 h, which showed stable production with maximum citric acid concentrations and productivity levels of 162.7 g/L and 2.26 g L -1  h -1 , respectively. Compared with some other literatures about citric acid yield, PAF201 immobilization system is 11.3% higher than previous results. These results indicated that use of the new adsorption immobilization system could greatly improve citric acid productivity in repeated fed-batch fermentation. Moreover, these results could provide a guideline for A.niger or other filamentous fungi immobilization in industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Sponge Hybridomas: Applications and Implications

    NARCIS (Netherlands)

    Pomponi, S.A.; Jevitt, A.; Patel, J.; Diaz, M.C.

    2013-01-01

    Many sponge-derived natural products with applications to human health have been discovered over the past three decades. In vitro production has been proposed as one biological alternative to ensure adequate supply of marine natural products for preclinical and clinical development of drugs.

  1. Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation.

    Science.gov (United States)

    Xie, Youping; Jin, Yiwen; Zeng, Xianhai; Chen, Jianfeng; Lu, Yinghua; Jing, Keju

    2015-03-01

    The C-phycocyanin generated in blue-green algae Arthrospira platensis is gaining commercial interest due to its nutrition and healthcare value. In this study, the light intensity and initial biomass concentration were manipulated to improve cell growth and C-phycocyanin production of A.platensis in batch cultivation. The results show that low light intensity and high initial biomass concentration led to increased C-phycocyanin accumulation. The best C-phycocyanin productivity occurred when light intensity and initial biomass concentration were 300μmol/m(2)/s and 0.24g/L, respectively. The fed-batch cultivation proved to be an effective strategy to further enhance C-phycocyanin production of A.platensis. The results indicate that C-phycocyanin accumulation not only requires nitrogen-sufficient condition, but also needs other nutrients. The highest C-phycocyanin content (16.1%), production (1034mg/L) and productivity (94.8mg/L/d) were obtained when using fed-batch strategy with 5mM medium feeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Property Assessment of Sponge Cake Added with Egg Replacer

    OpenAIRE

    Yaqiang He; Linlin Wang; Qian Lu

    2015-01-01

    Chicken egg which is always used in sponge cake production is likely to deteriorate during storage or transportation. This weakness prevents the wide use of chicken egg in sponge cake making. In order to solve this problem, egg replacer has been developed. In this study, effect of egg replacer on the property of sponge cake was analyzed. The result indicated egg replacer could improve the yield rate and specific volume of sponge cake. However, high content of egg replacer would negatively imp...

  3. Batch statistical process control of a fluid bed granulation process using in-line spatial filter velocimetry and product temperature measurements.

    Science.gov (United States)

    Burggraeve, A; Van den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T

    2011-04-18

    Fluid bed granulation is a batch process, which is characterized by the processing of raw materials for a predefined period of time, consisting of a fixed spraying phase and a subsequent drying period. The present study shows the multivariate statistical modeling and control of a fluid bed granulation process based on in-line particle size distribution (PSD) measurements (using spatial filter velocimetry) combined with continuous product temperature registration using a partial least squares (PLS) approach. Via the continuous in-line monitoring of the PSD and product temperature during granulation of various reference batches, a statistical batch model was developed allowing the real-time evaluation and acceptance or rejection of future batches. Continuously monitored PSD and product temperature process data of 10 reference batches (X-data) were used to develop a reference batch PLS model, regressing the X-data versus the batch process time (Y-data). Two PLS components captured 98.8% of the variation in the X-data block. Score control charts in which the average batch trajectory and upper and lower control limits are displayed were developed. Next, these control charts were used to monitor 4 new test batches in real-time and to immediately detect any deviations from the expected batch trajectory. By real-time evaluation of new batches using the developed control charts and by computation of contribution plots of deviating process behavior at a certain time point, batch losses or reprocessing can be prevented. Immediately after batch completion, all PSD and product temperature information (i.e., a batch progress fingerprint) was used to estimate some granule properties (density and flowability) at an early stage, which can improve batch release time. Individual PLS models relating the computed scores (X) of the reference PLS model (based on the 10 reference batches) and the density, respectively, flowabililty as Y-matrix, were developed. The scores of the 4 test

  4. Cell culture from sponges: pluripotency and immortality

    NARCIS (Netherlands)

    Caralt Bosch, de S.; Uriz, M.J.; Wijffels, R.H.

    2007-01-01

    Sponges are a source of compounds with potential pharmaceutical applications. In this article, methods of sponge cell culture for production of these bioactive compounds are reviewed, and new approaches for overcoming the problem of metabolite supply are examined. The use of embryos is proposed as a

  5. A comparative study of the physical and chemical properties of nano-sized ZnO particles from multiple batches of three commercial products

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hong [Commonwealth Scientific and Industrial Research Organisation, Manufacturing Flagship (Australia); Coleman, Victoria A. [National Measurement Institute Australia, Nanometrology Section (Australia); Casey, Phil S., E-mail: Phil.Casey@csiro.au [Commonwealth Scientific and Industrial Research Organisation, Manufacturing Flagship (Australia); Angel, Brad [Commonwealth Scientific and Industrial Research Organisation, Land and Water Flagship (Australia); Catchpoole, Heather J. [National Measurement Institute Australia, Nanometrology Section (Australia); Waddington, Lynne [Commonwealth Scientific and Industrial Research Organisation, Manufacturing Flagship (Australia); McCall, Maxine J. [Commonwealth Scientific and Industrial Research Organisation, Food and Nutrition Flagship (Australia)

    2015-02-15

    Given the broad commercial applications for ZnO nanomaterials, accurate attribution of physicochemical characteristics that induce toxic effects is particularly important. We report on the physicochemical properties of three commercial nano-ZnO products: Z-COTE and Z-COTE HP1 from BASF, and Nanosun from Micronisers, and, for reference, “bulk” ZnO from Sigma-Aldrich. Z-COTE, Nanosun and “bulk” consist of uncoated particles with different sizes, while Z-COTE HP1 consists of nanoparticles with a hydrophobic coating. Specific batches of these ZnO products were included in the OECD Sponsorship Programme to test manufactured nanomaterials. In order to identify properties potentially susceptible to variations between production runs, three additional batches of Z-COTE and Nanosun and two additional batches of Z-COTE HP1 were also investigated here. In general, all products showed little variation between batches for properties measured from powdered samples, but batch variations in the amount of surface coating were evident for the coated Z-COTE HP1. Properties measured with samples dispersed in liquids (agglomeration, photocatalytic activity, dissolution) were highly dependent on dispersion protocols, and this made it difficult to differentiate between differences due to dispersion and due to batches. However, batch-sensitive properties did appear to be present in Z-COTE and Z-COTE HP1 (photocatalytic activity), and Nanosun (dissolution). Intra-batch time and/or storage-dependent changes in the applied surface coating, noted specifically for the OECD batch of Z-COTE HP1, highlight the need for best practice when storing and accessing stocks of nano products. Awareness of inter-batch and intra-batch variability is essential for commercial applications and for nanotoxicological studies aimed at identifying links between physicochemical properties and any adverse effects in biological systems.

  6. A comparative study of the physical and chemical properties of nano-sized ZnO particles from multiple batches of three commercial products

    Science.gov (United States)

    Yin, Hong; Coleman, Victoria A.; Casey, Phil S.; Angel, Brad; Catchpoole, Heather J.; Waddington, Lynne; McCall, Maxine J.

    2015-02-01

    Given the broad commercial applications for ZnO nanomaterials, accurate attribution of physicochemical characteristics that induce toxic effects is particularly important. We report on the physicochemical properties of three commercial nano-ZnO products: Z-COTE and Z-COTE HP1 from BASF, and Nanosun from Micronisers, and, for reference, "bulk" ZnO from Sigma-Aldrich. Z-COTE, Nanosun and "bulk" consist of uncoated particles with different sizes, while Z-COTE HP1 consists of nanoparticles with a hydrophobic coating. Specific batches of these ZnO products were included in the OECD Sponsorship Programme to test manufactured nanomaterials. In order to identify properties potentially susceptible to variations between production runs, three additional batches of Z-COTE and Nanosun and two additional batches of Z-COTE HP1 were also investigated here. In general, all products showed little variation between batches for properties measured from powdered samples, but batch variations in the amount of surface coating were evident for the coated Z-COTE HP1. Properties measured with samples dispersed in liquids (agglomeration, photocatalytic activity, dissolution) were highly dependent on dispersion protocols, and this made it difficult to differentiate between differences due to dispersion and due to batches. However, batch-sensitive properties did appear to be present in Z-COTE and Z-COTE HP1 (photocatalytic activity), and Nanosun (dissolution). Intra-batch time and/or storage-dependent changes in the applied surface coating, noted specifically for the OECD batch of Z-COTE HP1, highlight the need for best practice when storing and accessing stocks of nano products. Awareness of inter-batch and intra-batch variability is essential for commercial applications and for nanotoxicological studies aimed at identifying links between physicochemical properties and any adverse effects in biological systems.

  7. BIOGAS PRODUCTION IN DAIRY CATTLE SYSTEMS, USING BATCH DIGESTERS WITH AND WITHOUT SOLIDS SEPARATION IN THE SUBSTRATES

    OpenAIRE

    Anjos, Isis Dos; Toneli, Juliana T. C. L.; Sagula, Alex L.; Lucas Junior, Jorge de

    2017-01-01

    ABSTRACT This research aimed to evaluate the biogas production during the anaerobic biodigestion process of dairy cattle manure, with and without solids separation. Sixteen biodigesters of the batch type were used, each one with 2L of capacity, supplied with manure in four different conditions: (1) pure manure, after washing the floors of the free stall system; (2) manure after the solids separator; (3) manure after the solids separator and sand decanter and (4) manure with the solid retained...

  8. Optimization of a fed-batch fermentation process for production of ...

    African Journals Online (AJOL)

    user

    2011-02-28

    Feb 28, 2011 ... fermentation. Overall, this study suggested that fed-batch fermentation can be successfully used to ... catalysts that catalyze their own synthesis. Enzymes are .... shows the amount of biomass (g l−1) in the fermentation broth of ...

  9. Technique of ethanol food grade production with batch distillation and dehydration using starch-based adsorbent

    Science.gov (United States)

    Widjaja, Tri; Altway, Ali; Ni'mah, Hikmatun; Tedji, Namira; Rofiqah, Umi

    2015-12-01

    Development and innovation of ethanol food grade production are becoming the reasearch priority to increase economy growth. Moreover, the government of Indonesia has established regulation for increasing the renewable energy as primary energy. Sorghum is cerealia plant that contains 11-16% sugar that is optimum for fermentation process, it is potential to be cultivated, especially at barren area in Indonesia. The purpose of this experiment is to learn about the effect of microorganisms in fermentation process. Fermentation process was carried out batchwise in bioreactor and used 150g/L initial sugar concentration. Microorganisms used in this experiment are Zymomonas mobilis mutation (A3), Saccharomyces cerevisiae and mixed of Pichia stipitis. The yield of ethanol can be obtained from this experiment. For ethanol purification result, distillation process from fermentation process has been done to search the best operation condition for efficiency energy consumption. The experiment for purification was divided into two parts, which are distillation with structured packing steel wool and adsorption (dehydration) sequencely. In distillation part, parameters evaluation (HETP and pressure drop) of distillation column that can be used for scale up are needed. The experiment was operated at pressure of 1 atm. The distillation stage was carried out at 85 °C and reflux ratio of 0.92 with variety porosities of 20%, 40%, and 60%. Then the adsorption process was done at 120°C and two types of adsorbent, which are starch - based adsorbent with ingredient of cassava and molecular sieve 3A, were used. The adsorption process was then continued to purify the ethanol from impurities by using activated carbon. This research shows that the batch fermentation process with Zymomonas mobilis A3 obtain higher % yield of ethanol of 40,92%. In addition to that, for purification process, the best operation condition is by using 40% of porosity of stuctured packing steel wool in distillation

  10. Optimization of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production.

    Science.gov (United States)

    Gao, Yueshu; Xu, Jingliang; Yuan, Zhenhong; Zhang, Yu; Liu, Yunyun; Liang, Cuiyi

    2014-09-01

    Fed-batch enzymatic hydrolysis process from alkali-pretreated sugarcane bagasse was investigated to increase solids loading, produce high-concentration fermentable sugar and finally to reduce the cost of the production process. The optimal initial solids loading, feeding time and quantities were examined. The hydrolysis system was initiated with 12% (w/v) solids loading in flasks, where 7% fresh solids were fed consecutively at 6h, 12h, 24h to get a final solids loading of 33%. All the requested cellulase loading (10 FPU/g substrate) was added completely at the beginning of hydrolysis reaction. After 120 h of hydrolysis, the maximal concentrations of cellobiose, glucose and xylose obtained were 9.376 g/L, 129.50 g/L, 56.03 g/L, respectively. The final total glucan conversion rate attained to 60% from this fed-batch process. Copyright © 2014. Published by Elsevier Ltd.

  11. Bioethanol production from starchy biomass by direct fermentation using saccharomyces diastaticus in batch free and immobilized cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Kilonzo, P.M.; Margaritis, A. [University of Western Ontario, London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Yu, J.; Ye, Q. [East China Univ. of Science and Technology, Shanghai (China). Biochemical Engineering Research Inst. and State Key Lab

    2006-07-01

    The feasibility of using amylolytic yeasts for the direct fermentation of starchy biomass to ethanol was discussed. Although amylolytic yeasts such as Saccharomycopsis, Lipomyces, and Schwaniomyces secrete both {alpha}-amylase and glucoamylase enzymes that synergistically enhance starch degradation, they are not suitable for industrial bio-ethanol production because of low tolerance for ethanol and slow fermentation rate. For that reason, this study examined the direct ethanol fermentation of soluble starch or dextrin with the amylolytic yeast Saccharomyces diastaticus in batch free and immobilized cells systems. Saccharomyces diastaticus secretes glucoamylase and can therefore assimilate and ferment starch and starch-like biomass. The main focus of the study was on parameters leading to higher ethanol yields from high concentration of dextrin and soluble starch using batch cultures. A natural attachment method was proposed in which polyurethane foam sheets were used as the carrier for amylolytic yeasts immobilization in ethanol fermentations. The support was chosen because it was inexpensive, autoclavable, pliable and could be tailored to suit process requirements regarding net surface charge, shape and size. It was found that Saccharomyces diastaticus was very efficient in terms of fermentation of high initial concentrations of dextrin or soluble starch. Higher concentrations of ethanol were produced. In batch fermentations, the cells fermented high dextrin concentrations more efficiently. In particular, in batch fermentation, more than 92 g-L of ethanol was produced from 240 g-L of dextrin, at conversion efficiency of 90 per cent. The conversion efficiency decreased to 60 per cent but a higher final ethanol concentration of 147 g/L was attained with a medium containing 500 g/L of dextrin. In an immobilized cell bioreactor, Saccharomyces diastaticus produced 83 g/L of ethanol from 240 g/L of dextrin, corresponding to ethanol volumetric productivity of 9.1 g

  12. Comparative study of production of Bio-Indigo by Pandoraea sp. in a two phase - fed batch and continuous bioreactor

    Directory of Open Access Journals (Sweden)

    Vaishnavi Unde

    2016-03-01

    Full Text Available Indigo, is blue of blue jeans, a synthetic dye used on large scale all over the world. Chemical production of the dye is taking a new route towards bacterial production to overcome the environmental effects that are posed by the synthetic blue powder (Indigo. In the present work a strain Pandoraea sp. isolated from the oil contaminated soil is found to produce blue pigment which is analyzed qualitatively as indigo using UV-visible scan and Thin Layer Chromatography (TLC. The strain is used for indigo production at lab scale in two different bioreactor configurations first the fed batch mode and second continuous mode using two phases. The two phases consisting of medium carrying biomass and the second phase of silicone oil carrying substrate indole. The use of second phase allows higher concentration of substrate injection reducing the inhibition effects of the substrate as well as act as a partitioning agent for removal of the product. In two phase study, the maximum indigo produced was seen to be 0.068 g/L after 22 hours of substrate injection into the Fermentor in a fed batch mode. The maximum yield obtained in this configuration was 19%. For commercial production of bio-indigo a continuous operation is required, which was studied in a bioreactor with 2.5 liter capacity under the optimized conditions. The maximum indigo produced was found to be 0.052 g/L after about 72 hours of operation. The results showed decrease in the production of indigo in continuous mode as compared to fed batch operation, which may be due to the insufficient time available for the bacteria to bio-transform indole into indigo.

  13. Experience of Sponge City Master Plan: A Case Study of Nanning City

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei; Wang Jiazhuo; Che Han; Wang Chen; Zhang Chunyang; Shi Lian; Fan Jin; Li Caige

    2017-01-01

    As a new urban development pattern, the construction of sponge cities has been deeply integrated into the new urbanization and water safety strategy. Nanning City, as one of the first batch of experimental sponge cities in China, has undertaken exploration and practice on sponge city planning, construction, and management. The sponge city master plan of Nanning City establishes an urban ecological spatial pattern in order to protect the security of the sponge base. The sponge city construction strategy has also proposed an overall construction strategy of a sponge city in line with urban development features. Through the systematic analysis and planning, a “23+10+202” pattern of sponge city construction has been formed. “23” represents 23 drainage basins, in which major sponge facilities such as storage facilities, waterfront buffer zones, wetland parks, ecological rainwater corridor and sponge parks are allocated. “10” represents 10 sponge functional zones, which provide important reference for the establishment of sponge city construction index system. “202” represents 202 management units, which decomposes the general objective and provides technical support not only for sponge city construction and management, but also for the implementation of general objectives in the regulatory plan as well.

  14. Nonlinear impulsive system of fed-batch culture in fermentative production and its properties

    International Nuclear Information System (INIS)

    Gao Caixia; Li Kezan; Feng Enmin; Xiu Zhilong

    2006-01-01

    In this study, the nonlinear dynamical system of fed-batch fermentation is investigated in the process of bio-dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae. Considering the abrupt increase of glycerol in fed-batch culture, this paper proposes a nonlinear impulsive system of the culture process, which is fit for formulating the factual fermentation better than the continuous models in being. We study the questions of existence and properties of mild solutions for the system and the continuous dependence of solutions on initial values and the controllable variable. Finally, the numerical simulations show that the errors between experimental and computational values using the impulsive system are less than those using the previous continuous system

  15. Identifying yeast isolated from spoiled peach puree and assessment of its batch culture for invertase production

    Directory of Open Access Journals (Sweden)

    Marcela Vega FERREIRA

    Full Text Available Abstract The identification of yeasts isolated from spoiled Jubileu peach puree using the API 20C AUX method and a commercial yeast as witness were studied. Subsequently, the yeast’s growth potential using two batch culture treatments were performed to evaluate number of colonies (N, reducing sugar concentration (RS, free-invertase (FI, and culture-invertase activity (CI. Stock cultures were maintained on potato dextrose agar (PDA slants at 4 °C and pH 5 for later use for batch-culture (150 rpm at 30°C for 24 h, then they were stored at 4 °C for subsequent invertase extraction. The FI extract was obtained using NaHCO3 as autolysis agent, and CI activity was determined on the supernatant after batch-cultured centrifugation. The activity was followed by an increase in absorbance at 490 nm using the acid 3,5-DNS method with glucose standard. Of the four yeasts identified, Saccharomyces cerevisiae was chosen for legal reasons. It showed logarithmic growth up to 18 h of fermentation with positive correlation CI activity and inverse with RS. FI showed greater activity by the end of the log phase and an inverse correlation with CI activity. Finally, it was concluded that treatment “A” is more effective than “B” to produce invertase (EC 3.2.1.26.

  16. Integrated batch production and maintenance scheduling for multiple items processed on a deteriorating machine to minimize total production and maintenance costs with due date constraint

    Directory of Open Access Journals (Sweden)

    Zahedi Zahedi

    2016-04-01

    Full Text Available This paper discusses an integrated model of batch production and maintenance scheduling on a deteriorating machine producing multiple items to be delivered at a common due date. The model describes the trade-off between total inventory cost and maintenance cost as the increase of production run length. The production run length is a time bucket between two consecutive preventive maintenance activities. The objective function of the model is to minimize total cost consisting of in process and completed part inventory costs, setup cost, preventive and corrective maintenance costs and rework cost. The problem is to determine the optimal production run length and to schedule the batches obtained from determining the production run length in order to minimize total cost.

  17. Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Gasser Brigitte

    2006-12-01

    Full Text Available Abstract Background Secretion of heterologous proteins depends both on biomass concentration and on the specific product secretion rate, which in turn is not constant at varying specific growth rates. As fed batch processes usually do not maintain a steady state throughout the feed phase, it is not trivial to model and optimize such a process by mathematical means. Results We have developed a model for product accumulation in fed batch based on iterative calculation in Microsoft Excel spreadsheets, and used the Solver software to optimize the time course of the media feed in order to maximize the volumetric productivity. The optimum feed phase consisted of an exponential feed at maximum specific growth rate, followed by a phase with linearly increasing feed rate and consequently steadily decreasing specific growth rate. The latter phase could be modeled also by exact mathematical treatment by the calculus of variations, yielding the explicit shape of the growth function, however, with certain indeterminate parameters. To evaluate the latter, one needs a numerical optimum search algorithm. The explicit shape of the growth function provides additional evidence that the Excel model results in correct data. Experimental evaluation in two independent fed batch cultures resulted in a good correlation to the optimized model data, and a 2.2 fold improvement of the volumetric productivity. Conclusion The advantages of the procedure we describe here are the ease of use and the flexibility, applying software familiar to every scientist and engineer, and rapid calculation which makes predictions extremely easy, so that many options can be tested in silico quickly. Additional options like further biological and technological constraints or different functions for specific productivity and biomass yield can easily be integrated.

  18. Glycerol as a Cheaper Carbon Source in Bacterial Cellulose (BC) Production by Gluconacetobacter Xylinus DSM46604 in Batch Fermentation System

    International Nuclear Information System (INIS)

    Azila Adnan; Nair, G.R.; Roslan Umar; Roslan Umar

    2015-01-01

    Bacterial cellulose (BC) is a polymer of glucose monomers, which has unique properties including high crystallinity and high strength. It has potential to be used in biomedical applications such as making artificial blood vessel, wound dressings, and in the paper making industry. Extensive study on BC aimed to improve BC production such as by using glycerol as a cheaper carbon source. BC was produced in shake flask culture using five different concentrations of glycerol (10, 20, 30, 40 and 50 g/ L). Using concentration of glycerol above 20 g/ L inhibited culture growth and BC production. Further experiments were performed in batch culture (3-L bioreactor) using 20 g/ L glycerol. It produced yield and productivity of 0.15 g/ g and 0.29 g/ L/ day BC, respectively. This is compared with the control medium, 50 g/ L glucose, which only gave yield and productivity of 0.05 g/ g and 0.23 g/ L/ day, respectively. Twenty g/ L of glycerol enhanced BC production by Gluconacetobacter xylinus DSM46604 in batch fermentation system. (author)

  19. Fuzzy Modeling to Evaluate the Effect of Temperature on Batch Transesterification of Jatropha Curcas for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Vipan Kumar Sohpal

    2011-05-01

    Full Text Available Biodiesel is an alternative source of fuel that can be synthesized from edible, non-edible and waste oils through transesterification. Firstly Transesterification reaction of Jatropha Curcas oil with butanol in the ratio of 1:25 investigated by using of sodium hydroxide catalyst with mixing intensity of 250 rpm in isothermal batch reactor. Secondly the fuzzy model of the temperature is developed. Performance was evaluated by comparing fuzzy model with the batch kinetic data. Fuzzy models were developed using adaptive neurofuzzy inference system (ANFIS. © 2011 BCREC UNDIP. All rights reserved(Received: 27th January 2011, Revised: 13rd February 2011; Accepted: 16th February 2011[How to Cite: V.K. Sohpal, A. Singh, A. Dey. (2011. Fuzzy Modeling to Evaluate the Effect of Temperature on Batch Transesterification of Jatropha Curcas for Biodiesel Production. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 31-38. doi:10.9767/bcrec.6.1.816.31-38][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.816.31-38 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/816 ] | View in 

  20. Anaerobic digestion of Chinese cabbage waste silage with swine manure for biogas production: batch and continuous study.

    Science.gov (United States)

    Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide

    2014-01-01

    The aim of this study was to investigate the potential for anaerobic co-digestion of Chinese cabbage waste silage (CCWS) with swine manure (SM). Batch and continuous experiments were carried out under mesophilic anaerobic conditions (36-38°C). The batch test evaluated the effect of CCWS co-digestion with SM (SM: CCWS=100:0; 25:75; 33:67; 0:100, % volatile solids (VS) basis). The continuous test evaluated the performance of a single stage completely stirred tank reactor with SM alone and with a mixture of SM and CCWS. Batch test results showed no significant difference in biogas yield up to 25-33% of CCWS; however, biogas yield was significantly decreased when CCWS contents in feed increased to 67% and 100%. When testing continuous digestion, the biogas yield at organic loading rate (OLR) of 2.0 g VSL⁻¹ d⁻¹ increased by 17% with a mixture of SM and CCWS (SM:CCWS=75:25) (423 mL g⁻¹ VS) than with SM alone (361 mL g⁻¹ VS). The continuous anaerobic digestion process (biogas production, pH, total volatile fatty acids (TVFA) and TVFA/total alkalinity ratios) was stable when co-digesting SM and CCWS (75:25) at OLR of 2.0 g VSL⁻¹ d⁻¹ and hydraulic retention time of 20 days under mesophilic conditions.

  1. An approach to optimize the batch mixing process for improving the quality consistency of the products made from traditional Chinese medicines*

    Science.gov (United States)

    Yan, Bin-jun; Qu, Hai-bin

    2013-01-01

    The efficacy of traditional Chinese medicine (TCM) is based on the combined effects of its constituents. Variation in chemical composition between batches of TCM has always been the deterring factor in achieving consistency in efficacy. The batch mixing process can significantly reduce the batch-to-batch quality variation in TCM extracts by mixing them in a well-designed proportion. However, reducing the quality variation without sacrificing too much of the production efficiency is one of the challenges. Accordingly, an innovative and practical batch mixing method aimed at providing acceptable efficiency for industrial production of TCM products is proposed in this work, which uses a minimum number of batches of extracts to meet the content limits. The important factors affecting the utilization ratio of the extracts (URE) were studied by simulations. The results have shown that URE was affected by the correlation between the contents of constituents, and URE decreased with the increase in the number of targets and the relative standard deviations of the contents. URE could be increased by increasing the number of storage tanks. The results have provided a reference for designing the batch mixing process. The proposed method has possible application value in reducing the quality variation in TCM and providing acceptable production efficiency simultaneously. PMID:24190450

  2. An approach to optimize the batch mixing process for improving the quality consistency of the products made from traditional Chinese medicines.

    Science.gov (United States)

    Yan, Bin-jun; Qu, Hai-bin

    2013-11-01

    The efficacy of traditional Chinese medicine (TCM) is based on the combined effects of its constituents. Variation in chemical composition between batches of TCM has always been the deterring factor in achieving consistency in efficacy. The batch mixing process can significantly reduce the batch-to-batch quality variation in TCM extracts by mixing them in a well-designed proportion. However, reducing the quality variation without sacrificing too much of the production efficiency is one of the challenges. Accordingly, an innovative and practical batch mixing method aimed at providing acceptable efficiency for industrial production of TCM products is proposed in this work, which uses a minimum number of batches of extracts to meet the content limits. The important factors affecting the utilization ratio of the extracts (URE) were studied by simulations. The results have shown that URE was affected by the correlation between the contents of constituents, and URE decreased with the increase in the number of targets and the relative standard deviations of the contents. URE could be increased by increasing the number of storage tanks. The results have provided a reference for designing the batch mixing process. The proposed method has possible application value in reducing the quality variation in TCM and providing acceptable production efficiency simultaneously.

  3. Modelling of Batch Process Operations

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Cameron, Ian; Gani, Rafiqul

    2011-01-01

    Here a batch cooling crystalliser is modelled and simulated as is a batch distillation system. In the batch crystalliser four operational modes of the crystalliser are considered, namely: initial cooling, nucleation, crystal growth and product removal. A model generation procedure is shown that s...

  4. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part II-Fed-batch fermentation

    International Nuclear Information System (INIS)

    Qureshi, Nasib; Saha, Badal C.; Cotta, Michael A.

    2008-01-01

    In these studies, Clostridium beijerinckii P260 was used to produce butanol (acetone-butanol-ethanol, or ABE) from wheat straw (WS) hydrolysate in a fed-batch reactor. It has been demonstrated that simultaneous hydrolysis of WS to achieve 100% hydrolysis to simple sugars (to the extent achievable under present conditions) and fermentation to butanol is possible. In addition to WS, the reactor was fed with a sugar solution containing glucose, xylose, arabinose, galactose, and mannose. The culture utilized all of the above sugars. It was noticed that near the end of fermentation (286-533 h), the culture had difficulties utilizing xylose. As a result of supplemental sugar feed to the reactor, ABE productivity was improved by 16% as compared with previous studies. In our previous experiment on simultaneous saccharification of WS and fermentation to butanol, a productivity of 0.31 g L -1 h -1 was observed, while in the present studies a productivity of 0.36 g L -1 h -1 was observed. It should be noted that a productivity of 0.77 g L -1 h -1 was observed when the culture was highly active. The fed-batch fermentation was operated for 533 h. It should be noted that C. beijerinckii P260 can be used to produce butanol from WS in integrated fermentations

  5. Fed-batch production of green coconut hydrolysates for high-gravity second-generation bioethanol fermentation with cellulosic yeast.

    Science.gov (United States)

    Soares, Jimmy; Demeke, Mekonnen M; Van de Velde, Miet; Foulquié-Moreno, Maria R; Kerstens, Dorien; Sels, Bert F; Verplaetse, Alex; Fernandes, Antonio Alberto Ribeiro; Thevelein, Johan M; Fernandes, Patricia Machado Bueno

    2017-11-01

    The residual biomass obtained from the production of Cocos nucifera L. (coconut) is a potential source of feedstock for bioethanol production. Even though coconut hydrolysates for ethanol production have previously been obtained, high-solid loads to obtain high sugar and ethanol levels remain a challenge. We investigated the use of a fed-batch regime in the production of sugar-rich hydrolysates from the green coconut fruit and its mesocarp. Fermentation of the hydrolysates obtained from green coconut or its mesocarp, containing 8.4 and 9.7% (w/v) sugar, resulted in 3.8 and 4.3% (v/v) ethanol, respectively. However, green coconut hydrolysate showed a prolonged fermentation lag phase. The inhibitor profile suggested that fatty acids and acetic acid were the main fermentation inhibitors. Therefore, a fed-batch regime with mild alkaline pretreatment followed by saccharification, is presented as a strategy for fermentation of such challenging biomass hydrolysates, even though further improvement of yeast inhibitor tolerance is also needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mathematical modeling of lipase and protease production by Penicillium restrictum in a batch fermenter.

    Science.gov (United States)

    Freire, D M; Sant'Anna, G L; Alves, T L

    1999-01-01

    This work presents a mathematical model that describes time course variations of extracellular lipase and protease activities for the batch fermentation of the fungus Penicillium restrictum, a new and promising strain isolated from soil and wastes of a Brazilian babassu coconut oil industry. The fermentation process was modeled by an unstructured model, which considered the following dependent variables: cells, fat acid, dissolved oxygen concentrations, lipase and protease activities, and cell lysate concentration. The last variable represents the amount of cells that has been lysed by the shear stress and natural cell death. Proteases released to the medium, as consequence of this process, enhance lipase inactivation. The model is able to predict the effects of some operation variables such as air flow rate and agitation speed. The mathematical model was validated against batch-fermentation data obtained under several operating conditions. Because substrate concentration has antagonistic effects on lipase activity, a typical optimization scheme should be developed in order to minimize these deleterious effects while maximizing lipase activity.

  7. Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using Komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation.

    Science.gov (United States)

    Dubey, Swati; Singh, Jyoti; Singh, R P

    2018-01-01

    Herein, sweet lime pulp waste (SLPW) was utilized as a low- or no-cost feedstock for the production of bacterial nanocellulose (BNC) alone and in amalgamation with other nutritional supplements by the isolate K. europaeus SGP37 under static batch and static intermittent fed-batch cultivation. The highest yield (26.2±1.50gL -1 ) was obtained in the hot water extract of SLPW supplemented with the components of HS medium, which got further boosted to 38±0.85gL -1 as the cultivation strategy was shifted from static batch to static intermittent fed-batch. BNC obtained from various SLPW medium was similar or even superior to that obtained with standard HS medium in terms of its physicochemical properties. The production yields of BNC thus obtained are significantly higher and fit well in terms of industrial scale production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Transcriptional response of P. pastoris in fed-batch cultivations to Rhizopus oryzae lipase production reveals UPR induction

    Directory of Open Access Journals (Sweden)

    Valero Francisco

    2007-07-01

    Full Text Available Abstract Background The analysis of transcriptional levels of the genes involved in protein synthesis and secretion is a key factor to understand the host organism's responses to recombinant protein production, as well as their interaction with the cultivation conditions. Novel techniques such as the sandwich hybridization allow monitoring quantitatively the dynamic changes of specific RNAs. In this study, the transcriptional levels of some genes related to the unfolded protein response (UPR and central metabolism of Pichia pastoris were analysed during batch and fed-batch cultivations using an X-33-derived strain expressing a Rhizopus oryzae lipase under control of the formaldehyde dehydrogenase promoter (FLD1, namely the alcohol oxidase gene AOX1, the formaldehyde dehydrogenase FLD1, the protein disulfide isomerase PDI, the KAR2 gene coding for the BiP chaperone, the 26S rRNA and the R. oryzae lipase gene ROL. Results The transcriptional levels of the selected set of genes were first analysed in P. pastoris cells growing in shake flask cultures containing different carbon and nitrogen sources combinations, glycerol + ammonium, methanol + methylamine and sorbitol + methylamine. The transcriptional levels of the AOX1 and FLD1 genes were coherent with the known regulatory mechanism of C1 substrates in P. pastoris, whereas ROL induction lead to the up-regulation of KAR2 and PDI transcriptional levels, thus suggesting that ROL overexpression triggers the UPR. This was further confirmed in fed-batch cultivations performed at different growth rates. Transcriptional levels of the analysed set of genes were generally higher at higher growth rates. Nevertheless, when ROL was overexpressed in a strain having the UPR constitutively activated, significantly lower relative induction levels of these marker genes were detected. Conclusion The bead-based sandwich hybridization assay has shown its potential as a reliable instrument for quantification of

  9. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.

    Science.gov (United States)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian; Wagtberg Sen, Jette; Rasmussen, Søren Kofoed; Kontoravdi, Cleo; Weilguny, Dietmar; Andersen, Mikael Rørdam

    2015-03-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylation-related product quality. In this work, different fed-batch processes with two chemically defined proprietary media and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards energy and recombinant product, respectively. Accumulation of by-products such as NH4(+) and lactate as a consequence of unbalanced nutrient supply to cell activities inhibits cell growth. The levels of Leu and Arg in the culture, which relate to cell growth and IgG productivity, need to be well controlled. Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found that in certain cases the presence of Man5 glycan can be linked to limitation of UDP-GlcNAc biosynthesis as a result of insufficient extracellular Gln. However, under different culture conditions, high Man5 levels can also result from low α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase (GnTI) and UDP-GlcNAc transporter activities, which may be attributed to high level of NH4+ in the cell culture. Furthermore, galactosylation of the mAb Fc glycans

  10. Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source

    International Nuclear Information System (INIS)

    Chang, Yi-Huang; Chang, Ku-Shang; Lee, Ching-Fu; Hsu, Chuan-Liang; Huang, Cheng-Wei; Jang, Hung-Der

    2015-01-01

    To realize the feasibility of biodiesel production from high-lipid cell culture, microbial lipid production by the oleaginous yeasts was studied using glucose and sucrose as carbon source. Among the tested strains, Cryptococcus sp. SM5S05 accumulated the highest levels of intracellular lipids. The crude lipid contents of Cryptococcus sp. cultured in yeast malt agar reached 30% on a dry weight basis. The accumulation of lipids strongly depended on carbon/nitrogen ratio and nitrogen concentration. The highest content of lipids, measured at a carbon/nitrogen ratio of 60–90 and at a nitrogen concentration of 0.2%, was 60–57% lipids in the dry biomass. Batch cultures using corncob hydrolysate demonstrated that there was minimal inhibitory effect with a reducing sugar concentration of 60 g l −1 or higher. Batch cultures of Cryptococcus sp. SM5S05 in the corncob hydrolysate medium with 60 g l −1 glucose resulted in a dry biomass, lipid yields, and content of 12.6 g l −1 , 7.6 g l −1 , and 60.2%, respectively. The lipids contained mainly long-chain saturated and unsaturated fatty acids with 16 and 18 carbon atoms. The fatty acid profile of Cryptococcus oils was quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with corncob hydrolysate being utilized as the raw material for the oleaginous yeast. The results showed that the microbial lipid from Cryptococcus sp. was a potential alternative resource for biodiesel production. - Highlights: • Microbial oil production from oleaginous yeast Cryptococcus sp. was studied. • Accumulation of lipid strongly depended on C/N ratio and nitrogen concentration. • Cultures in hydrolysate medium with 60 g/l glucose resulted in maximum lipid yields. • Maximal lipid content in the Cryptococcus sp. were 60.2% on dried weight basis

  11. High performance batch production of LREBa2Cu3Oy using novel thin film Nd-123 seed

    International Nuclear Information System (INIS)

    Muralidhar, M.; Suzuki, K.; Fukumoto, Y.; Ishihara, A.; Tomita, M.

    2011-01-01

    A batch production for fabrication of LREBa 2 Cu 3 O y (LRE: Sm, Gd, NEG) 'LRE-123' pellets are developed in air and Ar-1% O 2 using a novel thin film Nd-123 seeds grown on MgO crystals. The SEM and XRD results conformed that the quality and orientation of the seed crystals are excellent. On the other hand, new seeds can withstand temperatures >1100 deg. C, as a result, the cold seeding process was applied even to grow Sm-123 material in Air. The trapped field observed in the best 45 mm single-grain puck of Gd-123 was in the range of 1.35 T and 0.35 T at 77.3 K and 87.3 K, respectively. The average trapped field at 77.3 K in the 24 mm diameter NEG-123 samples batch lies between 0.9 and 1 T. The maximum trapped field of 1.2 T was recorded at the sample surface. Further, the maximum trapped field of 0.23 T at 77 K was recorded in a sample with 16 mm diameter of Sm-123 with 3 mol% BaO 2 addition. As a result we made more then 130 single grain pucks within a couple of months. Taking advantage of the single grain batch processed material, we constructed self-made chilled levitation disk, which was used on the open day of railway technical research Institute. More then 150 children stood on the levitation disk and revel the experience of levitation. The present results prove that a high-performance good-quality class of LREBa 2 Cu 3 O y material can be made by using a novel thin film Nd-123 seeds.

  12. Kinetic model-based feed-forward controlled fed-batch fermentation of Lactobacillus rhamnosus for the production of lactic acid from Arabic date juice.

    Science.gov (United States)

    Choi, Minsung; Al-Zahrani, Saeed M; Lee, Sang Yup

    2014-06-01

    Arabic date is overproduced in Arabic countries such as Saudi Arabia and Iraq and is mostly composed of sugars (70-80 wt%). Here we developed a fed-batch fermentation process by using a kinetic model for the efficient production of lactic acid to a high concentration from Arabic date juice. First, a kinetic model of Lactobacillus rhamnosus grown on date juice in batch fermentation was constructed in EXCEL so that the estimation of parameters and simulation of the model can be easily performed. Then, several fed-batch fermentations were conducted by employing different feeding strategies including pulsed feeding, exponential feeding, and modified exponential feeding. Based on the results of fed-batch fermentations, the kinetic model for fed-batch fermentation was also developed. This new model was used to perform feed-forward controlled fed-batch fermentation, which resulted in the production of 171.79 g l(-1) of lactic acid with the productivity and yield of 1.58 and 0.87 g l(-1) h(-1), respectively.

  13. Thermodynamics of metabolic pathways for penicillin production: Analysis of thermodynamic feasibility and free energy changes during fed-batch cultivation

    DEFF Research Database (Denmark)

    Pissarra, P.D.; Nielsen, Jens Bredal

    1997-01-01

    This paper describes the thermodynamic analysis of pathways related to penicillin production in Penicillium chrysogenum. First a thermodynamic feasibility analysis is performed of the L-lysine pathway of which one of the precursors for penicillin biosynthesis (alpha-aminoadipic acid......) is an intermediate. It is found that the L-lysine pathway in P. chrysogenum is thermodynamically feasible and that the calculated standard Gibbs free energy values of the two enzymes controlling the pathway flux indicate that they operate far from equilibrium. It is therefore proposed that the regulation of alpha......-aminoadipate reductase by lysine is important to maintain a high concentration of alpha-aminoadipate in order to direct the carbon flux to penicillin production. Secondly the changes in Gibbs free energy in the penicillin biosynthetic pathway during fed-batch cultivation were studied. The analysis showed that all...

  14. Effect of mixing digested slurry on the rate of biogas production from dairy manure in batch fermenter

    Energy Technology Data Exchange (ETDEWEB)

    Kalia, A.K.; Singh, S.P.

    2001-09-01

    Forty kilograms of pure cattle dung and cattle dung mixed with 10% digested slurry obtained from a field biogas plant was batch fermented in horizontal biogas digesters for 15 weeks under field conditions with mean ambient temperature 20-23{sup o}C. Compared to 821 l of biogas from digester I, containing cattle dung alone, 1457 l of biogas was obtained from digester II, containing cattle dung mixed with 10% digested slurry. Mixing of slurry not only speeded up the gas production but also enhanced its rate from 108 l/kg dry matter to 158 l/kg dry matter. It also resulted in 36.1% distraction of total volatile solid in digester II, compared to 23.93% observed in digester I. Mixing digested slurry is recommended for raising biogas production from cattle dung in dry fermenters. (author)

  15. Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production.

    Science.gov (United States)

    Dmytruk, Kostyantyn; Lyzak, Oleksy; Yatsyshyn, Valentyna; Kluz, Maciej; Sibirny, Vladimir; Puchalski, Czeslaw; Sibirny, Andriy

    2014-02-20

    Riboflavin (vitamin B2) is an essential nutrition component serving as a precursor of coenzymes FMN and FAD that are involved mostly in reactions of oxidative metabolism. Riboflavin is produced in commercial scale and is used in feed and food industries, and in medicine. The yeast Candida famata (Candida flareri) belongs to the group of so called "flavinogenic yeasts" which overproduce riboflavin under iron limitation. Three genes SEF1, RIB1 and RIB7 coding for a putative transcription factor, GTP cyclohydrolase II and riboflavin synthase, respectively were simultaneously overexpressed in the background of a non-reverting riboflavin producing mutant AF-4, obtained earlier in our laboratory using methods of classical selection (Dmytruk et al. (2011), Metabolic Engineering 13, 82-88). Cultivation conditions of the constructed strain were optimized for shake-flasks and bioreactor cultivations. The constructed strain accumulated up to 16.4g/L of riboflavin in optimized medium in a 7L laboratory bioreactor during fed-batch fermentation. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Alkaloids from sponge, scaffolds for the inhibition of human immunodeficiency virus (hiv)

    KAUST Repository

    O'Rourke, Aubrie; Kremb, Stephan; Voolstra, Christian R.

    2016-01-01

    Anti-viral compounds with low cytotoxicity are identified from screening of products found in Red Sea sponges, including the sponge Stylissa carteri. The identified compounds can be brominated pyrrole-2- aminoimidazole alkaloids and derivatives

  17. Identifying conditions for inducible protein production in E. coli: combining a fed-batch and multiple induction approach

    Directory of Open Access Journals (Sweden)

    Choi Young J

    2006-08-01

    Full Text Available Abstract Background In the interest of generating large amounts of recombinant protein, inducible systems have been studied to maximize both the growth of the culture and the production of foreign proteins. Even though thermo-inducible systems were developed in the late 1970's, the number of studies that focus on strategies for the implementation at bioreactor scale is limited. In this work, the bacteriophage lambda PL promoter is once again investigated as an inducible element but for the production of green fluorescent protein (GFP. Culture temperature, induction point, induction duration and number of inductions were considered as factors to maximize GFP production in a 20-L bioreactor. Results It was found that cultures carried out at 37°C resulted in a growth-associated production of GFP without the need of an induction at 42°C. Specific production was similar to what was achieved when separating the growth and production phases. Shake flask cultures were used to screen for desirable operating conditions. It was found that multiple inductions increased the production of GFP. Induction decreased the growth rate and substrate yield coefficients; therefore, two time domains (before and after induction having different kinetic parameters were created to fit a model to the data collected. Conclusion Based on two batch runs and the simulation of culture dynamics, a pre-defined feeding and induction strategy was developed to increase the volumetric yield of a temperature regulated expression system and was successfully implemented in a 20-L bioreactor. An overall cell density of 5.95 g DW l-1 was achieved without detriment to the cell specific production of GFP; however, the production of GFP was underestimated in the simulations due to a significant contribution of non-growth associated product formation under limiting nutrient conditions.

  18. Production of Medium Chain Length Polyhydroxyalkanoates From Oleic Acid Using Pseudomonas putida PGA1 by Fed Batch Culture

    Directory of Open Access Journals (Sweden)

    Sidik Marsudi

    2010-10-01

    Full Text Available Bacterial polyhydroxyalkanoates (PHAs are a class of p0lymers currently receiving much attention because of their potential as renewable and biodegradable plastics. A wide variety of bacteria has been reported to produce PHAs including Pseudomonas strains. These strains are known as versatile medium chain length PHAs (PHAs-mcl producers using fatty acids as carbon source. Oleic acid was used to produce PHAs-mcl using Pseudomonas putida PGA 1 by continuous feeding of both nitrogen and carbon source, in a fed batch culture. During cell growth, PHAs also accumulated, indicating that PHA production in this organism is growth associated. Residual cell increased until the nitrogen source was depleted. At the end of fermentation, final cell concentration, PHA content, and roductivity were 30.2 g/L, 44.8 % of cell dry weight, and 0.188 g/l/h, respectively.

  19. Computational Modelling of Large Scale Phage Production Using a Two-Stage Batch Process

    Directory of Open Access Journals (Sweden)

    Konrad Krysiak-Baltyn

    2018-04-01

    Full Text Available Cost effective and scalable methods for phage production are required to meet an increasing demand for phage, as an alternative to antibiotics. Computational models can assist the optimization of such production processes. A model is developed here that can simulate the dynamics of phage population growth and production in a two-stage, self-cycling process. The model incorporates variable infection parameters as a function of bacterial growth rate and employs ordinary differential equations, allowing application to a setup with multiple reactors. The model provides simple cost estimates as a function of key operational parameters including substrate concentration, feed volume and cycling times. For the phage and bacteria pairing examined, costs and productivity varied by three orders of magnitude, with the lowest cost found to be most sensitive to the influent substrate concentration and low level setting in the first vessel. An example case study of phage production is also presented, showing how parameter values affect the production costs and estimating production times. The approach presented is flexible and can be used to optimize phage production at laboratory or factory scale by minimizing costs or maximizing productivity.

  20. Biodegradable poly-ε-caprolactone microcarriers for efficient production of human mesenchymal stromal cells and secreted cytokines in batch and fed-batch bioreactors.

    Science.gov (United States)

    Lam, Alan Tin-Lun; Li, Jian; Toh, Jessica Pei-Wen; Sim, Eileen Jia-Hui; Chen, Allen Kuan-Liang; Chan, Jerry Kok-Yen; Choolani, Mahesh; Reuveny, Shaul; Birch, William R; Oh, Steve Kah-Weng

    2017-03-01

    Large numbers of human mesenchymal stromal cells (MSCs) used for a variety of applications in tissue engineering and cell therapy can be generated by scalable expansion in a bioreactor using microcarriers (MCs) systems. However, the enzymatic digestion process needed to detach cells from the growth surface can affect cell viability and potentially the potency and differentiation efficiency. Thus, the main aim of our study was to develop biocompatible and biodegradable MCs that can support high MSC yields while maintaining their differentiation capability and potency. After cell expansion, the cells that covered MCs can be directly implanted in vivo without the need for cell harvesting or use of scaffold. Poly-ε-caprolactone (PCL) is known as a biocompatible and biodegradable material. However, it cannot be used for generation of MCs because its high density (1.14 g/cm 3 ) would exclude its applicability for suspension MCs in stirred reactors. In this article, we describe expansion and potency of MSCs propagated on low-density (1.06 g/cm 3 ) porous PCL MCs coated with extracellular matrices (LPCLs) in suspended stirred reactors. Using these LPCLs, cell yields of about 4 × 10 4 cells/cm 2 and 7- to 10-fold increases were obtained using four different MSC lines (bone marrow, cord blood, fetal and Wharton's jelly). These yields were comparable with those obtained using non-degradable MCs (Cytodex 3) and higher than two-dimensional monolayer (MNL) cultures. A fed-batch process, which demonstrated faster cell expansion (4.5 × 10 4 cells/cm 2 in 5 days as compared with 7 days in batch culture) and about 70% reduction in growth media usage, was developed and scaled up from 100-mL spinner flask to 1-L controlled bioreactor. Surface marker expression, trilineage differentiation and clonogenic potential of the MSCs expanded on LPCL were not affected. Cytokine secretion kinetics, which occurred mostly during late logarithmic phase, was usually comparable with

  1. Galacto-oligosaccharide production with immobilized ß-galactosidase in a packed-bed reactor vs. free ß-galactosidase in a batch reactor

    NARCIS (Netherlands)

    Warmerdam, A.; Benjamins, E.; Leeuw de, T.F.; Broekhuis, T.A.; Boom, R.M.; Janssen, A.E.M.

    2014-01-01

    We report here that the usage of immobilized enzyme in a continuous packed bed reactor (PBR) can be a good alternative for GOS production instead of the traditional use of free enzyme in a batch reactor. The carbohydrate composition of the product of the PBR with immobilized enzyme was comparable to

  2. Sponge cell culture

    NARCIS (Netherlands)

    Schippers, K.J.

    2013-01-01

    Marine sponges are a rich source of bioactive compounds with pharmaceutical potential and are the most prolific source of newly discovered bioactive compounds with more than 7,000 novel molecules discovered in 40 years. Despite its enormous potential, only a few sponge-derived bioactive

  3. An Optimal Balancing of Multiple Assembly Line For a Batch Production Unit

    Directory of Open Access Journals (Sweden)

    M. Mohan Prasad

    2013-12-01

    Full Text Available Higher Productivity in organizations leads to national prosperity and better standard of living for the whole community. This has motivated several workers on productivity improvement at different levels of XXXX India Pvt Ltd, Chennai. The main objective of this project is to increase the production by changing the layout of the assembly line in making of Transmit Mixer. At present 12 machines are being manufactured in a total of 2 shifts per day. Time study is carried out to identify and avoid the idle time to increase the production rate to 24 machines per day. The organization facing the problems like production time, online inventory, delay and idle time. Here our objective is to reduce the idle time, identifying the cycle time and optimal method of production. The COMSOAL (Computer Method for Sequencing Operations for Assembly Lines and RPW (Ranked Positional Weight algorithms have been used to get the optimal solution. This algorithm provides the better solution, thereby reducing unnecessary movements of the worker within the station. The overall cycle time got reduced when compared with the existing cycle time in order to meet the customer demand. Thus we are proposing this scientific approach to get the optimal solution for increased rate of production of the company without affecting the quality and cost.

  4. Anaerobic co-digestion of canola straw and buffalo dung: optimization of methane production in batch experiments

    International Nuclear Information System (INIS)

    Sahito, A.R.; Brohi, K.M.

    2014-01-01

    In several regions of the Pakistan, crop cultivation is leading to the production crop residues and its disposal problems. It has been suggested that the co-digestion of the crop residues with the buffalo dung might be a disposal way for the wasted portion of the crops residue. The objective of present study was to optimize the anaerobic co-digestion of canola straw and the buffalo dung through batch experiments in order to obtain maximum methane production. The optimization was carried out in three stages. In first stage, the best canola straw to buffalo dung ratio was evaluated. In second stage, the best concentration of sodium hydrogen carbonate was assessedas the alkaline pretreatment chemical, whereas in the third stage most suitable particle size of the canola strawwas evaluated. The assessment criteria for the optimization of a co-digestion were cumulative methane production and ABD (Anaerobic Biodegradability). The results yield that anaerobic co-digestibility of the canola straw and the buffalo dung is obviously influenced by all the three factors of optimization. The maximum methane production was obtained as 911 NmL from the canola straw to buffalo dung ratio of 40:60, the alkaline doze of 0.6 gNaHCO/sub 3/ gVS and canola straw particle size of 2mm. However, because of the higher shredding cost to produce 2mm sized canola straw, particle size 4mm could be the best canola straw particle size. (author)

  5. Anaerobic Co-Digestion of Canola Straw and Buffalo Dung: Optimization of Methane Production in Batch Experiments

    Directory of Open Access Journals (Sweden)

    Abdul Razaque Sahito

    2014-01-01

    Full Text Available In several regions of the Pakistan, crop cultivation is leading to the production crop residues and its disposal problems. It has been suggested that the co-digestion of the crop residues with the buffalo dung might be a disposal way for the wasted portion of the crops' residue. The objective of present study was to optimize the anaerobic co-digestion of canola straw and the buffalo dung through batch experiments in order to obtain maximum methane production. The optimization was carried out in three stages. In first stage, the best canola straw to buffalo dung ratio was evaluated. In second stage, the best concentration of sodium hydrogen carbonate was assessedas the alkaline pretreatment chemical, whereas in the third stage most suitable particle size of the canola strawwas evaluated. The assessment criteria for the optimization of a co-digestion were cumulative methane production and ABD (Anaerobic Biodegradability. The results yield that anaerobic co-digestibility of the canola straw and the buffalo dung is obviously influenced by all the three factors of optimization. The maximum methane production was obtained as 911 NmL from the canola straw to buffalo dung ratio of 40:60, the alkaline doze of 0.6 gNaHCO3 / gVS and canola straw particle size of 2mm. However, because of the higher shredding cost to produce 2mm sized canola straw, particle size 4mm could be the best canola straw particle size.

  6. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating

    2009-01-01

    An animal component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of byproducts....... This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines....

  7. Production of functional killer protein in batch cultures upon a shift from aerobic to anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Gildo Almeida da Silva

    2011-06-01

    Full Text Available The aim of this work was to study the production of functional protein in yeast culture. The cells of Saccharomyces cerevisiae Embrapa 1B (K+R+ killed a strain of Saccharomyces cerevisiae Embrapa 26B (K-R-in grape must and YEPD media. The lethal effect of toxin-containing supernatant and the effect of aeration upon functional killer production and the correlation between the products of anaerobic metabolism and the functional toxin formation were evaluated. The results showed that at low sugar concentration, the toxin of the killer strain of Sacch. cerevisiae was only produced under anaerobic conditions . The system of killer protein production showed to be regulated by Pasteur and Crabtree effects. As soon as the ethanol was formed, the functional killer toxin was produced. The synthesis of the active killer toxin seemed to be somewhat associated with the switch to fermentation process and with concomitant alcohol dehydrogenase (ADH activity.

  8. Fusion of product and process data: Batch-mode and real-time streaming

    Energy Technology Data Exchange (ETDEWEB)

    Vincent De Sapio; Spike Leonard

    1999-12-01

    In today's DP product realization enterprise it is imperative to reduce the design-to-fabrication cycle time and cost while improving the quality of DP parts (reducing defects). Much of this challenge resides in the inherent gap between the product and process worlds. The lack of seamless, bi-directional flow of information prevents true concurrency in the product realization world. This report addresses a framework for product-process data fusion to help achieve next generation product realization. A fundamental objective is to create an open environment for multichannel observation of process date, and subsequent mapping of that data onto product geometry. In addition to the sensor-based observation of manufacturing processes, model-based process data provides an important complement to empirically acquired data. Two basic groups of manufacturing models are process physics, and machine kinematics and dynamics. Process physics addresses analytical models that describe the physical phenomena of the process itself. Machine kinematic and dynamic models address the mechanical behavior of the processing equipment. As a secondary objective, an attempt has been made in this report to address part of the model-based realm through the development of an open object-oriented library and toolkit for machine kinematics and dynamics. Ultimately, it is desirable to integrate design definition, with all types of process data; both sensor-based and model-based. Collectively, the goal is to allow all disciplines within the product realization enterprise to have a centralized medium for the fusion of product and process data.

  9. LIPID PRODUCTION BY DUNALIELLA SALINA IN BATCH CULTURE: EFFECTS OF NITROGEN LIMITATION AND LIGHT INTENSITY

    Energy Technology Data Exchange (ETDEWEB)

    Weldy, C.S.; Huesemann, M.

    2007-01-01

    Atmospheric carbon dioxide (CO2) concentrations are increasing and may cause unknown deleterious environmental effects if left unchecked. The Intergovernmental Panel on Climate Change (IPCC) has predicted in its latest report a 2°C to 4°C increase in global temperatures even with the strictest CO2 mitigation practices. Global warming can be attributed in large part to the burning of carbon-based fossil fuels, as the concentration of atmospheric CO2 is directly related to the burning of fossil fuels. Biofuels which do not add CO2 to the atmosphere are presently generated primarily from terrestrial plants, i.e., ethanol from corn grain and biodiesel from soybean oil. The production of biofuels from terrestrial plants is severely limited by the availability of fertile land. Lipid production from microalgae and its corresponding biodiesel production have been studied since the late 1970s but large scale production has remained economically infeasible due to the large costs of sterile growing conditions required for many algal species. This study focuses on the potential of the halophilic microalgae species Dunaliella salina as a source of lipids and subsequent biodiesel production. The lipid production rates under high light and low light as well as nitrogen suffi cient and nitrogen defi cient culture conditions were compared for D. salina cultured in replicate photobioreactors. The results show (a) cellular lipid content ranging from 16 to 44% (wt), (b) a maximum culture lipid concentration of 450mg lipid/L, and (c) a maximum integrated lipid production rate of 46mg lipid/L culture*day. The high amount of lipids produced suggests that D. salina, which can be mass-cultured in non-sterile outdoor ponds, has strong potential to be an economically valuable source for renewable oil and biodiesel production.

  10. Surgical sponges in small animal surgery.

    Science.gov (United States)

    Zeltzman, Phil; Downs, Myron

    2011-06-01

    Sponges are commonly used in veterinary practice. Uses for sponges in the operative arena include hemostasis, retraction, protection, dissection, and general wound management. Blood loss can be quantitated by counting blood-soaked sponges. Complications may arise when sponges are retained in the patient. Sponge retention is a risk whenever sponges are used during surgery, regardless of surgical procedure. This article reviews physical characteristics and proper uses of sponges, complications of sponge retention, and techniques to avoid retained sponges.

  11. Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85.

    Science.gov (United States)

    Li, Qiang; Siles, Jose A; Thompson, Ian P

    2010-10-01

    Succinic acid is a platform molecule that has recently generated considerable interests. Production of succinate from waste orange peel and wheat straw by consolidated bioprocessing that combines cellulose hydrolysis and sugar fermentation, using a cellulolytic bacterium, Fibrobacter succinogenes S85, was studied. Orange peel contains D-limonene, which is a well-known antibacterial agent. Its effects on batch cultures of F. succinogenes S85 were examined. The minimal concentrations of limonene found to inhibit succinate and acetate generation and bacterial growth were 0.01%, 0.1%, and 0.06% (v/v), respectively. Both pre-treated orange peel by steam distillation to remove D: -limonene and intact wheat straw were used as feedstocks. Increasing the substrate concentrations of both feedstocks, from 5 to 60 g/L, elevated succinate concentration and productivity but lowered the yield. In addition, pre-treated orange peel generated greater succinate productivities than wheat straw but had similar resultant titres. The greatest succinate titres were 1.9 and 2.0 g/L for pre-treated orange peel and wheat straw, respectively. This work demonstrated that agricultural waste such as wheat straw and orange peel can be biotransformed to succinic acid by a one-step consolidated bioprocessing. Measures to increase fermentation efficiency are also discussed.

  12. Production of the potential sweetener 5-ketofructose from fructose in fed-batch cultivation with Gluconobacter oxydans.

    Science.gov (United States)

    Herweg, Elena; Schöpping, Marie; Rohr, Katja; Siemen, Anna; Frank, Oliver; Hofmann, Thomas; Deppenmeier, Uwe; Büchs, Jochen

    2018-07-01

    Sweeteners improve the dietary properties of many foods. A candidate for a new natural sweetener is 5-ketofructose. In this study a fed-batch process for the production of 5-ketofructose was developed. A Gluconobacter oxydans strain overexpressing a fructose dehydrogenase from G. japonicus was used and the sensory properties of 5-ketofructose were analyzed. The compound showed an identical sweet taste quality as fructose and a similar intrinsic sweet threshold concentration of 16.4 mmol/L. The production of 5-ketofructose was characterized online by monitoring of the respiration activity in shake flasks. Pulsed and continuous fructose feeding was realized in 2 L stirred tank reactors and maximum fructose consumption rates were determined. 5-Ketofructose concentrations of up to 489 g/L, product yields up to 0.98 g 5-KF /g fructose and space time yields up to 8.2 g/L/h were reached highlighting the potential of the presented process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Genetic Algorithmic Optimization of PHB Production by a Mixed Culture in an Optimally Dispersed Fed-batch Bioreactor

    Directory of Open Access Journals (Sweden)

    Pratap R. Patnaik

    2009-10-01

    Full Text Available Poly-β-hydroxybutyrate (PHB is an energy-storage polymer whose properties are similar to those of chemical polymers such as polyethylene and polypropylene. Moreover, PHB is biodegradable, absorbed by human tissues and less energy-consuming than synthetic polymers. Although Ralstonia eutropha is widely used to synthesize PHB, it is inefficient in utilizing glucose and similar sugars. Therefore a co-culture of R. eutropha and Lactobacillus delbrueckii is preferred since the latter can convert glucose to lactate, which R. eutropha can metabolize easily. Tohyama et al. [24] maximized PHB production in a well-mixed fed-batch bioreactor with glucose and (NH42SO4 as the primary substrates. Since production-scale bioreactors often deviate from ideal laboratory-scale reactors, a large bioreactor was simulated by means of a dispersion model with the kinetics determined by Tohyama et al. [24] and dispersion set at an optimum Peclet number of 20 [32]. The time-dependent feed rates of the two substrates were determined through a genetic algorithm (GA to maximize PHB production. This bioreactor produced 22.2% more PHB per liter and 12.8% more cell mass than achieved by Tohyama et al. [24]. These results, and similar observations with other fermentations, indicate the feasibility of enhancing the efficiency of large nonideal bioreactors through GA optimizations.

  14. Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production

    DEFF Research Database (Denmark)

    Luo, Gang; Karakashev, Dimitar Borisov; Xie, Li

    2011-01-01

    Long-term effects of inoculum pretreatments(heat, acid, loading-shock) on hydrogen production from glucose under different temperatures (378C, 558C) and initial pH (7 and 5.5) were studied by repeated batch cultivations. Results obtained showed that it was necessary to investigate the long......-term effect of inoculum pretreatment on hydrogen production since pretreatments may just temporarily inhibit the hydrogen consuming processes. After long-term cultivation, pretreated inocula did not enhance hydrogen production compared to untreated inocula under mesophilic conditions (initial pH 7 and pH 5.......5) and thermophilic conditions (initial pH 7). However, pretreatment could inhibit lactate production and lead to higher hydrogen yield under thermophilic conditions at initial pH 5.5. The results further demonstrated that inoculum pretreatment could not permanently inhibit either methanogenesis or homoacetogenesis...

  15. Simulation model for improved production planning and control through quality, cycle time and batch size management

    Directory of Open Access Journals (Sweden)

    Kotevski Živko

    2015-01-01

    Full Text Available Production planning and control (PPC systems are the base of all production facilities. In today's surroundings, having a good PPC system generates lots of benefits for the companies. But, having an excellent PPC system provides great competitive advantage and serious reduction of cost in many fields. In order to get to a point of having excellent PPC, the companies turn more and more to the newest software tools, for simulations as an example. Considering today's advanced computer technology, by using the simulations in this area, companies will have strong asset when dealing with different kinds of wastes, delays, overstock, bottlenecks and generally loss of time. This model is applicable in almost all production facilities. Taking into account the different scrap percentages for the pieces that form the end product, a detailed model and analysis were made in order to determine the optimal starting parameters. At first all the conditions of the company were determined, conceptual model was created along with all assumptions. Then the model was verified and validated and at the end a cost benefit analysis was conducted in order to have clear results.

  16. Optimal control of a batch bioreactor for the production of a novel ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... The pH value has a marked effect on cell growth and production of CF66I. The lag phase ... most significant factors, which influenced CF66I produc- tion positively ..... genomovar V and VII have higher plant growth promoting.

  17. Improved productivity of poly (3-hydroxybutyrate) (PHB) in thermophilic Chelatococcus daeguensis TAD1 using glycerol as the growth substrate in a fed-batch culture.

    Science.gov (United States)

    Cui, Bin; Huang, Shaobin; Xu, Fuqian; Zhang, Ruijian; Zhang, Yongqing

    2015-07-01

    A particularly successful polyhydroxyalkanoate (PHA) in industrial applications is poly (3-hydroxybutyrate) (PHB). However, one of the major obstacles for wider application of PHB is the cost of its production and purification. Therefore, it is desirable to discover a method for producing PHB in large quantities at a competitive price. Glycerol is a cheap and widely used carbon source that can be applied in PHB production process. There are numerous advantages to operating fermentation at elevated temperatures; only several thermophilic bacteria are able to accumulate PHB when glycerol is the growth substrate. Here, we report on the possibility of increasing PHB production at low cost using thermophilic Chelatococcus daeguensis TAD1 when glycerol is the growth substrate in a fed-batch culture. We found that (1) excess glycerol inhibited PHB accumulation and (2) organic nitrogen sources, such as tryptone and yeast extract, promoted the growth of C. daeguensis TAD1. In the batch fermentation experiments, we found that using glycerol at low concentrations as the sole carbon source, along with the addition of mixed nitrate (NH4Cl, tryptone, and yeast extract), stimulated PHB accumulation in C. daeguensis TAD1. The results showed that the PHB productivity decreased in the following order: two-stage fed-batch fermentation > fed-batch fermentation > batch fermentation. In optimized culture conditions, a PHB amount of 17.4 g l(-1) was obtained using a two-stage feeding regimen, leading to a productivity rate of 0.434 g l(-1) h(-1), which is the highest productivity rate reported for PHB to date. This high PHB biosynthetic productivity could decrease the total production cost, allowing for further development of industrial applications of PHB.

  18. Parallel steady state studies on a milliliter scale accelerate fed-batch bioprocess design for recombinant protein production with Escherichia coli.

    Science.gov (United States)

    Schmideder, Andreas; Cremer, Johannes H; Weuster-Botz, Dirk

    2016-11-01

    In general, fed-batch processes are applied for recombinant protein production with Escherichia coli (E. coli). However, state of the art methods for identifying suitable reaction conditions suffer from severe drawbacks, i.e. direct transfer of process information from parallel batch studies is often defective and sequential fed-batch studies are time-consuming and cost-intensive. In this study, continuously operated stirred-tank reactors on a milliliter scale were applied to identify suitable reaction conditions for fed-batch processes. Isopropyl β-d-1-thiogalactopyranoside (IPTG) induction strategies were varied in parallel-operated stirred-tank bioreactors to study the effects on the continuous production of the recombinant protein photoactivatable mCherry (PAmCherry) with E. coli. Best-performing induction strategies were transferred from the continuous processes on a milliliter scale to liter scale fed-batch processes. Inducing recombinant protein expression by dynamically increasing the IPTG concentration to 100 µM led to an increase in the product concentration of 21% (8.4 g L -1 ) compared to an implemented high-performance production process with the most frequently applied induction strategy by a single addition of 1000 µM IPGT. Thus, identifying feasible reaction conditions for fed-batch processes in parallel continuous studies on a milliliter scale was shown to be a powerful, novel method to accelerate bioprocess design in a cost-reducing manner. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1426-1435, 2016. © 2016 American Institute of Chemical Engineers.

  19. 1,3-Propanediol production from crude glycerol by Clostridium butyricum DSP1 in repeated batch

    Directory of Open Access Journals (Sweden)

    Daria Szymanowska-Powałowska

    2014-11-01

    Conclusions: The experiments proved that by using a portion of metabolically active biomass as inoculum for another fermentation formula it is possible to eliminate the stage of inoculum growth and thereby reduce the length of the whole operation. Additionally, that strategy avoids the phase of microbial adaptation to a different source of carbon such as crude glycerol, which is more difficult to utilize, thus improving the kinetic parameters of 1,3-PD production.

  20. Microbial Protein Production from Candida tropicalis ATCC13803 in a Submerged Batch Fermentation Process

    Directory of Open Access Journals (Sweden)

    Sahar Golaghaiee

    2017-01-01

    Full Text Available Background and Objective: Microbial protein production can resolve one of the major world challenges, i.e. lack of protein sources. Candida tropicalis growth was investigated to specify a medium to reach the highest cell proliferation and protein production.Material and Methods: Fractional factorial design and the index of signal to noise ratio were applied for optimization of microbial protein production. Optimization process was conducted based on the experimental results of Taguchi approach designs. Fermentationwas performed at 25oC and the agitation speed of 300 rpm for 70 h. Ammonium sulfate, iron sulfate, glycine and glucose concentrations were considered as process variables. Optimization of the culture medium composition was conducted in order to obtain the highest cell biomass concentration and protein content. Experiment design was performed based on the Taguchi approach and L-16 orthogonal arrays using Qualitek-4 software.Results and Conclusion: Maximum biomass of 8.72 log (CFU ml-1 was obtained using the optimized medium with 0.3, 0.15, 2 and 80 g l-1 of ammonium sulfate, iron sulfate, glycine and glucose, respectively. Iron sulfate and ammonium sulfate with 41.76% (w w-1 and 35.27% (w w-1 contributions, respectively, were recognized as the main components for cell growth. Glucose and glycine with 17.12% and 5.86% (w w-1 contributions,respectively, also affected cell production. The highest interaction severity index of +54.16% was observed between glycine and glucose while the least one of +0.43% was recorded for ammonium sulfate and glycine. A deviation of 7% between the highestpredicted cell numbers and the experimented count confirms the suitability of the applied statistical method. High protein content of 52.16% (w w-1 as well as low fat and nucleic acids content suggest that Candida tropicalis is a suitable case for commercial processes.Conflict of interest: The authors declare that there is no conflict of interest.

  1. Effect of acetic acid on Saccharomyces carlsbergensis ATCC 6269 batch ethanol production monitored by flow cytometry.

    Science.gov (United States)

    Freitas, Cláudia; Neves, Elisabete; Reis, Alberto; Passarinho, Paula C; da Silva, Teresa Lopes

    2012-11-01

    Bioethanol produced from lignocellulosic materials has been considered a sustainable alternative fuel. Such type of raw materials have a huge potential, but their hydrolysis into mono-sugars releases toxic compounds such as weak acids, which affect the microorganisms' physiology, inhibiting the growth and ethanol production. Acetic acid (HAc) is the most abundant weak acid in the lignocellulosic materials hydrolysates. In order to understand the physiological changes of Saccharomyces carlsbergensis when fermenting in the presence of different acetic acid (HAc) concentrations, the yeast growth was monitored by multi-parameter flow cytometry at same time that the ethanol production was assessed. The membrane potential stain DiOC(6)(3) fluorescence intensity decreased as the HAc concentration increased, which was attributed to the plasmic membrane potential reduction as a result of the toxic effect of the HAc undissociated form. Nevertheless, the proportion of cells with permeabilized membrane did not increase with the HAc concentration increase. Fermentations ending at lower external pH and higher ethanol concentrations depicted the highest proportions of permeabilized cells and cells with increased reactive oxygen species levels. Flow cytometry allowed monitoring, near real time (at-line), the physiological states of the yeast during the fermentations. The information obtained can be used to optimize culture conditions to improve bioethanol production.

  2. ENHANCED PRODUCTION OF POLYHYDROXYBUTYRATE (PHB FROM AGRO-INDUSTRIAL WASTES; FED-BATCH CULTIVATION AND STATISTICAL MEDIA OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Berekaa

    2016-06-01

    Full Text Available Bacillus megaterium SW1-2 showed enhanced growth and polyhydroxybutyrate (PHB production during cultivation on date palm syrup (DEPS or sugar cane molasses. FT-IR and NMR spectroscopic analyses of the polymer accumulated during growth on DEPS revealed specific absorption peaks characteristic for PHB. 1.65 g/L of PHB (56.9% CDW was produced during growth on medium supplemented with 2 g/L of DEPS. Approximately, 36.1% CDW of PHB were recorded during growth on sugar cane molasses. Six runs of different fed-batch cultivation strategies were tested, the optimal run showed approximately 6.87-fold increase. Modified E2 medium was prefered recording 10.11 and 11.34 g/L of total PHB produced for runs 1 and 2, at the end of 96 h incubation period, respectively. Decrease in PHB was recorded during growth on complex medium (run 3 and run 4. In another independent optimization strategy, ten variables were concurrently examined for their significance on PHB production by Plackett-Burman statistical design for the first time. Among variables, DEPS-II and inoculum concentration followed by KH2PO4 and (NH42SO4 were found to be the most significant variables encourage PHB production. Indeed, DEPS-II or Fresh syrup is more significant than commercial syrup DEPS-I (p-value= 0.05. RPM, incubation period have highly negative effect on PHB production. Role of ago-industrial wastes, especially DEPS, in enhancement of PHB production was closely discussed.

  3. Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production.

    Science.gov (United States)

    Han, Wei; Ye, Min; Zhu, Ai Jun; Zhao, Hong Ting; Li, Yong Feng

    2015-09-01

    A combination bioprocess of solid-state fermentation (SSF) and dark fermentative hydrogen production from food waste was developed. Aspergillus awamori and Aspergillus oryzae were utilized in SSF from food waste to generate glucoamylase and protease which were used to hydrolyze the food waste suspension to get the nutrients-rich (glucose and free amino nitrogen (FAN)) hydrolysate. Both glucose and FAN increased with increasing of food waste mass ratio from 4% to 10% (w/v) and the highest glucose (36.9 g/L) and FAN (361.3mg/L) were observed at food waste mass ratio of 10%. The food waste hydrolysates were then used as the feedstock for dark fermentative hydrogen production by heat pretreated sludge. The best hydrogen yield of 39.14 ml H2/g food waste (219.91 ml H2/VSadded) was achieved at food waste mass ratio of 4%. The proposed combination bioprocess could effectively accelerate the hydrolysis rate, improve raw material utilization and enhance hydrogen yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Bacteria From Marine Sponges: A Source of New Drugs.

    Science.gov (United States)

    Bibi, Fehmida; Faheem, Muhammad; Azhar, Esam I; Yasir, Muhammad; Alvi, Sana A; Kamal, Mohammad A; Ullah, Ikram; Naseer, Muhammad I

    2017-01-01

    Sponges are rich source of bioactive natural products synthesized by the symbiotic bacteria belonging to different phyla. Due to a competition for space and nutrients the marine bacteria associated with sponges could produce more antibiotic substances. To explore the proactive potential of marine microbes extensive research has been done. These bioactive metabolites have some unique properties that are pharmaceutically important. For this review, we have performed a non-systematic search of the available literature though various online search engines. This review provides an insight that how majority of active metabolites have been identified from marine invertebrates of which sponges predominate. Sponges harbor abundant and diverse microorganisms, which are the sources of a range of marine bioactive metabolites. From sponges and their associated microorganisms, approximately 5,300 different natural compounds are known. Current research on sponge-microbe interaction and their active metabolites has become a focal point for many researchers. Various active metabolites derived from sponges are now known to be produced by their symbiotic microflora. In this review, we attempt to report the latest studies regarding capability of bacteria from sponges as producers of bioactive metabolite. Moreover, these sponge associated bacteria are an important source of different enzymes of industrial significance. In present review, we will address some novel approaches for discovering marine metabolites from bacteria that have the greatest potential to be used in clinical treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Keratin sponge/hydrogel part 1. fabrication and characterization

    Science.gov (United States)

    Keratin sponge/hydrogel products formed by either the oxidation or reduction of U.S. domestic fine- or coarse-grade wool exhibited distinctively different topologies and molecular weights of 6- 8 kDa and 40-60 kDa, each with unique macro-porous structure and microstructural behaviors. The sponge/ ...

  6. Optimal batch production strategies under continuous price decrease and time discounting

    Directory of Open Access Journals (Sweden)

    Mandal S.

    2007-01-01

    Full Text Available Single price discount in unit cost for bulk purchasing is quite common in reality as well as in inventory literature. However, in today's high-tech industries such as personal computers and mobile industries, continuous decrease in unit cost is a regular phenomenon. In the present paper, an attempt has been made to investigate the effects of continuous price decrease and time-value of money on optimal decisions for inventoried goods having time-dependent demand and production rates. The proposed models are developed over a finite time horizon considering both shortages and without shortages in inventory. Numerical examples are taken to illustrate the developed models and to examine the sensitivity of model parameters.

  7. Effect of culture conditions on lipase production by Fusarium solani in batch fermentation.

    Science.gov (United States)

    Maia, M M; Heasley, A; Camargo de Morais, M M; Melo, E H; Morais, M A; Ledingham, W M; Lima Filho, J L

    2001-01-01

    Lipase (Glycerol ester hydrolase EC 3.1.1.3.) from a Brazilian strain of Fusarium solani FSI has been investigated. The effect of different carbon sources and trace elements added to basal medium was observed with the aim of improving enzyme production. Lipase specific activity was highest (0.45 U mg(-1)) for sesame oil. When this medium was supplemented with trace elements using olive oil, corn oil and sesame oil the lipase specific activity increased to 0.86, 1.89 and 1.64 U mg(-1), respectively, after 96 h cultivation without any considerable biomass increase. The Km of this lipase using pNPP (p-nitrophenylpalmitate) as substrate, was 1.8 mM with a Vmax of 1.7 micromol min(-1) mg protein(-1). Lipase activity increased in the presence of increasing concentrations of hexane and toluene. In contrast, incubation of this enzyme with water-soluble solvents decreased its activity after 10% concentration (v/v) of the solvent. The lipase activity was stable below 35 degrees C but above this temperature activity losses were observed.

  8. The sponge microbiome project

    KAUST Repository

    Moitinho-Silva, Lucas; Nielsen, Shaun; Amir, Amnon; Gonzalez, Antonio; Ackermann, Gail L.; Cerrano, Carlo; Astudillo-Garcia, Carmen; Easson, Cole; Sipkema, Detmer; Liu, Fang; Steinert, Georg; Kotoulas, Giorgos; McCormack, Grace P.; Feng, Guofang; Bell, James J.; Vicente, Jan; Bjö rk, Johannes R.; Montoya, Jose M.; Olson, Julie B.; Reveillaud, Julie; Steindler, Laura; Pineda, Mari-Carmen; Marra, Maria V.; Ilan, Micha; Taylor, Michael W.; Polymenakou, Paraskevi; Erwin, Patrick M.; Schupp, Peter J.; Simister, Rachel L.; Knight, Rob; Thacker, Robert W.; Costa, Rodrigo; Hill, Russell T.; Lopez-Legentil, Susanna; Dailianis, Thanos; Ravasi, Timothy; Hentschel, Ute; Li, Zhiyong; Webster, Nicole S.; Thomas, Torsten

    2017-01-01

    Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different

  9. Effects of biosurfactant production by indigenous soil microorganisms on bioremediation of a co-contaminated soil in batch experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, F.; Mulligan, C.N. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering

    2007-07-01

    The challenge of remediating soils that are contaminated with both hydrocarbon compounds and metals was discussed, with particular reference to an in-situ bioremediation technique that was developed in the 1970s to deal with contaminated soils. The technique involves a two-stage process where water with added oxygen and nutrients is applied onto and injected into a contaminated area to stimulate the indigenous microbial populations in the soil. In addition to using organic pollutants as their carbon source, microorganisms can facilitate the removal of metals from the soil matrix and attenuate the toxicity of certain metals. Extraction wells placed downstream of the contaminated soils are used to remove and treat the water to eliminate any mobilized contaminants. This paper presented the results of batch experiments that evaluated the feasibility of biosurfactant production for the purpose of bioremediating a soil contaminated with aged petroleum hydrocarbons and heavy metals. The first phase of the study examined the growth of the native microbial population and the biodegradation of petroleum hydrocarbons, the production of biosurfactant and the mobilization of the total petroleum hydrocarbons (TPH) and metals into the aqueous phase. Biodegradation of petroleum hydrocarbons was observed in both soil and soil amended with nitrogen and phosphorous. However, the nutrient-amended soil had higher biodegradation of petroleum hydrocarbons, where 36 per cent of TPH was degraded by the end of the 50 day experiment, compared to 15 per cent for the non-amended soils. The concentration of biosurfactants in the same period increased 3 times their critical micelle concentration. It was concluded that biosurfactant production enhances the bioremediation of co-contaminated soils. 36 refs., 1 tab., 8 figs.

  10. Energy production from mechanical biological treatment and Composting plants exploiting solid anaerobic digestion batch: An Italian case study

    International Nuclear Information System (INIS)

    Di Maria, F.; Sordi, A.; Micale, C.

    2012-01-01

    Highlights: ► This work quantifies the Italian Composting and MBT facilities upgradable by SADB. ► The bioCH 4 from SADB of source and mechanical selected OFMSW is of 220–360 Nl/kg VS. ► The upgrading investment cost is 30% higher for Composting than for MBT. ► Electricity costs are 0.11–0.28 €/kW h, not influenced by differentiate collection. ► Electrical energy costs are constant for SADB treating more than 30 ktons/year. - Abstract: The energetic potential of the organic fraction of municipal solid waste processed in both existing Composting plants and Mechanical Biological Treatment (MBT) plants, can be successfully exploited by retrofitting these plants with the solid anaerobic digestion batch process. On the basis of the analysis performed in this study, about 50 MBT plants and 35 Composting plants were found to be suitable for retrofitting with Solid Anaerobic Digestion Batch (SADB) facilities. Currently the organic fraction of Municipal Solid Waste (OFMSW) arising from the MBT facilities is about 1,100,000 tons/year, whereas that arising from differentiated collection and treated in Composting plants is about 850,000 tons/year. The SADB performances were analyzed by the aid of an experimental apparatus and the main results, in agreement with literature data, show that the biogas yield ranged from 400 to 650 Nl/kg of Volatile Solids (VS), with a methane content ranging from 55% to 60% v/v. This can lead to the production of about 500 GW h of renewable energy per year, giving a CO 2 reduction of about 270,000 tons/year. From the economic point of view, the analysis shows that the mean cost of a kW h of electrical energy produced by upgrading MBT and Composting facilities with the SADB, ranges from 0.11 and 0.28 €/kW h, depending on the plant size and the amount of waste treated.

  11. The sponge microbiome project.

    Science.gov (United States)

    Moitinho-Silva, Lucas; Nielsen, Shaun; Amir, Amnon; Gonzalez, Antonio; Ackermann, Gail L; Cerrano, Carlo; Astudillo-Garcia, Carmen; Easson, Cole; Sipkema, Detmer; Liu, Fang; Steinert, Georg; Kotoulas, Giorgos; McCormack, Grace P; Feng, Guofang; Bell, James J; Vicente, Jan; Björk, Johannes R; Montoya, Jose M; Olson, Julie B; Reveillaud, Julie; Steindler, Laura; Pineda, Mari-Carmen; Marra, Maria V; Ilan, Micha; Taylor, Michael W; Polymenakou, Paraskevi; Erwin, Patrick M; Schupp, Peter J; Simister, Rachel L; Knight, Rob; Thacker, Robert W; Costa, Rodrigo; Hill, Russell T; Lopez-Legentil, Susanna; Dailianis, Thanos; Ravasi, Timothy; Hentschel, Ute; Li, Zhiyong; Webster, Nicole S; Thomas, Torsten

    2017-10-01

    Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal, and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 268 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with (i) a standard protocol using QIIME closed-reference picking resulting in 39 543 operational taxonomic units (OTU) at 97% sequence identity, (ii) a de novo clustering using Mothur resulting in 518 246 OTUs, and (iii) a new high-resolution Deblur protocol resulting in 83 908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications, and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host specificity, convergent evolution, environmental drivers of microbiome structure, and the sponge-associated rare biosphere. © The Authors 2017. Published by Oxford University Press.

  12. The sponge microbiome project

    KAUST Repository

    Moitinho-Silva, Lucas

    2017-08-16

    Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal, and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 268 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with (i) a standard protocol using QIIME closed-reference picking resulting in 39 543 operational taxonomic units (OTU) at 97% sequence identity, (ii) a de novo clustering using Mothur resulting in 518 246 OTUs, and (iii) a new high-resolution Deblur protocol resulting in 83 908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications, and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host specificity, convergent evolution, environmental drivers of microbiome structure, and the sponge-associated rare biosphere.

  13. Scale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations.

    Science.gov (United States)

    Li, Jian; Jaitzig, Jennifer; Lu, Ping; Süssmuth, Roderich D; Neubauer, Peter

    2015-06-12

    Heterologous production of natural products in Escherichia coli has emerged as an attractive strategy to obtain molecules of interest. Although technically feasible most of them are still constrained to laboratory scale production. Therefore, it is necessary to develop reasonable scale-up strategies for bioprocesses aiming at the overproduction of targeted natural products under industrial scale conditions. To this end, we used the production of the antibiotic valinomycin in E. coli as a model system for scalable bioprocess development based on consistent fed-batch cultivations. In this work, the glucose limited fed-batch strategy based on pure mineral salt medium was used throughout all scales for valinomycin production. The optimal glucose feed rate was initially detected by the use of a biocatalytically controlled glucose release (EnBase® technology) in parallel cultivations in 24-well plates with continuous monitoring of pH and dissolved oxygen. These results were confirmed in shake flasks, where the accumulation of valinomycin was highest when the specific growth rate decreased below 0.1 h(-1). This correlation was also observed for high cell density fed-batch cultivations in a lab-scale bioreactor. The bioreactor fermentation produced valinomycin with titers of more than 2 mg L(-1) based on the feeding of a concentrated glucose solution. Valinomycin production was not affected by oscillating conditions (i.e. glucose and oxygen) in a scale-down two-compartment reactor, which could mimic similar situations in industrial bioreactors, suggesting that the process is very robust and a scaling of the process to a larger industrial scale appears a realistic scenario. Valinomycin production was scaled up from mL volumes to 10 L with consistent use of the fed-batch technology. This work presents a robust and reliable approach for scalable bioprocess development and represents an example for the consistent development of a process for a heterologously expressed natural

  14. Antagonistic activity of marine sponges associated Actinobacteria

    Directory of Open Access Journals (Sweden)

    Selvakumar Dharmaraj

    2016-06-01

    Full Text Available Objective: To focus on the isolation and preliminary characterization of marine sponges associated Actinobacteria particularly Streptomyces species and also their antagonistic activities against bacterial and fungal pathogens. Methods: The sponges were collected from Kovalam and Vizhinjam port of south-west coast of Kerala, India. Isolation of strains was carried out from sponge extracts using international Streptomyces project media. For preliminary identification of the strains, morphological (mycelial colouration, soluble pigments, melanoid pigmentation, spore morphology, nutritional uptake (carbon utilisation, amonoacids influence, sodium chloride tolerance, physiological (pH, temperature and chemotaxonomical characterization were done. Antimicrobial studies were also carried out for the selected strains. Results: With the help of the spicule structures, the collected marine sponges were identified as Callyspongia diffusa, Mycale mytilorum, Tedania anhelans and Dysidea fragilis. Nearly 94 strains were primarily isolated from these sponges and further they were sub-cultured using international Streptomyces project media. The strains exhibited different mycelial colouration (aerial and substrate, soluble and melanoid pigmentations. The strains possessed three types of sporophore morphology namely rectus flexibilis, spiral and retinaculiaperti. Among the 94 isolates, seven exhibited antibacterial and antifungal activities with maximal zone of inhibition of 30 mm. The nutritional, physiological and chemotaxonomical characteristic study helped in the conventional identification of the seven strains and they all suggest that the strains to be grouped under the genus Streptomyces. Conclusions: The present study clearly helps in the preliminary identification of the isolates associated with marine sponges. Antagonistic activities prove the production of antimicrobial metabolites against the pathogens. Marine sponges associated Streptomyces are

  15. Modified batch anaerobic digestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops.

    Science.gov (United States)

    Brulé, Mathieu; Bolduan, Rainer; Seidelt, Stephan; Schlagermann, Pascal; Bott, Armin

    2013-01-01

    Batch biochemical methane potential (BMP) assays to evaluate the methane yield of biogas substrates such as energy crops are usually carried out with undiluted inoculum. A BMP assay was performed on two energy crops (green cuttings and grass silage). Anaerobic digestion was performed both with and without supplementation of three commercial additives containing trace metals in liquid, solid or adsorbed form (on clay particles). In order to reveal positive effects of trace metal supplementation on the methane yield, besides undiluted inoculum, 3-fold and 10-fold dilutions of the inoculum were applied for substrate digestion. Diluted inoculum variants were supplemented with both mineral nutrients and pH-buffering substances to prevent a collapse of the digestion process. As expected, commercial additives had no effect on the digestion process performed with undiluted inoculum, while significant increases of methane production through trace element supplementation could be observed on the diluted variants. The effect of inoculum dilution may be twofold: (1) decrease in trace metal supplementation from the inoculum and (2) reduction in the initial number of bacterial cells. Bacteria require higher growth rates for substrate degradation and hence have higher trace element consumption. According to common knowledge of the biogas process, periods with volatile fatty acids accumulation and decreased pH may have occurred in the course ofanaerobic digestion. These effects may have led to inhibition, not only ofmethanogenes and acetogenes involved in the final phases of methane production, but also offibre-degrading bacterial strains involved in polymer hydrolysis. Further research is required to confirm this hypothesis.

  16. An optimized fed-batch culture strategy integrated with a one-step fermentation improves L-lactic acid production by Rhizopus oryzae.

    Science.gov (United States)

    Fu, Yongqian; Sun, Xiaolong; Zhu, Huayue; Jiang, Ru; Luo, Xi; Yin, Longfei

    2018-05-21

    In previous work, we proposed a novel modified one-step fermentation fed-batch strategy to efficiently generate L-lactic acid (L-LA) using Rhizopus oryzae. In this study, to further enhance efficiency of L-LA production through one-step fermentation in fed-batch cultures, we systematically investigated the initial peptone- and glucose-feeding approaches, including different initial peptone and glucose concentrations and maintained residual glucose levels. Based on the results of this study, culturing R. oryzae with initial peptone and glucose concentrations of 3.0 and 50.0 g/l, respectively, using a fed-batch strategy is an effective approach of producing L-LA through one-step fermentation. Changing the residual glucose had no obvious effect on the generation of L-LA. We determined the maximum LA production and productivity to be 162 g/l and 6.23 g/(l·h), respectively, during the acid production stage. Compared to our previous work, there was almost no change in L-LA production or yield; however, the productivity of L-LA increased by 14.3%.

  17. Determination of some significant batch culture conditions affecting acetyl-xylan esterase production by Penicillium notatum NRRL-1249

    Directory of Open Access Journals (Sweden)

    Akhtar MN

    2011-05-01

    Full Text Available Abstract Background Acetyl-xylan esterase (AXE, EC 3.1.1.72 hydrolyses acetate group from the linear chain of xylopyranose residues bound by β-1,4-linkage. The enzyme finds commercial applications in bio-bleaching of wood pulp, treating animal feed to increase digestibility, processing food to increase clarification and converting lignocellulosics to feedstock and fuel. In the present study, we report on the production of an extracellular AXE from Penicillium notatum NRRL-1249 by solid state fermentation (SSF. Results Wheat bran at a level of 10 g (with 4 cm bed height was optimized as the basal substrate for AXE production. An increase in enzyme activity was observed when 7.5 ml of mineral salt solution (MSS containing 0.1% KH2PO4, 0.05% KCl, 0.05% MgSO4.7H2O, 0.3% NaNO3, 0.001% FeSO4.2H2O and 0.1% (v/w Tween-80 as an initial moisture content was used. Various nitrogen sources including ammonium sulphate, urea, peptone and yeast extract were compared for enzyme production. Maximal enzyme activity of 760 U/g was accomplished which was found to be highly significant (p ≤ 0.05. A noticeable enhancement in enzyme activity was observed when the process parameters including incubation period (48 h, initial pH (5, 0.2% (w/w urea as nitrogen source and 0.5% (v/w Tween-80 as a stimulator were further optimized using a 2-factorial Plackett-Burman design. Conclusion From the results it is clear that an overall improvement of more than 35% in terms of net enzyme activity was achieved compared to previously reported studies. This is perhaps the first report dealing with the use of P. notatum for AXE production under batch culture SSF. The Plackett-Burman model terms were found highly significant (HS, suggesting the potential commercial utility of the culture used (df = 3, LSD = 0.126.

  18. Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol.

    Science.gov (United States)

    Celik, Eda; Calik, Pinar; Oliver, Stephen G

    2009-09-01

    Batch-wise sorbitol addition as a co-substrate at the induction phase of methanol fed-batch fermentation by Pichia pastoris (Mut(+)) was proposed as a beneficial recombinant protein production strategy and the metabolic responses to methanol feeding rate in the presence of sorbitol was systematically investigated. Adding sorbitol batch-wise to the medium provided the following advantages over growth on methanol alone: (a) eliminating the long lag-phase for the cells and reaching 'high cell density production' at t = 24 h of the process (C(X) = 70 g CDW/l); (b) achieving 1.8-fold higher recombinant human erythropoietin (rHuEPO) (at t = 18 h); (c) reducing specific protease production 1.2-fold; (d) eliminating the lactic acid build-up period; (e) lowering the oxygen uptake rate two-fold; and (f) obtaining 1.4-fold higher overall yield coefficients. The maximum specific alcohol oxidase activity was not affected in the presence of sorbitol, and it was observed that sorbitol and methanol were utilized simultaneously. Thus, in the presence of sorbitol, 130 mg/l rHuEPO was produced at t = 24 h, compared to 80 mg/l rHuEPO (t = 24 h) on methanol alone. This work demonstrates not only the ease and efficiency of incorporating sorbitol to fermentations by Mut(+) strains of P. pastoris for the production of any bio-product, but also provides new insights into the metabolism of the methylotrophic yeast P. pastoris.

  19. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin

    Directory of Open Access Journals (Sweden)

    Chugh Dipti

    2010-05-01

    Full Text Available Abstract Background The prevalence of diabetes is predicted to rise significantly in the coming decades. A recent analysis projects that by the year 2030 there will be ~366 million diabetics around the world, leading to an increased demand for inexpensive insulin to make this life-saving drug also affordable for resource poor countries. Results A synthetic insulin precursor (IP-encoding gene, codon-optimized for expression in P. pastoris, was cloned in frame with the Saccharomyces cerevisiae α-factor secretory signal and integrated into the genome of P. pastoris strain X-33. The strain was grown to high-cell density in a batch procedure using a defined medium with low salt and high glycerol concentrations. Following batch growth, production of IP was carried out at methanol concentrations of 2 g L-1, which were kept constant throughout the remaining production phase. This robust feeding strategy led to the secretion of ~3 gram IP per liter of culture broth (corresponding to almost 4 gram IP per liter of cell-free culture supernatant. Using immobilized metal ion affinity chromatography (IMAC as a novel approach for IP purification, 95% of the secreted product was recovered with a purity of 96% from the clarified culture supernatant. Finally, the purified IP was trypsin digested, transpeptidated, deprotected and further purified leading to ~1.5 g of 99% pure recombinant human insulin per liter of culture broth. Conclusions A simple two-phase cultivation process composed of a glycerol batch and a constant methanol fed-batch phase recently developed for the intracellular production of the Hepatitis B surface antigen was adapted to secretory IP production. Compared to the highest previously reported value, this approach resulted in an ~2 fold enhancement of IP production using Pichia based expression systems, thus significantly increasing the efficiency of insulin manufacture.

  20. Sponge cell culture? A molecular identification method for sponge cells

    NARCIS (Netherlands)

    Sipkema, D.; Heilig, G.H.J.; Akkermans, A.D.L.; Osinga, R.; Tramper, J.; Wijffels, R.H.

    2003-01-01

    Dissociated sponge cells are easily confused with unicellular organisms. This has been an obstacle in the development of sponge-cell lines. We developed a molecular detection method to identify cells of the sponge Dysidea avara in dissociated cell cultures. The 18S ribosomal RNA gene from a Dysidea

  1. Effects of COD/N ratio on soluble microbial products in effluent from sequencing batch reactors and subsequent membrane fouling.

    Science.gov (United States)

    Ly, Quang Viet; Nghiem, Long D; Sibag, Mark; Maqbool, Tahir; Hur, Jin

    2018-05-01

    The relative ratios of chemical oxygen demand (COD) to nitrogen (N) in wastewater are known to have profound effects on the characteristics of soluble microbial products (SMP) from activated sludge. In this study, the changes in the SMP characteristics upon different COD/N ratios and the subsequent effects on ultrafiltration (UF) membrane fouling potentials were examined in sequencing batch reactors (SBR) using excitation emission matrix-parallel factor analysis (EEM-PARAFAC) and size exclusion chromatography (SEC). Three unique fluorescent components were identified from the SMP samples in the bioreactors operated at the COD/N ratios of 100/10 (N rich), 100/5 (N medium), and 100/2 (N deficient). The tryptophan-like component (C1) was the most depleted at the N medium condition. Fulvic-like (C2) and humic-like (C3) components were more abundant with N rich wastewater. Greater abundances of large size biopolymer (BP) and low molecular weight neutrals (LMWN) were found under the N deficient and N rich conditions, respectively. SMPs from various COD/N exhibited a greater degree on membrane fouling following the order of 100/2 > 100/10 > 100/5. C1 and C2 had close associations with reversible and irreversible fouling, respectively, while the reversible fouling potential of C3 depended on the COD/N ratios. No significant impact of COD/N ratio was observed on the relative contributions of SMP size fractions to either reversible or irreversible fouling potential. However, the COD/N ratios likely altered the BP foulants' composition with greater contribution of proteinaceous substances to reversible fouling under the N deficient condition than at other N richer conditions. The opposite trend was observed for irreversible fouling. Our results provided further insight into changes in different SMP constitutes and their membrane fouling in response to microbial activities under different COD/N ratios. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Study on Molasses Concentration from Sugarcanne Bagasse for Biohydrogen Production using Enriched Granular Activated Carbon (GAC) Immobilised Cells by Repeated Batch Cultivation

    Science.gov (United States)

    Idris, Norfatiha; Aminah Lutpi, Nabilah; Ruhaizul Che Ridzuan, Che Mohd; Shian, Wong Yee; Nuraiti Tengku Izhar, Tengku

    2018-03-01

    Repeated batch cultivation is known as most attractive method in improving hydrogen productivity, due to the facts that this approach could minimize the reuse of the cell and the inoculum preparation. In addition, with the combination of attach growth system during the fermentation processes to produce biohydrogen, the density of cells will be increased and the cell washout could be avoided. Therefore, this study aimed to examine the effectiveness of repeated batch cultivation for enrichment of anaerobic mixed culture onto granular activated carbon (GAC) and investigate the effect of molasses concentration during immobilization of mixed culture onto the GAC. The molasses concentration using 50 %, 40 %, 30 %, 20 % and 10 % of diluted molasses were used as feedstock in the fermentation process. The maximum hydrogen production of 60 ml was obtained at 30 % of molasses concentration with 831 ppm of hydrogen concentration. Thus, the kinetic parameter obtained from the batch profiling based on modified Gompertz equation are, Hm= 58 ml for the maximum hydrogen production and Rm= 2.02 ml/h representing the hydrogen production rate.

  3. Growth and metabolism of sponges

    NARCIS (Netherlands)

    Koopmans, M.

    2009-01-01

    Sponges (phylum Porifera) are multi cellular filter-feeding invertebrate animals living attached to a substratum in mostly marine but also in freshwater habitats. The interest in sponges has increased rapidly since the discovery of potential new pharmaceutical compounds produced by many sponges. An

  4. User-friendly optimization approach of fed-batch fermentation conditions for the production of iturin A using artificial neural networks and support vector machine

    Directory of Open Access Journals (Sweden)

    Fudi Chen

    2015-07-01

    Conclusion: According to the modeling results, the GRNN is considered as the most suitable ANN model for the design of the fed-batch fermentation conditions for the production of iturin A because of its high robustness and precision, and the SVM is also considered as a very suitable alternative model. Under the tolerance of 30%, the prediction accuracies of the GRNN and SVM are both 100% respectively in repeated experiments.

  5. The role of sponge-bacteria interactions: the sponge Aplysilla rosea challenged by its associated bacterium Streptomyces ACT-52A in a controlled aquarium system.

    Science.gov (United States)

    Mehbub, Mohammad F; Tanner, Jason E; Barnett, Stephen J; Franco, Christopher M M; Zhang, Wei

    2016-12-01

    Sponge-associated bacteria play a critical role in sponge biology, metabolism and ecology, but how they interact with their host sponges and the role of these interactions are poorly understood. This study investigated the role of the interaction between the sponge Aplysilla rosea and its associated actinobacterium, Streptomyces ACT-52A, in modifying sponge microbial diversity, metabolite profile and bioactivity. A recently developed experimental approach that exposes sponges to bacteria of interest in a controlled aquarium system was improved by including the capture and analysis of secreted metabolites by the addition of an absorbent resin in the seawater. In a series of controlled aquaria, A. rosea was exposed to Streptomyces ACT-52A at 10 6  cfu/ml and monitored for up to 360 h. Shifts in microbial communities associated with the sponges occurred within 24 to 48 h after bacterial exposure and continued until 360 h, as revealed by TRFLP. The metabolite profiles of sponge tissues also changed substantially as the microbial community shifted. Control sponges (without added bacteria) and Streptomyces ACT-52A-exposed sponges released different metabolites into the seawater that was captured by the resin. The antibacterial activity of compounds collected from the seawater increased at 96 and 360 h of exposure for the treated sponges compared to the control group due to new compounds being produced and released. Increased antibacterial activity of metabolites from treated sponge tissue was observed only at 360 h, whereas that of control sponge tissue remained unchanged. The results demonstrate that the interaction between sponges and their associated bacteria plays an important role in regulating secondary metabolite production.

  6. Changes of in vivo fluxes through central metabolic pathways during the production of nystatin by Streptomyces noursei in batch culture

    DEFF Research Database (Denmark)

    Jonsbu, E.; Christensen, Bjarke; Nielsen, Jens

    2001-01-01

    The central carbon metabolism of the nystatin-producing strain Streptomyces noursei ATCC 11455 was evaluated by C-13-labelling experiments. A batch fermentation was examined during the idiophase by GC-MS measurements of the labelling patterns of amino acids in the biomass. The labelling patterns...

  7. Retained surgical sponge

    International Nuclear Information System (INIS)

    Koyama, Masashi; Kurono, Kenji; Iida, Akihiko; Suzuki, Hirochika; Hara, Masaki; Mizutani, Hirokazu; Ohba, Satoru; Mizutani, Masaru; Nakajima, Yoichiro.

    1993-01-01

    The CT, US, and MRI findings of confirmed retained surgical sponges were reviewed. The CT examinations in eight lesions demonstrated round or oval masses with heterogeneous internal structures. The US examinations in 5 lesions demonstrated low echogenic masses with high echogenic internal structures, which suggested retained surgical sponges. MR imagings in three lesions showed slightly high intensity comparable to that of muscles on T1-weighted images and high signal intensity on T2-weighted images, suggesting fluid collections of high protein concentration. (author)

  8. Sediment impacts on marine sponges.

    Science.gov (United States)

    Bell, James J; McGrath, Emily; Biggerstaff, Andrew; Bates, Tracey; Bennett, Holly; Marlow, Joseph; Shaffer, Megan

    2015-05-15

    Changes in sediment input to marine systems can influence benthic environments in many ways. Sponges are important components of benthic ecosystems world-wide and as sessile suspension feeders are likely to be impacted by changes in sediment levels. Despite this, little is known about how sponges respond to changes in settled and suspended sediment. Here we review the known impacts of sedimentation on sponges and their adaptive capabilities, whilst highlighting gaps in our understanding of sediment impacts on sponges. Although the literature clearly shows that sponges are influenced by sediment in a variety of ways, most studies confer that sponges are able to tolerate, and in some cases thrive, in sedimented environments. Critical gaps exist in our understanding of the physiological responses of sponges to sediment, adaptive mechanisms, tolerance limits, and the particularly the effect of sediment on early life history stages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation.

    Science.gov (United States)

    Maeda, Roberto Nobuyuki; Barcelos, Carolina Araújo; Santa Anna, Lídia Maria Melo; Pereira, Nei

    2013-01-10

    This study aimed to produce a cellulase blend and to evaluate its application in a simultaneous saccharification and fermentation (SSF) process for second generation ethanol production from sugar cane bagasse. The sugar cane bagasse was subjected to pretreatments (diluted acid and alkaline), as for disorganizing the ligocellulosic complex, and making the cellulose component more amenable to enzymatic hydrolysis. The residual solid fraction was named sugar cane bagasse partially delignified cellulignin (PDC), and was used for enzyme production and ethanol fermentation. The enzyme production was performed in a bioreactor with two inoculum concentrations (5 and 10% v/v). The fermentation inoculated with higher inoculum size reduced the time for maximum enzyme production (from 72 to 48). The enzyme extract was concentrated using tangential ultrafiltration in hollow fiber membranes, and the produced cellulase blend was evaluated for its stability at 37 °C, operation temperature of the simultaneous SSF process, and at 50 °C, optimum temperature of cellulase blend activity. The cellulolytic preparation was stable for at least 300 h at both 37 °C and 50 °C. The ethanol production was carried out by PDC fed-batch SSF process, using the onsite cellulase blend. The feeding strategy circumvented the classic problems of diffusion limitations by diminishing the presence of a high solid:liquid ratio at any time, resulting in high ethanol concentration at the end of the process (100 g/L), which corresponded to a fermentation efficiency of 78% of the maximum obtainable theoretically. The experimental results led to the ratio of 380 L of ethanol per ton of sugar cane bagasse PDC. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The Sponge Hologenome

    Science.gov (United States)

    Thomas, Torsten

    2016-01-01

    ABSTRACT A paradigm shift has recently transformed the field of biological science; molecular advances have revealed how fundamentally important microorganisms are to many aspects of a host’s phenotype and evolution. In the process, an era of “holobiont” research has emerged to investigate the intricate network of interactions between a host and its symbiotic microbial consortia. Marine sponges are early-diverging metazoa known for hosting dense, specific, and often highly diverse microbial communities. Here we synthesize current thoughts about the environmental and evolutionary forces that influence the diversity, specificity, and distribution of microbial symbionts within the sponge holobiont, explore the physiological pathways that contribute to holobiont function, and describe the molecular mechanisms that underpin the establishment and maintenance of these symbiotic partnerships. The collective genomes of the sponge holobiont form the sponge hologenome, and we highlight how the forces that define a sponge’s phenotype in fact act on the genomic interplay between the different components of the holobiont. PMID:27103626

  11. Generalized Morphology using Sponges

    NARCIS (Netherlands)

    van de Gronde, Jasper J.; Roerdink, Jos B.T.M.

    2016-01-01

    Mathematical morphology has traditionally been grounded in lattice theory. For non-scalar data lattices often prove too restrictive, however. In this paper we present a more general alternative, sponges, that still allows useful definitions of various properties and concepts from morphological

  12. The sponge microbiome project

    NARCIS (Netherlands)

    Moitinho-Silva, Lucas; Nielsen, Shaun; Amir, Amnon; Gonzalez, Antonio; Ackermann, Gail L.; Cerrano, Carlo; Astudillo-Garcia, Carmen; Easson, Cole; Sipkema, Detmer; Liu, Fang; Steinert, Georg; Kotoulas, Giorgos; McCormack, Grace P.; Feng, Guofang; Bell, James J.; Vicente, Jan; Björk, Johannes R.; Montoya, Jose M.; Olson, Julie B.; Reveillaud, Julie; Steindler, Laura; Pineda, Mari Carmen; Marra, Maria V.; Ilan, Micha; Taylor, Michael W.; Polymenakou, Paraskevi; Erwin, Patrick M.; Schupp, Peter J.; Simister, Rachel L.; Knight, Rob; Thacker, Robert W.; Costa, Rodrigo; Hill, Russell T.; Lopez-Legentil, Susanna; Dailianis, Thanos; Ravasi, Timothy; Hentschel, Ute; Li, Zhiyong; Webster, Nicole S.; Thomas, Torsten

    2017-01-01

    Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the

  13. High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process.

    Science.gov (United States)

    Yang, Maohua; Li, Wangliang; Liu, Binbin; Li, Qiang; Xing, Jianmin

    2010-07-01

    In this paper, high-concentration sugars were produced from pretreated corn stover. The raw corn stover was pretreated in a process combining steam explosion and alkaline hydrogen-peroxide. The hemicellulose and lignin were removed greatly. The cellulose content increased to 73.2%. Fed-batch enzymatic hydrolysis was initiated with 12% (w/v) solids loading and 20 FPU/g solids. Then, 6% solids were fed consecutively at 12, 36 and 60 h. After 144 h, the final concentrations of reducing sugar, glucose, cellobiose and xylose reached 220, 175, 22 and 20 g/L, respectively. The final total biomass conversion was 60% in fed-batch process. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Production of pullulan by a thermotolerant Aureobasidium pullulans strain in non-stirred fed batch fermentation process

    Directory of Open Access Journals (Sweden)

    Ranjan Singh

    2012-09-01

    Full Text Available Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l at 42ºC, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.

  15. Production of pullulan by a thermotolerant aureobasidium pullulans strain in non-stirred fed batch fermentation process.

    Science.gov (United States)

    Singh, Ranjan; Gaur, Rajeeva; Tiwari, Soni; Gaur, Manogya Kumar

    2012-07-01

    Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42(o)C, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.

  16. On the evolution of morphology of zirconium sponge during reduction and distillation

    International Nuclear Information System (INIS)

    Kapoor, K.; Padmaprabu, C.; Nandi, D.

    2008-01-01

    High purity zirconium metal is produced by magnesio-thermic reduction of zirconium tetrachloride followed by vacuum distillation. The reduction process is carried out in a batch giving metal sponge and magnesium chloride in the reduced mass. The sponge is purified to using by vacuum distillation. The morphology of the sponge formed during the reduction and its influence on further processing has significant importance. In the present study, a detailed investigation involving evolution of the morphology of sponge particles and its implication during the vacuum distillation was carried out. The study of the microstructure was done using scanning electron microscopy and X-ray diffraction. It is observed that the nascent sponge formed is highly unstable which transforms to a needle-like morphology almost immediately, which further transforms to rounded and finally to a bulk shape. Faceting of the surface and needle-shape formation were observed in these particles, this is probably due to anisotropy in the surface energy. The morphology of the sponge formed during the reduction influences the distillation process. The fine needle-like shape sponge morphology leads to particle ejection, which is explained to be due to curvature effect. This is responsible for the formation of unwanted mass during distillation. XRD line broadening analysis indicates that the individual sponge particles are free from structural defects (dislocation) and are nearly single crystalline in nature

  17. High-titer and productivity of l-(+)-lactic acid using exponential fed-batch fermentation with Bacillus coagulans arr4, a new thermotolerant bacterial strain.

    Science.gov (United States)

    Coelho, Luciana Fontes; Beitel, Susan Michelz; Sass, Daiane Cristina; Neto, Paulo Marcelo Avila; Contiero, Jonas

    2018-04-01

    Bacillus coagulans arr4 is a thermotolerant microorganism with great biotechnological potential for l-(+)-lactic acid production from granulated sugar and yeast extract. The highest l-(+)-lactic acid production was obtained with Ca(OH) 2 . The maximum production of l-(+)-lactic acid (206.81 g/L) was observed in exponential feeding using granulated sugar solution (900 g/L) and yeast extract (1%) at 50 °C, pH 6.5, and initial granulated sugar concentration of 100 g/L at 39 h. 5.3 g/L h productivity and 97% yield were observed, and no sugar remained. Comparing the simple batch with exponential fed-batch fermentation, the l(+) lactic acid production was improved in 133.22% and dry cell weight was improved in 83.29%, using granulated sugar and yeast extract. This study presents the highest productivity of lactic acid ever observed in the literature, on the fermentation of thermotolerant Bacillus sp. as well as an innovative and high-efficiency purification technology, using low-cost substances as Celite and charcoal. The recovery of lactic acid was 86%, with 100% protein removal, and the fermentation medium (brown color) became a colorless solution.

  18. Batch, design optimization, and DNA sequencing study for continuous 1,3-propanediol production from waste glycerol by a soil-based inoculum.

    Science.gov (United States)

    Kanjilal, Baishali; Noshadi, Iman; Bautista, Eddy J; Srivastava, Ranjan; Parnas, Richard S

    2015-03-01

    1,3-propanediol (1,3-PD) was produced with a robust fermentation process using waste glycerol feedstock from biodiesel production and a soil-based bacterial inoculum. An iterative inoculation method was developed to achieve independence from soil and selectively breed bacterial populations capable of glycerol metabolism to 1,3-PD. The inoculum showed high resistance to impurities in the feedstock. 1,3-PD selectivity and yield in batch fermentations was optimized by appropriate nutrient compositions and pH control. The batch yield of 1,3-PD was maximized to ~0.7 mol/mol for industrial glycerol which was higher than that for pure glycerin. 16S rDNA sequencing results show a systematic selective enrichment of 1,3-PD producing bacteria with iterative inoculation and subsequent process control. A statistical design of experiments was carried out on industrial glycerol batches to optimize conditions, which were used to run two continuous flow stirred-tank reactor (CSTR) experiments over a period of >500 h each. A detailed analysis of steady states at three dilution rates is presented. Enhanced specific 1,3-PD productivity was observed with faster dilution rates due to lower levels of solvent degeneration. 1,3-PD productivity, specific productivity, and yield of 1.1 g/l hr, 1.5 g/g hr, and 0.6 mol/mol of glycerol were obtained at a dilution rate of 0.1 h(-1)which is bettered only by pure strains in pure glycerin feeds.

  19. Antiviral lead compounds from marine sponges

    KAUST Repository

    Sagar, Sunil

    2010-10-11

    Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed. 2010 by the authors; licensee MDPI.

  20. Genetics Home Reference: white sponge nevus

    Science.gov (United States)

    ... Twitter Home Health Conditions White sponge nevus White sponge nevus Printable PDF Open All Close All Enable ... to view the expand/collapse boxes. Description White sponge nevus is a condition characterized by the formation ...

  1. Growth of aspergillus terreus and the production of itaconic acid in batch and continuous cultures. The influence of pH

    Energy Technology Data Exchange (ETDEWEB)

    Rychtera, M.; Wase, J.D.A.

    1981-01-01

    Aspergillus terreus (NRRL 1960) was cultivated in batch and in continuous single-stage culture. The influence of pH on the growth of the organism, on the formation of itaconic acid and on the kinetics of fermentation was studied under phosphate limitation, both at controlled ph values and also when the pH was allowed to decrease in a natural way. In the pH range 1.7-3.5, the ratio of undissociated:half-dissociated acid varied from 190:1 to 1.5:1. The amount of completely dissociated acid may be regarded as negligible. In batch systems operated without pH control, an initial pH of 3.1 proved to be the most effective. Product formation under such conditions started at a point where the exponential growth phase commenced and was described by a zero-order equation. The maximum itaconic acid production rate was shifted behind maximum growth rate. The continuous single-stage system was first order with respect to product formation. At pH greater than 3.1, a number of aberrant and pellet forms of the mould occurred, resulting in decreased acid production. (Refs. 41).

  2. Production of pullulan by a thermotolerant Aureobasidium pullulans strain in non-stirred fed batch fermentation process

    OpenAIRE

    Singh, Ranjan; Gaur, Rajeeva; Tiwari, Soni; Gaur, Manogya Kumar

    2012-01-01

    Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42ºC, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with th...

  3. Ethanol production by repeated batch and continuous fermentations of blackstrap molasses using immobilized yeast cells on thin-shell silk cocoons

    International Nuclear Information System (INIS)

    Rattanapan, Anuchit; Limtong, Savitree; Phisalaphong, Muenduen

    2011-01-01

    Highlights: → Thin-shell silk cocoons for immobilization of Saccharomycescerevisiae. → Advantages: high mechanical strength, light weight, biocompatibility and high surface area. → Enhanced cell stability and ethanol productivity by the immobilization system. -- Abstract: A thin-shell silk cocoon (TSC), a residual from the silk industry, is used as a support material for the immobilization of Saccharomyces cerevisiae M30 in ethanol fermentation because of its properties such as high mechanical strength, light weight, biocompatibility and high surface area. In batch fermentation with blackstrap molasses as the main fermentation substrate, an optimal ethanol concentration of 98.6 g/L was obtained using a TSC-immobilized cell system at an initial reducing sugar concentration of 240 g/L. The ethanol concentration produced by the immobilized cells was 11.5% higher than that produced by the free cells. Ethanol production in five-cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in a packed-bed reactor, a maximum ethanol productivity of 19.0 g/(L h) with an ethanol concentration of 52.8 g/L was observed at a 0.36 h -1 dilution rate.

  4. Pro Spring Batch

    CERN Document Server

    Minella, Michael T

    2011-01-01

    Since its release, Spring Framework has transformed virtually every aspect of Java development including web applications, security, aspect-oriented programming, persistence, and messaging. Spring Batch, one of its newer additions, now brings the same familiar Spring idioms to batch processing. Spring Batch addresses the needs of any batch process, from the complex calculations performed in the biggest financial institutions to simple data migrations that occur with many software development projects. Pro Spring Batch is intended to answer three questions: *What? What is batch processing? What

  5. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes.

    Science.gov (United States)

    Robledo-Narváez, Paula N; Muñoz-Páez, Karla M; Poggi-Varaldo, Hector M; Ríos-Leal, Elvira; Calva-Calva, Graciano; Ortega-Clemente, L Alfredo; Rinderknecht-Seijas, Noemí; Estrada-Vázquez, Carlos; Ponce-Noyola, M Teresa; Salazar-Montoya, J Alfredo

    2013-10-15

    Hydrogen is a valuable clean energy source, and its production by biological processes is attractive and environmentally sound and friendly. In México 5 million tons/yr of agroindustrial wastes are generated; these residues are rich in fermentable organic matter that can be used for hydrogen production. On the other hand, batch, intermittently vented, solid substrate fermentation of organic waste has attracted interest in the last 10 years. Thus the objective of our work was to determine the effect of initial total solids content and initial pH on H2 production in batch fermentation of a substrate that consisted of a mixture of sugarcane bagasse, pineapple peelings, and waste activated sludge. The experiment was a response surface based on 2(2) factorial with central and axial points with initial TS (15-35%) and initial pH (6.5-7.5) as factors. Fermentation was carried out at 35 °C, with intermittent venting of minireactors and periodic flushing with inert N2 gas. Up to 5 cycles of H2 production were observed; the best treatment in our work showed cumulative H2 productions (ca. 3 mmol H2/gds) with 18% and 6.65 initial TS and pH, respectively. There was a significant effect of TS on production of hydrogen, the latter decreased with initial TS increase from 18% onwards. Cumulative H2 productions achieved in this work were higher than those reported for organic fraction of municipal solid waste (OFMSW) and mixtures of OFMSW and fruit peels waste from fruit juice industry, using the same process. Specific energetic potential due to H2 in our work was attractive and fell in the high side of the range of reported results in the open literature. Batch dark fermentation of agrowastes as practiced in our work could be useful for future biorefineries that generate biohydrogen as a first step and could influence the management of this type of agricultural wastes in México and other countries and regions as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Embryo production in the sponge-dwelling snapping shrimp Synalpheus apioceros (Decapoda, Alpheidae from Bocas del Toro, Panama

    Directory of Open Access Journals (Sweden)

    Adriana Rebolledo

    2014-11-01

    Full Text Available Caridean shrimps of the genus Synalpheus are abundant and widely distributed in tropical and subtropical regions, but knowledge of their reproductive biology remains scarce. We report reproductive traits of Synalpheus apioceros from Bocas del Toro, Panama, based on collections in August 2011. The 46 ovigerous females that were analyzed ranged in size from 3.8 to 7.4 mm in carapace length. Fecundity varied between 8 and 310 embryos and increased with female size. Females invested 18.6 ± 10.3% of their body weight in Embryo production. Embryo volume increased considerably (77.2% during embryogenesis, likely representing water uptake near the end of incubation period. Compared to Synalpheus species with abbreviated or direct development, S. apioceros produced substantially smaller embryos; however, S. apioceros seems to have a prolonged larval phase with at least five zoeal stages, which may explain the combination of relatively small and numerous embryos. We did not find nonviable, minute, chalky embryos, previously reported for S. apioceros specimens obtained from the northwestern Gulf of Mexico, which supports the hypothesis that the production of this type of embryos may be a physiological response of this warm-water species to the temperature decrease near to its latitudinal range limit.

  7. Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes.

    Science.gov (United States)

    Tomás-Pejó, E; Ballesteros, M; Oliva, J M; Olsson, L

    2010-11-01

    An efficient fermenting microorganism for bioethanol production from lignocellulose is highly tolerant to the inhibitors released during pretreatment and is able to ferment efficiently both glucose and xylose. In this study, directed evolution was employed to improve the xylose fermenting Saccharomyces cerevisiae F12 strain for bioethanol production at high substrate loading. Adapted and parental strains were compared with respect to xylose consumption and ethanol production. Adaptation led to an evolved strain more tolerant to the toxic compounds present in the medium. When using concentrated prehydrolysate from steam-pretreated wheat straw with high inhibitor concentration, an improvement of 65 and 20% in xylose consumption and final ethanol concentration, respectively, were achieved using the adapted strain. To address the need of high substrate loadings, fed-batch SSF experiments were performed and an ethanol concentration as high as 27.4 g/l (61% of the theoretical) was obtained with 11.25% (w/w) of water insoluble solids (WIS).

  8. Semi-industrial scale (30 m3) fed-batch fermentation for the production of D-lactate by Escherichia coli strain HBUT-D15.

    Science.gov (United States)

    Fu, Xiangmin; Wang, Yongze; Wang, Jinhua; Garza, Erin; Manow, Ryan; Zhou, Shengde

    2017-02-01

    D(-)-lactic acid is needed for manufacturing of stereo-complex poly-lactic acid polymer. Large scale D-lactic acid fermentation, however, has yet to be demonstrated. A genetically engineered Escherichia coli strain, HBUT-D, was adaptively evolved in a 15% calcium lactate medium for improved lactate tolerance. The resulting strain, HBUT-D15, was tested at a lab scale (7 L) by fed-batch fermentation with up to 200 g L -1 of glucose, producing 184-191 g L -1 of D-lactic acid, with a volumetric productivity of 4.38 g L -1  h -1 , a yield of 92%, and an optical purity of 99.9%. The HBUT-D15 was then evaluated at a semi-industrial scale (30 m 3 ) via fed-batch fermentation with up to 160 g L -1 of glucose, producing 146-150 g L -1 of D-lactic acid, with a volumetric productivity of 3.95-4.29 g L -1  h -1 , a yield of 91-94%, and an optical purity of 99.8%. These results are comparable to that of current industrial scale L(+)-lactic acid fermentation.

  9. Natural products from the ascidian Botrylloides giganteum, from the sponges Verongula gigantea, Ircinia felix, Cliona delitrix and from the nudibranch Tambja eliora, from the Brazilian coastline

    International Nuclear Information System (INIS)

    Granato, Ana Claudia; Oliveira, Jaine H.H.L. de; Seleghim, Mirna H.R.; Berlinck, Roberto G.S.; Macedo, Mario L.; Ferreira, Antonio G.; Rocha, Rosana M. da; Hajdu, Eduardo; Peixinho, Solange; Pessoa, Claudia O.; Moraes, Manoel O.; Cavalcanti, Bruno C.

    2005-01-01

    Two new marine metabolites, 3Z, 6Z, 9Z-dodecatrien-1-ol (1) from the ascidian Botrylloides giganteum and 4H-pyran-2ol acetate from the sponge Ircinia felix (4) are herein reported. The known bromotyrosine compounds, 2-(3,5-dibromo-4-methoxyphenyl)-N,N,Ndimethylethanammonium (2) and 2,6-dibromo-4-(2-(trimethylammonium)ethyl)phenol (3), have been isolated from the sponge Verongula gigantea. Serotonin (5) is reported for the first time from the sponge Cliona delitrix, and tambjamines A (15) and D (16) isolated as their respective salts from the nudibranch Tambja eliora. Only tambjamine D presented cytotoxicity against CEM (IC 5 )0 12.2 μg/mL) and HL60 (IC 50 13.2 μg/mL) human leukemia cells, MCF-7 breast cancer cells (IC 50 13.2 μg/mL), colon HCT-8 cancer cells (IC 50 10.1 μg/mL) and murine melanoma B16 cancer cells (IC 50 6.7 μg/mL). (author)

  10. Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon.

    Science.gov (United States)

    Zhang, Qiang; Cobley, Claire; Au, Leslie; McKiernan, Maureen; Schwartz, Andrea; Wen, Long-Ping; Chen, Jingyi; Xia, Younan

    2009-09-01

    Au nanocages synthesized from Ag nanocubes via the galvanic replacement reaction are finding widespread use in a range of applications because of their tunable optical properties. Most of these applications require the use of nanocages with a uniform size and in large quantities. This requirement translates into a demand for scaling up the production of Ag nanocubes with uniform, well-controlled sizes. Here we report such a method based on the modification of NaHS-mediated polyol synthesis with argon protection for fast reduction, which allows for the production of Ag nanocubes on a scale of 0.1 g per batch. The Ag nanocubes had an edge length tunable from 25 to 45 nm together with a size variation within +/-5 nm. The use of argon protection was the key to the success of this scale-up synthesis, suggesting the importance of controlling oxidative etching during synthesis.

  11. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  12. 21 CFR 886.4790 - Ophthalmic sponge.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic sponge. 886.4790 Section 886.4790 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4790 Ophthalmic sponge. (a) Identification. An ophthalmic sponge is a device that is an absorbant sponge, pad, or spear made of folded gauze, cotton...

  13. Treatment of duck house wastewater by a pilot-scale sequencing batch reactor system for sustainable duck production.

    Science.gov (United States)

    Su, Jung-Jeng; Huang, Jeng-Fang; Wang, Yi-Lei; Hong, Yu-Ya

    2018-06-15

    The objective of this study is trying to solve water pollution problems related to duck house wastewater by developing a novel duck house wastewater treatment technology. A pilot-scale sequencing batch reactor (SBR) system using different hydraulic retention times (HRTs) for treating duck house wastewater was developed and applied in this study. Experimental results showed that removal efficiency of chemical oxygen demand in untreated duck house wastewater was 98.4, 98.4, 87.8, and 72.5% for the different HRTs of 5, 3, 1, and 0.5 d, respectively. In addition, removal efficiency of biochemical oxygen demand in untreated duck house wastewater was 99.6, 99.3, 90.4, and 58.0%, respectively. The pilot-scale SBR system was effective and deemed capable to be applied to treat duck house wastewater. It is feasible to apply an automatic SBR system on site based on the previous case study of the farm-scale automatic SBR systems for piggery wastewater treatment.

  14. Characteristics of Corn Stover Pretreated with Liquid Hot Water and Fed-Batch Semi-Simultaneous Saccharification and Fermentation for Bioethanol Production

    Science.gov (United States)

    Li, Xuezhi; Lu, Jie; Zhao, Jian; Qu, Yinbo

    2014-01-01

    Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW) pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF) were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h). The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism. PMID:24763192

  15. Sponge systematics facing new challenges.

    Science.gov (United States)

    Cárdenas, P; Pérez, T; Boury-Esnault, N

    2012-01-01

    Systematics is nowadays facing new challenges with the introduction of new concepts and new techniques. Compared to most other phyla, phylogenetic relationships among sponges are still largely unresolved. In the past 10 years, the classical taxonomy has been completely overturned and a review of the state of the art appears necessary. The field of taxonomy remains a prominent discipline of sponge research and studies related to sponge systematics were in greater number in the Eighth World Sponge Conference (Girona, Spain, September 2010) than in any previous world sponge conferences. To understand the state of this rapidly growing field, this chapter proposes to review studies, mainly from the past decade, in sponge taxonomy, nomenclature and phylogeny. In a first part, we analyse the reasons of the current success of this field. In a second part, we establish the current sponge systematics theoretical framework, with the use of (1) cladistics, (2) different codes of nomenclature (PhyloCode vs. Linnaean system) and (3) integrative taxonomy. Sponges are infamous for their lack of characters. However, by listing and discussing in a third part all characters available to taxonomists, we show how diverse characters are and that new ones are being used and tested, while old ones should be revisited. We then review the systematics of the four main classes of sponges (Hexactinellida, Calcispongiae, Homoscleromorpha and Demospongiae), each time focusing on current issues and case studies. We present a review of the taxonomic changes since the publication of the Systema Porifera (2002), and point to problems a sponge taxonomist is still faced with nowadays. To conclude, we make a series of proposals for the future of sponge systematics. In the light of recent studies, we establish a series of taxonomic changes that the sponge community may be ready to accept. We also propose a series of sponge new names and definitions following the PhyloCode. The issue of phantom species

  16. Production of Gymnemic Acid Depends on Medium, Explants, PGRs, Color Lights, Temperature, Photoperiod, and Sucrose Sources in Batch Culture of Gymnema sylvestre

    Directory of Open Access Journals (Sweden)

    A. Bakrudeen Ali Ahmed

    2012-01-01

    Full Text Available Gymnema sylvestre (R.Br. is an important diabetic medicinal plant which yields pharmaceutically active compounds called gymnemic acid (GA. The present study describes callus induction and the subsequent batch culture optimization and GA quantification determined by linearity, precision, accuracy, and recovery. Best callus induction of GA was noticed in MS medium combined with 2,4-D (1.5 mg/L and KN (0.5 mg/L. Evaluation and isolation of GA from the calluses derived from different plant parts, namely, leaf, stem and petioles have been done in the present case for the first time. Factors such as light, temperature, sucrose, and photoperiod were studied to observe their effect on GA production. Temperature conditions completely inhibited GA production. Out of the different sucrose concentrations tested, the highest yield (35.4 mg/g d.w was found at 5% sucrose followed by 12 h photoperiod (26.86 mg/g d.w. Maximum GA production (58.28 mg/g d.w was observed in blue light. The results showed that physical and chemical factors greatly influence the production of GA in callus cultures of G. sylvestre. The factors optimized for in vitro production of GA during the present study can successfully be employed for their large-scale production in bioreactors.

  17. Re-fermentation of washed spent solids from batch hydrogenogenic fermentation for additional production of biohydrogen from the organic fraction of municipal solid waste.

    Science.gov (United States)

    Muñoz-Páez, Karla M; Ríos-Leal, Elvira; Valdez-Vazquez, Idania; Rinderknecht-Seijas, Noemí; Poggi-Varaldo, Héctor M

    2012-03-01

    In the first batch solid substrate anaerobic hydrogenogenic fermentation with intermittent venting (SSAHF-IV) of the organic fraction of municipal solid waste (OFMSW), a cumulative production of 16.6 mmol H(2)/reactor was obtained. Releases of hydrogen partial pressure first by intermittent venting and afterward by flushing headspace of reactors with inert gas N(2) allowed for further hydrogen production in a second to fourth incubation cycle, with no new inoculum nor substrate nor inhibitor added. After the fourth cycle, no more H(2) could be harvested. Interestingly, accumulated hydrogen in 4 cycles was 100% higher than that produced in the first cycle alone. At the end of incubation, partial pressure of H(2) was near zero whereas high concentrations of organic acids and solvents remained in the spent solids. So, since approximate mass balances indicated that there was still a moderate amount of biodegradable matter in the spent solids we hypothesized that the organic metabolites imposed some kind of inhibition on further fermentation of digestates. Spent solids were washed to eliminate organic metabolites and they were used in a second SSAHF-IV. Two more cycles of H(2) production were obtained, with a cumulative production of ca. 2.4 mmol H(2)/mini-reactor. As a conclusion, washing of spent solids of a previous SSAHF-IV allowed for an increase of hydrogen production by 15% in a second run of SSAHF-IV, leading to the validation of our hypothesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Mannitol production by heterofermentative Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in free and controlled pH batch fermentations.

    Science.gov (United States)

    Rodríguez, Cecilia; Rimaux, Tom; Fornaguera, María José; Vrancken, Gino; de Valdez, Graciela Font; De Vuyst, Luc; Mozzi, Fernanda

    2012-03-01

    Certain lactic acid bacteria, especially heterofermentative strains, are capable to produce mannitol under adequate culture conditions. In this study, mannitol production by Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in modified MRS medium containing a mixture of fructose and glucose in a 6.5:1.0 ratio was investigated during batch fermentations with free pH and constant pH 6.0 and 5.0. Mannitol production and yields were higher under constant pH conditions compared with fermentations with free pH, the increase being more pronounced in the case of the L. fermentum strain. Maximum mannitol production and yields from fructose for L. reuteri CRL 1101 (122 mM and 75.7 mol%, respectively) and L. fermentum CRL 573 (312 mM and 93.5 mol%, respectively) were found at pH 5.0. Interestingly, depending on the pH conditions, fructose was used only as an alternative external electron acceptor or as both electron acceptor and energy source in the case of the L. reuteri strain. In contrast, L. fermentum CRL 573 used fructose both as electron acceptor and carbon source simultaneously, independently of the pH value, which strongly affected mannitol production by this strain. Studies on the metabolism of these relevant mannitol-producing lactobacilli provide important knowledge to either produce mannitol to be used as food additive or to produce it in situ during fermented food production.

  19. Production of the {sup 14}C-labeled insecticidal protein Cry1Ab for soil metabolic studies using a recombinant Escherichia coli in small-scale batch fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Valldor, Petra; Miethling-Graff, Rona; Dockhorn, Susanne; Martens, Rainer; Tebbe, Christoph C. [Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig (Germany). Thuenen Institute (vTI) for Biodiversity

    2012-10-15

    Insecticidal Cry proteins naturally produced by Bacillus thuringiensis are a major recombinant trait expressed by genetically modified crops. They are released into the soil during and after cropping. The objective of this study was to produce {sup 14}C-labeled Cry1Ab proteins for soil metabolic studies in scope of their environmental risk assessment. Cry1Ab was synthesized as a protoxin by Escherichia coli HB101 pMP in 200-mL liquid batch culture fermentations and purified from inclusion bodies after trypsin digestion. For cultivation, U-{sup 14}C-glycerol was the main carbon source. Inclusion bodies were smaller and Cry1Ab yield was lower when the initial amount of total organic carbon in the cultivation broth was below 6.4 mg C L{sup -1}. Concentrations of 12.6 g {sup 14}C-labeled glycerol L{sup -1} (1 % v/v) resulted in the production of 17.1 mg {sup 14}C-Cry1Ab L{sup -1} cultivation medium. {sup 14}C mass balances showed that approx. 50 % of the label was lost by respiration and 20 % remained in the growth media, while the residual activity was associated with biomass. Depending on the production batch, 0.01 to 0.05 % of the total {sup 14}C originated from Cry1Ab. In the presence of 2.04 MBq {sup 14}C-labeled carbon sources, a specific activity of up to 268 Bq mg{sup -1} {sup 14}C-Cry1Ab was obtained. A more than threefold higher specific activity was achieved with 4.63 MBq and an extended cultivation period of 144 h. This study demonstrates that {sup 14}C-labeled Cry1Ab can be obtained from batch fermentations with E. coli in the presence of a simple {sup 14}C-labeled carbon source. It also provides a general strategy to produce {sup 14}C-labeled proteins useful for soil metabolic studies. (orig.)

  20. Marine natural products. XXXII. Absolute configurations of C-4 of the manoalide family, biologically active sesterterpenes from the marine sponge Hyrtios erecta.

    Science.gov (United States)

    Kobayashi, M; Okamoto, T; Hayashi, K; Yokoyama, N; Sasaki, T; Kitagawa, I

    1994-02-01

    Cytotoxic sesterterpenes, manoalide 25-acetals (1a, 1b), seco-manoalide (2), (E)-neomanoalide (3), (Z)-neomanoalide (4), and heteronemin (6), were isolated from the marine sponge Hyrtios erecta (collected at Amami Island, Kagoshima Prefecture, Japan) by bioassay-guided separation and the absolute configurations of these manoalide family members have been determined. Manoalide 25-acetals (1a, 1b) were shown to exhibit in vivo antitumor activity and to inhibit the DNA-relaxing activity of mouse DNA topoisomerase I and the DNA-unknotting activity of calf thymus DNA topoisomerase II.

  1. Biogas production from wheat straw in batch and UASB reactors: the roles of pretreatment and seaweed hydrolysate as a co-substrate.

    Science.gov (United States)

    Nkemka, Valentine Nkongndem; Murto, Marika

    2013-01-01

    This research evaluated biogas production in batch and UASB reactors from pilot-scale acid catalysed steam pretreated and enzymatic hydrolysed wheat straw. The results showed that the pretreatment was efficient and, a sugar yield of 95% was obtained. The pretreatment improved the methane yield (0.28 m(3)/kg VS(added)) by 57% compared to untreated straw. Treatment of the straw hydrolysate with nutrient supplementation in a UASB reactor resulted in a high methane production rate, 2.70 m(3)/m(3).d at a sustainable OLR of 10.4 kg COD/m(3).d and with a COD reduction of 94%. Alternatively, co-digestion of the straw and seaweed hydrolysates in a UASB reactor also maintained a stable anaerobic process and can thus reduce the cost of nutrients addition. We have shown that biogas production from wheat straw can be competitive by pretreatment, high methane production rate in UASB reactors and also by co-digestion with seaweed hydrolysate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The role of burrowing sponges in bioerosion.

    Science.gov (United States)

    Rützler, Klaus

    1975-09-01

    Among the large number of limestone-eroding organisms, sponges, mainly of the family Clinonidae are of special interest because of their efficient means of substratum penetration by cellular etching and because they release characteristically shaped calcium carbonate chips which can be detected in the mud-size fraction of many sediments. Identifiable trace fossils and sediments are of great ecological and paleoecological significance.As new data on the excavating mechanism have become available, the questions of burrowing rates and sediment production have gained importance. Extrapolation from shortterm experiments (under 6 months) on substrate invasion are inconclusive because of high initial penetration rates resulting from mechanical stimulation and lack of competition. New experiments show that the rate curve flattens after 6 months and that optimum longterm erosion of CaCO 3 does not exceed 700 mg m -2 year -1 (Cliona lampa and C. aprica). Substrate limitations and competition will further reduce this rate.By monitoring the production of CaCO 3 chips by Cliona lampa, it was possible to link activity patterns to certain environmental factors. Mechanical stimuli, high light intensity, strong currents and, possibly, low temperature seem to accelerate the burrowing process. Sponge-generated chips can make up over 40% of coral mud when deposited in the current shadow of the reef framework.Using transect counts and sponge area-biomass conversion factors, the mean abundance of burrowing sponges on the Bermuda platform could be calculated. On suitable hard bottom substrates it averages 16 g dry weight per m 2 . From this value the burrowing potential of sponges can be estimated as 256 g CaCO 3 per m 2 substrate per year. Since 97-98% of the eroded limestone remains in particulate form, the contribution of fine sediments can amount to 250 g m -2 year -1 .Attention is called to the fact that erosion rates by burrowers can not directly be compared with those of borers or

  3. Production of oleic acid ethyl ester catalyzed by crude rice bran (Oryza sativa lipase in a modified fed-batch system: problem and its solution

    Directory of Open Access Journals (Sweden)

    Indro Prastowo

    2015-01-01

    Full Text Available A fed-batch system was modified for the enzymatic production of Oleic Acid Ethyl Ester (OAEE using rice bran (Oryza sativa lipase by retaining the substrate molar ratio (ethanol/oleic acid at 2.05: 1 during the reaction. It resulted in an increase in the ester conversion up to 76.8% in the first 6 h of the reaction, and then followed by a decrease from 76.8% to 22.9% in 6 h later. Meanwhile, the production of water in the reaction system also showed a similar trend to the trend of ester production. The water was hypothesized to lead lipase to reverse the reaction which resulted in a decrease in both (water and esters in the last 6 h of the reaction. In order to overcome the problem, zeolite powders (25 and 50 mg/ml were added into the reaction system at 5 h of the reaction. As the result, final ester conversions increased drastically up to 90 - 95.7% (1.17 – 1.24 times. The addition also proved a hypothesis that the water was involved in reducing the ester conversion in the last 6 h of the reaction. Thus, the combination was effective to produce the high final ester conversion.

  4. Spring batch essentials

    CERN Document Server

    Rao, P Raja Malleswara

    2015-01-01

    If you are a Java developer with basic knowledge of Spring and some experience in the development of enterprise applications, and want to learn about batch application development in detail, then this book is ideal for you. This book will be perfect as your next step towards building simple yet powerful batch applications on a Java-based platform.

  5. Characterization of a Potential Probiotic Lactobacillus brevis RK03 and Efficient Production of γ-Aminobutyric Acid in Batch Fermentation

    Directory of Open Access Journals (Sweden)

    Chien-Hui Wu

    2018-01-01

    Full Text Available Lactic acid bacteria were isolated from fish and evaluated for their γ-aminobutyric acid (GABA-producing abilities. Out of thirty-two isolates, Lactobacillus brevis RK03 showed the highest GABA production ability. The effects of various fermentation parameters including initial glutamic acid level, culture temperature, initial pH, and incubation time on GABA production were investigated via a singleparameter optimization strategy. For industrial large-scale production, a low-cost GABA producing medium (GM broth was developed for fermentation with L. brevis RK03. We found that an optimized GM broth recipe of 1% glucose; 2.5% yeast extract; 2 ppm each of CaCO3, MnSO4, and Tween 80; and 10 μM pyridoxal phosphate (PLP resulted in a maximum GABA yield of 62,523 mg/L after 88 h following the addition of 650 mM monosodium glutamate (MSG, for a conversion rate of 93.28%. Our data provide a practical approach for the highly efficient and economic production of GABA. In addition, L. brevis RK03 is highly resistant to gastric acid and bovine bile salt. Thus, the discovery of Lactobacillus strains with the ability to synthesize GABA may offer new opportunities in the design of improved health-promoting functional foods.

  6. Key Process Conditions for Production of C4 Dicarboxylic Acids in Bioreactor Batch Cultures of an Engineered Saccharomyces cerevisiae Strain

    NARCIS (Netherlands)

    Zelle, R.M.; De Hulster, E.; Kloezen, W.; Pronk, J.T.; Van Maris, A.J.A.

    2010-01-01

    A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter(-1) of malate at a yield of 0.42 mol (mol glucose)(-1) in calcium carbonate-buffered shake flask cultures. With shake flasks, process

  7. Process optimization at small and medium-sized enterprises: production of small and medium-sized batches

    Science.gov (United States)

    Stettmer, J.

    2017-06-01

    The organization of a company needs to refer to the production process and especially to the number of employees. Many enterprises which are growing, are primarily focused on the development of the technology and not on the development of the organization. This ends up in an increase of the turnover but in a reduced margin. For the development of the organization in growing companies there are two things necessary. The development of the staff to work systematically and coordinated in teams as well as the flow of the information and material between the teams. ERP - systems are required to install the material and information flow especially in the work floor. Unfortunately many enterprises don't use the ERP-systems to plan and control the material and information flow very detailed. In companies where the control of the material and information flow was installed, it could be demonstrated that the margin increased analog to it. The requirements to the development of the organization based on the increasing number of the employees are basically the same for most of the production processes like the production of metal sheet housings or the production of mirrors and lenses.

  8. Characterization of a Potential Probiotic Lactobacillus brevis RK03 and Efficient Production of γ-Aminobutyric Acid in Batch Fermentation.

    Science.gov (United States)

    Wu, Chien-Hui; Hsueh, Yi-Huang; Kuo, Jen-Min; Liu, Si-Jia

    2018-01-04

    Lactic acid bacteria were isolated from fish and evaluated for their γ-aminobutyric acid (GABA)-producing abilities. Out of thirty-two isolates, Lactobacillus brevis RK03 showed the highest GABA production ability. The effects of various fermentation parameters including initial glutamic acid level, culture temperature, initial pH, and incubation time on GABA production were investigated via a singleparameter optimization strategy. For industrial large-scale production, a low-cost GABA producing medium (GM) broth was developed for fermentation with L. brevis RK03. We found that an optimized GM broth recipe of 1% glucose; 2.5% yeast extract; 2 ppm each of CaCO₃, MnSO₄, and Tween 80; and 10 μM pyridoxal phosphate (PLP) resulted in a maximum GABA yield of 62,523 mg/L after 88 h following the addition of 650 mM monosodium glutamate (MSG), for a conversion rate of 93.28%. Our data provide a practical approach for the highly efficient and economic production of GABA. In addition, L. brevis RK03 is highly resistant to gastric acid and bovine bile salt. Thus, the discovery of Lactobacillus strains with the ability to synthesize GABA may offer new opportunities in the design of improved health-promoting functional foods.

  9. Mathematical modeling of fed-batch fermentation of Schizochytrium sp. FJU-512 growth and DHA production using a shift control strategy.

    Science.gov (United States)

    Zhang, Mingliang; Wu, Weibin; Guo, Xiaolei; Weichen, You; Qi, Feng; Jiang, Xianzhang; Huang, Jianzhong

    2018-03-01

    To obtain high-cell-density cultures of Schizochytrium sp. FJU-512 for DHA production, two stages of fermentation strategy were used and carbon/nitrogen ratio, DO and temperature were controlled at different levels. The final dry cell weight, total lipid production and DHA yield in 15 l bioreactor reached 103.9, 37.2 and 16.0 g/l, respectively. For the further study of microbial growth and DHA production dynamics, we established a set of kinetic models for the fed-batch production of DHA by Schizochytrium sp. FJU-512 in 15 and 100 l fermenters and a compensatory parameter n was integrated into the model in order to find the optimal mathematical equations. A modified Logistic model was proposed to fit the cell growth data and the following kinetic parameters were obtained: µ m  = 0.0525/h, X m  = 100 g/l and n  = 4.1717 for the 15 l bioreactor, as well as µ m  = 0.0382/h, X m  = 107.4371 g/l and n  = 10 for the 100 l bioreactor. The Luedeking-Piret equations were utilized to model DHA production, yielding values of α  = 0.0648 g/g and β  = 0.0014 g/g/h for the 15 l bioreactor, while the values of α and β obtained for the 100 l fermentation were 0.0209 g/g and 0.0030 g/g/h. The predicted results compared with experimental data showed that the established models had a good fitting precision and were able to exactly depict the dynamic features of the DHA production process.

  10. Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil

    Directory of Open Access Journals (Sweden)

    Takahashi Ryo

    2011-10-01

    Full Text Available Abstract Background The enzymatic production of biodiesel through alcoholysis of triglycerides has become more attractive because it shows potential in overcoming the drawbacks of chemical processes. In this study, we investigate the production of biodiesel from crude, non-edible Jatropha oil and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substituted hydrophobic silica monolith. We also evaluate the performance of a lipase-immobilized silica monolith bioreactor in the continuous production of biodiesel. Results The Jatropha oil used contained 18% free fatty acids, which is problematic in a base-catalyzed process. In the lipase-catalyzed reaction, the presence of free fatty acids made the reaction mixture homogeneous and allowed bioconversion to proceed to 90% biodiesel yield after a 12 hour reaction time. The optimal molar ratio of methanol to oil was 3.3 to 3.5 parts methanol to one part oil, with water content of 0.6% (w/w. Further experiments revealed that B. cepacia lipase immobilized in hydrophobic silicates was sufficiently tolerant to methanol, and glycerol adsorbed on the support disturbed the reaction to some extent in the present reaction system. The continuous production of biodiesel was performed at steady state using a lipase-immobilized silica monolith bioreactor loaded with 1.67 g of lipase. The yield of 95% was reached at a flow rate of 0.6 mL/h, although the performance of the continuous bioreactor was somewhat below that predicted from the batch reactor. The bioreactor was operated successfully for almost 50 days with 80% retention of the initial yield. Conclusions The presence of free fatty acids originally contained in Jatropha oil improved the reaction efficiency of the biodiesel production. A combination of B. cepacia lipase and its immobilization support, n-butyl-substituted silica monolith, was effective in the production of biodiesel. This procedure is easily applicable to the design

  11. Efforts to develop a cultured sponge cell line: revisiting an intractable problem.

    Science.gov (United States)

    Grasela, James J; Pomponi, Shirley A; Rinkevich, Buki; Grima, Jennifer

    2012-01-01

    Residents of the marine environment, sponges (Porifera) have the ability to produce organic compounds known as secondary metabolites, which are not directly involved in the normal growth, development, or reproduction of an organism. Because of their sessile nature, the production of these bioactive compounds has been interpreted as a functional adaptation to serve in an important survival role as a means to counter various environmental stress factors such as predation, overgrowth by fouling organisms, or competition for limited space. Regardless of the reasons for this adaptation, a variety of isolated compounds have already proven to demonstrate remarkable anticancer, fungicidal, and antibiotic properties. A major obstacle to the isolation and production of novel compounds from sponges is the lack of a large, reliable source of sponge material. Sponge collection from the sea would be environmentally detrimental to the already stressed and sparse sponge populations. Sponge production in an aquaculture setting might appear to be an ideal alternative but would also be cost-ineffective and sponge growth is extremely slow. A third approach involves the development of a sponge cell culture system capable of producing the necessary cell numbers to harvest for research purposes as well as for the eventual commercial-scale production of promising bioactive compounds. Unfortunately, little progress has been made in this direction other than the establishment of temporary cultures containing aggregates and fragments of cells. One impediment toward successful sponge cell culture might be ascribed to a lack of published knowledge of failed methodologies, and thus, time and effort is wasted on continued reinvention of the same methods and procedures. Consequently, we have undertaken here to chart some of our unsuccessful research efforts, our methodology, and results to provide the sponge research community with knowledge to assist them to better avoid taking the same failed

  12. Technical note: In vitro total gas and methane production measurements from closed or vented rumen batch culture systems.

    Science.gov (United States)

    Cattani, M; Tagliapietra, F; Maccarana, L; Hansen, H H; Bailoni, L; Schiavon, S

    2014-03-01

    This study compared measured gas production (GP) and computed CH4 production values provided by closed or vented bottles connected to gas collection bags. Two forages and 3 concentrates were incubated. Two incubations were conducted, where the 5 feeds were tested in 3 replicates in closed or vented bottles, plus 4 blanks, for a total of 64 bottles. Half of the bottles were not vented, and the others were vented at a fixed pressure (6.8 kPa) and gas was collected into one gas collection bag connected to each bottle. Each bottle (317 mL) was filled with 0.4000 ± 0.0010 g of feed sample and 60 mL of buffered rumen fluid (headspace volume = 257 mL) and incubated at 39.0°C for 24 h. At 24 h, gas samples were collected from the headspace of closed bottles or from headspace and bags of vented bottles and analyzed for CH4 concentration. Volumes of GP at 24 h were corrected for the gas dissolved in the fermentation fluid, according to Henry's law of gas solubility. Methane concentration (mL/100mL of GP) was measured and CH4 production (mL/g of incubated DM) was computed using corrected or uncorrected GP values. Data were analyzed for the effect of venting technique (T), feed (F), interaction between venting technique and feed (T × F), and incubation run as a random factor. Closed bottles provided lower uncorrected GP (-18%) compared with vented bottles, especially for concentrates. Correction for dissolved gas reduced but did not remove differences between techniques, and closed bottles (+25 mL of gas/g of incubated DM) had a greater magnitude of variation than did vented bottles (+1 mL of gas/g of incubated DM). Feeds differed in uncorrected and corrected GP, but the ranking was the same for the 2 techniques. The T × F interaction influenced uncorrected GP values, but this effect disappeared after correction. Closed bottles provided uncorrected CH4 concentrations 23% greater than that of vented bottles. Correction reduced but did not remove this difference. Methane

  13. Response coefficient analysis of a fed-batch bioreactor to dissolved oxygen perturbation in complementary cultures during PHB production

    Directory of Open Access Journals (Sweden)

    Patnaik Pratap R

    2008-03-01

    Full Text Available Abstract Background Although the production of poly-β-hydroxybutyrate (PHB has many biological, energetic and environmental advantages over chemically synthesized polymers, synthetic polymers continue to be produced industrially since the productivities of fermentation processes fr PHB are not yet economically competitive. Improvement of a PHB fermentation requires good understanding and optimization under the realistic conditions of large bioreactors. Laboratory-scale studies have shown that co-cultures of Ralstonia eutropha and Lactobacillus delbrueckii generate better fermentation efficiencies than R. eutropha alone. In large bioreactors, incomplete dispersioin and perturbations in the dissolved oxygen (DO concentration, both of which affect the fermentation, have to be considered. This study analyzes the effect of DO fluctuations on bioreactor performance for both ideal and optimally dispersed broths. Results Response coefficient analysis was employed to obtain quantitative information on the effect of DO perturbations on different variables. Three values of the Peclet number (Pe cheracterized three levels of dispersion: Pe = 0.01 for nearly complete dispersion, Pe = 20 for optimum dispersion and Pe = 60 for insufficient dispersion. The response coefficients (RCs of the pairs of bacterial concentrations and the main substrates, glucose and ammonium chloride, showed contrasting variations with time. Lactate, a critical intermediate, and PHB had similar RC profiles but those of lactate were one to two orders of magnitude larger than other RCs. Significantly, the optimum Pe also resulted in the largest RCs, suggesting a balance between productivity and reactor stability. Conclusion Since R. eutropha requires oxygen for its growth whereas L. delbrueckii does not, fluctuations in the DO concentartion have a strong influence on the fermentation. Apart from this, the mechanism of PHB biosynthesis indicates that control of lactate is a critical

  14. Pilot batch production of specific-structured lipids by lipase-catalyzed interesterification: preliminary study on incorporation and acyl migration

    DEFF Research Database (Denmark)

    Xu, Xuebing; Balchen, Steen; Høy, Carl-Erik

    1998-01-01

    Effects of water content, reaction time and their relationships in the production of two types of specific-structured lipids (sn-MLM- and sn-LML-types: L-long chain fatty acids; M-medium chain fatty acids) by lipase-catalyzed interesterification in a solvent-free system were studied...... of two totally position-opposed lipids can be observed. Presumably these are caused by the different chain length of the fatty acids. The relationships between reaction time and water content are inverse and give a quantitative prediction of incorporation and acyl migration in selected reaction...

  15. Fuzzy batch controller for granular materials

    OpenAIRE

    Zamyatin Nikolaj; Smirnov Gennadij; Fedorchuk Yuri; Rusina Olga

    2018-01-01

    The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy infer...

  16. Pilot scale repeated fed-batch fermentation processes of the wine yeast Dekkera bruxellensis for mass production of resveratrol from Polygonum cuspidatum.

    Science.gov (United States)

    Kuo, Hsiao-Ping; Wang, Reuben; Lin, Yi-Sheng; Lai, Jinn-Tsyy; Lo, Yi-Chen; Huang, Shyue-Tsong

    2017-11-01

    Resveratrol has long been used as an ingredient in functional foods. Currently, Polygonum cuspidatum extract is the greatest natural source for resveratrol because of high concentrations of glycosidic-linked resveratrol. Thus, developing a cost-effective procedure to hydrolyze glucoside could substantially enhance resveratrol production from P. cuspidatum. This study selected Dekkera bruxellensis from several microorganisms based on its bioconversion and enzyme-specific activities. We demonstrated that the cells could be reused at least nine times while maintaining an average of 180.67U/L β-glucosidase activity. The average resveratrol bioconversion efficiency within five rounds of repeated usage was 108.77±0.88%. This process worked effectively when the volume was increased to 1200L, a volume at which approximately 35mgL -1 h -1 resveratrol per round was produced. This repeated fed-batch bioconversion process for resveratrol production is comparable to enzyme or cell immobilization strategies in terms of reusing cycles, but without incurring additional costs for immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Valorization of Brewer's spent grain to prebiotic oligosaccharide: Production, xylanase catalyzed hydrolysis, in-vitro evaluation with probiotic strains and in a batch human fecal fermentation model.

    Science.gov (United States)

    Sajib, Mursalin; Falck, Peter; Sardari, Roya R R; Mathew, Sindhu; Grey, Carl; Karlsson, Eva Nordberg; Adlercreutz, Patrick

    2018-02-20

    Brewer's spent grain (BSG) accounts for around 85% of the solid by-products from beer production. BSG was first extracted to obtain water-soluble arabinoxylan (AX). Using subsequent alkali extraction (0.5 M KOH) it was possible to dissolve additional AX. In total, about 57% of the AX in BSG was extracted with the purity of 45-55%. After comparison of nine xylanases, Pentopan mono BG, a GH11 enzyme, was selected for hydrolysis of the extracts to oligosaccharides with minimal formation of monosaccharides. Growth of Bifidobacterium adolescentis (ATCC 15703) was promoted by the enzymatic hydrolysis to arabinoxylooligosaccharides, while Lactobacillus brevis (DSMZ 1264) utilized only unsubstituted xylooligosaccharides. Furthermore, utilization of the hydrolysates by human gut microbiota was also assessed in a batch human fecal fermentation model. Results revealed that the rates of fermentation of the BSG hydrolysates by human gut microbiota were similar to that of commercial prebiotic fructooligosaccharides, while inulin was fermented at a slower rate. In summary, a sustainable process to valorize BSG to functional food ingredients has been proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Advancement into the Arctic Region for Bioactive Sponge Secondary Metabolites

    Science.gov (United States)

    Abbas, Samuel; Kelly, Michelle; Bowling, John; Sims, James; Waters, Amanda; Hamann, Mark

    2011-01-01

    Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source. PMID:22163194

  19. Sediment tolerance mechanisms identified in sponges using advanced imaging techniques

    Directory of Open Access Journals (Sweden)

    Brian W. Strehlow

    2017-11-01

    Full Text Available Terrestrial runoff, resuspension events and dredging can affect filter-feeding sponges by elevating the concentration of suspended sediments, reducing light intensity, and smothering sponges with sediments. To investigate how sponges respond to pressures associated with increased sediment loads, the abundant and widely distributed Indo-Pacific species Ianthella basta was exposed to elevated suspended sediment concentrations, sediment deposition, and light attenuation for 48 h (acute exposure and 4 weeks (chronic exposure. In order to visualise the response mechanisms, sponge tissue was examined by 3D X-ray microscopy and scanning electron microscopy (SEM. Acute exposures resulted in sediment rapidly accumulating in the aquiferous system of I. basta, although this sediment was fully removed within three days. Sediment removal took longer (>2 weeks following chronic exposures, and I. basta also exhibited tissue regression and a smaller aquiferous system. The application of advanced imaging approaches revealed that I. basta employs a multilevel system for sediment rejection and elimination, containing both active and passive components. Sponges responded to sediment stress through (i mucus production, (ii exclusion of particles by incurrent pores, (iii closure of oscula and pumping cessation, (iv expulsion of particles from the aquiferous system, and (v tissue regression to reduce the volume of the aquiferous system, thereby entering a dormant state. These mechanisms would result in tolerance and resilience to exposure to variable and high sediment loads associated with both anthropogenic impacts like dredging programs and natural pressures like flood events.

  20. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up.

    Science.gov (United States)

    Pawlik, Joseph R; Loh, Tse-Lynn; McMurray, Steven E; Finelli, Christopher M

    2013-01-01

    Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down) or by the availability of picoplankton to suspension-feeding sponges (bottom-up). We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth). There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals.

  1. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up.

    Directory of Open Access Journals (Sweden)

    Joseph R Pawlik

    Full Text Available Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down or by the availability of picoplankton to suspension-feeding sponges (bottom-up. We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth. There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals.

  2. On-line Scheduling Of Multi-Server Batch Operations

    NARCIS (Netherlands)

    van der Zee, D.J.; van Harten, A.; Schuur, P.C.

    1999-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of setups and/or facilitation of material handling. Good examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing.

  3. On-line scheduling of multi-server batch operations

    NARCIS (Netherlands)

    Zee, Durk Jouke van der; Harten, Aart van; Schuur, Peter

    The batching of jobs in a manufacturing system is a very common policy in many industries. The main reasons for batching are the avoidance of setups and/or facilitation of material handling. Good examples of batch-wise production systems are the ovens that are found in the aircraft industry and in

  4. Sporochartines A–E, A New Family of Natural Products from the Marine Fungus Hypoxylon monticulosum Isolated from a Sphaerocladina Sponge

    Directory of Open Access Journals (Sweden)

    Charlotte Leman-Loubière

    2017-12-01

    Full Text Available Four new sporochartines B–E were isolated from the marine fungus Hypoxylon monticulosum CLL-205, isolated from a sponge belonging to the Sphaerocladina order and collected in Tahiti coast. Sporochartine A (1, the first representative of this family was previously isolated from the same fungus. The structures of sporochartines B–E were elucidated using 1D and 2D NMR, HRMS and IR data. Their configurations were established according to ROE correlations and comparison with the absolute configuration of sporochartine A (1 previously obtained from X-ray analysis. Sporochartines A–D (2–4 may be derived from endo Diels-Alderase type catalysis and sporochartine E (5 from an exo Diels-Alderase catalysis. The spatial conformation of sporochartines drastically influences the results of the cytotoxic bioassay against HCT-116, PC-3, and MCF-7 human cancer cell lines.

  5. Biogas Production from Protein-Rich Biomass: Fed-Batch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition

    Science.gov (United States)

    Kovács, Etelka; Wirth, Roland; Maróti, Gergely; Bagi, Zoltán; Rákhely, Gábor; Kovács, Kornél L.

    2013-01-01

    It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in

  6. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Etelka Kovács

    Full Text Available It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the

  7. Development of a two-stage feeding strategy based on the kind and level of feeding nutrients for improving fed-batch production of L-threonine by Escherichia coli.

    Science.gov (United States)

    Liu, Shuwen; Liang, Yong; Liu, Qian; Tao, Tongtong; Lai, Shujuan; Chen, Ning; Wen, Tingyi

    2013-01-01

    Fed-batch fermentation is the predominant method for industrial production of amino acids. In this study, we comprehensively investigated the effects of four kinds of feeding nutrients and developed an accurate optimization strategy for fed-batch production of L-threonine. The production of L-threonine was severely inhibited when cell growth ceased in the bath culture. Similarly, L-threonine production was also associated with cell growth in the carbon-, phosphate-, and sulfate-limited fed-batch cultures, but the accumulation of L-threonine was markedly increased because of the extended production time in the growth stage. Interestingly, auxotrophic amino acid (L-isoleucine)-limited feeding promoted L-threonine production over the non-growth phase. Metabolite analysis indicates that substantial production of acetate and glutamate and the resulting accumulation of ammonium may lead to the inhibition of L-threonine production. During the growth phase, the levels of L-isoleucine were accurately optimized by balancing cell growth and production with Pontryagin's maximum principle, basing on the relationship between the specific growth rate μ and specific production rate ρ. Furthermore, the depletion of L-isoleucine and phosphate at the end of the growth phase favored the synthesis of L-threonine in the subsequent non-growth phase. Combining the two-stage feeding profiles, the final L-threonine concentration and conversion rate were increased by 5.9- and 2.1-fold, respectively, compared to batch processes without feeding control. The identification of efficient feeding nutrient and the development of accurate feeding strategies provide potential guidelines for microbial production of amino acids.

  8. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates.

    Science.gov (United States)

    Sathiyanarayanan, Ganesan; Saibaba, Ganesan; Kiran, George Seghal; Yang, Yung-Hun; Selvin, Joseph

    2017-05-01

    Marine sponges are filter feeding porous animals and usually harbor a remarkable array of microorganisms in their mesohyl tissues as transient and resident endosymbionts. The marine sponge-microbial interactions are highly complex and, in some cases, the relationships are thought to be truly symbiotic or mutualistic rather than temporary associations resulting from sponge filter-feeding activity. The marine sponge-associated bacteria are fascinating source for various biomolecules that are of potential interest to several biotechnological industries. In recent times, a particular attention has been devoted to bacterial biopolymer (polyesters) such as intracellular polyhydroxyalkanoates (PHAs) produced by sponge-associated bacteria. Bacterial PHAs act as an internal reserve for carbon and energy and also are a tremendous alternative for fossil fuel-based polymers mainly due to their eco-friendliness. In addition, PHAs are produced when the microorganisms are under stressful conditions and this biopolymer synthesis might be exhibited as one of the survival mechanisms of sponge-associated or endosymbiotic bacteria which exist in a highly competitive and stressful sponge-mesohyl microenvironment. In this review, we have emphasized the industrial prospects of marine bacteria for the commercial production of PHAs and special importance has been given to marine sponge-associated bacteria as a potential resource for PHAs.

  9. Phylogenetic diversity and community structure of sponge-associated bacteria from mangroves of the Caribbean Sea

    KAUST Repository

    Yang, Jiangke

    2011-02-08

    To gain insight into the species richness and phylogeny of the microbial communities associated with sponges in mangroves, we performed an extensive phylogenetic analysis, based on terminal restriction fragment length polymorphism profiling and 16S ribosomal RNA gene sequences, of the 4 sponge species Aplysina fulva, Haliclona hogarthi, Tedania ignis and Ircinia strobilina as well as of ambient seawater. The sponge-associated bacterial communities contained 13 phyla, including Poribacteria and an unclassified group not found in the ambient seawater community, 98% of which comprised Proteobacteria, Cyanobacteria and Bacteroidetes. Although the sponges themselves were phylogenetically distant and bacterial community variation within the host species was observed, microbial phyla such as Proteobacteria, Acidobacteria, Chloroflexi and the unclassified group were consistently observed as the dominant populations within the communities. The sponge-associated bacterial communities resident in the Caribbean Sea mangroves are phylogenetically similar but significantly distinct from communities found in other biogeographical sites such as the deep-water environments of the Caribbean Sea, the South China Sea and Australia. The interspecific variation within the host species and the distinct biogeographical characteristics that the sponge-associated bacteria exhibited indicate that the acquisition, establishment and formation of functional sponge-associated bacterial communities may initially be the product of both vertical and horizontal transmission, and is then shaped by the internal environment created by the sponge species and certain external environmental factors. © Inter-Research 2011.

  10. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers.

    Science.gov (United States)

    Kaur, Amandeep; Rose, Devin J; Rumpagaporn, Pinthip; Patterson, John A; Hamaker, Bruce R

    2011-01-01

    Sustained colonic fermentation supplies beneficial fermentative by-products to the distal colon, which is particularly prone to intestinal ailments. Blunted/delayed initial fermentation may also lead to less bloating. Previously, we reported that starch-entrapped alginate-based microspheres act as a slowly fermenting dietary fiber. This material was used in the present study to provide a benchmark to compare to other "slowly fermentable" fibers. Dietary fibers with previous reports of slow fermentation, namely, long-chain inulin, psyllium, alkali-soluble corn bran arabinoxylan, and long-chain β-glucan, as well as starch-entrapped microspheres were subjected to in vitro upper gastrointestinal digestion and human fecal fermentation and measured over 48 h for pH, gas, and short-chain fatty acids (SCFA). The resistant fraction of cooked and cooled potato starch was used as another form of fermentable starch and fructooligosaccharides (FOS) served as a fast fermenting control. Corn bran arabinoxylan and long-chain β-glucan initially appeared slower fermenting with comparatively low gas and SCFA production, but later fermented rapidly with little remaining in the final half of the fermentation period. Long-chain inulin and psyllium had slow and moderate, but incomplete, fermentation. The resistant fraction of cooked and cooled potato starch fermented rapidly and appeared similar to FOS. In conclusion, compared to the benchmark slowly fermentable starch-entrapped microspheres, a number of the purported slowly fermentable fibers fermented fairly rapidly overall and, of this group, only the starch-entrapped microspheres appreciably fermented in the second half of the fermentation period. Consumption of dietary fibers, particularly commercial prebiotics, leads to uncomfortable feelings of bloating and flatulence due to their rapid degradation in our large intestine. This article employs claimed potential slowly fermenting fibers and compares their fermentation rates

  11. Development of a high hertz-stress contact for conventional batch production using a unique scribing technology

    International Nuclear Information System (INIS)

    Bhuiyan, M M I; Alamgir, T; Bhuiyan, M; Kajihara, M

    2013-01-01

    Gradually the electronic devices are getting more compact dimension with respect to the width and thickness. As a result, the contacts are becoming thinner and which leads the contact to be loose and unstable contact. In comercial stamping methode, connector tip diameter should be more than 300μm due to its size limitation. Consequently, the connector contact resistance is becoming higher due to weak contact force. To overcome this problem there were few more basic research using MEMS and Electro Fine Forming (EFF) technology to make high Hertz-Stress Contact (5μm) due to the limitation in the commercial stamping process and the result was in satisfactory level. However, since the MEMS and EFF fabrication is costly therefore, a new method is introduced in this paper using the commercial Phosphor Bronze stamping method to reduce the production cost. Moreover, scribing method is used to make tip on the contact. Accordingly, more compact fine pitch contact is successfully fabricated and tested with 5μm High Hertz Stress without using the MEMS and EFF technology. Hence the manufactured contact resistance becomes less than 20mΩ ±5mΩ

  12. Ethanol production from biomass by repetitive solid-state fed-batch fermentation with continuous recovery of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Moukamnerd, Churairat; Kino-oka, Masahiro; Sugiyama, Minetaka; Kaneko, Yoshinobu; Harashima, Satoshi; Katakura, Yoshio [Osaka Univ. (Japan). Dept. of Biotechnology; Boonchird, Chuenchit [Mahidol Univ., Bangkok (Thailand). Dept. of Biotechnology; Noda, Hideo [Kansai Chemical Engineering Co., Ltd., Amagasaki (Japan); Ninomiya, Kazuaki [Kanazawa Univ. (Japan). Inst. of International Environment Technology; Shioya, Suteaki [Sojo Univ., Kumamoto (Japan). Dept. of Applied Life Science

    2010-09-15

    To save cost and input energy for bioethanol production, a consolidated continuous solid-state fermentation system composed of a rotating drum reactor, a humidifier, and a condenser was developed. Biomass, saccharifying enzymes, yeast, and a minimum amount of water are introduced into the system. Ethanol produced by simultaneous saccharification and fermentation is continuously recovered as vapor from the headspace of the reactor, while the humidifier compensates for the water loss. From raw corn starch as a biomass model, 95 {+-} 3, 226 {+-} 9, 458 {+-} 26, and 509 {+-} 64 g l{sup -1} of ethanol solutions were recovered continuously when the ethanol content in reactor was controlled at 10-20, 30-50, 50-70 and 75-85 g kg-mixture{sup -1}, respectively. The residue showed a lesser volume and higher solid content than that obtained by conventional liquid fermentation. The cost and energy for intensive waste water treatment are decreased, and the continuous fermentation enabled the sustainability of enzyme activity and yeast in the system. (orig.)

  13. Warfarin affects acute inflammatory response induced by subcutaneous polyvinyl sponge implantation in rats.

    Science.gov (United States)

    Mirkov, Ivana; Popov Aleksandrov, Aleksandra; Demenesku, Jelena; Ninkov, Marina; Mileusnic, Dina; Kataranovski, Dragan; Kataranovski, Milena

    2017-09-01

    Warfarin (WF) is an anticoagulant which also affects physiological processes other than hemostasis. Our previous investigations showed the effect of WF which gained access to the organism via skin on resting peripheral blood granulocytes. Based on these data, the aim of the present study was to examine whether WF could modulate the inflammatory processes as well. To this aim the effect of WF on the inflammatory response induced by subcutaneous sponge implantation in rats was examined. Warfarin-soaked polyvinyl sponges (WF-sponges) were implanted subcutaneously and cell infiltration into sponges, the levels of nitric oxide (NO) and inflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6) production by sponge cells were measured as parameters of inflammation. T cell infiltration and cytokine interferon-γ (IFN-γ), interleukin-17 (IL-17) and interleukin-10 (IL-10) were measured at day 7 post implantation. Warfarin exerted both stimulatory and suppressive effects depending on the parameter examined. Flow cytometry of cells recovered from sponges showed higher numbers of granulocytes (HIS48 + cells) at days 1 and 3 post implantation and CD11b + cells at day 1 compared to control sponges. Cells from WF-sponges had an increased NO production (Griess reaction) at days 1 and 7. In contrast, lower levels of TNF (measured by ELISA) production by cells recovered from WF-soaked sponges were found in the early (day one) phase of reaction with unchanged levels at other time points. While IL-6 production by cells recovered from WF-soaked sponges was decreased at day 1, it was increased at day 7. Higher T cell numbers were noted in WF sponges at day 7 post implantation, and recovered cells produced more IFN-γ and IL-17, while IL-10 production remained unchanged. Warfarin affects some of the parameters of inflammatory reaction induced by subcutaneous polyvinyl sponge implantation. Differential (both stimulatory as well as inhibitory) effects of WF on

  14. DEMONSTRATION BULLETIN: FORAGER™ SPONGE TECHNOLOGY - DYNAPHORE, INC.

    Science.gov (United States)

    The Forager™ Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that has selective affinity for dissolved heavy metals in both cationic and anionic states. The Forager™ Sponge technology can be utilized to remove and concentrate heavy me...

  15. Status and perspective of sponge chemosystematics.

    NARCIS (Netherlands)

    Erpenbeck, D.J.G.; van Soest, R.W.M.

    2007-01-01

    In addition to their pharmaceutical applications, sponges are an important source of compounds that are used to elucidate classification patterns and phylogenetic relationships. Here we present a review and outlook on chemosystematics in sponges in seven sections: Secondary metabolites in sponges;

  16. Sponges from Clipperton Island, East Pacific

    NARCIS (Netherlands)

    van Soest, R.W.M.; Kaiser, K.L.; van Syoc, R.

    2011-01-01

    Twenty sponge species (totalling 190 individuals) were collected during the 1938, 1994 and 2004/5 expeditions to the remote island of Clipperton in the East Pacific Ocean. Seven species are widespread Indo-Pacific sponges; nine species comprise sponges new to science; four species were represented

  17. Potential of sponges and microalgae for marine biotechnology

    NARCIS (Netherlands)

    Wijffels, R.H.

    2008-01-01

    Marine organisms can be used to produce several novel products that have applications in new medical technologies, in food and feed ingredients and as biofuels. In this paper two examples are described: the development of marine drugs from sponges and the use of microalgae to produce bulk chemicals

  18. SPS batch spacing optimisation

    CERN Document Server

    Velotti, F M; Carlier, E; Goddard, B; Kain, V; Kotzian, G

    2017-01-01

    Until 2015, the LHC filling schemes used the batch spac-ing as specified in the LHC design report. The maximumnumber of bunches injectable in the LHC directly dependson the batch spacing at injection in the SPS and hence onthe MKP rise time.As part of the LHC Injectors Upgrade project for LHCheavy ions, a reduction of the batch spacing is needed. In thisdirection, studies to approach the MKP design rise time of150ns(2-98%) have been carried out. These measurementsgave clear indications that such optimisation, and beyond,could be done also for higher injection momentum beams,where the additional slower MKP (MKP-L) is needed.After the successful results from 2015 SPS batch spacingoptimisation for the Pb-Pb run [1], the same concept wasthought to be used also for proton beams. In fact, thanksto the SPS transverse feed back, it was already observedthat lower batch spacing than the design one (225ns) couldbe achieved. For the 2016 p-Pb run, a batch spacing of200nsfor the proton beam with100nsbunch spacing wasreque...

  19. Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea.

    Science.gov (United States)

    Ding, Bo; Yin, Ying; Zhang, Fengli; Li, Zhiyong

    2011-08-01

    Sponge-associated fungi represent an important source of marine natural products, but little is known about the fungal diversity and the relationship of sponge-fungal association, especially no research on the fungal diversity in the South China Sea sponge has been reported. In this study, a total of 111 cultivable fungi strains were isolated from two South China Sea sponges Clathrina luteoculcitella and Holoxea sp. using eight different media. Thirty-two independent representatives were selected for analysis of phylogenetic diversity according to ARDRA and morphological characteristics. The culturable fungal communities consisted of at least 17 genera within ten taxonomic orders of two phyla (nine orders of the phylum Ascomycota and one order of the phylum Basidiomycota) including some potential novel marine fungi. Particularly, eight genera of Apiospora, Botryosphaeria, Davidiella, Didymocrea, Lentomitella, Marasmius, Pestalotiopsis, and Rhizomucor were isolated from sponge for the first time. Sponge C. luteoculcitella has greater culturable fungal diversity than sponge Holoxea sp. Five genera of Aspergillus, Davidiella, Fusarium, Paecilomyces, and Penicillium were isolated from both sponges, while 12 genera of Apiospora, Botryosphaeria, Candida, Marasmius, Cladosporium, Didymocrea, Hypocrea, Lentomitella, Nigrospora, Pestalotiopsis, Rhizomucor, and Scopulariopsis were isolated from sponge C. luteoculcitella only. Order Eurotiales especially genera Penicillium, Aspergillus, and order Hypocreales represented the dominant culturable fungi in these two South China Sea sponges. Nigrospora oryzae strain PF18 isolated from sponge C. luteoculcitella showed a strong and broad spectrum antimicrobial activities suggesting the potential for antimicrobial compounds production.

  20. Environmental control measures in sponge iron industry with particular reference to Tata Sponge Iron Limited

    Energy Technology Data Exchange (ETDEWEB)

    Sarangi, B.M.; Kesav, B.; Sheshadri, M.K.

    2002-07-01

    Direct reduced iron or sponge iron technology was developed as an alternate route for steel making and is considered as a clean technology. The waste generation and gas emissions from this route of steel making are far less when compared to the conventional blast furnace route. The paper details the efforts of Tata Sponge Iron Limited to make the process a clean technology without affecting its surroundings and natural resources. The paper describes the system of bag filters made from filter glass fabric for collecting hot waste gases and for dedusting of product and raw material handling circuits. Design of the plant for waste gas cleaning by scrubbers and by electrostatic precipitators is described. Major pollution control equipment installed at Tata Sponge Iron Ltd., described in the article are: a wet gas cleaning plant (in 1986), a second gas cleaning plant with electrostatic precipitator (in 1998) and dust extraction and dust suppression systems. Water is sprayed around the plant to control fugitive dust and trees have been grown around it. 13 figs.

  1. Enhanced fed-batch production of pyrroloquinoline quinine in Methylobacillus sp. CCTCC M2016079 with a two-stage pH control strategy.

    Science.gov (United States)

    Si, Zhenjun; Machaku, David; Wei, Peilian; Huang, Lei; Cai, Jin; Xu, Zhinan

    2017-06-01

    The effects of pH control strategy and fermentative operation modes on the biosynthesis of pyrroloquinoline quinine (PQQ) were investigated systematically with Methylobacillus sp. CCTCC M2016079 in the present work. Firstly, the shake-flask cultivations and benchtop fermentations at various pH values ranging from 5.3 to 7.8 were studied. Following a kinetic analysis of specific cell growth rate (μ x ) and specific PQQ formation rate (μ p ), the discrepancy in optimal pH values between cell growth and PQQ biosynthesis was observed, which stimulated us to develop a novel two-stage pH control strategy. During this pH-shifted process, the pH in the broth was controlled at 6.8 to promote the cell growth for the first 48 h and then shifted to 5.8 to enhance the PQQ synthesis until the end of fermentation. By applying this pH-shifted control strategy, the maximum PQQ production was improved to 158.61 mg/L in the benchtop fermenter, about 44.9% higher than that under the most suitable constant pH fermentation. Further fed-batch study showed that PQQ production could be improved from 183.38 to 272.21 mg/L by feeding of methanol at the rate of 11.5 mL/h in this two-stage pH process. Meanwhile, the productivity was also increased from 2.02 to 2.84 mg/L/h. In order to support cell growth during the shifted pH stage, the combined feeding of methanol and yeast extract was carried out, which brought about the highest concentration (353.28 mg/L) and productivity (3.27 mg/L/h) of PQQ. This work has revealed the potential of our developed simple and economical strategy for the large-scale production of PQQ.

  2. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes

    KAUST Repository

    Xie, Xing

    2012-01-01

    The materials that are used to make electrodes and their internal structures significantly affect microbial fuel cell (MFC) performance. In this study, we describe a carbon nanotube (CNT)-sponge composite prepared by coating a sponge with CNTs. Compared to the CNT-coated textile electrodes evaluated in prior studies, CNT-sponge electrodes had lower internal resistance, greater stability, more tunable and uniform macroporous structure (pores up to 1 mm in diameter), and improved mechanical properties. The CNT-sponge composite also provided a three-dimensional scaffold that was favorable for microbial colonization and catalytic decoration. Using a batch-fed H-shaped MFC outfitted with CNT-sponge electrodes, an areal power density of 1.24 W m -2 was achieved when treating domestic wastewater. The maximum volumetric power density of a continuously fed plate-shaped MFC was 182 W m -3. To our knowledge, these are the highest values obtained to date for MFCs fed domestic wastewater: 2.5 times the previously reported maximum areal power density and 12 times the previously reported maximum volumetric power density. © 2011 The Royal Society of Chemistry.

  3. Fuzzy batch controller for granular materials

    Directory of Open Access Journals (Sweden)

    Zamyatin Nikolaj

    2018-01-01

    Full Text Available The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy inference is proposed for controlling the speed of the screw that feeds mixture components. As related to production of building materials based on fluoride anhydrite, this method is used for the first time. A fuzzy controller is proven to be effective in controlling the filling level of the supply hopper. In addition, the authors determined optimal parameters of the batching process to ensure smooth operation and production of fluorine anhydrite materials of specified properties that can compete with gypsum-based products.

  4. Chemical ecology of marine sponges

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Singh, A.

    . University of California Press, Berkeley/Los Angeles, 268 pp Bewley CA, He H, Williams DH, Faulkner DJ (1996) Aciculitins AC: cytotoxic and antifungal cyclic pep- tides from the lithistid sponge Aciculites orientalis. J Am Chem Soc 118(18):4314–4321 48 N...

  5. Barbabos Deep-Water Sponges

    NARCIS (Netherlands)

    Soest, van R.W.M.; Stentoft, N.

    1988-01-01

    Deep-water sponges dredged up in two locations off the west coast of Barbados are systematically described. A total of 69 species is recorded, among which 16 are new to science, viz. Pachymatisma geodiformis, Asteropus syringiferus, Cinachyra arenosa, Theonella atlantica. Corallistes paratypus,

  6. Dynamic Scheduling Of Batch Operations With Non-Identical Machines

    NARCIS (Netherlands)

    van der Zee, D.J.; van Harten, A.; Schuur, P.C.

    1997-01-01

    Batch-wise production is found in many industries. A good example of production systems which process products batch-wise are the ovens found in aircraft industry and in semiconductor manufacturing. These systems mostly consist of multiple machines of different types, given the range and volumes of

  7. Dynamic scheduling of batch operations with non-identical machines

    NARCIS (Netherlands)

    van der Zee, D.J.; van Harten, Aart; Schuur, Peter

    1997-01-01

    Batch-wise production is found in many industries. A good example of production systems which process products batch-wise are the ovens found in aircraft industry and in semiconductor manufacturing. These systems mostly consist of multiple machines of different types, given the range and volumes of

  8. Heuristics for batching and sequencing in batch processing machines

    Directory of Open Access Journals (Sweden)

    Chuda Basnet

    2016-12-01

    Full Text Available In this paper, we discuss the “batch processing” problem, where there are multiple jobs to be processed in flow shops. These jobs can however be formed into batches and the number of jobs in a batch is limited by the capacity of the processing machines to accommodate the jobs. The processing time required by a batch in a machine is determined by the greatest processing time of the jobs included in the batch. Thus, the batch processing problem is a mix of batching and sequencing – the jobs need to be grouped into distinct batches, the batches then need to be sequenced through the flow shop. We apply certain newly developed heuristics to the problem and present computational results. The contributions of this paper are deriving a lower bound, and the heuristics developed and tested in this paper.

  9. Wnt signaling and polarity in freshwater sponges.

    Science.gov (United States)

    Windsor Reid, Pamela J; Matveev, Eugueni; McClymont, Alexandra; Posfai, Dora; Hill, April L; Leys, Sally P

    2018-02-02

    The Wnt signaling pathway is uniquely metazoan and used in many processes during development, including the formation of polarity and body axes. In sponges, one of the earliest diverging animal groups, Wnt pathway genes have diverse expression patterns in different groups including along the anterior-posterior axis of two sponge larvae, and in the osculum and ostia of others. We studied the function of Wnt signaling and body polarity formation through expression, knockdown, and larval manipulation in several freshwater sponge species. Sponge Wnts fall into sponge-specific and sponge-class specific subfamilies of Wnt proteins. Notably Wnt genes were not found in transcriptomes of the glass sponge Aphrocallistes vastus. Wnt and its signaling genes were expressed in archaeocytes of the mesohyl throughout developing freshwater sponges. Osculum formation was enhanced by GSK3 knockdown, and Wnt antagonists inhibited both osculum development and regeneration. Using dye tracking we found that the posterior poles of freshwater sponge larvae give rise to tissue that will form the osculum following metamorphosis. Together the data indicate that while components of canonical Wnt signaling may be used in development and maintenance of osculum tissue, it is likely that Wnt signaling itself occurs between individual cells rather than whole tissues or structures in freshwater sponges.

  10. In-syringe extraction using dissolvable layered double hydroxide-polymer sponges templated from hierarchically porous coordination polymers.

    Science.gov (United States)

    Ghani, Milad; Frizzarin, Rejane M; Maya, Fernando; Cerdà, Víctor

    2016-07-01

    Herein we report the use of cobalt porous coordination polymers (PCP) as intermediates to prepare advanced extraction media based on layered double hydroxides (LDH) supported on melamine polymer foam. The obtained dissolvable Ni-Co LDH composite sponges can be molded and used as sorbent for the in-syringe solid-phase extraction (SPE) of phenolic acids from fruit juices. The proposed sorbent is obtained due to the surfactant-assisted self-assembly of Co(II)/imidazolate PCPs on commercially available melamine foam, followed by the in situ conversion of the PCP into the final dissolvable LDH coating. Advantageous features for SPE are obtained by using PCPs with hierarchical porosity (HPCPs). The LDH-sponge prepared using intermediate HPCPs (HLDH-sponge) is placed in the headspace of a glass syringe, enabling flow-through extraction followed by analyte elution by the dissolution of the LDH coating in acidic conditions. Three phenolic acids (gallic acid, p-hydroxybenzoic acid and caffeic acid) were extracted and quantified using high performance liquid chromatography. Using a 5mL sample volume, the obtained detection limits were 0.15-0.35μgL(-1). The proposed method for the preparation of HLDH-sponges showed a good reproducibility as observed from the intra- and inter-day RSD's, which were <10% for all analytes. The batch-to-batch reproducibility for three different batches of HLDH-sponges was 10.6-11.2%. Enrichment factors of 15-21 were obtained. The HLDH-sponges were applied satisfactorily to the determination of phenolic acids in natural and commercial fruit juices, obtaining relative recoveries among 89.7-95.3%. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Prunus dulcis, Batch

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... almond (Prunus dulcis, Batch) genotypes as revealed by PCR analysis. Yavar Sharafi1*, Jafar Hajilou1, Seyed AbolGhasem Mohammadi2, Mohammad Reza Dadpour1 and Sadollah Eskandari3. 1Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, 5166614766, Iran.

  12. Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges.

    Science.gov (United States)

    Kennedy, Jonathan; Marchesi, Julian R; Dobson, Alan D W

    2007-05-01

    Natural products isolated from sponges are an important source of new biologically active compounds. However, the development of these compounds into drugs has been held back by the difficulties in achieving a sustainable supply of these often-complex molecules for pre-clinical and clinical development. Increasing evidence implicates microbial symbionts as the source of many of these biologically active compounds, but the vast majority of the sponge microbial community remain uncultured. Metagenomics offers a biotechnological solution to this supply problem. Metagenomes of sponge microbial communities have been shown to contain genes and gene clusters typical for the biosynthesis of biologically active natural products. Heterologous expression approaches have also led to the isolation of secondary metabolism gene clusters from uncultured microbial symbionts of marine invertebrates and from soil metagenomic libraries. Combining a metagenomic approach with heterologous expression holds much promise for the sustainable exploitation of the chemical diversity present in the sponge microbial community.

  13. Sponge microbiota are a reservoir of functional antibiotic resistance genes

    Directory of Open Access Journals (Sweden)

    Dennis Versluis

    2016-11-01

    Full Text Available Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional resistance genes in the sponges Aplysina aerophoba, Petrosia ficiformis and Corticium candelabrum. We obtained 37 insert sequences facilitating resistance to D-cycloserine (n=6, gentamicin (n=1, amikacin (n=7, trimethoprim (n=17, chloramphenicol (n=1, rifampicin (n=2 and ampicillin (n=3. Fifteen of 37 inserts harboured resistance genes that shared <90% amino acid identity with known gene products, whereas on 13 inserts no resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance-conferring β-lactamase was identified in the genus Pseudovibrio with 41% global amino acid identity to the closest β-lactamase with demonstrated functionality, and subsequently classified into a new family termed PSV. Taken together, our results show that sponge microbiota host diverse and novel resistance genes that may be harnessed by phylogenetically distinct bacteria.

  14. Microbial counts of mealworm larvae (Tenebrio molitor) and crickets (Acheta domesticus and Gryllodes sigillatus) from different rearing companies and different production batches.

    Science.gov (United States)

    Vandeweyer, D; Crauwels, S; Lievens, B; Van Campenhout, L

    2017-02-02

    The rising interest in insects for human consumption and the changing regulations in Europe require a profound insight into the food safety of insects reared and sold in Western society. The microbial quality of edible insects has only been studied occasionally. This study aimed at generating an overview of intrinsic parameters (pH, water activity and moisture content) and microbial quality of fresh mealworm larvae and crickets for several rearing companies and for several batches per rearer. In total, 21 batches obtained from 7 rearing companies were subjected to analysis of intrinsic parameters, a range of plate counts and presence-absence tests for Salmonella spp. and Listeria monocytogenes. The microbial counts of the fresh insects were generally high. Different rearing batches from a single rearing company showed differences in microbial counts which could not be explained by variations in intrinsic properties. The largest variations were found in numbers of bacterial endospores, psychrotrophs and fungi. Salmonella spp. and L. monocytogenes were not detected in any of the samples. Altogether, our study shows that large variations were found between batches from individual rearers. As a consequence, no overall differences between rearers could be observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Steroids from marine sponges Suberites vestigium and Chrotella australiensis

    Digital Repository Service at National Institute of Oceanography (India)

    Mishra, P.D; Wahidullah, S.; De; Kamat, S.Y.

    The sponges Suberites vestigium and Chrotella australiensis have been examined for steriods. Both the sponges contain C sub(27-29) mono and diunsaturated sterols, in addition sponge C. australiensis contains cholest-4-ene-3-one and 24-ethyl cholest...

  16. Sponges from Clipperton Island, East Pacific

    OpenAIRE

    van Soest, R.W.M.; Kaiser, K.L.; van Syoc, R.

    2011-01-01

    Twenty sponge species (totalling 190 individuals) were collected during the 1938, 1994 and 2004/5 expeditions to the remote island of Clipperton in the East Pacific Ocean. Seven species are widespread Indo-Pacific sponges; nine species comprise sponges new to science; four species were represented only by small thin patches insufficient for proper characterization and could be only determined to genus. The new species may not be necessarily endemic to the island, as several show similarities ...

  17. Human serum and platelet lysate are appropriate xeno-free alternatives for clinical-grade production of human MuStem cell batches.

    Science.gov (United States)

    Saury, Charlotte; Lardenois, Aurélie; Schleder, Cindy; Leroux, Isabelle; Lieubeau, Blandine; David, Laurent; Charrier, Marine; Guével, Laëtitia; Viau, Sabrina; Delorme, Bruno; Rouger, Karl

    2018-05-02

    Canine MuStem cells have demonstrated regenerative efficacy in a dog model of muscular dystrophy, and the recent characterization of human counterparts (hMuStem) has highlighted the therapeutic potential of this muscle-derived stem cell population. To date, these cells have only been generated in research-grade conditions. However, evaluation of the clinical efficacy of any such therapy will require the production of hMuStem cells in compliance with good manufacturing practices (GMPs). Because the current use of fetal bovine serum (FBS) to isolate and expand hMuStem cells raises several ethical, safety, and supply concerns, we assessed the use of two alternative xeno-free blood derivatives: human serum (HS) and a human platelet lysate (hPL). hMuStem cells were isolated and expanded in vitro in either HS-supplemented or hPL-supplemented media and the proliferation rate, clonogenicity, myogenic commitment potential, and oligopotency compared with that observed in FBS-supplemented medium. Flow cytometry and high-throughput 3'-digital gene expression RNA sequencing were used to characterize the phenotype and global gene expression pattern of hMuStem cells cultured with HS or hPL. HS-supplemented and hPL-supplemented media both supported the isolation and long-term proliferation of hMuStem cells. Compared with FBS-based medium, both supplements enhanced clonogenicity and allowed for a reduction in growth factor supplementation. Neither supplement altered the cell lineage pattern of hMuStem cells. In vitro differentiation assays revealed a decrease in myogenic commitment and in the fusion ability of hMuStem cells when cultured with hPL. In return, this reduction of myogenic potential in hPL-supplemented cultures was rapidly reversed by substitution of hPL with HS or fibrinogen-depleted hPL. Moreover, culture of hMuStem cells in hPL hydrogel and fibrinogen-depleted hPL demonstrated that myogenic differentiation potential is maintained in heparin-free hPL derivatives. Our

  18. Bioactive alkaloids from marine sponges

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, K.S.; Majik, M.S.

    lines while kuanoniamine C was less potent but showed high selectivity toward the estrogen dependent breast cancer cell line (Kijjoa et. al., 2007). Recently, Davis’s and coworkers, reported two new cytotoxici- ty peridoacridine alkaloids viz... 10 sponge, Trachycladus laevispirulifer. Excitingly, it displayed promising selective cytotoxicity against a panel of human cancer cell lines. 12.3.1. BISINDOLE ALKALOIDS Bis-indole alkaloids, consisting of two indole moieties...

  19. Studies on the preparation of thorium metal sponge from thorium oxalate

    International Nuclear Information System (INIS)

    Vijay, P.L.; Sehra, J.C.; Sundaram, C.V.; Gurumurthy, K.R.; Raghavan, R.V.

    1978-01-01

    The results of investigations carried out on the production of high purity thorium metal sponge, starting with thorium oxalate are presented. The flow sheet includes chlorination of thorium oxalate, purification of raw thorium tetrachloride, magnesium reduction of anhydrous thorium tetrachloride, slag metal separation, vacuum distillation for removal of residual MgCl 2 and excess magnesium, and consolidation of the metal sponge. Studies have been carried out to investigate the optimum chlorination efficiency and chlorine utilization attainable using different chlorinating agents, and to compare the quality of the sponge obtained with single and double distilled chloride. The overall process efficiency under optimum conditions was 81%. The thorium metal button, prepared from the sponge by arc-melting, analysed : O 2 - 847, N 2 - 20, C - 179, Mg - 100, Fe - 49, Ni<50, Al - 11, Cr - 7 (expressed in parts per million parts of thorium). The button could be further purified by electron beam melting to improve its ductility. (author)

  20. On-line monitoring of important organoleptic methyl-branched aldehydes during batch fermentation of starter culture Staphylococcus xylosus reveal new insight into their production in a model fermentation

    DEFF Research Database (Denmark)

    de Vos Petersen, Christian; Beck, Hans Christian; Lauritsen, Frants R

    2004-01-01

    A small fermentor (55 mL) was directly interfaced to a membrane inlet mass spectrometer for continuous on-line monitoring of oxygen and volatile metabolites during batch fermentations of the starter culture Staphylococcus xylosus. Using this technique, we were able to correlate production...... of a longer aerobic growth period. Growing S. xylosus under conditions resembling those in a fermented sausage revealed that NaCl (5%) increased aldehyde production considerably, whereas KNO(3) (0.03%) or NaNO(2) (0.03%) had little effect. A lowering of pH from 7.2 to 6.0 reduced cell density, but had a minor...

  1. Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing.

    Science.gov (United States)

    Matano, Yuki; Hasunuma, Tomohisa; Kondo, Akihiko

    2013-05-01

    The aim of this study is to develop a scheme of cell recycle batch fermentation (CRBF) of high-solid lignocellulosic materials. Two-phase separation consisting of rough removal of lignocellulosic residues by low-speed centrifugation and solid-liquid separation enabled effective collection of Saccharomyces cerevisiae cells with decreased lignin and ash. Five consecutive batch fermentation of 200 g/L rice straw hydrothermally pretreated led to an average ethanol titer of 34.5 g/L. Moreover, the display of cellulases on the recombinant yeast cell surface increased ethanol titer to 42.2 g/L. After, five-cycle fermentation, only 3.3 g/L sugar was retained in the fermentation medium, because cellulase displayed on the cell surface hydrolyzed cellulose that was not hydrolyzed by commercial cellulases or free secreted cellulases. Fermentation ability of the recombinant strain was successfully kept during a five-cycle repeated batch fermentation with 86.3% of theoretical yield based on starting biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Ecology and biotechnological potential of bacterial community from three marine sponges of the coast of Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    FÁBIO V. DE ARAÚJO

    2017-12-01

    Full Text Available ABSTRACT Marine sponges has been a large reservoir of microbial diversity, with the presence of many species specific populations as well as producing biologically active compounds, which has attracted great biotechnological interest. In order to verify the influence of the environment in the composition of the bacterial community present in marine sponges and biotechnological potential of bacteria isolated from these organisms, three species of sponges and the waters surrounding them were collected in different beaches of Rio de Janeiro, Brazil. The profile of the bacterial community present in sponges and water was obtained by PCR-DGGE technique and the biotechnological potential of the strains isolated by producing amylase, cellulase, protease and biosurfactants. The results showed that despite the influence of the environment in the composition of the microbial community, studied marine sponges shown to have specific bacterial populations, with some, showing potential in the production of substances of biotechnological applications.

  3. Development of cultures of the marine sponge Hymeniacidon perleve for genotoxicity assessment using the alkaline comet assay.

    Science.gov (United States)

    Akpiri, Rachael U; Konya, Roseline S; Hodges, Nikolas J

    2017-12-01

    Sponges are a potential alternative model species to bivalves in pollution biomonitoring and environmental risk assessment in the aquatic ecosystem. In the present study, a novel in vivo exposure sponge culture model was developed from field-collected and cryopreserved sponge (Hymeniacidon perleve) cells to investigate the genotoxic effects of environmentally relevant metals in the laboratory. Sponge cell aggregates were cultured and exposed to noncytotoxic concentrations (0-0.4 mg/L) of cadmium chloride, nickel chloride, and sodium dichromate as quantified by the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and DNA-strand breaks assessed by the comet assay. Reactive oxygen species (ROS) formation was quantified by oxidation of 2',7'-dichlorofluorescin diacetate in sponge cell aggregates exposed to the same concentrations of Cd, Cr, and Ni. There was a statistically significant (p sponge cells and demonstrated that exposure to noncytotoxic concentrations of Cd, Cr, and Ni for 12 h results in a concentration-dependent increase in DNA damage and levels of ROS production. In conclusion, we have developed a novel in vivo model based on culture of cryopreserved sponge cells that is compatible with the alkaline comet assay. Genotoxicity in marine sponges measured by the comet assay technique may be a useful tool for biomonitoring research and risk assessment in aquatic ecosystems. Environ Toxicol Chem 2017;36:3314-3323. © 2017 SETAC. © 2017 SETAC.

  4. Characterization of sponge cake baking in an instrumented pilot oven

    OpenAIRE

    Alain Sommier; Elisabeth Dumoulin; Imen Douiri; Christophe Chipeau

    2012-01-01

    The quality of baked products is the complex, multidimensional result of a recipe, and a controlled heating process to produce the desired final properties such as taste, colour, shape, structure and density. The process of baking a sponge cake in a convective oven at different air temperatures (160-180-220 °C) leading to the same loss of mass was considered in this study. A special mould was used which allowed unidirectional heat transfer in the batter. Instrumentation was developed specific...

  5. Renal acidification defects in medullary sponge kidney

    DEFF Research Database (Denmark)

    Osther, P J; Hansen, A B; Røhl, H F

    1988-01-01

    Thirteen patients with medullary sponge kidney underwent a short ammonium chloride loading test to investigate their renal acidification capacity. All but 1 presented with a history of recurrent renal calculi and showed bilateral widespread renal medullary calcification on X-ray examination. Nine...... of renal calculi in medullary sponge kidney, have considerable therapeutic implications....

  6. Metal sponge for cryosorption pumping applications

    International Nuclear Information System (INIS)

    Myneni, G.R.; Kneisel, P.

    1995-01-01

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area. 4 figs

  7. Generation of miRNA sponge constructs

    NARCIS (Netherlands)

    Kluiver, Joost; Slezak-Prochazka, Izabella; Smigielska-Czepiel, Katarzyna; Halsema, Nancy; Kroesen, Bart-Jan; van den Berg, Anke

    2012-01-01

    MicroRNA (miRNA) sponges are RNA molecules with repeated miRNA antisense sequences that can sequester miRNAs from their endogenous targets and thus serve as a decoy. Stably expressed miRNA sponges are especially valuable for long-term loss-of-function studies and can be used in vitro and in vivo. We

  8. Macrofauna Associated with the Sponge Neopetrosia exigua ...

    African Journals Online (AJOL)

    in Marine Biology, Annamalai University, Parangipettai-608 502, Tamil Nadu, India. Keywords: Neopetrosia exigua, sponge, associated-fauna, species richness,. Mauritius, Indian Ocean. Abstract — The macrofaunal community associated with the sponge Neopetrosia exigua (Kirkpatrick, 1900) was studied across a ...

  9. Batch extractive distillation for high purity methanol

    International Nuclear Information System (INIS)

    Zhang Weijiang; Ma Sisi

    2006-01-01

    In this paper, the application in chemical industry and microelectronic industry, market status and the present situation of production of high purity methanol at home and abroad were introduced firstly. Purification of industrial methanol for high purity methanol is feasible in china. Batch extractive distillation is the best separation technique for purification of industrial methanol. Dimethyl sulfoxide was better as an extractant. (authors)

  10. Pollution prevention applications in batch manufacturing operations

    Science.gov (United States)

    Sykes, Derek W.; O'Shaughnessy, James

    2004-02-01

    Older, "low-tech" batch manufacturing operations are often fertile grounds for gains resulting from pollution prevention techniques. This paper presents a pollution prevention technique utilized for wastewater discharge permit compliance purposes at a batch manufacturer of detergents, deodorants, and floor-care products. This manufacturer generated industrial wastewater as a result of equipment rinses required after each product batch changeover. After investing a significant amount of capital on end of pip-line wastewater treatment technology designed to address existing discharge limits, this manufacturer chose to investigate alternate, low-cost approaches to address anticipated new permit limits. Mass balances using spreadsheets and readily available formulation and production data were conducted on over 300 products to determine how each individual product contributed to the total wastewater pollutant load. These mass balances indicated that 22 products accounted for over 55% of the wastewater pollutant. Laboratory tests were conducted to determine whether these same products could accept their individual changeover rinse water as make-up water in formulations without sacrificing product quality. This changeover reuse technique was then implement at the plant scale for selected products. Significant reductions in wastewater volume (25%) and wastewater pollutant loading (85+%) were realized as a direct result of this approach.

  11. Performance of the auxotrophic Saccharomyces cerevisiae BY4741 as host for the production of IL-1β in aerated fed-batch reactor: role of ACA supplementation, strain viability, and maintenance energy

    Directory of Open Access Journals (Sweden)

    Zueco Jesus

    2009-12-01

    Full Text Available Abstract Background Saccharomyces cerevisiae BY4741 is an auxotrophic commonly used strain. In this work it has been used as host for the expression and secretion of human interleukin-1β (IL1β, using the cell wall protein Pir4 as fusion partner. To achieve high cell density and, consequently, high product yield, BY4741 [PIR4-IL1β] was cultured in an aerated fed-batch reactor, using a defined mineral medium supplemented with casamino acids as ACA (auxotrophy-complementing amino acid source. Also the S. cerevisiae mutant BY4741 Δyca1 [PIR4-IL1β], carrying the deletion of the YCA1 gene coding for a caspase-like protein involved in the apoptotic response, was cultured in aerated fed-batch reactor and compared to the parental strain, to test the effect of this mutation on strain robustness. Viability of the producer strains was examined during the runs and a mathematical model, which took into consideration the viable biomass present in the reactor and the glucose consumption for both growth and maintenance, was developed to describe and explain the time-course evolution of the process for both, the BY4741 parental and the BY4741 Δyca1 mutant strain. Results Our results show that the concentrations of ACA in the feeding solution, corresponding to those routinely used in the literature, are limiting for the growth of S. cerevisiae BY4741 [PIR4-IL1β] in fed-batch reactor. Even in the presence of a proper ACA supplementation, S. cerevisiae BY4741 [PIR4-IL1β] did not achieve a high cell density. The Δyca1 deletion did not have a beneficial effect on the overall performance of the strain, but it had a clear effect on its viability, which was not impaired during fed-batch operations, as shown by the kd value (0.0045 h-1, negligible if compared to that of the parental strain (0.028 h-1. However, independently of their robustness, both the parental and the Δyca1 mutant ceased to grow early during fed-batch runs, both strains using most of the

  12. 21 CFR 880.2740 - Surgical sponge scale.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical sponge scale. 880.2740 Section 880.2740... Devices § 880.2740 Surgical sponge scale. (a) Identification. A surgical sponge scale is a nonelectrically powered device used to weigh surgical sponges that have been used to absorb blood during surgery so that...

  13. Biological characterisation of Haliclona (?gellius) sp.: sponge and associated microorganisms.

    NARCIS (Netherlands)

    Sipkema, D.; Holmes, B.; Nichols, S.A.; Blanch, H.W.

    2009-01-01

    We have characterised the northern Pacific undescribed sponge Haliclona (?gellius) sp. based on rDNA of the sponge and its associated microorganisms. The sponge is closely related to Amphimedon queenslandica from the Great Barrier Reef as the near-complete 18S rDNA sequences of both sponges were

  14. Bacterial community profiles in low microbial abundance sponges

    KAUST Repository

    Giles, Emily

    2012-09-04

    It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either \\'low microbial abundance\\' (LMA) or \\'high microbial abundance\\' (HMA) sponges. Many previous studies concentrated on the dense microbial communities in HMA sponges, whereas little is known about microorganisms in LMA sponges. Here, two LMA sponges from the Red Sea, two from the Caribbean and one from the South Pacific were investigated. With up to only five bacterial phyla per sponge, all LMA sponges showed lower phylum-level diversity than typical HMA sponges. Interestingly, each LMA sponge was dominated by a large clade within either Cyanobacteria or different classes of Proteobacteria. The overall similarity of bacterial communities among LMA sponges determined by operational taxonomic unit and UniFrac analysis was low. Also the number of sponge-specific clusters, which indicate bacteria specifically associated with sponges and which are numerous in HMA sponges, was low. A biogeographical or host-dependent distribution pattern was not observed. In conclusion, bacterial community profiles of LMA sponges are clearly different from profiles of HMA sponges and, remarkably, each LMA sponge seems to harbour its own unique bacterial community. © 2012 Federation of European Microbiological Societies.

  15. Natural marine sponges for bone tissue engineering: The state of art and future perspectives.

    Science.gov (United States)

    Granito, Renata Neves; Custódio, Márcio Reis; Rennó, Ana Claudia Muniz

    2017-08-01

    Marine life and its rich biodiversity provide a plentiful resource of potential new products for the society. Remarkably, marine organisms still remain a largely unexploited resource for biotechnology applications. Among them, marine sponges are sessile animals from the phylum Porifera dated at least from 580 million years ago. It is known that molecules from marine sponges present a huge therapeutic potential in a wide range of applications mainly due to its antitumor, antiviral, anti-inflammatory, and antibiotic effects. In this context, this article reviews all the information available in the literature about the potential of the use of marine sponges for bone tissue engineering applications. First, one of the properties that make sponges interesting as bone substitutes is their structural characteristics. Most species have an efficient interconnected porous architecture, which allows them to process a significant amount of water and facilitates the flow of fluids, mimicking an ideal bone scaffold. Second, sponges have an organic component, the spongin, which is analogous to vertebral collagen, the most widely used natural polymer for tissue regeneration. Last, osteogenic properties of marine sponges is also highlighted by their mineral content, such as biosilica and other compounds, that are able to support cell growth and to stimulate bone formation and mineralization. This review focuses on recent studies concerning these interesting properties, as well as on some challenges to be overcome in the bone tissue engineering field. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1717-1727, 2017. © 2016 Wiley Periodicals, Inc.

  16. Effects of combined dredging-related stressors on sponges: a laboratory approach using realistic scenarios.

    Science.gov (United States)

    Pineda, Mari-Carmen; Strehlow, Brian; Kamp, Jasmine; Duckworth, Alan; Jones, Ross; Webster, Nicole S

    2017-07-12

    Dredging can cause increased suspended sediment concentrations (SSCs), light attenuation and sedimentation in marine communities. In order to determine the combined effects of dredging-related pressures on adult sponges, three species spanning different nutritional modes and morphologies were exposed to 5 treatment levels representing realistic dredging scenarios. Most sponges survived under low to moderate turbidity scenarios (SSCs of ≤ 33 mg L -1 , and a daily light integral of ≥0.5 mol photons m -2 d -1 ) for up to 28 d. However, under the highest turbidity scenario (76 mg L -1 , 0.1 mol photons m -2 d -1 ) there was 20% and 90% mortality of the phototrophic sponges Cliona orientalis and Carteriospongia foliascens respectively, and tissue regression in the heterotrophic Ianthella basta. All three sponge species exhibited mechanisms to effectively tolerate dredging-related pressures in the short term (e.g. oscula closure, mucus production and tissue regression), although reduced lipids and deterioration of sponge health suggest that longer term exposure to similar conditions is likely to result in higher mortality. These results suggest that the combination of high SSCs and low light availability can accelerate mortality, increasing the probability of biological effects, although there is considerable interspecies variability in how adult sponges respond to dredging pressures.

  17. Improved fed-batch production of high-purity PHB (poly-3 hydroxy butyrate) by Cupriavidus necator (MTCC 1472) from sucrose-based cheap substrates under response surface-optimized conditions.

    Science.gov (United States)

    Dey, Pinaki; Rangarajan, Vivek

    2017-10-01

    Experimental investigations were carried out for Cupriavidus necator (MTCC 1472)-based improved production of poly-3 hydroxy butyrate (PHB) through induced nitrogen limiting fed-batch cultivation strategies. Initially Plackett-Burman design and response surface methodology were implemented to optimize most influencing process parameters. With optimized process parameter values, continuous feeding strategies ware applied in a 5-l fermenter with table sugar concentration of 100 g/l, nitrogen concentration of 0.12 g/l for fed-batch fermentation with varying dilution rates of 0.02 and 0.046 1/h. To get enriched production of PHB, concentration of the sugar was further increased to 150 and 200 g/l in feeding. Maximum concentrations of PHB achieved were 22.35 and 23.07 g/l at those dilution rates when sugar concentration maintains at 200 g/l in feeding. At maximum concentration of PHB (23.07 g/l), productivity of 0.58 g/l h was achieved with maximum PHB accumulation efficiency up to 64% of the dry weight of biomass. High purity of PHB, close to medical grade was achieved after surfactant hypochlorite extraction method, and it was further confirmed by SEM, EDX, and XRD studies.

  18. Progressing batch hydrolysis process

    Science.gov (United States)

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  19. CONVERSION OF PINEAPPLE JUICE WASTE INTO LACTIC ACID IN BATCH AND FED – BATCH FERMENTATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Abdullah Mochamad Busairi

    2012-01-01

    Full Text Available Pineapple juice waste contains valuable components, which are mainly sucrose, glucose, and fructose. Recently, lactic acid has been considered to be an important raw material for the production of biodegradable lactide polymer. The fermentation experiments were carried out in a 3 litres fermentor (Biostat B Model under anaerobic condition with stirring speed of 50 rpm, temperature at 40oC, and pH of 6.00. Effect of feed concentration on lactic acid production, bacterial growth, substrate utilisation and productivity was studied. The results obtained from fed- batch culture fermentation showed that the maximum lactic acid productivity was 0.44 g/L.h for feed concentration of 90 g/L at 48 hours. Whereas the lactic acid productivity obtained from fed-batch culture was twice and half fold higher than that of batch culture productivity.  Buangan jus nanas mengandung komponen yang berharga terutama sukrosa, glukosa, dan fruktosa. Asam laktat adalah bahan baku yang terbaru dan penting untuk dibuat sebagai polimer laktat yang dapat terdegradasi oleh lingkungan. Percobaan dilakukan pada fermentor 3 liter (Model Biostat B di bawah kondisi anaerob dengan kecepatan pengadukan 50 rpm, temperatur 40oC, dan pH 6,00. Pengaruh konsentrasi umpan terhadap produksi asam laktat, pertumbuhan mikroba, pengggunaan substrat dan produktivitas telah dipelajari. Hasil yang didapatkan pada fermentasi dengan menggunakan sistem fed-batch menunjukkan bahwa produktivitas asam laktat maksimum adalah 0.44 g/L,jam dengan konsentrasi umpan, 90 g/L pada waktu 48 jam. Bahkan produktivitas asam laktat yang didapat pada kultur fed-batch lebih tinggi 2,5 kali dari pada proses menggunakan sistem batch

  20. An investigation into the preservation of microbial cell banks for α-amylase production during 5 l fed-batch Bacillus licheniformis fermentations.

    Science.gov (United States)

    Hancocks, Nichola H; Thomas, Colin R; Stocks, Stuart M; Hewitt, Christopher J

    2010-10-01

    Fluorescent staining techniques were used for a systematic examination of methods used to cryopreserve microbial cell banks. The aim of cryopreservation here is to ensure subsequent reproducible fermentation performance rather than just post thaw viability. Bacillus licheniformis cell physiology post-thaw is dependent on the cryopreservant (either Tween 80, glycerol or dimethyl sulphoxide) and whilst this had a profound effect on the length of the lag phase, during subsequent 5 l fed-batch fermentations, it had little effect on maximum specific growth rate, final biomass concentration or α-amylase activity. Tween 80 not only protected the cells during freezing but also helped them recover post-thaw resulting in shorter process times.

  1. Polyketide Synthases in the Microbiome of the Marine Sponge Plakortis halichondrioides: A Metagenomic Update

    Directory of Open Access Journals (Sweden)

    Gerardo Della Sala

    2014-11-01

    Full Text Available Sponge-associated microorganisms are able to assemble the complex machinery for the production of secondary metabolites such as polyketides, the most important class of marine natural products from a drug discovery perspective. A comprehensive overview of polyketide biosynthetic genes of the sponge Plakortis halichondrioides and its symbionts was obtained in the present study by massively parallel 454 pyrosequencing of complex and heterogeneous PCR (Polymerase Chain Reaction products amplified from the metagenomic DNA of a specimen of P. halichondrioides collected in the Caribbean Sea. This was accompanied by a survey of the bacterial diversity within the sponge. In line with previous studies, sequences belonging to supA and swfA, two widespread sponge-specific groups of polyketide synthase (PKS genes were dominant. While they have been previously reported as belonging to Poribacteria (a novel bacterial phylum found exclusively in sponges, re-examination of current genomic sequencing data showed supA and swfA not to be present in the poribacterial genome. Several non-supA, non-swfA type-I PKS fragments were also identified. A significant portion of these fragments resembled type-I PKSs from protists, suggesting that bacteria may not be the only source of polyketides from P. halichondrioides, and that protistan PKSs should receive further investigation as a source of novel polyketides.

  2. Batch-batch stable microbial community in the traditional fermentation process of huyumei broad bean pastes.

    Science.gov (United States)

    Zhu, Linjiang; Fan, Zihao; Kuai, Hui; Li, Qi

    2017-09-01

    During natural fermentation processes, a characteristic microbial community structure (MCS) is naturally formed, and it is interesting to know about its batch-batch stability. This issue was explored in a traditional semi-solid-state fermentation process of huyumei, a Chinese broad bean paste product. The results showed that this MCS mainly contained four aerobic Bacillus species (8 log CFU per g), including B. subtilis, B. amyloliquefaciens, B. methylotrophicus, and B. tequilensis, and the facultative anaerobe B. cereus with a low concentration (4 log CFU per g), besides a very small amount of the yeast Zygosaccharomyces rouxii (2 log CFU per g). The dynamic change of the MCS in the brine fermentation process showed that the abundance of dominant species varied within a small range, and in the beginning of process the growth of lactic acid bacteria was inhibited and Staphylococcus spp. lost its viability. Also, the MCS and its dynamic change were proved to be highly reproducible among seven batches of fermentation. Therefore, the MCS naturally and stably forms between different batches of the traditional semi-solid-state fermentation of huyumei. Revealing microbial community structure and its batch-batch stability is helpful for understanding the mechanisms of community formation and flavour production in a traditional fermentation. This issue in a traditional semi-solid-state fermentation of huyumei broad bean paste was firstly explored. This fermentation process was revealed to be dominated by a high concentration of four aerobic species of Bacillus, a low concentration of B. cereus and a small amount of Zygosaccharomyces rouxii. Lactic acid bacteria and Staphylococcus spp. lost its viability at the beginning of fermentation. Such the community structure was proved to be highly reproducible among seven batches. © 2017 The Society for Applied Microbiology.

  3. Can a sponge fractionate isotopes?

    Science.gov (United States)

    Patel, B; Patel, S; Balani, M C

    1985-03-22

    The study has unequivocally demonstrated that siliceous sponges Spirastrella cuspidifera and Prostylyssa foetida from the same microecological niche exhibit a high degree of species specificity, while accumulating a host of heavy metal ions (Ni, Cr, Cd, Sn, Ti, Mo, Zr). S. cuspidifera accumulated, in addition, 60Co and 63Ni, showing discrimination against other radionuclides, 137Cs and 131I, present in the ambient waters receiving controlled low level waste discharges from a B.W.R. nuclear power station. P. foetida, on the other hand, accumulated only 131I and showed discrimination against other radionuclides including 60Co, although the stable iodine concentrations in both the sponges were the same. The specific activity of 60Co (in becquerels per gram of 59Co) in S. cuspidifera and 131I (in becquerels per gram of 127I) in P. foetida were at least two orders of magnitude greater than in the ambient sea water. That of 63Ni (in becquerels per gram of 62Ni) in S. cuspidifera, on the other hand, was lower by two orders of magnitude than in either abiotic matrices from the same environment. Thus, not only did both the species show bioaccumulation of a specific element, but also preferential uptake of isotopes of the same element, though they were equally available for intake. Such differential uptake of isotopes can possibly be explained in terms of two quite different mechanisms operating, each applicable in a particular case. One is that the xenobiotic isotope enters the environment in a physicochemical form or as a complex different from that of its natural counterpart. If equilibration with the latter is slow, so that the organism acquires the xenobiotic in an unfamiliar chemical context, it may treat it as a chemically distinct entity so that its concentration factor differs from that of stable isotope, thus changing the specific activity. Alternatively, if the xenobiotic is present in the same chemical form as the stable isotope, the only way in which specific

  4. Antibacterial activity of the sponge Suberites domuncula and its primmorphs: Potential basis for epibacterial chemical defense

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N; Hentschel, U.; Krasko, A; Pabel, C; Anil, A.C; Mueller, W.E.G.

    The epibacterial chemical defense of the marine sponge Suberites domuncula was explored by screening sponge extract, sponge primmorph (3-D aggregates containing proliferating cells) extract and sponge-associated as well as primmorph...

  5. AFSC/ABL: Salisbury Sound sponge recovery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1995, an area of the seafloor near Salisbury Sound was trawled to identify immediate effects on large, erect sponges and sea whips. Video transects were made in...

  6. Abdominal retained surgical sponges: CT appearance

    Energy Technology Data Exchange (ETDEWEB)

    Kalovidouris, A.; Kehagias, D.; Moulopoulos, L.; Gouliamos, A.; Pentea, S.; Vlahos, L. [Department of Radiology, University of Athens (Greece)

    1999-09-01

    Retention of surgical sponges is rare. They cause either an aseptic reaction without significant symptoms or an exudative reaction which results in early but nonspecific symptoms. Computed tomography is very useful for recognition of retained sponges. The appearance of retained sponges is widely variable. Air trapping into a surgical sponge results in the spongiform pattern which is characteristic but unfortunately uncommon. A low-density, high-density, or complex mass is found in the majority of cases, but these patterns are not specific. Sometimes, a thin high-density capsule may be seen. Rim or internal calcification is a rare finding. Finally, a radiopaque marker is not a reliable sign. Differentiation from abscess and hematoma is sometimes difficult. (orig.) With 11 figs., 12 refs.

  7. Abdominal retained surgical sponges: CT appearance

    International Nuclear Information System (INIS)

    Kalovidouris, A.; Kehagias, D.; Moulopoulos, L.; Gouliamos, A.; Pentea, S.; Vlahos, L.

    1999-01-01

    Retention of surgical sponges is rare. They cause either an aseptic reaction without significant symptoms or an exudative reaction which results in early but nonspecific symptoms. Computed tomography is very useful for recognition of retained sponges. The appearance of retained sponges is widely variable. Air trapping into a surgical sponge results in the spongiform pattern which is characteristic but unfortunately uncommon. A low-density, high-density, or complex mass is found in the majority of cases, but these patterns are not specific. Sometimes, a thin high-density capsule may be seen. Rim or internal calcification is a rare finding. Finally, a radiopaque marker is not a reliable sign. Differentiation from abscess and hematoma is sometimes difficult. (orig.)

  8. Antiviral lead compounds from marine sponges

    KAUST Repository

    Sagar, Sunil; Kaur, Mandeep; Minneman, Kenneth P.

    2010-01-01

    ). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due

  9. Chitosan: collagen sponges. In vitro mineralization

    International Nuclear Information System (INIS)

    Martins, Virginia da C.A.; Silva, Gustavo M.; Plepis, Ana Maria G.

    2011-01-01

    The regeneration of bone tissue is a problem that affects many people and scaffolds for bone tissue growth has been widely studied. The aim of this study was the in vitro mineralization of chitosan, chitosan:native collagen and chitosan:anionic collagen sponges. The sponges were obtained by lyophilization and mineralization was made by soaking the sponges in alternating solutions containing Ca 2+ and PO 4 3- . The mineralization was confirmed by infrared spectroscopy, energy dispersive X-ray and X-ray diffraction observing the formation of phosphate salts, possibly a carbonated hydroxyapatite since Ca/P=1.80. The degree of mineralization was obtained by thermogravimetry calculating the amount of residue at 750 deg C. The chitosan:anionic collagen sponge showed the highest degree of mineralization probably due to the fact that anionic collagen provides additional sites for interaction with the inorganic phase. (author)

  10. COMPARISON OF VACUUM AND HIGH PRESSURE EVAPORATED WOOD HYDROLYZATE FOR ETHANOL PRODUCTION BY REPEATED FED-BATCH USING FLOCCULATING SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Anahita Dehkhoda

    2009-02-01

    Full Text Available With the aim of increasing the sugars concentration in dilute-acid ligno-cellulosic hydrolyzate to more than 100 g/l for industrial applications, the hydrolyzate from spruce was concentrated about threefold by high-pressure or vacuum evaporations. It was then fermented by repeated fed-batch cultivation using flocculating Saccharomyces cerevisiae with no prior detoxification. The sugars and inhibitors concentrations in the hydrolyzates were compared after the evaporations and also fermenta-tion. The evaporations were carried out either under vacuum (VEH at 0.5 bar and 80°C or with 1.3 bar pressure (HPEH at 107.5°C, which resulted in 153.3 and 164.6 g/l total sugars, respectively. No sugar decomposition occurred during either of the evaporations, while more than 96% of furfural and to a lesser extent formic and acetic acids disappeared from the hydrolyzates. However, HMF and levulinic acid remained in the hydrolyzates and were concentrated proportionally. The concentrated hydrolyzates were then fermented in a 4 l bioreactor with 12-22 g/l yeast and 0.14-0.22 h-1 initial dilute rates (ID. More than 84% of the fermentable sugars present in the VEH were fermented by fed-batch cultivation using 12 g/l yeast and initial dilution rate (ID of 0.22 h-1, and resulted in 0.40±0.01 g/g ethanol from the fermentable sugars in one cycle of fermentation. Fermentation of HPEH was as successful as VEH and resulted in more than 86% of the sugar consumption under the corresponding conditions. By lowering the initial dilution rate to 0.14 h-1, more than 97% of the total fermentable sugars were consumed, and ethanol yield was 0.44±0.01 g/g in one cycle of fermentation. The yeast was able to convert or assimilate HMF, levulinic, acetic, and formic acids by 96, 30, 43, and 74%, respectively.

  11. In-situ transesterification of seeds of invasive Chinese tallow trees (Triadica sebifera L.) in a microwave batch system (GREEN(3)) using hexane as co-solvent: Biodiesel production and process optimization.

    Science.gov (United States)

    Barekati-Goudarzi, Mohamad; Boldor, Dorin; Nde, Divine B

    2016-02-01

    In-situ transesterification (simultaneous extraction and transesterification) of Chinese tallow tree seeds into methyl esters using a batch microwave system was investigated in this study. A high degree of oil extraction and efficient conversion of oil to biodiesel were found in the proposed range. The process was further optimized in terms of product yields and conversion rates using Doehlert optimization methodology. Based on the experimental results and statistical analysis, the optimal production yield conditions for this process were determined as: catalyst concentration of 1.74wt.%, solvent ratio about 3 (v/w), reaction time of 20min and temperature of 58.1°C. H(+)NMR was used to calculate reaction conversion. All methyl esters produced using this method met ASTM biodiesel quality specifications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. EFISIENSI PENGGUNAAN TELUR DALAM PEMBUATAN SPONGE CAKE

    OpenAIRE

    Ida Ayu Putu Hemy Ekayani

    2011-01-01

    Penelitian ini bertujuan untuk membuat kue berpori (spong cake) dengan kualitas baik  dengan menggunakan jumlah telur minimal yang dibantu dengan penggunaan baking powder secara optimal untuk menurunkan biaya produksi yang disebabkan oleh mahalnya harga telur. Penelitian ini merupakan penelitian laboratorium (eksperimen). Analisis data dilakukan secara deskriptif. Hasil penelitian menunjukkan bahwa kualitas sponge cake terbaik dihasilkan dari dua variasi rancangan variasi kadar baking powder ...

  13. Hydrogenation of carbon to methane in reduced sponge iron, chromium, and ferrochromium

    Energy Technology Data Exchange (ETDEWEB)

    Qayyum, M A; Reeve, D A

    1976-01-01

    Hydrogenation of excess carbon to methane in reduced sponge iron, chromium and ferrochromium under isothermal and temperature-programmed conditions indicates that it is possible to control the residual carbon content of the metallized products which may be an advantage if further processing of the products is contemplated. Hydrogenation starts above 800/sup 0/C and a shrinking-core kinetic model fits the experimental data. The mean apparent activation energy for the hydrogenation of residual carbon to methane in sponge iron, chromium and ferrochromium is 21 kcal/mole.

  14. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges

    International Nuclear Information System (INIS)

    Lu Hongxu; Ko, Young-Gwang; Kawazoe, Naoki; Chen Guoping

    2011-01-01

    Three-dimensional porous scaffolds play an important role in tissue engineering and regenerative medicine. Structurally, these porous scaffolds should have an open and interconnected porous architecture to facilitate a homogeneous cell distribution. Moreover, the scaffolds should be mechanically strong to support new tissue formation. We developed a novel type of funnel-like collagen sponge using embossing ice particulates as a template. The funnel-like collagen sponges could promote the homogeneous cell distribution, ECM production and chondrogenesis. However, the funnel-like collagen sponges deformed during cell culture due to their weak mechanical strength. To solve this problem, we reinforced the funnel-like collagen sponges with a knitted poly(D,L-lactic-co-glycolic acid) (PLGA) mesh by hybridizing these two types of materials. The hybrid scaffolds were used to culture bovine articular chondrocytes. The cell adhesion, distribution, proliferation and chondrogenesis were investigated. The funnel-like structure promoted the even cell distribution and homogeneous ECM production. The PLGA knitted mesh protected the scaffold from deformation during cell culture. Histological and immunohistochemical staining and cartilaginous gene expression analyses revealed the cartilage-like properties of the cell/scaffold constructs after in vivo implantation. The hybrid scaffold, composed of a funnel-like collagen sponge and PLGA mesh, would be a useful tool for cartilage tissue engineering.

  15. Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs.

    Science.gov (United States)

    Nava, Héctor; Carballo, José Luis

    2008-09-01

    Species richness (S) and frequency of invasion (IF) by boring sponges on living colonies of Pocillopora spp. from National Park Isla Isabel (México, East Pacific Ocean) are presented. Twelve species belonging to the genera Aka, Cliona, Pione, Thoosa and Spheciospongia were found, and 56% of coral colonies were invaded by boring sponges, with Cliona vermifera Hancock 1867 being the most abundant species (30%). Carbonate dissolution rate and sediment production were quantified for C. vermifera and Cliona flavifodina Rützler 1974. Both species exhibited similar rates of calcium carbonate (CaCO3) dissolution (1.2+/-0.4 and 0.5+/-0.2 kg CaCO3 m(-2) year(-1), respectively, mean +/- s.e.m.), and sediment production (3.3+/-0.6 and 4.6+/-0.5 kg CaCO3 m(-2) year(-1)), resulting in mean bioerosion rates of 4.5+/-0.9 and 5.1+/-0.5 kg CaCO3 m(-2) year(-1), respectively. These bioerosion rates are close to previous records of coral calcification per unit of area, suggesting that sponge bioerosion alone can promote disequilibrium in the reef accretion/destruction ratio in localities that are heavily invaded by boring sponges. The proportion of dissolved material by C. vermifera and C. flavifodina (27 and 10.2%, respectively) confirms that chemical bioerosion plays an important role in sponge bioerosion and in the CaCO3 cycle in coral reefs.

  16. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges

    Energy Technology Data Exchange (ETDEWEB)

    Lu Hongxu; Ko, Young-Gwang; Kawazoe, Naoki; Chen Guoping, E-mail: Guoping.Chen@nims.go.jp [Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2011-08-15

    Three-dimensional porous scaffolds play an important role in tissue engineering and regenerative medicine. Structurally, these porous scaffolds should have an open and interconnected porous architecture to facilitate a homogeneous cell distribution. Moreover, the scaffolds should be mechanically strong to support new tissue formation. We developed a novel type of funnel-like collagen sponge using embossing ice particulates as a template. The funnel-like collagen sponges could promote the homogeneous cell distribution, ECM production and chondrogenesis. However, the funnel-like collagen sponges deformed during cell culture due to their weak mechanical strength. To solve this problem, we reinforced the funnel-like collagen sponges with a knitted poly(D,L-lactic-co-glycolic acid) (PLGA) mesh by hybridizing these two types of materials. The hybrid scaffolds were used to culture bovine articular chondrocytes. The cell adhesion, distribution, proliferation and chondrogenesis were investigated. The funnel-like structure promoted the even cell distribution and homogeneous ECM production. The PLGA knitted mesh protected the scaffold from deformation during cell culture. Histological and immunohistochemical staining and cartilaginous gene expression analyses revealed the cartilage-like properties of the cell/scaffold constructs after in vivo implantation. The hybrid scaffold, composed of a funnel-like collagen sponge and PLGA mesh, would be a useful tool for cartilage tissue engineering.

  17. Look-ahead strategies for controlling batch operations in industry - overview, comparison and exploration

    NARCIS (Netherlands)

    Zee, D.J. van der; Harten, A. van; Schuur, P.C.; Joines, JA; Barton, RR; Kang, K; Fishwick, PA

    2000-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. The main reasons for batching are avoidance of set ups and/or facilitation of material handling. Good examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing.

  18. Look-ahead strategies for controlling batch operations in industry - An overview

    NARCIS (Netherlands)

    Zee, Durk-Jouke van der; Chick, SE; Sanchez, PJ; Ferrin, D; Morrice, DJ

    2003-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of set ups and/or facilitation of material handling. Examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing. Starting

  19. Monitoring a PVC batch process with multivariate statistical process control charts

    NARCIS (Netherlands)

    Tates, A. A.; Louwerse, D. J.; Smilde, A. K.; Koot, G. L. M.; Berndt, H.

    1999-01-01

    Multivariate statistical process control charts (MSPC charts) are developed for the industrial batch production process of poly(vinyl chloride) (PVC). With these MSPC charts different types of abnormal batch behavior were detected on-line. With batch contribution plots, the probable causes of these

  20. Look-ahead strategies for controlling batch operations in industry : basic insights in rule construction

    NARCIS (Netherlands)

    van der Zee, D.J.; Sullivan, W.A.; Ahmad, M.M.; Fichtner, D.; Sauer, W.; Weigert, G.; Zerna, T.

    2002-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of set ups and/or facilitation of material handling. Examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing. Starting

  1. Utilization of titanium sponge in H. T. G. R

    Energy Technology Data Exchange (ETDEWEB)

    Tone, H [Japan Atomic Energy Research Inst., Oarai, Ibaraki. Oarai Research Establishment

    1977-10-01

    The high temperature, gas-cooled reactor (H.T.G.R.) uses helium as a coolant and graphite as both the moderator and the fuel tube material. At first sight, there should not be any problem concerning the compatibility of these materials in the H.T.G.R. core region where temperature exceeds 700/sup 0/C, however, it is possible that the graphite core and other structural materials are oxidized by traces of impurities in the coolant. In large-power H.T.G.R., water inleakage from both heat exchangers and coolant circulation pumps will probably be the major source of impurity which will react with the graphite-producing H/sub 2/, CO and CO/sub 2/. In the near future, the nuclear heat of H.T.G.R. will be used as a major heat source for steel production and the chemical industry. For these purposes, it will be necessary to construct a reactor using a helium coolant of greater than 1000/sup 0/C. Therefore, not only the development of refractory metals as structural materials but also an effective helium coolant purification system are the keys for H.T.G.R. construction. Recently, in the helium coolant purification system of H.T.G. Reactors, which have been developed in the several nations advanced in atomic reactors, titanium sponge is used very frequently to remove hydrogen gas as an impurity in helium coolant. Titanium sponge can absorb very large quantities of hydrogen and its absorption-capacity can be very easily controlled by controlling the temperature of the titanium sponge-since titanium hydride is formed by endothermic reaction. The titanium sponge trap is used also in OGL-1 (Oarai Gas Loop-1), helium coolant purification system for large scale irradiation apparatus which is used for nuclear fuels of H.T.G.R. This apparatus has been installed in the Japan Material Testing Reactor. In this report, the coolant purification system of H.T.G.R., OGL-1 and the experimental results of the titanium sponge trap are explained briefly.

  2. Kubernetes as a batch scheduler

    OpenAIRE

    Souza, Clenimar; Brito Da Rocha, Ricardo

    2017-01-01

    This project aims at executing a CERN batch use case using Kubernetes, in order to figure out what are the advantages and disadvantages, as well as the functionality that can be replicated or is missing. The reference for the batch system is the CERN Batch System, which uses HTCondor. Another goal of this project is to evaluate the current status of federated resources in Kubernetes, in comparison to the single-cluster API resources. Finally, the last goal of this project is to implement buil...

  3. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Directory of Open Access Journals (Sweden)

    Gupta Rishi

    2012-03-01

    Full Text Available Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.

  4. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Science.gov (United States)

    2012-01-01

    Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v) and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates. PMID:22433563

  5. Morphological plasticity in the tropical sponge Anthosigmella varians: responses to predators and wave energy.

    Science.gov (United States)

    Hill, Malcolm S; Hill, April L

    2002-02-01

    The goal of the research presented here was to examine phenotypic plasticity exhibited by three morphotypes of the common Caribbean sponge Anthosigmella varians (Duchassaing & Michelotti). We were interested in examining the biotic (and, to a lesser extent, abiotic) factors responsible for branch production in this species. We also tested the hypothesis that the skeleton may serve an antipredator function in this sponge, focusing on vertebrate fish predators (i.e., angelfish) in this work. In transplant and caging experiments, unprotected forma varians replicates were immediately consumed by angelfish, while caged replicates persisted on the reef for several months. These findings support the hypothesis that predators (and not wave energy) restrict forma varians to lagoonal habitats. Branch production was not observed in A. varians forma incrustans when sponges were protected from predators or placed in predator-free, low-wave-energy environments. It is not clear from our work whether forma incrustans is capable of producing branches (i.e., whether branch production is a plastic trait in this morph). Additional field experiments demonstrated that A. varians forma varians increased spicule concentrations, compared to uninjured sponges, in response to artificial predation events, and A. varians forma rigida reduced spicule concentrations, compared to uncaged controls, when protected from predators. These findings indicate that spicule concentration is a plastic morphological trait that can be induced by damage, and that A. varians may be able to reduce spicule concentrations when environmental conditions change (e.g., in the absence of predators). The potential significance of inducible defenses and structural anti-predator defenses in sponges is discussed in relation to recent work on sponge chemical defenses.

  6. Data-driven batch schuduling

    Energy Technology Data Exchange (ETDEWEB)

    Bent, John [Los Alamos National Laboratory; Denehy, Tim [GOOGLE; Arpaci - Dusseau, Remzi [UNIV OF WISCONSIN; Livny, Miron [UNIV OF WISCONSIN; Arpaci - Dusseau, Andrea C [NON LANL

    2009-01-01

    In this paper, we develop data-driven strategies for batch computing schedulers. Current CPU-centric batch schedulers ignore the data needs within workloads and execute them by linking them transparently and directly to their needed data. When scheduled on remote computational resources, this elegant solution of direct data access can incur an order of magnitude performance penalty for data-intensive workloads. Adding data-awareness to batch schedulers allows a careful coordination of data and CPU allocation thereby reducing the cost of remote execution. We offer here new techniques by which batch schedulers can become data-driven. Such systems can use our analytical predictive models to select one of the four data-driven scheduling policies that we have created. Through simulation, we demonstrate the accuracy of our predictive models and show how they can reduce time to completion for some workloads by as much as 80%.

  7. High energy density supercapacitors using macroporous kitchen sponges

    KAUST Repository

    Chen, Wei; Baby, Rakhi Raghavan; Alshareef, Husam N.

    2012-01-01

    Macroporous, low-cost and recyclable kitchen sponges are explored as effective electrode platforms for supercapacitor devices. A simple and scalable process has been developed to fabricate MnO 2-carbon nanotube (CNT)-sponge supercapacitor electrodes

  8. Primary hafnium metal sponge and other forms, approved standard 1973

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    A specification is presented covering virgin hafnium metal commonly designated as sponge because of its porous, sponge-like texture; it may also be in other forms such as chunklets. The specification does not cover crystal bar

  9. High-performance nanostructured supercapacitors on a sponge

    KAUST Repository

    Chen, Wei; Baby, Rakhi Raghavan; Hu, Liangbing; Xie, Xing; Cui, Yi; Alshareef, Husam N.

    2011-01-01

    A simple and scalable method has been developed to fabricate nanostructured MnO 2-carbon nanotube (CNT)-sponge hybrid electrodes. A novel supercapacitor, henceforth referred to as "sponge supercapacitor", has been fabricated using these hybrid

  10. Bacterial community profiles in low microbial abundance sponges

    KAUST Repository

    Giles, Emily; Kamke, Janine; Moitinho-Silva, Lucas; Taylor, Michael W.; Hentschel, Ute T E; Ravasi, Timothy; Schmitt, Susanne

    2012-01-01

    It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either 'low microbial abundance' (LMA) or 'high microbial abundance' (HMA) sponges. Many previous studies concentrated

  11. First records of sponge-associated Actinomycetes from two coastal ...

    African Journals Online (AJOL)

    First records of sponge-associated Actinomycetes from two coastal sponges from Mauritius. Sandeep Shivram Beepat, Chandani Appadoo, Daniel Edgard Pierre Marie, Shamimtaz Bibi Sadally, Jose Pavao Mendes Paula, Kannan Sivakumar, Rashmi Ragothama Rao, Maryam Salah ...

  12. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors.

    Science.gov (United States)

    Wang, Yayi; Zhou, Shuai; Ye, Liu; Wang, Hong; Stephenson, Tom; Jiang, Xuxin

    2014-12-15

    Nitrite-based phosphorus (P) removal could be useful for innovative biological P removal systems where energy and carbon savings are a priority. However, using nitrite for denitrification may cause nitrous oxide (N2O) accumulation and emissions. A denitrifying nitrite-fed P removal system [Formula: see text] was successfully set up in a sequencing batch reactor (SBR) and was run for 210 days. The maximum pulse addition of nitrite to [Formula: see text] was 11 mg NO2(-)-N/L in the bulk, and a total of 34 mg NO2(-)-N/L of nitrite was added over three additions. Fluorescent in situ hybridization results indicated that the P-accumulating organisms (PAOs) abundance was 75 ± 1.1% in [Formula: see text] , approximately 13.6% higher than that in a parallel P removal SBR using nitrate [Formula: see text] . Type II Accumulibacter (PAOII) (unable to use nitrate as an electron acceptor) was the main PAOs species in [Formula: see text] , contributing 72% to total PAOs. Compared with [Formula: see text] , [Formula: see text] biomass had enhanced nitrite/free nitrous acid (FNA) endurance, as demonstrated by its higher nitrite denitrification and P uptake rates. N2O accumulated temporarily in [Formula: see text] after each pulse of nitrite. Peak N2O concentrations in the bulk for [Formula: see text] were generally 6-11 times higher than that in [Formula: see text] ; these accumulations were rapidly denitrified to nitrogen gases. N2O concentration increased rapidly in nitrate-cultivated biomass when 5 or 10 mg NO2(-)-N/L per pulse was added. Whereas, N2O accumulation did not occur in nitrite-cultivated biomass until up to 30 mg NO2(-)-N/L per pulse was added. Long-term acclimation to nitrite and pulse addition of nitrite in [Formula: see text] reduced the risk of nitrite accumulation, and mitigated N2O accumulation and emissions from denitrifying P removal by nitrite. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Kinetics of β-galactosidase Production by Lactobacillus bulgaricus During pH Controlled Batch Fermentation in Three Commercial Bulk Starter Media

    Directory of Open Access Journals (Sweden)

    Saeed Abbasalizadeh

    2015-10-01

    Full Text Available The potential of bulk starter fermentation strategy for production of a cost-effective and GRAS source of β-galactosidase from a starter culture strain Lactobacillus bulgaricus was investigated. Three different media were selected and the strain, L. bulgaricus DSM 20081 was cultivated in these media under pH-controlled condition (pH = 5.6 at 43°C. The media were: bulk starter medium based on skim milk + whey, bulk starter medium based on whey, and skim milk. Growth and β-lactic acid production parameters were estimated from experimental data with the Garcia and Luedeking-Piret models, respectively. β-galactosidase production kinetics was also simulated using models based on biomass concentration and lactic acid production. Growth in the bulk starter medium based on skim milk + whey resulted in a higher rate of lactic acid production (7.35 ± 0.23  mg lactic acid ml-1 media h-1 and β-galactosidase activity (800.1± 0.7 nmol ONP ml-1 media compared to the other two media (P<0.01. Simulation of β- galactosidase production based on rate of lactic acid production resulted in very good agreement with experimental data for all three tested media. The results revealed the potential of bulk starter fermentation strategy and skim milk + whey based medium for in-house and relatively low cost production of food-grade β-galactosidase by dairy plants.

  14. Energy requirements during sponge cake baking: Experimental and simulated approach

    International Nuclear Information System (INIS)

    Ureta, M. Micaela; Goñi, Sandro M.; Salvadori, Viviana O.; Olivera, Daniela F.

    2017-01-01

    Highlights: • Sponge cake energy consumption during baking was studied. • High oven temperature and forced convection mode favours oven energy savings. • Forced convection produced higher weight loss thus a higher product energy demand. • Product energy demand was satisfactorily estimated by the baking model applied. • The greatest energy efficiency corresponded to the forced convection mode. - Abstract: Baking is a high energy demanding process, which requires special attention in order to know and improve its efficiency. In this work, energy consumption associated to sponge cake baking is investigated. A wide range of operative conditions (two ovens, three convection modes, three oven temperatures) were compared. Experimental oven energy consumption was estimated taking into account the heating resistances power and a usage factor. Product energy demand was estimated from both experimental and modeling approaches considering sensible and latent heat. Oven energy consumption results showed that high oven temperature and forced convection mode favours energy savings. Regarding product energy demand, forced convection produced faster and higher weight loss inducing a higher energy demand. Besides, this parameter was satisfactorily estimated by the baking model applied, with an average error between experimental and simulated values in a range of 8.0–10.1%. Finally, the energy efficiency results indicated that it increased linearly with the effective oven temperature and that the greatest efficiency corresponded to the forced convection mode.

  15. Alkaloids from sponge, scaffolds for the inhibition of human immunodeficiency virus (hiv)

    KAUST Repository

    O'Rourke, Aubrie

    2016-05-06

    Anti-viral compounds with low cytotoxicity are identified from screening of products found in Red Sea sponges, including the sponge Stylissa carteri. The identified compounds can be brominated pyrrole-2- aminoimidazole alkaloids and derivatives thereof. Specific examples of identified compounds include oroidin, hymenialdisine, and debromohymenialdisine, as well as derivatives thereof. The compounds also can be useful scaffolds or pharmacores for further chemical modification and derivatization. Selected compounds, particularly oroidin, show selective anti-viral HIV-1 activity coupled with reduced cytotoxicity. The compounds can function as HIV reverse-transcriptase inhibitors, and molecular modeling can be used to confirm inhibition.

  16. Carbon conversion and metabolic rate in two marine sponges

    NARCIS (Netherlands)

    Koopmans, M.; Van Rijswijk, P.; Martens, D.; Egorova-Zachernyuk, T.A.; Middelburg, J.J.; Wijffels, R.H.

    2011-01-01

    The carbon metabolism of two marine sponges, Haliclona oculata and Dysidea avara, has been studied using a 13C isotope pulse-chase approach. The sponges were fed 13C-labeled diatoms (Skeletonema costatum) for 8 h and they took up between 75 and 85%. At different times, sponges were sampled for total

  17. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of this...

  18. Sponge biomass and bioerosion rates increase under ocean warming and acidification.

    Science.gov (United States)

    Fang, James K H; Mello-Athayde, Matheus A; Schönberg, Christine H L; Kline, David I; Hoegh-Guldberg, Ove; Dove, Sophie

    2013-12-01

    The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2 ) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroders) in the regulation of carbonate budgets, however, is less understood. To address this important question, the effects of a range of past, present and future CO2 emission scenarios (temperature + acidification) on the excavating sponge Cliona orientalis Thiele, 1900 were explored over 12 weeks in early summer on the southern Great Barrier Reef. C. orientalis is a widely distributed bioeroder on many reefs, and hosts symbiotic dinoflagellates of the genus Symbiodinium. Our results showed that biomass production and bioerosion rates of C. orientalis were similar under a pre-industrial scenario and a present day (control) scenario. Symbiodinium population density in the sponge tissue was the highest under the pre-industrial scenario, and decreased towards the two future scenarios with sponge replicates under the 'business-as-usual' CO2 emission scenario exhibiting strong bleaching. Despite these changes, biomass production and the ability of the sponge to erode coral carbonate materials both increased under the future scenarios. Our study suggests that C. orientalis will likely grow faster and have higher bioerosion rates in a high CO2 future than at present, even with significant bleaching. Assuming that our findings hold for excavating sponges in general, increased sponge biomass coupled with accelerated bioerosion may push coral reefs towards net erosion and negative carbonate budgets in the future. © 2013 John Wiley & Sons Ltd.

  19. 21 CFR 212.71 - What actions must I take if a batch of PET drug product does not conform to specifications?

    Science.gov (United States)

    2010-04-01

    ... PRACTICE FOR POSITRON EMISSION TOMOGRAPHY DRUGS (Eff. 12-12-2011) Finished Drug Product Controls and..., operations, records, complaints, and any other relevant sources of information concerning the nonconforming...

  20. Think like a sponge: The genetic signal of sensory cells in sponges.

    Science.gov (United States)

    Mah, Jasmine L; Leys, Sally P

    2017-11-01

    A complex genetic repertoire underlies the apparently simple body plan of sponges. Among the genes present in poriferans are those fundamental to the sensory and nervous systems of other animals. Sponges are dynamic and sensitive animals and it is intuitive to link these genes to behaviour. The proposal that ctenophores are the earliest diverging metazoan has led to the question of whether sponges possess a 'pre-nervous' system or have undergone nervous system loss. Both lines of thought generally assume that the last common ancestor of sponges and eumetazoans possessed the genetic modules that underlie sensory abilities. By corollary extant sponges may possess a sensory cell homologous to one present in the last common ancestor, a hypothesis that has been studied by gene expression. We have performed a meta-analysis of all gene expression studies published to date to explore whether gene expression is indicative of a feature's sensory function. In sponges we find that eumetazoan sensory-neural markers are not particularly expressed in structures with known sensory functions. Instead it is common for these genes to be expressed in cells with no known or uncharacterized sensory function. Indeed, many sensory-neural markers so far studied are expressed during development, perhaps because many are transcription factors. This suggests that the genetic signal of a sponge sensory cell is dissimilar enough to be unrecognizable when compared to a bilaterian sensory or neural cell. It is possible that sensory-neural markers have as yet unknown functions in sponge cells, such as assembling an immunological synapse in the larval globular cell. Furthermore, the expression of sensory-neural markers in non-sensory cells, such as adult and larval epithelial cells, suggest that these cells may have uncharacterized sensory functions. While this does not rule out the co-option of ancestral sensory modules in later evolving groups, a distinct genetic foundation may underlie the

  1. Light-optimized growth of cyanobacterial cultures: Growth phases and productivity of biomass and secreted molecules in light-limited batch growth.

    Science.gov (United States)

    Clark, Ryan L; McGinley, Laura L; Purdy, Hugh M; Korosh, Travis C; Reed, Jennifer L; Root, Thatcher W; Pfleger, Brian F

    2018-03-27

    Cyanobacteria are photosynthetic microorganisms whose metabolism can be modified through genetic engineering for production of a wide variety of molecules directly from CO 2 , light, and nutrients. Diverse molecules have been produced in small quantities by engineered cyanobacteria to demonstrate the feasibility of photosynthetic biorefineries. Consequently, there is interest in engineering these microorganisms to increase titer and productivity to meet industrial metrics. Unfortunately, differing experimental conditions and cultivation techniques confound comparisons of strains and metabolic engineering strategies. In this work, we discuss the factors governing photoautotrophic growth and demonstrate nutritionally replete conditions in which a model cyanobacterium can be grown to stationary phase with light as the sole limiting substrate. We introduce a mathematical framework for understanding the dynamics of growth and product secretion in light-limited cyanobacterial cultures. Using this framework, we demonstrate how cyanobacterial growth in differing experimental systems can be easily scaled by the volumetric photon delivery rate using the model organisms Synechococcus sp. strain PCC7002 and Synechococcus elongatus strain UTEX2973. We use this framework to predict scaled up growth and product secretion in 1L photobioreactors of two strains of Synechococcus PCC7002 engineered for production of l-lactate or L-lysine. The analytical framework developed in this work serves as a guide for future metabolic engineering studies of cyanobacteria to allow better comparison of experiments performed in different experimental systems and to further investigate the dynamics of growth and product secretion. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Complete Genome Sequence of Rhodococcus sp. Strain WMMA185, a Marine Sponge-Associated Bacterium

    OpenAIRE

    Adnani, Navid; Braun, Doug R.; McDonald, Bradon R.; Chevrette, Marc G.; Currie, Cameron R.; Bugni, Tim S.

    2016-01-01

    The Rhodococcus strain WMMA185 was isolated from the marine sponge Chondrilla nucula as part of ongoing drug discovery efforts. Analysis of the 4.44-Mb genome provides information regarding interspecies interactions as pertains to regulation of secondary metabolism and natural product biosynthetic potentials.

  3. Unravelling host and symbiont phylogenies of halichondrid sponges (Demospongiae, Porifera) using a mitochondrial marker

    NARCIS (Netherlands)

    Erpenbeck, D.J.G.; Breeuwer, J.A.J.; van der Velde, H.C.; van Soest, R.W.M.

    2002-01-01

    We present the first comparative phylogenetic analysis of a selected set of marine sponges and their bacterial associates. The Halichondrida for an important order in demosponge systematics and are of a particular interest due to the production of secondary metabolites. We sequenced a fragment of

  4. Application of the fuzzy theory to simulation of batch fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Filev, D P; Kishimoto, M; Sengupta, S; Yoshida, T; Taguchi, H

    1985-12-01

    A new approach for system identification with a linguistic model of batch fermentation processes is proposed. The fuzzy theory was applied in order to reduce the uncertainty of quantitative description of the processes by use of qualitative characteristics. An example of fuzzy modeling was illustrated in the simulation of batch ethanol production from molasses after interpretation of the new method, and extension of the fuzzy model was also discussed for several cases of different measurable variables.

  5. Heterotrophs are key contributors to nitrous oxide production in activated sludge under low C-to-N ratios during nitrification-Batch experiments and modeling.

    Science.gov (United States)

    Domingo-Félez, Carlos; Pellicer-Nàcher, Carles; Petersen, Morten S; Jensen, Marlene M; Plósz, Benedek G; Smets, Barth F

    2017-01-01

    Nitrous oxide (N 2 O), a by-product of biological nitrogen removal during wastewater treatment, is produced by ammonia-oxidizing bacteria (AOB) and heterotrophic denitrifying bacteria (HB). Mathematical models are used to predict N 2 O emissions, often including AOB as the main N 2 O producer. Several model structures have been proposed without consensus calibration procedures. Here, we present a new experimental design that was used to calibrate AOB-driven N 2 O dynamics of a mixed culture. Even though AOB activity was favoured with respect to HB, oxygen uptake rates indicated HB activity. Hence, rigorous experimental design for calibration of autotrophic N 2 O production from mixed cultures is essential. The proposed N 2 O production pathways were examined using five alternative process models confronted with experimental data inferred. Individually, the autotrophic and heterotrophic denitrification pathway could describe the observed data. In the best-fit model, which combined two denitrification pathways, the heterotrophic was stronger than the autotrophic contribution to N 2 O production. Importantly, the individual contribution of autotrophic and heterotrophic to the total N 2 O pool could not be unambiguously elucidated solely based on bulk N 2 O measurements. Data on NO would increase the practical identifiability of N 2 O production pathways. Biotechnol. Bioeng. 2017;114: 132-140. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. The Characterization and Hydrogen Production from Water Decomposition with Methanol in a Semi-Batch Type Reactor Using In, P-TiO2s

    Directory of Open Access Journals (Sweden)

    Joonwoo Kim

    2011-01-01

    Full Text Available The photocatalytic production of hydrogen from water using solar energy is potentially a clean and renewable source for hydrogen fuel. This study examines the production of hydrogen over In, P-TiO2s photocatalysts. 1 mol% In-TiO2 and P-TiO2 were produced using the solvothermal method and were treated at 500 and 800∘C to obtain anatase and rutile structure, respectively. The photocatalysts were characterized by X-ray diffraction, photoluminescence spectra, X-ray spectroscopy, UV-visible spectroscopy, and scanning electron microscopy. The production of H2 from methanol photodecomposition was greater over the rutile structure than over the anatase structure of TiO2. Moreover, the amount of hydrogen was enhanced over In-TiO2 and P-TiO2 compared to that over pure TiO2; the production increased by about 30%. The structural effect and the addition of In, P have significant influence on the H2 production from methanol/water decomposition.

  7. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode

    DEFF Research Database (Denmark)

    Scalcinati, Gionata; Knuf, Christoph; Partow, Siavash

    2012-01-01

    -santalene, the precursor of a commercially interesting compound, was constructed through a rationally designed metabolic engineering approach. Optimal sesquiterpene production was obtained by modulating the expression of one of the key metabolic steps of the mevalonate (MVA) pathway, squalene synthase (Erg9). To couple......Microbial cells engineered for efficient production of plant sesquiterpenes may allow for sustainable and scalable production of these compounds that can be used as e.g. perfumes and pharmaceuticals. Here, for the first time a Saccharomyces cerevisiae strain capable of producing high levels of α...... ERG9 expression to glucose concentration its promoter was replaced by the HXT1 promoter. In a second approach, the HXT2 promoter was used to express an ERG9 antisense construct. Using the HXT1 promoter to control ERG9 expression, it was possible to divert the carbon flux from sterol synthesis towards...

  8. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    Directory of Open Access Journals (Sweden)

    Brümmer Franz

    2009-02-01

    Full Text Available Abstract Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide

  9. Physiological characterisation of Penicillium chrysogenum strains expressing the expandase gene from Streptomyces clavuligerus during batch cultivations. Growth and adipoyl-7- aminodeacetoxycephalosporanic acid production

    DEFF Research Database (Denmark)

    Robin, Jarno Jacky Christian; Jakobsen, M.; Beyer, M.

    2001-01-01

    The production of adipoyl-7-aminodeacetoxy-cephalosporanic acid (ad-7-ADCA) was studied, using two recombinant strains of Penicillium chrysogenum carrying the expandase gene from Streptomyces clavuligerus. The adipoyl-side chain of this compound may easily be removed using an amidase; and this pr......The production of adipoyl-7-aminodeacetoxy-cephalosporanic acid (ad-7-ADCA) was studied, using two recombinant strains of Penicillium chrysogenum carrying the expandase gene from Streptomyces clavuligerus. The adipoyl-side chain of this compound may easily be removed using an amidase...

  10. High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition.

    Science.gov (United States)

    Hu, Jinlong; Zhang, Zhenting; Lin, Yanxu; Zhao, Shumiao; Mei, Yuxia; Liang, Yunxiang; Peng, Nan

    2015-04-01

    Lactic acid (LA) is an important chemical with various industrial applications. Non-food feedstock is commercially attractive for use in LA production; however, efficient LA fermentation from lignocellulosic biomass resulting in both high yield and titer faces technical obstacles. In this study, the thermophilic bacterium Bacillus coagulans LA204 demonstrated considerable ability to ferment glucose, xylose, and cellobiose to LA. Importantly, LA204 produces LA from several NaOH-pretreated agro stovers, with remarkably high yields through simultaneous saccharification and fermentation (SSF). A fed-batch SSF process conducted at 50°C and pH 6.0, using a cellulase concentration of 30 FPU (filter paper unit)/g stover and 10 g/L yeast extract in a 5-L bioreactor, was developed to produce LA from 14.4% (w/w) NaOH-pretreated non-sterile corn stover. LA titer, yield, and average productivity reached 97.59 g/L, 0.68 g/g stover, and 1.63 g/L/h, respectively. This study presents a feasible process for lignocellulosic LA production from abundant agro stovers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Antimicrobial activities of secondary metabolites and phylogenetic study of sponge endosymbiotic bacteria, Bacillus sp. at Agatti Island, Lakshadweep Archipelago

    Directory of Open Access Journals (Sweden)

    Gopi Mohan

    2016-09-01

    Full Text Available Twenty-one species of sponges were recorded under the class of Demospongiae and Calcareous sponges of which 19 species were new to Agatti reef. A total of 113 Sponge endosymbiotic bacterial strains were isolated from twenty-one species of sponges and screened for antimicrobial activity. Five bacterial strains of sponge endosymbiotic bacteria (SEB namely SEB32, SEB33, SEB36, SEB43 and SEB51 showed antimicrobial activity against virulent marine fish pathogens such as Vibrio alginolyticus, Vibrio vulnificus, Vibrio parahaemolyticus, Aeromonas salmonicida, Flavobacterium sp., Edwardsiella sp., Proteus mirabilis and Citrobacter brackii. The secondary metabolites produced by SEB32 from sponge Dysidea fragilis (Montagu, 1818 [48] was selected with broad range of antibacterial activity and subjected for production, characterization by series of chromatography techniques and spectroscopic methods. Based on the results of FT-IR and mass spectrometry, the active molecule was tentatively predicted as “Pyrrol” and the structure is Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- with molecular formula of C7H10N2O2. The LC50 of active molecule was 31 μg/ml and molecular weight of the metabolites was 154. The potential strain SEB32 was identified by gene sequence (GenBank Accession number JX985748 and identified as Bacillus sp. from GenBank database.

  12. Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors

    International Nuclear Information System (INIS)

    Qureshi, Nasib; Saha, Badal C.; Hector, Ronald E.; Cotta, Michael A.

    2008-01-01

    In these studies, alkaline peroxide pretreatment of wheat straw was investigated. Pretreated wheat straw was hydrolyzed using cellulolytic and xylanolytic enzymes, and the hydrolysate was used to produce butanol using Clostridium beijerinckii P260. The culture produced less than 2.59 g L -1 acetone-butanol-ethanol (ABE) from alkaline peroxide wheat straw hydrolysate (APWSH) that had not been treated to reduce salt concentration (a neutralization product). However, fermentation was successful after inhibitors (salts) were removed from the hydrolysate by electrodialysis. A control glucose fermentation resulted in the production of 21.37 g L -1 ABE, while salt removed APWSH resulted in the production of 22.17 g L -1 ABE. In the two fermentations, reactor productivities were 0.30 and 0.55 g L -1 h -1 , respectively. A comparison of use of different substrates (corn fiber, wheat straw) and different pretreatment techniques (dilute sulfuric acid, alkaline peroxide) suggests that generation of inhibitors is substrate and pretreatment specific

  13. Heterotrophs are key contributors to nitrous oxide production in mixed liquor under low C-to-N ratios during nitrification - batch experiments and modelling

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Pellicer i Nàcher, Carles; Petersen, Morten S.

    2017-01-01

    Nitrous oxide (N2O), a by-product of biological nitrogen removal during wastewater treatment, is produced by ammonia-oxidizing bacteria (AOB) and heterotrophic denitrifying bacteria (HB). Mathematical models are used to predict N2O emissions, often including AOB as the main N2O producer. Several...

  14. Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed

    DEFF Research Database (Denmark)

    Tippmann, Stefan; Scalcinati, Gionata; Siewers, Verena

    2016-01-01

    Terpenes have various applications as fragrances, cosmetics and fuels. One of the most prominent examples is the sesquiterpene farnesene, which can be used as diesel substitute in its hydrogenated form farnesane. Recent metabolic engineering efforts have enabled efficient production of several te...

  15. Optimizing strategy for Escherichia coli growth and hydrogen production during glycerol fermentation in batch culture: Effects of some heavy metal ions and their mixtures

    International Nuclear Information System (INIS)

    Trchounian, Karen; Poladyan, Anna; Trchounian, Armen

    2016-01-01

    Highlights: • Effects of heavy metals on Escherichia coli were revealed during glycerol fermentation at pH 6.5. • Ni"2"+ + Fe"2"+ (0.05 mM) mixture stimulated up to 1.5-fold bacterial biomass yield. • Ni"2"+ + Fe"3"+ (0.05 mM), Ni"2"+ + Fe"3"+ + Mo"6"+ (0.02 mM) and Fe"3"+ + Mo"6"+ enhanced (up to 3-fold) H_2 production. • Discrimination between Fe"2"+ and Fe"3"+ was important for H_2 production. • Cu"+ and Cu"2"+ (0.1 mM) inhibited H_2 production. - Abstract: Hydrogen (H_2) is well-known effective, ecologically clean and renewable fuel. Bacterial H_2 production is a promising one and its use in industrial level is expected to increase in the nearest future to establish sustainable and renewable energy source. Escherichia coli wild type BW25113 growth yield was shown to be stimulated 1.3–1.5-fold by nickel (Ni"2"+), iron (Fe"2"+, Fe"3"+) ions and by some metal ion mixtures: Ni"2"+ + Fe"2"+ + molybdenum (Mo"6"+), Ni"2"+ + Fe"3"+, Ni"2"+ + Fe"2"+ and Mo"6"+ + Fe"3"+ in low concentrations (<0.05 mM) stimulated the growth during glycerol (10 g L"−"1) fermentation up to stationary phase at pH 6.5; Ni"2"+ + Fe"2"+ mixture showed the maximal effect. However, the same concentrations of these metals and their mixtures had no effects or slightly inhibited bacterial specific growth rate: it was suppressed ∼1.2-fold upon Ni"2"+, Fe"3"+, Mo"6"+ and Ni"2"+ + Mo"6"+ mixture supplementation. H_2 production by E. coli from glycerol was observed with the yield of 0.75 ± 0.02 mmol L"−"1. Moreover, H_2 yield was markedly stimulated 1.7–3-fold in the presence of Ni"2"+ + Fe"3"+, Ni"2"+ + Fe"3"+ + Mo"6"+ and Fe"3"+ + Mo"6"+ mixtures, but not sole metals: maximal stimulation was established by Fe"3"+ + Mo"6"+ mixture with the concentrations of 0.05 mM and 0.02 mM, respectively. While copper (Cu"+, Cu"2"+) ions in low concentration (0.1 mM) had H_2 production suppressing effect. The results point out that some heavy metal ions and their mixtures can stimulate E

  16. Identification of okadaic acid binding protein 2 in reconstituted sponge cell clusters from Halichondria okadai and its contribution to the detoxification of okadaic acid.

    Science.gov (United States)

    Konoki, Keiichi; Okada, Kayo; Kohama, Mami; Matsuura, Hiroki; Saito, Kaori; Cho, Yuko; Nishitani, Goh; Miyamoto, Tomofumi; Fukuzawa, Seketsu; Tachibana, Kazuo; Yotsu-Yamashita, Mari

    2015-12-15

    Okadaic acid (OA) and OA binding protein 2 (OABP2) were previously isolated from the marine sponge Halichondria okadai. Because the amino acid sequence of OABP2 is completely different from that of protein phosphatase 2A, a well-known target of OA, we have been investigating the production and function of OABP2. In the present study, we hypothesized that OABP2 plays a role in the detoxification of OA in H. okadai and that the OA concentrations are in proportional to the OABP2 concentrations in the sponge specimens. Based on the OA concentrations and the OABP2 concentrations in the sponge specimens collected in various places and in different seasons, however, we could not determine a positive correlation between OA and OABP2. We then attempted to determine distribution of OA and OABP2 in the sponge specimen. When the mixture of dissociated sponge cells and symbiotic species were separated with various pore-sized nylon meshes, most of the OA and OABP2 was detected from the same 0-10 μm fraction. Next, when sponge cell clusters were prepared from a mixture of dissociated sponge cells and symbiotic species in the presence of penicillin and streptomycin, we identified the 18S rDNA of H. okadai and the gene of OABP2 in the analysis of genomic DNA but could not detect OA by LC-MS/MS. We thus concluded that the sponge cells express OABP2, and that OA was not apparently present in the sponge cells but could be colocalized with OABP2 in the sponge cells at a concentration less than the limit of detection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Production of Ag Nanocubes on a Scale of 0.1 g per Batch by Protecting the NaHS-Mediated Polyol Synthesis with Argon

    OpenAIRE

    Zhang, Qiang; Cobley, Claire; Au, Leslie; McKiernan, Maureen; Schwartz, Andrea; Wen, Long-Ping; Chen, Jingyi; Xia, Younan

    2009-01-01

    Gold nanocages synthesized from Ag nanocubes via the galvanic replacement reaction are finding widespread use in a range of applications due to their tunable optical properties. Most of these applications require the use of nanocages with a uniform size and in large quantities. This requirement translates into a demand for scaling up the production of Ag nanocubes with uniform, well-controlled sizes. Here we report such a method based on the modification of NaHS-mediated polyol synthesis with...

  18. Growth and biomass production with enhanced {beta}-glucan and dietary fibre contents of Ganoderma australe ATHUM 4345 in a batch-stirred tank bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Papaspyridi, Lefki-Maria; Christakopoulos, Paul [BIOtechMASS Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens (Greece); Katapodis, Petros [BIOtechMASS Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens (Greece); Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina (Greece); Gonou-Zagou, Zacharoula; Kapsanaki-Gotsi, Evangelia [Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Athens (Greece)

    2011-02-15

    In this study we maximized biomass production by the basidiomycete Ganoderma australe ATHUM 4345, a species of pharmaceutical interest as it is a valuable source of nutraceuticals, including dietary fibers and glucans. We used the Biolog FF MicroPlate to screen 95 different carbon sources for growth monitoring. The pattern of substrate catabolism forms a substrate assimilation fingerprint, which is useful in selecting components for media optimization of maximum biomass production. Response surface methodology, based on the central composite design was applied to explore the optimum concentrations of carbon and nitrogen sources of culture medium in shake flask cultures. When the improved culture medium was tested in a 20-L stirred tank bioreactor, using 13.7 g/L glucose and 30.0 g/L yeast extract, high biomass yields (10.1{+-}0.4 g/L) and productivity of 0.09 g L{sup -1} h{sup -1} were obtained. The yield coefficients for total glucan and dietary fibers on biomass formed were 94.82{+-}6 and 341.15{+-}12.3 mg/g mycelium dry weight, respectively. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Bioprospecting of Red Sea Sponges for Novel Antiviral Pharmacophores

    KAUST Repository

    O'Rourke, Aubrie

    2015-05-01

    Natural products offer many possibilities for the treatment of disease. More than 70% of the Earth’s surface is ocean, and recent exploration and access has allowed for new additions to this catalog of natural treasures. The Central Red Sea off the coast of Saudi Arabia serves as a newly accessible location, which provides the opportunity to bioprospect marine sponges with the purpose of identifying novel antiviral scaffolds. Antivirals are underrepresented in present day clinical trials, as well as in the academic screens of marine natural product libraries. Here a high-throughput pipeline was initiated by prefacing the antiviral screen with an Image-based High-Content Screening (HCS) technique in order to identify candidates with antiviral potential. Prospective candidates were tested in a biochemical or cell-based assay for the ability to inhibit the NS3 protease of the West Nile Virus (WNV NS protease) as well as replication and reverse transcription of the Human Immunodeficiency Virus 1 (HIV-1). The analytical chemistry techniques of High-Performance Liquid Chromatograpy (HPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), and Nuclear Magnetic Resonance (NMR) where used in order to identify the compounds responsible for the characteristic antiviral activity of the selected sponge fractions. We have identified a 3-alkyl pyridinium from Amphimedon chloros as the causative agent of the observed WNV NS3 protease inhibition in vitro. Additionally, we identified debromohymenialdisine, hymenialdisine, and oroidin from Stylissa carteri as prospective scaffolds capable of HIV-1 inhibition.

  20. BatchJS: Implementing Batches in JavaScript

    NARCIS (Netherlands)

    D. Kasemier

    2014-01-01

    htmlabstractNone of our popular programming languages know how to handle distribution well. Yet our programs interact more and more with each other and our data resorts in databases and web services. Batches are a new addition to languages that can finally bring native support for distribution to

  1. Effects of sulfur and monensin concentrations on in vitro dry matter disappearance, hydrogen sulfide production, and volatile fatty acid concentrations in batch culture ruminal fermentations.

    Science.gov (United States)

    Smith, D R; Dilorenzo, N; Leibovich, J; May, M L; Quinn, M J; Homm, J W; Galyean, M L

    2010-04-01

    Effects of monensin (MON) and S on in vitro fermentation and H(2)S production were evaluated in 2 experiments. In Exp. 1, 2 ruminally cannulated steers were adapted (>14 d) to a 75% concentrate diet [steam-flaked corn (SFC)-based], and ruminal fluid was collected approximately 4 h after feeding. Substrate composed (DM basis) of 85.2% SFC, 9% alfalfa hay, 5% cottonseed meal, and 0.8% urea was added with ruminal fluid and buffer to sealed 125-mL serum bottles to allow for gas collection. A Na(2)SO(4) solution was added to yield S equivalent to 0.2, 0.4, and 0.8% of substrate DM, and MON was included at 0, 2, 4, and 6 mg/L of culture volume. Bottle head-space gas was analyzed for H(2)S. No MON (P = 0.29) or MON x S interaction (P = 0.41) effects were detected for H(2)S production. Increasing S linearly increased (P molar proportions of acetate, butyrate, and the acetate:propionate ratio (A:P), and linearly increased (P 21 d) to a 75% concentrate diet (SFC base) that contained 15% (DM basis) wet corn distillers grains plus solubles (WDGS) and MON at 22 mg/kg of DM. In vitro substrate DM was composed of 75.4% SFC, 15% WDGS, 9% alfalfa hay, and 0.6% urea, and S and MON concentrations were the same as in Exp. 1. No effects of MON (P = 0.93) or the MON x S interaction (P = 0.99) were noted for H(2)S production; however, increasing S linearly increased (P molar proportions of acetate, butyrate, and A:P and linearly increased (P molar proportions were evident with MON regardless of S concentration.

  2. Enhanced production of pullulan by two strains of A. pullulans with different concentrations of soybean oil in sucrose solution in batch fermentations

    Directory of Open Access Journals (Sweden)

    R. F. Sena

    2006-12-01

    Full Text Available Aureobasidium pullulans is a microorganism that produces pullulan (homopolysaccharide extracellularly through a fermentation process with sugars (maltose, d-xylose, sucrose and starch as its carbon source. Pullulan is a linear polysaccharide of D-glycopyranose containing (1 ->4-alpha and (1 -> 6-alpha linkages at a 2:1 ratio, is highly soluble in water and has various applications in the food, packaging, film and pharmaceutical industries. Lipids, primarily oils, having antifoaming properties as well as nutritional particularities, are considered an essential additional carbon source for the growth of microorganisms, especially fungi. These nutrient sources are very important for the maintenance of microorganism cells. In fact, these positive effects are only achieved when the right source is added at both the right time and the right dosage into the broth of the fermentation process. In this research on pullulan production with the strains NRRL Y-6220 and NRRL Y-2311-1, it was found that the latter strain achieved better results for undesirable pigment formation, pullulan titer, time of maximum production (96 hours and biomass yields than strain NRRL Y-6220, which also showed suitable results for biomass yields and cell morphology. However, the dark pigmentation of the strain NRRL Y-6220, formed through the process, makes its application unacceptable for foods and pharmaceuticals. Strain NRRL Y-2311-1 was shown to be a promising potential industrial microorganism, whose applications should be studied more in depth.

  3. Design of neural network model-based controller in a fed-batch microbial electrolysis cell reactor for bio-hydrogen gas production

    Science.gov (United States)

    Azwar; Hussain, M. A.; Abdul-Wahab, A. K.; Zanil, M. F.; Mukhlishien

    2018-03-01

    One of major challenge in bio-hydrogen production process by using MEC process is nonlinear and highly complex system. This is mainly due to the presence of microbial interactions and highly complex phenomena in the system. Its complexity makes MEC system difficult to operate and control under optimal conditions. Thus, precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. In this work, two schemes for controlling the current and voltage of MEC were evaluated. The controllers evaluated are PID and Inverse neural network (NN) controller. The comparative study has been carried out under optimal condition for the production of bio-hydrogen gas wherein the controller output is based on the correlation of optimal current and voltage to the MEC. Various simulation tests involving multiple set-point changes and disturbances rejection have been evaluated and the performances of both controllers are discussed. The neural network-based controller results in fast response time and less overshoots while the offset effects are minimal. In conclusion, the Inverse neural network (NN)-based controllers provide better control performance for the MEC system compared to the PID controller.

  4. Metabolite variability in Caribbean sponges of the genus Aplysina

    Directory of Open Access Journals (Sweden)

    Monica Puyana

    Full Text Available Abstract Sponges of the genus Aplysina are among the most common benthic animals on reefs of the Caribbean, and display a wide diversity of morphologies and colors. Tissues of these sponges lack mineralized skeletal elements, but contain a dense spongin skeleton and an elaborate series of tyrosine-derived brominated alkaloid metabolites that function as chemical defenses against predatory fishes, but do not deter some molluscs. Among the earliest marine natural products to be isolated and identified, these metabolites remain the subject of intense interest for commercial applications because of their activities in various bioassays. In this study, crude organic extracts from 253 sponges from ten morphotypes among the species Aplysina archeri,Aplysina bathyphila,Aplysina cauliformis,Aplysina fistularis,Aplysina fulva,A. insularis, and Aplysina lacunosa were analyzed by liquid chromatography–mass spectrometry (LC–MS to characterize the pattern of intra- and interspecific variabilities of the twelve major secondary metabolites present therein. Patterns across Aplysina species ranged from the presence of mostly a single compound, fistularin-3, in A. cauliformis, to a mixture of metabolites present in the other species. These patterns did not support the biotransformation hypothesis for conversion of large molecular weight molecules to smaller ones for the purpose of enhanced defense. Discriminant analyses of the metabolite data revealed strong taxonomic patterns that support a close relationship between A. fistularis,A. fulva and A. insularis, while two morphotypes of A. cauliformis (lilac creeping vs. brown erect were very distinct. Two morphotypes of A. lacunosa, one with hard tissue consistency, the other soft and thought to belong to a separate genus (Suberea, had very similar chemical profiles. Of the twelve metabolites found among samples, variation in fistularin-3, dideoxyfistularin-3 and hydroxyaerothionin provided the most predictive

  5. Wool fibril sponges with perspective biomedical applications

    International Nuclear Information System (INIS)

    Patrucco, A.; Cristofaro, F.; Simionati, M.; Zoccola, M.; Bruni, G.; Fassina, L.; Visai, L.; Magenes, G.

    2016-01-01

    Sheep's wool was used as a natural source to prepare keratin microfibril sponges for scaffolding, by disruption of the histological structure of the fibres through mild alkali treatment, followed by ultrasonication, casting and salt-leaching. The wool sponges showed highly interconnected porosity (93%) and contain intrinsic sites of cellular recognition that mimic the extracellular matrix (ECM). They displayed good thermal and water stability due to the conversion of disulphide cystine bonds into shorter monosulphide lanthionine intermolecular bonds, but significantly swelled in water, because of the high hydrophilicity and porosity, with a volume increasing up to 38%. Nevertheless, sponges were stable in water without structural changes, with a neutral pH in aqueous media, and showed excellent resilience to repeated compression stresses. According to in vitro biocompatibility assays, wool fibril sponges showed a good cell adhesion and proliferation as proved by MTT, FDA assays and SEM observations. The unique structure of the cortical cell network made by wool keratin proteins with controlled-size macro-porosity suitable for cell guesting, and nutrient feeding, provides an excellent scaffold for future tissue engineering applications. - Highlights: • Scaffolds were prepared from wool exploiting the fibres' histology structure. • The scaffold showed high interconnected micro- and macro-porosity. • The microscopic structure is very similar to the extracellular bone matrix. • Scaffolds reversibly swell in water with high resilience to repeated compression. • Composites were cytocompatible and supported the growth of SAOS-2 cell line.

  6. Electron beam melting of sponge titanium

    International Nuclear Information System (INIS)

    Kanayama, Hiroshi; Kusamichi, Tatsuhiko; Muraoka, Tetsuhiro; Onouye, Toshio; Nishimura, Takashi

    1991-01-01

    Fundamental investigations were done on electron beam (EB) melting of sponge titanium by using 80 kW EB melting furnace. Results obtained are as follows: (1) To increase the melting yield of titanium in EB melting of sponge titanium, it is important to recover splashed metal by installation of water-cooled copper wall around the hearth and to decrease evaporation loss of titanium by keeping the surface temperature of molten metal just above the melting temperature of titanium without local heating. (2) Specific power consumption of drip melting of pressed sponge titanium bar and hearth melting of sponge titanium are approximately 0.9 kWh/kg-Ti and 0.5-0.7 kWh/kg-Ti, respectively. (3) Ratios of the heat conducted to water-cooled mould in the drip melting and to water-cooled hearth in the hearth melting to the electron beam input power are 50-65% and 60-65%, respectively. (4) Surface defects of EB-melted ingots include rap which occurs when the EB output is excessively great, and transverse cracks when the EB output is excessively small. To prevent surface defects, the up-down withdrawal method is effective. (author)

  7. EFISIENSI PENGGUNAAN TELUR DALAM PEMBUATAN SPONGE CAKE

    Directory of Open Access Journals (Sweden)

    Ida Ayu Putu Hemy Ekayani

    2011-07-01

    Full Text Available Penelitian ini bertujuan untuk membuat kue berpori (spong cake dengan kualitas baik  dengan menggunakan jumlah telur minimal yang dibantu dengan penggunaan baking powder secara optimal untuk menurunkan biaya produksi yang disebabkan oleh mahalnya harga telur. Penelitian ini merupakan penelitian laboratorium (eksperimen. Analisis data dilakukan secara deskriptif. Hasil penelitian menunjukkan bahwa kualitas sponge cake terbaik dihasilkan dari dua variasi rancangan variasi kadar baking powder dan telur yakni resep pertama dengan formulasi tepung terigu 100 gram, baking powder 6 gram, telur 100 gram, lemak 75 gram, dan tanpa penambahaan air; dan resep ke dua dengan formulasi tepung terigu 100 gram, baking powder 2 gram, telur 80 gram, lemak 75 gram, dan air 16 gram. Jumlah telur yang digunakaan dalam kedua resep tersebut cukup jauh berkurang dari resep umum yang menggunakan 180 gram telur untuk 100 gram tepung terigu. Temuan penelitian ini akan berimplikasi pada sponge cake dengan harga yang lebih murah, tetapi dengan kualitas yang tetap relatif baik dapat dihadirkan ke pasar.   Kata-kata kunci: spong cake,  kualitas, baking powder, biaya produksi

  8. Wool fibril sponges with perspective biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Patrucco, A., E-mail: a.patrucco@bi.ismac.cnr.it [CNR-ISMAC, Italian National Research Council, Institute for Macromolecular Studies, Corso G. Pella 16, 13900, Biella (Italy); Cristofaro, F., E-mail: francesco.cristofaro01@universitadipavia.it [Department of Molecular Medicine, INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/B, 27100, Pavia (Italy); Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); Simionati, M., E-mail: m.simionati@bi.ismac.cnr.it [CNR-ISMAC, Italian National Research Council, Institute for Macromolecular Studies, Corso G. Pella 16, 13900, Biella (Italy); Zoccola, M., E-mail: m.zoccola@bi.ismac.cnr.it [CNR-ISMAC, Italian National Research Council, Institute for Macromolecular Studies, Corso G. Pella 16, 13900, Biella (Italy); Bruni, G., E-mail: giovanna.bruni@unipv.it [Department of Chemistry, — Physical-Chemistry Section, University of Pavia, Viale Taramelli 16, 27100, Pavia (Italy); Fassina, L., E-mail: lorenzo.fassina@unipv.it [Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); Visai, L., E-mail: livia.visai@unipv.it [Department of Molecular Medicine, INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/B, 27100, Pavia (Italy); Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S. Boezio, 28, 27100, Pavia (Italy); Magenes, G., E-mail: giovanni.magenes@unipv.it [Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); and others

    2016-04-01

    Sheep's wool was used as a natural source to prepare keratin microfibril sponges for scaffolding, by disruption of the histological structure of the fibres through mild alkali treatment, followed by ultrasonication, casting and salt-leaching. The wool sponges showed highly interconnected porosity (93%) and contain intrinsic sites of cellular recognition that mimic the extracellular matrix (ECM). They displayed good thermal and water stability due to the conversion of disulphide cystine bonds into shorter monosulphide lanthionine intermolecular bonds, but significantly swelled in water, because of the high hydrophilicity and porosity, with a volume increasing up to 38%. Nevertheless, sponges were stable in water without structural changes, with a neutral pH in aqueous media, and showed excellent resilience to repeated compression stresses. According to in vitro biocompatibility assays, wool fibril sponges showed a good cell adhesion and proliferation as proved by MTT, FDA assays and SEM observations. The unique structure of the cortical cell network made by wool keratin proteins with controlled-size macro-porosity suitable for cell guesting, and nutrient feeding, provides an excellent scaffold for future tissue engineering applications. - Highlights: • Scaffolds were prepared from wool exploiting the fibres' histology structure. • The scaffold showed high interconnected micro- and macro-porosity. • The microscopic structure is very similar to the extracellular bone matrix. • Scaffolds reversibly swell in water with high resilience to repeated compression. • Composites were cytocompatible and supported the growth of SAOS-2 cell line.

  9. North Jamaican Deep Fore-Reef Sponges

    NARCIS (Netherlands)

    Lehnert, Helmut; Soest, van R.W.M.

    1996-01-01

    An unexpectedly high amount of new species, revealed within only one hour of summarized bottom time, leads to the conclusion that the sponge fauna of the steep slopes of the deep fore-reef is still largely unknown. Four mixed gas dives at depths between 70 and 90 m, performed in May and June, 1993,

  10. Lipid contents of the sponge Haliclona sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Das, B.; Kamat, S.Y.

    Several fatty acids, sterols, batyl alcohol and its analogs and an N-acylated sphingosine (ceramide) have been isolated from the lipid fraction of the extract of the sponge Haliclona sp. The major sterol is found to be cholesterol (54%), followed...

  11. Influences of incubation temperature and various saccharides on the production of organic acids and gases by gut microbes of rainbow trout Oncorhynchus mykiss in a micro-scale batch culture.

    Science.gov (United States)

    Kihara, M; Sakata, T

    2001-08-01

    We studied the influence of incubation temperature and additional saccharides on the metabolism of hindgut microbes of the rainbow trout Oncorhynchus mykiss in a 50 microl-scale batch culture system. Intestinal contents of rainbow trout reared at 15 degrees C were incubated with glucose, lactosucrose, sodium alginate or colloidal chitin (each 10 g/l) at 15 degrees C or 25 degrees C for 12 h. Levels of organic acids at 0 h and 12 h of incubation were quantified with HPLC. We also monitored gas release from these cultures during incubation. The main product was iso-butyric acid, except for the cultures with colloidal chitin where no net production of organic acids was observed. We detected higher levels of iso-butyric acid in cultures with lactosucrose than in the other cultures. Net production of this acid was less in cultures with colloidal chitin than in blank cultures. The volume of released gas was larger when incubated at 25 degrees C than at 15 degrees C. Cultures with colloidal chitin released more gas than blank cultures when they were incubated at 15 degrees C. Cultures with sodium alginate released less gas than blank cultures irrespective of incubation temperature. These results indicate that the hindgut microbes of this carnivorous fish mainly produce branched-chain fatty acids, very likely by microbial digestion of nitrogenous materials rather than saccharides. However, additional saccharides affected production of branched-chain fatty acids. The influence of incubation temperature in the present study also suggested that the environmental temperature of host fish should affect microbial digestion in the fish gut.

  12. NDA BATCH 2002-02

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2009-12-09

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.

  13. Batching System for Superior Service

    Science.gov (United States)

    2001-01-01

    Veridian's Portable Batch System (PBS) was the recipient of the 1997 NASA Space Act Award for outstanding software. A batch system is a set of processes for managing queues and jobs. Without a batch system, it is difficult to manage the workload of a computer system. By bundling the enterprise's computing resources, the PBS technology offers users a single coherent interface, resulting in efficient management of the batch services. Users choose which information to package into "containers" for system-wide use. PBS also provides detailed system usage data, a procedure not easily executed without this software. PBS operates on networked, multi-platform UNIX environments. Veridian's new version, PBS Pro,TM has additional features and enhancements, including support for additional operating systems. Veridian distributes the original version of PBS as Open Source software via the PBS website. Customers can register and download the software at no cost. PBS Pro is also available via the web and offers additional features such as increased stability, reliability, and fault tolerance.A company using PBS can expect a significant increase in the effective management of its computing resources. Tangible benefits include increased utilization of costly resources and enhanced understanding of computational requirements and user needs.

  14. Characterizing the sponge grounds of Grays Canyon, Washington, USA

    Science.gov (United States)

    Powell, Abby N.; Clarke, M. Elizabeth; Fruh, Erica; Chaytor, Jason; Reiswig, Henry M.; Whitmire, Curt E.

    2018-01-01

    Deep-sea sponge grounds are relatively understudied ecosystems that may provide key habitats for a large number of fish and invertebrates including commercial species. Glass sponge grounds have been discovered from the tropics to polar regions but there are only a few places with high densities of dictyonine sponges. Dictyonine glass sponges have a fused skeleton, which stays intact when they die and in some areas the accumulation of successive generations of sponges leads to the formation of reefs. In 2010 and 2016, we surveyed an area near Grays Canyon in Washington, USA, where dense aggregations of glass sponges and potential sponge reefs were discovered in 2007. Our primary aims were to make a preliminary assessment of whether the glass sponges form reefs at this location, characterize the sponge assemblage present at this site and examine associations between the sponges and commercially important species. Multibeam mapping and sub-bottom profiling indicate that the glass sponges at this site do not form reefs and are mostly attached to hard substrates. Analysis of photographs collected by an autonomous underwater vehicle and samples collected by a remotely operated vehicle guided by telepresence revealed the presence of two abundant dictyonine sponge species at this site, Heterochone calyx and Aphrocallistes vastus (mean densities = 1.43 ± 0.057 per 10 m2, max = 24 per 10 m2). We also observed a large number of non-reef-building glass sponges and various demosponges including a potentially new species in the genus Acarnus. A diverse fish assemblage was recorded at this site including eight species of rockfish. Rockfish abundance was positively related to sponge abundance. Spot prawns (Pandalus platyceros) were also abundant and were strongly associated with sponges. Despite not finding sponge reefs, this is an ecologically significant area. Further research is necessary to determine the environmental factors that give rise to the abundance of large

  15. Mathematical model of the reformer sponge iron cycle

    International Nuclear Information System (INIS)

    Fraser, S.; Hacker, V.; Evers, B.; Hierzer, J.; Besenhard, J.O.

    2003-01-01

    A mathematical model of the Reformer Sponge Iron Cycle (RESC), an innovative hydrogen production process based on redox reactions of iron ore pellets is presented. In the oxidation stage of the RESC, hydrogen is produced by blowing steam over hot iron pellets, hence oxidizing the iron. In the reduction stage, synthesis gas coming from a reformer mixed with a fraction of recycled off-gas is used to reduce the iron oxide pellets (wuestite and/or magnetite) back into iron again. A mathematical model of the complete RESC was developed and verified with experimental data. The model is based on calculations of the equilibrium gas concentrations for reformer and Sponge Iron Reactor (SIR). The current model computes mass fluxes, molar fluxes, partial pressures and variations of the respective throughout the complete cycle. The recycle rate, determining the fraction of SIR off-gas recycled and added to the input gas stream was subsequently optimized in order to maximize the amount of iron oxide reduced for a certain input gas flow. (author)

  16. Designing a Clean Label Sponge Cake with Reduced Fat Content.

    Science.gov (United States)

    Eslava-Zomeño, Cristina; Quiles, Amparo; Hernando, Isabel

    2016-10-01

    The fat in a sponge cake formulation was partially replaced (0%, 30%, 50%, and 70%) with OptiSol™5300.This natural functional ingredient derived from flax seeds, rich in fiber and alpha-linoleic acid, provides a natural substitute for guar and xanthan gums, avoiding E-numbers on labels. The structure and some physicochemical properties of the formulations were examined, sensory analysis was conducted and changes in starch digestibility due to adding this ingredient were determined. Increasing quantities of OptiSol™5300 gave harder cakes, with less weight loss during baking, without affecting the final cake height. There were no significant differences (P > 0.05) in texture, flavor and overall acceptance between the control and the 30% substitution cake, nor in the rapidly digestible starch values. Consequently, replacing up to 30% of the fat with OptiSol™5300 gives a new product with health benefits and a clean label that resembles the full-fat sponge cake. © 2016 Institute of Food Technologists®.

  17. Anti-Biofilm Compounds Derived from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Christian Melander

    2011-10-01

    Full Text Available Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues—including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.

  18. Mathematical model of the reformer sponge iron cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, S.; Hacker, V.; Evers, B.; Hierzer, J.; Besenhard, J.O. [Graz University of Technology, Graz (Austria). Inst. for Chemical Technology of Inorganic Materials Christian Doppler Pilot-Lab. for Fuel Cell Systems

    2003-07-01

    An innovative hydrogen production process called the Reformer Sponge Iron Cycle (RESC), based on redox reactions of iron ore pellets, was mathematically modeled. The hydrogen is produced by blowing steam over hot iron pellets in the oxidation stage, resulting in the oxidation of the iron. Synthesis gas coming from a reformer mixed with a fraction of recycled off-gas was used to reduce the iron oxide pellets (wuestite and-or magnetite) in the reduction stage, leading once more to iron . Once the mathematical model was developed, it was verified utilizing experimental data. Based on calculations of the equilibrium gas concentrations for reformer and sponge iron reactor (SIR), the model computes mass fluxes, molar fluxes, partial pressures, and variations of them throughout the complete cycle. The recycle rate, which determines the fraction of SIR off-gas recycled and added to the input gas stream, was optimized to maximize the amount of iron oxide reduced for a certain input gas flow. 5 refs., 4 figs.

  19. Habitat preference of Zoantharia genera depends on host sponge morphology

    Directory of Open Access Journals (Sweden)

    Alberto Acosta

    2010-08-01

    Full Text Available Studies about sponge-zoanthid symbioses have been focused on understanding the specificity of the association, rather thantesting what are the characteristics that make the host suitable to be colonized. For the first time it is investigated whether the ZoanthariaParazoanthus and Epizoanthus preference is related to the host sponge morphology (shape and mechanical resistance. Materials andmethods. Sponges were categorized according to their shape and mechanical resistance. The presence/absence of zoanthids was recordedin 1,068 sponges at San Andres Island, and their habitat preference was evaluated using indices and confidence intervals. Results. 85Parazoanthus colonies (78% of the total associations and 24 Epizoanthus colonies (22% were associated to sponges (10.2% in total.Parazoanthus uses branched and compressible sponges although prefers encrusting and fragile sponges, while Epizoanthus showes theopposite pattern, it can inhabit encrusting and fragile sponges but prefers branched and compressible sponges. Conclusion. These resultsindicated that sponge morphology is an important trait in zoanthid habitat selection. On the other hand, the similarity in the habitat used byzoanthids suggests the possibility of inter-generic competition if common resources are limited in time and space, while the differentialhabitat preference allows the competitive coexistence of both genera.

  20. Epizoic zoanthids reduce pumping in two Caribbean vase sponges

    Science.gov (United States)

    Lewis, T. B.; Finelli, C. M.

    2015-03-01

    Sponges are common sessile benthic suspension feeders that play a critical role in carbon and nitrogen cycling within reef ecosystems via their filtration capabilities. Due to the contribution of sponges in benthic-pelagic coupling, it is critical to assess factors that may affect their role in the healthy function of coral reefs. Several factors can influence the rate at which an individual sponge pumps water, including body size, environmental conditions, mechanical blockage, and reduction of inhalant pores (ostia). Symbiotic zoanthid colonization is a common occurrence on Caribbean sponges, and the presence of zoanthids on the surface of a sponge may occlude or displace the inhalant ostia. We quantified pumping rates of the giant barrel sponge, Xestospongia muta ( N = 22 uncolonized, 37 colonized) and the common vase sponge, Niphates digitalis ( N = 21 uncolonized, 17 colonized), with and without zoanthid symbionts, Parazoanthus catenularis and Parazoanthus parasiticus, respectively. For X. muta, biovolume-normalized pumping rates of individuals colonized by zoanthids were approximately 75 % lower than those of uncolonized sponges. Moreover, colonization with zoanthids was related to a difference in morphology relative to uncolonized individuals: Colonized sponges exhibited an osculum area to biovolume ratio that was nearly 65 % less than uncolonized sponges. In contrast, the presence of zoanthids on N. digitalis resulted in only a marginal decrease in pumping rates and no detectable difference in morphology. The difference in zoanthid effects between X. muta and N. digitalis is likely due to the differences in wall thickness and architecture between the two species. The probable cause of reduced pumping in affected sponges is occupation of the sponge surface that leads to blockage or displacement of inhalant ostia. To partially test this hypothesis, zoanthid colonization on specimens of X. muta was simulated by wrapping sponges with plastic mesh of varying

  1. NGBAuth - Next Generation Batch Authentication for long running batch jobs.

    CERN Document Server

    Juto, Zakarias

    2015-01-01

    This document describes the prototyping of a new solution for the CERN batch authentication of long running jobs. While the job submission requires valid user credentials, these have to be renewed due to long queuing and execution times. Described within is a new system which will guarantee a similar level of security as the old LSFAuth while simplifying the implementation and the overall architecture. The new system is being built on solid, streamlined and tested components (notably OpenSSL) and a priority has been to make it more generic in order to facilitate the evolution of the current system such as for the expected migration from LSF to Condor as backend batch system.

  2. Exploring cultivable Bacteria from the prokaryotic community associated with the carnivorous sponge Asbestopluma hypogea.

    Science.gov (United States)

    Dupont, Samuel; Carre-Mlouka, Alyssa; Domart-Coulon, Isabelle; Vacelet, Jean; Bourguet-Kondracki, Marie-Lise

    2014-04-01

    Combining culture-dependent and independent approaches, we investigated for the first time the cultivable fraction of the prokaryotic community associated with the carnivorous sponge Asbestopluma hypogea. The heterotrophic prokaryotes isolated from this tiny sponge were compared between specimens freshly collected from cave and maintained in aquarium. Overall, 67 isolates obtained in pure culture were phylogenetically affiliated to the bacterial phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. This cultivable diversity was lower than the prokaryotic diversity obtained by previous pyrosequencing study and comparable to that of another Mediterranean demosponge, the filter-feeding Phorbas tenacior. Furthermore, using fluorescence in situ hybridization, we visualized bacterial and archaeal cells, confirming the presence of both prokaryotes in A. hypogea tissue. Approximately 16% of the bacterial isolates tested positive for chitinolytic activity, suggesting potential microbial involvement in the digestion processes of crustacean prey by this carnivorous sponge. Additionally, 6% and 16% of bacterial isolates revealed antimicrobial and antioxidant activities, respectively. One Streptomyces sp. S1CA strain was identified as a promising candidate for the production of antimicrobial and antioxidant secondary metabolites as well as chitinolytic enzymes. Implications in the context of the sponge biology and prey-feeding strategy are discussed. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Preliminary study on swarming marine bacteria isolated from Pulau Tinggi's sponges

    Science.gov (United States)

    Sairi, Fareed; Idris, Hamidah; Zakaria, Nur Syuhana; Usup, Gires; Ahmad, Asmat

    2015-09-01

    Marine sponges were known to produce novel bioactive compounds that have anti-bacterial, anti-viral, anti-cancer and anti-fungal activities. Most of the bioactive compounds were secreted from the bacteria that lives on the sponges. The bacterial communities also produced biofilm, toxin or biosurfactant that protect the sponges from disease or in-coming predator. In this study, twenty nine marine bacteria with swarming motility characteristic was isolated from 2 different sponge samples collected in Pulau Tinggi These isolates were grown and their genome were extracted for molecular identification using the 16S rRNA approach. Sequence comparison using BLASTn and multiple alignments using MEGA4 was performed to produce a phylogenetic tree. The phylogenetic tree revealed that 20 of the isolates were grouped under α-Proteobacteria that comprised of 19 isolates in the Vibrionaceae family and one belongs to Aeromonadaceae family. Furthermore, six isolates from Actinobacteria family and three isolates from Firmicutes were also detected. The swarming characteristic indicates the possible production of biosurfactant.

  4. Biodiversity in South East Asia: an overview of freshwater sponges (Porifera: Demospongiae: Spongillina

    Directory of Open Access Journals (Sweden)

    Renata Manconi

    2013-08-01

    Full Text Available Despite the fact that South East (SE Asia is considered as a biodiversity hotspot, knowledge of sessile invertebrates such as freshwater sponges (Porifera: Haplosclerida: Spongillina in this region is poor and scarcely reported. For this synopsis, diversity and distribution of SE Asian inland water sponges is reported on the basis of available literature and a recent biodiversity assessment of the Lower Mekong basin. A diagnostic key of families/genera from SE Asia is provided together with Light Microscopy and Scanning Electron Microscopy protocols to prepare the basic spicular complement for taxonomic identification. So far, SE Asian freshwater sponges consist of widespread and/or endemic species belonging to the families Metaniidae, Potamolepidae, and Spongillidae. The highest diversity is recorded from Indonesia, Philippines, Thailand, and Myanmar, respectively. Data from the other countries are necessary for our understanding of their diversity and distribution. Biodiversity in SE Asia is strongly underestimated, as indicated by recent new records and the discovery of new species of freshwater sponges in Thailand. Further investigations should reveal higher values of taxonomic richness, highlighting biogeographic patterns at the family/genus/species levels. A cooperative network involving Thai, Laotian and Italian researchers, was set up to contribute and fulfil knowledge on taxonomy, ecology and biotechnological potentialities of these neglected filter feeders, playing a key role in water purification and biomass production in both lentic and lotic ecosystems in the tropics.

  5. Carbon Flux Through the Giant Barrel Sponge Xestospongia testudinaria in the Red Sea

    KAUST Repository

    Wooster, Michael K.

    2017-01-01

    Sponges have important ecological functions on coral reefs because they are regionally abundant, competitively dominant, and process large volumes of seawater. The sponge loop hypothesis proposes that sponges consume dissolved organic carbon (DOC

  6. Stochastic growth logistic model with aftereffect for batch fermentation process

    Science.gov (United States)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  7. Stochastic growth logistic model with aftereffect for batch fermentation process

    International Nuclear Information System (INIS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-01-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits

  8. Stochastic growth logistic model with aftereffect for batch fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Ayoubi, Tawfiqullah [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah; Rahman, Haliza Abdul [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  9. Ultraporous, Compressible, Wettable Polylactide/Polycaprolactone Sponges for Tissue Engineering.

    Science.gov (United States)

    Mader, Michael; Jérôme, Valérie; Freitag, Ruth; Agarwal, Seema; Greiner, Andreas

    2018-05-14

    Ultraporous, degradable sponges made of either polylactide or of blends of polylactide/poly(ε-caprolactone) are prepared by freeze-drying of dispersions of short electrospun fibers and subsequent thermal annealing. The sponges feature ultrahigh porosity (99.6%), a hierarchical cellular structure, and high reversible compressibility with fast recovery from deformation in the dry as well as in the wet state. The sponge properties depend on the fiber dispersion concentration and the annealing temperature. Sponge characteristics like fiber density (2.5-20 mg/cm 3 ), size, shape, crystallinity, mechanical strength, wetability, and structural integrity are user adjustable. Cell culture experiments were successfully performed with Jurkat cells with Confocal Laser Scanning Microscopy and MTT staining showing rapid cell proliferation. Live/Dead staining demonstrated high viability of the seeded cells. The sponge characteristics and modifications investigated and presented here reveal that these sponges are highly promising for tissue engineering applications.

  10. Deep-sea coral research and technology program: Alaska deep-sea coral and sponge initiative final report

    Science.gov (United States)

    Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.

    2017-01-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).

  11. PROOF on a Batch System

    International Nuclear Information System (INIS)

    Behrenhoff, W; Ehrenfeld, W; Samson, J; Stadie, H

    2011-01-01

    The 'parallel ROOT facility' (PROOF) from the ROOT framework provides a mechanism to distribute the load of interactive and non-interactive ROOT sessions on a set of worker nodes optimising the overall execution time. While PROOF is designed to work on a dedicated PROOF cluster, the benefits of PROOF can also be used on top of another batch scheduling system with the help of temporary per user PROOF clusters. We will present a lightweight tool which starts a temporary PROOF cluster on a SGE based batch cluster or, via a plugin mechanism, e.g. on a set of bare desktops via ssh. Further, we will present the result of benchmarks which compare the data throughput for different data storage back ends available at the German National Analysis Facility (NAF) at DESY.

  12. Design of two-column batch-to-batch recirculation to enhance performance in ion-exchange chromatography.

    Science.gov (United States)

    Persson, Oliver; Andersson, Niklas; Nilsson, Bernt

    2018-01-05

    Preparative liquid chromatography is a separation technique widely used in the manufacturing of fine chemicals and pharmaceuticals. A major drawback of traditional single-column batch chromatography step is the trade-off between product purity and process performance. Recirculation of impure product can be utilized to make the trade-off more favorable. The aim of the present study was to investigate the usage of a two-column batch-to-batch recirculation process step to increase the performance compared to single-column batch chromatography at a high purity requirement. The separation of a ternary protein mixture on ion-exchange chromatography columns was used to evaluate the proposed process. The investigation used modelling and simulation of the process step, experimental validation and optimization of the simulated process. In the presented case the yield increases from 45.4% to 93.6% and the productivity increases 3.4 times compared to the performance of a batch run for a nominal case. A rapid concentration build-up product can be seen during the first cycles, before the process reaches a cyclic steady-state with reoccurring concentration profiles. The optimization of the simulation model predicts that the recirculated salt can be used as a flying start of the elution, which would enhance the process performance. The proposed process is more complex than a batch process, but may improve the separation performance, especially while operating at cyclic steady-state. The recirculation of impure fractions reduces the product losses and ensures separation of product to a high degree of purity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Cellular Scheduling of Batch Production Using | Onyeagoro ...

    African Journals Online (AJOL)

    Nigerian Journal of Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 5, No 1 (1981) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Download this PDF file. The PDF file you selected should ...

  14. Two Furanosesterterpenoids from the Sponge Luffariella variabilis

    Directory of Open Access Journals (Sweden)

    Peni Ahmadi

    2017-08-01

    Full Text Available Two new sesterterpenoids, 1 and 2, were isolated from the sponge Luffariella variabilis. Their planar structures were characterized with spectroscopic analyses. The sole chiral center of compound 1 was elucidated as 12R by comparing observed and calculated optical rotation values. The configurations of compound 2 were determined by NMR and electronic circular dichroism (ECD studies. Furthermore, compound 2 showed cytotoxicity at IC50 1.0 µM against NBT-T2 cells.

  15. Natural diet of coral-excavating sponges consists mainly of dissolved organic carbon (DOC.

    Directory of Open Access Journals (Sweden)

    Benjamin Mueller

    Full Text Available Coral-excavating sponges are the most important bioeroders on Caribbean reefs and increase in abundance throughout the region. This increase is commonly attributed to a concomitant increase in food availability due to eutrophication and pollution. We therefore investigated the uptake of organic matter by the two coral-excavating sponges Siphonodictyon sp. and Cliona delitrix and tested whether they are capable of consuming dissolved organic carbon (DOC as part of their diet. A device for simultaneous sampling of water inhaled and exhaled by the sponges was used to directly measure the removal of DOC and bacteria in situ. During a single passage through their filtration system 14% and 13% respectively of the total organic carbon (TOC in the inhaled water was removed by the sponges. 82% (Siphonodictyon sp.; mean ± SD; 13 ± 17 μmol L(-1 and 76% (C. delitrix; 10 ± 12 μmol L(-1 of the carbon removed was taken up in form of DOC, whereas the remainder was taken up in the form of particulate organic carbon (POC; bacteria and phytoplankton despite high bacteria retention efficiency (72 ± 15% and 87 ± 10%. Siphonodictyon sp. and C. delitrix removed DOC at a rate of 461 ± 773 and 354 ± 562 μmol C h(-1 respectively. Bacteria removal was 1.8 ± 0.9 × 10(10 and 1.7 ± 0.6 × 10(10 cells h(-1, which equals a carbon uptake of 46.0 ± 21.2 and 42.5 ± 14.0 μmol C h(-1 respectively. Therefore, DOC represents 83 and 81% of the TOC taken up by Siphonodictyon sp. and C. delitrix per hour. These findings suggest that similar to various reef sponges coral-excavating sponges also mainly rely on DOC to meet their carbon demand. We hypothesize that excavating sponges may also benefit from an increasing production of more labile algal-derived DOC (as compared to coral-derived DOC on reefs as a result of the ongoing coral-algal phase shift.

  16. Natural diet of coral-excavating sponges consists mainly of dissolved organic carbon (DOC).

    Science.gov (United States)

    Mueller, Benjamin; de Goeij, Jasper M; Vermeij, Mark J A; Mulders, Yannick; van der Ent, Esther; Ribes, Marta; van Duyl, Fleur C

    2014-01-01

    Coral-excavating sponges are the most important bioeroders on Caribbean reefs and increase in abundance throughout the region. This increase is commonly attributed to a concomitant increase in food availability due to eutrophication and pollution. We therefore investigated the uptake of organic matter by the two coral-excavating sponges Siphonodictyon sp. and Cliona delitrix and tested whether they are capable of consuming dissolved organic carbon (DOC) as part of their diet. A device for simultaneous sampling of water inhaled and exhaled by the sponges was used to directly measure the removal of DOC and bacteria in situ. During a single passage through their filtration system 14% and 13% respectively of the total organic carbon (TOC) in the inhaled water was removed by the sponges. 82% (Siphonodictyon sp.; mean ± SD; 13 ± 17 μmol L(-1)) and 76% (C. delitrix; 10 ± 12 μmol L(-1)) of the carbon removed was taken up in form of DOC, whereas the remainder was taken up in the form of particulate organic carbon (POC; bacteria and phytoplankton) despite high bacteria retention efficiency (72 ± 15% and 87 ± 10%). Siphonodictyon sp. and C. delitrix removed DOC at a rate of 461 ± 773 and 354 ± 562 μmol C h(-1) respectively. Bacteria removal was 1.8 ± 0.9 × 10(10) and 1.7 ± 0.6 × 10(10) cells h(-1), which equals a carbon uptake of 46.0 ± 21.2 and 42.5 ± 14.0 μmol C h(-1) respectively. Therefore, DOC represents 83 and 81% of the TOC taken up by Siphonodictyon sp. and C. delitrix per hour. These findings suggest that similar to various reef sponges coral-excavating sponges also mainly rely on DOC to meet their carbon demand. We hypothesize that excavating sponges may also benefit from an increasing production of more labile algal-derived DOC (as compared to coral-derived DOC) on reefs as a result of the ongoing coral-algal phase shift.

  17. Iron sponge installation clicks at Retlaw plant

    Energy Technology Data Exchange (ETDEWEB)

    1965-06-21

    Iron sponge desulfurization, often ignored by plant designers in favor of the monoethanolamine process, may offer economic advantages in sweetening of small gas volumes with low hydrogen sulfide and carbon dioxide content. The process removes hydrogen sulfide and mercaptans by passing sour gas through vessels loosely packed with wood shavings impregnated by a hydrated form of iron oxide, which reacts with the hydrogen sulfide to form ferric sulfide. The disadvantages are that carbon dioxide is not removed, hydrate formation is a danger in cold weather, and gas sales may be lost when towers are down for servicing. Periodic regeneration of beds takes about a day, and sponges must be replaced occasionally. Despite these shortcomings, the process may prove economical, since a typical plant costs $110,000 as compared to $270,000 for an amine unit. The expense of operating the plant is $23,000 compared with $28,000 for the amine unit. Thus, economics clearly favor the iron sponge process.

  18. Optimization of biodegradable sponges as controlled release drug matrices. I. Effect of moisture level on chitosan sponge mechanical properties.

    Science.gov (United States)

    Foda, Nagwa H; El-laithy, Hanan M; Tadros, Mina I

    2004-04-01

    Cross-linked chitosan sponges as controlled release drug carrier systems were developed. Tramadol hydrochloride, a centrally acting analgesic, was used as a model drug. The sponges were prepared by freeze-drying 1.25% and 2.5% (w/w) high and low M.wt. chitosan solutions, respectively, using glutaraldehyde as a cross-linking agent. The hardness of the prepared sponges was a function of glutaraldehyde concentration and volume where the optimum concentration that offered accepted sponge consistency was 5%. Below or above 5%, very soft or very hard and brittle sponges were obtained, respectively. The determined drug content in the prepared sponges was uniform and did not deviate markedly from the calculated amount. Scanning electron microscopy (SEM) was used to characterize the internal structures of the sponges. The SEM photos revealed that cross-linked high M.wt. chitosan sponges have larger size surface pores that form connections (channels) with the interior of the sponge than cross-linked low M.wt. ones. Moreover, crystals of the incorporated Tramadol hydrochloride were detected on the lamellae and within pores in both chitosan sponges. Differences in pore size and dissolution medium uptake capacity were crucial factors for the more delayed drug release from cross-linked low M.wt. chitosan sponges over high M.wt. ones at pH 7.4. Kinetic analysis of the release data using linear regression followed the Higuchi diffusion model over 12 hours. Setting storage conditions at room temperature under 80-92% relative humidity resulted in soft, elastic, and compressible sponges.

  19. Nutritional and sensory quality evaluation of sponge cake prepared by incorporation of high dietary fiber containing mango (Mangifera indica var. Chokanan) pulp and peel flours.

    Science.gov (United States)

    Aziah, A A Noor; Min, W Lee; Bhat, Rajeev

    2011-09-01

    Sponge cake prepared by partial substitution of wheat flour with mango pulp and mango peel flours (MPuF and MPeF, respectively) at different concentrations (control, 5%, 10%, 20% or 30%) were investigated for the physico-chemical, nutritional and organoleptic characteristics. Results showed sponge cake incorporated with MPuF and MPeF to have high dietary fiber with low fat, calorie, hydrolysis and predicted glycemic index compared with the control. Increasing the levels of MPuF and MPeF in sponge cake had significant impact on the volume, firmness and color. Sensory evaluation showed sponge cake formulated with 10% MPuF and 10% MPeF to be the most acceptable. MPeF and MPuF have high potential as fiber-rich ingredients and can be utilized in the preparation of cake and other bakery products to improve the nutritional qualities.

  20. Two distinct microbial communities revealed in the sponge Cinachyrella

    Science.gov (United States)

    Cuvelier, Marie L.; Blake, Emily; Mulheron, Rebecca; McCarthy, Peter J.; Blackwelder, Patricia; Thurber, Rebecca L. Vega; Lopez, Jose V.

    2014-01-01

    Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes), which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rRNA gene tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial) belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1) with lower diversity (Shannon-Weiner index: 3.73 ± 0.22) and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25). Hosts' 28S rRNA gene sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences) present in low abundance or below detection limits (<0.07%) in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria, and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5 and 22.4% of SG1 and SG2's total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters. PMID:25408689

  1. Two distinct microbial communities revealed in the sponge Cinachyrella

    Directory of Open Access Journals (Sweden)

    Marie Laure Cuvelier

    2014-11-01

    Full Text Available Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes, which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rDNA tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1 with low diversity (Shannon-Weiner index: 3.73 ± 0.22 and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25. Hosts’ 28S rDNA sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences present in low abundance or below detection limits (<0.07% in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5% and 22.4% of SG1 and SG2’s total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters.

  2. [Determination of residual toluene diisocyanate in sponge bra by gas chromatography].

    Science.gov (United States)

    Wang, Aixia; Ye, Ping; Huang, Nan; Chen, Yan; Li, Xinggen

    2017-06-08

    A gas chromatography (GC) with internal standard method was developed for the determination of residual toluene diisocyanate (TDI) in sponge bra. The samples were extracted with ethyl acetate dehydrated, and cleaned up with 0.22 μm microfiltration membrane. The residual toluene diisocyanate was separated on a DB-624 capillary column using temperature programming. The flame ionization detector (FID) was used at 250 ℃. The inlet temperature was 180 ℃ with nitrogen as carrier gas. The linear range was 10-200 mg/L ( R 2 =0.9989) for TDI. The average recovery ranged from 80.5% to 91.6% with RSD not more than 7.9%( n =6). The limit of detection (LOD) and limit of quantification (LOQ) were 10 mg/kg and 100 mg/kg, respectively. The developed method was then utilized to analyse the 100 batches of sponge bra samples from the manufacturing enterprises, the entity shops and electric business platforms. The method is simple, time-saving and environment friendly with high sensitivity and good reproducibility, and has practical application value due to its low-cost and short-circle.

  3. Synthesis and characterization of alumina-coated aluminum sponges manufactured by sintering and dissolution process as possible structured reactors

    International Nuclear Information System (INIS)

    Méndez, Franklin J.; Rivero-Prince, Sayidh; Escalante, Yelisbeth; Villasana, Yanet; Brito, Joaquín L.

    2016-01-01

    Al_2O_3–Al sponges were manufactured by sintering and dissolution process with the aim of using these materials as structured catalytic reactors. For this purpose, several synthesis conditions were examined for the design of the cellular material, such as: particle size of NaCl, weight fraction of Al, compaction pressure, and sintering temperature or time. An alumina layers was grown on top of the aluminum surfaces during both: sintering and thermal treatment. The obtained results showed that the synthesized materials could be promising as structured reactors for endothermic or exothermic reactions. - Highlights: • An efficient method for manufactured of aluminum sponges is reported. • Methods for productions of superficial Al_2O_3 are studied. • Al_2O_3–Al sponges could be used as structured reactors.

  4. Synthesis and characterization of alumina-coated aluminum sponges manufactured by sintering and dissolution process as possible structured reactors

    Energy Technology Data Exchange (ETDEWEB)

    Méndez, Franklin J., E-mail: fmendez@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Rivero-Prince, Sayidh [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Facultad de Ingeniería, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Escalante, Yelisbeth; Villasana, Yanet [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Brito, Joaquín L., E-mail: joabrito@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2016-03-01

    Al{sub 2}O{sub 3}–Al sponges were manufactured by sintering and dissolution process with the aim of using these materials as structured catalytic reactors. For this purpose, several synthesis conditions were examined for the design of the cellular material, such as: particle size of NaCl, weight fraction of Al, compaction pressure, and sintering temperature or time. An alumina layers was grown on top of the aluminum surfaces during both: sintering and thermal treatment. The obtained results showed that the synthesized materials could be promising as structured reactors for endothermic or exothermic reactions. - Highlights: • An efficient method for manufactured of aluminum sponges is reported. • Methods for productions of superficial Al{sub 2}O{sub 3} are studied. • Al{sub 2}O{sub 3}–Al sponges could be used as structured reactors.

  5. Quality control for 12 batch of DTPA-Sn

    International Nuclear Information System (INIS)

    Isaac, M.; Gamboa, R.; Leyva, R.; Hernandez, I.; Turino, D.

    1994-01-01

    The quality control is carry out at 12 batch of DTPA-Sn for labeling with 99 m Tc. The instrumental methods of analysis and control charts were discussed in order to find a warranty time for the product. (author). 2 refs, 3 figs, 1 tab

  6. Flash chemistry: flow chemistry that cannot be done in batch.

    Science.gov (United States)

    Yoshida, Jun-ichi; Takahashi, Yusuke; Nagaki, Aiichiro

    2013-11-04

    Flash chemistry based on high-resolution reaction time control using flow microreactors enables chemical reactions that cannot be done in batch and serves as a powerful tool for laboratory synthesis of organic compounds and for production in chemical and pharmaceutical industries.

  7. Microwave treatment of a brown coal concentrate from Mugunsk coal for the manufacture of sponge iron

    Energy Technology Data Exchange (ETDEWEB)

    A.A. Khaidurova; P.N. Konovalov; N.P. Konovalov [Irkutsk State Technical University, Irkutsk (Russia)

    2008-04-15

    A technique for the production of a finely dispersed dry brown coal concentrate with the use of microwave energy is proposed to prepare a charge mixture for the manufacture of sponge iron. The advantages of this technique over analogous industrial processes are demonstrated. The results of experiments on the briquetting of the charge mixture of brown coal and iron ore concentrates without the use of an additional binding agent are described.

  8. Structure elucidation of the new citharoxazole from the Mediterranean deep-sea sponge Latrunculia (Biannulata) citharistae.

    Science.gov (United States)

    Genta-Jouve, Grégory; Francezon, Nellie; Puissant, Alexandre; Auberger, Patrick; Vacelet, Jean; Pérez, Thierry; Fontana, Angelo; Mourabit, Ali Al; Thomas, Olivier P

    2011-08-01

    Citharoxazole (1), a new batzelline derivative featuring a benzoxazole moiety, was isolated from the Mediterranean deep-sea sponge Latrunculia (Biannulata) citharistae Vacelet, 1969, together with the known batzelline C (2). This is the first chemical study of a Mediterranean Latrunculia species and the benzoxazole moiety is unprecedented for this family of marine natural products. The structure was mainly elucidated by the interpretation of NMR spectra and especially HMBC correlations. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Capacity Planning for Batch and Perfusion Bioprocesses Across Multiple Biopharmaceutical Facilities

    OpenAIRE

    Siganporia, Cyrus C; Ghosh, Soumitra; Daszkowski, Thomas; Papageorgiou, Lazaros G; Farid, Suzanne S

    2014-01-01

    Production planning for biopharmaceutical portfolios becomes more complex when products switch between fed-batch and continuous perfusion culture processes. This article describes the development of a discrete-time mixed integer linear programming (MILP) model to optimize capacity plans for multiple biopharmaceutical products, with either batch or perfusion bioprocesses, across multiple facilities to meet quarterly demands. The model comprised specific features to account for products with fe...

  10. The Sponge Pump: The Role of Current Induced Flow in the Design of the Sponge Body Plan

    Science.gov (United States)

    Leys, Sally P.; Yahel, Gitai; Reidenbach, Matthew A.; Tunnicliffe, Verena; Shavit, Uri; Reiswig, Henry M.

    2011-01-01

    Sponges are suspension feeders that use flagellated collar-cells (choanocytes) to actively filter a volume of water equivalent to many times their body volume each hour. Flow through sponges is thought to be enhanced by ambient current, which induces a pressure gradient across the sponge wall, but the underlying mechanism is still unknown. Studies of sponge filtration have estimated the energetic cost of pumping to be sponge Aphrocallistes vastus at a 150 m deep reef in situ and in a flow flume; we also modeled the glass sponge filtration system from measurements of the aquiferous system. Excurrent flow from the sponge osculum measured in situ and in the flume were positively correlated (r>0.75) with the ambient current velocity. During short bursts of high ambient current the sponges filtered two-thirds of the total volume of water they processed daily. Our model indicates that the head loss across the sponge collar filter is 10 times higher than previously estimated. The difference is due to the resistance created by a fine protein mesh that lines the collar, which demosponges also have, but was so far overlooked. Applying our model to the in situ measurements indicates that even modest pumping rates require an energetic expenditure of at least 28% of the total in situ respiration. We suggest that due to the high cost of pumping, current-induced flow is highly beneficial but may occur only in thin walled sponges living in high flow environments. Our results call for a new look at the mechanisms underlying current-induced flow and for reevaluation of the cost of biological pumping and its evolutionary role, especially in sponges. PMID:22180779

  11. DYNAPHORE, INC. FORAGER™ SPONGE TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The Forager™ Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals from aqueous waste streams. The Developer states that the technology can be utilized to remove and concentrate heavy metals f...

  12. The dimension of the pore space in sponges

    International Nuclear Information System (INIS)

    Silva, L H F; Yamashita, M T

    2009-01-01

    A simple experiment to reveal the dimension of the pore space in sponges is proposed. This experiment is suitable for the first year of a physics or engineering course. The calculated dimension of the void space in a sponge of density 16 mg cm -3 was 2.948± 0.008

  13. Post-quantum security of the sponge construction

    NARCIS (Netherlands)

    Czajkowski, J.; Groot Bruinderink, L.; Hülsing, A.T.; Schaffner, C.; Unruh, D.

    2017-01-01

    We investigate the post-quantum security of hash functions based on the sponge construction. A crucial property for hash functions in the post-quantum setting is the collapsing property (a strengthening of collision-resistance). We show that the sponge construction is collapsing (and in consequence

  14. Post-quantum security of the sponge construction

    NARCIS (Netherlands)

    Czajkowski, Jan; Groot Bruinderink, Leon; Hülsing, Andreas; Schaffner, Christian; Unruh, Dominique

    2018-01-01

    We investigate the post-quantum security of hash functions based on the sponge construction. A crucial property for hash functions in the post-quantum setting is the collapsing property (a strengthening of collision-resistance). We show that the sponge construction is collapsing (and in consequence

  15. Deep-sea sponge grounds: Reservoirs of biodiversity

    NARCIS (Netherlands)

    Hogg, M.M.; Tendal, O.S.; Conway, K.W.; Pomponi, S.A.; van Soest, R.W.M.; Gutt, J.; Krautter, M.; Roberts, J.M.

    2010-01-01

    This report draws together scientific understanding of deep-water sponge grounds alongside the threats they face and ways in which they can be conserved. Beginning with a summary of research approaches, sponge biology and biodiversity, the report also gives up-to-date case studies of particular

  16. The Life of a Sponge in a Sandy Lagoon.

    Science.gov (United States)

    Ilan, M; Abelson, A

    1995-12-01

    Infaunal soft-bottom invertebrates benefit from the presence of sediment, but sedimentation is potentially harmful for hard-bottom dwellers. Most sponges live on hard bottom, but on coral reefs in the Red Sea, the species Biemna ehrenbergi (Keller, 1889) is found exclusively in soft-bottom lagoons, usually in the shallowest part. This location is a sink environment, which increases the deposition of particulate organic matter. Most of the sponge body is covered by sediment, but the chimney-like siphons protrude from the sediment surface. The sponge is attached to the buried beach-rock, which reduces the risk of dislodgment during storms. Dye injected above and into the sediment revealed, for the first time, a sponge pumping interstitial water (rich with particles and nutrients) into its aquiferous system. Visual examination of plastic replicas of the aquiferous system and electron microscopical analysis of sponge tissue revealed that the transcellular ostia are mostly located on the buried surface of the sponge. The oscula, however, are located on top of the siphons; their elevated position and their ability to close combine to prevent the filtering system outflow from clogging. The transcellular ostia presumably remain open due to cellular mobility. The sponge maintains a large population of bacteriocytes, which contains bacteria of several different species. Some of these bacteria disintegrate, and may be consumed by the sponge.

  17. Stimulatory activity of four green freshwater sponges on aquatic ...

    African Journals Online (AJOL)

    The effect of green sponges on the abundance of aquatic mycotal species is caused by dissolved organic matter produced during photosynthesis by symbiotic zoochlorellae, a symbionts of green sponges and excreted into the water environment (S. fluviatilis excreted mean 12.8% of carbon fixation). Those excreted organic ...

  18. Mangrove-sponge associations: a possible role for tannins

    NARCIS (Netherlands)

    Hunting, E.R.; van der Geest, H.G.; Krieg, A.J.; van Mierlo, M.B.L.; van Soest, R.W.M.

    2010-01-01

    A positive correlation between sponge coverage and tannin concentrations in prop roots of Rhizophora mangle L. has previously been reported. However, the ecological role of tannins within the mangrove sponge association remains speculative. This study investigated whether tannins play a role in

  19. Cultivation of sponge larvae: settlement, survival, and growth of juveniles

    NARCIS (Netherlands)

    Caralt, de S.; Otjens, H.; Uriz, M.J.; Wijffels, R.H.

    2007-01-01

    The aim of this study was to culture sponge juveniles from larvae. Starting from larvae we expected to enhance the survival and growth, and to decrease the variation in these parameters during the sponge cultures. First, settlement success, morphological changes during metamorphosis, and survival of

  20. Tetractinellid and hadromerid sponges of the Sultanate of Oman

    NARCIS (Netherlands)

    Soest, van R.W.M.; Beglinger, E.J.

    2008-01-01

    The Sultanate of Oman harbours rich populations of sponges, especially in the four coral reef areas (Musandam Peninsula, Muscat coast & Daymaniyat islands, coasts of Masirah Island, and the Khuriya Muriya Islands). Up till now, apart from a few incidental samples, the sponges of Oman were known only

  1. Bioprospecting sponge-associated microbes for antimicrobial compounds

    NARCIS (Netherlands)

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-01-01

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review

  2. A Model-based B2B (Batch to Batch) Control for An Industrial Batch Polymerization Process

    Science.gov (United States)

    Ogawa, Morimasa

    This paper describes overview of a model-based B2B (batch to batch) control for an industrial batch polymerization process. In order to control the reaction temperature precisely, several methods based on the rigorous process dynamics model are employed at all design stage of the B2B control, such as modeling and parameter estimation of the reaction kinetics which is one of the important part of the process dynamics model. The designed B2B control consists of the gain scheduled I-PD/II2-PD control (I-PD with double integral control), the feed-forward compensation at the batch start time, and the model adaptation utilizing the results of the last batch operation. Throughout the actual batch operations, the B2B control provides superior control performance compared with that of conventional control methods.

  3. Ecological interactions and the distribution, abundance, and diversity of sponges.

    Science.gov (United States)

    Wulff, Janie

    2012-01-01

    Although abiotic factors may be important first-order filters dictating which sponge species can thrive at a particular site, ecological interactions can play substantial roles influencing distribution and abundance, and thus diversity. Ecological interactions can modify the influences of abiotic factors both by further constraining distribution and abundance due to competitive or predatory interactions and by expanding habitat distribution or abundance due to beneficial interactions that ameliorate otherwise limiting circumstances. It is likely that the importance of ecological interactions has been greatly underestimated because they tend to only be revealed by experiments and time-series observations in the field. Experiments have revealed opportunistic predation to be a primary enforcer of sponge distribution boundaries that coincide with habitat boundaries in several systems. Within habitats, by contrast, dramatic effects of predators on sponge populations seem to occur primarily in cases of unusually high recruitment rates or unusually low mortality rates for the predators, which are often specialists on the sponge species affected. Competitive interactions have been demonstrated to diminish populations or exclude sponge species from a habitat in only a few cases. Cases in which competitive interactions have appeared obvious have often turned out to be neutral or even beneficial interactions when observed over time. Especially striking in this regard are sponge-sponge interactions in dense sponge-dominated communities, which may promote the continued coexistence of all participating species. Mutualistic symbioses of sponges with other animals, plants, or macroalgae have been demonstrated to increase abundance, habitat distribution, and diversity of all participants. Symbiotic microbes can enhance sponge distribution and abundance but also render their hosts more vulnerable to environmental changes. And while photosynthetic symbionts can boost growth and

  4. Optimizing Resource Utilization in Grid Batch Systems

    International Nuclear Information System (INIS)

    Gellrich, Andreas

    2012-01-01

    On Grid sites, the requirements of the computing tasks (jobs) to computing, storage, and network resources differ widely. For instance Monte Carlo production jobs are almost purely CPU-bound, whereas physics analysis jobs demand high data rates. In order to optimize the utilization of the compute node resources, jobs must be distributed intelligently over the nodes. Although the job resource requirements cannot be deduced directly, jobs are mapped to POSIX UID/GID according to the VO, VOMS group and role information contained in the VOMS proxy. The UID/GID then allows to distinguish jobs, if users are using VOMS proxies as planned by the VO management, e.g. ‘role=production’ for Monte Carlo jobs. It is possible to setup and configure batch systems (queuing system and scheduler) at Grid sites based on these considerations although scaling limits were observed with the scheduler MAUI. In tests these limitations could be overcome with a home-made scheduler.

  5. Oxygen dynamics and transport in the Mediterranean sponge Aplysina aerophoba

    DEFF Research Database (Denmark)

    Hoffmann, F.; Røy, Hans; Bayer, K.

    2008-01-01

    The Mediterranean sponge Aplysina aerophoba kept in aquaria or cultivation tanks can stop pumping for several hours or even days. To investigate changes in the chemical microenvironments, we measured oxygen profiles over the surface and into the tissue of pumping and non-pumping A. aerophoba...... specimens with Clark-type oxygen microelectrodes (tip diameters 18-30 μm). Total oxygen consumption rates of whole sponges were measured in closed chambers. These rates were used to back-calculate the oxygen distribution in a finite-element model. Combining direct measurements with calculations of diffusive...... flux and modeling revealed that the tissue of non-pumping sponges turns anoxic within 15 min, with the exception of a 1 mm surface layer where oxygen intrudes due to molecular diffusion over the sponge surface. Molecular diffusion is the only transport mechanism for oxygen into non-pumping sponges...

  6. Recovery of the commercial sponges in the central and southeastern Aegean Sea (NE Mediterranean after an outbreak of sponge disease

    Directory of Open Access Journals (Sweden)

    J. CASTRITSI-CATHARIOS

    2011-01-01

    Full Text Available The distribution and biometry of commercial sponges (Porifera in coastal areas of the central and southeastern Aegean Sea was investigated to estimate the recovery progress of the populations eight years after the first appearance of sponge disease. Signs of the disease were detected only in 1.6% of the harvested sponges. Multivariate analysis on the percentage abundance of sponges showed two distinct groups among the sixteen fishing grounds studied: the eight deep (50-110 m and the eight shallow ones (<40 m. The group from the deep depths consisted of Spongia officinalis adriatica, S. agaricina and S. zimocca. The infralittoral zone was characterized by the presence of Hippospongia communis, S. officinalis adriatica and S. officinalis mollissima. These bath sponges showed an enhanced abundance in the eastern Cretan Sea (S. Aegean Sea. In addition, their dimensions, particularly height, increased with increasing depth. It is indicated that the hydrographic conditions prevailing in the eastern Cretan Sea affected the repopulating processes of sponge banks. In each species, the biometric characteristics of the experimental specimens were similar to those of the sponges found in the market and harvested at respective depths prior to the appearance of sponge disease.

  7. The sponge pump: the role of current induced flow in the design of the sponge body plan.

    Directory of Open Access Journals (Sweden)

    Sally P Leys

    Full Text Available Sponges are suspension feeders that use flagellated collar-cells (choanocytes to actively filter a volume of water equivalent to many times their body volume each hour. Flow through sponges is thought to be enhanced by ambient current, which induces a pressure gradient across the sponge wall, but the underlying mechanism is still unknown. Studies of sponge filtration have estimated the energetic cost of pumping to be 0.75 with the ambient current velocity. During short bursts of high ambient current the sponges filtered two-thirds of the total volume of water they processed daily. Our model indicates that the head loss across the sponge collar filter is 10 times higher than previously estimated. The difference is due to the resistance created by a fine protein mesh that lines the collar, which demosponges also have, but was so far overlooked. Applying our model to the in situ measurements indicates that even modest pumping rates require an energetic expenditure of at least 28% of the total in situ respiration. We suggest that due to the high cost of pumping, current-induced flow is highly beneficial but may occur only in thin walled sponges living in high flow environments. Our results call for a new look at the mechanisms underlying current-induced flow and for reevaluation of the cost of biological pumping and its evolutionary role, especially in sponges.

  8. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert sponge...

  9. 21 CFR 878.4014 - Nonresorbable gauze/sponge for external use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonresorbable gauze/sponge for external use. 878... Nonresorbable gauze/sponge for external use. (a) Identification. A nonresorbable gauze/sponge for external use... include a nonresorbable gauze/sponge for external use that contains added drugs such as antimicrobial...

  10. SPONGE ROBOTIC HAND DESIGN FOR PROSTHESES

    OpenAIRE

    Mine Seçkin

    2016-01-01

    In this study robotic hands and fingers’ materials are investigated from past to present and a sponge robotic hand is designed for biomedical applications. Emergence and necessity of soft robotic technology are explained and description of soft robot is made. Because of the importance of hand in a person’s body, researchers have dealt with robotic hand prostheses for many centuries and developed many hand types. To mimic the best for the human limbs, softness of the hand is one of the importa...

  11. Molecular Cloning, Characterization, and Expression Analysis of a Prolyl 4-Hydroxylase from the Marine Sponge Chondrosia reniformis.

    Science.gov (United States)

    Pozzolini, Marina; Scarfì, Sonia; Mussino, Francesca; Ferrando, Sara; Gallus, Lorenzo; Giovine, Marco

    2015-08-01

    Prolyl 4-hydroxylase (P4H) catalyzes the hydroxylation of proline residues in collagen. P4H has two functional subunits, α and β. Here, we report the cDNA cloning, characterization, and expression analysis of the α and β subunits of the P4H derived from the marine sponge Chondrosia reniformis. The amino acid sequence of the α subunit is 533 residues long with an M r of 59.14 kDa, while the β subunit counts 526 residues with an M r of 58.75 kDa. Phylogenetic analyses showed that αP4H and βP4H are more related to the mammalian sequences than to known invertebrate P4Hs. Western blot analysis of sponge lysate protein cross-linking revealed a band of 240 kDa corresponding to an α2β2 tetramer structure. This result suggests that P4H from marine sponges shares the same quaternary structure with vertebrate homologous enzymes. Gene expression analyses showed that αP4H transcript is higher in the choanosome than in the ectosome, while the study of factors affecting its expression in sponge fragmorphs revealed that soluble silicates had no effect on the αP4H levels, whereas ascorbic acid strongly upregulated the αP4H mRNA. Finally, treatment with two different tumor necrosis factor (TNF)-alpha inhibitors determined a significant downregulation of αP4H gene expression in fragmorphs demonstrating, for the first time in Porifera, a positive involvement of TNF in sponge matrix biosynthesis. The molecular characterization of P4H genes involved in collagen hydroxylation, including the mechanisms that regulate their expression, is a key step for future recombinant sponge collagen production and may be pivotal to understand pathological mechanisms related to extracellular matrix deposition in higher organisms.

  12. Influence of baking conditions on the quality attributes of sponge cake.

    Science.gov (United States)

    Ureta, M Micaela; Olivera, Daniela F; Salvadori, Viviana O

    2017-03-01

    Sponge cake is a sweet bakery product characterized by its aerated and soft crumb and by its thin-coloured crust. The aim of this work is to analyse the influence of baking conditions (natural or forced convection, steam injection, oven temperature from 140 ℃ to 180 ℃) on sponge cake quality. Both crust and crumb regions were characterized by means of colour development, water content, crust/crumb relation, crust thickness and crumb structure (in terms of porosity, crumb density and texture). Colour measurements allowed obtaining an accurate model for browning kinetics. Crumb water content remains almost constant, while considerable dehydration occurs in the crust. In general, no significant differences due to baking conditions were found in the instrumental quality analysis.

  13. Antimicrobial evaluation of the crude extract of symbiotic fungi from marine sponge Reniera japonica

    Directory of Open Access Journals (Sweden)

    Xuelian Bai

    2018-05-01

    Full Text Available Marine sponge-derived microbes are one of the rich sources of bioactive natural products with a broad spectrum of bioactivities. The present work focuses on the isolation and antimicrobial screening of the marine sponge-associated fungi from Reniera japonica MNP-2016. The results indicated that five fungi (L1-2, L2-1, L4, L8-1 and L14 were successfully isolated. Bioassay tests showed that only strain L14 had strong inhibitory effect on the pathogens, Staphyloccocus aureus, Escherichia coli and Candida albicans. 18S rDNA sequence analysis indicated that strain L14 was ascribed to Aspergillus genus. To the best of our knowledge, this work was the first report on the isolation and antimicrobial evaluation of fungi from R. japonica.

  14. Automated handling for SAF batch furnace and chemistry analysis operations

    International Nuclear Information System (INIS)

    Bowen, W.W.; Sherrell, D.L.; Wiemers, M.J.

    1981-01-01

    The Secure Automated Fabrication Program is developing a remotely operated breeder reactor fuel pin fabrication line. The equipment will be installed in the Fuels and Materials Examination Facility being constructed at Hanford, Washington. Production is scheduled to start in mid-1986. The application of small pneumatically operated industrial robots for loading and unloading product into and out of batch furnaces and for distribution and handling of chemistry samples is described

  15. On the track of fish batches in three distribution networks

    DEFF Research Database (Denmark)

    Randrup, Maria; Wu, Haiping; Jørgensen, Bo M.

    2012-01-01

    Three fish products sampled in retail shops were traced back to their origin and fish from the same batch were tracked forward towards the retailer, thereby simulating a recall situation. The resulting distribution networks were very complex, but to the extent that companies were willing to provi...... of discovering a fault as early as possible in order to minimise the costs of a recall. The localisation of distributed products during a recall operation can be facilitated by a well-constructed traceability system....

  16. Optimization of a sponge cake formulation with inulin as fat replacer: structure, physicochemical, and sensory properties.

    Science.gov (United States)

    Rodríguez-García, Julia; Puig, Ana; Salvador, Ana; Hernando, Isabel

    2012-02-01

    The effects of several fat replacement levels (0%, 35%, 50%, 70%, and 100%) by inulin in sponge cake microstructure and physicochemical properties were studied. Oil substitution for inulin decreased significantly (P cake structure development during baking. Cryo-SEM micrographs of cake crumbs showed a continuous matrix with embedded starch granules and coated with oil; when fat replacement levels increased, starch granules appeared as detached structures. Cakes with fat replacement up to 70% had a high crumb air cell values; they were softer and rated as acceptable by an untrained sensory panel (n = 51). So, the reformulation of a standard sponge cake recipe to obtain a new product with additional health benefits and accepted by consumers is achieved. Practical Application:  In this study, fat is replaced by inulin in cakes, which is a fiber mainly obtained from chicory roots. Sponge cake formulations with reductions in fat content up to 70% are achieved. These high-quality products can be labeled as "reduced in fat" according to U.S. FDA (2009) and EU regulations (European-Union 2006). © 2012 Institute of Food Technologists®

  17. Study on Batch Culture Growth Model for Lactococcus lactis IO-1

    OpenAIRE

    Ishizaki, Ayaaki; Ohta, Tomomi; Kobayashi, Genta; 石崎, 文彬; 太田, 智美; 小林, 元太

    1991-01-01

    L-lactate fermentation employing Lactncoccus lactis IO-1 demonstrated a typical end product inhibition. By numerical analysis of fermentation results of the batch culture of this microorganism, the specific rates for cell growth, substrate consumption and product formation were clearly expressed by the end product inhibition formulae. All constants for those formulae were determined by the fermentation results. A mathematical model for batch culture growth of this microorganism in which the n...

  18. Design of common heat exchanger network for batch processes

    International Nuclear Information System (INIS)

    Anastasovski, Aleksandar

    2014-01-01

    Heat integration of energy streams is very important for the efficient energy recovery in production systems. Pinch technology is a very useful tool for heat integration and maximizing energy efficiency. Creating of heat exchangers network as a common solution for systems in batch mode that will be applicable in all existing time slices is very difficult. This paper suggests a new methodology for design of common heat exchanger network for batch processes. Heat exchanger network designs were created for all determined repeatable and non-repeatable time periods – time slices. They are the basis for creating the common heat exchanger network. The common heat exchanger network as solution, satisfies all heat-transfer needs for each time period and for every existing combination of selected streams in the production process. This methodology use split of some heat exchangers into two or more heat exchange units or heat exchange zones. The reason for that is the multipurpose use of heat exchangers between different pairs of streams in different time periods. Splitting of large heat exchangers would maximize the total heat transfer usage of heat exchange units. Final solution contains heat exchangers with the minimum heat load as well as the minimum need of heat transfer area. The solution is applicable for all determined time periods and all existing stream combinations. - Highlights: •Methodology for design of energy efficient systems in batch processes. •Common Heat Exchanger Network solution based on designs with Pinch technology. •Multipurpose use of heat exchangers in batch processes

  19. Optimization of heat-liberating batches for ash residue stabilization

    International Nuclear Information System (INIS)

    Karlina, O.K.; Varlackova, G.A.; Ojovan, M.I.; Tivansky, V.M.; Dmitriev, S.A.

    1999-01-01

    The ash residue obtained after incineration of solid radioactive waste is a dusting poly-dispersed powder like material that contains radioactive nuclides ( 137 Cs, 90 Sr, 239 Pu, hor ( ellipsis)). Specific radioactivity of the ash can be about 10 5 --10 7 Bq/kg. In order to dispose of the ash, residue shall be stabilized by producing a monolith material. The ash residue can be either vitrified or stabilized into a ceramic matrix. For this purpose the ash residue is mixed with fluxing agents followed by melting of obtained composition in the different type melters. As a rule this requires both significant energy consumption and complex melting equipment. A stabilization technology of ash residue was proposed recently by using heat liberating batches-compositions with redox properties. The ash residue is melted due to exothermic chemical reactions in the mixture with heat-liberating batch that occur with considerable release of heat. Stabilization method has three stages: (1) preparation of a mixture of heating batch and ash residue with or without glass forming batch (frit); (2) ignition and combustion of mixed composition; (3) cooling (quenching) of obtained vitreous material. Combustion of mixed composition occurs in the form of propagation of reacting wave. The heat released during exothermic chemical reactions provides melting of ash residue components and production of glass-like phase. The final product consists of a glass like matrix with embedded crystalline inclusions of infusible ash residue components

  20. Characterization of sponge cake baking in an instrumented pilot oven

    Directory of Open Access Journals (Sweden)

    Alain Sommier

    2012-10-01

    Full Text Available The quality of baked products is the complex, multidimensional result of a recipe, and a controlled heating process to produce the desired final properties such as taste, colour, shape, structure and density. The process of baking a sponge cake in a convective oven at different air temperatures (160-180-220 °C leading to the same loss of mass was considered in this study. A special mould was used which allowed unidirectional heat transfer in the batter. Instrumentation was developed specifically for online measurement of weight loss, height variation and transient temperature profile and pressure in the product. This method was based on measuring heat fluxes (commercial sensors to account for differences in product expansion and colour. In addition, measurement of height with a camera was coupled to the product mass to calculate changes in density over time. Finally, combining this information with more traditional measurements gave a better understanding of heat and mass transfer phenomena occurring during baking.