WorldWideScience

Sample records for spokane valley-rathdrum prairie

  1. Compilation of geologic, hydrologic, and ground-water flow modeling information for the Spokane Valley-Rathdrum Prairie aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Kahle, Sue C.; Caldwell, Rodney R.; Bartolino, James R.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington Department of Ecology compiled and described geologic, hydrologic, and ground-water flow modeling information about the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, ground- and surface-water interactions, computer flow models, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho and the Spokane valley and Hillyard Trough, Washington, was designated a Sole Source Aquifer by the U.S. Environmental Protection Agency in 1978. Continued growth, water management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer is composed of sand, gravel, cobbles, and boulders primarily deposited by a series of catastrophic glacial outburst floods from ancient Glacial Lake Missoula. The material deposited in this high-energy environment is coarser-grained than is typical for most basin-fill deposits, resulting in an unusually productive aquifer with well yields as high as 40,000 gallons per minute. In most places, the aquifer is bounded laterally by bedrock composed of granite, metasedimentary rocks, or basalt. The lower boundary of the aquifer is largely unknown except along the margins or in shallower parts of the aquifer where wells have penetrated its entire thickness and reached bedrock or silt and clay deposits. Based on surface geophysics, the thickness of the aquifer is about 500 ft near the Washington-Idaho state line, but more than 600 feet within the Rathdrum Prairie and more than 700 feet in the Hillyard trough based on drilling records. Depth to water in the aquifer is greatest in the northern

  2. Ground-Water Flow Model for the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Hsieh, Paul A.; Barber, Michael E.; Contor, Bryce A.; Hossain, Md. Akram; Johnson, Gary S.; Jones, Joseph L.; Wylie, Allan H.

    2007-01-01

    This report presents a computer model of ground-water flow in the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in Spokane County, Washington, and Bonner and Kootenai Counties, Idaho. The aquifer is the sole source of drinking water for more than 500,000 residents in the area. In response to the concerns about the impacts of increased ground-water withdrawals resulting from recent and projected urban growth, a comprehensive study was initiated by the Idaho Department of Water Resources, the Washington Department of Ecology, and the U.S. Geological Survey to improve the understanding of ground-water flow in the aquifer and of the interaction between ground water and surface water. The ground-water flow model presented in this report is one component of this comprehensive study. The primary purpose of the model is to serve as a tool for analyzing aquifer inflows and outflows, simulating the effects of future changes in ground-water withdrawals from the aquifer, and evaluating aquifer management strategies. The scale of the model and the level of detail are intended for analysis of aquifer-wide water-supply issues. The SVRP aquifer model was developed by the Modeling Team formed within the comprehensive study. The Modeling Team consisted of staff and personnel working under contract with the Idaho Department of Water Resources, personnel working under contract with the Washington Department of Ecology, and staff of the U.S. Geological Survey. To arrive at a final model that has the endorsement of all team members, decisions on modeling approach, methodology, assumptions, and interpretations were reached by consensus. The ground-water flow model MODFLOW-2000 was used to simulate ground-water flow in the SVPR aquifer. The finite-difference model grid consists of 172 rows, 256 columns, and 3 layers. Ground-water flow was simulated from September 1990 through September 2005 using 181 stress periods of 1 month each. The areal extent of the model encompasses an area of

  3. Characterizing the occurrence, sources, and variability of radon in Pacific Northwest homes.

    Science.gov (United States)

    Turk, B H; Prill, R J; Grimsrud, D T; Moed, B A; Sextro, R G

    1990-04-01

    A compilation of data from earlier studies of 172 homes in the Pacific Northwest indicated that approximately 65 percent of the 46 homes tested in the Spokane River Valley/Rathdrum Prairie region of eastern Washington/northern Idaho had heating season indoor radon (222Rn) concentrations above the U. S. EPA guideline of 148 Bq m-3 (4 pCi L-1). A subset of 35 homes was selected for additional study. The primary source of indoor radon in the Spokane River Valley/Rathdrum Prairie was pressure-driven flow of soil gas containing moderate radon concentrations (geometric mean concentration of 16,000 Bq m-3) from the highly permeable soils (geometric mean permeability of 5 x 10(-11) m2) surrounding the house substructures. Estimated soil gas entry rates ranged from 0.4 to 39 m3h-1 and 1 percent to 21 percent of total building air infiltration. Radon from other sources, including domestic water supplies and building materials was negligible. In high radon homes, winter indoor levels averaged 13 times higher than summer concentrations, while in low radon homes winter levels averaged only 2.5 times higher. Short-term variations in indoor radon were observed to be dependent upon indoor-outdoor temperature differences, wind speed, and operation of forced-air furnace fans. Forced-air furnace operation, along with leaky return ducts and plenums, and openings between the substructure and upper floors enhanced mixing of radon-laden substructure air throughout the rest of the building.

  4. Characterizing the occurrence, sources, and variability of radon in pacific northwest homes

    International Nuclear Information System (INIS)

    Turk, B.H.; Prill, R.J.; Grimsrud, D.T.; Moed, B.A.; Sextro, R.G.

    1990-01-01

    A compilation of data from earlier studies of 172 homes in the Pacific Northwest indicated that approximately 65 percent of the 46 homes tested in the Spokane River Valley/Rathdrum Prairie region of eastern Washington/northern Idaho had heating season indoor radon ( 222 Rn) concentrations above the U.S. EPA guideline of 148 Bq m -3 (4 pCi L -1 ). A subset of 35 homes was selected for additional study. The primary source of indoor radon in the Spokane River Valley/Rathdrum Prairie was pressure-driven flow of soil gas containing moderate radon concentrations (geometric mean concentration of 16,000 Bq m -3 ) from the highly permeable soils (geometric mean permeability of 5 x 10 -11 m 2 ) surrounding the house substructures. Estimated soil gas entry rates ranged from 0.4 to 39 m 3 h -1 and 1 percent to 21 percent of total building air infiltration. Radon from other sources, including domestic water supplies and building materials was negligible. In high radon homes, winter indoor levels averaged 13 times higher than summer concentrations, while in low radon homes winter levels averaged only 2.5 times higher. Short-term variations in indoor radon were observed to be dependent upon indoor-outdoor temperature differences, wind speed, and operation of forced-air furnace fans. Forced-air furnace operations, along with leaky return ducts and plenums, and openings between the substructure and upper floors enhanced mixing of radon laden substructure air throughout the rest of the building

  5. Managing the Development of the Public Telecommunications Center, Spokane, Washington.

    Science.gov (United States)

    Schaar, Walter

    When the city council of Spokane (Washington) decided in 1971 to establish a cable franchise, it created a citizens' committee to set cable specifications. Representing Spokane School District 81 and KSPS-TV (a public television station licensed to the public schools of Spokane), the author of this document served on the committee that set five…

  6. Prairie Chicken

    Data.gov (United States)

    Kansas Data Access and Support Center — An outline of the general range occupied by greayter and lesser prairie chickens. The range was delineated by expert opinion, then varified by local wildlife...

  7. Spokane Tribal Hatchery, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peone, Tim L. (Spokane Tribe of Indians, Wellpinit, WA)

    2004-05-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting a harvestable fishery for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). A collaborative multi-agency artificial production program for the Lake Roosevelt and Banks Lake fisheries exists consisting of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and the Lake Roosevelt Kokanee and Rainbow Trout Net Pen Rearing Projects. These projects operate complementary of one another to target an annual release of 1 million yearling kokanee and 500,000 yearling rainbow trout for Lake Roosevelt and 1.4 million kokanee fry/fingerlings for Banks Lake. Combined fish stocking by the hatcheries and net pen rearing projects in 2003 included: 899,168 kokanee yearlings released into Lake Roosevelt; 1,087,331 kokanee fry/fingerlings released into Banks Lake, 44,000 rainbow trout fingerlings and; 580,880 rainbow trout yearlings released into Lake Roosevelt. Stock composition of 2003 releases consisted of Lake Whatcom kokanee, 50:50 diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2003 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to harvestable rainbow trout and kokanee salmon fisheries. An increase in kokanee harvest was primarily owing to new release strategies. Walleye predation, early maturity and entrainment through Grand Coulee Dam continues to

  8. Spokane Tribal Hatchery, 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peone, Tim L. (Spokane Tribe of Indians, Wellpinit, WA)

    2006-03-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting harvestable fisheries for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). The Spokane Tribe, Washington Department of Fish and Wildlife, Colville Confederated Tribes and Lake Roosevelt Development Association/Lake Roosevelt Volunteer Net Pen Project are cooperating in a comprehensive artificial production program to produce kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) for annual releases into the project area. The program consists of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and Lake Roosevelt Rainbow Trout Net Pen Rearing Projects. The Lake Roosevelt and Banks Lake Fisheries Evaluation Program monitor and evaluates release strategies and production methods for the aforementioned projects. Between 1985 and 2005 the projects have collectively produced up to 800,000 rainbow trout and 4 million kokanee salmon for release into Lake Roosevelt and 1.4 million kokanee fry for Banks Lake annually. In 2005, the annual release goal included 3.3 million kokanee fry, 475,000 kokanee yearlings and 500,000 rainbow trout yearlings. Fish produced by this project in 2005 to meet collective fish production and release goals included: 3,446,438 kokanee fingerlings, 347,730 rainbow trout fingerlings and 525,721 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Meadow Creek and Lake Whatcom kokanee, diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and

  9. Spokane Tribal Hatchery, 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peone, Tim L. (Spokane Tribe of Indians, Wellpinit, WA)

    2005-03-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting a harvestable fishery for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). A collaborative multi-agency artificial production program for the Lake Roosevelt and Banks Lake fisheries exists consisting of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and the Lake Roosevelt Kokanee and Rainbow Trout Net Pen Rearing Projects. These projects operate complementary of one another to target an annual release of 1 million yearling kokanee and 500,000 yearling rainbow trout for Lake Roosevelt and 1.4 million kokanee fry/fingerlings for Banks Lake. Fish produced by this project in 2004 to meet collective fish production and release goals included: 1,655,722 kokanee fingerlings, 537,783 rainbow trout fingerlings and 507,660 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Lake Whatcom kokanee, 50:50 diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2004 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to harvestable rainbow trout and kokanee salmon fisheries. An increase in kokanee harvest was primarily owing to new release strategies. Walleye predation, early maturity and entrainment through Grand Coulee Dam continues to have a negative impact on adult kokanee returns and limits the

  10. Effectiveness of radon control techniques in fifteen homes

    International Nuclear Information System (INIS)

    Turk, B.H.; Prill, R.J.; Fisk, W.J.; Grimsrud, D.T.; Sextro, R.G.

    1991-01-01

    Radon control systems were installed and evaluated in fourteen homes in the Spokane River Valley/Rathdrum Prairie and in one home in Vancouver, Washington. Because of local soil conditions, subsurface ventilation (SSV) by pressurization was always more effective in these houses than SSV by depressurization in reducing indoor radon levels to below guidelines. Basement overpressurization was successfully applied in five houses with airtight basements where practical-sized fans could develop an overpressure of 1 to 3 Pascals. Crawlspace ventilation was more effective than crawlspace isolation in reducing radon entry from the crawlspace, but had to be used in conjunction with other mitigation techniques, from the crawlspace, but had to be used in conjunction with other mitigation techniques, since the houses also had basements. Indoor radon concentrations in two houses with air-to-air heat exchangers (AAHX) were reduced to levels inversely dependent on the new total ventilation rates and were lowered even further in one house where the air distribution system was modified. Sealing penetrations in the below-grade surfaces of substructures was relatively ineffective in controlling radon. Operation of the radon control systems (except for the AAHX's) made no measurable change in ventilation rates or indoor concentrations of other measured pollutants. Installation costs ranged from approximately $4/m 2 for sealing to $28/m 2 for the AAHXs. Annual operating costs for the active systems were estimated to be approximately $60 to $170

  11. 78 FR 7448 - Final Environmental Impact Statement for the Proposed Spokane Tribe of Indians West Plains Casino...

    Science.gov (United States)

    2013-02-01

    ... Proposed Spokane Tribe of Indians West Plains Casino and Mixed Use Project, City of Airway Heights, Spokane...) for the Spokane Tribe of Indians West Plains Casino and Mixed Use Project, City of Airway Heights... casino-resort facility, parking structure, site retail, commercial building, tribal cultural center, and...

  12. 77 FR 12873 - Draft Environmental Impact Statement for the Proposed Spokane Tribe of Indians West Plains Casino...

    Science.gov (United States)

    2012-03-02

    ... Proposed Spokane Tribe of Indians West Plains Casino and Mixed Use Project, City of Airway Heights, Spokane... statement with the U.S. Environmental Protection Agency for the Spokane Tribe of Indians West Plains casino... determination by the Secretary of the Interior; and (2) development of a casino-resort facility, parking...

  13. 77 FR 24976 - Draft Environmental Impact Statement for the Proposed Spokane Tribe of Indians West Plains Casino...

    Science.gov (United States)

    2012-04-26

    ... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs Draft Environmental Impact Statement for the Proposed Spokane Tribe of Indians West Plains Casino and Mixed Use Project, City of Airway Heights, Spokane... Impact Statement (DEIS) for the Spokane Tribe of Indians West Plains casino and mixed use project, City...

  14. Final Environmental Assessment (EA) for Headquarters Building Construction and Main Gate Reconfiguration White Bluff, Spokane, Washington

    Science.gov (United States)

    2012-12-01

    in 1954 and operated as Army Nike Missile Control Site until 1963. It was then converted to a USAF satellite operations center operated by USAF...Source Study: Spokane Satellite Tracking Office. Prepared for US Army Corps of Engineers by Adams and Clark, Inc ., Spokane, WA. Archaeological and

  15. Prairie Conservation in Canada: The Prairie Conservation Action Plan Experience

    Science.gov (United States)

    Dean Nernberg; David Ingstrup

    2005-01-01

    In Canada, grassland conservation has been mobilized and directed through the development of Prairie Conservation Action Plans and Action Plan Committees in the three prairie provinces of Alberta (45 partner agencies and organizations), Saskatchewan (26 partners), and Manitoba (26 partners). In Alberta, 43 percent of the native prairie remains; in Saskatchewan and...

  16. Establishment of prairies

    International Nuclear Information System (INIS)

    Lotero Cadavid, J.

    2001-01-01

    Are analyzed the establishment of prairies, such as the selection of the species, the factors of the environment, the impact in the establishment and forage production and its relation to the soil, the precipitation, the temperature, the light and the biotic factors. It is indicated that the selection of the species to settle down, is directly related with the climate and the soil and they group to be tolerant to drought, tolerant to flood soils, tolerant to humid soils, tolerant to soils very acids, moderately acids and saline. It is noticed that a bad establishment of the grasses can be due to the bad quality of the seed, a temperature and unfavorable humidity can cause low germination; equally seeds planted very deeply in heavy soils with excess of humidity. Considerations are made about the establishment and growth of the prairies in connection with the germination, cultures, sowing density and sowing on time, as well as for the soil preparation, the sowing in terrestrial mechanic and non mechanic and the use of cultivations forms of low cost and fertilization systems; equally the establishment of leguminous in mixture with gramineous, the renovation of prairies and the establishment of pastures

  17. Metropolitan Spokane Region Water Resources Study. Appendix E. Environment and Recreation

    Science.gov (United States)

    1976-01-01

    at Porcupine Bay, maintains a small but productive fishery for walleye pike and large mouth bass. The principal fishery is for walleye pike which takes...elevations. The whitetail deer of the Spokane area are part of the Coeur d’Alene herd . They favor the lower elevations and adapt very well to the river

  18. Notification: EPA Region 10 Management Controls Over Allowing Substantial Public Funds to Construct the Spokane County Wastewater Treatment Facility

    Science.gov (United States)

    January 20, 2012. This EPA's OIG is initiating a review from an OIG hotline complaint regarding whether federal funds were properly used to construct the new Spokane County wastewater treatment facility in accordance with 40 CFR 35, Subpart K.

  19. Song and Male Quality in Prairie Warblers

    Science.gov (United States)

    Bruce E. Byers; Michael E. Akresh; David I. King; W. Koenig

    2016-01-01

    To determine if the songs of male prairie warblers could potentially reveal to female listeners information about the quality of singers, we compared various aspects of prairie warbler song structure and performance to attributes that might reflect a male singer's potential to enhance the fitness of his mate. We found that all the tested male attributes—arrival...

  20. Black-tailed prairie dog status and future conservation planning

    Science.gov (United States)

    Daniel W. Mulhern; Craig J. Knowles

    1997-01-01

    The black-tailed prairie dog is one of five prairie dog species estimated to have once occupied up to 100 million ha or more in North America. The area occupied by black-tailed prairie dogs has declined to approximately 2% of its former range. Conversion of habitat to other land uses and widespread prairie dog eradication efforts combined with sylvatic plague,

  1. The prairie dog as a keystone species

    Science.gov (United States)

    Kotliar, Natasha B.; Miller, Brian J.; Reading, Richard P.; Clark, Timothy W.; Hoogland, John L.

    2006-01-01

    The prairie dog has a pronounced impact on its grassland ecosystem (King 1955; Uresk and Bjugstad 1983; Miller et al. 1994; Society for Conservation Biology 1994; Wuerthner 1997; Johnsgard 2005). They maintain short vegetation by their grazing and by selective removal of tall plants and shrubs; provide shelter, foraging grounds, and nesting habitat for a diverse array of animals; serve as prey for many predators; and alter soil chemistry.Do these impacts mean that the prairie dog is a keystone species? To investigate, we first scrutinize the definition for a keystone species. We then document both vertebrates and invertebrates that associate with prairie dogs and their colony-sites. We examine ecosystem processes at colony-sites, and then assess whether the prairie dog is a legitimate keystone species. Finally, we explore the implications of keystone status for the conservation of prairie dogs.

  2. 78 FR 2428 - Notice of Intent To Repatriate Cultural Items: Northwest Museum of Arts & Culture, Spokane, WA

    Science.gov (United States)

    2013-01-11

    ... & Culture, also the Eastern Washington State Historical Society, Spokane, WA, that meet the definition of... the Eastern Washington State Historical Society, in consultation with the appropriate Indian tribe, has determined that the cultural items meet the definition of unassociated funerary objects and...

  3. 75 FR 58424 - Notice of Intent to Repatriate Cultural Items: Northwest Museum of Arts & Culture, Spokane, WA

    Science.gov (United States)

    2010-09-24

    ... Museum of Arts & Culture, aka Eastern Washington State Historical Society, Spokane, WA, that meet the definition of unassociated funerary objects under 25 U.S.C. 3001. This notice is published as part of the... Eastern Washington State Historical Society (now Northwest Museum of Arts & Culture), University of...

  4. Prairie Change Analysis 1991-2008

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset displays the results of a prairie/savanna change analysis study completed in May 2010. The area reviewed consists of 1,521 sites identified by Minnesota...

  5. Soil change induced by prairie dogs across three ecological sites

    Science.gov (United States)

    Prairie dogs (Cynomys spp.) can influence vegetation dynamics and landscape hydrology by altering soil properties, yet few studies have evaluated soil responses to prairie dog activities across a range of soil types. This study was conducted to quantify prairie dog effects on soil properties within...

  6. Flora and fauna associated with prairie dog colonies and adjacent ungrazed mixed-grass prairie in western South Dakota

    Science.gov (United States)

    William Agnew; Daniel W. Uresk; Richard M. Hansen

    1986-01-01

    Vegetation, small rodents, and birds were sampled during the growing seasons of 2 years on prairie dog (Cynomys ludovicianus) colonies and adjacent mixed-grass prairie in western South Dakota. Prairie dog grazing decreased mulch cover, maximum height of vegetation, plant species richness, and tended to decrease live plant canopy cover compared to...

  7. Arthropod consumption by small mammals on prairie dog colonies and adjacent ungrazed mixed grass prairie in western South Dakota

    Science.gov (United States)

    W. Agnew; Daniel W. Uresk; R. M. Hansen

    1988-01-01

    The percentage of arthropods and plants in the diets of seven small rodents captured on prairie dog colonies and adjacent mixed grasslands were estimated by microhistological techniques. Arthropod composition over the two year study averaged 51% and 37% on prairie dog colonies and mixed grasslands, respectively. Composition of arthropods on prairie dog colonies was...

  8. State of the prairies of marine grasses

    International Nuclear Information System (INIS)

    Barrios, Lina M; Gomez, Diana I

    2002-01-01

    At the end of the year 2000, INVEMAR gave beginning to the project Distribution, it structures and classification of the prairies of marine flowering in the Colombian Caribbean, guided to characterize ecological and environmentally the ecosystems in this Colombian sector, particularly as for its distribution, extension, structures, associate biota and intervention degree. The above-mentioned like answer to the lack of information that was presented to the date in almost all the levels (line bases and ecology) for this ecosystem, required to implement monitoring programs and to adopt conservation strategies for the same one. The information that is presented is based primarily on the results obtained during the execution of the project in mention. An diagnostic is done, a characterization of the prairies, epiphytes covering, associate fauna and it structures of the prairies

  9. Radon and remedial action in Spokane River Valley residences: an interim report

    International Nuclear Information System (INIS)

    Turk, B.H.; Prill, R.J.; Fisk, W.J.; Grimsrud, D.T.; Moed, B.A.; Sextro, R.G.

    1986-03-01

    Fifty-six percent of 46 residences monitored in the Spokane River Valley in eastern Washington/northern Idaho have indoor radon concentrations above the National Council for Radiation Protection (NCRP) guidelines of 8 pCi/1. Indoor levels were over 20 pCi/1 in eight homes, and ranged up to 132 pCi/1 in one house. Radon concentrations declined by factors of 4 to 38 during summer months. Measurements of soil emanation rates, domestic water supply concentrations, and building material flux rates indicate that diffusion of radon does not significantly contribute to the high concentrations observed. Rather, radon entry is dominated by pressure-driven bulk soil gas transport, aggravated by the local subsurface soil composition and structure. A variety of radon control strategies are being evaluated in 14 of these homes. Sub-surface ventilation by depressurization and overpressurization, basement overpressurization, and crawlspace ventilation are capable of successfully reducing radon levels below 5 pCi/1 in these homes. House ventilation is appropriate in buildings with low-moderate concentrations, while sealing of cracks has been relatively ineffective

  10. Invasive plants affect prairie soil biology

    Science.gov (United States)

    Non-native or exotic plants often cause ecological and environmental damage in ecosystems where they invade and become established. These invasive plants may be the most serious threat to plant diversity in prairies, especially those in scattered remnants, which may be particularly vulnerable to rap...

  11. Timber resource of Minnesota's Prairie unit, 1977.

    Science.gov (United States)

    Jerold T. Hahn; W. Brad Smith

    1980-01-01

    The fourth inventory of Minnesota's Prairie Unit shows that although commercial forest area decreased 31.7% between 1962 and 1977, growing-stock volume increased 22%. This report gives statistical highlights and contains detailed tables of forest area as well as timber volume, growth, mortality, ownership, and use.

  12. Timber resource of Missouri's Prairie, 1972.

    Science.gov (United States)

    Jerold T. Hahn; Alexander Vasilevsky

    1975-01-01

    The third timber inventory of Missouri's Prairie Forest Survey Unit shows substantial declines in both growing-stock and sawtimber volumes between 1959 and 1972. Commercial forest area declined by one-fifth. Presents highlights and statistics on forest area and timber volume, growth, mortality, ownership, and use in 1972.

  13. A Prairie Dog Abatement Program in San Juan County, Utah

    OpenAIRE

    Messmer, Terry A.; Keyes, Jim; McDonald, Roy

    1993-01-01

    Four species of prairie dogs are native to the plains and plateaus of the western United States. The most abundant and widely distributed of these is the blacktailed prairie dog, (Cynomys ludovicianus). This species has been a frequent topic of discussion at previous Great Plains Wildlife Damage Control workshops. Black-tailed prairie dog ecology and management was the topic of a panel discussion held at the Fifth Great Plains Wildlife Damage Control Workshop, in Lincoln, Nebraska (Timm and J...

  14. Response of ponderosa pine stands to pre-commercial thinning on Nez Perce and Spokane Tribal forests in the Inland Northwest, USA

    Science.gov (United States)

    Dennis E. Ferguson; John C. Byrne; William R. Wykoff; Brian Kummet; Ted Hensold

    2011-01-01

    Stands of dense, natural ponderosa pine (Pinus ponderosa var. ponderosa) regeneration were operationally, precommercially thinned at seven sites - four on Nez Perce Tribal lands in northern Idaho and three on Spokane Tribal lands in eastern Washington. Five spacing treatments were studied - control (no thinning), 5x5 ft, 7x7 ft, 10x10 ft, and 14x14 ft. Sample trees...

  15. Prairies Water Management on Corps Lands

    Science.gov (United States)

    2009-02-01

    infiltration, autogenic mechanisms can lead to the recovery of essential soil processes. The Role of Organic Matter in Soil Formation. In a prairie...management in EP-1130-2-540 (USACE 2005), and does not have a fire management training program in place (USACE 2008). Some Corps resource managers...are trained and partner with other entities to conduct prescribed burns on Corps grasslands. However, prescribed burning as a management strategy is

  16. Chicago's Columbus Park: The Prairie Idealized. Teaching with Historic Places.

    Science.gov (United States)

    Bachrach, Julia Sniderman; Nathan, Jo Ann

    Twenty-four year old Jens Jensen came to the United States, settled in Chicago (Illinois), and promptly fell in love with the Midwest's prairie landscape. Although some thought that prairie was boring, monotonous, and ordinary, Jensen saw great beauty in the tree-filled groves, long winding rivers, natural rock formations and waterfalls, and the…

  17. Use of ecological sites in managing wildlife and livestock: An example with prairie dogs

    Science.gov (United States)

    Prairie dogs are a native rodent found in the mixed grass prairie of the northern Great Plains. Prairie dogs can have an adverse impact on the amount of forages available for grazing livestock. In the Native American community, prairie dogs are often valued as a cultural resource and as an importan...

  18. 78 FR 17224 - Environmental Impact Statement; Proposed South Puget Sound Prairie Habitat Conservation Plan...

    Science.gov (United States)

    2013-03-20

    ... sizable portion of South Puget Sound Prairie habitat is located in the urban-rural interface and in the...-FF01E00000] Environmental Impact Statement; Proposed South Puget Sound Prairie Habitat Conservation Plan... permit application would be associated the South Puget Sound Prairie Habitat Conservation Plan (Prairie...

  19. Restoration and winter avian use of isolated prairies in eastern Texas

    Science.gov (United States)

    D. Craig Rudolph; Dave E. Plair; Dan Jones; J. Howard Williamson; Clifford E. Shackelford; Richard R. Schaefer; Joshua B. Pierce

    2014-01-01

    Numerous isolated prairies exist, or existed, on the West Gulf Coastal Plain east of the main distribution of the prairie ecosystem. Changing land-use patterns and suppression of wildfire have destroyed almost all of these small prairie occurrences. Intensified restoration and management of degraded prairie habitat on the Sam Houston National Forest in southeastern...

  20. Prairie Monitoring Protocol Development: North Coast and Cascades Network

    Science.gov (United States)

    McCoy, Allen; Dalby, Craig

    2009-01-01

    The purpose of the project was to conduct research that will guide development of a standard approach to monitoring several components of prairies within the North Coast and Cascades Network (NCCN) parks. Prairies are an important element of the natural environment at many parks, including San Juan Island National Historical Park (NHP) and Ebey's Landing National Historical Reserve (NHR). Forests have been encroaching on these prairies for many years, and so monitoring of the prairies is an important resource issue. This project specifically focused on San Juan Island NHP. Prairies at Ebey's Landing NHR will be monitored in the future, but that park was not mapped as part of this prototype project. In the interest of efficiency, the Network decided to investigate two main issues before launching a full protocol development effort: (1) the imagery requirements for monitoring prairie components, and (2) the effectiveness of software to assist in extracting features from the imagery. Several components of prairie monitoring were initially identified as being easily tracked using aerial imagery. These components included prairie/forest edge, broad prairie composition (for example, shrubs, scattered trees), and internal exclusions (for example, shrubs, bare ground). In addition, we believed that it might be possible to distinguish different grasses in the prairies if the imagery were of high enough resolution. Although the areas in question at San Juan Island NHP are small enough that mapping on the ground with GPS (Global Positioning System) would be feasible, other applications could benefit from aerial image acquisition on a regular, recurring basis and thereby make the investment in aerial imagery worthwhile. The additional expense of orthorectifying the imagery also was determined to be cost-effective.

  1. Oxytocin reduces alcohol consumption in prairie voles.

    Science.gov (United States)

    Stevenson, J R; Wenner, S M; Freestone, D M; Romaine, C C; Parian, M C; Christian, S M; Bohidar, A E; Ndem, J R; Vogel, I R; O'Kane, C M

    2017-10-01

    Alcohol use disorder (AUD) negatively affects millions of people every year in the United States, and effective treatments for AUD are still needed. The neuropeptide oxytocin has shown promise for reducing alcohol drinking in mice and rats. Because oxytocin also plays a key role in complex prosocial behaviors like bonding and attachment, we tested the effect of oxytocin on alcohol drinking in prairie voles, a species that both consumes high amounts of alcohol and forms oxytocin dependent social bonds in a manner similar to humans. Oxytocin treatment (1.0, 3.0, and 10.0mg/kg, i.p.) reduced alcohol consumption in male and female prairie voles in animals that had access to 15% ethanol vs water every other day for 12 alcohol drinking sessions. In animals with continuous access to 15% alcohol and water, oxytocin (3.0mg/kg) reduced alcohol consumption only in the first hour of access after treatment, with no significant effects on consumption over the 24-hr period. In an open field locomotor test, oxytocin (1.0, 3.0, and 10.0mg/kg, i.p.) did not affect overall locomotor activity; however, ethanol (2g/kg, i.p.) increased locomotor activity in males and females, and produced anxiolytic effects (increased time in the center of an open field) in females only. Because prairie voles have been shown to match the alcohol consumption of their cage mate, we evaluated the relationship between cage mates' alcohol drinking. There was an overall pattern of social facilitation (consumption by one cage mate predicted consumption by the other cage mate); however, we found significant individual differences across cages in which many cages did not show significant matching, and, in some cases one cage mate's consumption negatively predicted the other cage mate's consumption. Overall, our data provide support for the potential of oxytocin as a treatment to reduce alcohol consumption. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Drought, Climate Change and the Canadian Prairies

    Science.gov (United States)

    Stewart, R. E.

    2010-03-01

    The occurrence of drought is a ubiquitous feature of the global water cycle. Such an extreme does not necessarily lead to an overall change in the magnitude of the global water cycle but it of course affects the regional cycling of water. Droughts are recurring aspects of weather and climate extremes as are floods and tornadoes, but they differ substantially since they have long durations and lack easily identified onsets and terminations. Drought is a relatively common feature of the North American and Canadian climate system and all regions of the continent are affected from time-to-time. However, it tends to be most common and severe over the central regions of the continent. The Canadian Prairies are therefore prone to drought. Droughts in the Canadian Prairies are distinctive in North America. The large scale atmospheric circulations are influenced by blocking from intense orography to the west and long distances from all warm ocean-derived atmospheric water sources; growing season precipitation is generated by a highly complex combination of frontal and convective systems; seasonality is severe and characterized by a relatively long snow-covered and short growing seasons; local surface runoff is primarily produced by snowmelt water; there is substantial water storage potential in the poorly drained, post-glacial topography; and aquifers are overlain by impermeable glacial till, but there are also important permeable aquifers. One example of Prairie drought is the recent one that began in 1999 with cessation of its atmospheric component in 2004/2005 and many of its hydrological components in 2005. This event produced the worst drought for at least a hundred years in parts of the Canadian Prairies. Even in the dust bowl of the 1930s, no single year over the central Prairies were drier than in 2001. The drought affected agriculture, recreation, tourism, health, hydro-electricity, and forestry in the Prairies. Gross Domestic Product fell some 5.8 billion and

  3. Southern marl prairies conceptual ecological model

    Science.gov (United States)

    Davis, S.M.; Loftus, W.F.; Gaiser, E.E.; Huffman, A.E.

    2005-01-01

    About 190,000 ha of higher-elevation marl prairies flank either side of Shark River Slough in the southern Everglades. Water levels typically drop below the ground surface each year in this landscape. Consequently, peat soil accretion is inhibited, and substrates consist either of calcitic marl produced by algal periphyton mats or exposed limestone bedrock. The southern marl prairies support complex mosaics of wet prairie, sawgrass sawgrass (Cladium jamaicense), tree islands, and tropical hammock communities and a high diversity of plant species. However, relatively short hydroperiods and annual dry downs provide stressful conditions for aquatic fauna, affecting survival in the dry season when surface water is absent. Here, we present a conceptual ecological model developed for this landscape through scientific concensus, use of empirical data, and modeling. The two major societal drivers affecting the southern marl prairies are water management practices and agricultural and urban development. These drivers lead to five groups of ecosystem stressors: loss of spatial extent and connectivity, shortened hydroperiod and increased drought severity, extended hydroperiod and drying pattern reversals, introduction and spread of non-native trees, and introduction and spread of non-native fishes. Major ecological attributes include periphyton mats, plant species diversity and community mosaic, Cape Sable seaside sparrow (Ammodramus maritimus mirabilis), marsh fishes and associated aquatic fauna prey base, American alligator (Alligator mississippiensis), and wading bird early dry season foraging. Water management and development are hypothesized to have a negative effect on the ecological attributes of the southern marl prairies in the following ways. Periphyton mats have decreased in cover in areas where hydroperiod has been significantly reduced and changed in community composition due to inverse responses to increased nutrient availability. Plant species diversity and

  4. Sylvatic plague vaccine and management of prairie dogs

    Science.gov (United States)

    Rocke, Tonie E.

    2012-01-01

    Scientists at the USGS National Wildlife Health Center (NWHC), in collaboration with colleagues at the University of Wisconsin (UW), have developed a sylvatic plague vaccine that shows great promise in protecting prairie dogs against plague (Mencher and others, 2004; Rocke and others, 2010). Four species of prairie dogs reside in the United States and Canada, and all are highly susceptible to plague and regularly experience outbreaks with devastating losses. Along with habitat loss and poisoning, plague has contributed to a significant historical decline in prairie dog populations. By some estimates, prairie dogs now occupy only 1 to 2 percent of their former range (Proctor and others, 2006), with prairie dog colonies being now much smaller and fragmented than they were historically, making individual colonies more vulnerable to elimination by plague (Antolin and others, 2002). At least one species, the Utah prairie dog (Cynomys parvidens) is listed by the U.S. Fish and Wildlife Service (FWS) as "threatened." Controlling plague is a vital concern for ongoing management and conservation efforts for prairie dogs. Current efforts to halt the spread of plague in prairie dog colonies typically rely on dusting individual prairie dog burrows with pesticides to kill plague-infected fleas. Although flea-control insecticides, such as deltamethrin, are useful in stopping plague outbreaks in these prairie dog colonies, dusting of burrows is labor intensive and time consuming and may affect other insects and arthropods. As an alternative approach, NWHC and UW scientists developed a sylvatic plague vaccine (SPV) for prairie dogs that can be delivered via oral bait. Laboratory studies have shown that consumption of this vaccine-laden bait by different prairie dog species results in significant protection against plague infection that can last for at least 9 months (Rocke and others, 2010; Rocke, unpublished). Work has now shifted to optimizing baits and distribution methods for

  5. Carcass Search & Recovery Guidelines for Black Tailed Prairie Dogs

    Science.gov (United States)

    The availability of dead or intoxicated prairie dogs above ground will be monitored, recorded and these carcasses will be properly disposed of, in accordance with the procedures described on this page.

  6. NPP Grassland: Konza Prairie, USA, 1984-1990, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains three ASCII files (.txt format). Two files contain above-ground biomass and productivity data for a humid temperate tall-grass prairie...

  7. Two decades of prairie restoration at Fermilab, Batavia, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Betz, R.F. [Northeastern Illinois Univ., Chicago, IL (United States); Lootens, R.J.; Becker, M.K. [Fermi National Accelerator Lab., Batavia, IL (United States)

    1996-12-31

    Successional Restoration is the method being used to restore the prairie at Fermilab on the former agricultural fields. This involves an initial planting, using aggressive species that have wide ecological tolerances which will grow well on abandoned agricultural fields. Collectively, these species are designated as the prairie matrix. The species used for this prairie matrix compete with and eventually eliminate most weedy species. They also provide an adequate fuel load capable of sustaining a fire within a few years after a site has been initially planted. Associated changes in the biological and physical structure of the soil help prepare the way for the successful introduction of plants of the later successional species. Only after the species of the prairie matrix are well established, is the species diversity increased by introducing species with narrower ecological tolerances. These species are thus characteristic of the later successional stages.

  8. Public knowledge and perceptions of black-tailed prairie dogs

    Science.gov (United States)

    Lamb, B.L.; Cline, K.

    2003-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) historically occupied an 11-state region of the United States. We surveyed 1,900 residents (response rate 56%) of this region to understand citizen knowledge and perceptions about prairie dogs and their management. Those who have direct experience - e.g., those who live very close to prairie dog colonies or know the location of the nearest colony - have higher levels of knowledge. A significantly higher level of knowledge was documented among those who were politically active when compared with the general public. Those who found environmental issues difficult to understand were associated with lower knowledge. People with direct experience were likely to hold negative views, whereas those holding environmentalist values were likely to express positive attitudes toward the species. Although those with higher education reported more knowledge, there was no link between a person's level of knowledge and perceptions of prairie dog management.

  9. Brant Prairie : Union Gas customer service centre, Brantford, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Hensel, M.J.; Thompson, J. [The Walter Fedy Partnership, Kitchener, ON (Canada)

    1998-12-31

    The four-acre ecological restoration of tall grass prairie, wetland and Savannah ecosystems within the Union Gas Customer Service Centre in Brantford, Ontario is discussed. The restoration of the Brant Prairie site was instigated three years ago through Union Gas` land stewardship and environmental action initiative which tried to encourage the diversity and dynamics of each ecosystem, while creating a community resource for visitors to learn about natural heritage. The Brantford initiative includes: (1) protecting the sedge wetland which contained regionally rare species, (2) maintaining the dynamic water budget while protecting the sedge wetland from roadway contaminants, (3) creating a tall grass prairie similar in diversity and aesthetics to Brantford`s surviving prairie remnants, (4) creating a wildlife habitat for butterflies, birds and aquatic species, and (5) rediscovering partridge pea by uncovering a historic seed bank.

  10. Proceedings of the third prairie conservation and endangered species workshop

    Energy Technology Data Exchange (ETDEWEB)

    Holroyd, G.L.; Diskson, H.L.; Regnier, M.; Smith, H.C. (eds.)

    1993-01-01

    The Canadian prairies support a major agricultural economy and a declining abundance of wildlife. Soil erosion and water quality threaten the long-term viability of agriculture; half of Canada's endangered and threatened birds and mammals share the prairies. Wise policies of resource management are needed to solve these problems. A workshop was held to address the issue of how to manage the prairies to promote sustained agriculture and to conserve the wildlife that are in jeopardy. Papers were presented on the relationships between agriculture and wildlife, land restoration, climate change, pesticides, the Prairie Conservation Action Plan, plant conservation, amphibians, reptiles, migratory birds and other wildfowl, and mammals. Separate abstracts have been prepared for two papers from this workshop.

  11. Disease limits populations: plague and black-tailed prairie dogs

    Science.gov (United States)

    Cully, Jack F.; Johnson, T.; Collinge, S.K.; Ray, C.

    2010-01-01

    Plague is an exotic vector-borne disease caused by the bacterium Yersinia pestis that causes mortality rates approaching 100% in black-tailed prairie dogs (Cynomys ludovicianus). We mapped the perimeter of the active portions of black-tailed prairie dog colonies annually between 1999 and 2005 at four prairie dog colony complexes in areas with a history of plague, as well as at two complexes that were located outside the distribution of plague at the time of mapping and had therefore never been affected by the disease. We hypothesized that the presence of plague would significantly reduce overall black-tailed prairie dog colony area, reduce the sizes of colonies on these landscapes, and increase nearest-neighbor distances between colonies. Within the region historically affected by plague, individual colonies were smaller, nearest-neighbor distances were greater, and the proportion of potential habitat occupied by active prairie dog colonies was smaller than at plague-free sites. Populations that endured plague were composed of fewer large colonies (>100 ha) than populations that were historically plague free. We suggest that these differences among sites in colony size and isolation may slow recolonization after extirpation. At the same time, greater intercolony distances may also reduce intercolony transmission of pathogens. Reduced transmission among smaller and more distant colonies may ultimately enhance long-term prairie dog population persistence in areas where plague is present.

  12. Interspecific comparisons of sylvatic plague in prairie dogs

    Science.gov (United States)

    Cully, J.F.; Williams, E.S.

    2001-01-01

    Of the 3 major factors (habitat loss, poisoning, and disease) that limit abundance of prairie dogs today, sylvatic plague caused by Yersinia pestis is the 1 factor that is beyond human control. Plague epizootics frequently kill >99% of prairie dogs in infected colonies. Although epizootics of sylvatic plague occur throughout most of the range of prairie dogs in the United States and are well described, long-term maintenance of plague in enzootic rodent species is not well documented or understood. We review dynamics of plague in white-tailed (Cynomys leucurus), Gunnison's (C. gunnisoni), and black-tailed (C. ludovicianus) prairie dogs, and their rodent and flea associates. We use epidemiologic concepts to support an enzootic hypothesis in which the disease is maintained in a dynamic state, which requires transmission of Y. pestis to be slower than recruitment of new susceptible mammal hosts. Major effects of plague are to reduce colony size of black-tailed prairie dogs and increase intercolony distances within colony complexes. In the presence of plague, black-tailed prairie dogs will probably survive in complexes of small colonies that are usually >3 km from their nearest neighbor colonies.

  13. Black-tailed prairie dogs, cattle, and the conservation of North America's arid grasslands.

    Directory of Open Access Journals (Sweden)

    Rodrigo Sierra-Corona

    Full Text Available Prairie dogs (Cynomys spp. have been eliminated from over 95% of their historic range in large part from direct eradication campaigns to reduce their purported competition with cattle for forage. Despite the longstanding importance of this issue to grassland management and conservation, the ecological interactions between cattle and prairie dogs have not been well examined. We address this issue through two complementary experiments to determine if cattle and prairie dogs form a mutualistic grazing association similar to that between prairie dogs and American bison. Our experimental results show that cattle preferentially graze along prairie dog colony edges and use their colony centers for resting, resembling the mutualistic relationship prairie dogs have with American bison. Our results also show that prairie dog colonies are not only an important component of the grassland mosaic for maintaining biodiversity, but also provide benefits to cattle, thereby challenging the long-standing view of prairie dogs as an undesirable pest species in grasslands.

  14. Investigation of the Transcriptome of Prairie Cord Grass, a New Cellulosic Biomass Crop

    KAUST Repository

    Gedye, Kristene; Gonzalez-Hernandez, Jose; Ban, Yuguang; Ge, Xijin; Thimmapuram, Jyothi; Sun, Fengjie; Wright, Chris; Ali, Shahjahan; Boe, Arvid; Owens, Vance

    2010-01-01

    in this paper describes the first investigation of the transcriptome of prairie cordgrass via Next Generation Sequencing Technology, 454 GS FLX. A total of 556,198 expressed sequence tags (ESTs) were produced from four prairie cordgrass tissues: roots, rhizomes

  15. Prairie revegetation of a strip mine in Illinois: fifteen years after establishment

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, E.A.; Anderson, R.C.; Rodgers, C.S. [Illinois State University, Normal, IL (United States). Dept. of Biological Sciences

    1996-12-01

    The long-term success of prairie planting on a former strip mine in northeastern Illinois was investigated. The site was reclaimed and planted with prairie species in the 1970s. Total biomass increased over time, largely as a result of an increase in biomass of non-prairie species. Biomass of prairie species remained unchanged because of an increase in Panicum virgatum (switchgrass) offsetting decreases in Sorghastrum nutans (Indian grass).

  16. Small mammals in successional prairie woodlands of the northern Great Plains

    Science.gov (United States)

    Mark A. Rumble; John E. Gobeille

    2001-01-01

    Prairie woodlands comprise about 1 percent of the landscape in the northern Great Plains. However, prairie woodlands provide habitat for far more than 1 percent of the wildlife species that occur in the prairie region. With increasing pressures on natural resources, managers need methods for managing wildlife habitat and biodiversity that are based on ecological...

  17. 76 FR 77245 - Attwater Prairie Chicken National Wildlife Refuge, Austin and Colorado Counties, TX...

    Science.gov (United States)

    2011-12-12

    ...-FF02R06000] Attwater Prairie Chicken National Wildlife Refuge, Austin and Colorado Counties, TX... (EA) for Attwater Prairie Chicken National Wildlife Refuge (Refuge, NWR), located approximately 60... Prairie Chicken NWR draft CCP and EA'' in the subject line of the message. Fax: Attn: Monica Kimbrough...

  18. 75 FR 21649 - Endangered and Threatened Wildlife and Plants; Attwater's Prairie-Chicken (Tympanuchus cupido...

    Science.gov (United States)

    2010-04-26

    ...] Endangered and Threatened Wildlife and Plants; Attwater's Prairie-Chicken (Tympanuchus cupido attwateri... availability of the Attwater's Prairie-Chicken (Tympanuchus cupido attwateri) Recovery Plan, Second Revision. A recovery plan was originally completed for the Attwater's prairie-chicken in 1983 and revised in 1993...

  19. Vulnerability of shortgrass prairie bird assemblages to climate change

    Science.gov (United States)

    Skagen, Susan K.; Dreitz, Victoria; Conrey, Reesa Y.; Yackel, Amy; Panjabi, Arvind O.; Knuffman, Lekha

    2016-01-01

    The habitats and resources needed to support grassland birds endemic to North American prairie ecosystems are seriously threatened by impending climate change. To assess the vulnerability of grassland birds to climate change, we consider various components of vulnerability, including sensitivity, exposure, and adaptive capacity (Glick et al. 2011). Sensitivity encompasses the innate characteristics of a species and, in this context, is related to a species’ tolerance to changes in weather patterns. Groundnesting birds, including prairie birds, are particularly responsive to heat waves combined with drought conditions, as revealed by abundance and distribution patterns (Albright et al. 2010). To further assess sensitivity, we estimated reproductive parameters of nearly 3000 breeding attempts of a suite of prairie birds relative to prevailing weather. Fluctuations in weather conditions in eastern Colorado, 1997-2014, influenced breeding performance of a suite of avian species endemic to the shortgrass prairie, many of which have experienced recent population declines. High summer temperatures and intense rain events corresponded with lower nest survival for most species. Although dry conditions favored nest survival of Burrowing Owls and Mountain Plovers (Conrey 2010, Dreitz et al. 2012), drought resulted in smaller clutch sizes and lower nest survival for passerines (Skagen and Yackel Adams 2012, Conrey et al. in review). Declining summer precipitation may reduce the likelihood that some passerine species can maintain stable breeding populations in this region of the shortgrass prairie.

  20. Prairie dogs increase fitness by killing interspecific competitors.

    Science.gov (United States)

    Hoogland, John L; Brown, Charles R

    2016-03-30

    Interspecific competition commonly selects for divergence in ecology, morphology or physiology, but direct observation of interspecific competition under natural conditions is difficult. Herbivorous white-tailed prairie dogs (Cynomys leucurus) employ an unusual strategy to reduce interspecific competition: they kill, but do not consume, herbivorous Wyoming ground squirrels (Urocitellus elegans) encountered in the prairie dog territories. Results from a 6-year study in Colorado, USA, revealed that interspecific killing of ground squirrels by prairie dogs was common, involving 47 different killers; 19 prairie dogs were serial killers in the same or consecutive years, and 30% of female prairie dogs killed at least one ground squirrel over their lifetimes. Females that killed ground squirrels had significantly higher annual and lifetime fitness than non-killers, probably because of decreased interspecific competition for vegetation. Our results document the first case of interspecific killing of competing individuals unrelated to predation (IK) among herbivorous mammals in the wild, and show that IK enhances fitness for animals living under natural conditions. © 2016 The Author(s).

  1. Evaluating evapotranspiration for six sites in Benton, Spokane, and Yakima counties, Washington, May 1990 to September 1992

    Science.gov (United States)

    Tomlinson, S.A.

    1996-01-01

    This report evaluates evapotranspiration for six sites in Benton, Spokane, and Yakima Counties, Washington. Three sites were located on the Arid Lands Ecology Reserve in Benton County: one at a full-canopy grassland in Snively Basin (Snively Basin site), one at a sparse-canopy grassland adjacent to two weighing lysimeters (grass lysimeter site), and one at a sagebrush grassland adjacent to two weighing lysimeters (sage lysimeter site). Two sites were located on the Turnbull National Wildlife Refuge in Spokane County: one at a full-canopy grassland in a meadow (Turnbull meadow site), the other a full-canopy grassland near a marsh (Turnbull marsh site). The last site was located in a sagebrush grassland in the Black Rock Valley in Yakima County (Black Rock Valley site). The periods of study at the six sites varied, ranging from 5 months at the Black Rock Valley site to more than 2 years at the Snively Basin, grass lysimeter, and sage lysimeter sites. The periods of study were May 1990 to September 1992 for the Snively Basin, grass lysimeter, and sage lysimeter sites; May 1991 to September 1992 for the Turnbull meadow site; May 1991 to April 1992 for the Turnbull marsh site; and March to September 1992 for the Black Rock Valley site. Evapotranspiration and energy-budget fluxes were estimated for the Snively Basin site, the Turnbull meadow site, and the Black Rock Valley site using the Bowen-ratio and Penman-Monteith methods. Daily evapotranspiration for the Snively Basin site was also estimated using a deep-percolation model for the Columbia Basin. The Bowen-ratio method and weighing lysimeters were used at the grass and sage lysimeter sites. The Penman-Monteith method was used at the Turnbull marsh site. Daily evapotranspiration at the sites ranged from under 0.2 millimeter during very dry or cold periods to over 4\\x11millimeters after heavy rainfall or during periods of peak transpiration. At all sites, peak evapotranspiration occurred in spring, coinciding with

  2. Spent fuel storage at Prairie Island: January 1995 status

    International Nuclear Information System (INIS)

    Closs, J.; Kress, L.

    1995-01-01

    The disposal of spent nuclear fuel has been an issue for the US since the inception of the commercial nuclear power industry. In the past decade, it has become a critical factor in the continued operation of some nuclear power plants, including the two units at Prairie Island. As the struggles and litigation over storage alternatives wage on, spent fuel pools continue to fill and plants edge closer to premature shutdown. Due to the delays in the construction of a federal repository, many nuclear power plants have had to seek interim storage alternatives. In the case of Prairie Island, the safest and most feasible option is dry cask storage. This paper discusses the current status of the Independent Spent Fuel Storage Installation (ISFSI) Project at Prairie Island. It provides a historical background to the project, discusses the notable developments over the past year, and presents the projected plans of the Northern States Power Company (NSP) in regards to spent fuel storage

  3. Paltry past-precipitation: Predisposing prairie dogs to plague?

    Science.gov (United States)

    Eads, David; Biggins, Dean E.

    2017-01-01

    The plague bacterium Yersinia pestis was introduced to California in 1900 and spread rapidly as a sylvatic disease of mammalian hosts and flea vectors, invading the Great Plains in the United States by the 1930s to 1940s. In grassland ecosystems, plague causes periodic, devastating epizootics in colonies of black-tailed prairie dogs (Cynomys ludovicianus), sciurid rodents that create and maintain subterranean burrows. In doing so, plague inhibits prairie dogs from functioning as keystone species of grassland communities. The rate at which fleas transmit Y. pestis is thought to increase when fleas are abundant. Flea densities can increase during droughts when vegetative production is reduced and herbivorous prairie dogs are malnourished and have weakened defenses against fleas. Epizootics of plague have erupted frequently in prairie dogs during years in which precipitation was plentiful, and the accompanying cool temperatures might have facilitated the rate at which fleas transmitted Y. pestis. Together these observations evoke the hypothesis that transitions from dry-to-wet years provide conditions for plague epizootics in prairie dogs. Using generalized linear models, we analyzed a 24-year dataset on the occurrence of plague epizootics in 42 colonies of prairie dogs from Colorado, USA, 1982–2005. Of the 33 epizootics observed, 52% erupted during years with increased precipitation in summer. For the years with increased summer precipitation, if precipitation in the prior growing season declined from the maximum of 502 mm to the minimum of 200 mm, the prevalence of plague epizootics was predicted to increase 3-fold. Thus, reduced precipitation may have predisposed prairie dogs to plague epizootics when moisture returned. Biologists sometimes assume dry conditions are detrimental for plague. However, 48% of epizootics occurred during years in which precipitation was scarce in summer. In some cases, an increased abundance of fleas during dry years might

  4. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  5. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies.

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  6. Des broussailles dans les prairies alpines

    Directory of Open Access Journals (Sweden)

    Olivier Camacho

    2009-03-01

    expliquer pourquoi l'embroussaillement gagne des prairies encore exploitées. Si la fauche permet de lutter efficacement contre l’avancée des ligneux, il n’en est pas de même dans les prairies pâturées non fauchées où la capacité de prélèvement par les troupeaux s’avère faible par rapport à la production d’herbe. Cette situation se répète d’année en année et c’est la cause la plus probable de la propagation des ligneux. Pour sécuriser leur système fourrager et pour simplifier le travail, les éleveurs constituent des unités de pâturage surdimensionnées par rapport aux besoins des animaux. Ils mettent en œuvre des pratiques de rattrapage, consistant en un entretien mécanique complémentaire au pâturage, pour contenir la dynamique des ligneux. De telles pratiques, exigeantes en travail, ne sont pas mises en œuvre sur toutes les pâtures. L’analyse des pratiques par des agronomes complète ainsi les études de milieux physiques et socio-économiques tant au niveau de la parcelle pâturée qu’à celui de la vallée.

  7. Outcomes of senior reach gatekeeper referrals: comparison of the Spokane gatekeeper program, Colorado Senior Reach, and Mid-Kansas Senior Outreach.

    Science.gov (United States)

    Bartsch, David A; Rodgers, Vicki K; Strong, Don

    2013-01-01

    Outcomes of older adults referred for care management and mental health services through the senior reach gatekeeper model of case finding were examined in this study and compared with the Spokane gatekeeper model Colorado Senior Reach and the Mid-Kansas Senior Outreach (MKSO) programs are the two Senior Reach Gatekeeper programs modeled after the Spokane program, employing the same community education and gatekeeper model and with mental health treatment for elderly adults in need of support. The three mature programs were compared on seniors served isolation, and depression ratings. Nontraditional community gatekeepers were trained and referred seniors in need. Findings indicate that individuals served by the two Senior Reach Gatekeeper programs demonstrated significant improvements. Isolation indicators such as social isolation decreased and depression symptoms and suicide ideation also decreased. These findings for two Senior Reach Gatekeeper programs demonstrate that the gatekeeper approach to training community partners worked in referring at-risk seniors in need in meeting their needs, and in having a positive impact on their lives.

  8. Nutrient removal by prairie filter strips in agricultural landscapes

    Science.gov (United States)

    X. Zhou; M.J. Helmers; H. Asbjornsen; R. Kolka; M.D. Tomer; R.M. Cruse

    2014-01-01

    Nitrogen (N) and phosphorus (P) from agricultural landscapes have been identified as primary sources of excess nutrients in aquatic systems. The main objective of this study was to evaluate the effectiveness of prairie filter strips (PFS) in removing nutrients from cropland runoff in 12 small watersheds in central Iowa. Four treatments with PFS of different spatial...

  9. Resistance to plague among black-tailed prairie dog populations

    Science.gov (United States)

    Rocke, Tonie E.; Williamson, Judy; Cobble, Kacy R.; Busch, Joseph D.; Antolin, Michael F.; Wagner, David M.

    2012-01-01

    In some rodent species frequently exposed to plague outbreaks caused by Yersinia pestis, resistance to the disease has evolved as a population trait. As a first step in determining if plague resistance has developed in black-tailed prairie dogs (Cynomys ludovicianus), animals captured from colonies in a plague-free region (South Dakota) and two plague-endemic regions (Colorado and Texas) were challenged with Y. pestis at one of three doses (2.5, 250, or 2500 mouse LD50s). South Dakota prairie dogs were far more susceptible to plague than Colorado and Texas prairie dogs (pdogs were quite similar in their response, with overall survival rates of 50% and 60%, respectively. Prairie dogs from these states were heterogenous in their response, with some animals dying at the lowest dose (37% and 20%, respectively) and some surviving even at the highest dose (29% and 40%, respectively). Microsatellite analysis revealed that all three groups were distinct genetically, but further studies are needed to establish a genetic basis for the observed differences in plague resistance.

  10. Food habits of nesting prairie falcons in Campbell County

    Science.gov (United States)

    John R. Squires; Stanley H. Anderson; Robert Oakleaf

    1989-01-01

    Fifteen species of prey were utilized by nesting Prairie Falcons (Falco mexicanus) as determined through pellet analysis. Thirteen-lined Ground Squirrels (Spermophilus tridecemlineatus), the most common prey, were present in 91% of the pellets, followed by Western Meadowlarks (Sturnella neglecta) which were present in 56% of pellets. Horned Larks (Eremophila...

  11. Prairie Restoration Project: Alternatives for Identifying Gifted Students

    Science.gov (United States)

    Salisbury, Katie E.; Rule, Audrey C.; Vander Zanden, Sarah M.

    2016-01-01

    An authentic, challenging curriculum engaged middle school students from an urban district in exploratory work related to restoring a small prairie at the school. Integrated science-literacy-arts activities were coupled with a system of thinking skills that helped students view issues from different perspectives. Impassioned guest speakers and an…

  12. Overview of Prairie Planting Techniques and Maintenance Requirements

    Science.gov (United States)

    2007-02-01

    districts have these drills 6 ERDC TN-EMRRP-ER-05 February 2007 available for rent. A three-point broadcast seeder or a fertilizer spreader can...lengthens the growing season for prairie plants but shortens it for many weedy species (Pauly 1997). Fire allows for nutrient recycling in the ecosystem by

  13. Selected hydrologic data, Camas Prairie, south-central Idaho

    Science.gov (United States)

    Young, H.W.; Backsen, R.L.; Kenyon, K.S.

    1978-01-01

    This report presents data collected during a 1-year study of the water resources of Camas Prairie, Idaho. Included are records of wells, discharge measurements of streams, hydrographs of water levels in wells, water-quality data, and drillers ' logs of wells. The data are conveniently made available to supplement an interpretive report, which will be published separately. (Woodard-USGS)

  14. Camel spider (Solifugae) use of prairie dog colonies

    Science.gov (United States)

    Solifugids (camel spiders) are widespread throughout arid regions of western North America and are thought to be important in structuring desert arthropod communities. Despite the ubiquity of camel spiders, little is known about their ecology. Black-tailed prairie dogs (Cynomys ludovicianus) are als...

  15. Butterfly responses to prairie restoration through fire and grazing

    Science.gov (United States)

    Vogel, Jennifer A.; Debinski, Diane M.; Koford, Rolf R.; Miller, J.R.

    2007-01-01

    The development of land for modern agriculture has resulted in losses of native prairie habitat. The small, isolated patches of prairie habitat that remain are threatened by fire suppression, overgrazing, and invasion by non-native species. We evaluated the effects of three restoration practices (grazing only, burning only, and burning and grazing) on the vegetation characteristics and butterfly communities of remnant prairies. Total butterfly abundance was highest on prairies that were managed with burning and grazing and lowest on those that were only burned. Butterfly species richness did not differ among any of the restoration practices. Butterfly species diversity was highest on sites that were only burned. Responses of individual butterfly species to restoration practices were highly variable. In the best predictive regression model, total butterfly abundance was negatively associated with the percent cover of bare ground and positively associated with the percent cover of forbs. Canonical correspondence analysis revealed that sites with burned only and grazed only practices could be separated based on their butterfly community composition. Butterfly communities in each of the three restoration practices are equally species rich but different practices yield compositionally different butterfly communities. Because of this variation in butterfly species responses to different restoration practices, there is no single practice that will benefit all species or even all species within habitat-specialist or habitat-generalist habitat guilds. ?? 2007 Elsevier Ltd. All rights reserved.

  16. Recommended methods for range-wide monitoring of prairie dogs in the United States

    Science.gov (United States)

    McDonald, Lyman L.; Stanley, Thomas R.; Otis, David L.; Biggins, Dean E.; Stevens, Patricia D.; Koprowski, John L.; Ballard, Warren

    2011-01-01

    One of the greatest challenges for conserving grassland, prairie scrub, and shrub-steppe ecosystems is maintaining prairie dog populations across the landscape. Of the four species of prairie dogs found in the United States, the Utah prairie dog (Cynomys parvidens) is listed under the Endangered Species Act (ESA) as threatened, the Gunnison's prairie dog (C. gunnisoni) is a candidate for listing in a portion of its range, and the black-tailed prairie dog (C. ludovicianus) and white-tailed prairie dog (C. leucurus) have each been petitioned for listing at least once in recent history. Although the U.S. Fish and Wildlife Service (USFWS) determined listing is not warranted for either the black-tailed prairie dog or white-tailed prairie dog, the petitions and associated reviews demonstrated the need for the States to monitor and manage for self-sustaining populations. In response to these findings, a multi-State conservation effort was initiated for the nonlisted species which included the following proposed actions: (1) completing an assessment of each prairie dog species in each State, (2) developing a range-wide monitoring protocol for each species using a statistically valid sampling procedure that would allow comparable analyses across States, and (3) monitoring prairie dog status every 3-5 years depending upon the species. To date, each State has completed an assessment and currently is monitoring prairie dog status; however, for some species, the inconsistency in survey methodology has made it difficult to compare data year-to-year or State-to-State. At the Prairie Dog Conservation Team meeting held in November 2008, there was discussion regarding the use of different methods to survey prairie dogs. A recommendation from this meeting was to convene a panel in a workshop-type forum and have the panel review the different methods being used and provide recommendations for range-wide monitoring protocols for each species of prairie dog. Consequently, the Western

  17. Diets of swift foxes (Vulpes velox) in continuous and fragmented prairie in Northwestern Texas

    Science.gov (United States)

    Kamler, J.F.; Ballard, W.B.; Wallace, M.C.; Gipson, P.S.

    2007-01-01

    Distribution of the swift fox (Vulpes velox) has declined dramatically since the 1800s, and suggested causes of this decline are habitat fragmentation and transformation due to agricultural expansion. However, impacts of fragmentation and human-altered habitats on swift foxes still are not well understood. To better understand what effects these factors have on diets of swift foxes, scats were collected in northwestern Texas at two study sites, one of continuous native prairie and one representing fragmented native prairie interspersed with agricultural and fields in the Conservation Reserve Program. Leporids, a potential food source, were surveyed seasonally on both sites. Diets of swift foxes differed between sites; insects were consumed more on continuous prairie, whereas mammals, birds, and crops were consumed more on fragmented prairie. Size of populations of leporids were 2-3 times higher on fragmented prairie, and swift foxes responded by consuming more leporids on fragmented (11.1% frequency occurrence) than continuous (3.8%) prairie. Dietary diversity was greater on fragmented prairie during both years of the study. Differences in diets between sites suggested that the swift fox is an adaptable and opportunistic feeder, able to exploit a variety of food resources, probably in relation to availability of food. We suggest that compared to continuous native prairie, fragmented prairie can offer swift foxes a more diverse prey base, at least within the mosaic of native prairie, agricultural, and fields that are in the Conservation Reserve Program.

  18. Ecosystem engineering varies spatially: a test of the vegetation modification paradigm for prairie dogs

    Science.gov (United States)

    Baker, Bruce W.; Augustine, David J.; Sedgwick, James A.; Lubow, Bruce C.

    2013-01-01

    Colonial, burrowing herbivores can be engineers of grassland and shrubland ecosystems worldwide. Spatial variation in landscapes suggests caution when extrapolating single-place studies of single species, but lack of data and the need to generalize often leads to ‘model system’ thinking and application of results beyond appropriate statistical inference. Generalizations about the engineering effects of prairie dogs (Cynomys sp.) developed largely from intensive study at a single complex of black-tailed prairie dogs C. ludovicianus in northern mixed prairie, but have been extrapolated to other ecoregions and prairie dog species in North America, and other colonial, burrowing herbivores. We tested the paradigm that prairie dogs decrease vegetation volume and the cover of grasses and tall shrubs, and increase bare ground and forb cover. We sampled vegetation on and off 279 colonies at 13 complexes of 3 prairie dog species widely distributed across 5 ecoregions in North America. The paradigm was generally supported at 7 black-tailed prairie dog complexes in northern mixed prairie, where vegetation volume, grass cover, and tall shrub cover were lower, and bare ground and forb cover were higher, on colonies than at paired off-colony sites. Outside the northern mixed prairie, all 3 prairie dog species consistently reduced vegetation volume, but their effects on cover of plant functional groups varied with prairie dog species and the grazing tolerance of dominant perennial grasses. White-tailed prairie dogs C. leucurus in sagebrush steppe did not reduce shrub cover, whereas black-tailed prairie dogs suppressed shrub cover at all complexes with tall shrubs in the surrounding habitat matrix. Black-tailed prairie dogs in shortgrass steppe and Gunnison's prairie dogs C. gunnisoni in Colorado Plateau grassland both had relatively minor effects on grass cover, which may reflect the dominance of grazing-tolerant shortgrasses at both complexes. Variation in modification of

  19. Avoidance behavior by prairie grouse: implications for development of wind energy.

    Science.gov (United States)

    Pruett, Christin L; Patten, Michael A; Wolfe, Donald H

    2009-10-01

    New wind-energy facilities and their associated power transmission lines and roads are being constructed at a rapid pace in the Great Plains of North America. Nevertheless, little is known about the possible negative effects these anthropogenic features might have on prairie birds, one of the most threatened groups in North America. We examined radiotelemetry tracking locations of Lesser Prairie-Chickens (Tympanuchus pallidicinctus) and Greater Prairie-Chickens (T. cupido) in two locations in Oklahoma to determine whether these birds avoided or changed movement behavior near power lines and paved highways. We tracked 463 Lesser Prairie-Chickens (15,071 tracking locations) and 216 Greater Prairie-Chickens (5,750 locations) for 7 and 3 years, respectively. Individuals of both species avoided power lines by at least 100 m and Lesser Prairie-Chickens avoided one of the two highways by 100 m. Prairie-chickens crossed power lines less often than expected if birds moved randomly (p 0.05). In addition, home ranges of Lesser Prairie-Chickens overlapped the power line less often than would be expected by chance placement of home ranges; this result was supported by kernel-density estimation of home ranges. It is likely that new power lines (and other tall structures such as wind turbines) will lead to avoidance of previously suitable habitat and will serve as barriers to movement. These two factors will likely increase fragmentation in an already fragmented landscape if wind energy development continues in prairie habitats.

  20. Sources, transport, and trends for selected trace metals and nutrients in the Coeur d'Alene and Spokane River Basins, Idaho, 1990-2013

    Science.gov (United States)

    Clark, Gregory M.; Mebane, Christopher A.

    2014-01-01

    Data collected at 18 streamflow-gaging and water-quality sampling sites in the Coeur d’Alene and Spokane River Basins of northern Idaho were used to estimate mean streamflow‑weighted concentrations and annual loads of total and dissolved cadmium, lead, and zinc, and total phosphorus (TP) and nitrogen (TN) for water years (WYs) 2009–13. Chronic Ambient Water Quality Criteria (AWQC) and AWQC ratios also were calculated to evaluate Idaho aquatic life criteria for chronic exposure to cadmium and zinc in streams. At four sites with a longer period of record, a Seasonal Kendall trend test was used to assess historical trends in the concentrations of total cadmium, lead, and zinc, and chronic AWQC ratios for cadmium and zinc during WYs 1990–2013.

  1. Climate impacts on the agribusiness sectors of a prairie economy

    International Nuclear Information System (INIS)

    Arthur, L.M.; Kooten, G.C. Van.

    1992-01-01

    Global warming is likely to result in increased agricultural output on the Canadian prairies. However, using input-output analysis, it is shown that the potential impact of global warming on agribusiness, while significant, is both uncertain and relatively small compared to the impact of government agricultural policies pertaining to the grain and livestock sectors. Furthermore, caution is required in deciding whether or not western Canada and prairie agribusinesses are net beneficiaries of a greenhouse effect because climate-induced changes in agricultural output elsewhere in the world still need to be taken into account. Most previous studies on American and European agriculture under the greenhouse effect predict reduced yields of current crops, which could mean improved markets for Canadian crops. 27 refs., 4 figs., 2 tabs

  2. Prairie rattlesnake envenomation in 27 New World camelids.

    Science.gov (United States)

    Sonis, J M; Hackett, E S; Callan, R J; Holt, T N; Hackett, T B

    2013-01-01

    Morbidity and case fatality from rattlesnake envenomation is regionally specific because of variability in relative toxicity of the species of snake encountered. A previous report of rattlesnake envenomation in New World camelids (NWC) from the western coastal United States documented high case fatality rates and guarded prognosis for survival. To describe clinical findings, treatments, and outcome of NWC with prairie rattlesnake (Crotalus viridis viridis) envenomation in the Rocky Mountain region of the United States. Twenty-seven NWC admitted to the Colorado State University Veterinary Teaching Hospital for evaluation of acute rattlesnake envenomation between 1992 and 2012. Medical records of NWC evaluated for rattlesnake envenomation as coded by the attending clinician and identified by a database search were reviewed retrospectively. Month of admission, signalment, area of bite, clinical and clinicopathologic data, treatments, and outcome were recorded. Twenty-five llamas and 2 alpacas were admitted for envenomation. Llamas were overrepresented compared to hospital caseload. The face was the most common site of envenomation, observed in 96% of recorded cases. Presenting clinical signs included fever, tachypnea, tachycardia, and respiratory distress. Nine animals required a tracheotomy. Median hospitalization time was 3 days and overall survival rate was 69%. Case fatality rate for prairie rattlesnake envenomation in NWC was lower than that reported in the Western coastal region of the United States and similar to that reported for prairie rattlesnake envenomation in horses. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  3. Resting state brain networks in the prairie vole.

    Science.gov (United States)

    Ortiz, Juan J; Portillo, Wendy; Paredes, Raul G; Young, Larry J; Alcauter, Sarael

    2018-01-19

    Resting state functional magnetic resonance imaging (rsfMRI) has shown the hierarchical organization of the human brain into large-scale complex networks, referred as resting state networks. This technique has turned into a promising translational research tool after the finding of similar resting state networks in non-human primates, rodents and other animal models of great value for neuroscience. Here, we demonstrate and characterize the presence of resting states networks in Microtus ochrogaster, the prairie vole, an extraordinary animal model to study complex human-like social behavior, with potential implications for the research of normal social development, addiction and neuropsychiatric disorders. Independent component analysis of rsfMRI data from isoflurane-anestethized prairie voles resulted in cortical and subcortical networks, including primary motor and sensory networks, but also included putative salience and default mode networks. We further discuss how future research could help to close the gap between the properties of the large scale functional organization and the underlying neurobiology of several aspects of social cognition. These results contribute to the evidence of preserved resting state brain networks across species and provide the foundations to explore the use of rsfMRI in the prairie vole for basic and translational research.

  4. Interspecific nutrient transfer in a tallgrass prairie plant community

    International Nuclear Information System (INIS)

    Walter, L.E.F.; Hartnett, D.C.; Hetrick, B.A.D.; Schwab, A.P.

    1996-01-01

    Interplant nutrient transfer may be an important ecological process in grasslands, and may significantly influence plant neighborhood interactions. We investigated the potential for phosphorus transfer between the dominant grass Andropogon gerardii and several neighboring plant species in tallgrass prairie via a field 32PO4 labelling experiment. The mean amount of 32P received from donor shoots differed significantly among neighboring species and decreased with increasing distance from the donor. In general, forbs and cool-season C3 grasses received more labelled 32P than warm-season C4 grasses. Phosphorus transfer occurred over distances up to 0.5 m. The effects of species and distance on movement of phosphorus changed with increasing time after labelling. The relative mass of receiver and donor shoots did not affect amounts of 32P transfer. A benomyl fungicide treatment, applied to suppress mycorrhizal activity, likely did not affect existing vegetative hyphae and did not affect the amount of 32P transferred. These studies demonstrate that: (1) phosphorus is transferred among neighboring species in tallgrass prairie plant communities, (2) phosphorus may be transferred over significantly greater distances than reported in other grasslands, and (3) there is differential transfer among co-occurring species. Hypothesized mechanisms accounting for these patterns in tallgrass prairie include mycorrhizal hyphal interconnections and/or extensive and differential root and rhizosphere overlap among neighboring species

  5. COMPARISON OF THE POPULATIONS OF COMMON WOOD-NYMPH BUTTERFLIES IN BURNED PRAIRIE, UNBURNED PRAIRIE AND OLD FIELD GRASSES

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, M.; Walton, R.

    2007-01-01

    Common wood-nymph butterfl ies are found throughout the United States and Canada. However, not much is known about how they overwinter or their preferences for particular grasses and habitats. In this study, the impact of prairie management plans on the abundance of the wood-nymph population was assessed, as well as the preference of these butterfl ies for areas with native or non-native grasses. The abundance of common wood-nymph butterfl ies was determined using Pollard walks; more common wood-nymph butterfl ies were found in the European grasses than were found in the burned and unburned prairie sites. The majority of the vegetation at each of the three sites was identifi ed and documented. Using a 1 X 3 ANOVA analysis, it was determined there were signifi cantly more butterfl ies in the European grasses than in the burned and unburned prairie sites (p < 0.0005). There was no signifi cant difference between the burned and unburned treatments of the prairie on the common wood-nymph population. A multiple variable linear regression model described the effect of temperature and wind speed on the number of observed common wood-nymph butterfl ies per hour (p = 0.026). These preliminary results need to be supplemented with future studies. Quadrat analysis of the vegetation from all three sites should be done to search for a correlation between common wood-nymph butterfl y abundance per hour and the specifi c types or quantity of vegetation at each site. The effect of vegetation height and density on the observer’s visual fi eld should also be assessed.

  6. Tuberculosis transmission in the Indigenous peoples of the Canadian prairies.

    Science.gov (United States)

    Patel, Smit; Paulsen, Catherine; Heffernan, Courtney; Saunders, Duncan; Sharma, Meenu; King, Malcolm; Hoeppner, Vernon; Orr, Pamela; Kunimoto, Dennis; Menzies, Dick; Christianson, Sara; Wolfe, Joyce; Boffa, Jody; McMullin, Kathleen; Lopez-Hille, Carmen; Senthilselvan, Ambikaipakan; Long, Richard

    2017-01-01

    The prairie provinces of Canada. To characterize tuberculosis (TB) transmission among the Indigenous and non-Indigenous Canadian-born peoples of the prairie provinces of Canada. A prospective epidemiologic study of consecutively diagnosed adult (age ≥ 14 years) Canadian-born culture-positive pulmonary TB cases on the prairies, hereafter termed "potential transmitters," and the transmission events generated by them. "Transmission events" included new positive tuberculin skin tests (TSTs), TST conversions, and secondary cases among contacts. In the years 2007 and 2008, 222 potential transmitters were diagnosed on the prairies. Of these, the vast majority (198; 89.2%) were Indigenous peoples who resided in either an Indigenous community (135; 68.2%) or a major metropolitan area (44; 22.2%). Over the 4.5-year period between July 1st, 2006 and December 31st 2010, 1085 transmission events occurred in connection with these potential transmitters. Most of these transmission events were attributable to potential transmitters who identified as Indigenous (94.5%). With a few notable exceptions most transmitters and their infected contacts resided in the same community type. In multivariate models positive smear status and a higher number of close contacts were associated with increased transmission; adjusted odds ratios (ORs) and 95% confidence intervals (CIs), 4.30 [1.88, 9.84] and 2.88 [1.31, 6.34], respectively. Among infected contacts, being Indigenous was associated with disease progression; OR and 95% CI, 3.59 [1.27, 10.14] and 6.89 [2.04, 23.25] depending upon Indigenous group, while being an infected casual contact was less likely than being a close contact to be associated with disease progression, 0.66 [0.44, 1.00]. In the prairie provinces of Canada and among Canadian-born persons, Indigenous peoples account for the vast majority of cases with the potential to transmit as well as the vast majority of infected contacts. Active case finding and preventative therapy

  7. 77 FR 24975 - Endangered and Threatened Wildlife and Plants; Revised Recovery Plan for the Utah Prairie Dog

    Science.gov (United States)

    2012-04-26

    ...-FF06E00000] Endangered and Threatened Wildlife and Plants; Revised Recovery Plan for the Utah Prairie Dog... Utah prairie dog (Cynomys parvidens). This species is federally listed as threatened under the... recovery plan for the Utah prairie dog. The Service and other Federal agencies also will take these...

  8. 75 FR 57055 - Endangered and Threatened Wildlife and Plants; Draft Revised Recovery Plan for Utah Prairie Dog

    Science.gov (United States)

    2010-09-17

    ...] Endangered and Threatened Wildlife and Plants; Draft Revised Recovery Plan for Utah Prairie Dog AGENCY: Fish... recovery plan for the Utah prairie dog (Cynomys parvidens). This species is federally listed as threatened... and peer reviewers in an appendix to the approved recovery plan. The Utah prairie dog (Cynomys...

  9. 76 FR 31906 - Endangered and Threatened Wildlife and Plants; Revising the Special Rule for the Utah Prairie Dog

    Science.gov (United States)

    2011-06-02

    ... Special Rule for the Utah Prairie Dog AGENCY: Fish and Wildlife Service, Interior. ACTION: Proposed rule... prairie dog. We are proposing to revise the existing limits on take, and we also propose a new incidental... dogs see: http://www.fws.gov/mountain-prairie/species/mammals/UTprairiedog or http://ecos.fws.gov...

  10. 77 FR 46157 - Endangered and Threatened Wildlife and Plants; Revising the Special Rule for the Utah Prairie Dog

    Science.gov (United States)

    2012-08-02

    ... Utah Prairie Dog; Final Rule #0;#0;Federal Register / Vol. 77 , No. 149 / Thursday, August 2, 2012...-AW02 Endangered and Threatened Wildlife and Plants; Revising the Special Rule for the Utah Prairie Dog... special regulations for the conservation of the Utah prairie dog. We are revising our special regulations...

  11. 78 FR 26302 - Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken as a Threatened...

    Science.gov (United States)

    2013-05-06

    ...; 4500030113] RIN 1018-AY21 Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken... the lesser prairie-chicken (Tympanuchus pallidicinctus). In addition, we announce the reopening of the public comment period on the December 11, 2012, proposed rule to list the lesser prairie-chicken as a...

  12. 78 FR 75306 - Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken as a Threatened...

    Science.gov (United States)

    2013-12-11

    ...; 4500030113] RIN 1018-AY21 Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken... the conservation of the lesser prairie-chicken (Tympanuchus pallidicinctus). In addition, we announce... prairie-chicken as a threatened species under the Act. We also announce the availability of the final...

  13. Annual Fire, Mowing and Fertilization Effects on Two Cicada Species (Homoptera: Cicadidae) in Tallgrass Prairie

    Science.gov (United States)

    Mac A. Callaham; Matt R. Whiles; John M. Blair

    2002-01-01

    In tallgrass prairie, cicadas emerge annually, are abundant and their emergence can be an important flux of energy and nutrients. However, factors influencing the distribution and abundance of these cicadas are virtually unknown. We examined cicada emergence in plots from a long-term (13 y) experimental manipulation involving common tallgrass prairie management...

  14. Ecology of fire in shortgrass prairie of the southern Great Plains

    Science.gov (United States)

    Paulette L. Ford; Guy R. McPherson

    1996-01-01

    The ecology of fire in shortgrass prairie of the southern Great Plains includes a complex interaction between the shortgrass prairie ecosystem and its inhabitants, all inextricably linked to land-use patterns. The history of the relationship between man and fire has been filled with ambivalence and mistrust, along with an appreciation of the power of fire as a...

  15. 77 FR 75119 - Dakota Prairie Grasslands, North Dakota; Oil and Gas Development Supplemental Environmental...

    Science.gov (United States)

    2012-12-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Dakota Prairie Grasslands, North Dakota; Oil and Gas... to prepare a supplemental environmental impact statement. SUMMARY: In June of 2003, the Dakota... Dakota Prairie Grasslands Land and Resource Management Plan, based on the 2001 Northern Great Plains...

  16. The role of prairie dogs as a keystone species: response to Stapp

    Science.gov (United States)

    B. Miller; R. Reading; J. Hoogland; T. Clark; G. Ceballos; R. List; S. Forrest; L. Hanebury; P. Manzano; J. Pacheco; D. Uresk

    2000-01-01

    Stapp (1998) recently argued that it was premature to characterize prairie dogs (Cynomys spp.) as keystone species. In particular, Stapp directed much of his criticism at a paper some of us wrote (Miller et al. 1994). He mistakenly interprets the main objective of our paper as providing evidence that prairie dogs are keystone species. Rather, the...

  17. Review of black-tailed prairie dog reintroduction strategies and site selection: Arizona reintroduction

    Science.gov (United States)

    Sarah L. Hale; John L. Koprowski; Holly Hicks

    2013-01-01

    The black-tailed prairie dog (Cynomys ludovicianus) was once widely distributed throughout the western United States; however, anthropogenic influences have reduced the species’ numbers to 2 percent of historical populations. Black-tailed prairie dogs are described as a keystone species in the grassland ecosystem, and provide many unique services, including burrows for...

  18. Black-tailed prairie dog (Cynomys ludovicianus) response to seasonality and frequency of fire

    Science.gov (United States)

    Felicia D. Archuleta

    2014-01-01

    Fragmentation of the landscape, habitat loss, and fire suppression, all a result of European settlement and activities, have precipitated both the decline of Black-tailed prairie dog (Cynomys ludovicianus) populations and the occurrence of fire throughout the Great Plains, including the Shortgrass steppe of northeastern New Mexico. The presence of Black-tailed prairie...

  19. Prairie dog decline reduces the supply of ecosystem services and leads to desertification of semiarid grasslands.

    Directory of Open Access Journals (Sweden)

    Lourdes Martínez-Estévez

    Full Text Available Anthropogenic impacts on North American grasslands, a highly endangered ecosystem, have led to declines of prairie dogs, a keystone species, over 98% of their historical range. While impacts of this loss on maintenance of grassland biodiversity have been widely documented, much less is known about the consequences on the supply of ecosystem services. Here we assessed the effect of prairie dogs in the supply of five ecosystem services by comparing grasslands currently occupied by prairie dogs, grasslands devoid of prairie dogs, and areas that used to be occupied by prairie dogs that are currently dominated by mesquite scrub. Groundwater recharge, regulation of soil erosion, regulation of soil productive potential, soil carbon storage and forage availability were consistently quantitatively or qualitatively higher in prairie dog grasslands relative to grasslands or mesquite scrub. Our findings indicate a severe loss of ecosystem services associated to the absence of prairie dogs. These findings suggest that contrary to a much publicize perception, especially in the US, prairie dogs are fundamental in maintaining grasslands and their decline have strong negative impacts in human well - being through the loss of ecosystem services.

  20. Plant composition in oak savanna and woodland restoration at Prairie Fork Conservation Area in Missouri

    Science.gov (United States)

    Nadia E. Navarrete-Tindall; J.W. Van Sambeek; Jamie Coe; Warren Taylor

    2007-01-01

    The wooded areas of the Prairie Fork Conservation Area in central Missouri are typical of the oak/hickory forest/prairie transition zone that will require active management to restore pre-settlement, grass dominated savannas and open woodlands to improve habitat for wildlife. We initiated a management program to restore savannas and woodlands by reducing the midstory (...

  1. Demography of black-tailed prairie dog populations reoccupying sites treated with rodenticide

    Science.gov (United States)

    R. P. Cincotta; Daniel W. Uresk; R. M. Hansen

    1987-01-01

    A rodenticide, zinc phosphide, was applied to remove black-tailed prairie dogs (Cynomys ludovicianus) from 6 haofa prairie dog colony in southwestern South Dakota. Another adjacent 6 ha was left untreated. The removal experiment was repeated two consecutive years. Contingency table analysis showed that the resultant population was not homogeneous;...

  2. Prairie chicken populations of the Sheyenne Delta in North Dakota, 1961-1987

    Science.gov (United States)

    Jerry D. Kobriger; David P. Vollink; Michael E. Mcneill; Kenneth F. Higgins

    1988-01-01

    Prairie chickens (Tympanuchus cupido pinnatus) were first censused on the Sheyenne Grasslands in 1961. The population was extremely low in the 1960's, gradually increased in the 1970's, and reached a peak of 410 in 1980. Sufficient evidence exists to link the increase in numbers of prairie chickens on the grasslands from 1961 through 1987...

  3. Effect of mid-summer haying on growth and reproduction in prairie forbs

    Science.gov (United States)

    Becky Begay; Helen M. Alexander; Erin Questad

    2011-01-01

    Mid-summer haying is a common management practice for prairies; plant species could differ in the effect of haying on subsequent growth and reproduction. We examined the effect of haying on prairie species by performing a clipping experiment. For each of seven species, sixteen plants were chosen and half were randomly assigned to a clipping treatment and half to a...

  4. Physiologic Reference Ranges for Captive Black-Tailed Prairie Dogs (Cynomys ludovicianus)

    Science.gov (United States)

    Keckler, M Shannon; Gallardo-Romero, Nadia F; Langham, Gregory L; Damon, Inger K; Karem, Kevin L; Carroll, Darin S

    2010-01-01

    The black-tailed prairie dog (Cynomys ludovicianus) is a member of the order Rodentia and the family Sciuridae. Ecologically, prairie dogs are a keystone species in prairie ecology. This species is used as an animal model for human gallbladder disease and diseases caused by infection with Clostridium difficile, Yersinia pestis, Francisella tularensis, and most recently, Orthopoxvirus. Despite increasing numbers of prairie dogs used in research and kept as pets, few data are available on their baseline physiology in animal facility housing conditions. To establish baseline physiologic reference ranges, we designed a study using 18 wild-caught black-tailed prairie dogs. Telemetry data were analyzed to establish circadian rhythms for activity and temperature. In addition, hematologic and serum chemistry analyses were performed. Baseline measurements were used to establish the mean for each animal, which then were compiled and analyzed to determine the reference ranges. Here we present physiologic data on serum chemistry and hematology profiles, as well as weight, core body temperature, and daily activity patterns for black-tailed prairie dogs. These results reflect the use of multiple measurements from species- and age-matched prairie dogs and likely will be useful to ecologists, scientists interested in using this animal model in research, and veterinarians caring for pet prairie dogs. PMID:20587156

  5. A novel approach for assessing density and range-wide abundance of prairie dogs

    Science.gov (United States)

    Aaron N. Facka; Paulette L. Ford; Gary W. Roemer

    2008-01-01

    Habitat loss, introduced disease, and government-sponsored eradication programs have caused population declines in all 5 species of prairie dogs. Black-tailed prairie dogs (Cynomys ludovicianus) currently occupy only about 2% of an extensive geographic range (160 million hectares) and were recently considered for listing under the United States...

  6. Citizen knowledge and perception of black-tailed prairie dog management: Report to respondents

    Science.gov (United States)

    Sexton, Natalie R.; Brinson, Ayeisha; Ponds, Phadrea D.; Cline, Kurt; Lamb, Berton L.

    2001-01-01

    What do citizens know about black-tailed prairie dogs, and where do they get their information? When management decisions need to be made regarding an animal such as the black-tailed prairie dog, an understanding of the species and its relationship to humans is necessary. This includes knowing the biology of the animal, where it lives, and how it interacts with other animals. But it is equally important for those making decisions about the species to understand citizens’ knowledge and perceptions so managers can effectively communicate with the public and help the public participate in planning and decision making activities. Unfortunately, what is known about public knowledge, perception, and preferences concerning prairie dog management is limited to data from only a few areas. This study attempts to answer the question: What do people in the short-grass prairie region of the United States know and think about black-tailed prairie dogs?

  7. Precipitation, Climate Change, and Parasitism of Prairie Dogs by Fleas that Transmit Plague.

    Science.gov (United States)

    Eads, David A; Hoogland, John L

    2017-08-01

    Fleas (Insecta: Siphonaptera) are hematophagous ectoparasites that can reduce the fitness of vertebrate hosts. Laboratory populations of fleas decline under dry conditions, implying that populations of fleas will also decline when precipitation is scarce under natural conditions. If precipitation and hence vegetative production are reduced, however, then herbivorous hosts might suffer declines in body condition and have weakened defenses against fleas, so that fleas will increase in abundance. We tested these competing hypotheses using information from 23 yr of research on 3 species of colonial prairie dogs in the western United States: Gunnison's prairie dog (Cynomys gunnisoni, 1989-1994), Utah prairie dog (Cynomys parvidens, 1996-2005), and white-tailed prairie dog (Cynomys leucurus, 2006-2012). For all 3 species, flea-counts per individual varied inversely with the number of days in the prior growing season with >10 mm of precipitation, an index of the number of precipitation events that might have caused a substantial, prolonged increase in soil moisture and vegetative production. Flea-counts per Utah prairie dog also varied inversely with cumulative precipitation of the prior growing season. Furthermore, flea-counts per Gunnison's and white-tailed prairie dog varied inversely with cumulative precipitation of the just-completed January and February. These results complement research on black-tailed prairie dog (Cynomys ludovicianus) and might have important ramifications for plague, a bacterial disease transmitted by fleas that devastates populations of prairie dogs. In particular, our results might help to explain why, at some colonies, epizootics of plague, which can kill >95% of prairie dogs, are more likely to occur during or shortly after periods of reduced precipitation. Climate change is projected to increase the frequency of droughts in the grasslands of western North America. If so, then climate change might affect the occurrence of plague epizootics

  8. Season and application rates affect vaccine bait consumption by prairie dogs in Colorado and Utah, USA

    Science.gov (United States)

    Tripp, Daniel W.; Rocke, Tonie E.; Streich, Sean P.; Brown, Nathanael L.; Fernandez, Julia Rodriguez-Ramos; Miller, Michael W.

    2014-01-01

    Plague, a zoonotic disease caused by the bacterium Yersinia pestis, causes high rates of mortality in prairie dogs (Cynomys spp.). An oral vaccine against plague has been developed for prairie dogs along with a palatable bait to deliver vaccine and a biomarker to track bait consumption. We conducted field trials between September 2009 and September 2012 to develop recommendations for bait distribution to deliver plague vaccine to prairie dogs. The objectives were to evaluate the use of the biomarker, rhodamine B, in field settings to compare bait distribution strategies, to compare uptake of baits distributed at different densities, to assess seasonal effects on bait uptake, and to measure bait uptake by nontarget small mammal species. Rhodamine B effectively marked prairie dogs' whiskers during these field trials. To compare bait distribution strategies, we applied baits around active burrows or along transects at densities of 32, 65, and 130 baits/ha. Distributing baits at active burrows or by transect did not affect uptake by prairie dogs. Distributing baits at rates of ≥65/ha (or ≥1 bait/active burrow) produced optimal uptake, and bait uptake by prairie dogs in the autumn was superior to uptake in the spring. Six other species of small mammals consumed baits during these trials. All four species of tested prairie dogs readily consumed the baits, demonstrating that vaccine uptake will not be an obstacle to plague control via oral vaccination.

  9. Factors influencing uptake of sylvatic plague vaccine baits by prairie dogs

    Science.gov (United States)

    Abbott, Rachel C.; Russell, Robin E.; Richgels, Katherine; Tripp, Daniel W.; Matchett, Marc R.; Biggins, Dean E.; Rocke, Tonie E.

    2017-01-01

    Sylvatic plague vaccine (SPV) is a virally vectored bait-delivered vaccine expressing Yersinia pestis antigens that can protect prairie dogs (Cynomys spp.) from plague and has potential utility as a management tool. In a large-scale 3-year field trial, SPV-laden baits containing the biomarker rhodamine B (used to determine bait consumption) were distributed annually at a rate of approximately 100–125 baits/hectare along transects at 58 plots encompassing the geographic ranges of four species of prairie dogs. We assessed site- and individual-level factors related to bait uptake in prairie dogs to determine which were associated with bait uptake rates. Overall bait uptake for 7820 prairie dogs sampled was 70% (95% C.I. 69.9–72.0). Factors influencing bait uptake rates by prairie dogs varied by species, however, in general, heavier animals had greater bait uptake rates. Vegetation quality and day of baiting influenced this relationship for black-tailed, Gunnison’s, and Utah prairie dogs. For these species, baiting later in the season, when normalized difference vegetation indices (a measure of green vegetation density) are lower, improves bait uptake by smaller animals. Consideration of these factors can aid in the development of species-specific SPV baiting strategies that maximize bait uptake and subsequent immunization of prairie dogs against plague.

  10. Climate change and prairie pothole wetlands: mitigating water-level and hydroperiod effects through upland management

    Science.gov (United States)

    Renton, David A.; Mushet, David M.; DeKeyser, Edward S.

    2015-01-01

    Prairie pothole wetlands offer crucial habitat for North America’s waterfowl populations. The wetlands also support an abundance of other species and provide ecological services valued by society. The hydrology of prairie pothole wetlands is dependent on atmospheric interactions. Therefore, changes to the region’s climate can have profound effects on wetland hydrology. The relevant literature related to climate change and upland management effects on prairie pothole wetland water levels and hydroperiods was reviewed. Climate change is widely expected to affect water levels and hydroperiods of prairie pothole wetlands, as well as the biota and ecological services that the wetlands support. In general, hydrologic model projections that incorporate future climate change scenarios forecast lower water levels in prairie pothole wetlands and longer periods spent in a dry condition, despite potential increases in precipitation. However, the extreme natural variability in climate and hydrology of prairie pothole wetlands necessitates caution when interpreting model results. Recent changes in weather patterns throughout much of the Prairie Pothole Region have been in increased precipitation that results in increased water inputs to wetlands above losses associated with warmer temperatures. However, observed precipitation increases are within the range of natural climate variability and therefore, may not persist. Identifying management techniques with the potential to affect water inputs to prairie pothole wetlands would provide increased options for managers when dealing with the uncertainties associated with a changing climate. Several grassland management techniques (for example, grazing and burning) have the potential to affect water levels and hydroperiods of prairie pothole by affecting infiltration, evapotranspiration, and snow deposition.

  11. Rangewide genetic analysis of Lesser Prairie-Chicken reveals population structure, range expansion, and possible introgression

    Science.gov (United States)

    Oyler-McCance, Sara J.; DeYoung, Randall W; Fike, Jennifer; Hagen, Christian A.; Johnson, Jeff A.; Larsson, Lena C.; Patten, Michael

    2016-01-01

    The distribution of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) has been markedly reduced due to loss and fragmentation of habitat. Portions of the historical range, however, have been recolonized and even expanded due to planting of conservation reserve program (CRP) fields that provide favorable vegetation structure for Lesser Prairie-Chickens. The source population(s) feeding the range expansion is unknown, yet has resulted in overlap between Lesser and Greater Prairie-Chickens (T. cupido) increasing the potential for hybridization. Our objectives were to characterize connectivity and genetic diversity among populations, identify source population(s) of recent range expansion, and examine hybridization with the Greater Prairie-Chicken. We analyzed 640 samples from across the range using 13 microsatellites. We identified three to four populations corresponding largely to ecoregions. The Shinnery Oak Prairie and Sand Sagebrush Prairie represented genetically distinct populations (F ST > 0.034 and F ST > 0.023 respectively). The Shortgrass/CRP Mosaic and Mixed Grass ecoregions appeared admixed (F ST = 0.009). Genetic diversity was similar among ecoregions and N e ranged from 142 (95 % CI 99–236) for the Shortgrass/CRP Mosaic to 296 (95 % CI 233–396) in the Mixed Grass Prairie. No recent migration was detected among ecoregions, except asymmetric dispersal from both the Mixed Grass Prairie and to a lesser extent the Sand Sagebrush Prairie north into adjacent Shortgrass/CRP Mosaic (m = 0.207, 95 % CI 0.116–0.298, m = 0.097, 95 % CI 0.010–0.183, respectively). Indices investigating potential hybridization in the Shortgrass/CRP Mosaic revealed that six of the 13 individuals with hybrid phenotypes were significantly admixed suggesting hybridization. Continued monitoring of diversity within and among ecoregions is warranted as are actions promoting genetic connectivity and range expansion.

  12. Spatial variation in keystone effects: Small mammal diversity associated with black-tailed prairie dog colonies

    Science.gov (United States)

    Cully, J.F.; Collinge, S.K.; Van Nimwegen, R. E.; Ray, C.; Johnson, W.C.; Thiagarajan, Bala; Conlin, D.B.; Holmes, B.E.

    2010-01-01

    Species with extensive geographic ranges may interact with different species assemblages at distant locations, with the result that the nature of the interactions may vary spatially. Black-tailed prairie dogs Cynomys ludovicianus occur from Canada to Mexico in grasslands of the western Great Plains of North America. Black-tailed prairie dogs alter vegetation and dig extensive burrow systems that alter grassland habitats for plants and other animal species. These alterations of habitat justify the descriptor " ecological engineer," and the resulting changes in species composition have earned them status as a keystone species. We examined the impact of black-tailed prairie dogs on small mammal assemblages by trapping at on- and off-colony locations at eight study areas across the species' geographic range. We posed 2 nested hypotheses: 1) prairie dogs function as a keystone species for other rodent species; and 2) the keystone role varies spatially. Assuming that it does, we asked what are the sources of the variation? Black-tailed prairie dogs consistently functioned as a keystone species in that there were strong statistically significant differences in community composition on versus off prairie dog colonies across the species range in prairie grassland. Small mammal species composition varied along both latitudinal and longitudinal gradients, and species richness varied from 4 to 11. Assemblages closer together were more similar; such correlations approximately doubled when including only on- or off-colony grids. Black-tailed prairie dogs had a significant effect on associated rodent assemblages that varied regionally, dependent upon the composition of the local rodent species pool. Over the range of the black-tailed prairie dog, on-colony rodent richness and evenness were less variable, and species composition was more consistent than off-colony assemblages. ?? 2010 The Authors.

  13. Lesser prairie-chicken avoidance of trees in a grassland landscape

    Science.gov (United States)

    Lautenbach, Joseph M.; Plumb, Reid T.; Robinson, Samantha G.; Hagen, Christian A.; Haukos, David A.; Pitman, James C.

    2016-01-01

    Grasslands are among the most imperiled ecosystems in North America. Reasons that grasslands are threatened include conversion to row-crop agriculture, fragmentation, and changes in fire regimes. The reduction of fire processes in remaining prairies has resulted in tree encroachment and establishment in grasslands, further reducing grassland quantity and quality. Grassland birds have been experiencing precipitous population declines in recent decades, commensurate with landscape changes to grasslands. The lesser prairie-chicken (Tympanuchus pallidicinctus Ridgway) is a declining species of prairie grouse of conservation concern. We used second- and third-order habitat selection metrics to test if female lesser prairie-chickens avoid grasslands where trees were present. Our results indicated that female lesser prairie-chickens selected habitats avoiding the nearest trees by 283 m on average, nearly twice as far as would be expected at random. Lesser prairie-chickens were 40 times more likely to use habitats with tree densities of 0 trees ∙ ha− 1 than habitats with 5 trees ∙ ha− 1. Probability of use indicated that lesser prairie-chickens were 19 times more likely to use habitats 1000 m from the nearest tree when compared with using habitats 0 m from the nearest tree. Nest survival was not affected at densities 2 trees ∙ ha− 1. Avoidance of trees could be due to perceived increased predation risk, reduced habitat quality, or a combination of these potentially confounding factors. Preventing further establishment and expansion of trees in landscapes occupied by lesser prairie-chickens could contribute to the continued persistence of the species. Additionally, restoring grasslands through tree removal may facilitate conservation efforts for grassland species such as the lesser prairie-chicken by improving habitat quality and promoting expansion of occupied range.

  14. Native prairie revegetation on wellsites in southeastern Alberta

    International Nuclear Information System (INIS)

    Soulodre, E.; Naeth, A.; Hammermeister, A.

    1999-01-01

    The Native Prairie Revegetation Research Project (NPRRP) was initiated to address concerns about wellsite revegetation of native grassland. The objective was to determine the impact of alternative seeding treatments on soil and vegetation and to produce a quantifiable description of what constitutes successful revegetation of native prairie sites. Four wellsites, each site comprising four revegetation treatment plots and an undisturbed control plot, have been chosen for field study. The revegetation treatments included natural recovery without seeding; current mix dominated by native wheatgrass cultivars; simple mix seeding containing wheatgrasses plus other native grasses, and diverse mix seeding with a mixture of wheatgrasses, other grasses and thirteen perennial forbs. The plant communities were monitored for biomass production, species richness, species composition and a combination of factors which include density, frequency, canopy cover and basal cover, these collectively representing importance value. Nitrogen availability in the soil was also monitored. Results showed high importance values for wheatgrasses for all seeded treatments. Perennial non-wheatgrasses had low importance values in the seeded treatment but higher importance in the control plot. The dominance of wheatgrasses in the seeded treatments resulted in communities that differed significantly from both the control and natural recovery communities, probably due to suppression of the growth of other grasses

  15. Vegetation of wetlands of the prairie pothole region

    Science.gov (United States)

    Kantrud, H.A.; Millar, J.B.; Van Der Valk, A.G.; van der Valk, A.

    1989-01-01

    Five themes dominate the literature dealing with the vegetation of palustrine and lacustrine wetlands of the prairie pothole region: environmental conditions (water or moisture regime, salinity), agricultural disturbances (draining, grazing, burning, sedimentation, etc.), vegetation dynamics, zonation patterns, and classification of the wetlands.The flora of a prairie wetland is a function of its water regime, salinity, and disturbance by man. Within a pothole, water depth and duration determines distribution of species. In potholes deep enough to have standing water even during droughts, the central zone will be dominated by submersed species (open water). In wetlands that go dry during periods of drought or annually, the central zone will be dominated by either tall emergent species (deep marsh) or midheight emergents (shallow marsh), respectively. Potholes that are only flooded briefly in the spring are dominated by grasses, sedges, and forbs (wet meadow). Within a pothole, the depth of standing water in the deepest, usually central, part of the basin determines how many zones will be present. Lists of species associated with different water regimes and salinity levels are presented.Disturbances due to agricultural activities have impacted wetlands throughout the region. Drainage has eliminated many potholes, particularly in the southern and eastern parts of the region. Grazing, mowing, and burning have altered the composition of pothole vegetation. The composition of different vegetation types impacted by grazing, haying, and cultivation is presented in a series of tables. Indirect impacts of agriculture (increased sediment, nutrient, and pesticide inputs) are widespread over the region, but their impacts on the vegetation have never been studied.Because of the periodic droughts and wet periods, many palustrine and lacustrine wetlands undergo vegetation cycles associated with water-level changes produced by these wet-dry cycles. Periods of above normal

  16. Mine spoil prairies expand critical habitat for endangered and threatened amphibian and reptile species

    Science.gov (United States)

    Lannoo, Michael J.; Kinney, Vanessa C.; Heemeyer, Jennifer L.; Engbrecht, Nathan J.; Gallant, Alisa L.; Klaver, Robert W.

    2009-01-01

    Coal extraction has been occurring in the Midwestern United States for over a century. Despite the pre-mining history of the landscape as woodlands, spent surface coalfields are often reclaimed to grasslands. We assessed amphibian and reptile species on a large tract of coal spoil prairie and found 13 species of amphibians (nine frog and four salamander species) and 19 species of reptiles (one lizard, five turtle, and 13 snake species). Two state-endangered and three state species of special concern were documented. The amphibian diversity at our study site was comparable to the diversity found at a large restored prairie situated 175 km north, within the historic prairie peninsula.

  17. Investigation of the Transcriptome of Prairie Cord Grass, a New Cellulosic Biomass Crop

    Directory of Open Access Journals (Sweden)

    Kristene Gedye

    2010-09-01

    Full Text Available Prairie cordgrass ( Bosc ex Link is being developed as a cellulosic biomass crop. Development of this species will require numerous steps, including breeding, agronomy, and characterization of the species genome. The research in this paper describes the first investigation of the transcriptome of prairie cordgrass via Next Generation Sequencing Technology, 454 GS FLX. A total of 556,198 expressed sequence tags (ESTs were produced from four prairie cordgrass tissues: roots, rhizomes, immature inflorescence, and hooks. These ESTs were assembled into 26,302 contigs and 71,103 singletons. From these data were identified, EST–SSR (simple sequence repeat regions and cell wall biosynthetic pathway genes suitable for the development of molecular markers which can aid the breeding process of prairie cordgrass by means of marker assisted selection.

  18. Influence of resource availability on Juniperus virginiana expansion in a forest–prairie ecotone

    Science.gov (United States)

    Despite being native to the United States, Juniperus virginiana has rapidly expanded in prairie ecosystems bringing detrimental ecological effects and increased wildfire risk. We transplanted J. virginiana seedlings in three plant communities to investigate mechanisms driving J. ...

  19. Anticoagulant Prairie Dog Bait Risk Mitigation Measures to Protect Endangered Species

    Science.gov (United States)

    This Web page contains information on how certified pesticide applicators can use anticoagulant prairie dog bait products such as Rozol and Kaput-D while minimizing exposure risks to listed and non-target species.

  20. Investigation of the Transcriptome of Prairie Cord Grass, a New Cellulosic Biomass Crop

    KAUST Repository

    Gedye, Kristene

    2010-09-15

    Prairie cordgrass (Spartina pectinata Bosc ex Link) is being developed as a cellulosic biomass crop. Development of this species will require numerous steps, including breeding, agronomy, and characterization of the species genome. The research in this paper describes the first investigation of the transcriptome of prairie cordgrass via Next Generation Sequencing Technology, 454 GS FLX. A total of 556,198 expressed sequence tags (ESTs) were produced from four prairie cordgrass tissues: roots, rhizomes, immature inflorescence, and hooks. These ESTs were assembled into 26,302 contigs and 71,103 singletons. From these data were identified, EST-SSR (simple sequence repeat) regions and cell wall biosynthetic pathway genes suitable for the development of molecular markers which can aid the breeding process of prairie cordgrass by means of marker assisted selection.

  1. Impacts of mesquite distribution on seasonal space use of lesser prairie-chickens

    Science.gov (United States)

    Boggie, Matthew A.; Strong, Cody R.; Lusk, Daniel; Carleton, Scott A.; Gould, William R.; Howard, Randy L.; Nichols, Clay T.; Falkowski, Michael J.; Hagen, Christian A.

    2017-01-01

    Loss of native grasslands by anthropogenic disturbances has reduced availability and connectivity of habitat for many grassland species. A primary threat to contiguous grasslands is the encroachment of woody vegetation, which is spurred by disturbances that take on many forms from energy development, fire suppression, and grazing. These disturbances are exacerbated by natural- and human-driven cycles of changes in climate punctuated by drought and desertification conditions. Encroachment of honey mesquite (Prosopis glandulosa) into the prairies of southeastern New Mexico has potentially limited habitat for numerous grassland species, including lesser prairie-chickens (Tympanuchus pallidicinctus). To determine the magnitude of impacts of distribution of mesquite and how lesser prairie-chickens respond to mesquite presence on the landscape in southeastern New Mexico, we evaluated seasonal space use of lesser prairie-chickens in the breeding and nonbreeding seasons. We derived several remotely sensed spatial metrics to characterize the distribution of mesquite. We then used these data to create population-level resource utilization functions and predict intensity of use of lesser prairie-chickens across our study area. Home ranges were smaller in the breeding season compared with the nonbreeding season; however, habitat use was similar across seasons. During both seasons, lesser prairie-chickens used areas closer to leks and largely avoided areas with mesquite. Relative to the breeding season, during the nonbreeding season habitat use suggested a marginal increase in mesquite within areas of low intensity of use, yet aversion to mesquite was strong in areas of medium to high intensity of use. To our knowledge, our study is the first to demonstrate a negative behavioral response by lesser prairie-chickens to woody encroachment in native grasslands. To mitigate one of the possible limiting factors for lesser prairie-chickens, we suggest future conservation

  2. Widespread Use and Frequent Detection of Neonicotinoid Insecticides in Wetlands of Canada's Prairie Pothole Region

    OpenAIRE

    Main, Anson R.; Headley, John V.; Peru, Kerry M.; Michel, Nicole L.; Cessna, Allan J.; Morrissey, Christy A.

    2014-01-01

    Neonicotinoids currently dominate the insecticide market as seed treatments on Canada's major Prairie crops (e.g., canola). The potential impact to ecologically significant wetlands in this dominantly agro-environment has largely been overlooked while the distribution of use, incidence and level of contamination remains unreported. We modelled the spatial distribution of neonicotinoid use across the three Prairie Provinces in combination with temporal assessments of water and sediment concent...

  3. Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles

    OpenAIRE

    Grippo, Angela J.; Gerena, Davida; Huang, Jonathan; Kumar, Narmda; Shah, Maulin; Ughreja, Raj; Carter, C. Sue

    2007-01-01

    Supportive social interactions may be protective against stressors and certain mental and physical illness, while social isolation may be a powerful stressor. Prairie voles are socially monogamous rodents that model some of the behavioral and physiological traits displayed by humans, including sensitivity to social isolation. Neuroendocrine and behavioral parameters, selected for their relevance to stress and depression, were measured in adult female and male prairie voles following 4 weeks o...

  4. Progress report: baseline monitoring of indicator species (butterflies) at tallgrass prairie restorations

    Science.gov (United States)

    Allain, Larry; Vidrine, Malcolm

    2014-01-01

    This project provides baseline data of butterfly populations at two coastal prairie restoration sites in Louisiana, the Duralde Unit of Lacassine National Wildlife Refuge (hereafter, the Duralde site) and the Cajun Prairie Restoration Project in Eunice (hereafter, the Eunice site). In all, four distinct habitat types representing different planting methods were sampled. These data will be used to assess biodiversity and health of native grasslands and also provide a basis for adaptive management.

  5. Predation of artificial ground nests on white-tailed prairie dog colonies

    Science.gov (United States)

    Baker, B.W.; Stanley, T.R.; Sedgwick, J.A.

    1999-01-01

    Prairie dog (Cynomys spp.) colonies are unique to prairie and shrub-steppe landscapes. However, widespread eradication, habitat loss, and sylvatic plague (Yersinia pestis) have reduced their numbers by 98% since historical times. Birds associated with prairie dogs also are declining. Potential nest predators, such as coyotes (Canis latrans), swift foxes (Vulpes velox), and badgers (Taxidea taxus), may be attracted to colonies where a high concentration of prairie dogs serve as available prey. Increased abundance of small mammals, including prairie dogs, also may increase the risk of predation for birds nesting on colonies. Finally, because grazing by prairie dogs may decrease vegetation height and canopy cover, bird nests may be easier for predators to locate. In this study, we placed 1,444 artificial ground nests on and off 74 white-tailed prairie dog (C. leucurus) colonies to test the hypothesis that nest predation rates are higher on colonies than at nearby off sites (i.e., uncolonized habitat). We sampled colonies from 27 May to 16 July 1997 at the following 3 complexes: Coyote Basin, Utah and Colorado; Moxa Arch, Wyoming; and Shirley Basin, Wyoming. Differences in daily predation rates between colonies and paired off sites averaged 1.0% (P = 0.060). When converted to a typical 14-day incubation period, predation rates averaged 14% higher on colonies (57.7 ?? 2.7%; ?? ?? SE) than at off sites (50.4 ?? 3.1%). Comparisons of habitat variables on colonies to off sites showed percent canopy cover of vegetation was similar (P = 0.114), percent bare ground was higher on colonies (P 0.288). Although we found the risk of nest predation was higher on white-tailed prairie dog colonies than at off sites, fitness of birds nesting on colonies might depend on other factors that influence foraging success, reproductive success, or nestling survival.

  6. Mountain plover nest survival in relation to prairie dog and fire dynamics in shortgrass steppe

    Science.gov (United States)

    Augustine, David J.; Skagen, Susan K.

    2014-01-01

    Disturbed xeric grasslands with short, sparse vegetation provide breeding habitat for mountain plovers (Charadrius montanus) across the western Great Plains. Maintaining local disturbance regimes through prairie dog conservation and prescribed fire may contribute to the sustainability of recently declining mountain plover populations, but these management approaches can be controversial. We estimated habitat-specific mountain plover densities and nest survival rates on black-tailed prairie dog (Cynomys ludovicianus) colonies and burns in the shortgrass steppe of northeastern Colorado. Mountain plover densities were similar on prairie dog colonies (5.9 birds/km2; 95% CI = 4.7–7.4) and sites burned during the preceding dormant season (6.7 birds/km2; 95% CI = 4.6–9.6), whereas the 29-day nest survival rate was greater on prairie dog colonies (0.81 in 2011 and 0.39 in 2012) compared to the burned sites (0.64 in 2011 and 0.17 in 2012). Reduced nest survival in 2012 compared to 2011 was associated with higher maximum daily temperatures in 2012, consistent with a previous weather-based model of mountain plover nest survival in the southern Great Plains. Measurements of mountain plover density relative to time since disturbance showed that removal of prairie dog disturbance by sylvatic plague reduced mountain plover density by 70% relative to active prairie dog colonies after 1 year. Plover densities declined at a similar rate (by 78%) at burned sites between the first and second post-burn growing season. Results indicate that black-tailed prairie dog colonies are a particularly important nesting habitat for mountain plovers in the southern Great Plains. In addition, findings suggest that prescribed burning can be a valuable means to create nesting habitat in landscapes where other types of disturbances (such as prairie dog colonies) are limited in distribution and size. 

  7. Wildlife habitat management on the northern prairie landscape

    Science.gov (United States)

    Johnson, Douglas H.; Haseltine, Susan D.; Cowardin, Lewis M.

    1994-01-01

    The northern prairie landscape has changed dramatically within the past century as a result of settlement by Europeans. Natural ecosystems have been disrupted and wildlife populations greatly altered. Natural resource agencies control only limited areas within the landscape, which they cannot manage independently of privately owned lands. Wildlife managers need first to set quantifiable objectives, based on the survival, reproduction, and distribution of wildlife. Second, they need to build public support and partnerships for meeting those objectives. Finally, they need to evaluate progress not only with respect to attitudes of the public and partners but, more importantly, of the wildlife response. This paper describes some useful tools for managing information at all phases of this process. We follow by discussing management options at a landscape level. Examples are given that involve agency lands as well as private lands, managed for biological resources and diversity as well as economic sustainability.

  8. Classification of Prairie basins by their hysteretic connected functions

    Science.gov (United States)

    Shook, K.; Pomeroy, J. W.

    2017-12-01

    Diagnosing climate change impacts in the post-glacial landscapes of the North American Prairies through hydrological modelling is made difficult by drainage basin physiography. The region is cold, dry and flat with poorly developed stream networks, and so the basin area that is hydrologically connected to the stream outlet varies with basin depressional storage. The connected area controls the contributing area for runoff reaching the stream outlet. As depressional storage fills, ponds spill from one to another; the chain of spilling ponds allows water to flow over the landscape and increases the connected area of the basin. As depressional storage decreases, the connected fraction drops dramatically. Detailed, fine-scale models and remote sensing have shown that the relationship between connected area and the depressional storage is hysteretic in Prairie basins and that the nature of hysteresis varies with basin physiography. This hysteresis needs to be represented in hydrological models to calculate contributing area, and therefore streamflow hydrographs. Parameterisations of the hysteresis are needed for large-scale models used for climate change diagnosis. However, use of parameterisations of hysteresis requires guidance on how to represent them for a particular basin. This study shows that it is possible to relate the shape of hysteretic functions as determined by detailed models to the overall physiography of the basin, such as the fraction of the basin below the outlet, and remote sensing estimates of depressional storage, using the size distribution and location of maximum ponded water areas. By classifying basin physiography, the hysteresis of connected area - storage relationships can be estimated for basins that do not have high-resolution topographic data, and without computationally-expensive high-resolution modelling.

  9. Relatedness of Macrophomina phaseolina isolates from tallgrass prairie, maize, soybean and sorghum.

    Science.gov (United States)

    Saleh, A A; Ahmed, H U; Todd, T C; Travers, S E; Zeller, K A; Leslie, J F; Garrett, K A

    2010-01-01

    Agricultural and wild ecosystems may interact through shared pathogens such as Macrophomina phaseolina, a generalist clonal fungus with more than 284 plant hosts that is likely to become more important under climate change scenarios of increased heat and drought stress. To evaluate the degree of subdivision in populations of M. phaseolina in Kansas agriculture and wildlands, we compared 143 isolates from maize fields adjacent to tallgrass prairie, nearby sorghum fields, widely dispersed soybean fields and isolates from eight plant species in tallgrass prairie. Isolate growth phenotypes were evaluated on a medium containing chlorate. Genetic characteristics were analysed based on amplified fragment length polymorphisms and the sequence of the rDNA-internal transcribed spacer (ITS) region. The average genetic similarity was 58% among isolates in the tallgrass prairie, 71% in the maize fields, 75% in the sorghum fields and 80% in the dispersed soybean fields. The isolates were divided into four clusters: one containing most of the isolates from maize and soybean, two others containing isolates from wild plants and sorghum, and a fourth containing a single isolate recovered from Solidago canadensis in the tallgrass prairie. Most of the sorghum isolates had the dense phenotype on media containing chlorate, while those from other hosts had either feathery or restricted phenotypes. These results suggest that the tallgrass prairie supports a more diverse population of M. phaseolina per area than do any of the crop species. Subpopulations show incomplete specialization by host. These results also suggest that inoculum produced in agriculture may influence tallgrass prairie communities, and conversely that different pathogen subpopulations in tallgrass prairie can interact there to generate 'hybrids' with novel genetic profiles and pathogenic capabilities.

  10. The development and adoption of conservation tillage systems on the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    L. Awada

    2014-03-01

    Full Text Available One of the major agricultural innovations on the Canadian Prairies over the last 40 years has been the introduction of conservation tillage (CT. Conservation tillage-a system that includes minimum and zero tillage (ZT -was introduced as an alternative to traditional (conventional tillage (TT to control soil degradation and to promote agricultural sustainability. The development and adoption of CT systems involved pioneer farmers, engineers, scientists, and farmer associations. By the end of the 1970s, CT started to take shape on the Prairies, but for a number of economic, technical, political and social reasons, the adoption of CT did not occur on any major scale before the 1990s. Today, more than 75% of the Prairie's cropland is under some form of CT with more than 50% under ZT. In this paper, the factors behind the development and adoption of conservation tillage technology on the Prairies in the period between 1930 and 2011 are reviewed. Then, some of the benefits of the adoption of CT on the Prairies are highlighted. The data show that CT and ZT became profitable for the majority of farmers during and after the 1990s, and that the increased use of CT contributed to the dramatic decrease in the area under summerfallow and to the increase in the area sown to canola and pulse crops. These changes contributed to the reduction of all forms of land degradation and to decreases in agricultural greenhouse gas (GHG emissions.

  11. Factors that affect parasitism of black-tailed prairie dogs by fleas

    Science.gov (United States)

    Eads, David A.; Hoogland, John L.

    2016-01-01

    Fleas (Insecta: Siphonaptera) are hematophagous ectoparasites that feed on vertebrate hosts. Fleas can reduce the fitness of hosts by interfering with immune responses, disrupting adaptive behaviors, and transmitting pathogens. The negative effects of fleas on hosts are usually most pronounced when fleas attain high densities. In lab studies, fleas desiccate and die under dry conditions, suggesting that populations of fleas will tend to decline when precipitation is scarce under natural conditions. To test this hypothesis, we compared precipitation vs. parasitism of black-tailed prairie dogs (Cynomys ludovicianus) by fleas at a single colony during May and June of 13 consecutive years (1976–1988) at Wind Cave National Park, South Dakota, USA. The number of fleas on prairie dogs decreased with increasing precipitation during both the prior growing season (April through August of the prior year) and the just-completed winter–spring (January through April of current year). Due to the reduction in available moisture and palatable forage in dry years, herbivorous prairie dogs might have been food-limited, with weakened behavioral and immunological defenses against fleas. In support of this hypothesis, adult prairie dogs of low mass harbored more fleas than heavier adults. Our results have implications for the spread of plague, an introduced bacterial disease, transmitted by fleas, that devastates prairie dog colonies and, in doing so, can transform grassland ecosystems.

  12. A proposal to conserve black-footed ferrets and the prairie dog ecosystem

    Science.gov (United States)

    Miller, Brian; Wemmer, Christen; Biggins, Dean; Reading, Richard

    1990-11-01

    Prairie dogs ( Cynomys spp.) have been poisoned throughout this century because of grazing competition with livestock. Recent evidence showed these early claims were exaggerated, but animal control was already entrenched in government policy. As a result, ongoing government subsidized poisoning has reduced prairie dogs to about 2% of their former distribution. The reduction of prairie dogs diminished species diversity in the arid grasslands of North America, including the potential extinction of the black-footed ferret ( Mustela nigripes). Cost-benefit analysis revealed that poisoning costs more than any grazing benefits accrued. This analysis did not consider the long-term costs of reversing ecosystem degradation, the intangible value of biological diversity as a public benefit, or the depletion of biotic resources as a loss of actual or potential wealth. The government presently finances the poisoning policy and the preservation of endangered species like the black-footed ferret, two apparently conflicting programs. We, therefore, propose an integrated management plan that considers both interests. We propose that federal monies allocated to the poisoning program be converted into a rebate for ranchers who manage livestock while preserving the prairie dog community. This would redirect funds and personnel already allocated to prairie dog eradication to an incentive for ranchers who manage for livestock and wildlife. Livestock interests and grassland biotic diversity would both benefit.

  13. Effects of sexual dimorphism and landscape composition on the trophic behavior of Greater Prairie-Chicken.

    Directory of Open Access Journals (Sweden)

    Beatriz Blanco-Fontao

    Full Text Available Partitioning of ecological niche is expected in lekking species that show marked sexual size dimorphism as a consequence of sex-specific ecological constraints. However, niche partitioning is uncertain in species with moderate sexual dimorphism. In addition, the ecological niche of a species may also be affected by landscape composition; particularly, agricultural fragmentation may greatly influence the trophic behavior of herbivores. We studied trophic niche variation in Greater Prairie-Chickens (Tympanuchus cupido, a grouse species that shows moderate sex-dimorphism. Greater Prairie-Chickens are native to tallgrass prairies of North America, although populations persist in less natural mosaics of cropland and native habitats. We used stable isotope analysis of carbon and nitrogen in blood, claws and feathers to assess seasonal differences in trophic niche breadth and individual specialization between male and female Greater Prairie-Chickens, and between birds living in continuous and fragmented landscapes. We found that females showed broader niches and higher individual specialization than males, especially in winter and autumn. However, differences between females and males were smaller in spring when birds converge at leks, suggesting that females and males may exhibit similar feeding behaviors during the lekking period. In addition, we found that birds living in native prairies showed greater annual trophic variability than conspecifics in agricultural mosaic landscapes. Native habitats may provide greater dietary diversity, resulting in greater diversity of feeding strategies.

  14. Trichostatin A (TSA) facilitates formation of partner preference in male prairie voles (Microtus ochrogaster).

    Science.gov (United States)

    Duclot, F; Wang, H; Youssef, C; Liu, Y; Wang, Z; Kabbaj, M

    2016-05-01

    In the socially monogamous prairie voles (Microtus ochrogaster), the development of a social bonding is indicated by the formation of partner preference, which involves a variety of environmental and neurochemical factors and brain structures. In a most recent study in female prairie voles, we found that treatment with the histone deacetylase inhibitor trichostatin A (TSA) facilitates the formation of partner preference through up-regulation of oxytocin receptor (OTR) and vasopressin V1a receptor (V1aR) genes expression in the nucleus accumbens (NAcc). In the present study, we tested the hypothesis that TSA treatment also facilitates partner preference formation and alters OTR and V1aR genes expression in the NAcc in male prairie voles. We thus observed that central injection of TSA dose-dependently promoted the formation of partner preference in the absence of mating in male prairie voles. Interestingly, TSA treatment up-regulated OTR, but not V1aR, gene expression in the NAcc similarly as they were affected by mating - an essential process for naturally occurring partner preference. These data, together with others, not only indicate the involvement of epigenetic events but also the potential role of NAcc oxytocin in the regulation of partner preference in both male and female prairie voles. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Assessment of lesser prairie-chicken use of wildlife water guzzlers

    Science.gov (United States)

    Boal, Clint W.; Borsdorf, Philip K.; Gicklhorn, Trevor S.

    2014-01-01

    Man-made water sources have been used as a management tool for wildlife, especially in arid regions, but the value of these water sources for wildlife populations is not well understood. In particular, the value of water as a conservation tool for Lesser Prairie-Chickens (Tympanuchus pallidicinctus) is unknown. However, this is a relevant issue due to a heightened conservation concern for the species and its occupancy of an arid landscape anticipated to experience warmer, drier springs and winters. We assessed if Lesser Prairie-Chickens would use commercially available wildlife water guzzlers and if there was any apparent selection between two design types. We confirmed that Lesser Prairie-Chickens would use bird friendly designed wildlife water guzzlers. Use was primarily during the lekking-nesting period (March–May) and the brood rearing period (June–July) and primarily by males. Although both designs were used, we found significantly greater use of a design that had a wider water trough and ramp built into the tank cover compared to a design that had a longer, narrower trough extending from the tank.Although we were unable to assess the physiological need of surface water by Lesser Prairie-Chickens, we were able to verify that they will use wildlife water guzzlers to access surface water. If it is found surface water is beneficial for Lesser Prairie-Chickens, game bird friendly designed guzzlers may be a useful conservation tool for the species.

  16. Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes

    Science.gov (United States)

    Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.

    2016-01-01

    Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.

  17. Phenotypic and genetic characterization of wildland collections of western and Searls prairie clovers for rangeland revegetation in the western USA

    Science.gov (United States)

    Kishor Bhattarai

    2010-01-01

    Western prairie clover [Dalea ornata (Douglas ex Hook.) Eaton & J. Wright] is a perennial legume that occurs in the northern Great Basin, Snake River Basin, and southern Columbia Plateau, whereas Searls prairie clover [Dalea searlsiae (A. Gray) Barneby], also a perennial legume, occurs in the southern Great Basin and surrounding areas. Understanding the genetic and...

  18. Students' Perceptions of a Highly Controversial yet Keystone Species, the Black-Tailed Prairie Dog: A Case Study

    Science.gov (United States)

    Fox-Parrish, Lynne; Jurin, Richard R.

    2008-01-01

    The authors used a case-study methodology to explore the perceptions of 30 9th-grade biology students relative to black-tailed prairie dogs. The case study, which involved classroom- and field-based experiences that focused on black-tailed prairie dogs, revealed 3 major themes: apathy, egocentrism, and naive conceptions. The authors had hoped that…

  19. Macroinvertebrates in North American tallgrass prairie soils: effects of fire, mowing, and fertilization on density and biomass

    Science.gov (United States)

    M.A. Callaham; J.M. Blair; T.C. Todd; D.J. Kitchen; M.R. Whiles

    2003-01-01

    The responses of tallgrass prairie plant communities and ecosystem processes to fire and grazing are well characterized. However, responses of invertebrate consumer groups. and particularly soil-dwelling organisms, to these disturbances are not well known. At Konza Prairie Biological Station. we sampled soil macroinvertebrates in 1994 and 1999 as part of a long-term...

  20. 75 FR 70021 - South Dakota Prairie Winds Project; Partial Term Relinquishment and Release of Easement for Wind...

    Science.gov (United States)

    2010-11-16

    ... requested financing for the project from the RUS. PW SD1 has also submitted an application to the Service to...] South Dakota Prairie Winds Project; Partial Term Relinquishment and Release of Easement for Wind Energy... impact statement (FEIS) on the South Dakota Prairie Winds Project issued by the Department of Energy's...

  1. Social recognition is context dependent in single male prairie voles

    Science.gov (United States)

    Zheng, Da-Jiang; Foley, Lauren; Rehman, Asad; Ophir, Alexander G.

    2013-01-01

    Single males might benefit from knowing the identity of neighbouring males when establishing and defending boundaries. Similarly, males should discriminate between individual females if this leads to more reproductive opportunities. Contextual social cues may alter the value of learning identity. Knowing the identity of competitors that intrude into an animal’s territory may be more salient than knowing the identity of individuals on whose territory an animal is trespassing. Hence, social and environmental context could affect social recognition in many ways. Here we test social recognition of socially monogamous single male prairie voles, Microtus ochrogaster. In experiment 1 we tested recognition of male or female conspecifics and found that males discriminated between different males but not between different females. In experiment 2 we asked whether recognition of males is influenced when males are tested in their own cage (familiar), in a clean cage (neutral) or in the home cage of another male (unfamiliar). Although focal males discriminated between male conspecifics in all three contexts, individual variation in recognition was lower when males were tested in their home cage (in the presence of familiar social cues) compared to when the context lacked social cues (neutral). Experiment 1 indicates that selective pressures may have operated to enhance male territorial behaviour and indiscriminate mate selection. Experiment 2 suggests that the presence of a conspecific cue heightens social recognition and that home-field advantages might extend to social cognition. Taken together, our results indicate social recognition depends on the social and possibly territorial context. PMID:24273328

  2. Climate impacts on the hydrology of prairie wetlands

    International Nuclear Information System (INIS)

    Woo, Mingko; Rowsell, R.D.

    1991-01-01

    A study was carried out in the St. Denis National Wildlife Area, 45 km east of Saskatoon, to observe the hydrological processes and the temporal and spatial variability of slough responses to climate. One slough was instrumented for detailed study, showing that the high water level in spring was supported by snowmelt. In summer, rainfall was the major source of water supply, but was exceeded by losses to evaporation and groundwater recharge, leading to a decline of the water table and complete drying by June 13th. The duration that water remains in sloughs varies temporally and spatially. Ephemeral sloughs, deriving water mainly from snowmelt, tend to occupy higher ground, temporary sloughs rely on precipitation and surface runoff, and may receive groundwater discharge during wetter years. Permanent sloughs often occupy lower areas, receiving water from precipitation, lateral runoff, and groundwater discharge which buffers them from year to year fluctuations in precipitation. Tree ring analyses showed that meltwater is the major factor influencing tree growth, correlating the spatial variability of slough inundation to the temporal variability of winter snowfall. A study of slough hydrology is important to the understanding of the responses of Prairie wetlands to climatic variability and change. 17 refs., 2 figs

  3. Managing Water-Food-Energy Futures in the Canadian Prairies

    Science.gov (United States)

    Wheater, H. S.; Hassanzadeh, E.; Nazemi, A.; Elshorbagy, A. A.

    2016-12-01

    The water-food-energy nexus is a convenient phrase to highlight competing societal uses for water and the need for cross-sectoral policy integration, but this can lead to oversimplification of the multiple dimensions of water (and energy) management. In practice, water managers must balance (and prioritize) demands for water for many uses, including environmental flows, and reservoir operation often involves managing conflicting demands, for example to maximize retention for supply, reduce storage to facilitate flood control, and constrain water levels and releases for habitat protection. Agriculture and water quality are also inextricably linked: irrigated agriculture requires appropriate water quality for product quality and certification, but agriculture can be a major source of nutrient pollution, with impacts on human and ecosystem health, drinking water treatment and amenity. And energy-water interactions include energy production (hydropower and cooling water for thermal power generation) and energy consumption (e.g. for pumping and water and wastewater treatment). These dependencies are illustrated for the Canadian prairies, and a risk-based approach to the management of climate change is presented. Trade-offs between economic benefits of hydropower and irrigation are illustrated for alternative climate futures, including implications for freshwater habitats. The results illustrate that inter-sector interactions vary as a function of climate and its variability, and that there is a need for policy to manage inter-sector allocations as a function of economic risk.

  4. Assessing diversity of prairie plants using remote sensing

    Science.gov (United States)

    Gamon, J. A.; Wang, R.

    2017-12-01

    Biodiversity loss endangers ecosystem services and is considered as a global change that may generate unacceptable environmental consequences for the Earth system. Global biodiversity observations are needed to provide a better understanding of biodiversity - ecosystem services relationships and to provide a stronger foundation for conserving the Earth's biodiversity. While remote sensing metrics have been applied to estimate α biodiversity directly through optical diversity, a better understanding of the mechanisms behind the optical diversity-biodiversity relationship is needed. We designed a series of experiments at Cedar Creek Ecosystem Science Reserve, MN, to investigate the scale dependence of optical diversity and explore how species richness, evenness, and composition affect optical diversity. We collected hyperspectral reflectance of 16 prairie species using both a full-range field spectrometer fitted with a leaf clip, and an imaging spectrometer carried by a tram system to simulate plot-level images with different species richness, evenness, and composition. Two indicators of spectral diversity were explored: the coefficient of variation (CV) of spectral reflectance in space, and spectral classification using a Partial Least Squares Discriminant Analysis (PLS-DA). Our results showed that sampling methods (leaf clip-derived data vs. image-derived data) affected the optical diversity estimation. Both optical diversity indices were affected by species richness and evenness (Pguide regional studies of biodiversity estimation using high spatial and spectral resolution remote sensing.

  5. Map of mixed prairie grassland vegetation, Rocky Flats, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Clark, S J.V.; Webber, P J; Komarkova, V; Weber, W A

    1980-01-01

    A color vegetation map at the scale of 1:12,000 of the area surrounding the Rocky Flats, Rockwell International Plant near Boulder, Colorado, provides a permanent record of baseline data which can be used to monitor changes in both vegetation and environment and thus to contribute to future land management and land-use policies. Sixteen mapping units based on species composition were identified, and characterized by two 10-m/sup 2/ vegetation stands each. These were grouped into prairie, pasture, and valley side on the basis of their species composition. Both the mapping units and these major groups were later confirmed by agglomerative clustering analysis of the 32 vegetation stands on the basis of species composition. A modified Bray and Curtis ordination was used to determine the environmental factor complexes controlling the distribution of vegetation at Rocky flats. Recommendations are made for future policies of environmental management and predictions of the response to environmental change of the present vegetation at the Rocky Flats site.

  6. Homicide in the Canadian Prairies: elderly and nonelderly killings.

    Science.gov (United States)

    Ahmed, A G; Menzies, Robin P D

    2002-11-01

    To examine the psychosocial and clinical characteristics of male perpetrators of elderly and nonelderly homicides in the Canadian Prairies. We examined data drawn from a study of 901 adult homicide offenders who were incarcerated or on parole between 1988 and 1992 in Alberta, Saskatchewan, and Manitoba. Of those studied, 67 men were convicted of homicide involving 79 elderly victims, and 671 were convicted of homicide involving 675 nonelderly victims. Most perpetrators were single and engaged in irregular patterns of employment at the time of their index offence. Fourteen (20.8%) offenders with elderly victims had a history of psychiatric treatment, compared with 98 (14.6%) offenders with nonelderly victims; however, this difference was not statistically significant. Approximately 30% of both groups were diagnosed with personality disorders. A comparison of the index- offence characteristics showed no significant differences between the 2 groups. Our findings suggest that elderly individuals are more likely to be killed in their own homes by strangers. Social isolation appears to be a significant risk factor in cases of elderly homicide.

  7. Proceedings of the symposium on the management of prairie dog complexes for the reintroduction of the black-footed ferret

    Science.gov (United States)

    Oldemeyer, John L.; Biggins, Dean E.; Miller, Brian J.; Crete, Ronald

    1993-01-01

    The workshop featured a review of current knowledge in the biology of prairie dogs in the context of managing black-footed ferret habitat. The review addressed two main components. The first consisted of a series of papers on prairie dog habitat and biology. The second component of the workshop was a summary of the participants' discussion about managing prairie dog complexes. This discussion was based on the previously identified papers and profited from the participants' expertise on the ecology of black-footed ferrets and prairie dogs. The report provides current and comprehensive information about management of habitat for prairie dogs and black-footed ferrets and is a useful guide for agencies and individuals that manage black-footed ferrets.

  8. Conservation Reserve Program mitigates grassland loss in the lesser prairie-chicken range of Kansas

    Science.gov (United States)

    Haukos, David A.; Spencer, David; Hagen, Christian A.; Daniels, Melinda D.; Goodin, Doug

    2017-01-01

    Since the beginning of the 20th century, the overall occupied range of the lesser prairie-chicken (Tympanuchus pallidicinctus) has declined by 84% commensurate with population trends. Much of this decline has been attributed to the loss and fragmentation of native grasslands throughout the lesser prairie-chicken range. However, quantification of changes in land cover in the distribution of the lesser prairie-chicken is lacking. Our objectives were to (1) document changes in the areal extent and connectivity of grasslands in the identified lesser prairie-chicken range in Kansas, USA, (>60% of extant lesser prairie-chicken population) from the 1950s to 2013 using remotely sensed data and (2) assess the potential of the Conservation Reserve Program (U.S. Department of Agriculture Program converting cropland to permanent cover; CRP) to mitigate grassland loss. Digital land cover maps were generated on a decadal time step through spectral classification of LANDSAT images and visual analysis of aerial photographs (1950s and 1960s). Landscape composition and configuration were assessed using FRAGSTATS to compute a variety of landscape metrics measuring changes in the amount of grassland present as well as changes in the size and configuration of grassland patches. With the exception of a single regional portion of the range, nearly all of the grassland converted to cropland in the lesser prairie-chicken range of Kansas occurred prior to the 1950s. Prior to the implementation of CRP, the amount of grassland decreased 3.6% between the 1950s and 1985 from 18,455 km2 to 17,788 km2. Since 1985, the overall amount of grassland in the lesser prairie-chicken range has increased 11.9% to 19,898 km2 due to implementation of CRP, although the area of grassland decreased between 1994 and 2013 as CRP contracts were not renewed by landowners. Since 1986 grassland in Kansas became more connected and less fragmented in response to the CRP. While the CRP has been successful in

  9. Conservation Reserve Program mitigates grassland loss in the lesser prairie-chicken range of Kansas

    Directory of Open Access Journals (Sweden)

    David Spencer

    2017-01-01

    Full Text Available Since the beginning of the 20th century, the overall occupied range of the lesser prairie-chicken (Tympanuchus pallidicinctus has declined by 84% commensurate with population trends. Much of this decline has been attributed to the loss and fragmentation of native grasslands throughout the lesser prairie-chicken range. However, quantification of changes in land cover in the distribution of the lesser prairie-chicken is lacking. Our objectives were to (1 document changes in the areal extent and connectivity of grasslands in the identified lesser prairie-chicken range in Kansas, USA, (>60% of extant lesser prairie-chicken population from the 1950s to 2013 using remotely sensed data and (2 assess the potential of the Conservation Reserve Program (U.S. Department of Agriculture Program converting cropland to permanent cover; CRP to mitigate grassland loss. Digital land cover maps were generated on a decadal time step through spectral classification of LANDSAT images and visual analysis of aerial photographs (1950s and 1960s. Landscape composition and configuration were assessed using FRAGSTATS to compute a variety of landscape metrics measuring changes in the amount of grassland present as well as changes in the size and configuration of grassland patches. With the exception of a single regional portion of the range, nearly all of the grassland converted to cropland in the lesser prairie-chicken range of Kansas occurred prior to the 1950s. Prior to the implementation of CRP, the amount of grassland decreased 3.6% between the 1950s and 1985 from 18,455 km2 to 17,788 km2. Since 1985, the overall amount of grassland in the lesser prairie-chicken range has increased 11.9% to 19,898 km2 due to implementation of CRP, although the area of grassland decreased between 1994 and 2013 as CRP contracts were not renewed by landowners. Since 1986 grassland in Kansas became more connected and less fragmented in response to the CRP. While the CRP has been successful

  10. Social transfer of alcohol withdrawal-induced hyperalgesia in female prairie voles.

    Science.gov (United States)

    Walcott, Andre T; Smith, Monique L; Loftis, Jennifer M; Ryabinin, Andrey E

    2018-03-27

    The expression of pain serves as a way for animals to communicate potential dangers to nearby conspecifics. Recent research demonstrated that mice undergoing alcohol or morphine withdrawal, or inflammation, could socially communicate their hyperalgesia to nearby mice. However, it is unknown whether such social transfer of hyperalgesia can be observed in other species of rodents. Therefore, the present study investigated if the social transfer of hyperalgesia occurs in the highly social prairie vole (Microtus ochrogaster). We observe that adult female prairie voles undergoing withdrawal from voluntary two-bottle choice alcohol drinking display an increase in nociception. This alcohol withdrawal-induced hypersensitiity is socially transferred to female siblings within the same cage and female strangers housed in separate cages within the same room. These experiments reveal that the social transfer of pain phenomenon is not specific to inbred mouse strains and that prairie voles display alcohol withdrawal and social transfer-induced hyperalgesia.

  11. The effect of listing the lesser prairie chicken as a threatened species on rural property values.

    Science.gov (United States)

    Wietelman, Derek C; Melstrom, Richard T

    2017-04-15

    This paper estimates the effect of Endangered Species Act protections for the lesser prairie chicken (Tympanuchus pallidicinctus) on rural property values in Oklahoma. The political and legal controversy surrounding the listing of imperiled species raises questions about the development restrictions and opportunity costs the Endangered Species Act imposes on private landowners. Examining parcel-level sales data before and after the listing of the endemic lesser prairie chicken, we employ difference-in-differences (DD) regression to measure the welfare costs of these restrictions. While our basic DD regression provides evidence the listing was associated with a drop in property values, this finding does not hold up in models that control for latent county and year effects. The lack of a significant price effect is confirmed by several robustness checks. Thus, the local economic costs of listing the lesser prairie chicken under the Endangered Species Act appear to have been small. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Magnetic minerals in soils across the forest-prairie ecotone in NW Minnesota

    Science.gov (United States)

    Maxbauer, D.; Feinberg, J. M.; Fox, D. L.; Nater, E. A.

    2016-12-01

    Soil pedogenesis results in a complex assemblage of iron oxide minerals that can be disentangled successfully using sensitive magnetic techniques to better delineate specific soil processes. Here, we evaluate the variability in soil processes within forest, prairie, and transitional soils along an 11 km transect of anthropogenically unaltered soils that span the forest-to-prairie ecotone in NW Minnesota. All soils in this study developed on relatively uniform topography, similar glacial till parent material, under a uniform climate, and presumably over similar time intervals. The forest-to-prairie transition zone in this region is controlled by naturally occurring fires, affording the opportunity to evaluate differences in soil processes related to vegetation (forest versus prairie) and burning (prairie and transitional soils). Results suggest that the pedeogenic fraction of magnetite/maghemite in soils is similar in all specimens and is independent of soil type, vegetation, and any effects of burning. Magnetically enhanced horizons have 45% of remanence held by a low-coercivity pedogenic component (likely magnetite/maghemite) regardless of vegetation cover and soil type. Enhancement ratios for magnetic susceptibility and low-field remanences, often used as indicators of pedogenic magnetic minerals, are more variable but remain statistically equivalent across the transect. These results support the hypothesis that pedogenic magnetic minerals in soils mostly reflect ambient climatic conditions regardless of the variability in soil processes related to vegetation and soil type. The non-pedogenic magnetic mineral assemblage shows clear distinctions between the forest, prairie, and transitional soils in hysteresis properties (remanence and coercivity ratios; Mr/Ms and Bc/Bcr, respectively), suggesting that variable processes in these settings influence the local magnetic mineral assemblage, and that it may be possible to use magnetic minerals in paleosols to constrain

  13. Landscape composition creates a threshold influencing Lesser Prairie-Chicken population resilience to extreme drought

    Science.gov (United States)

    Ross, Beth E.; Haukos, David A.; Hagen, Christian A.; Pitman, James C.

    2016-01-01

    Habitat loss and degradation compound the effects of climate change on wildlife, yet responses to climate and land cover change are often quantified independently. The interaction between climate and land cover change could be intensified in the Great Plains region where grasslands are being converted to row-crop agriculture concurrent with increased frequency of extreme drought events. We quantified the combined effects of land cover and climate change on a species of conservation concern in the Great Plains, the Lesser Prairie-Chicken (Tympanuchus pallidicinctus  ). We combined extreme drought events and land cover change with lek count surveys in a Bayesian hierarchical model to quantify changes in abundance of male Lesser Prairie-Chickens from 1978 to 2014 in Kansas, the core of their species range. Our estimates of abundance indicate a gradually decreasing population through 2010 corresponding to drought events and reduced grassland areas. Decreases in Lesser Prairie-Chicken abundance were greatest in areas with increasing row-crop to grassland land cover ratio during extreme drought events, and decreased grassland reduces the resilience of Lesser Prairie-Chicken populations to extreme drought events. A threshold exists for Lesser Prairie-Chickens in response to the gradient of cropland:grassland land cover. When moving across the gradient of grassland to cropland, abundance initially increased in response to more cropland on the landscape, but declined in response to more cropland after the threshold (δ=0.096, or 9.6% cropland). Preservation of intact grasslands and continued implementation of initiatives to revert cropland to grassland should increase Lesser Prairie-Chicken resilience to extreme drought events due to climate change.

  14. Annual trace-metal load estimates and flow-weighted concentrations of cadmium, lead, and zinc in the Spokane River basin, Idaho and Washington, 1999-2004

    Science.gov (United States)

    Donato, Mary M.

    2006-01-01

    Streamflow and trace-metal concentration data collected at 10 locations in the Spokane River basin of northern Idaho and eastern Washington during 1999-2004 were used as input for the U.S. Geological Survey software, LOADEST, to estimate annual loads and mean flow-weighted concentrations of total and dissolved cadmium, lead, and zinc. Cadmium composed less than 1 percent of the total metal load at all stations; lead constituted from 6 to 42 percent of the total load at stations upstream from Coeur d'Alene Lake and from 2 to 4 percent at stations downstream of the lake. Zinc composed more than 90 percent of the total metal load at 6 of the 10 stations examined in this study. Trace-metal loads were lowest at the station on Pine Creek below Amy Gulch, where the mean annual total cadmium load for 1999-2004 was 39 kilograms per year (kg/yr), the mean estimated total lead load was about 1,700 kg/yr, and the mean annual total zinc load was 14,000 kg/yr. The trace-metal loads at stations on North Fork Coeur d'Alene River at Enaville, Ninemile Creek, and Canyon Creek also were relatively low. Trace-metal loads were highest at the station at Coeur d'Alene River near Harrison. The mean annual total cadmium load was 3,400 kg/yr, the mean total lead load was 240,000 kg/yr, and the mean total zinc load was 510,000 kg/yr for 1999-2004. Trace-metal loads at the station at South Fork Coeur d'Alene River near Pinehurst and the three stations on the Spokane River downstream of Coeur d'Alene Lake also were relatively high. Differences in metal loads, particularly lead, between stations upstream and downstream of Coeur d'Alene Lake likely are due to trapping and retention of metals in lakebed sediments. LOADEST software was used to estimate loads for water years 1999-2001 for many of the same sites discussed in this report. Overall, results from this study and those from a previous study are in good agreement. Observed differences between the two studies are attributable to streamflow

  15. Impact of Prairie Cover on Hydraulic Conductivity and Storm Water Runoff

    Science.gov (United States)

    Herkes, D. M. G.; Gori, A.; Juan, A.

    2017-12-01

    Houston has long struggled to find effective solutions to its historic flooding problems. Conventional strategies have revolved around constructing hard infrastructure such as levees or regional detention ponds to reduce flood impacts. However, there has been a recent shift to explore the implementation of nature-based solutions in reducing flood impacts. This is due to the price of structural mechanisms, as well as their failure to adequately protect areas from flooding during the latest flood events. One alternative could be utilizing the natural water retention abilities of native Texas prairies. This study examines the effect of Texas prairie areas in increasing soil infiltration capacities, thereby increasing floodwater storage and reducing surface runoff. For this purpose, an infiltration study of 15 sites was conducted on lands owned by the Katy Prairie Conservancy within Cypress Creek watershed. Located in Northwest Houston, it is an area which had been heavily impacted by recent flood events. Each sampling site was selected to represent a particular land cover or vegetation type, ranging from developed open space to native prairies. Field test results are then compared to literature values of soil infiltration capacity in order to determine the infiltration benefit of each vegetation type. Test results show that certain vegetation, especially prairies, significantly increase the infiltration capacity of the underlying soil. For example, the hydraulic conductivity of prairie on sandy loam soil is approximately an order of magnitude higher than that of the soil itself. Finally, a physics-based hydrologic model is utilized to evaluate the flood reduction potential of native Texas prairie. This model represents Cypress Creek watershed in gridded cell format, and allows varying hydraulic and infiltration parameters at each cell. Design storms are run to obtain flow hydrographs for selected watch points in the study area. Two scenarios are simulated and compared

  16. Field-level financial assessment of contour prairie strips for enhancement of environmental quality.

    Science.gov (United States)

    Tyndall, John C; Schulte, Lisa A; Liebman, Matthew; Helmers, Matthew

    2013-09-01

    The impacts of strategically located contour prairie strips on sediment and nutrient runoff export from watersheds maintained under an annual row crop production system have been studied at a long-term research site in central Iowa. Data from 2007 to 2011 indicate that the contour prairie strips utilized within row crop-dominated landscapes have greater than proportionate and positive effects on the functioning of biophysical systems. Crop producers and land management agencies require comprehensive information about the Best Management Practices with regard to performance efficacy, operational/management parameters, and the full range of financial parameters. Here, a farm-level financial model assesses the establishment, management, and opportunity costs of contour prairie strips within cropped fields. Annualized, depending on variable opportunity costs the 15-year present value cost of utilizing contour prairie strips ranges from $590 to $865 ha(-1) year(-1) ($240-$350 ac(-1) year(-1)). Expressed in the context of "treatment area" (e.g., in this study 1 ha of prairie treats 10 ha of crops), the costs of contour prairie strips can also be viewed as $59 to about $87 per treated hectare ($24-$35 ac(-1)). If prairie strips were under a 15-year CRP contract, total per acre cost to farmers would be reduced by over 85 %. Based on sediment, phosphorus, and nitrogen export data from the related field studies and across low, medium, and high land rent scenarios, a megagram (Mg) of soil retained within the watershed costs between $7.79 and $11.46 mg(-1), phosphorus retained costs between $6.97 and $10.25 kg(-1), and nitrogen retained costs between $1.59 and $2.34 kg(-1). Based on overall project results, contour prairie strips may well become one of the key conservation practices used to sustain US Corn Belt agriculture in the decades to come.

  17. Ecological consequences of shifting the timing of burning tallgrass prairie.

    Directory of Open Access Journals (Sweden)

    E Gene Towne

    Full Text Available In the Kansas Flint Hills, grassland burning is conducted during a relatively narrow window because management recommendations for the past 40 years have been to burn only in late spring. Widespread prescribed burning within this restricted time frame frequently creates smoke management issues downwind. A potential remedy for the concentrated smoke production in late spring is to expand burning to times earlier in the year. Yet, previous research suggested that burning in winter or early spring reduces plant productivity and cattle weight gain while increasing the proportion of undesirable plant species. In order to better understand the ecological consequences of burning at different times of the year, plant production and species abundance were measured for 20 years on ungrazed watersheds burned annually in autumn, winter, or spring. We found that there were no significant differences in total grass production among the burns on either upland or lowland topographic positions, although spring burned watersheds had higher grass culm production and lower forb biomass than autumn and winter burned watersheds. Burning in autumn or winter broadened the window of grass productivity response to precipitation, which reduces susceptibility to mid-season drought. Burning in autumn or winter also increased the phenological range of species by promoting cool-season graminoids without a concomitant decrease in warm-season grasses, potentially widening the seasonal window of high-quality forage. Incorporating autumn and winter burns into the overall portfolio of tallgrass prairie management should increase the flexibility in managing grasslands, promote biodiversity, and minimize air quality issues caused by en masse late-spring burning with little negative consequences for cattle production.

  18. Continuous Cropping and Moist Deep Convection on the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    Devon E. Worth

    2012-12-01

    Full Text Available Summerfallow is cropland that is purposely kept out of production during a growing season to conserve soil moisture. On the Canadian Prairies, a trend to continuous cropping with a reduction in summerfallow began after the summerfallow area peaked in 1976. This study examined the impact of this land-use change on convective available potential energy (CAPE, a necessary but not sufficient condition for moist deep convection. All else being equal, an increase in CAPE increases the probability-of-occurrence of convective clouds and their intensity if they occur. Representative Bowen ratios for the Black, Dark Brown, and Brown soil zones were determined for 1976: the maximum summerfallow year, 2001: our baseline year, and 20xx: a hypothetical year with the maximum-possible annual crop area. Average mid-growing-season Bowen ratios and noon solar radiation were used to estimate the reduction in the lifted index (LI from land-use weighted evapotranspiration in each study year. LI is an index of CAPE, and a reduction in LI indicates an increase in CAPE. The largest reductions in LI were found for the Black soil zone. They were −1.61 ± 0.18, −1.77 ± 0.14 and −1.89 ± 0.16 in 1976, 2001 and 20xx, respectively. These results suggest that, all else being equal, the probability-of-occurrence of moist deep convection in the Black soil zone was lower in 1976 than in the base year 2001, and it will be higher in 20xx when the annual crop area reaches a maximum. The trend to continuous cropping had less impact in the drier Dark Brown and Brown soil zones.

  19. The scale dependence of optical diversity in a prairie ecosystem

    Science.gov (United States)

    Gamon, J. A.; Wang, R.; Stilwell, A.; Zygielbaum, A. I.; Cavender-Bares, J.; Townsend, P. A.

    2015-12-01

    Biodiversity loss, one of the most crucial challenges of our time, endangers ecosystem services that maintain human wellbeing. Traditional methods of measuring biodiversity require extensive and costly field sampling by biologists with extensive experience in species identification. Remote sensing can be used for such assessment based upon patterns of optical variation. This provides efficient and cost-effective means to determine ecosystem diversity at different scales and over large areas. Sampling scale has been described as a "fundamental conceptual problem" in ecology, and is an important practical consideration in both remote sensing and traditional biodiversity studies. On the one hand, with decreasing spatial and spectral resolution, the differences among different optical types may become weak or even disappear. Alternately, high spatial and/or spectral resolution may introduce redundant or contradictory information. For example, at high resolution, the variation within optical types (e.g., between leaves on a single plant canopy) may add complexity unrelated to specie richness. We studied the scale-dependence of optical diversity in a prairie ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, USA using a variety of spectrometers from several platforms on the ground and in the air. Using the coefficient of variation (CV) of spectra as an indicator of optical diversity, we found that high richness plots generally have a higher coefficient of variation. High resolution imaging spectrometer data (1 mm pixels) showed the highest sensitivity to richness level. With decreasing spatial resolution, the difference in CV between richness levels decreased, but remained significant. These findings can be used to guide airborne studies of biodiversity and develop more effective large-scale biodiversity sampling methods.

  20. Interactions among American badgers, black-footed ferrets, and prairie dogs in the grasslands of western North America

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Grassel, Shaun M.; Livieri, Travis M.; Licht, Daniel S.; Proulx, Gilbert; Do Linh San, Emmanuel

    2016-01-01

    American badgers (Taxidea taxus) and black-footed ferrets (Mustela nigripes) sometimes occur sympatrically within colonies of prairie dogs (Cynomys spp.) in the grasslands of western North America. From the perspective of a simplified food web, badgers are consumers of ferrets and, to a greater extent, prairie dogs; ferrets are specialized consumers of prairie dogs; and prairie dogs are consumers of vegetation. We review information on the predatory behaviours of badgers, which collectively demonstrate that badgers exhibit complex hunting strategies to improve their probability of capturing prairie dogs and, perhaps, ferrets. We also review studies of interactions between badgers and ferrets, which suggest that there is selective pressure on badgers to compete with ferrets, and pressure on ferrets to compete with and avoid badgers. We then speculate as to how prairie dogs might shape interactions between badgers and ferrets, and how badgers could spread the plague bacterium (Yersinia pestis) among prairie dog colonies. Lastly, we provide recommendations for research on this tractable system of semi-fossorial predators and prey.

  1. Effects of Long-Term Developmental Patterns of Adiposity on Levels of C-Reactive Protein and Fibrinogen among North-American Men and Women: The Spokane Heart Study

    Directory of Open Access Journals (Sweden)

    Trynke Hoekstra

    2014-06-01

    Full Text Available This study examined the heterogeneity in BMI development by identifying distinct developmental trajectories. These trajectories were further investigated by relating them to markers of low-grade inflammation later in life. Data from approximately 400 healthy volunteers participating in the Spokane Heart Study were collected in 2-year intervals, and four waves of data were available for the current analyses. Body weight was measured by BMI and low-grade inflammation by high-sensitivity C-reactive protein (CRP and fibrinogen. Up to date statistical techniques, i.e. latent class growth models, were used to analyse heterogeneity in body weight, and linear regressions were run to analyse possible associations between trajectories of body weight and CRP/fibrinogen levels. Six trajectories were identified (three stable, two increasing, and one decreasing which differed significantly on CRP/fibrinogen levels, highlighting the importance of weight trajectories. The differences were only partly explained by variations in lifestyle habits.

  2. Selected trace-element and synthetic-organic compound data for streambed sediment from the Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, 1998

    Science.gov (United States)

    Beckwith, Michael A.

    2002-01-01

    Streambed-sediment samples were collected at 22 sites during the summer of 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Sampling sites in the Clark Fork-Pend Oreille and Spokane River basins represented a wide range of environmental conditions including pristine mountain streams and large rivers affected by mining-related and urban activities. Samples were analyzed for 45 inorganic major and trace elements, 109 syn­thetic organic compounds, and carbon. This report pre­sents the selected results of streambed-sediment sampling from the Clark Fork-Pend Oreille and Spo­kane River basins in Montana, Idaho, and Washington.

  3. Midcontinent Prairie-Pothole wetlands and climate change: An Introduction to the Supplemental Issue

    Science.gov (United States)

    Mushet, David M.

    2016-01-01

    The multitude of wetlands in the Prairie Pothole Region of North America forms one of Earth’s largest wetland complexes. The midcontinent location exposes this ecologically and economically important wetland system to a highly variable climate, markedly influencing ponded-water levels, hydroperiods, chemical characteristics, and biota of individual basins. Given their dominance on the landscape and recognized value, great interest in how projected future changes in climate will affect prairie-pothole wetlands has developed and spawned much scientific research. On June 2, 2015, a special symposium, “Midcontinent Prairie-Pothole Wetlands: Influence of a Changed Climate,” was held at the annual meeting of the Society of Wetland Scientists in Providence, Rhode Island, USA. The symposium’s twelve presenters covered a wide range of relevant topics delivered to a standing-room-only audience. Following the symposium, the presenters recognized the need to publish their presented papers as a combined product to facilitate widespread distribution. The need for additional papers to more fully cover the topic of prairie-pothole wetlands and climate change was also identified. This supplemental issue of Wetlands is the realization of that vision.

  4. Status of black-tailed prairie dog (Cynomys ludovicianus) in Sonora, Mexico

    Science.gov (United States)

    Reyna A. Castillo-Gamez; Rafael Arenas-Wong; Luis Castillo-Quijada; Verónica Coronado-Peraza; Abigail Enríquez-Munguia; Mirna Federico-Ortega; Alejandra García-Urrutia; Alba Lozano-Gámez; Romeo Méndez-Estrella; Laura Ochoa-Figueroa; J. R. Romo-León; Guy Kruse-Llergo; Iván Parra-Salazar

    2005-01-01

    Prairie dog is a keystone species throughout the habitat where it occurs, but its populations have declined about 98% in the last century. This species has been considered of international importance for the United States of America, Canada, and Mexico. Only two populations are recorded for Mexico, and the westernmost (isolated by Sierra Madre...

  5. Testing for thresholds in a semiarid grassland: The influence of prairie dogs and plague

    Science.gov (United States)

    State and transition models for semiarid grasslands in the Great Plains of North America suggest that the presence of herbivorous black-tailed prairie dogs (Cynomys ludovicianus) on a site (1) creates a vegetation state characterized by increased dominance of annual forbs and unpalatable bunchgrasse...

  6. Rainwater deficit and irrigation demand for row crops in Mississippi Blackland Prairie

    Science.gov (United States)

    Gary Feng; Ying Ouyang; Ardeshir Adeli; John Read; Johnie Jenkins

    2018-01-01

    Irrigation research in the mid-south United States has not kept pace with a steady increase in irrigated area in recent years. This study used rainfall records from 1895 to 2016 to determine rainwater deficit and irrigation demand for soybean [Glycine max (L.) Merr.], corn (Zea mays L.), and cotton (Gossypium hirsutum L.) in the Blackland Prairie region of Mississippi...

  7. Spread of plague among black-tailed prairie dogs is associated with colony spatial characteristics

    Science.gov (United States)

    Johnson, T.L.; Cully, J.F.; Collinge, S.K.; Ray, C.; Frey, C.M.; Sandercock, B.K.

    2011-01-01

    Sylvatic plague (Yersinia pestis) is an exotic pathogen that is highly virulent in black-tailed prairie dogs (Cynomys ludovicianus) and causes widespread colony losses and individual mortality rates >95%. We investigated colony spatial characteristics that may influence inter-colony transmission of plague at 3 prairie dog colony complexes in the Great Plains. The 4 spatial characteristics we considered include: colony size, Euclidean distance to nearest neighboring colony, colony proximity index, and distance to nearest drainage (dispersal) corridor. We used multi-state mark-recapture models to determine the relationship between these colony characteristics and probability of plague transmission among prairie dog colonies. Annual mapping of colonies and mark-recapture analyses of disease dynamics in natural colonies led to 4 main results: 1) plague outbreaks exhibited high spatial and temporal variation, 2) the site of initiation of epizootic plague may have substantially influenced the subsequent inter-colony spread of plague, 3) the long-term effect of plague on individual colonies differed among sites because of how individuals and colonies were distributed, and 4) colony spatial characteristics were related to the probability of infection at all sites although the relative importance and direction of relationships varied among sites. Our findings suggest that conventional prairie dog conservation management strategies, including promoting large, highly connected colonies, may need to be altered in the presence of plague. ?? 2011 The Wildlife Society.

  8. Vegetation dynamics of restored and remnant Willamette Valley, OR wet prairie wetlands

    Science.gov (United States)

    Wet prairie wetlands are now one of the rarest habitat types in the Willamette Valley of Oregon, USA. Less than two percent of their historic extent remains, with most having been converted into agricultural fields (Christy and Alverson 2011, ONHP 1983). This habitat is the obl...

  9. Sediment removal by prairie filter strips in row-cropped ephemeral watersheds

    Science.gov (United States)

    Matthew J. Helmers; Xiaobo Zhou; Heidi Asbjornsen; Randy Kolka; Mark D. Tomer; Richard M. Cruse

    2012-01-01

    Twelve small watersheds in central Iowa were used to evaluate the eff ectiveness of prairie filter strips (PFS) in trapping sediment from agricultural runoff. Four treatments with PFS of different size and location (100% rowcrop, 10% PFS of total watershed area at footslope, 10% PFS at footslope and in contour strips, 20% PFS at footslope and in contour strips)...

  10. Effects of wind energy development on nesting ecology of greater prairie-chickens in fragmented grasslands.

    Science.gov (United States)

    McNew, Lance B; Hunt, Lyla M; Gregory, Andrew J; Wisely, Samantha M; Sandercock, Brett K

    2014-08-01

    Wind energy is targeted to meet 20% of U.S. energy needs by 2030, but new sites for development of renewable energy may overlap with important habitats of declining populations of grassland birds. Greater Prairie-Chickens (Tympanuchus cupido) are an obligate grassland bird species predicted to respond negatively to energy development. We used a modified before-after control-impact design to test for impacts of a wind energy development on the reproductive ecology of prairie-chickens in a 5-year study. We located 59 and 185 nests before and after development, respectively, of a 201 MW wind energy facility in Greater Prairie-Chicken nesting habitat and assessed nest site selection and nest survival relative to proximity to wind energy infrastructure and habitat conditions. Proximity to turbines did not negatively affect nest site selection (β = 0.03, 95% CI = -1.2-1.3) or nest survival (β = -0.3, 95% CI = -0.6-0.1). Instead, nest site selection and survival were strongly related to vegetative cover and other local conditions determined by management for cattle production. Integration of our project results with previous reports of behavioral avoidance of oil and gas facilities by other species of prairie grouse suggests new avenues for research to mitigate impacts of energy development. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  11. Restoring sand shinnery oak prairies with herbicide and grazing in New Mexico

    Science.gov (United States)

    Zavaleta, Jennifer C.; Haukos, David A.; Grisham, Blake A.; Boal, Clint W.; Dixon, Charles

    2016-01-01

    Sand shinnery oak (Quercus havardii) prairies are increasingly disappearing and increasingly degraded in the Southern High Plains of Texas and New Mexico. Restoring and managing sand shinnery oak prairie can support biodiversity, specific species of conservation concern, and livestock production. We measured vegetation response to four treatment combinations of herbicide (tebuthiuron applied at 0.60 kg/ha) and moderate-intensity grazing (50% removal of annual herbaceous production) over a 10-year period in a sand shinnery oak prairie of eastern New Mexico. We compared the annual vegetation response to the historical climax plant community (HCPC) as outlined by the U.S. Department of Agriculture Ecological Site Description. From 2 to 10 years postapplication, tebuthiuron-treated plots had reduced shrub cover with twice as much forb and grass cover as untreated plots. Tebuthiuron-treated plots, regardless of the presence of grazing, most frequently met HCPC. Tebuthiuron and moderate-intensity grazing increased vegetation heterogeneity and, based on comparison of the HCPC, successfully restored sand shinnery oak prairie to a vegetation composition similar to presettlement.

  12. Raptor community composition in the Texas Southern High Plains lesser prairie-chicken range

    Science.gov (United States)

    Behney, A.C.; Boal, Clint W.; Whitlaw, Heather A.; Lucia, D.R.

    2012-01-01

    Predation can be a factor in preventing prey population growth and sustainability when prey populations are small and fragmented, and when predator density is unrelated to the density of the single prey species. We conducted monthly raptor surveys from February 2007 to May 2009 in adjacent areas of the Texas Southern High Plains (USA) that do and do not support lesser prairie-chickens (Tympanuchus pallidicinctus), a candidate for protection under the Endangered Species Act. During the summer period corresponding to prairie-chicken nesting and brood-rearing, Swainson's hawks (Buteo swainsoni) were the most abundant raptor. During the lekking and overwintering period, the raptor community was diverse, with northern harriers (Circus cyaneus) being the most abundant species. Raptor abundance peaked during the early autumn and was lowest during the spring. Utility poles were a significant predictor of raptor density at survey points and Swainson's hawks and all raptors, pooled, were found in greater densities in non-prairie-chicken habitat dominated by mesquite (Prosopis glandulosa). Avian predation risk on prairie-chickens, based on presence and abundance of raptors, appears to be greatest during winter when there is a more abundant and diverse raptor community, and in areas with utility poles.

  13. Preliminary study of prairies forested with Eucalyptus sp. at the northwestern Uruguayan soils

    International Nuclear Information System (INIS)

    Carrasco-Letelier, L.; Eguren, G.; Castineira, C.; Parra, O.; Panario, D.

    2004-01-01

    The forestation of Uruguayan natural prairie soil does not always ensure an increase of soil carbon sink. - The land cover change of Uruguayan Forestal Plan provoked biogeochemical changes on horizon Au 1 of Argiudols; in native prairies which were replaced by monoculture Eucalyptus sp. plantation with 20 year rotations as trees. Five fields forested and six natural prairies were compared. The results not only show a statistical significant soil acidification, diminution of soil organic carbon, increase of aliphaticity degree of humic substances, and increase of affinity and capacity of hydrolytic activity from soil microbial communities for forested sites with Eucalyptus sp. but also, a tendency of podzolization and/or mineralization by this kind of land cover changes, with a net soil organic lost of 16.6 tons ha -1 in the horizon Au 1 of soil under Eucalyptus sp. plantation compared with prairie. Besides, these results point out the necessity of correction of the methodology used by assigned Uruguayan commission to assess the national net emission of greenhouse gases, since the mineralization and/or podzolization process detected in forested soil imply a overestimation of soil organic carbon. The biochemical parameters show a statistical significant correlation between the soil organic carbon status and these parameters which were presented as essential for the correct evaluation of Uruguayan soil carbon sink

  14. Phenotypic and genetic characterization of western prairie clover collections from the western USA

    Science.gov (United States)

    Kishor Bhattarai; B. Shaun Bushman; Douglas A. Johnson; John G. Carman

    2010-01-01

    Few North American legumes are available for rangeland revegetation in the semiarid western United States. Western prairie clover (Dalea ornata [Douglas ex Hook.] Eaton & J. Wright) is a perennial legume with desirable forage characteristics and is distributed in the northern Great Basin, Snake River Basin, and southern Columbia Plateau. Understanding the...

  15. Gallbladder contractility and mucus secretion after cholesterol feeding in the prairie dog

    NARCIS (Netherlands)

    Li, Y. F.; Moody, F. G.; Weisbrodt, N. W.; Zalewsky, C. A.; Coelho, J. C.; Senninger, N.; Gouma, D.

    1986-01-01

    The purpose of our study was to evaluate changes in gallbladder contractility and mucus secretion in vitro during the early stages of gallstone formation in prairie dogs. Thirty-two animals were divided into five groups. Control animals were fed a trace cholesterol diet. Experimental animals were

  16. Searls prairie clover (Dalea searlsiae) for rangeland revegetation: Phenotypic and genetic evaluations

    Science.gov (United States)

    Kishor Bhattarai; Shaun Bushman; Douglas A. Johnson; John G. Carman

    2011-01-01

    Few North American legumes are available for use in rangeland revegetation in the western USA, but Searls prairie clover [Dalea searlsiae (A. Gray) Barneby] is one that holds promise. Commercial-scale seed production of this species could address the issues of unreliable seed availability and high seed costs associated with its wildland seed collection. To evaluate its...

  17. Sodium co-limits and catalyzes macronutrients in a prairie food web

    DEFF Research Database (Denmark)

    Kaspari, Michael; Roeder, Karl A.; Benson, Brittany

    2017-01-01

    Nitrogen and phosphorus frequently limit terrestrial plant production, but have a mixed record in regulating the abundance of terrestrial invertebrates. We contrasted four ways that Na could interact with an NP fertilizer to shape the plants and invertebrates of an inland prairie. We applied NP a...

  18. Comparison of cellulosic ethanol yields from midwestern maize and reconstructed tallgrass prairie systems managed for bioenergy

    Science.gov (United States)

    Maize- and prairie-based systems were investigated as cellulosic feedstocks by conducting a 9 ha side-by-side comparison on fertile soils in the Midwestern United States. Maize was grown continuously with adequate fertilization over years both with and without a winter rye cover crop, and the 31-spe...

  19. Population status of prairie dogs (Cynomys ludovicianus) in the San Pedro River Basin, Sonora

    Science.gov (United States)

    Efren Moreno-Arzate; Carlos A. Lopez Gonzalez; Gerardo Carreon Arroyo

    2013-01-01

    The black tailed prairie dog (Cynomys ludovicianus) is a species of conservation concern for Mexico, the United States and Canada. Populations in Mexico (including those in Sonora), which are considered endangered by the Mexican authority, require additional conservation efforts to maintain them on the long term. Our objective was to determine population size and...

  20. Interactions of raptors and Lesser Prairie-Chickens at leks in the Texas Southern High Plains

    Science.gov (United States)

    Behney, Adam C.; Boal, Clint W.; Whitlaw, Heather A.; Lucia, Duane R.

    2011-01-01

    We examined behavioral interactions of raptors, Chihuahuan Ravens (Corvus cryptoleucus), and Lesser Prairie-Chickens (Tympanuchus pallidicinctus) at leks in the Texas Southern High Plains. Northern Harriers (Circus cyaneus) and Swainson's Hawks (Buteo swainsoni) were the most common raptors observed at leks. Only 15 of 61 (25%) raptor encounters at leks (0.09/hr) resulted in a capture attempt (0.02/hr). Mean (± SD) time for Lesser Prairie-Chickens to return to lekking behavior following a raptor encounter was 4.2 ± 5.5 min suggesting the disturbance had little influence on lekking behaviors. Lesser Prairie-Chickens engaged in different escape behaviors depending on raptor species and, generally, did not respond to ravens suggesting they are able to assess different predation risks. The raptors in our study area posed little predation risk to lekking prairie-chickens. Behavioral disturbance at leks appears minimal due to the lack of successful predation events, low raptor encounter rates, and short time to return to lekking behavior.

  1. Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens

    Energy Technology Data Exchange (ETDEWEB)

    Sandercock, Brett K. [Kansas State Univ., Manhattan, KS (United States)

    2013-05-22

    This report summarizes the results of a seven-year, DOE-funded research project, conducted by researchers from Kansas State University and the National Wind Coordinating Collaborative, to assess the effects of wind energy development in Kansas on the population and reproduction of greater prairie chickens.

  2. Land use effects on pesticides in sediments of prairie pothole wetlands in North and South Dakota

    Science.gov (United States)

    McMurry, Scott T.; Belden, Jason B.; Smith, Loren M.; Morrison, Shane A.; Daniel, Dale W.; Euliss, Betty R.; Euliss, Ned H. Jr.; Kensinger, Bart J.; Tangen, Brian

    2016-01-01

    Prairie potholes are the dominant wetland type in the intensively cultivated northern Great Plains of North America, and thus have the potential to receive pesticide runoff and drift. We examined the presence of pesticides in sediments of 151 wetlands split among the three dominant land use types, Conservation Reserve Program (CRP), cropland, and native prairie, in North and South Dakota in 2011. Herbicides (glyphosate and atrazine) and fungicides were detected regularly, with no insecticide detections. Glyphosate was the most detected pesticide, occurring in 61% of all wetlands, with atrazine in only 8% of wetlands. Pyraclostrobin was one of five fungicides detected, but the only one of significance, being detected in 31% of wetlands. Glyphosate was the only pesticide that differed by land use, with concentrations in cropland over four-times that in either native prairie or CRP, which were equal in concentration and frequency of detection. Despite examining several landscape variables, such as wetland proximity to specific crop types, watershed size, and others, land use was the best variable explaining pesticide concentrations in potholes. CRP ameliorated glyphosate in wetlands at concentrations comparable to native prairie and thereby provides another ecosystem service from this expansive program.

  3. Intrusion of soil covered uranium mill tailings by whitetail prairie dogs and Richardson's ground squirrels

    International Nuclear Information System (INIS)

    Shuman, R.

    1984-01-01

    The primary objective of the reclamation of uranium mill tailings is the long-term isolation of the matrial from the biosphere. Fossorial and semi-fossorial species represent a potentially disruptive influence as a result of their burrowing habits. The potential for intrusion was investigated with respect to two sciurids, the whitetail prairie dog (Cynomys leucurus) and Richardson's ground squirrel (Spermophilus richardsonii). Populations of prairie dogs were established on a control area, lacking a tailings layer, and two experimental areas, underlain by a waste layer, in southeastern Wyoming. Weekly measurements of prairie dog mound surface activities were conducted to demonstrate penetration, or lack thereof, of the tailings layer. Additionally, the impact of burrowing upon radon flux was determined. Limited penetration of the waste layer was noted after which frequency of inhabitance of the intruding burrow system declined. No significant changes in radon flux were detected. In another experiment, it was found that Richardson's ground squirrels burrowed to less extreme depths when confronted by mill tailings. Additional work at an inactive tailings pile in western Colorado revealed repeated intrusion through a shallow cover, and subsequent transport of radioactive material to the ground surface by prairie dogs. Radon flux from burrow entrances was significantly greater than that from undisturbed ground. Data suggested that textural and pH properties of tailings material may act to discourage repeated intrusion at some sites. 58 references

  4. Interannual variability in the extent of wetland-stream connectivity within the Prairie Pothole Region

    Science.gov (United States)

    Melanie Vanderhoof; Laurie Alexander

    2016-01-01

    The degree of hydrological connectivity between wetland systems and downstream receiving waters can be expected to influence the volume and variability of stream discharge. The Prairie Pothole Region contains a high density of depressional wetland features, a consequence of glacial retreat. Spatial variability in wetland density, drainage evolution, and precipitation...

  5. Neonicotinoid insecticide removal by prairie strips in row-cropped watersheds with historical seed coating use

    Science.gov (United States)

    Hladik, Michelle L.; Bradbury, Steven; Schulte, Lisa A.; Helmers, Matthew; Witte, Christopher; Kolpin, Dana W.; Garrett, Jessica D.; Harris, Mary

    2017-01-01

    Neonicotinoids are a widely used class of insecticides that are commonly applied as seed coatings for agricultural crops. Such neonicotinoid use may pose a risk to non-target insects, including pollinators and natural enemies of crop pests, and ecosystems. This study assessed neonicotinoid residues in groundwater, surface runoff water, soil, and native plants adjacent to corn and soybean crop fields with a history of being planted with neonicotinoid-treated seeds from 2008-2013. Data from six sites with the same crop management history, three with and three without in-field prairie strips, were collected in 2015-2016, 2-3 years after neonicotinoid (clothianidin and imidacloprid) seed treatments were last used. Three of the six neonicotinoids analyzed were detected in at least one environmental matrix: the two applied as seed coatings on the fields (clothianidin and imidacloprid) and another widely used neonicotinoid (thiamethoxam). Sites with prairie strips generally had lower concentrations of neonicotinoids: groundwater and footslope soil neonicotinoid concentrations were significantly lower in the sites with prairie strips than those without; mean concentrations for groundwater were 11 and 20 ng/L (p = 0.048) and <1 and 6 ng/g (p = 0.0004) for soil, respectively. Surface runoff water concentrations were not significantly (p = 0.38) different for control sites (44 ng/L) or sites with prairie strips (140 ng/L). Consistent with the decreased inputs of neonicotinoids, concentrations tended to decrease over the sampling timeframe. Two sites recorded concentration increases, however, potentially due to disturbance of previous applications or influence from nearby fields where use of seed treatments continued. There were no detections (limit of detection: 1 ng/g) of neonicotinoids in the foliage or roots of plants comprising prairie strips, indicating a low likelihood of exposure to pollinators and other insects visiting these plants following the cessation of seed

  6. Long-term lesser prairie-chicken nest ecology in response to grassland management

    Science.gov (United States)

    Fritts, Sarah R.; Grisham, Blake A.; Haukos, David A.; Boal, Clint W.; Patten, Michael; Wolfe, Don H.; Dixon, Charles; Cox, Robert D.; Heck, Willard R.

    2016-01-01

    Long-term population and range declines from habitat loss and fragmentation caused the lesser prairie-chicken (Tympanuchus pallidicinctus) to be a species of concern throughout its range. Current lesser prairie-chicken range in New Mexico and Texas is partially restricted to sand shinnery oak (Quercus havardii; hereafter shinnery oak) prairies, on which cattle grazing is the main socioeconomic driver for private landowners. Cattle producers within shinnery oak prairies often focus land management on shrub eradication using the herbicide tebuthiuron to promote grass production for forage; however, herbicide application alone, and in combination with grazing, may affect nest site selection and nest survival of lesser prairie-chickens through the reduction of shinnery oak and native grasses. We used a controlled, paired, completely randomized design study to assess the influence of grazing and tebuthiuron application and their combined use on nest site selection and nest survival from 2001 to 2010 in Roosevelt County, New Mexico, USA at 2 spatial scales (i.e., treatment and microhabitat) in 4 treatments: tebuthiuron with grazing, tebuthiuron without grazing, no tebuthiuron with grazing, and a control of no tebuthiuron and no grazing. Grazing treatment was a short-duration system in which plots were grazed once during the dormant season and once during the growing season. Stocking rate was calculated each season based on measured forage production and applied to remove ≤25% of available herbaceous material per season. At the treatment scale, we compared nest site selection among treatments using 1-way χ2 tests and nest survival among treatments using a priori candidate nest survival models in Program MARK. At the microhabitat scale, we identified important habitat predictors of nest site selection and nest survival using logistic regression and a priori candidate nest survival models in Program MARK, respectively. Females typically used treatments as expected and

  7. Predicting Greater Prairie-Chicken Lek Site Suitability to Inform Conservation Actions.

    Directory of Open Access Journals (Sweden)

    Torre J Hovick

    Full Text Available The demands of a growing human population dictates that expansion of energy infrastructure, roads, and other development frequently takes place in native rangelands. Particularly, transmission lines and roads commonly divide rural landscapes and increase fragmentation. This has direct and indirect consequences on native wildlife that can be mitigated through thoughtful planning and proactive approaches to identifying areas of high conservation priority. We used nine years (2003-2011 of Greater Prairie-Chicken (Tympanuchus cupido lek locations totaling 870 unique leks sites in Kansas and seven geographic information system (GIS layers describing land cover, topography, and anthropogenic structures to model habitat suitability across the state. The models obtained had low omission rates (0.81, indicating high model performance and reliability of predicted habitat suitability for Greater Prairie-Chickens. We found that elevation was the most influential in predicting lek locations, contributing three times more predictive power than any other variable. However, models were improved by the addition of land cover and anthropogenic features (transmission lines, roads, and oil and gas structures. Overall, our analysis provides a hierarchal understanding of Greater Prairie-Chicken habitat suitability that is broadly based on geomorphological features followed by land cover suitability. We found that when land features and vegetation cover are suitable for Greater Prairie-Chickens, fragmentation by anthropogenic sources such as roadways and transmission lines are a concern. Therefore, it is our recommendation that future human development in Kansas avoid areas that our models identified as highly suitable for Greater Prairie-Chickens and focus development on land cover types that are of lower conservation concern.

  8. The innate immune response may be important for surviving plague in wild Gunnison's prairie dogs

    Science.gov (United States)

    Busch, Joseph D.; Van Andel, Roger; Stone, Nathan E.; Cobble, Kacy R.; Nottingham, Roxanne; Lee, Judy; VerSteeg, Michael; Corcoran, Jeff; Cordova, Jennifer; Van Pelt, William E.; Shuey, Megan M.; Foster, Jeffrey T.; Schupp, James M.; Beckstrom-Sternberg, Stephen; Beckstrom-Sternberg, James; Keim, Paul; Smith, Susan; Rodriguez-Ramos, Julia; Williamson, Judy L.; Rocke, Tonie E.; Wagner, David M.

    2013-01-01

    Prairie dogs (Cynomys spp.) are highly susceptible to Yersinia pestis, with ≥99% mortality reported from multiple studies of plague epizootics. A colony of Gunnison's prairie dogs (Cynomys gunnisoni) in the Aubrey Valley (AV) of northern Arizona appears to have survived several regional epizootics of plague, whereas nearby colonies have been severely affected by Y. pestis. To examine potential mechanisms accounting for survival in the AV colony, we conducted a laboratory Y. pestis challenge experiment on 60 wild-caught prairie dogs from AV and from a nearby, large colony with frequent past outbreaks of plague, Espee (n = 30 per colony). Test animals were challenged subcutaneously with the fully virulent Y. pestis strain CO92 at three doses: 50, 5,000, and 50,000 colony-forming units (cfu); this range is lethal in black-tailed prairie dogs (Cynomys ludovicianus). Contrary to our expectations, only 40% of the animals died. Although mortality trended higher in the Espee colony (50%) compared with AV (30%), the differences among infectious doses were not statistically significant. Only 39% of the survivors developed moderate to high antibody levels to Y. pestis, indicating that mechanisms other than humoral immunity are important in resistance to plague. The ratio of neutrophils to lymphocytes was not correlated with plague survival in this study. However, several immune proteins with roles in innate immunity (VCAM-1, CXCL-1, and vWF) were upregulated during plague infection and warrant further inquiry into their role for protection against this disease. These results suggest plague resistance exists in wild populations of the Gunnison's prairie dog and provide important directions for future studies.

  9. Sylvatic plague vaccine partially protects prairie dogs (Cynomys spp.) in field trials

    Science.gov (United States)

    Rocke, Tonie E.; Tripp, Daniel W.; Russell, Robin E.; Abbott, Rachel C.; Richgels, Katherine; Matchett, Marc R.; Biggins, Dean E.; Griebel, Randall; Schroeder, Greg; Grassel, Shaun M.; Pipkin, David R.; Cordova, Jennifer; Kavalunas, Adam; Maxfield, Brian; Boulerice, Jesse; Miller, Michael W.

    2017-01-01

    Sylvatic plague, caused by Yersinia pestis, frequently afflicts prairie dogs (Cynomys spp.), causing population declines and local extirpations. We tested the effectiveness of bait-delivered sylvatic plague vaccine (SPV) in prairie dog colonies on 29 paired placebo and treatment plots (1–59 ha in size; average 16.9 ha) in 7 western states from 2013 to 2015. We compared relative abundance (using catch per unit effort (CPUE) as an index) and apparent survival of prairie dogs on 26 of the 29 paired plots, 12 with confirmed or suspected plague (Y. pestis positive carcasses or fleas). Even though plague mortality occurred in prairie dogs on vaccine plots, SPV treatment had an overall positive effect on CPUE in all three years, regardless of plague status. Odds of capturing a unique animal were 1.10 (95% confidence interval [C.I.] 1.02–1.19) times higher per trap day on vaccine-treated plots than placebo plots in 2013, 1.47 (95% C.I. 1.41–1.52) times higher in 2014 and 1.19 (95% C.I. 1.13–1.25) times higher in 2015. On pairs where plague occurred, odds of apparent survival were 1.76 (95% Bayesian credible interval [B.C.I.] 1.28–2.43) times higher on vaccine plots than placebo plots for adults and 2.41 (95% B.C.I. 1.72–3.38) times higher for juveniles. Our results provide evidence that consumption of vaccine-laden baits can protect prairie dogs against plague; however, further evaluation and refinement are needed to optimize SPV use as a management tool.

  10. Specificity in Sociality: Mice and Prairie Voles Exhibit Different Patterns of Peer Affiliation

    Science.gov (United States)

    Beery, Annaliese K.; Christensen, Jennifer D; Lee, Nicole S.; Blandino, Katrina L.

    2018-01-01

    Social behavior is often described as a unified concept, but highly social (group-living) species exhibit distinct social structures and may make different social decisions. Prairie voles (Microtus ochrogaster) are socially monogamous rodents that often reside in extended family groups, and exhibit robust preferences for familiar social partners (same- and opposite-sex) during extended choice tests, although short-term preferences are not known. Mice (Mus musculus) are gregarious and colonial, but in brief laboratory tests of social preference they typically prefer social novelty. This preference for novel vs. familiar peers may represent a species-specific difference in social decision-making between mice and prairie voles. However, the tests used to measure preferences in each species differ markedly in duration and degree of contact, such that the behaviors cannot be directly compared. We assessed whether social preferences for novelty or familiarity differed between mice and prairie voles of both sexes when assessed with matching protocols: the sociability/social preference test (SPT) typically used in mice (short, no direct contact), and the partner preference test (PPT) used in voles (long, direct contact). A subset of voles also underwent a PPT using barriers (long, no direct contact). In the short SPT, behavior did not differ between species. In the longer test, pronounced partner preferences emerged in prairie voles, but mice exhibited no social preferences and rarely huddled. No sex differences were evident in either test. Direct physical contact was required for partner preferences in huddling time in voles, but preference for the partner chamber was evident with or without contact. Both prairie voles and mice are social, but they exhibit important differences in the specificity and extent of their social behavior. While mice are often used to study social approach and other behaviors, voles are a more suitable species for the study of selective social

  11. Specificity in Sociality: Mice and Prairie Voles Exhibit Different Patterns of Peer Affiliation

    Directory of Open Access Journals (Sweden)

    Annaliese K. Beery

    2018-03-01

    Full Text Available Social behavior is often described as a unified concept, but highly social (group-living species exhibit distinct social structures and may make different social decisions. Prairie voles (Microtus ochrogaster are socially monogamous rodents that often reside in extended family groups, and exhibit robust preferences for familiar social partners (same- and opposite-sex during extended choice tests, although short-term preferences are not known. Mice (Mus musculus are gregarious and colonial, but in brief laboratory tests of social preference they typically prefer social novelty. This preference for novel vs. familiar peers may represent a species-specific difference in social decision-making between mice and prairie voles. However, the tests used to measure preferences in each species differ markedly in duration and degree of contact, such that the behaviors cannot be directly compared. We assessed whether social preferences for novelty or familiarity differed between mice and prairie voles of both sexes when assessed with matching protocols: the sociability/social preference test (SPT typically used in mice (short, no direct contact, and the partner preference test (PPT used in voles (long, direct contact. A subset of voles also underwent a PPT using barriers (long, no direct contact. In the short SPT, behavior did not differ between species. In the longer test, pronounced partner preferences emerged in prairie voles, but mice exhibited no social preferences and rarely huddled. No sex differences were evident in either test. Direct physical contact was required for partner preferences in huddling time in voles, but preference for the partner chamber was evident with or without contact. Both prairie voles and mice are social, but they exhibit important differences in the specificity and extent of their social behavior. While mice are often used to study social approach and other behaviors, voles are a more suitable species for the study of

  12. Lesser prairie-chicken fence collision risk across its northern distribution

    Science.gov (United States)

    Robinson, Samantha G.; Haukos, David A.; Plumb, Reid T.; Hagen, Christian A.; Pitman, James C.; Lautenbach, Joseph M.; Sullins, Daniel S.; Kraft, John D.; Lautenbach, Jonathan D.

    2016-01-01

    Livestock fences have been hypothesized to significantly contribute to mortality of lesser prairie-chickens (Tympanuchus pallidicinctus); however, quantification of mortality due to fence collisions is lacking across their current distribution. Variation in fence density, landscape composition and configuration, and land use could influence collision risk of lesser prairie-chickens. We monitored fences within 3 km of known leks during spring and fall and surveyed for signs of collision occurrence within 20 m of fences in 6 study sites in Kansas and Colorado, USA during 2013 and 2014. We assessed mortality locations of radio-tagged birds (n = 286) for evidence of fence collisions and compared distance to fence relative to random points. Additionally, we quantified locations, propensity, and frequency of fences crossed by lesser prairie-chickens. We tested for landscape and vegetative characteristics that influenced fence-cross propensity and frequency of global positioning system (GPS)-marked birds. A minimum of 12,706 fence crossings occurred by GPS-marked lesser prairie-chickens. We found 3 carcasses and 12 additional possible instances of evidence of collision during >2,800 km of surveyed fences. We found evidence for a single suspected collision based on carcass evidence for 148 mortalities of transmittered birds. Mortality locations of transmittered birds were located at distances from fences 15% farther than expected at random. Our data suggested minimal biological significance and indicated that propensity and frequency of fence crossings were random processes. Lesser prairie-chickens do not appear to be experiencing significant mortality risk due to fence collisions in Kansas and Colorado. Focusing resources on other limiting factors (i.e., habitat quality) has greater potential for impact on population demography than fence marking and removal.

  13. The predicted influence of climate change on lesser prairie-chicken reproductive parameters

    Science.gov (United States)

    Grisham, Blake A.; Boal, Clint W.; Haukos, David A.; Davis, D.; Boydston, Kathy K.; Dixon, Charles; Heck, Willard R.

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001-2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter's linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Nina events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.

  14. Canola Root–Associated Microbiomes in the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    Chih-Ying Lay

    2018-06-01

    Full Text Available Canola is one of the most economically important crops in Canada, and the root and rhizosphere microbiomes of a canola plant likely impact its growth and nutrient uptake. The aim of this study was to determine whether canola has a core root microbiome (i.e., set of microbes that are consistently selected in the root environment, and whether this is distinct from the core microbiomes of other crops that are commonly grown in the Canadian Prairies, pea, and wheat. We also assessed whether selected agronomic treatments can modify the canola microbiome, and whether this was associated to enhanced yield. We used a field experiment with a randomized complete block design, which was repeated at three locations across the canola-growing zone of Canada. Roots and rhizosphere soil were harvested at the flowering stage of canola. We separately isolated total extractable DNA from plant roots and from adjacent rhizosphere soil, and constructed MiSeq amplicon libraries for each of 60 samples, targeting bacterial, and archaeal 16S rRNA genes and the fungal ITS region. We determined that the microbiome of the roots and rhizosphere of canola was consistently different from those of wheat and pea. These microbiomes comprise several putative plant-growth-promoting rhizobacteria, including Amycolatopsis sp., Serratia proteamaculans, Pedobacter sp., Arthrobacter sp., Stenotrophomonas sp., Fusarium merismoides, and Fusicolla sp., which correlated positively with canola yield. Crop species had a significant influence on bacterial and fungal assemblages, especially within the roots, while higher nutrient input or seeding density did not significantly alter the global composition of bacterial, fungal, or archaeal assemblages associated with canola roots. However, the relative abundance of Olpidium brassicae, a known pathogen of members of the Brassicaceae, was significantly reduced in the roots of canola planted at higher seeding density. Our results suggest that

  15. Modeling Prairie Pothole Lakes: Linking Satellite Observation and Calibration (Invited)

    Science.gov (United States)

    Schwartz, F. W.; Liu, G.; Zhang, B.; Yu, Z.

    2009-12-01

    This paper examines the response of a complex lake wetland system to variations in climate. The focus is on the lakes and wetlands of the Missouri Coteau, which is part of the larger Prairie Pothole Region of the Central Plains of North America. Information on lake size was enumerated from satellite images, and yielded power law relationships for different hydrological conditions. More traditional lake-stage data were made available to us from the USGS Cottonwood Lake Study Site in North Dakota. A Probabilistic Hydrologic Model (PHM) was developed to simulate lake complexes comprised of tens-of-thousands or more individual closed-basin lakes and wetlands. What is new about this model is a calibration scheme that utilizes remotely-sensed data on lake area as well as stage data for individual lakes. Some ¼ million individual data points are used within a Genetic Algorithm to calibrate the model by comparing the simulated results with observed lake area-frequency power law relationships derived from Landsat images and water depths from seven individual lakes and wetlands. The simulated lake behaviors show good agreement with the observations under average, dry, and wet climatic conditions. The calibrated model is used to examine the impact of climate variability on a large lake complex in ND, in particular, the “Dust Bowl Drought” 1930s. This most famous drought of the 20th Century devastated the agricultural economy of the Great Plains with health and social impacts lingering for years afterwards. Interestingly, the drought of 1930s is unremarkable in relation to others of greater intensity and frequency before AD 1200 in the Great Plains. Major droughts and deluges have the ability to create marked variability of the power law function (e.g. up to one and a half orders of magnitude variability from the extreme Dust Bowl Drought to the extreme 1993-2001 deluge). This new probabilistic modeling approach provides a novel tool to examine the response of the

  16. Global warming and prairie wetlands: potential consequences for waterfowl habitat

    Science.gov (United States)

    Poiani, Karen A.; Johnson, W. Carter

    1991-01-01

    The accumulation of greenhouse gasses in the atmosphere is expected to warm the earth's climate at an unprecedented rate (Ramanathan 1988, Schneider 1989). If the climate models are correct, within 100 years the earth will not only be warmer than it has been during the past million years, but the change will have occurred more rapidly than any on record. Many profound changes in the earth's environment are expected, including rising sea level, increasing aridity in continental interiors, and melting permafrost. Ecosystems are expected to respond variously to a rapidly changing climate. Tree ranges in eastern North American are expected to shift northward, and seed dispersal may not be adequate to maintain current diversity (Cohn 1989, Johnson and Webb 1989). In coastal wetlands, rising sea level from melting icecaps and thermal expansion could flood salt-grass marshes and generally reduce the size and productivity of the intertidal zone (Peters and Darling 1985). As yet, little attention has been given to the possible effects of climatic warming on inland prairie wetland ecosystems. These wetlands, located in the glaciated portion of the North American Great Plains (Figure 1), constitute the single most important breeding area for waterfowl on this continent (Hubbard 1988). This region annually produces 50-80% of the continent's total duck production (Batt et al. 1989). These marshes also support a variety of other wildlife, including many species of nongame birds, muskrat, and mink (Kantrud et al. 1989a). Prairie wetlands are relatively shallow, water-holding depressions that vary in size, water permanence, and water chemistry. Permanence types include temporary ponds (typically holding water for a few weeks in the springs), seasonal ponds (holding water from spring until early summer), semipermanent ponds (holding water throughout the growing season during most years), and large permanent lakes (Stewart and Kantrud 1971). Refilling usually occurs in spring from

  17. Research and Monitoring Special Use Permit [Minnesota Zoo's Prairie Butterfly Conservation Program on Chase Lake National Wildlife Refuge : 2016

    Data.gov (United States)

    Department of the Interior — The Minnesota Zoo’s Prairie Butterfly Conservation Program partners with numerous federal, state, and local agencies to establish the world’s first and only ex situ...

  18. 77 FR 73827 - Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken as a Threatened...

    Science.gov (United States)

    2012-12-11

    ... the lesser prairie-chicken (Tympanuchus pallidicinctus), a grassland bird known from southeastern... plants; wind energy development; petroleum production; and presence of roads and manmade vertical structures including towers, utility lines, fences, turbines, wells, and buildings. We will request peer...

  19. The effects of black-tailed prairie dogs on plant communities within a complex urban landscape: an ecological surprise?

    Science.gov (United States)

    Beals, Stower C; Hartley, Laurel M; Prevéy, Janet S; Seastedt, Timothy R

    2014-05-01

    Historically, prairie dogs (Cynomys spp.) have been considered essential keystone species of western United States grassland ecosystems because they provide unique services and increase vegetation community richness, evenness, and diversity. However, the effects of black-tailed prairie dogs (Cynomys ludovicianus) on lands adjacent to or surrounded by urban areas may not result in the same ecosystem benefits historically associated with their presence. An urban landscape presents prairie dogs with movement challenges unparalleled in natural landscapes, as well as suites of nonnative plant species that are more common in disturbed areas. This study examined a complex ecosystem where vegetation communities are being influenced by directional environmental change, and quantified the synergistic effects resulting from the protective management of a native keystone species. The data set for this analysis was comprised of 71 paired (occupied by prairie dogs vs. unoccupied) vegetation surveys and 156 additional unpaired surveys collected from around the city of Boulder, Colorado, USA for 14 yr. Linear mixed models were used to compare data from transects occupied and unoccupied by prairie dogs, as well as to evaluate the effect of prairie dog occupation duration. In the absence of prairie dogs, vegetation in this region exhibited declines in native grasses, no changes in introduced grasses, and increases in native and nonnative forbs and bare soil over the study interval. In the presence of prairie dogs, these observed directional changes were nearly all amplified at rates four to 10 times greater than when prairie dogs were absent. Areas in Boulder occupied by prairie dogs also had significantly lower richness, evenness, and diversity of plant species, compared to unoccupied areas. Analysis of plant functional groups revealed the significant reduction of perennial native grasses, as well as a significantly higher cover of introduced forbs in occupied areas. Prairie dogs

  20. Environmental Assessment: Black-Tailed Prairie Dog Management Cannon Air Force Base and Melrose Air Force Range, New Mexico

    Science.gov (United States)

    2005-12-01

    requirements are met by metabolizing grazed vegetation. Prairie dogs dig burrows to an average depth of 2-3 meters with some tunnels interconnecting with...the potential to impact non- target species such as mice, kangaroo rats, and some songbirds. Establishing control zones at CAFB and MAFR could not be...Gutierrezia sarothrae), and Russian thistle (Salsola iberica). Water requirements are met by metabolizing grazed vegetation. Prairie dogs dig burrows

  1. Interactive effects between nest microclimate and nest vegetation structure confirm microclimate thresholds for Lesser Prairie-Chicken nest survival

    Science.gov (United States)

    Grisham, Blake A.; Godar, Alixandra J.; Boal, Clint W.; Haukos, David A.

    2016-01-01

    The range of Lesser Prairie-Chickens (Tympanuchus pallidicinctus) spans 4 unique ecoregions along 2 distinct environmental gradients. The Sand Shinnery Oak Prairie ecoregion of the Southern High Plains of New Mexico and Texas is environmentally isolated, warmer, and more arid than the Short-Grass, Sand Sagebrush, and Mixed-Grass Prairie ecoregions in Colorado, Kansas, Oklahoma, and the northeast panhandle of Texas. Weather is known to influence Lesser Prairie-Chicken nest survival in the Sand Shinnery Oak Prairie ecoregion; regional variation may also influence nest microclimate and, ultimately, survival during incubation. To address this question, we placed data loggers adjacent to nests during incubation to quantify temperature and humidity distribution functions in 3 ecoregions. We developed a suite of a priori nest survival models that incorporated derived microclimate parameters and visual obstruction as covariates in Program MARK. We monitored 49 nests in Mixed-Grass, 22 nests in Sand Shinnery Oak, and 30 nests in Short-Grass ecoregions from 2010 to 2014. Our findings indicated that (1) the Sand Shinnery Oak Prairie ecoregion was hotter and drier during incubation than the Mixed- and Short-Grass ecoregions; (2) nest microclimate varied among years within ecoregions; (3) visual obstruction was positively associated with nest survival; but (4) daily nest survival probability decreased by 10% every half-hour when temperature was greater than 34°C and vapor pressure deficit was less than −23 mmHg during the day (about 0600–2100 hours). Our major finding confirmed microclimate thresholds for nest survival under natural conditions across the species' distribution, although Lesser Prairie-Chickens are more likely to experience microclimate conditions that result in nest failures in the Sand Shinnery Oak Prairie ecoregion. The species would benefit from identification of thermal landscapes and management actions that promote cooler, more humid nest microclimates.

  2. Grooming behaviors of black-tailed prairie dogs are influenced by flea parasitism, conspecifics, and proximity to refuge

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Eads, Samantha L.

    2017-01-01

    Grooming is a common animal behavior that aids in ectoparasite defense. Ectoparasites can stimulate grooming, and natural selection can also favor endogenous mechanisms that evoke periodic bouts of “programmed” grooming to dislodge or kill ectoparasites before they bite or feed. Moreover, grooming can function as a displacement or communication behavior. We compared the grooming behaviors of adult female black-tailed prairie dogs (Cynomys ludovicianus) on colonies with or without flea control via pulicide dust. Roughly 91% of the prairie dogs sampled on the non-dusted colony carried at least one flea, whereas we did not find fleas on two dusted colonies. During focal observations, prairie dogs on the non-dusted colony groomed at higher frequencies and for longer durations than prairie dogs on the dusted colonies, lending support to the hypothesis that fleas stimulated grooming. However, the reduced amount of time spent grooming on the dusted colonies suggested that approximately 25% of grooming might be attributed to factors other than direct stimulation from ectoparasites. Non-dusted colony prairie dogs rarely autogroomed when near each other. Dusted colony prairie dogs autogroomed for shorter durations when far from a burrow opening (refuge), suggesting a trade-off between self-grooming and antipredator defense. Allogrooming was detected only on the non-dusted colony and was limited to adult females grooming young pups. Grooming appears to serve an antiparasitic function in C. ludovicianus. Antiparasitic grooming might aid in defense against fleas that transmit the plague bacterium Yersinia pestis. Plague was introduced to North America ca. 1900 and now has a strong influence on most prairie dog populations, suggesting a magnified effect of grooming on prairie dog fitness.

  3. Aerial surveys adjusted by ground surveys to estimate area occupied by black-tailed prairie dog colonies

    Science.gov (United States)

    Sidle, John G.; Augustine, David J.; Johnson, Douglas H.; Miller, Sterling D.; Cully, Jack F.; Reading, Richard P.

    2012-01-01

    Aerial surveys using line-intercept methods are one approach to estimate the extent of prairie dog colonies in a large geographic area. Although black-tailed prairie dogs (Cynomys ludovicianus) construct conspicuous mounds at burrow openings, aerial observers have difficulty discriminating between areas with burrows occupied by prairie dogs (colonies) versus areas of uninhabited burrows (uninhabited colony sites). Consequently, aerial line-intercept surveys may overestimate prairie dog colony extent unless adjusted by an on-the-ground inspection of a sample of intercepts. We compared aerial line-intercept surveys conducted over 2 National Grasslands in Colorado, USA, with independent ground-mapping of known black-tailed prairie dog colonies. Aerial line-intercepts adjusted by ground surveys using a single activity category adjustment overestimated colonies by ≥94% on the Comanche National Grassland and ≥58% on the Pawnee National Grassland. We present a ground-survey technique that involves 1) visiting on the ground a subset of aerial intercepts classified as occupied colonies plus a subset of intercepts classified as uninhabited colony sites, and 2) based on these ground observations, recording the proportion of each aerial intercept that intersects a colony and the proportion that intersects an uninhabited colony site. Where line-intercept techniques are applied to aerial surveys or remotely sensed imagery, this method can provide more accurate estimates of black-tailed prairie dog abundance and trends

  4. Longitudinal Trajectories and Inter-parental Dynamics of Prairie Vole Biparental Care

    Directory of Open Access Journals (Sweden)

    Forrest D. Rogers

    2018-06-01

    Full Text Available For altricial mammalian species, early life social bonds are constructed principally between offspring and their mothers, and the mother-offspring relationship sets the trajectory for offspring bio-behavioral development. In the rare subset of monogamous and biparental species, offspring experience an expanded social network which includes a father. Accordingly, in biparental species fathers also have the potential to influence trajectories of offspring development. Previous semi-natural and laboratory study of one monogamous and biparental species, the prairie vole (Microtus ochrogaster, has given insight into the role that mothers and fathers play in shaping behavioral phenotypes of offspring. Of particular interest is the influence of biparental care in the development of monogamous behavior in offspring. Here, we first briefly review that influence. We then present novel research which describes how parental investment in prairie voles changes across sequential litters of pups, and the extent to which it is coordinated between mothers and fathers. We use approximately 6 years of archival data on prairie vole parenting to investigate trajectories and inter-parent dynamics in prairie vole parenting. We use a series of latent growth models to assess the stability of parental investment across the first 4 l. Our findings suggest that prairie voles display sexually dimorphic patterns of change in parental behavior: mothers' investment declines linearly whereas fathers' pattern of change is characterized by initial decline between litters 1 and 2 with subsequent increase from litters 2 to 4. Our findings also support a conclusion that prairie vole paternal care may be better characterized as compensatory—that is, fathers may compensate for decline in maternal investment. Opposing trends in investment between mothers and fathers ultimately imply stability in offspring investment across sequential litters. These findings, combined with previous

  5. Habitat edge, land management, and rates of brood parasitism in tallgrass prairie.

    Science.gov (United States)

    Patten, Michael A; Shochat, Eyal; Reinking, Dan L; Wolfe, Donald H; Sherrod, Steve K

    2006-04-01

    Bird populations in North America's grasslands have declined sharply in recent decades. These declines are traceable, in large part, to habitat loss, but management of tallgrass prairie also has an impact. An indirect source of decline potentially associated with management is brood parasitism by the Brown-headed Cowbird (Molothrus ater), which has had substantial negative impacts on many passerine hosts. Using a novel application of regression trees, we analyzed an extensive five-year set of nest data to test how management of tallgrass prairie affected rates of brood parasitism. We examined seven landscape features that may have been associated with parasitism: presence of edge, burning, or grazing, and distance of the nest from woody vegetation, water, roads, or fences. All five grassland passerines that we included in the analyses exhibited evidence of an edge effect: the Grasshopper Sparrow (Ammodramus savannarum), Henslow's Sparrow (A. henslowii), Dickcissel (Spiza americana), Red-winged Blackbird (Agelaius phoeniceus), and Eastern Meadowlark (Sturnella magna). The edge was represented by narrow strips of woody vegetation occurring along roadsides cut through tallgrass prairie. The sparrows avoided nesting along these woody edges, whereas the other three species experienced significantly higher (1.9-5.3x) rates of parasitism along edges than in prairie. The edge effect could be related directly to increase in parasitism rate with decreased distance from woody vegetation. After accounting for edge effect in these three species, we found evidence for significantly higher (2.5-10.5x) rates of parasitism in grazed plots, particularly those burned in spring to increase forage, than in undisturbed prairie. Regression tree analysis proved to be an important tool for hierarchically parsing various landscape features that affect parasitism rates. We conclude that, on the Great Plains, rates of brood parasitism are strongly associated with relatively recent road cuts

  6. Decline of Hesperia ottoe (Lepidoptera: Hesperiidae in Northern Tallgrass Prairie Preserves

    Directory of Open Access Journals (Sweden)

    Ann B. Swengel

    2013-11-01

    Full Text Available We counted butterflies on transect surveys during Hesperia ottoe flight period in 1988–2011 at tallgrass prairie preserves in four states (Illinois, Iowa, Minnesota, Wisconsin, divided into units cross-referenced to vegetation type and management history. H. ottoe occurred only in dry and sand prairie types, and was significantly more abundant in undegraded than semi-degraded prairie, and in discontinuous sod (with numerous unvegetated areas due to bare sand and/or rock outcrops than in continuous sod. This skipper was significantly more abundant in small sites compared to medium and large sites, even when the analysis was limited to undegraded prairie analyzed separately by sod type. H. ottoe was significantly under-represented in year-burn 0 (the first growing season after fire compared to an expected distribution proportional to survey effort. However, H. ottoe was also over-represented in fire-managed units compared to non-fire-managed units. However, by far most units and sites were in fire management and most populations declined to subdetection during this study. Peak abundance post-fire occurred in a later year-burn in discontinuous sod and was much higher than in continuous sod. We also analyze H. ottoe status and trend in midwestern prairie preserves by compiling a dataset of our and others’ butterfly surveys from 1974 to 2011. Only 1/9 sites with continuous sod had detectable H. ottoe in recent year(s. In discontinuous sod, 2/6 did, with two sites lacking data for the last few years. The number of years H. ottoe was still detectable after preservation and the number of years to consistent non-detection were both significantly higher in discontinuous than continuous sod. Both measures of population persistence averaged over twice as long in discontinuous than continuous sod, and correlated negatively with prairie size. The year when consistent non-detection began varied over several decades among sites. Despite the currently urgent

  7. Decline of Hesperia ottoe (Lepidoptera: Hesperiidae) in Northern Tallgrass Prairie Preserves.

    Science.gov (United States)

    Swengel, Ann B; Swengel, Scott R

    2013-11-20

    We counted butterflies on transect surveys during Hesperia ottoe flight period in 1988-2011 at tallgrass prairie preserves in four states (Illinois, Iowa, Minnesota, Wisconsin), divided into units cross-referenced to vegetation type and management history. H. ottoe occurred only in dry and sand prairie types, and was significantly more abundant in undegraded than semi-degraded prairie, and in discontinuous sod (with numerous unvegetated areas due to bare sand and/or rock outcrops) than in continuous sod. This skipper was significantly more abundant in small sites compared to medium and large sites, even when the analysis was limited to undegraded prairie analyzed separately by sod type. H. ottoe was significantly under-represented in year-burn 0 (the first growing season after fire) compared to an expected distribution proportional to survey effort. However, H. ottoe was also over-represented in fire-managed units compared to non-fire-managed units. However, by far most units and sites were in fire management and most populations declined to subdetection during this study. Peak abundance post-fire occurred in a later year-burn in discontinuous sod and was much higher than in continuous sod. We also analyze H. ottoe status and trend in midwestern prairie preserves by compiling a dataset of our and others' butterfly surveys from 1974 to 2011. Only 1/9 sites with continuous sod had detectable H. ottoe in recent year(s). In discontinuous sod, 2/6 did, with two sites lacking data for the last few years. The number of years H. ottoe was still detectable after preservation and the number of years to consistent non-detection were both significantly higher in discontinuous than continuous sod. Both measures of population persistence averaged over twice as long in discontinuous than continuous sod, and correlated negatively with prairie size. The year when consistent non-detection began varied over several decades among sites. Despite the currently urgent need to identify

  8. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA.

    Science.gov (United States)

    Tripp, Daniel W; Rocke, Tonie E; Streich, Sean P; Abbott, Rachel C; Osorio, Jorge E; Miller, Michael W

    2015-04-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  9. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA

    Science.gov (United States)

    Tripp, Daniel W.; Rocke, Tonie E.; Streich, Sean P.; Abbott, Rachel C.; Osorio, Jorge E.; Miller, Michael W.

    2015-01-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  10. Mapping wetlands and surface water in the Prairie Pothole Region of North America: Chapter 16

    Science.gov (United States)

    Rover, Jennifer R.; Mushet, David M.

    2015-01-01

    The Prairie Pothole Region (PPR) is one of the most highly productive wetland regions in the world. Prairie Pothole wetlands serve as a primary feeding and breeding habitat for more than one-half of North America’s waterfowl population, as well as a variety of songbirds, waterbirds, shorebirds, and other wildlife. During the last century, extensive land conversions from grassland with wetlands to cultivated cropland and grazed pastureland segmented and reduced wetland habitat. Inventorying and characterizing remaining wetland habitat is critical for the management of wetland ecosystem services. Remote sensing technologies are often utilized for mapping and monitoring wetlands. This chapter presents background specific to the PPR and discusses approaches employed in mapping its wetlands before presenting a case study.

  11. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.

    2015-01-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research.

  12. Respiratory isolation for tuberculosis: the experience of Indigenous peoples on the Canadian prairies.

    Science.gov (United States)

    Mayan, M; Robinson, T; Gokiert, R; Tremblay, M; Abonyi, S; Long, R

    2017-12-21

    Setting: The Prairie provinces of Canada. Objective: To understand how Indigenous peoples with infectious pulmonary tuberculosis living in different community settings in the Prairie provinces of Canada experience respiratory isolation. Design: Using an exploratory qualitative approach, we interviewed participants living in urban centres, non-remote reserve settings and remote and isolated reserve settings. Results: Through qualitative content analysis of 48 interviews, we determined that participants experienced feelings of confinement regardless of the community setting in which they lived. Participants also experienced family and social disconnect, but the experience was more potent for the remote and isolated reserve participants, who were required to be flown out of their home communities to receive treatment, and for those urban centre and non-remote reserve participants who lacked social connections. The roles of past experiences with sanitoria and of family in providing social support are discussed. Conclusions: The conclusions of this study focus on examining isolation policies and improving the hospital isolation experience.

  13. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America.

    Science.gov (United States)

    Eads, David A; Biggins, Dean E

    2015-08-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research. © 2015 Society for Conservation Biology.

  14. Implementation of an advanced digital feedwater control system at the Prairie Island nuclear generating station

    International Nuclear Information System (INIS)

    Paris, R.E.; Gaydos, K.A.; Hill, J.O.; Whitson, S.G.; Wirkkala, R.

    1990-05-01

    EPRI Project RP2126-4 was a cooperative effort between TVA, EPRI, and Westinghouse which resulted in the demonstration of a prototype of a full range, fully automatic feedwater control system, using fault tolerant digital technology, at the TVA Sequoyah simulator site. That prototype system also included advanced signal validation algorithms and an advanced man-machine interface that used CRT-based soft-control technology. The Westinghouse Advanced Digital Feedwater Control System (ADFCS) upgrade, which contains elements that were part of that prototype system, has since been installed at Northern States Power's Prairie Island Unit 2. This upgrade was very successful due to the use of an advanced control system design and the execution of a well coordinated joint effort between the utility and the supplier. The project experience is documented in this report to help utilities evaluate the technical implications of such a project. The design basis of the Prairie Island ADFCS signal validation for input signal failure fault tolerance is outlined first. Features of the industry-proven system control algorithms are then described. Pre-shipment hardware-in-loop and factory acceptance testing of the Prairie Island system are summarized. Post-shipment site testing, including preoperational and plant startup testing, is also summarized. Plant data from the initial system startup is included. The installation of the Prairie Island ADFCS is described, including both the feedwater control instrumentation and the control board interface. Modification of the plant simulator and operator and I ampersand C personnel training are also discussed. 6 refs., 14 figs., 3 tabs

  15. Exudate Chemical Profiles Derived from Lespedeza and Other Tallgrass Prairie Plant Species

    Science.gov (United States)

    2017-05-01

    Chemical Profiles Derived from Lespedeza and Other Tall- grass Prairie Plant Species. ERDC TN-17-1. Vicksburg, MS: U.S. Army Engineer Re- search and...200-1-52. Washington, DC: U.S. Army Corps of Engineers Headquarters, Civil Works. https://www.wbdg.org/ffc/army-coe/public-works-technical-bulletins...ERDC TN-17-1 May 2017 Approved for public release; distribution is unlimited. Exudate Chemical Profiles Derived from Lespedeza and Other

  16. Alcohol’s Effects on Pair-Bond Maintenance in Male Prairie Voles

    Directory of Open Access Journals (Sweden)

    Andre T. Walcott

    2017-11-01

    Full Text Available Alcohol abuse can have devastating effects on social relationships. In particular, discrepant patterns of heavy alcohol consumption are associated with increased rates of separation and divorce. Previous studies have attempted to model these effects of alcohol using socially monogamous prairie voles. These studies showed that alcohol consumption can inhibit the formation of pair bonds in this species. While these findings indicated that alcohol’s effects on social attachments can involve biological mechanisms, the formation of pair bonds does not properly model long-term human attachments. To overcome this caveat, this study explored whether discordant or concordant alcohol consumption between individuals within established pairs affects maintenance of pair bonds in male prairie voles. Male and female prairie voles were allowed to form a pair bond for 1 week. Following this 1-week cohabitation period, males received access to 10% continuous ethanol; meanwhile, their female partners had access to either alcohol and water or just water. When there was a discrepancy in alcohol consumption, male prairie voles showed a decrease in partner preference (PP. Conversely, when concordant drinking occurred, males showed no inhibition in PP. Further analysis revealed a decrease in oxytocin immunoreactivity in the paraventricular nucleus of alcohol-exposed males that was independent of the drinking status of their female partners. On the other hand, only discordant alcohol consumption resulted in an increase of FosB immunoreactivity in the periaqueductal gray of male voles, a finding suggesting a potential involvement of this brain region in the effects of alcohol on maintenance of pair bonds. Our studies provide the first evidence that alcohol has effects on established pair bonds and that partner drinking status plays a large role in these effects.

  17. Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada's Prairie Pothole Region.

    Directory of Open Access Journals (Sweden)

    Anson R Main

    Full Text Available Neonicotinoids currently dominate the insecticide market as seed treatments on Canada's major Prairie crops (e.g., canola. The potential impact to ecologically significant wetlands in this dominantly agro-environment has largely been overlooked while the distribution of use, incidence and level of contamination remains unreported. We modelled the spatial distribution of neonicotinoid use across the three Prairie Provinces in combination with temporal assessments of water and sediment concentrations in wetlands to measure four active ingredients (clothianidin, thiamethoxam, imidacloprid and acetamiprid. From 2009 to 2012, neonicotinoid use was increasing; by 2012, applications covered an estimated ∼11 million hectares (44% of Prairie cropland with >216,000 kg of active ingredients. Thiamethoxam, followed by clothianidin, were the dominant seed treatments by mass and area. Areas of high neonicotinoid use were identified as high density canola or soybean production. Water sampled four times from 136 wetlands (spring, summer, fall 2012 and spring 2013 across four rural municipalities in Saskatchewan similarly revealed clothianidin and thiamethoxam in the majority of samples. In spring 2012 prior to seeding, 36% of wetlands contained at least one neonicotinoid. Detections increased to 62% in summer 2012, declined to 16% in fall, and increased to 91% the following spring 2013 after ice-off. Peak concentrations were recorded during summer 2012 for both thiamethoxam (range:

  18. Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada's Prairie Pothole Region.

    Science.gov (United States)

    Main, Anson R; Headley, John V; Peru, Kerry M; Michel, Nicole L; Cessna, Allan J; Morrissey, Christy A

    2014-01-01

    Neonicotinoids currently dominate the insecticide market as seed treatments on Canada's major Prairie crops (e.g., canola). The potential impact to ecologically significant wetlands in this dominantly agro-environment has largely been overlooked while the distribution of use, incidence and level of contamination remains unreported. We modelled the spatial distribution of neonicotinoid use across the three Prairie Provinces in combination with temporal assessments of water and sediment concentrations in wetlands to measure four active ingredients (clothianidin, thiamethoxam, imidacloprid and acetamiprid). From 2009 to 2012, neonicotinoid use was increasing; by 2012, applications covered an estimated ∼11 million hectares (44% of Prairie cropland) with >216,000 kg of active ingredients. Thiamethoxam, followed by clothianidin, were the dominant seed treatments by mass and area. Areas of high neonicotinoid use were identified as high density canola or soybean production. Water sampled four times from 136 wetlands (spring, summer, fall 2012 and spring 2013) across four rural municipalities in Saskatchewan similarly revealed clothianidin and thiamethoxam in the majority of samples. In spring 2012 prior to seeding, 36% of wetlands contained at least one neonicotinoid. Detections increased to 62% in summer 2012, declined to 16% in fall, and increased to 91% the following spring 2013 after ice-off. Peak concentrations were recorded during summer 2012 for both thiamethoxam (range: Wetlands situated in barley, canola and oat fields consistently contained higher mean concentrations of neonicotinoids than in grasslands, but no individual crop singularly influenced overall detections or concentrations. Distribution maps indicate neonicotinoid use is increasing and becoming more widespread with concerns for environmental loading, while frequently detected neonicotinoid concentrations in Prairie wetlands suggest high persistence and transport into wetlands.

  19. The relative contribution of climate to changes in lesser prairie-chicken abundance

    Science.gov (United States)

    Ross, Beth E.; Haukos, David A.; Hagen, Christian A.; Pitman, James

    2016-01-01

    Managing for species using current weather patterns fails to incorporate the uncertainty associated with future climatic conditions; without incorporating potential changes in climate into conservation strategies, management and conservation efforts may fall short or waste valuable resources. Understanding the effects of climate change on species in the Great Plains of North America is especially important, as this region is projected to experience an increased magnitude of climate change. Of particular ecological and conservation interest is the lesser prairie-chicken (Tympanuchus pallidicinctus), which was listed as “threatened” under the U.S. Endangered Species Act in May 2014. We used Bayesian hierarchical models to quantify the effects of extreme climatic events (extreme values of the Palmer Drought Severity Index [PDSI]) relative to intermediate (changes in El Niño Southern Oscillation) and long-term climate variability (changes in the Pacific Decadal Oscillation) on trends in lesser prairie-chicken abundance from 1981 to 2014. Our results indicate that lesser prairie-chicken abundance on leks responded to environmental conditions of the year previous by positively responding to wet springs (high PDSI) and negatively to years with hot, dry summers (low PDSI), but had little response to variation in the El Niño Southern Oscillation and the Pacific Decadal Oscillation. Additionally, greater variation in abundance on leks was explained by variation in site relative to broad-scale climatic indices. Consequently, lesser prairie-chicken abundance on leks in Kansas is more strongly influenced by extreme drought events during summer than other climatic conditions, which may have negative consequences for the population as drought conditions intensify throughout the Great Plains.

  20. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico

    OpenAIRE

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-01-01

    Abstract Background We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. Results We f...

  1. Interannual water-level fluctuations and the vegetation of prairie potholes: Potential impacts of climate change

    Science.gov (United States)

    van der Valk, Arnold; Mushet, David M.

    2016-01-01

    Mean water depth and range of interannual water-level fluctuations over wet-dry cycles in precipitation are major drivers of vegetation zone formation in North American prairie potholes. We used harmonic hydrological models, which require only mean interannual water depth and amplitude of water-level fluctuations over a wet–dry cycle, to examine how the vegetation zones in a pothole would respond to small changes in water depth and/or amplitude of water-level fluctuations. Field data from wetlands in Saskatchewan, North Dakota, and South Dakota were used to parameterize harmonic models for four pothole classes. Six scenarios in which small negative or positive changes in either mean water depth, amplitude of interannual fluctuations, or both, were modeled to predict if they would affect the number of zones in each wetland class. The results indicated that, in some cases, even small changes in mean water depth when coupled with a small change in amplitude of water-level fluctuations can shift a prairie pothole wetland from one class to another. Our results suggest that climate change could alter the relative proportion of different wetland classes in the prairie pothole region.

  2. Functional consequences of climate change-induced plant species loss in a tallgrass prairie.

    Science.gov (United States)

    Craine, Joseph M; Nippert, Jesse B; Towne, E Gene; Tucker, Sally; Kembel, Steven W; Skibbe, Adam; McLauchlan, Kendra K

    2011-04-01

    Future climate change is likely to reduce the floristic diversity of grasslands. Yet the potential consequences of climate-induced plant species losses for the functioning of these ecosystems are poorly understood. We investigated how climate change might alter the functional composition of grasslands for Konza Prairie, a diverse tallgrass prairie in central North America. With species-specific climate envelopes, we show that a reduction in mean annual precipitation would preferentially remove species that are more abundant in the more productive lowland positions at Konza. As such, decreases in precipitation could reduce productivity not only by reducing water availability but by also removing species that inhabit the most productive areas and respond the most to climate variability. In support of this prediction, data on species abundance at Konza over 16 years show that species that are more abundant in lowlands than uplands are preferentially reduced in years with low precipitation. Climate change is likely to also preferentially remove species from particular functional groups and clades. For example, warming is forecast to preferentially remove perennials over annuals as well as Cyperaceae species. Despite these predictions, climate change is unlikely to unilaterally alter the functional composition of the tallgrass prairie flora, as many functional traits such as physiological drought tolerance and maximum photosynthetic rates showed little relationship with climate envelope parameters. In all, although climatic drying would indirectly alter grassland productivity through species loss patterns, the insurance afforded by biodiversity to ecosystem function is likely to be sustained in the face of climate change.

  3. Managing prairie dogs by managing plague: a vaccine for the future?

    Science.gov (United States)

    Johnson, Terry B.; Rocke, Tonie E.; Gober, Pete; Van Pelt, Bill E.; Miller, Michael W.; Tripp, Daniel W.; Abbott, Rachel C.; Bergman, David L.

    2014-01-01

    The Black-footed Ferret Recovery Implementation Team Executive Committee is conducting a project to develop,and (hopefully) eventually implement, a plague vaccination program for prairie dogs. The project is a component of the WesternAssociation of Fish and Wildlife Agencies Grasslands Conservation Initiative. An effective, field-worthy vaccine against plaguecould be the biggest breakthrough in recovery efforts for the black-footed ferret since the 1981 rediscovery of wild ferrets nearMeeteetse, Wyoming. If proven efficacious, the vaccine could help agencies and stakeholder cooperators maintain specificpopulations of prairie dogs at robust levels, thus enhancing range-wide conservation of those species, as well recovery of the ferret,while enabling control of other prairie dog populations to resolve site-specific agricultural and human health concerns. The resultsof laboratory and field-testing in the early stages of developing this vaccine are preliminary but mostly encouraging. A plan forbroad-scale application is being developed for possible use when testing has been completed and (if warranted) the vaccine isregistered for governmental use. An overview of all aspects of the project is discussed.

  4. Evaluation of monkeypox virus infection of prairie dogs (Cynomys ludovicianus) using in vivo bioluminescent imaging

    Science.gov (United States)

    Falendysz, Elizabeth A.; Londoño-Navas, Angela M.; Meteyer, Carol U.; Pussini, Nicola; Lopera, Juan G.; Osorio, Jorge E.; Rocke, Tonie E.

    2014-01-01

    Monkeypox (MPX) is a re-emerging zoonotic disease that is endemic in Central and West Africa, where it can cause a smallpox-like disease in humans. Despite many epidemiologic and field investigations of MPX, no definitive reservoir species has been identified. Using recombinant viruses expressing the firefly luciferase (luc) gene, we previously demonstrated the suitability of in vivo bioluminescent imaging (BLI) to study the pathogenesis of MPX in animal models. Here, we evaluated BLI as a novel approach for tracking MPX virus infection in black-tailed prairie dogs (Cynomys ludovicianus). Prairie dogs were affected during a multistate outbreak of MPX in the US in 2003 and have since been used as an animal model of this disease. Our BLI results were compared with PCR and virus isolation from tissues collected postmortem. Virus was easily detected and quantified in skin and superficial tissues by BLI before and during clinical phases, as well as in subclinical secondary cases, but was not reliably detected in deep tissues such as the lung. Although there are limitations to viral detection in larger wild rodent species, BLI can enhance the use of prairie dogs as an animal model of MPX and can be used for the study of infection, disease progression, and transmission in potential wild rodent reservoirs.

  5. Model estimation of land-use effects on water levels of northern Prairie wetlands

    Science.gov (United States)

    Voldseth, R.A.; Johnson, W.C.; Gilmanov, T.; Guntenspergen, G.R.; Millett, B.V.

    2007-01-01

    Wetlands of the Prairie Pothole Region exist in a matrix of grassland dominated by intensive pastoral and cultivation agriculture. Recent conservation management has emphasized the conversion of cultivated farmland and degraded pastures to intact grassland to improve upland nesting habitat. The consequences of changes in land-use cover that alter watershed processes have not been evaluated relative to their effect on the water budgets and vegetation dynamics of associated wetlands. We simulated the effect of upland agricultural practices on the water budget and vegetation of a semipermanent prairie wetland by modifying a previously published mathematical model (WETSIM). Watershed cover/land-use practices were categorized as unmanaged grassland (native grass, smooth brome), managed grassland (moderately heavily grazed, prescribed burned), cultivated crops (row crop, small grain), and alfalfa hayland. Model simulations showed that differing rates of evapotranspiration and runoff associated with different upland plant-cover categories in the surrounding catchment produced differences in wetland water budgets and linked ecological dynamics. Wetland water levels were highest and vegetation the most dynamic under the managed-grassland simulations, while water levels were the lowest and vegetation the least dynamic under the unmanaged-grassland simulations. The modeling results suggest that unmanaged grassland, often planted for waterfowl nesting, may produce the least favorable wetland conditions for birds, especially in drier regions of the Prairie Pothole Region. These results stand as hypotheses that urgently need to be verified with empirical data.

  6. Grasshopper fecundity responses to grazing and fire in a tallgrass prairie.

    Science.gov (United States)

    Laws, Angela N; Joern, Anthony

    2011-10-01

    Grasshopper abundance and diversity vary with management practices such as fire and grazing. Understanding how grasshopper life history traits such as fecundity respond to management practices is key to predicting grasshopper population dynamics in heterogeneous environments. Landscape-level experimental fire and bison grazing treatments at the Konza Prairie Biological Station (Manhattan, KS) provide an opportunity to examine how management affects grasshopper fecundity. Here we report on grasshopper fecundity for nine common species at Konza Prairie. From 2007 to 2009, adult female grasshoppers were collected every 3 wk from eight watersheds that varied in fire and grazing treatments. Fecundity was measured by examining female reproductive tracts, which contain a record of past and current reproductive activity. Body size was a poor predictor of fecundity for all species. Despite large differences in vegetation structure and composition with management regime (grazing and fire interval), we observed little effect of management on grasshopper fecundity. Habitat characteristics (grasshopper density, vegetation biomass, and vegetation quality; measured in 2008 and 2009) were better predictors of past fecundity than current fecundity, with species-specific responses. Fecundity increased throughout the summer, indicating that grasshoppers were able to acquire sufficient nutritional resources for egg production in the early fall when vegetation quality is generally low. Because fecundity did not vary across management treatments, population stage structure may be more important for determining population level reproduction than management regime at Konza Prairie.

  7. Investigation of climate change impacts on Prairie's petroleum industry in Canada

    International Nuclear Information System (INIS)

    Li, J.B.; Huang, G.H.; Chakma, A.; Huang, Y.F.; Zeng, G.M.

    2002-01-01

    Alberta, Saskatchewan, and Manitoba, the three Prairie provinces of Canada, and their economies strongly depend on the petroleum industry. However, climate change may have potential impacts on the sector that could reverberate onto the socio-economic fabric of the provinces. The petroleum industry in the Prairies is faced with a big challenge: how to adapt to the changing climatic conditions so that they maintain or improve their economic and environmental efficiencies. The attitudes of the different stakeholders concerning climate change and the appropriate measures to be implemented by the petroleum industry were obtained through a questionnaire-based survey conducted between February and June 2001. Based on the responses received, a Chi-square statistical test was applied to look at the complex interactions in the results. An analysis of a number of petroleum-related processes and activities vulnerable to climate change was performed. A sound foundation was obtained for the decision-making process on the climate change measures required in the petroleum industry in the Prairies. 14 refs., 7 tabs

  8. Melanocortin Receptor Agonists Facilitate Oxytocin-Dependent Partner Preference Formation in the Prairie Vole.

    Science.gov (United States)

    Modi, Meera E; Inoue, Kiyoshi; Barrett, Catherine E; Kittelberger, Kara A; Smith, Daniel G; Landgraf, Rainer; Young, Larry J

    2015-07-01

    The central melanocortin (MC) system has been widely studied for its effects on food intake and sexual behavior. However, the MC system, and more specifically the MC4 receptor (MC4R), also interacts with neurochemical systems that regulate socioemotional behaviors, including oxytocin (OT) and dopamine. In monogamous prairie voles, OT and dopamine interact to promote partner preference formation, a laboratory measure of an enduring social bond between mates. Here we investigated the effects of MC receptor activation on partner preference formation in prairie voles, as well as the interaction between the MC and OT systems during this process. Peripheral administration of the brain penetrant MC3/4R receptor peptide agonist, Melanotan II (MTII), and the highly selective, small-molecule MC4R agonist, Pf-446687, enhanced partner preference formation in the prairie vole, but not in the non-monogamous meadow vole. MTII-induced partner preferences were enduring, as they were present 1 week after drug manipulation. The prosocial effects of MCR agonists may be mediated, in part, through modulation of OT, as coadministration of an OT receptor antagonist prevented MTII-induced partner preferences. MTII also selectively activated hypothalamic OT neurons and potentiated central OT release. As OT has been shown to enhance some aspects of social cognition in humans, our data suggest that the MC4R may be a viable therapeutic target for enhancing social function in psychiatric disorders, including autism spectrum disorders and schizophrenia, potentially through activation of the OT system.

  9. Partner Loss in Monogamous Rodents: Modulation of Pain and Emotional Behavior in Male Prairie Voles.

    Science.gov (United States)

    Osako, Yoji; Nobuhara, Reiko; Arai, Young-Chang P; Tanaka, Kenjiro; Young, Larry J; Nishihara, Makoto; Mitsui, Shinichi; Yuri, Kazunari

    2018-01-01

    Pain is modulated by psychosocial factors, and social stress-induced hyperalgesia is a common clinical symptom in pain disorders. To provide a new animal model for studying social modulation of pain, we examined pain behaviors in monogamous prairie voles experiencing partner loss. After cohabitation with novel females, males (n = 79) were divided into two groups on the basis of preference test scores. Half of the males of each group were separated from their partner (loss group), whereas the other half remained paired (paired group). Thus, males from both groups experienced social isolation. Open field tests, plantar tests, and formalin tests were then conducted on males to assess anxiety and pain-related behaviors. Loss males showing partner preferences (n = 20) displayed a significant increase in anxiety-related behavior in the open-field test (central area/total distance: 13.65% [1.58%] for paired versus 6.45% [0.87%] for loss; p partner preferences (r = 0.15). Results indicate that social bonds and their disruption, but not social housing without bonding followed by isolation, modulate pain and emotion in male prairie voles. The prairie vole is a useful model for exploring the neural mechanisms by which social relationships contribute to pain and nociceptive processing in humans.

  10. Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

    Science.gov (United States)

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Grisham, Blake A.; Timmer, Jennifer M.; Boal, Clint W.; Butler, Matthew; Pitman, James C.; Kyle, Sean; Klute, David; Beauprez, Grant M.; Janus, Allan; Van Pelt, William E.

    2016-01-01

    Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

  11. A multivariate analysis of biophysical parameters of tallgrass prairie among land management practices and years

    Science.gov (United States)

    Griffith, J.A.; Price, K.P.; Martinko, E.A.

    2001-01-01

    Six treatments of eastern Kansas tallgrass prairie - native prairie, hayed, mowed, grazed, burned and untreated - were studied to examine the biophysical effects of land management practices on grasslands. On each treatment, measurements of plant biomass, leaf area index, plant cover, leaf moisture and soil moisture were collected. In addition, measurements were taken of the Normalized Difference Vegetation Index (NDVI), which is derived from spectral reflectance measurements. Measurements were taken in mid-June, mid-July and late summer of 1990 and 1991. Multivariate analysis of variance was used to determine whether there were differences in the set of variables among treatments and years. Follow-up tests included univariate t-tests to determine which variables were contributing to any significant difference. Results showed a significant difference (p treatments in the composite of parameters during each of the months sampled. In most treatment types, there was a significant difference between years within each month. The univariate tests showed, however, that only some variables, primarily soil moisture, were contributing to this difference. We conclude that biomass and % plant cover show the best potential to serve as long-term indicators of grassland condition as they generally were sensitive to effects of different land management practices but not to yearly change in weather conditions. NDVI was insensitive to precipitation differences between years in July for most treatments, but was not in the native prairie. Choice of sampling time is important for these parameters to serve effectively as indicators.

  12. Characterization of the oxytocin system regulating affiliative behavior in female prairie voles.

    Science.gov (United States)

    Ross, H E; Cole, C D; Smith, Y; Neumann, I D; Landgraf, R; Murphy, A Z; Young, L J

    2009-09-15

    Oxytocin regulates partner preference formation and alloparental behavior in the socially monogamous prairie vole (Microtus ochrogaster) by activating oxytocin receptors in the nucleus accumbens of females. Mating facilitates partner preference formation, and oxytocin-immunoreactive fibers in the nucleus accumbens have been described in prairie voles. However, there has been no direct evidence of oxytocin release in the nucleus accumbens during sociosexual interactions, and the origin of the oxytocin fibers is unknown. Here we show for the first time that extracellular concentrations of oxytocin are increased in the nucleus accumbens of female prairie vole during unrestricted interactions with a male. We further show that the distribution of oxytocin-immunoreactive fibers in the nucleus accumbens is conserved in voles, mice and rats, despite remarkable species differences in oxytocin receptor binding in the region. Using a combination of site-specific and peripheral infusions of the retrograde tracer Fluorogold, we demonstrate that the nucleus accumbens oxytocin-immunoreactive fibers likely originate from paraventricular and supraoptic hypothalamic neurons. This distribution of retrogradely labeled neurons is consistent with the hypothesis that striatal oxytocin fibers arise from collaterals of magnocellular neurons of the neurohypophysial system. If correct, this may serve to coordinate peripheral and central release of oxytocin with appropriate behavioral responses associated with reproduction, including pair bonding after mating, and maternal responsiveness following parturition and during lactation.

  13. Uptake of C14-atrazine by prairie grasses in a phytoremediation setting.

    Science.gov (United States)

    Khrunyk, Yuliya; Schiewer, Silke; Carstens, Keri L; Hu, Dingfei; Coats, Joel R

    2017-02-01

    Agrochemicals significantly contribute to environmental pollution. In the USA, atrazine is a widely used pesticide and commonly found in rivers, water systems, and rural wells. Phytoremediation can be a cost-effective means of removing pesticides from soil. The objective of this project was to investigate the ability of prairie grasses to remove atrazine. 14 C-labeled atrazine was added to sterilized sand and water/nutrient cultures, and the analysis was performed after 21 days. Switchgrass and big bluestem were promising species for phytoremediation, taking up about 40% of the applied [ 14 C] in liquid hydroponic cultures, and between 20% and 33% in sand cultures. Yellow Indiangrass showed low resistance to atrazine toxicity and low uptake of [ 14 C] atrazine in liquid hydroponic cultures. Atrazine degradation increased progressively from sand to roots and leaves. Most atrazine taken up by prairie grasses from sand culture was degraded to metabolites, which accounted for 60-80% of [ 14 C] detected in leaves. Deisopropylatrazine (DIA) was the main metabolite detected in sand and roots, whereas in leaves further metabolism took place, forming increased amounts of didealkylatrazine (DDA) and an unidentified metabolite. In conclusion, prairie grasses achieved high atrazine removal and degradation, showing a high potential for phytoremediation.

  14. Direct and indirect responses of tallgrass prairie butterflies to prescribed burning

    Science.gov (United States)

    Vogel, Jennifer A.; Koford, Rolf R.; Debinski, Diane M.

    2010-01-01

    Fire is an important tool in the conservation and restoration of tallgrass prairie ecosystems. We investigated how both the vegetation composition and butterfly community of tallgrass prairie remnants changed in relation to the elapsed time (in months) since prescribed fire. Butterfly richness and butterfly abundance were positively correlated with the time since burn. Habitat-specialist butterfly richness recovery time was greater than 70 months post-fire and habitat-specialist butterfly abundance recovery time was approximately 50 months post-fire. Thus, recovery times for butterfly populations after prescribed fires in our study were potentially longer than those previously reported. We used Path Analysis to evaluate the relative contributions of the direct effect of time since fire and the indirect effects of time since fire through changes in vegetation composition on butterfly abundance. Path models highlighted the importance of the indirect effects of fire on habitat features, such as increases in the cover of bare ground. Because fire return intervals on managed prairie remnants are often less than 5 years, information on recovery times for habitat-specialist insect species are of great importance. ?? 2010 Springer Science+Business Media B.V.

  15. Revegetation of wellsite disturbances on Fescue Prairie in east-central Alberta

    International Nuclear Information System (INIS)

    Woosaree, J.; Puhl, M.

    1999-01-01

    It has been observed that past methods of revegetating disturbed land in Alberta by using commercially-available species of grasses has had limited success in terms of biodiversity, the reason being that commercial forage species are highly competitive, and as such not only prevented the original prairie species from returning to reclaimed sites, but in some cases they have migrated from reclaimed sites and invaded surrounding native prairie. Alfalfa, crested wheatgrass, Kentucky bluegrass and Canada bluegrass are believed to be the most invasive of these commercially available species. Because their use in the past has resulted in landscape fragmentation, they are not recommended for use on wellsites located on native prairie. The limited mix of available native grass cultivars also have had limited success in increasing species diversity. Cross seeding has been suggested as one method for reducing the effect of inter-specific competition on the species emergence. However, the general view of government and industry is that improved methods of revegetation of wellsite disturbances and new guidelines for determining reclamation success are required to establish more ecologically compatible plant communities on well site disturbances 4 refs., 1 tab., 3 figs

  16. Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses.

    Science.gov (United States)

    Weremijewicz, Joanna; da Silveira Lobo O'Reilly Sternberg, Leonel; Janos, David P

    2018-01-01

    Arbuscular mycorrhizal fungi form extensive common mycorrhizal networks (CMNs) that may interconnect neighboring root systems of the same or different plant species, thereby potentially influencing the distribution of limiting mineral nutrients among plants. We examined how CMNs affected intra- and interspecific interactions within and between populations of Andropogon gerardii, a highly mycorrhiza dependent, dominant prairie grass and Elymus canadensis, a moderately dependent, subordinate prairie species. We grew A. gerardii and E. canadensis alone and intermixed in microcosms, with individual root systems isolated, but either interconnected by CMNs or with CMNs severed weekly. CMNs, which provided access to a large soil volume, improved survival of both A. gerardii and E. canadensis, but intensified intraspecific competition for A. gerardii. When mixed with E. canadensis, A. gerardii overyielded aboveground biomass in the presence of intact CMNs but not when CMNs were severed, suggesting that A. gerardii with intact CMNs most benefitted from weaker interspecific than intraspecific interactions across CMNs. CMNs improved manganese uptake by both species, with the largest plants receiving the most manganese. Enhanced growth in consequence of improved mineral nutrition led to large E. canadensis in intact CMNs experiencing water-stress, as indicated by 13 C isotope abundance. Our findings suggest that in prairie plant communities, CMNs may influence mineral nutrient distribution, water relations, within-species size hierarchies, and between-species interactions.

  17. Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes.

    Science.gov (United States)

    Cooper, Ryan N; Wissel, Björn

    2012-11-27

    Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes.

  18. Production of germline transgenic prairie voles (Microtus ochrogaster) using lentiviral vectors.

    Science.gov (United States)

    Donaldson, Zoe R; Yang, Shang-Hsun; Chan, Anthony W S; Young, Larry J

    2009-12-01

    The study of alternative model organisms has yielded tremendous insights into the regulation of behavioral and physiological traits not displayed by more widely used animal models, such as laboratory rats and mice. In particular, comparative approaches often exploit species ideally suited for investigating specific phenomenon. For instance, comparative studies of socially monogamous prairie voles and polygamous meadow voles have been instrumental toward gaining an understanding of the genetic and neurobiological basis of social bonding. However, laboratory studies of less commonly used organisms, such as prairie voles, have been limited by a lack of genetic tools, including the ability to manipulate the genome. Here, we show that lentiviral vector-mediated transgenesis is a rapid and efficient approach for creating germline transgenics in alternative laboratory rodents. Injection of a green fluorescent protein (GFP)-expressing lentiviral vector into the perivitelline space of 23 single-cell embryos yielded three live offspring (13 %), one of which (33%) contained germline integration of a GFP transgene driven by the human ubiquitin-C promoter. In comparison, transfer of 23 uninjected embryos yielded six live offspring (26%). Green fluorescent protein is present in all tissues examined and is expressed widely in the brain. The GFP transgene is heritable and stably expressed until at least the F(2) generation. This technology has the potential to allow investigation of specific gene candidates in prairie voles and provides a general protocol to pursue germline transgenic manipulation in many different rodent species.

  19. Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens

    Energy Technology Data Exchange (ETDEWEB)

    Sandercock, Brett K. [Kansas State University

    2013-05-22

    Executive Summary 1. We investigated the impacts of wind power development on the demography, movements, and population genetics of Greater Prairie-Chickens (Tympanuchus cupido) at three sites in northcentral and eastern Kansas for a 7-year period. Only 1 of 3 sites was developed for wind power, the 201MW Meridan Way Wind Power Facility at the Smoky Hills site in northcentral Kansas. Our project report is based on population data for prairie chickens collected during a 2-year preconstruction period (2007-2008), a 3-year postconstruction period (2009-2011) and one final year of lek surveys (2012). Where relevant, we present preconstruction data from our field studies at reference sites in the northern Flint Hills (2007-2009) and southern Flint Hills (2006-2008). 2. We addressed seven potential impacts of wind power development on prairie chickens: lek attendance, mating behavior, use of breeding habitat, fecundity rates, natal dispersal, survival rates, and population numbers. Our analyses of pre- and postconstruction impacts are based on an analysis of covariance design where we modeled population performance as a function of treatment period, distance to eventual or actual site of the nearest wind turbine, and the interaction of these factors. Our demographic and movement data from the 6-year study period at the Smoky Hills site included 23 lek sites, 251 radio-marked females monitored for 287 bird-years, and 264 nesting attempts. Our genetic data were based on genotypes of 1,760 females, males and chicks that were screened with a set of 27 microsatellite markers that were optimized in the lab. 3. In our analyses of lek attendance, the annual probability of lek persistence during the preconstruction period was ~0.9. During the postconstruction period, distance to nearest turbine did not have a significant effect on the probability of lek persistence. However, the probability of lek persistence increased from 0.69 at 0 m to 0.89 at 30 km from turbines, and most

  20. Using occupancy models to investigate the prevalence of ectoparasitic vectors on hosts: an example with fleas on prairie dogs

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Doherty, Paul F.; Gage, Kenneth L.; Huyvaert, Kathryn P.; Long, Dustin H.; Antolin, Michael F.

    2013-01-01

    Ectoparasites are often difficult to detect in the field. We developed a method that can be used with occupancy models to estimate the prevalence of ectoparasites on hosts, and to investigate factors that influence rates of ectoparasite occupancy while accounting for imperfect detection. We describe the approach using a study of fleas (Siphonaptera) on black-tailed prairie dogs (Cynomys ludovicianus). During each primary occasion (monthly trapping events), we combed a prairie dog three consecutive times to detect fleas (15 s/combing). We used robust design occupancy modeling to evaluate hypotheses for factors that might correlate with the occurrence of fleas on prairie dogs, and factors that might influence the rate at which prairie dogs are colonized by fleas. Our combing method was highly effective; dislodged fleas fell into a tub of water and could not escape, and there was an estimated 99.3% probability of detecting a flea on an occupied host when using three combings. While overall detection was high, the probability of detection was always dogs, flea occupancy was heightened in old/natural colonies of prairie dogs, and on hosts that were in poor condition. Occupancy was initially low in plots with high densities of prairie dogs, but, as the study progressed, the rate of flea colonization increased in plots with high densities of prairie dogs in particular. Our methodology can be used to improve studies of ectoparasites, especially when the probability of detection is low. Moreover, the method can be modified to investigate the co-occurrence of ectoparasite species, and community level factors such as species richness and interspecific interactions.

  1. An emerging crisis across northern prairie refuges: Prevalence of invasive plants and a plan for adaptive management

    Science.gov (United States)

    Grant, T.A.; Flanders-Wanner, B.; Shaffer, T.L.; Murphy, R.K.; Knutsen, G.A.

    2009-01-01

    In the northern Great Plains, native prairies managed by the U.S. Fish and Wildlife Service (Service) can be pivotal in conservation of North America's biological diversity. From 2002 to 2006, we surveyed 7,338 belt transects to assess the general composition of mixed-grass and tallgrass prairie vegetation across five "complexes" (i.e., administrative groupings) of national wildlife refuges managed by the Service in North Dakota and South Dakota. Native grasses and forbs were common (mean frequency of occurrence 47%-54%) on two complexes but uncommon (4%-13%) on two others. Conversely, an introduced species of grass, smooth brome (Bromus inermis), accounted for 45% to 49% of vegetation on two complexes and another species, Kentucky bluegrass (Poa pratensis) accounted for 27% to 36% of the vegetation on three of the complexes. Our data confirm prior suspicions of widespread invasion by introduced species of plants on Service-owned tracts of native prairie, changes that likely stem in part from a common management history of little or no disturbance (e.g., defoliation by grazing or fire). However, variability in the degree and type of invasion among prairie tracts suggests that knowledge of underlying causes (e.g., edaphic or climatic factors, management histories) could help managers more effectively restore prairies. We describe an adaptive management approach to acquire such knowledge while progressing with restoration. More specifically, we propose to use data from inventories of plant communities on Service-owned prairies to design and implement, as experiments, optimal restoration strategies. We will then monitor these experiments and use the results to refine future strategies. This comprehensive, process-oriented approach should yield reliable and robust recommendations for restoration and maintenance of native prairies in the northern Great Plains. 2009 by the Board of Regents of the University of Wisconsin System.

  2. An adaptive approach to invasive plant management on U.S. Fish and Wildlife Service-owned native prairies in the Prairie Pothole Region: decision support under uncertainity

    Science.gov (United States)

    Gannon, Jill J.; Moore, Clinton T.; Shaffer, Terry L.; Flanders-Wanner, Bridgette

    2011-01-01

    Much of the native prairie managed by the U.S. Fish and Wildlife Service (Service) in the Prairie Pothole Region (PPR) is extensively invaded by the introduced cool-season grasses smooth brome (Bromus inermis) and Kentucky bluegrass (Poa pratensis). The central challenge to managers is selecting appropriate management actions in the face of biological and environmental uncertainties. We describe the technical components of a USGS management project, and explain how the components integrate and inform each other, how data feedback from individual cooperators serves to reduce uncertainty across the whole region, and how a successful adaptive management project is coordinated and maintained on a large scale. In partnership with the Service, the U.S. Geological Survey is developing an adaptive decision support framework to assist managers in selecting management actions under uncertainty and maximizing learning from management outcomes. The framework is built around practical constraints faced by refuge managers and includes identification of the management objective and strategies, analysis of uncertainty and construction of competing decision models, monitoring, and mechanisms for model feedback and decision selection. Nineteen Service field stations, spanning four states of the PPR, are participating in the project. They share a common management objective, available management strategies, and biological uncertainties. While the scope is broad, the project interfaces with individual land managers who provide refuge-specific information and receive updated decision guidance that incorporates understanding gained from the collective experience of all cooperators.

  3. Social isolation disrupts innate immune responses in both male and female prairie voles and enhances agonistic behavior in female prairie voles (Microtus ochrogaster).

    Science.gov (United States)

    Scotti, Melissa-Ann L; Carlton, Elizabeth D; Demas, Gregory E; Grippo, Angela J

    2015-04-01

    Psychosocial stress, specifically social isolation, is an important risk factor for the development of a variety of psychological and physiological disorders. Changes in immune function have been hypothesized to mediate this relationship. The current study used the prairie vole (Microtus ochrogaster) model of isolation-induced depressive-like behavior to test whether social isolation led to changes in innate immune function. Specifically, we used hemolytic complement (CH50) and bacteria killing assays to assess innate immunity, in paired or singly housed male and female prairie voles. Further, in a second experiment we tested whether females exposed to an additional short-term social stressor, a resident-intruder trial, would show changes in immune function as well as enhanced hypothalamic pituitary axis (HPA) activity as indicated by elevated plasma corticosterone levels. Socially isolated animals, regardless of sex, had significantly reduced CH50s and bacteria killing ability. Socially isolated females exposed to a resident-intruder stressor also showed reduced CH50s and bacteria killing ability as well as significant increases in aggressive behavior, however, they did not show elevated circulating corticosterone levels. Collectively, these data will help inform our understanding of the relationship between social isolation and physiological and psychological health. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Dynamic Disturbance Processes Create Dynamic Lek Site Selection in a Prairie Grouse.

    Directory of Open Access Journals (Sweden)

    Torre J Hovick

    Full Text Available It is well understood that landscape processes can affect habitat selection patterns, movements, and species persistence. These selection patterns may be altered or even eliminated as a result of changes in disturbance regimes and a concomitant management focus on uniform, moderate disturbance across landscapes. To assess how restored landscape heterogeneity influences habitat selection patterns, we examined 21 years (1991, 1993-2012 of Greater Prairie-Chicken (Tympanuchus cupido lek location data in tallgrass prairie with restored fire and grazing processes. Our study took place at The Nature Conservancy's Tallgrass Prairie Preserve located at the southern extent of Flint Hills in northeastern Oklahoma. We specifically addressed stability of lek locations in the context of the fire-grazing interaction, and the environmental factors influencing lek locations. We found that lek locations were dynamic in a landscape with interacting fire and grazing. While previous conservation efforts have treated leks as stable with high site fidelity in static landscapes, a majority of lek locations in our study (i.e., 65% moved by nearly one kilometer on an annual basis in this dynamic setting. Lek sites were in elevated areas with low tree cover and low road density. Additionally, lek site selection was influenced by an interaction of fire and patch edge, indicating that in recently burned patches, leks were located near patch edges. These results suggest that dynamic and interactive processes such as fire and grazing that restore heterogeneity to grasslands do influence habitat selection patterns in prairie grouse, a phenomenon that is likely to apply throughout the Greater Prairie-Chicken's distribution when dynamic processes are restored. As conservation moves toward restoring dynamic historic disturbance patterns, it will be important that siting and planning of anthropogenic structures (e.g., wind energy, oil and gas and management plans not view lek

  5. New insights into the phylogenetics and population structure of the prairie falcon (Falco mexicanus)

    Science.gov (United States)

    Doyle, Jacqueline M.; Bell, Douglas A.; Bloom, Peter H.; Emmons, Gavin; Fesnock, Amy; Katzner, Todd; LePre, Larry; Leonard, Kolbe; SanMiguel, Phillip; Westerman, Rick; DeWoody, J. Andrew

    2018-01-01

    BackgroundManagement requires a robust understanding of between- and within-species genetic variability, however such data are still lacking in many species. For example, although multiple population genetics studies of the peregrine falcon (Falco peregrinus) have been conducted, no similar studies have been done of the closely-related prairie falcon (F. mexicanus) and it is unclear how much genetic variation and population structure exists across the species’ range. Furthermore, the phylogenetic relationship of F. mexicanus relative to other falcon species is contested. We utilized a genomics approach (i.e., genome sequencing and assembly followed by single nucleotide polymorphism genotyping) to rapidly address these gaps in knowledge.ResultsWe sequenced the genome of a single female prairie falcon and generated a 1.17 Gb (gigabases) draft genome assembly. We generated maximum likelihood phylogenetic trees using complete mitochondrial genomes as well as nuclear protein-coding genes. This process provided evidence that F. mexicanus is an outgroup to the clade that includes the peregrine falcon and members of the subgenus Hierofalco. We annotated > 16,000 genes and almost 600,000 high-quality single nucleotide polymorphisms (SNPs) in the nuclear genome, providing the raw material for a SNP assay design featuring > 140 gene-associated markers and a molecular-sexing marker. We subsequently genotyped ~ 100 individuals from California (including the San Francisco East Bay Area, Pinnacles National Park and the Mojave Desert) and Idaho (Snake River Birds of Prey National Conservation Area). We tested for population structure and found evidence that individuals sampled in California and Idaho represent a single panmictic population.ConclusionsOur study illustrates how genomic resources can rapidly shed light on genetic variability in understudied species and resolve phylogenetic relationships. Furthermore, we found evidence of a single, randomly mating

  6. Deltamethrin flea-control preserves genetic variability of black-tailed prairie dogs during a plague outbreak

    Science.gov (United States)

    Jones, P.H.; Biggins, D.E.; Eads, D.A.; Eads, S.L.; Britten, H.B.

    2012-01-01

    Genetic variability and structure of nine black-tailed prairie dog (BTPD, Cynomys ludovicianus) colonies were estimated with 15 unlinked microsatellite markers. A plague epizootic occurred between the first and second years of sampling and our study colonies were nearly extirpated with the exception of three colonies in which prairie dog burrows were previously dusted with an insecticide, deltamethrin, used to control fleas (vectors of the causative agent of plague, Yersinia pestis). This situation provided context to compare genetic variability and structure among dusted and non-dusted colonies pre-epizootic, and among the three dusted colonies pre- and post-epizootic. We found no statistical difference in population genetic structures between dusted and non-dusted colonies pre-epizootic. On dusted colonies, gene flow and recent migration rates increased from the first (pre-epizootic) year to the second (post-epizootic) year which suggested dusted colonies were acting as refugia for prairie dogs from surrounding colonies impacted by plague. Indeed, in the dusted colonies, estimated densities of adult prairie dogs (including dispersers), but not juveniles (non-dispersers), increased from the first year to the second year. In addition to preserving BTPDs and many species that depend on them, protecting colonies with deltamethrin or a plague vaccine could be an effective method to preserve genetic variability of prairie dogs. ?? 2011 Springer Science+Business Media B.V.

  7. Valuing ecosystem and economic services across land-use scenarios in the Prairie Pothole Regions of the Dakotas, USA

    Science.gov (United States)

    Gascoigne, William R.; Hoag, Dana; Koontz, Lynne; Tangen, Brian A.; Shaffer, Terry L.; Gleason, Robert A.

    2011-01-01

    This study uses biophysical values derived for the Prairie Pothole Region (PPR) of North and South Dakota, in conjunction with value transfer methods, to assess environmental and economic tradeoffs under different policy-relevant land-use scenarios over a 20-year period. The ecosystem service valuation is carried out by comparing the biophysical and economic values of three focal services (i.e. carbon sequestration, reduction in sedimentation, and waterfowl production) across three focal land uses in the region [i.e. native prairie grasslands, lands enrolled in the Conservation Reserve and Wetlands Reserve Programs (CRP/WRP), and cropland]. This study finds that CRP/WRP lands cannot mitigate (hectare for hectare) the loss of native prairie from a social welfare standpoint. Land use scenarios where native prairie loss was minimized, and CRP/WRP lands were increased, provided the most societal benefit. The scenario modeling projected native prairie conversion to cropland over the next 20 years would result in a social welfare loss valued at over $4 billion when considering the study's three ecosystem services, and a net loss of about $3.4 billion when reductions in commodity production are accounted for.

  8. Age at Vaccination May Influence Response to Sylvatic Plague Vaccine (SPV) in Gunnison's Prairie Dogs (Cynomys gunnisoni).

    Science.gov (United States)

    Rocke, Tonie E; Tripp, Dan; Lorenzsonn, Faye; Falendysz, Elizabeth; Smith, Susan; Williamson, Judy; Abbott, Rachel

    2015-06-01

    Gunnison's prairie dogs (Cynomys gunnisoni) have been considered at greater risk from Yersinia pestis (plague) infection in the montane portion of their range compared to populations at lower elevations, possibly due to factors related to flea transmission of the bacteria or greater host susceptibility. To test the latter hypothesis and determine whether vaccination against plague with an oral sylvatic plague vaccine (SPV) improved survival, we captured prairie dogs from a C. g. gunnisoni or "montane" population and a C. g. zuniensis or "prairie" population for vaccine efficacy and challenge studies. No differences (P = 0.63) were found in plague susceptibility in non-vaccinated animals between these two populations; however, vaccinates from the prairie population survived plague challenge at significantly higher rates (P plague challenge at a much higher rate than adults (P plague in the C. g. gunnisoni or "montane" populations of Gunnison's prairie dogs, and that SPV could be a useful plague management tool for this species, particularly if targeted at younger cohorts.

  9. SEASON OF DELTAMETHRIN APPLICATION AFFECTS FLEA AND PLAGUE CONTROL IN WHITE-TAILED PRAIRIE DOG (CYNOMYS LEUCURUS) COLONIES, COLORADO, USA.

    Science.gov (United States)

    Tripp, Daniel W; Streich, Sean P; Sack, Danielle A; Martin, Daniel J; Griffin, Karen A; Miller, Michael W

    2016-07-01

    In 2008 and 2009, we evaluated the duration of prophylactic deltamethrin treatments in white-tailed prairie dog ( Cynomys leucurus ) colonies and compared effects of autumn or spring dust application in suppressing flea numbers and plague. Plague occurred before and during our experiment. Overall, flea abundance tended to increase from May or June to September, but it was affected by deltamethrin treatment and plague dynamics. Success in trapping prairie dogs (animals caught/trap days) declined between June and September at all study sites. However, by September trap success on dusted sites (19%; 95% confidence interval [CI] 16-22%) was about 15-fold greater than on undusted control sites (1%; CI 0.3-4%; P≤0.0001). Applying deltamethrin dust as early as 12 mo prior seemed to afford some protection to prairie dogs. Our data showed that dusting even a portion of a prairie dog colony can prolong its persistence despite epizootic plague. Autumn dusting may offer advantages over spring in suppressing overwinter or early-spring flea activity, but timing should be adjusted to precede the annual decline in aboveground activity for hibernating prairie dog species. Large colony complexes or collections of occupied but fragmented habitat may benefit from dusting some sites in spring and others in autumn to maximize flea suppression in a portion of the complex or habitat year-round.

  10. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie.

    Science.gov (United States)

    Manning, George C; Baer, Sara G; Blair, John M

    2017-12-01

    Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies (P soil bulk density were also higher in grazed prairie soil over all fire frequencies (P soil N were positively correlated with FQI (P soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.

  11. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie

    Science.gov (United States)

    Manning, George C.; Baer, Sara G.; Blair, John M.

    2017-12-01

    Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies ( P total N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies ( P total organic C, and total soil N were positively correlated with FQI ( P quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.

  12. Use of vegetation sampling and analysis to detect a problem within a portion of a prairie restoration project.

    Science.gov (United States)

    Franson, Raymond; Scholes, Chad; Krabbe, Stephen

    2017-01-02

    In June 2005, the Department of Energy (DOE) began establishing the 60-ha Howell Prairie around the disposal cell at the DOE Weldon Spring Site (WSS). Prairies were historically present in the area of the site. Quantitative Cover sampling was used to quantify Total Cover, Native Grass Cover, Non-Native Grass Cover, Native Forb Cover, Non-Native Forb Cover, Warm Season (C 4 Grass), Cool Season (C 3 Grass), Perennial Cover and Annual Cover, Litter, and Bare Ground. Four permanent vegetation sampling plots were established. The first 4 years of vegetation measurements at Howell Prairie were made during above-average rainfall years on burned and unburned plots. The fifth-year (2012) vegetation measurements were made after below-average rainfall. Five years of results not only document the consistency of the restoration effort in three areas, but also demonstrate deficiencies in Grass Cover in a fourth area. The results are not only useful for Howell Prairie, but will be useful for restoration work throughout the region. Restoration work suffers from a lack of success monitoring and in this case from a lack of available reference areas. Floristic Quality Indices are used to make qualitative comparisons of the site to Konza Prairie sites.

  13. Long-term prairie falcon population changes in relation to prey abundance, weather, land uses, and habitat conditions

    Science.gov (United States)

    Steenhof, Karen; Kochert, Michael N.; Carpenter, L.B.; Lehman, Robert N.

    1999-01-01

    We studied a nesting population of Prairie Falcons (Falco mexicanus) in the Snake River Birds of Prey National Conservation Area (NCA) from 1974-1997 to identify factors that influence abundance and reproduction. Our sampling period included two major droughts and associated crashes in Townsend's ground squirrel (Spermophilus townsendii) populations. The number of Prairie Falcon pairs found on long-term survey segments declined significantly from 1976-1997. Early declines were most severe at the eastern end of the NCA, where fires and agriculture have changed native shrubsteppe habitat. More recent declines occurred in the portion of canyon near the Orchard Training Area (OTA), where the Idaho Army National Guard conducts artillery firing and tank maneuvers. Overall Prairie Falcon reproductive rates were tied closely to annual indexes of ground squirrel abundance, but precipitation before and during the breeding season was related inversely to some measures of reproduction. Most reproductive parameters showed no significant trends over time, but during the 1990s, nesting success and productivity were lower in the stretch of canyon near the OTA than in adjacent areas. Extensive shrub loss, by itself, did not explain the pattern of declines in abundance and reproduction that we observed. Recent military training activities likely have interacted with fire and livestock grazing to create less than favorable foraging opportunities for Prairie Falcons in a large part of the NCA. To maintain Prairie Falcon populations in the NCA, managers should suppress wildfires, restore native plant communities, and regulate potentially incompatible land uses.

  14. Age at vaccination may influence response to sylvatic plague vaccine (SPV) in Gunnison’s prairie dogs (Cynomys gunnisoni)

    Science.gov (United States)

    Rocke, Tonie E.; Tripp, Daniel W.; Lorenzsonn, Faye; Falendysz, Elizabeth A.; Smith, Susan; Williamson, Judy L.; Abbott, Rachel C.

    2015-01-01

    Gunnison’s prairie dogs (Cynomys gunnisoni) have been considered at greater risk from Yersinia pestis (plague) infection in the montane portion of their range compared to populations at lower elevations, possibly due to factors related to flea transmission of the bacteria or greater host susceptibility. To test the latter hypothesis and determine whether vaccination against plague with an oral sylvatic plague vaccine (SPV) improved survival, we captured prairie dogs from a C. g. gunnisoni or “montane” population and a C. g. zuniensis or “prairie” population for vaccine efficacy and challenge studies. No differences (P = 0.63) were found in plague susceptibility in non-vaccinated animals between these two populations; however, vaccinates from the prairie population survived plague challenge at significantly higher rates (P age, as the prairie group was much younger on average than the montane group. Vaccinates that were juveniles or young adults survived plague challenge at a much higher rate than adults (P ages. These results suggest that host susceptibility is probably not related to the assumed greater risk from plague in the C. g. gunnisoni or “montane” populations of Gunnison’s prairie dogs, and that SPV could be a useful plague management tool for this species, particularly if targeted at younger cohorts.

  15. Flea abundance, diversity, and plague in Gunnison's prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in northern New Mexico

    Science.gov (United States)

    Megan M. Friggens; Robert R. Parmenter; Michael Boyden; Paulette L. Ford; Kenneth Gage; Paul Keim

    2010-01-01

    Plague, a flea-transmitted infectious disease caused by the bacterium Yersinia pestis, is a primary threat to the persistence of prairie dog populations (Cynomys spp.). We conducted a 3-yr survey (2004-2006) of fleas from Gunnison's prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in Valles Caldera National Preserve in New Mexico. Our...

  16. Land-use change, economics, and rural well-being in the Prairie Pothole Region of the United States

    Science.gov (United States)

    Gascoigne, William R.; Hoag, Dana L.K.; Johnson, Rex R.; Koontz, Lynne M.; Thomas, Catherine Cullinane

    2013-01-01

    This fact sheet highlights findings included in a comprehensive new report (see USGS Professional Paper 1800) which investigated land-use change, economic characteristics, and rural community well-being in the Prairie Pothole Region of the United States. Once one of the largest grassland-wetlands ecosystems on earth, the North American prairie has experienced extensive conversion to cultivated agriculture, with farming becoming the dominant land use in the region over the last century. Both perennial habitat lands and agricultural croplands retain importance economically, socially, and culturally. Greatly increased oil and gas development in recent years brought rises in employment and income but also stressed infrastructure, cost of living, and crime rates. Research described in these reports focuses on land-use dynamics and illuminates how economic variables and rural development in the Prairie Pothole Region might be influenced as land uses change.

  17. Black-footed ferrets and recreational shooting influence the attributes of black-tailed prairie dog burrows

    Science.gov (United States)

    Biggins, Dean E.; Ramakrishnan, Shantini; Goldberg, Amanda R.; Eads, David A.

    2012-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) plug burrows occupied by black-footed ferrets (Mustela nigripes), and they also plug burrows to entomb dead prairie dogs. We further evaluated these phenomena by sampling connectivity and plugging of burrow openings on prairie dog colonies occupied by ferrets, colonies where recreational shooting was allowed, and colonies with neither shooting nor ferrets. We counted burrow openings on line surveys and within plots, classified surface plugging, and used an air blower to examine subsurface connectivity. Colonies with ferrets had lower densities of openings, fewer connected openings (suggesting increased subsurface plugging), and more surface plugs compared to colonies with no known ferrets. Colonies with recreational shooting had the lowest densities of burrow openings, and line-survey data suggested colonies with shooting had intermediate rates of surface plugging. The extent of surface and subsurface plugging could have consequences for the prairie dog community by changing air circulation and escape routes of burrow systems and by altering energetic relationships. Burrow plugging might reduce prairie dogs' risk of predation by ferrets while increasing risk of predation by American badgers (Taxidea taxus); however, the complexity of the trade-off is increased if plugging increases the risk of predation on ferrets by badgers. Prairie dogs expend more energy plugging and digging when ferrets or shooting are present, and ferrets increase their energy expenditures when they dig to remove those plugs. Microclimatic differences in plugged burrow systems may play a role in flea ecology and persistence of the flea-borne bacterium that causes plague (Yersinia pestis).

  18. Nesting ecology and nest survival of lesser prairie-chickens on the Southern High Plains of Texas

    Science.gov (United States)

    Grisham, Blake A.; Borsdorf, Philip K.; Boal, Clint W.; Boydston, Kathy K.

    2014-01-01

    The decline in population and range of lesser prairie-chickens (Tympanuchus pallidicinctus) throughout the central and southern Great Plains has raised concerns considering their candidate status under the United States Endangered Species Act. Baseline ecological data for lesser prairie-chickens are limited, especially for the shinnery oak-grassland communities of Texas. This information is imperative because lesser prairie-chickens in shinnery oak grasslands occur at the extreme southwestern edge of their distribution. This geographic region is characterized by hot, arid climates, less fragmentation, and less anthropogenic development than within the remaining core distribution of the species. Thus, large expanses of open rangeland with less anthropogenic development and a climate that is classified as extreme for ground nesting birds may subsequently influence nest ecology, nest survival, and nest site selection differently compared to the rest of the distribution of the species. We investigated the nesting ecology of 50 radio-tagged lesser prairie-chicken hens from 2008 to 2011 in the shinnery oak-grassland communities in west Texas and found a substantial amount of inter-annual variation in incubation start date and percent of females incubating nests. Prairie-chickens were less likely to nest near unimproved roads and utility poles and in areas with more bare ground and litter. In contrast, hens selected areas dominated by grasses and shrubs and close to stock tanks to nest. Candidate models including visual obstruction best explained daily nest survival; a 5% increase in visual obstruction improved nest survival probability by 10%. The model-averaged probability of a nest surviving the incubation period was 0.43 (SE = 0.006; 95% CI: 0.23, 0.56). Our findings indicate that lesser prairie-chicken reproduction during our study period was dynamic and was correlated with seasonal weather patterns that ultimately promoted greater grass growth earlier in the

  19. Regional differences in mu and kappa opioid receptor G-protein activation in brain in male and female prairie voles.

    Science.gov (United States)

    Martin, T J; Sexton, T; Kim, S A; Severino, A L; Peters, C M; Young, L J; Childers, S R

    2015-12-17

    Prairie voles are unusual mammals in that, like humans, they are capable of forming socially monogamous pair bonds, display biparental care, and engage in alloparental behaviors. Both mu and kappa opioid receptors are involved in behaviors that either establish and maintain, or result from pair bond formation in these animals. Mu and kappa opioid receptors both utilize inhibitory G-proteins in signal transduction mechanisms, however the efficacy by which these receptor subtypes stimulate G-protein signaling across the prairie vole neuraxis is not known. Utilizing [(35)S]GTPγS autoradiography, we characterized the efficacy of G-protein stimulation in coronal sections throughout male and female prairie vole brains by [D-Ala2,NMe-Phe4,Gly-ol5]-enkephalin (DAMGO) and U50,488H, selective mu and kappa opioid agonists, respectively. DAMGO stimulation was highest in the forebrain, similar to that found with other rodent species. U-50,488H produced greater stimulation in prairie voles than is typically seen in mice and rats, particularly in select forebrain areas. DAMGO produced higher stimulation in the core versus the shell of the nucleus accumbens (NAc) in females, while the distribution of U-50,488H stimulation was the opposite. There were no gender differences for U50,488H stimulation of G-protein activity across the regions examined, while DAMGO stimulation was greater in sections from females compared to those from males for NAc core, entopeduncular nucleus, and hippocampus. These data suggest that the kappa opioid system may be more sensitive to manipulation in prairie voles compared to mice and rats, and that female prairie voles may be more sensitive to mu agonists in select brain regions than males. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Forage preferences in two species of prairie dog (Cynomys parvidens and Cynomus ludovicianus): Implications for hibernation and facultative heterothermy

    Science.gov (United States)

    Lehmer, E.M.; Biggins, D.E.; Antolin, M.F.

    2006-01-01

    Several laboratory studies have shown that the ingestion of dietary linoleic (18:2 ??6) acid before winter can promote deep and continuous torpor, whereas excess consumption of ??-linolenic acid (18:3 ??3) can interfere with an animal's ability to reach and maintain low body temperatures during torpor. As mammalian heterotherms obtain linoleic and ??-linolenic acid strictly from the diet, diet selection has been proposed as a mechanism that allows hibernators to ingest levels of linoleic and ??-linolenic acid that promote favorable torpor patterns. Here diet, dietary nutrient content and patterns of forage preference of a representative hibernator, the Utah prairie dog Cynomys parvidens, and a facultative heterotherm, the black-tailed prairie dog Cynomys ludovicianus, were examined under natural field conditions. Diets of black-tailed (BTPD) and Utah prairie dogs (UTPD) differed across seasons (BTPD F26,108=9.59, Pplant species relative to their abundance on colonies in any season. Black-tailed prairie dogs did not consume or avoid consumption of plant species based on levels of total lipids, linoleic acid, ??-linolenic acid or nitrogen. Considering only the plants consumed, black-tailed prairie dogs appeared to prefer plants with low levels of ??-linolenic acid (F1,19=5.81, P=0.03), but there were no detectable relationships between preference and other nutrients. Utah prairie dogs consumed plants higher in ??-linolenic acid (t=1.98, P=0.05) and avoided plants high in linoleic acid (t=-2.02, P=0.04), but consumption-avoidance decisions did not appear to be related to nitrogen or total lipids. Of the plants consumed, Utah prairie dogs again preferred plants high in ??-linolenic acid (F1,17=4.62, P=0.05). Levels of linoleic and ??-linolenic acid were positively correlated in plants consumed by prairie dogs (BTPD Pearson r=0.66, P<0.01; UTPD Pearson r=0.79, P<0.01), reducing the opportunity for independent selection of either lipid. ?? 2006 The Authors.

  1. Autonomic substrates of the response to pups in male prairie voles.

    Directory of Open Access Journals (Sweden)

    William M Kenkel

    Full Text Available Caregiving by nonparents (alloparenting and fathers is a defining aspect of human social behavior, yet this phenomenon is rare among mammals. Male prairie voles (Microtus ochrogaster spontaneously exhibit high levels of alloparental care, even in the absence of reproductive experience. In previous studies, exposure to a pup was selectively associated with increased activity in oxytocin and vasopressin neurons along with decreased plasma corticosterone. In the present study, physiological, pharmacological and neuroanatomical methods were used to explore the autonomic and behavioral consequences of exposing male prairie voles to a pup. Reproductively naïve, adult male prairie voles were implanted with radiotransmitters used for recording ECG, temperature and activity. Males responded with a sustained increase in heart-rate during pup exposure. This prolonged increase in heart rate was not explained by novelty, locomotion or thermoregulation. Although heart rate was elevated during pup exposure, respiratory sinus arrhythmia (RSA did not differ between these males and males exposed to control stimuli indicating that vagal inhibition of the heart was maintained. Blockade of beta-adrenergic receptors with atenolol abolished the pup-induced heart rate increase, implicating sympathetic activity in the pup-induced increase in heart rate. Blockade of vagal input to the heart delayed the males' approach to the pup. Increased activity in brainstem autonomic regulatory nuclei was also observed in males exposed to pups. Together, these findings suggest that exposure to a pup activates both vagal and sympathetic systems. This unique physiological state (i.e. increased sympathetic excitation of the heart, while maintaining some vagal cardiac tone associated with male caregiving behavior may allow males to both nurture and protect infants.

  2. Characteristics of lesser prairie-chicken (Tympanuchus pallidicinctus) long-distance movements across their distribution

    Science.gov (United States)

    Earl, Julia E.; Fuhlendorf, Samuel D.; Haukos, David A.; Tanner, Ashley M.; Elmore, Dwayne; Carleton, Scott A.

    2016-01-01

    Long-distance movements are important adaptive behaviors that contribute to population, community, and ecosystem connectivity. However, researchers have a poor understanding of the characteristics of long-distance movements for most species. Here, we examined long-distance movements for the lesser prairie-chicken (Tympanuchus pallidicinctus), a species of conservation concern. We addressed the following questions: (1) At what distances could populations be connected? (2) What are the characteristics and probability of dispersal movements? (3) Do lesser prairie-chickens display exploratory and round-trip movements? (4) Do the characteristics of long-distance movements vary by site? Movements were examined from populations using satellite GPS transmitters across the entire distribution of the species in New Mexico, Oklahoma, Kansas, and Colorado. Dispersal movements were recorded up to 71 km net displacement, much farther than hitherto recorded. These distances suggest that there may be greater potential connectivity among populations than previously thought. Dispersal movements were displayed primarily by females and had a northerly directional bias. Dispersal probabilities ranged from 0.08 to 0.43 movements per year for both sexes combined, although these movements averaged only 16 km net displacement. Lesser prairie-chickens displayed both exploratory foray loops and round-trip movements. Half of round-trip movements appeared seasonal, suggesting a partial migration in some populations. None of the long-distance movements varied by study site. Data presented here will be important in parameterizing models assessing population viability and informing conservation planning, although further work is needed to identify landscape features that may reduce connectivity among populations.

  3. Cover Image Identification of Plant Species for Crop Pollinator Habitat Enhancement in the Northern Prairies

    Directory of Open Access Journals (Sweden)

    Diana Bizecki Robson

    2014-09-01

    Full Text Available Wild pollinators have a positive impact on the productivity of insect-pollinated crops. Consequently, landowners are being encouraged to maintain and grow wildflower patches to provide habitat for important pollinators. Research on plant-pollinator interaction matrices indicates that a small number of “core” plants provide a disproportionately high amount of pollen and nectar to insects. This matrix data can be used to help design wildflower plantings that provide optimal resources for desirable pollinators. Existing interaction matrices from three tall grass prairie preserves in the northern prairies were used to identify core plant species that are visited by wild pollinators of a common insect-pollinated crop, namely canola (Brassica napus L.. The wildflower preferences of each insect taxon were determined using quantitative insect visitation and floral abundance data. Phenology data were used to calculate the degree of floral synchrony between the wildflowers and canola. Using this information I ranked the 41 wildflowers that share insect visitors with canola according to how useful they are for providing pollinators with forage before and after canola flowers. The top five species were smooth blue aster (Symphyotrichum laeve (L. A. & D. Löve, stiff goldenrod (Solidago rigida L., wild bergamot (Monarda fistulosa L., purple prairie-clover (Dalea purpurea Vent. and Lindley’s aster (Symphyotrichum ciliolatum (Lindl. A. & D. Löve. By identifying the most important wild insects for crop pollination, and determining when there will be “pollen and nectar gaps”, appropriate plant species can be selected for companion plantings to increase pollinator populations and crop production.

  4. Evaluation of capture techniques on lesser prairie-chicken trap injury and survival

    Science.gov (United States)

    Grisham, Blake A.; Boal, Clint W.; Mitchell, Natasia R.; Gicklhorn, Trevor S.; Borsdorf, Philip K.; Haukos, David A.; Dixon, Charles

    2015-01-01

    Ethical treatment of research animals is required under the Animal Welfare Act. This includes trapping methodologies that reduce unnecessary pain and duress. Traps used in research should optimize animal welfare conditions within the context of the proposed research study. Several trapping techniques are used in the study of lesser prairie-chickens, despite lack of knowledge of trap injury caused by the various methods. From 2006 to 2012, we captured 217, 40, and 144 lesser prairie-chickens Tympanuchus pallidicinctus using walk-in funnel traps, rocket nets, and drop nets, respectively, in New Mexico and Texas, to assess the effects of capture technique on injury and survival of the species. We monitored radiotagged, injured lesser prairie-chickens 7–65 d postcapture to assess survival rates of injured individuals. Injuries occurred disproportionately among trap type, injury type, and sex. The predominant injuries were superficial cuts to the extremities of males captured in walk-in funnel traps. However, we observed no mortalities due to trapping, postcapture survival rates of injured birds did not vary across trap types, and the daily survival probability of an injured and uninjured bird was ≥99%. Frequency and intensity of injuries in walk-in funnel traps are due to the passive nature of these traps (researcher cannot select specific individuals for capture) and incidental capture of individuals not needed for research. Comparatively, rocket nets and drop nets allow observers to target birds for capture and require immediate removal of captured individuals from the trap. Based on our results, trap injuries would be reduced if researchers monitor and immediately remove birds from walk-in funnels before they injure themselves; move traps to target specific birds and reduce recaptures; limit the number of consecutive trapping days on a lek; and use proper netting techniques that incorporate quick, efficient, trained handling procedures.

  5. Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles.

    Science.gov (United States)

    Grippo, Angela J; Gerena, Davida; Huang, Jonathan; Kumar, Narmda; Shah, Maulin; Ughreja, Raj; Carter, C Sue

    2007-01-01

    Supportive social interactions may be protective against stressors and certain mental and physical illness, while social isolation may be a powerful stressor. Prairie voles are socially monogamous rodents that model some of the behavioral and physiological traits displayed by humans, including sensitivity to social isolation. Neuroendocrine and behavioral parameters, selected for their relevance to stress and depression, were measured in adult female and male prairie voles following 4 weeks of social isolation versus paired housing. In Experiment 1, oxytocin-immunoreactive cell density was higher in the hypothalamic paraventricular nucleus (PVN) and plasma oxytocin was elevated in isolated females, but not in males. In Experiment 2, sucrose intake, used as an operational definition of hedonia, was reduced in both sexes following 4 weeks of isolation. Animals then received a resident-intruder test, and were sacrificed either 10 min later for the analysis of circulating hormones and peptides, or 2h later to examine neural activation, indexed by c-Fos expression in PVN cells immunoreactive for oxytocin or corticotropin-releasing factor (CRF). Compared to paired animals, plasma oxytocin, ACTH and corticosterone were elevated in isolated females and plasma oxytocin was elevated in isolated males, following the resident-intruder test. The proportion of cells double-labeled for c-Fos and oxytocin or c-Fos and CRF was elevated in isolated females, and the proportion of cells double-labeled for c-Fos and oxytocin was elevated in isolated males following this test. These findings suggest that social isolation induces behavioral and neuroendocrine responses relevant to depression in male and female prairie voles, although neuroendocrine responses in females may be especially sensitive to isolation.

  6. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies

    International Nuclear Information System (INIS)

    Li, Xue; Mupondwa, Edmund

    2014-01-01

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO 2 equivalent and 3.06 to 31.01 kg CO 2 /MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from − 0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. - Highlights: • LCA of camelina-derived biodiesel and jet fuel was based on the Canadian Prairies. • Overall, camelina-derived biodiesel had lower GHG emissions than is biojet fuel. • Camelina jet fuel had lower non-renewable energy (NRE) use than its biodiesel. • Camelina biofuels reduced GHG emissions and NRE use

  7. Developing a framework for evaluating tallgrass prairie reconstruction methods and management

    Science.gov (United States)

    Larson, Diane L.; Ahlering, Marissa; Drobney, Pauline; Esser, Rebecca; Larson, Jennifer L.; Viste-Sparkman, Karen

    2018-01-01

    The thousands of hectares of prairie reconstructed each year in the tallgrass prairie biome can provide a valuable resource for evaluation of seed mixes, planting methods, and post-planting management if methods used and resulting characteristics of the prairies are recorded and compiled in a publicly accessible database. The objective of this study was to evaluate the use of such data to understand the outcomes of reconstructions over a 10-year period at two U.S. Fish and Wildlife Service refuges. Variables included number of species planted, seed source (combine-harvest or combine-harvest plus hand-collected), fire history, and planting method and season. In 2015 we surveyed vegetation on 81 reconstructions and calculated proportion of planted species observed; introduced species richness; native species richness, evenness and diversity; and mean coefficient of conservatism. We conducted exploratory analyses to learn how implied communities based on seed mix compared with observed vegetation; which seeding or management variables were influential in the outcome of the reconstructions; and consistency of responses between the two refuges. Insights from this analysis include: 1) proportion of planted species observed in 2015 declined as planted richness increased, but lack of data on seeding rate per species limited conclusions about value of added species; 2) differing responses to seeding and management between the two refuges suggest the importance of geographic variability that could be addressed using a public database; and 3) variables such as fire history are difficult to quantify consistently and should be carefully evaluated in the context of a public data repository.

  8. Modelling of seasonal dynamics of Wetland-Groundwater flow interaction in the Canadian Prairies

    Science.gov (United States)

    Ali, Melkamu; Nussbaumer, Raphaël; Ireson, Andrew; Keim, Dawn

    2015-04-01

    Wetland-shallow groundwater interaction is studied at the St. Denis National Wildlife Area in Saskatchewan, Canada, located within the northern glaciated prairies of North America. Ponds in the Canadian Prairies are intermittently connected by fill-spill processes in the spring and growing season of some wetter years. The contribution of the ponds and wetlands to groundwater is still a significant research challenge. The objective of this study is to evaluate model's ability to reproduce observed effects of groundwater-wetland interactions including seasonal pattern of shallow groundwater table, intended flow direction and to quantify the depression induced infiltration from the wetland to the surrounding uplands. The integrated surface-wetland-shallow groundwater processes and the changes in land-energy and water balances caused by the flow interaction are simulated using ParFlow-CLM at a small watershed of 1km2 containing both permanent and seasonal wetland complexes. We compare simulated water table depth with piezometers reading monitored by level loggers at the watershed. We also present the strengths and limitations of the model in reproducing observed behaviour of the groundwater table response to the spring snowmelt and summer rainfall. Simulations indicate that the shallow water table at the uphill recovers quickly after major rainfall events in early summer that generates lateral flow to the pond. In late summer, the wetland supplies water to the surrounding upland when the evapotranspiration is higher than the precipitation in which more water from the root zone is up taken by plants. Results also show that Parflow-CLM is able to reasonably simulate the water table patterns response to summer rainfall, while it is insufficient to reproduce the spring snowmelt infiltration which is the most dominant hydrological process in the Prairies.

  9. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Mupondwa, Edmund, E-mail: Edmund.Mupondwa@agr.gc.ca

    2014-05-01

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO{sub 2} equivalent and 3.06 to 31.01 kg CO{sub 2}/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from − 0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. - Highlights: • LCA of camelina-derived biodiesel and jet fuel was based on the Canadian Prairies. • Overall, camelina-derived biodiesel had lower GHG emissions than is biojet fuel. • Camelina jet fuel had lower non-renewable energy (NRE) use than its biodiesel. • Camelina biofuels reduced GHG emissions and NRE

  10. Early Intranasal Vasopressin Administration Impairs Partner Preference in Adult Male Prairie Voles (Microtus ochrogaster

    Directory of Open Access Journals (Sweden)

    Trenton C. Simmons

    2017-06-01

    Full Text Available Research supports a modulatory role for arginine vasopressin (AVP in the expression of socially motivated behaviors in mammals. The acute effects of AVP administration are demonstrably pro-social across species, providing the justification for an ever-increasing measure of clinical interest over the last decade. Combining these results with non-invasive intranasal delivery results in an attractive system for offering intranasal AVP (IN-AVP as a therapeutic for the social impairments of children with autism spectrum disorder. But, very little is known about the long-term effects of IN-AVP during early development. In this experiment, we explored whether a single week of early juvenile administration of IN-AVP (low = 0.05 IU/kg, medium = 0.5 IU/kg, high = 5.0 IU/kg could impact behavior across life in prairie voles. We found increases in fecal boli production during open field and novel object recognition testing for the medium dose in both males and females. Medium-dose females also had significantly more play bouts than control when exposed to novel conspecifics during the juvenile period. Following sexual maturity, the medium and high doses of IN-AVP blocked partner preference formation in males, while no such impairment was found for any of the experimental groups in females. Finally, the high-dose selectively increased adult male aggression with novel conspecifics, but only after extended cohabitation with a mate. Our findings confirm that a single week of early IN-AVP treatment can have organizational effects on behavior across life in prairie voles. Specifically, the impairments in pair-bonding behavior experienced by male prairie voles should raise caution when the prosocial effects of acute IN-AVP demonstrated in other studies are extrapolated to long-term treatment.

  11. Plasma progesterone levels and corpus luteum morphology in the female prairie dog (Cynomys ludovicianus).

    Science.gov (United States)

    Foreman, D; Garris, D

    1984-08-01

    Plasma progesterone levels in female prairie dogs were determined by a radioimmunoassay specific for progesterone. Plasma progesterone levels were determined in samples taken before estrus, at estrus, during the luteal phase, and during anestrus from females maintained all year in the laboratory. Progesterone levels were also determined in plasma samples taken in the laboratory from two pregnant and three postparturient females captured in the field. Progesterone levels were low before estrus and continued low during estrus. They rose on the first week after estrus to 0.8 ng/ml or above and continued at or above this level for 9-14 weeks following estrus. Gestation in prairie dogs is 35 days in this species. Progesterone levels of three postparturient females were above 1.0 ng/ml for 7 weeks after their arrival in the laboratory. These females all had uterine scars showing that they had delivered their litters before they were captured. Two females were determined to be pregnant at the time of their capture. These females later reabsorbed their fetuses (determined by laparotomy). Progesterone values of samples from these females were all above 1.0 ng/ml except for one low value in one female which occurred 3 weeks after her capture and after reabsorption of her fetuses was in progress. The cells of the corpus lutea (CL) of nonpregnant, pregnant, and postparturient females had well-developed rings of cytoplasmic basophilia but as the CL regressed this pattern became disorganized and disappeared. The function of this basophilia is not known. The long luteal phase found in female prairie dogs is compared to those found in other species of mammals. This is the first annually breeding rodent reported to have a longer luteal phase that the period of gestation.

  12. Monkeypox disease transmission in an experimental setting: prairie dog animal model.

    Directory of Open Access Journals (Sweden)

    Christina L Hutson

    Full Text Available Monkeypox virus (MPXV is considered the most significant human public health threat in the genus Orthopoxvirus since the eradication of variola virus (the causative agent of smallpox. MPXV is a zoonotic agent endemic to forested areas of Central and Western Africa. In 2003, MPXV caused an outbreak in the United States due to the importation of infected African rodents, and subsequent sequential infection of North American prairie dogs (Cynomys ludovicianus and humans. In previous studies, the prairie dog MPXV model has successfully shown to be very useful for understanding MPXV since the model emulates key characteristics of human monkeypox disease. In humans, percutaneous exposure to animals has been documented but the primary method of human-to-human MPXV transmission is postulated to be by respiratory route. Only a few animal model studies of MPXV transmission have been reported. Herein, we show that MPXV infected prairie dogs are able to transmit the virus to naive animals through multiple transmission routes. All secondarily exposed animals were infected with MPXV during the course of the study. Notably, animals secondarily exposed appeared to manifest more severe disease; however, the disease course was very similar to those of experimentally challenged animals including inappetence leading to weight loss, development of lesions, production of orthopoxvirus antibodies and shedding of similar levels or in some instances higher levels of MPXV from the oral cavity. Disease was transmitted via exposure to contaminated bedding, co-housing, or respiratory secretions/nasal mucous (we could not definitively say that transmission occurred via respiratory route exclusively. Future use of the model will allow us to evaluate infection control measures, vaccines and antiviral strategies to decrease disease transmission.

  13. Use of Rhodamine B as a biomarker for oral plague vaccination of prairie dogs

    Science.gov (United States)

    Fernandez, Julia Rodriguez-Ramos; Rocke, Tonie E.

    2011-01-01

    Oral vaccination against Yersinia pestis could provide a feasible approach for controlling plague in prairie dogs (Cynomys spp.) for conservation and public health purposes. Biomarkers are useful in wildlife vaccination programs to demonstrate exposure to vaccine baits. Rhodamine B (RB) was tested as a potential biomarker for oral plague vaccination because it allows nonlethal sampling of animals through hair, blood, and feces. We found that RB is an appropriate marker for bait uptake studies of C. ludovicianus) when used at concentrations 10 mg RB per kg target animal mass. Whiskers with follicles provided the best sample for RB detection.

  14. Conflicting research on the demography, ecology, and social behavior of Gunnison's prairie dogs (Cynomys gunnisoni)

    Science.gov (United States)

    Hoogland, John L.; Cully, Jack F.; Rayor, Linda S.; Fitzgerald, James P.

    2012-01-01

    Gunnison's prairie dogs (Cynomys gunnisoni) are rare, diurnal, colonial, burrowing, ground-dwelling squirrels. Studies of marked individuals living under natural conditions in the 1970s, 1980s, and 1990s showed that males are heavier than females throughout the year; that adult females living in the same territory are consistently close kin; and that females usually mate with the sexually mature male(s) living in the home territory. Research from 2007 through 2010 challenges all 3 of these findings. Here we discuss how different methods might have led to the discrepancies.

  15. Transformation of Chlorpyrifos and Chlorpyrifos-Methyl in Prairie Pothole Porewaters

    Science.gov (United States)

    Anderson, R. M.; Chin, Y. P.

    2014-12-01

    The prairie pothole region (PPR) extends over approximately 700,000 km2 in the Great Plains region in United States and Canada and is a critical breeding ground for migratory waterfowl, as well as an important ecosystem for diverse invertebrates and aquatic plants (van der Valk, 2003). Consisting of up to 12 million permanent and temporary depressional wetlands, the PPR is negatively impacted by non-point source pesticide pollution due to extensive agricultural development in the region. Recent studies have shown that high (mM) levels of sulfate in the pothole lakes are capable of abiotically reducing dinitroaniline and chloroacetanilide pesticides (Zeng, 2011; Zeng, 2012). In this study the transformation of the organophosphorus pesticide chlorpyrifos (CP) and its analog chlorpyrifos-methyl (CPM) was studied using pore waters sampled from two pothole lakes. CP and CPM have been found to react in the laboratory with sulfur species via a SN2 mechanism, with degradation by sulfur compounds occurring faster than hydrolysis at high pH (Wu, 2006). To date the reaction of CP and CPM in natural environments with sulfur species has not been studied. Chlorpyrifos-methyl underwent rapid degradation in the presence of reduced sulfur species in pore water, while chlorpyrifos degradation occurred at significantly slower rates. Both CP and CPM degradation occurred at comparable rates to what has been previously observed in the laboratory (Wu, 2006). References van der Valk, Arnold G., and Roger L. Pederson. "The SWANCC decision and its implications for prairie potholes." Wetlands 23.3 (2003): 590-596. Wu, Tong, Qiu Gan, and Urs Jans. "Nucleophilic Substitution of Phosphorothionate Ester Pesticides with Bisulfide (HS-) and Polysulfides (Sn2-)." Environmental science & technology 40.17 (2006): 5428-5434. Zeng, Teng, et al. "Pesticide processing potential in prairie pothole porewaters."Environmental science & technology 45.16 (2011): 6814-6822. Zeng, Teng, Yu-Ping Chin, and William

  16. Chlorophacinone residues in mammalian prey at a black-tailed prairie dog colony

    Science.gov (United States)

    Vyas, Nimish B.; Hulse, Craig S.; Rice, Clifford P.

    2012-01-01

    Black-tailed prairie dogs (BTPDs), Cynomys ludovicianus, are an important prey for raptors; therefore, the use of the rodenticide Rozol (0.005% chlorophacinone active ingredient) to control BTPDs raises concern for secondary poisonings resulting from the consumption of contaminated prey by raptors. In the present study, the authors observed Rozol exposure and adverse effects to mammalian prey on 11 of 12 search days of the study. Mammalian hepatic chlorophacinone residues ranged from 0.44 to 7.56 µg/g. Poisoned prey availability was greater than previously reported.

  17. Spatially explicit modeling of lesser prairie-chicken lek density in Texas

    Science.gov (United States)

    Timmer, Jennifer M.; Butler, M.J.; Ballard, Warren; Boal, Clint W.; Whitlaw, Heather A.

    2014-01-01

    As with many other grassland birds, lesser prairie-chickens (Tympanuchus pallidicinctus) have experienced population declines in the Southern Great Plains. Currently they are proposed for federal protection under the Endangered Species Act. In addition to a history of land-uses that have resulted in habitat loss, lesser prairie-chickens now face a new potential disturbance from energy development. We estimated lek density in the occupied lesser prairie-chicken range of Texas, USA, and modeled anthropogenic and vegetative landscape features associated with lek density. We used an aerial line-transect survey method to count lesser prairie-chicken leks in spring 2010 and 2011 and surveyed 208 randomly selected 51.84-km(2) blocks. We divided each survey block into 12.96-km(2) quadrats and summarized landscape variables within each quadrat. We then used hierarchical distance-sampling models to examine the relationship between lek density and anthropogenic and vegetative landscape features and predict how lek density may change in response to changes on the landscape, such as an increase in energy development. Our best models indicated lek density was related to percent grassland, region (i.e., the northeast or southwest region of the Texas Panhandle), total percentage of grassland and shrubland, paved road density, and active oil and gas well density. Predicted lek density peaked at 0.39leks/12.96km(2) (SE=0.09) and 2.05leks/12.96km(2) (SE=0.56) in the northeast and southwest region of the Texas Panhandle, respectively, which corresponds to approximately 88% and 44% grassland in the northeast and southwest region. Lek density increased with an increase in total percentage of grassland and shrubland and was greatest in areas with lower densities of paved roads and lower densities of active oil and gas wells. We used the 2 most competitive models to predict lek abundance and estimated 236 leks (CV=0.138, 95% CI=177-306leks) for our sampling area. Our results suggest that

  18. Burning management in the tallgrass prairie affects root decomposition, soil food web structure and carbon flow

    Science.gov (United States)

    Shaw, E. A.; Denef, K.; Milano de Tomasel, C.; Cotrufo, M. F.; Wall, D. H.

    2015-09-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is a common management practice and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable, but significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition which, in turn, is significantly

  19. Microsatellite Markers in the Western Prairie Fringed Orchid, Platanthera praeclara (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Andrew A. Ross

    2013-04-01

    Full Text Available Premise of the study: Primers for 31 microsatellite-containing loci were developed for the threatened orchid Platanthera praeclara to enable characterization of the population genetics of this tallgrass prairie native. Methods and Results: Sixteen polymorphic microsatellite loci were identified from four populations. Six of these loci were not in linkage disequilibrium. The average number of alleles per locus per population ranged from 6.4 to 8.9. Conclusions: The results indicate that six of the polymorphic loci will be useful in future studies of population structure, gene flow, and genetic diversity.

  20. Native Prairie Adaptive Management: a multi region adaptive approach to invasive plant management on Fish and Wildlife Service owned native prairies

    Science.gov (United States)

    Gannon, Jill J.; Shaffer, Terry L.; Moore, Clinton T.

    2013-01-01

    Much of the native prairie managed by the U.S. Fish and Wildlife Service (FWS) in the Prairie Pothole Region (PPR) of the northern Great Plains is extensively invaded by the introduced cool-season grasses, smooth brome (Bromus inermis) and Kentucky bluegrass (Poa pratensis). Management to suppress these invasive plants has had poor to inconsistent success. The central challenge to managers is selecting appropriate management actions in the face of biological and environmental uncertainties. In partnership with the FWS, the U.S. Geological Survey (USGS) developed an adaptive decision support framework to assist managers in selecting management actions under uncertainty and maximizing learning from management outcomes. This joint partnership is known as the Native Prairie Adaptive Management (NPAM) initiative. The NPAM decision framework is built around practical constraints faced by FWS refuge managers and includes identification of the management objective and strategies, analysis of uncertainty and construction of competing decision models, monitoring, and mechanisms for model feedback and decision selection. Nineteen FWS field stations, spanning four states of the PPR, have participated in the initiative. These FWS cooperators share a common management objective, available management strategies, and biological uncertainties. Though the scope is broad, the initiative interfaces with individual land managers who provide site-specific information and receive updated decision guidance that incorporates understanding gained from the collective experience of all cooperators. We describe the technical components of this approach, how the components integrate and inform each other, how data feedback from individual cooperators serves to reduce uncertainty across the whole region, and how a successful adaptive management project is coordinated and maintained on a large scale. During an initial scoping workshop, FWS cooperators developed a consensus management objective

  1. The influence of environment, sex, and innate timing mechanisms on body temperature patterns of free-ranging black-tailed prairie dogs (Cynomys ludovicianus).

    Science.gov (United States)

    Lehmer, Erin M; Bossenbroek, Jonathan M; Van Horne, Beatrice

    2003-01-01

    Mechanisms that influence body temperature patterns in black-tailed prairie dogs are not well understood. Previous research on both free-ranging and laboratory populations of black-tailed prairie dogs (Cynomys ludovicianus) has suggested that reductions in ambient temperature and food and water deprivation are the primary factors that stimulate torpor in this species. In other species, however, torpor has been shown to be influenced by a multitude of factors, including innate circadian and circannual timing mechanisms, energy status, and reproductive behaviors. Our objective was to clarify the influence of weather, sex, and intrinsic timing mechanisms on the body temperature patterns of free-ranging black-tailed prairie dogs. We monitored body temperatures of eight adult (>1 yr) prairie dogs from November 1999 to June 2000. Prairie dogs showed distinct daily and seasonal body temperature patterns, which reflected changes in ambient temperatures that occurred during these periods. These patterns of daily and seasonal heterothermy suggest that body temperature patterns of black-tailed prairie dogs may be driven by an innate timing mechanism. All prairie dogs entered torpor intermittently throughout winter and spring. Torpor bouts appeared to be influenced by precipitation and reductions in ambient temperature. Our results also suggest that reproductive behaviors and circadian timing may influence torpor in this species.

  2. Responses of prairie arthropod communities to fire and fertilizer: Balancing plant and arthropod conservation

    Science.gov (United States)

    Hartley, M.K.; Rogers, W.E.; Siemann, E.; Grace, J.

    2007-01-01

    Fire is an important tool for limiting woody plant invasions into prairies, but using fire management to maintain grassland plant communities may inadvertently reduce arthropod diversity. To test this, we established twenty-four 100 m2 plots in a tallgrass prairie in Galveston County, Texas, in spring 2000. Plots were assigned a fire (no burn, one time burn [2000], two time burn [2000, 2001]) and fertilization treatment (none, NPK addition) in a full factorial design. Fertilization treatments allowed us to examine the effects of fire at a different level of productivity. We measured plant cover by species and sampled arthropods with sweep nets during the 2001 growing season. Path analysis indicated that fertilization reduced while annual fires increased arthropod diversity via increases and decreases in woody plant abundance, respectively. There was no direct effect of fire on arthropod diversity or abundance. Diptera and Homoptera exhibited particularly strong positive responses to fires. Lepidoptera had a negative response to nutrient enrichment. Overall, the negative effects of fire on the arthropod community were minor in contrast to the strong positive indirect effects of small-scale burning on arthropod diversity if conservation of particular taxa is not a priority. The same fire regime that minimized woody plant invasion also maximized arthropod diversity.

  3. Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie.

    Science.gov (United States)

    Schuster, Michael J

    2016-03-01

    Anthropogenic nitrogen deposition and projected increases in rainfall variability (the frequency of drought and heavy rainfall events) are expected to strongly influence ecosystem processes such as litter decomposition. However, how these two global change factors interact to influence litter decomposition is largely unknown. I examined how increased rainfall variability and nitrogen addition affected mass and nitrogen loss of litter from two tallgrass prairie species, Schizachyrium scoparium and Solidago canadensis, and isolated the effects of each during plant growth and during litter decomposition. I increased rainfall variability by consolidating ambient rainfall into larger events and simulated chronic nitrogen deposition using a slow-release urea fertilizer. S. scoparium litter decay was more strongly regulated by the treatments applied during plant growth than by those applied during decomposition. During plant growth, increased rainfall variability resulted in S. scoparium litter that subsequently decomposed more slowly and immobilized more nitrogen than litter grown under ambient conditions, whereas nitrogen addition during plant growth accelerated subsequent mass loss of S. scoparium litter. In contrast, S. canadensis litter mass and N losses were enhanced under either N addition or increased rainfall variability both during plant growth and during decomposition. These results suggest that ongoing changes in rainfall variability and nitrogen availability are accelerating nutrient cycling in tallgrass prairies through their combined effects on litter quality, environmental conditions, and plant community composition.

  4. Climate variability and change and water supply on the Canadian Prairies

    International Nuclear Information System (INIS)

    Nicholaichuk, W.

    1991-01-01

    The status of water resources on the Canadian Prairies, the related results of recent climate change studies, and research needs, are reviewed. With climate change, it is expected that farming practices will be pushed northwards, the precipitation/evapotranspiration balance will shift, and changes will occur in streamflow, flood risk and water quality. While all models show a warming trend on the Prairies, they differ on changes that might be expected. Some indicate increases in precipitation while others indicate decreases. Required research needed to improve understanding of the issues includes: models to improve computations of evapotranspiration and evaporation over large areas; reliable models of glacier behavior and responses to climatic variation and change; improved areal measurements for precipitation, evaporation, soil moisture, groundwater and runoff; improvements in global circulation models that include feedback mechanisms based on physical land/atmosphere processes; validation of hydrological processes at different levels; and assessment of the role of landscape in regional processes under natural conditions and human influence. 6 refs., 1 tab

  5. Implications of climate change for wetland-dependent birds in the Prairie Pothole Region

    Science.gov (United States)

    Steen, Valerie; Skagen, Susan K.; Melcher, Cynthia P.

    2016-01-01

    The habitats and food resources required to support breeding and migrant birds dependent on North American prairie wetlands are threatened by impending climate change. The North American Prairie Pothole Region (PPR) hosts nearly 120 species of wetland-dependent birds representing 21 families. Strategic management requires knowledge of avian habitat requirements and assessment of species most vulnerable to future threats. We applied bioclimatic species distribution models (SDMs) to project range changes of 29 wetland-dependent bird species using ensemble modeling techniques, a large number of General Circulation Models (GCMs), and hydrological climate covariates. For the U.S. PPR, mean projected range change, expressed as a proportion of currently occupied range, was −0.31 (± 0.22 SD; range − 0.75 to 0.16), and all but two species were projected to lose habitat. Species associated with deeper water were expected to experience smaller negative impacts of climate change. The magnitude of climate change impacts was somewhat lower in this study than earlier efforts most likely due to use of different focal species, varying methodologies, different modeling decisions, or alternative GCMs. Quantification of the projected species-specific impacts of climate change using species distribution modeling offers valuable information for vulnerability assessments within the conservation planning process.

  6. Northern Prairie Wildlife Research Center—Celebrating 50 years of science

    Science.gov (United States)

    Austin, Jane E.; Shaffer, Terry L.; Igl, Lawrence D.; Johnson, Douglas H.; Krapu, Gary L.; Larson, Diane L.; Mech, L. David; Mushet, David M.; Sovada, Marsha A.

    2017-10-30

    The Northern Prairie Wildlife Research Center (NPWRC) celebrated its 50-year anniversary in 2015. This report is written in support of that observance. We document why and how the NPWRC came to be and describe some of its many accomplishments and the influence the Center’s research program has had on natural resource management. The history is organized by major research themes, proceeds somewhat chronologically within each theme, and covers the Center’s first 50 years of research. During that period, Center scientists authored more than 1,700 publications and reports. More than 1,000 seasonal or temporary field personnel, and more than 100 graduate students, contributed to the Center’s success; many went on to have exemplary careers in natural resource management, conservation, and education. The mission of the Northern Prairie Wildlife Research Center today remains true to the original vision: to provide the knowledge needed to understand, conserve, and manage the Nation’s natural resources for current and future generations, with an emphasis on species and ecosystems of the northern Great Plains. The Center’s first 50 years of applied biological research provides a deep scientific foundation on which to address emerging issues for the natural resources in the northern Great Plains and beyond.

  7. Groundwater connectivity of upland-embedded wetlands in the Prairie Pothole Region

    Science.gov (United States)

    Neff, Brian; Rosenberry, Donald O.

    2018-01-01

    Groundwater connections from upland-embedded wetlands to downstream waterbodies remain poorly understood. In principle, water from upland-embedded wetlands situated high in a landscape should flow via groundwater to waterbodies situated lower in the landscape. However, the degree of groundwater connectivity varies across systems due to factors such as geologic setting, hydrologic conditions, and topography. We use numerical models to evaluate the conditions suitable for groundwater connectivity between upland-embedded wetlands and downstream waterbodies in the prairie pothole region of North Dakota (USA). Results show groundwater connectivity between upland-embedded wetlands and other waterbodies is restricted when these wetlands are surrounded by a mounding water table. However, connectivity exists among adjacent upland-embedded wetlands where water–table mounds do not form. In addition, the presence of sand layers greatly facilitates groundwater connectivity of upland-embedded wetlands. Anisotropy can facilitate connectivity via groundwater flow, but only if it becomes unrealistically large. These findings help consolidate previously divergent views on the significance of local and regional groundwater flow in the prairie pothole region.

  8. Water resources of the Prairie Island Indian Reservation, Minnesota, 1994-97

    Science.gov (United States)

    Cowdery, Timothy K.

    1999-01-01

    This evaluation of the water resources on the Prairie Island Indian Reservation includes data collected from 8 surface-water sites and 22 wells during 1994–97 and historical data. The Mississippi River and the lakes and wetlands connected to it are separated from the Vermillion River and the lakes and wetlands connected to it by the surficial aquifer on Prairie Island and by Lock and Dam Number 3. These surface-water groups form hydrologic boundaries of the surficial aquifer. The aquifer is 130–200 feet thick, extends to bedrock (the Franconia Formation, which is also an aquifer), and is composed primarily of sand and gravel, but also contains thin, isolated lenses of finer-grained material. Flow in the surficial aquifer is normally from the Mississippi River to the Vermillion River (southwest). During spring snowmelt or heavy rains, a ground-water mound forms in the center of the study area and causes radial ground-water flow toward the surrounding surface waters.

  9. Regional Variation in mtDNA of the Lesser Prairie-Chicken

    Science.gov (United States)

    Hagen, Christian A.; Pitman, James C.; Sandercock, Brett K.; Wolfe, Don H.; Robel, Robel J.; Applegate, Roger D.; Oyler-McCance, Sara J.

    2010-01-01

    Cumulative loss of habitat and long-term decline in the populations of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) have led to concerns for the species' viability throughout its range in the southern Great Plains. For more efficient conservation past and present distributions of genetic variation need to be understood. We examined the distribution of mitochondrial DNA (mtDNA) variation in the Lesser Prairie-Chicken across Kansas, Colorado, Oklahoma, and New Mexico. Throughout the range we found little genetic differentiation except for the population in New Mexico, which was significantly different from most other publications. We did, however, find significant isolation by distance at the rangewide scale (r=0.698). We found no relationship between haplotype phylogeny and geography, and our analyses provide evidence for a post-glacial population expansion within the species that is consistent with the idea that speciation within Tympanuchus is recent. Conservation actions that increase the likelihood of genetically viable populations in the future should be evaluated for implementation.

  10. Breaking sod or breaking even? Flax on the northern Great Plains and Prairies, 1889-1930.

    Science.gov (United States)

    MacFayden, Joshua D

    2009-01-01

    A new thirst for paint and color in cities made extensive flax production profitable in the northern Great Plains and Prairies and contributed to the cultivation of the most fragile grassland ecosystems. The production of flax seed for linseed oil became an early spin-off of the Prairie wheat economy but, unlike wheat, flax vanished from old land after one or two rotations and reappeared in districts with the most new breaking. Officials explained the migrant crop as preparing native grasslands for cultivation or exhausting soil in old land, but farmers brought flax to their new breaking for other reasons. Producers would only put flax on any land when a range of economic and environmental conditions were in place. It was never sown without promise of adequately high prices or in the absence of affordable seed and other inputs. When price allowed, it usually appeared on new breaking because it could be planted later and transported further without upsetting the balance of other activities and without farmers learning many new techniques. Scientists discovered that diseased soil drove flax off old land, not soil exhaustion. Circumventing the disease was possible but costly, and farmers simply replaced flax with the next most lucrative commodity.

  11. Predator selection of prairie landscape features and its relation to duck nest success

    Science.gov (United States)

    Phillips, M.L.; Clark, W.R.; Sovada, M.A.; Horn, D.J.; Koford, Rolf R.; Greenwood, R.J.

    2003-01-01

    Mammalian predation is a major cause of mortality for breeding waterfowl in the U.S. Northern Great Plains, and yet we know little about the selection of prairie habitats by predators or how this influences nest success in grassland nesting cover. We selected 2 41.4-km2 study areas in both 1996 and 1997 in North Dakota, USA, with contrasting compositions of perennial grassland. A study area contained either 15-20% perennial grassland (Low Grassland Composition [LGC]) or 45-55% perennial grassland (High Grassland Composition [HGC]). We used radiotelemetry to investigate the selection of 9 landscape cover types by red fox (Vulpes vulpes) and striped skunk (Mephitis mephitis), while simultaneously recording duck nest success within planted cover. The cover types included the edge and core areas of planted cover, wetland edges within planted cover or surrounded by cropland, pastureland, hayland, cropland, roads, and miscellaneous cover types. Striped skunks selected wetland edges surrounded by agriculture over all other cover types in LGC landscapes (P-values for all pairwise comparisons were foraging efficiency in the interior areas of planted cover and contributed to higher nest success in HGC landscapes. Our observations of predator cover-type selection not only support the restoration and management of large blocks of grassland but also indicate the influence of alternative cover types for mitigating nest predation in the Prairie Pothole Region.

  12. Ecological and Landscape Drivers of Neonicotinoid Insecticide Detections and Concentrations in Canada's Prairie Wetlands.

    Science.gov (United States)

    Main, Anson R; Michel, Nicole L; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2015-07-21

    Neonicotinoids are commonly used seed treatments on Canada's major prairie crops. Transported via surface and subsurface runoff into wetlands, their ultimate aquatic fate remains largely unknown. Biotic and abiotic wetland characteristics likely affect neonicotinoid presence and environmental persistence, but concentrations vary widely between wetlands that appear ecologically (e.g., plant composition) and physically (e.g., depth) similar for reasons that remain unclear. We conducted intensive surveys of 238 wetlands, and documented 59 wetland (e.g., dominant plant species) and landscape (e.g., surrounding crop) characteristics as part of a novel rapid wetland assessment system. We used boosted regression tree (BRT) analysis to predict both probability of neonicotinoid analytical detection and concentration. BRT models effectively predicted the deviance in neonicotinoid detection (62.4%) and concentration (74.7%) from 21 and 23 variables, respectively. Detection was best explained by shallow marsh plant species identity (34.8%) and surrounding crop (13.9%). Neonicotinoid concentration was best explained by shallow marsh plant species identity (14.9%) and wetland depth (14.2%). Our research revealed that plant composition is a key indicator and/or driver of neonicotinoid presence and concentration in Prairie wetlands. We recommend wetland buffers consisting of diverse native vegetation be retained or restored to minimize neonicotinoid transport and retention in wetlands, thereby limiting their potential effects on wetland-dependent organisms.

  13. Social isolation alters central nervous system monoamine content in prairie voles following acute restraint.

    Science.gov (United States)

    McNeal, Neal; Anderson, Eden M; Moenk, Deirdre; Trahanas, Diane; Matuszewich, Leslie; Grippo, Angela J

    2018-04-01

    Animal models have shown that social isolation and other forms of social stress lead to depressive- and anxiety-relevant behaviors, as well as neuroendocrine and physiological dysfunction. The goal of this study was to investigate the effects of prior social isolation on neurotransmitter content following acute restraint in prairie voles. Animals were either paired with a same-sex sibling or isolated for 4 weeks. Plasma adrenal hormones and ex vivo tissue concentrations of monoamine neurotransmitters and their metabolites were measured following an acute restraint stressor in all animals. Isolated prairie voles displayed significantly increased circulating adrenocorticotropic hormone levels, as well as elevated serotonin and dopamine levels in the hypothalamus, and potentially decreased levels of serotonin in the frontal cortex. However, no group differences in monoamine levels were observed in the hippocampus or raphe. The results suggest that social stress may bias monoamine neurotransmission and stress hormone function to subsequent acute stressors, such as restraint. These findings improve our understanding of the neurobiological mechanisms underlying the consequences of social stress.

  14. Testing nickel tolerance of Sorghastrum nutans and its associated soil microbial community from serpentine and prairie soils

    International Nuclear Information System (INIS)

    Doherty, Jennifer H.; Ji Baoming; Casper, Brenda B.

    2008-01-01

    Ecotypes of Sorghastrum nutans from a naturally metalliferous serpentine grassland and the tallgrass prairie were assessed for Ni tolerance and their utility in remediation of Ni-polluted soils. Plants were inoculated with serpentine arbuscular mycorrhizal (AM) root inoculum or whole soil microbial communities, originating from either prairie or serpentine, to test their effects on plant performance in the presence of Ni. Serpentine plants had marginally higher Ni tolerance as indicated by higher survival. Ni reduced plant biomass and AM root colonization for both ecotypes. The serpentine AM fungi and whole microbial community treatments decreased plant biomass relative to uninoculated plants, while the prairie microbial community had no effect. Differences in how the soil communities affect plant performance were not reflected in patterns of root colonization by AM fungi. Thus, serpentine plants may be suited for reclamation of Ni-polluted soils, but AM fungi that occur on serpentine do not improve Ni tolerance. - Ni tolerance of Sorghastrum nutans differs slightly between serpentine and prairie populations and is negatively affected by serpentine soil and root inoculation

  15. Nest Success and Cause-Specific Nest Failure of Grassland Passerines Breeding in Prairie Grazed by Livestock

    Science.gov (United States)

    This manuscript describes two years of field research on ground-nesting songbird species at Zumwalt Prairie Reserve, northeastern Oregon, USA. Cattle-grazing has long been suspected in declines of ground-nesting songbirds in grazed grassland, primarily due to increased trampling...

  16. Droughts may increase susceptibility of prairie dogs to fleas: Incongruity with hypothesized mechanisms of plague cycles in rodents

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Long, Dustin H.; Gage, Kenneth L.; Antolin, Michael F.

    2016-01-01

    Plague is a reemerging, rodent-associated zoonosis caused by the flea-borne bacterium Yersinia pestis. As a vector-borne disease, rates of plague transmission may increase when fleas are abundant. Fleas are highly susceptible to desiccation under hot-dry conditions; we posited that their densities decline during droughts. We evaluated this hypothesis with black-tailed prairie dogs (Cynomys ludovicianus) in New Mexico, June–August 2010–2012. Precipitation was relatively plentiful during 2010 and 2012 but scarce during 2011, the driest spring–summer on record for the northeastern grasslands of New Mexico. Unexpectedly, fleas were 200% more abundant in 2011 than in 2010 and 2012. Prairie dogs were in 27% better condition during 2010 and 2012, and they devoted 287% more time to grooming in 2012 than in 2011. During 2012, prairie dogs provided with supplemental food and water were in 23% better condition and carried 40% fewer fleas. Collectively, these results suggest that during dry years, prairie dogs are limited by food and water, and they exhibit weakened defenses against fleas. Long-term data are needed to evaluate the generality of whether droughts increase flea densities and how changes in flea abundance during sequences of dry and wet years might affect plague cycles in mammalian hosts.

  17. Prescribed fire: A proposed management tool to facilitate black-tailed prairie dog (Cynomys ludovicianus) colony expansion

    Science.gov (United States)

    Felicia D. Archuleta; Paulette L. Ford

    2013-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) are considered a keystone species in grassland ecosystems. Through their burrowing activities, they conspicuously alter grassland landscapes and provide foraging, shelter and nesting habitat for a diverse array of grassland species, in addition to serving as prey for the endangered black-footed ferret (Mustela nigripes...

  18. 77 FR 57082 - Prairie Rose Wind, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-09-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2542-000] Prairie Rose Wind, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket... Rose Wind, LLC's application for market-based rate authority, with an accompanying rate schedule...

  19. A proxy of social mate choice in prairie warblers is correlated with consistent, rapid, low-pitched singing

    Science.gov (United States)

    Bruce E. Byers; Michael E. Akresh; David I. King

    2015-01-01

    In songbirds, female mate choice may be influenced by how well a male performs his songs. Performing songs well may be especially difficult if it requires maximizingmultiple aspects of performance simultaneously.We therefore hypothesized that, in a population of prairie warblers, the males most attractive to females would be those with superior performance in more than...

  20. 75 FR 44292 - Northern States Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of...

    Science.gov (United States)

    2010-07-28

    ... and DPR-60] Northern States Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2... assessment, and behavioral observation) of the unescorted access authorization program when making the... under consideration to determine whether it met the criteria established in NRC Management Directive (MD...

  1. Assessing the Impact of Climate Variability on Cropland Productivity in the Canadian Prairies Using Time Series MODIS FAPAR

    Directory of Open Access Journals (Sweden)

    Taifeng Dong

    2016-03-01

    Full Text Available Cropland productivity is impacted by climate. Knowledge on spatial-temporal patterns of the impacts at the regional scale is extremely important for improving crop management under limiting climatic factors. The aim of this study was to investigate the effects of climate variability on cropland productivity in the Canadian Prairies between 2000 and 2013 based on time series of MODIS (Moderate Resolution Imaging Spectroradiometer FAPAR (Fraction of Absorbed Photosynthetically Active Radiation product. Key phenological metrics, including the start (SOS and end of growing season (EOS, and the cumulative FAPAR (CFAPAR during the growing season (between SOS and EOS, were extracted and calculated from the FAPAR time series with the Parametric Double Hyperbolic Tangent (PDHT method. The Mann-Kendall test was employed to assess the trends of cropland productivity and climatic variables, and partial correlation analysis was conducted to explore the potential links between climate variability and cropland productivity. An assessment using crop yield statistical data showed that CFAPAR can be taken as a surrogate of cropland productivity in the Canadian Prairies. Cropland productivity showed an increasing trend in most areas of Canadian Prairies, in general, during the period from 2000 to 2013. Interannual variability in cropland productivity on the Canadian Prairies was influenced positively by rainfall variation and negatively by mean air temperature.

  2. Assessing changes in biomass, productivity, and C and N stores following Juniperus virginiana forest expansion into tallgrass prairie

    Energy Technology Data Exchange (ETDEWEB)

    Norris, M. D.; Blair, J. M.; Johnson, L. C. [Kansas State Univ., Manhattan, KS (United States); McKane, R. B. [Environmental Protection Agency, Western Ecology Division, Corvallis, OR (United States)

    2001-11-01

    The objective of this study was to assess changes in plant productivity and above-ground plant biomass associated with red cedar forest expansion into areas formerly dominated by tallgrass prairie. Regionally appropriate allometric biomass regression equations were developed for the nondestructive estimation of red cedar biomass in eastern Kansas, followed by quantification of the carbon and nitrogen content of selected biomass components. The equations were applied, along with measurements of leaf litter production, to selected local stands of mature closed-canopy red cedars to estimate above-ground biomass, standing stocks of carbon and nitrogen and annual above-ground net primary productivity. Above-ground plant biomass for these red cedar-dominated sites ranged from 114,100 kg/ha for the youngest stand to 210,700 kg/ha for the oldest. Annual above-ground net primary productivity (ANPP) ranged from 7,250 to 10,440 kg/ha/yr for the oldest and younger red cedar stands respectively. The ANPP in comparable tallgrass prairie sites in this region averages 3,690 k/ha/yr, indicating a large increase in carbon uptake and above-ground storage as a result of the change from prairie to red cedar forests. Comparing these results with similar published data from other sites led to the conclusion that the widespread change from tallgrass to red cedars across the woodland-prairie ecotone has important consequences for regional carbon storage.37 refs., 3 tabs., 3 figs.

  3. Investigating temporal patterns of a native bee community in a remnant North American bunchgrass prairie using blue vane traps.

    Science.gov (United States)

    Kimoto, Chiho; Debano, Sandra J; Thorp, Robbin W; Rao, Sujaya; Stephen, William P

    2012-01-01

    Native bees are important ecologically and economically because their role as pollinators fulfills a vital ecosystem service. Pollinators are declining due to various factors, including habitat degradation and destruction. Grasslands, an important habitat for native bees, are particularly vulnerable. One highly imperiled and understudied grassland type in the United States is the Pacific Northwest Bunchgrass Prairie. No studies have examined native bee communities in this prairie type. To fill this gap, the bee fauna of the Zumwalt Prairie, a large, relatively intact remnant of the Pacific Northwest Bunchgrass Prairie, was examined. Native bees were sampled during the summers of 2007 and 2008 in sixteen 40-ha study pastures on a plateau in northeastern Oregon, using a sampling method not previously used in grassland studies-blue vane traps. This grassland habitat contained an abundant and diverse community of native bees that experienced marked seasonal and inter-annual variation, which appears to be related to weather and plant phenology. Temporal variability evident over the entire study area was also reflected at the individual trap level, indicating a consistent response across the spatial scale of the study. These results demonstrate that temporal variability in bee communities can have important implications for long-term monitoring protocols. In addition, the blue vane trap method appears to be well-suited for studies of native bees in large expanses of grasslands or other open habitats, and may be a useful tool for monitoring native bee communities in these systems.

  4. Contributions of seed bank and vegetative propagules to vegetation composition on prairie dog colonies in western South Dakota

    Science.gov (United States)

    Emily R. Helms; Lan Xu; Jack L. Butler

    2012-01-01

    Characterizing the contributions of the seed bank and vegetative propagules will enhance our understanding of community resiliency associated with prairie dog disturbances. Our objective was to determine the effects of ecological condition (EC) and distance from burrows on the soil seed bank and vegetative propagules. Based on species composition of the extant...

  5. Resource selection models are useful in predicting fine-scale distributions of black-footed ferrets in prairie dog colonies

    Science.gov (United States)

    Eads, David A.; Jachowski, David S.; Biggins, Dean E.; Livieri, Travis M.; Matchett, Marc R.; Millspaugh, Joshua J.

    2012-01-01

    Wildlife-habitat relationships are often conceptualized as resource selection functions (RSFs)—models increasingly used to estimate species distributions and prioritize habitat conservation. We evaluated the predictive capabilities of 2 black-footed ferret (Mustela nigripes) RSFs developed on a 452-ha colony of black-tailed prairie dogs (Cynomys ludovicianus) in the Conata Basin, South Dakota. We used the RSFs to project the relative probability of occurrence of ferrets throughout an adjacent 227-ha colony. We evaluated performance of the RSFs using ferret space use data collected via postbreeding spotlight surveys June–October 2005–2006. In home ranges and core areas, ferrets selected the predicted "very high" and "high" occurrence categories of both RSFs. Count metrics also suggested selection of these categories; for each model in each year, approximately 81% of ferret locations occurred in areas of very high or high predicted occurrence. These results suggest usefulness of the RSFs in estimating the distribution of ferrets throughout a black-tailed prairie dog colony. The RSFs provide a fine-scale habitat assessment for ferrets that can be used to prioritize releases of ferrets and habitat restoration for prairie dogs and ferrets. A method to quickly inventory the distribution of prairie dog burrow openings would greatly facilitate application of the RSFs.

  6. Fine-scale habitat use of reintroduced black-footed ferrets on prairie dog colonies in New Mexico

    Science.gov (United States)

    Chipault, Jennifer G.; Biggins, Dean E.; Detling, James K.; Long, Dustin H.; Reich, Robin M.

    2012-01-01

    Black-footed ferrets (Mustela nigripes) are among the most endangered animals in North America. Reintroductions of captive-born ferrets onto prairie dog (Cynomys spp.) colonies are crucial to the conservation of the species. In September 2007, captive-born ferrets were released on a black-tailed prairie dog (Cynomys ludovicianus) colony at the Vermejo Park Ranch, New Mexico. Ferret kits experimentally released in areas of comparatively low and high prairie dog burrow densities were located via spotlight surveys. Some maturing ferret kits were subsequently translocated to areas of low and high burrow densities on nearby prairie dog colonies. For 2 months, fine-scale habitat use was quantified by mapping all burrow openings within a 30-m radius of each ferret location. Spatial statistics accounted for autocorrelation in the burrow densities in areas used by ferrets. It was hypothesized that ferrets would select areas of high burrow densities within colonies; however, burrow densities in areas used by ferrets were generally similar to the available burrow densities. Because ferrets used areas with burrow densities similar to densities available at the colony level and because of the potential energetic benefits for ferrets using areas with high burrow densities, releasing ferrets on colonies with high burrow densities might increase reintroduction success.

  7. 78 FR 62300 - Prairie Breeze Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2013-10-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER14-25-000] Prairie Breeze Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Breeze Wind Energy LLC's application for market-based rate authority, with an accompanying rate schedule...

  8. "A Prairie Childhood" by Edith Abbott: An Excerpt from "The Children's Champion," a Biography of Grace Abbott

    Science.gov (United States)

    Sorensen, John

    2003-01-01

    Grace Abbott's courageous struggles--to protect the rights of immigrants, to increase the role of women in government, and to improve the lives of all children--are filled with adventurous tales of the remarkable human ability to seek out suffering and to do something about it. "A Prairie Childhood" is an excerpt from the Grace Abbott biography…

  9. Continuous Long-Term Modeling of Shallow Groundwater-Surface Water Interaction: Implications for a Wet Prairie Restoration

    Science.gov (United States)

    Wijayarathne, D. B.; Gomezdelcampo, E.

    2017-12-01

    The existence of wet prairies is wholly dependent on the groundwater and surface water interaction. Any process that alters this interaction has a significant impact on the eco-hydrology of wet prairies. The Oak Openings Region (OOR) in Northwest Ohio supports globally rare wet prairie habitats and the precious few remaining have been drained by ditches, altering their natural flow and making them an unusually variable and artificial system. The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model from the US Army Engineer Research and Development Center was used to assess the long-term impacts of land-use change on wet prairie restoration. This study is the first spatially explicit, continuous, long-term modeling approach for understanding the response of the shallow groundwater system of the OOR to human intervention, both positive and negative. The GSSHA model was calibrated using a 2-year weekly time series of water table elevations collected with an array of piezometers in the field. Basic statistical analysis indicates a good fit between observed and simulated water table elevations on a weekly level, though the model was run on an hourly time step and a pixel size of 10 m. Spatially-explicit results show that removal of a local ditch may not drastically change the amount of ponding in the area during spring storms, but large flooding over the entire area would occur if two other ditches are removed. This model is being used by The Nature Conservancy and Toledo Metroparks to develop different scenarios for prairie restoration that minimize its effect on local homeowners.

  10. The parasitic eyeworm Oxyspirura petrowi as a possible cause of decline in the threatened lesser prairie-chicken (Tympanuchus pallidicinctus.

    Directory of Open Access Journals (Sweden)

    Nicholas R Dunham

    Full Text Available Lesser prairie-chickens (Tympanuchus pallidicinctus have been declining range wide since the early 1900's despite efforts to establish conservation and improve their habitat. In early 2014, the lesser prairie-chicken was listed as a threatened species under the U.S Endangered Species Act and the need to find out why they are declining is more important than ever. Nine hunter shot lesser prairie-chickens were donated and sampled for the presence or absence of the eyeworm Oxyspirura petrowi, a known parasite that can cause damage to the eye of its host, and common environmental contaminants. Eyeworm infection was found in 7 of 9 birds (78% infection rate with an infection range between 0-16 O. petrowi per bird. Breast, liver, and fat tissue samples from the lesser prairie-chickens were analyzed for the frequency of 20 organochlorine pesticides. Femurs and livers were also tested on these birds for metal contaminants. Pesticides were found in several samples above the detection limits but were still in the low ng/g range. Notable was the ubiquitous presence of endrin aldehyde across all tissues. One femur showed 5.66 µg/g of lead (Pb but this is still relatively low. No liver samples had elevated mercury (Hg above detection limits. The presence of these organochlorines is consistent with the historic use of pesticides in this region. With pesticide and metals found in such low levels and parasitic nematode infections at rather high levels, it is recommended that these parasites be further evaluated as a contributing factor to the decline of the lesser prairie-chicken.

  11. Controls on the geochemical evolution of Prairie Pothole Region lakes and wetlands over decadal time scales

    Science.gov (United States)

    Goldhaber, Martin B.; Mills, Christopher T.; Mushet, David M.; McCleskey, R. Blaine; Rover, Jennifer

    2016-01-01

    One hundred sixty-seven Prairie Pothole lakes, ponds and wetlands (largely lakes) previously analyzed chemically during the late 1960’s and early to mid-1970’s were resampled and reanalyzed in 2011–2012. The two sampling periods differed climatically. The earlier sampling took place during normal to slightly dry conditions, whereas the latter occurred during and immediately following exceptionally wet conditions. As reported previously in Mushet et al. (2015), the dominant effect was expansion of the area of these lakes and dilution of their major ions. However, within that context, there were significant differences in the evolutionary pathways of major ions. To establish these pathways, we employed the inverse modeling computer code NetpathXL. This code takes the initial and final lake composition and, using mass balance constrained by the composition of diluting waters, and input and output of phases, calculates plausible geochemical evolution pathways. Despite the fact that in most cases major ions decreased, a subset of the lakes had an increase in SO42−. This distinction is significant because SO42− is the dominant anion in a majority of Prairie Pothole Region wetlands and lakes. For lakes with decreasing SO42−, the proportion of original lake water required for mass balance was subordinate to rainwater and/or overland flow. In contrast, lakes with increasing SO42− between the two sampling episodes tended to be dominated by original lake water. This suite of lakes tended to be smaller and have lower initial SO42−concentrations such that inputs of sulfur from dissolution of the minerals gypsum or pyrite had a significant impact on the final sulfur concentration given the lower dilution factors. Thus, our study provides context for how Prairie Pothole Region water bodies evolve geochemically as climate changes. Because wetland geochemistry in turn controls the ecology of these water bodies, this research contributes to the prediction of the

  12. Results from three years on the prairie - improving management through volunteer-collected data

    Science.gov (United States)

    Hadley, N.; Force, A.; Holsinger, K.

    2017-12-01

    Citizen science is a nascent and diversifying field with the ability to support wide-ranging outcomes from volunteer education and empowerment to data-driven decisions. Adventure Scientists is a nonprofit organization that focuses on the latter. We approach citizen science through a solutions-oriented lens, in which quality data can influence decisions leading to improved policy, land management and business practices. All our work is interdisciplinary, as we collaborate with partners in government, academia, industry and nonprofits to help fill their data collection needs. In addressing our partners' data needs, it is critical that we align any newfound knowledge with tangible outcomes. Therefore, our projects and partnerships incorporate concrete theories of change and involve the collaborations and relationships necessary to support decision-making. In this presentation, we will highlight Landmark, a landscape-scale project spanning 30,000 acres of North American prairie in Montana, to illustrate one example of a partnership that resulted in improved management from our volunteer-collected data. This was a multi-year citizen science project, where we assisted the American Prairie Reserve's effort to create the largest grasslands and wildlife protected area in the continental U.S. Our partners identified a need to better understand the extent and diversity of wildlife inhabiting and migrating through the space. To provide this enhanced understanding, we helped design and implement a program to collect key wildlife data on the prairie. We recruited, trained and managed specialized volunteers from the outdoor adventure community. Volunteers were responsible for collecting data year-round on animals moving through the landscape to support their management and protection. After three years of data collection and over 19,000 wildlife observations made while monitoring 29 species, the grasslands preserve is now moving forward with an expansive wildlife dataset to

  13. Effects of exogenous hormones on spermatogenesis in the male prairie dog (Cynomys ludovicianus).

    Science.gov (United States)

    Foreman, D

    1998-01-01

    Male prairie dogs (Cynomys ludovicianus) breed anually and have complete testicular regression. Changes in the seminiferous tubules during the annual cycle have been described recently (Foreman, 1997). This is the first description of spermatogenesis in such a species. The definition of tubular stages during the cycle allows for evaluation of the effects of exogenous hormones, hemicastration, and hemicryptorchidism on spermatogenesis during the annual cycle. Hemicastration was performed during stages of the annual cycle to determine effects of exogenous hormones on remaining testes. Hemicryptorchidism was also done during stages of the annual cycle. FSH, LH, and testosterone were given in high and low doses for short- or long-term treatment periods during stages of the annual cycle. Testicular weights and counts of cell types in tubules of control and treated testes were made on testis tissues. Hemicastration during the out-of-season period does not cause compensatory hypertrophy of the remaining testis, but during recrudescence, hypertrophy of the remaining testis occurs. Hemicastration does not prevent loss of weight by the remaining testis during regression. The seminiferous epithelium of hemicryptorchid prairie dog testes shows damage during spermatogenic activity but not during testicular inactivity. Similarly, hemicryptorchid 15-day-old rat testes do not show damage from hemicryptorchidism. Long-term treatment with FSH preparations during testicular inactivity increased testis weights, spermatogonial proliferation, and spermatocyte differentiation in conjunction with Sertoli cell differentiation. Short-term treatments with low doses increased spermatogonial proliferation and abnormal meiotic activity. Both long- and short-term treatments with LH caused increased sloughing of germ cells and stimulated Leydig and Sertoli cells. Testosterone propionate injections stimulated Sertoli secretions but not Leydig cell activity. Hemicastration during inactivity does

  14. Geophysical Investigation of an Abandoned Cemetery: Teachers Discover Evidence of Unmarked Graves in Prairie View, TX

    Science.gov (United States)

    Henning, A. T.; Sawyer, D. S.; Baldwin, R.; Kahera, A.; Thoms, A.

    2007-12-01

    In July 2007, a group of nineteen K-12 teachers investigated an abandoned cemetery in Prairie View, Texas, utilizing ground-penetrating radar (GPR) to image the subsurface. In a period of two weeks, the group acquired and interpreted 59 GPR profiles in Wyatt Chapel Cemetery and surrounding areas in order to determine the local stratigraphy and try to locate unmarked graves. The sandy soil in this area is ideally suited for GPR investigations and numerous geophysical anomalies were identified. Wyatt Chapel Cemetery is located adjacent to the campus of Prairie View A&M University in Prairie View, TX, and is thought to have originated as a slave burial ground in the 1850's. Participants in a summer course at Rice University conducted a geophysical investigation of the site. Participants were in-service K-12 teachers from urban Houston school districts where the majority of students are members of historically underrepresented minority groups. Recruitment efforts targeted educators who are currently teaching science without a science degree. Participants included elementary, middle and high school teachers. This summer experience is followed by a content-intensive academic year course in Physical Geology. GPR is an excellent tool for investigating the sandy soil encountered at Wyatt Chapel Cemetery. The stratigraphy in the area consists of 3-6 feet of reddish-brown, medium-grained sand overlying a light gray, highly compacted clay. The sand-clay boundary appears as a strong reflector on the GPR profiles. Participants identified numerous anomalies in the GPR data and two were excavated. One consisted of a pair of bright hyperbolae, suggesting two edges of a metal object. This excavation resulted in the discovery of a metal plank thought to be a burial cover. The second anomaly consisted of a break in the horizon representing the top of the clay layer, and subsequent excavation revealed a grave shaft. Participants experienced the process of science first-hand and used

  15. Use of macroinvertebrates to identify cultivated wetlands in the Prairie Pothole Region

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.; Johnson, Douglas H.

    2001-01-01

    We evaluated the use of macroinvertebrates as a potential tool to identify dry and intensively farmed temporary and seasonal wetlands in the Prairie Pothole Region. The techniques we designed and evaluated used the dried remains of invertebrates or their egg banks in soils as indicators of wetlands. For both the dried remains of invertebrates and their egg banks, we weighted each taxon according to its affinity for wetlands or uplands. Our study clearly demonstrated that shells, exoskeletons, head capsules, eggs, and other remains of macroinvertebrates can be used to identify wetlands, even when they are dry, intensively farmed, and difficult to identify as wetlands using standard criteria (i.e., hydrology, hydrophytic vegetation, and hydric soils). Although both dried remains and egg banks identified wetlands, the combination was more useful, especially for identifying drained or filled wetlands. We also evaluated the use of coarse taxonomic groupings to stimulate use of the technique by nonspecialists and obtained satisfactory results in most situations.

  16. The influence of grazing on surface climatological variables of tallgrass prairie. Final Technical Report

    International Nuclear Information System (INIS)

    Seastedt, T.R.; Dyer, M.I.; Turner, C.L.

    1992-01-01

    Mass and energy exchange between most grassland canopies and the atmosphere are mediated by grazing activities. Ambient temperatures can be increased or decreased by grazers. Data have been assembled from simulated grazing experiments on Konza Prairie Research Natural Area and observations on adjacent pastures grazed by cattle show significant changes in primary production, nutrient content, and bidirectional reflectance characteristics as a function of grazing intensity. The purpose of this research was to provide algorithms that would allow incorporation of grazing effects into models of energy budgets using remote sensing procedures. The approach involved: (1) linking empirical measurements of plant biomass and grazing intensities to remotely sensed canopy reflectance, and (2) using a higher resolution, mechanistic grazing model to derive plant ecophysiological parameters that influence reflectance and other surface climatological variables

  17. Creation of artificial spawning grounds downstream of the Riviere-des-Prairies Spillway

    International Nuclear Information System (INIS)

    Verdon, R.

    1991-01-01

    The creation of artificial spawning grounds is often considered a valuable means of mitigating impact on fish populations. In 1985, following reconstruction of the Riviere-des-Prairies spillway, granular material from the access road was used to create a new spawning area for resident fish. This 0.5 hectare spawning bed was used over the following years by walleye, sauger, longnose and white suckers, and lake sturgeon for reproduction. It was also used as a fry habitat by sturgeon and sucker. Since the reproductive success of the fish depends largely on stable flow conditions, the quality of the habitat is strongly related to the spillway flow regime. Operating procedures compatible with power generation can optimize the spawning success of desirable fish species. Details are presented of site design, construction, fish monitoring, and spillway operation. 4 refs., 7 figs., 1 tab

  18. Radiative surface temperatures of the burned and unburned areas in a tallgrass prairie

    International Nuclear Information System (INIS)

    Asrar, G.; Harris, T.R.; Lapitan, R.L.; Cooper, D.I.

    1988-01-01

    This study was conducted in a natural tallgrass prairie area in the Flint Hills of Kansas. Our objective was to evaluate the surface radiative temperatures of burned and unburned treatments of the grassland as a means of delineating the areas covered by each treatment. Burning is used to remove the senescent vegetation resulting from the previous year's growth. Surface temperatures were obtained in situ and by an airborne scanner. Burned and unburned grass canopies had distinctly different diurnal surface radiative temperatures. Measurements of surface energy balance components revealed a difference in partitioning of the available energy between the two canopies, which resulted in the difference in their measured surface temperatures. The magnitude of this difference is dependent on the time of measurements and topographic conditions. (author)

  19. Feeding ecology of arctic-nesting sandpipers during spring migration through the prairie pothole region

    Science.gov (United States)

    Eldridge, J.L.; Krapu, G.L.; Johnson, D.H.

    2009-01-01

    We evaluated food habits of 4 species of spring-migrant calidrid sandpipers in the Prairie Pothole Region (PPR) of North Dakota. Sandpipers foraged in several wetland classes and fed primarily on aquatic dipterans, mostly larvae, and the midge family Chironomidae was the primary food eaten. Larger sandpiper species foraged in deeper water and took larger larvae than did smaller sandpipers. The diverse wetland habitats that migrant shorebirds use in the PPR suggest a landscape-level approach be applied to wetland conservation efforts. We recommend that managers use livestock grazing and other tools, where applicable, to keep shallow, freshwater wetlands from becoming choked with emergent vegetation limiting chironomid production and preventing shorebird use.

  20. Which fireballs are meteorites - A study of the Prairie Network photographic meteor data

    Science.gov (United States)

    Wetherill, G. W.; Revelle, D. O.

    1981-11-01

    With the exception of three recovered meteorites with photographic fireball data (Pribram, Lost City, Innisfree), there is generally little information regarding the location of meteorites in the solar system prior to their impact on the earth. An investigation is conducted with the objective to identify those fireballs (bright meteor) data from the Prairie Network. The investigation is based on the belief that many small ordinary chondrites must be present among the photographed bright fireballs. Observations of the recovered fireballs are used to identify characteristics of their dynamics while passing through the atmosphere. In this way criteria are established for identifying those fireballs with similar dynamical characteristics. On the basis of the studies, a catalog is provided of fireballs which have a high probability of being ordinary chondrites or other strong meteorites.

  1. Cold war legacy: sub-surface investigation of unsaturated prairie soil radiologically contaminated in 1951

    International Nuclear Information System (INIS)

    Sims, D.J.; Andrews, W.S.; Wang, Z.; Creber, K.A.M.

    2003-01-01

    An unintentional release of fission products (FPs) from a buried storage tank in 1951 resulted in 6.7 L of liquid, bearing radioactive material, being spilled into unsaturated prairie soil at a depth of 3.7 m. Since then, the site has been undisturbed. In October 2001, boreholes were drilled and soil samples were recovered for analysis. Gamma well logging showed higher than background radiation readings at a depth of 3.5 m (corresponding to the storage container location) and a peak reading at 4.7 m (attributed to the breakthrough curve). The soil was determined to be predominantly lean clay with a silty sand layer between 4.4 and 5.1 m. Future work includes radiochemical analysis, soil column simulation, determination of distribution coefficients and transport modelling. (author)

  2. Effects of Wind Energy Development on Nesting Ecology of Greater Prairie-Chickens in Fragmented Grasslands

    Science.gov (United States)

    McNew, Lance B; Hunt, Lyla M; Gregory, Andrew J; Wisely, Samantha M; Sandercock, Brett K

    2014-01-01

    Wind energy is targeted to meet 20% of U.S. energy needs by 2030, but new sites for development of renewable energy may overlap with important habitats of declining populations of grassland birds. Greater Prairie-Chickens (Tympanuchus cupido) are an obligate grassland bird species predicted to respond negatively to energy development. We used a modified before–after control–impact design to test for impacts of a wind energy development on the reproductive ecology of prairie-chickens in a 5-year study. We located 59 and 185 nests before and after development, respectively, of a 201 MW wind energy facility in Greater Prairie-Chicken nesting habitat and assessed nest site selection and nest survival relative to proximity to wind energy infrastructure and habitat conditions. Proximity to turbines did not negatively affect nest site selection (β = 0.03, 95% CI = −1.2–1.3) or nest survival (β = −0.3, 95% CI = −0.6–0.1). Instead, nest site selection and survival were strongly related to vegetative cover and other local conditions determined by management for cattle production. Integration of our project results with previous reports of behavioral avoidance of oil and gas facilities by other species of prairie grouse suggests new avenues for research to mitigate impacts of energy development. Efectos del Desarrollo de la Energía Eólica sobre la Ecología de Anidación de Gallinas de la Gran Pradera en Pastizales Fragmentados Resumen Se calcula que la energía eólica aportará el 20% de las necesidades energéticas de los Estados Unidos para el 2030, pero nuevos sitios para el desarrollo de energía renovable pueden traslaparse con hábitats importantes de poblaciones declinantes de aves de pastizal. La gallina de la Gran Pradera (Tympanuchus cupido) es una especie de ave obligada de pastizal que se pronostica responderá negativamente al desarrollo energético. Usamos un diseño ADCI modificado para probar los impactos del desarrollo de la energía e

  3. A projection of lesser prairie chicken (Tympanuchus pallidicinctus) populations range-wide

    Science.gov (United States)

    Cummings, Jonathan W.; Converse, Sarah J.; Moore, Clinton T.; Smith, David R.; Nichols, Clay T.; Allan, Nathan L.; O'Meilia, Chris M.

    2017-08-09

    We built a population viability analysis (PVA) model to predict future population status of the lesser prairie-chicken (Tympanuchus pallidicinctus, LEPC) in four ecoregions across the species’ range. The model results will be used in the U.S. Fish and Wildlife Service's (FWS) Species Status Assessment (SSA) for the LEPC. Our stochastic projection model combined demographic rate estimates from previously published literature with demographic rate estimates that integrate the influence of climate conditions. This LEPC PVA projects declining populations with estimated population growth rates well below 1 in each ecoregion regardless of habitat or climate change. These results are consistent with estimates of LEPC population growth rates derived from other demographic process models. Although the absolute magnitude of the decline is unlikely to be as low as modeling tools indicate, several different lines of evidence suggest LEPC populations are declining.

  4. Conserving Prairie Pothole Region wetlands and surrounding grasslands: evaluating effects on amphibians

    Science.gov (United States)

    Mushet, David M.; Neau, Jordan L.

    2014-01-01

    The maintenance of viable and genetically diverse populations of amphibians in the Prairie Pothole Region of the United States depends on upland as well as wetland over-wintering and landscape level habitat features.Prairie pothole wetlands provide important amphibian breeding habitat while grasslands surrounding these wetlands provide foraging habitat for adults, overwintering habitat for some species, and important connectivity among breeding wetlands.Grasslands surrounding wetlands were found to be especially important for wood frogs and northern leopard frogs, while croplands dominated habitat utilized by Great Plains toads and Woodhouse’s toads.Habitat suitability mapping highlighted (1) the influence of deep-water overwintering wetlands on suitable habitat for four of five anuran species encountered; (2) the lack of overlap between areas of core habitat for both the northern leopard frog and wood frog compared to the core habitat for both toad species; and (3) the importance of conservation programs in providing grassland components of northern leopard frog and wood frog habitat.Currently, there are approximately 7.2 million acres (2.9 million hectares, ha) of habitat in the PPR identified as suitable for amphibians. WRP and CRP wetland and grassland habitats accounted for approximately 1.9 million acres (0.75 million ha) or 26 percent of this total area.Continued loss of amphibian habitat resulting from an ongoing trend of returning PPR conservation lands to crop production, will likely have significant negative effects on the region’s ability to maintain amphibian biodiversity. Conversely, increases in conservation wetlands and surrounding grasslands on the PPR landscape have great potential to positively influence the region’s amphibian populations.

  5. Linking phenology and biomass productivity in South Dakota mixed-grass prairie

    Science.gov (United States)

    Rigge, Matthew; Smart, Alexander; Wylie, Bruce; Gilmanov, Tagir; Johnson, Patricia

    2013-01-01

    Assessing the health of rangeland ecosystems based solely on annual biomass production does not fully describe plant community condition; the phenology of production can provide inferences on species composition, successional stage, and grazing impacts. We evaluate the productivity and phenology of western South Dakota mixed-grass prairie using 2000 to 2008 Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index (NDVI) satellite imagery at 250 m spatial resolution. Growing season NDVI images were integrated weekly to produce time-integrated NDVI (TIN), a proxy of total annual biomass production, and integrated seasonally to represent annual production by cool (C3) and warm (C4) season species. Additionally, a variety of phenological indicators including cool season percentage of TIN were derived from the seasonal profiles of NDVI. Cool season percentage and TIN were combined to generate vegetation classes, which served as proxies of plant community condition. TIN decreased with precipitation from east to west across the study area. Alternatively, cool season percentage increased from east to west, following patterns related to the reliability (interannual coefficient of variation [CV]) and quantity of mid-summer precipitation. Cool season TIN averaged 76.8% of total. Seasonal accumulation of TIN corresponded closely (R2 > 0.90) to that of gross photosynthesis data from a carbon flux tower. Field-collected biomass and community composition data were strongly related to the TIN and cool season percentage products. The patterns of vegetation classes were responsive to topographic, edaphic, and land management influences on plant communities. Accurate maps of biomass production, cool/warm season composition, and vegetation classes can improve the efficiency of land management by adjusting stocking rates and season of use to maximize rangeland productivity and achieve conservation objectives. Further, our results clarify the spatial and

  6. Ducks and passerines nesting in northern mixed-grass prairie treated with fire

    Science.gov (United States)

    Grant, Todd A.; Shaffer, Terry L.; Madden, Elizabeth M.; Berkey, Gordon B.

    2011-01-01

    Prescribed fire is an important, ecology-driven tool for restoration of grassland systems. However, prescribed fire remains controversial for some grassland managers because of reported reductions in bird use of recently burned grasslands. Few studies have evaluated effects of fire on grassland bird populations in the northern mixed-grass prairie region. Fewer studies yet have examined the influence of fire on nest density or survival. In our review, we found no studies that simultaneously examined effects of fire on duck and passerine nesting. During 1998—2003, we examined effects of prescribed fire on the density of upland-nesting ducks and passerines nesting in north-central North Dakota, USA. Apparent nest densities of gadwall (Anas strepera), mallard (A. platyrhynchos), and all duck species combined, were influenced by fire history of study units, although the degree of influence was not compelling. Fire history was not related to nest densities of blue-winged teal (A. discors), northern shoveler (A. clypeata), or northern pintail (A. acuta); however, apparent nest densities in relation to the number of postfire growing seasons exhibited a strikingly similar pattern among all duck species. When compared to ducks, fire history strongly influenced apparent nest densities of clay-colored sparrow (Spizella pallida), Savannah sparrow (Passerculus sandwichensis), and bobolink (Dolichonyx oryzivorus). For most species examined, apparent nest densities were lowest in recently burned units, increased during the second postfire growing season, and stabilized or, in some cases, decreased thereafter. Prescribed fire is critical for restoring the ecology of northern mixed-grass prairies and our findings indicate that reductions in nest densities are limited mostly to the first growing season after fire. Our results support the premise that upland-nesting ducks and several grassland passerine species are adapted to periodic fires occurring at a frequency similar to that

  7. Prerequisites for understanding climate-change impacts on northern prairie wetlands

    Science.gov (United States)

    Anteau, Michael J.; Wiltermuth, Mark T.; Post van der Burg, Max; Pearse, Aaron T.

    2016-01-01

    The Prairie Pothole Region (PPR) contains ecosystems that are typified by an extensive matrix of grasslands and depressional wetlands, which provide numerous ecosystem services. Over the past 150 years the PPR has experienced numerous landscape modifications resulting in agricultural conversion of 75–99 % of native prairie uplands and drainage of 50–90 % of wetlands. There is concern over how and where conservation dollars should be spent within the PPR to protect and restore wetland basins to support waterbird populations that will be robust to a changing climate. However, while hydrological impacts of landscape modifications appear substantial, they are still poorly understood. Previous modeling efforts addressing impacts of climate change on PPR wetlands have yet to fully incorporate interacting or potentially overshadowing impacts of landscape modification. We outlined several information needs for building more informative models to predict climate change effects on PPR wetlands. We reviewed how landscape modification influences wetland hydrology and present a conceptual model to describe how modified wetlands might respond to climate variability. We note that current climate projections do not incorporate cyclical variability in climate between wet and dry periods even though such dynamics have shaped the hydrology and ecology of PPR wetlands. We conclude that there are at least three prerequisite steps to making meaningful predictions about effects of climate change on PPR wetlands. Those evident to us are: 1) an understanding of how physical and watershed characteristics of wetland basins of similar hydroperiods vary across temperature and moisture gradients; 2) a mechanistic understanding of how wetlands respond to climate across a gradient of anthropogenic modifications; and 3) improved climate projections for the PPR that can meaningfully represent potential changes in climate variability including intensity and duration of wet and dry periods. Once

  8. Quantifying the Impact of geographically isolated wetlands on the downstream hydrology of a Canadian Prairie watershed

    Science.gov (United States)

    Muhammad, A.; Evenson, G. R.; Boluwade, A.; Jha, S. K.; Rasmussen, P. F.

    2016-12-01

    Hydrological processes are highly complex and strongly nonlinear and cannot be represented through simple means. Models are built to replicate these processes. However, models due to various sources of uncertainty including their structural capability often lead to inaccurate results. The aim of this study is to setup the soil water assessment tool (SWAT) for a watershed that is dominated by potholes in the Prairie region of Canada. The potholes not connected to the stream, also known as geographically isolated wetlands (GIWs), are dynamic in nature leading to a fill and spill situation due to varying surface runoff conditions. Significant land use changes have resulted in almost 70% of wetlands being lost and have posed threat of flooding to downstream areas. While some studies were devoted to identify the presence of potholes only few have explored the impacts of wetlands on the downstream hydrology. In this study, we follow Evenson et al., (2016) approach of modifying SWAT model. The modification enhances structural capability of SWAT while depicting the dynamics of wetlands at HRUs level. Redefining the formation of HRUs in such way effectively captures the spatial presence of potholes. We then routed the potholes' fill and spill hydrology to direct the flow to the potholes immediately downstream. The model was calibrated for 2005-2008 and verified over 2009-2011 at a daily time step. We tested our model with three land use change scenarios by varying the presence of potholes and evaluated its impact on the downstream hydrograph. We foresee a significant improvement in replicating stream flow using this novel approach. We believe that it will effectively improve the predictive power of SWAT for this highly complex sub basin (Upper Assiniboine catchment at Kamsack) located in Canadian Prairie.

  9. Gallbladder filling and emptying during cholesterol gallstone formation in the prairie dog. A cholescintigraphic study

    International Nuclear Information System (INIS)

    Pellegrini, C.A.; Ryan, T.; Broderick, W.; Way, L.W.

    1986-01-01

    We studied gallbladder bile flow before, during, and after cholesterol gallstone formation in the prairie dog using infusion cholescintigraphy with /sup 99m/Tc-diethyl iminodiacetic acid. In 18 fasting animals partitioning of bile between gallbladder and intestine was determined every 15 min for 140 min, and gallbladder response to cholecystokinin (5 U/kg X h) was calculated from the gallbladder ejection fraction. Ten prairie dogs were then placed on a 0.4% cholesterol diet and 8 on a regular diet, and the studies were repeated 1, 2, and 6 wk later. The proportion of hepatic bile that entered the gallbladder relative to the intestine varied from one 15-min period to the next, and averaged 28.2% +/- 5.1% at 140 min. Partial spontaneous gallbladder emptying (ejection fraction 11.5% +/- 5.6%) was intermittently observed. Neither the number nor the ejection fraction of spontaneous gallbladder contractions changed during gallstone formation. By contrast, the percent of gallbladder emptying in response to cholecystokinin decreased from 72.1% +/- 5% to 25.9% +/- 9.3% (p less than 0.025) in the first week and was 14.3% +/- 5.5% at 6 wk (p less than 0.01 from prediet values, not significant from first week). Gallbladder filling decreased from 28.2% +/- 5.1% to 6.7% +/- 3% (p less than 0.01), but this change was only observed after 6 wk, when gallstones had formed. This study shows that bile flow into the gallbladder during fasting is not constant; the gallbladder contracts intermittently; gallbladder emptying in response to exogenous cholecystokinin is altered very early during gallstone formation; and gallbladder filling remains unaffected until later stages, when gallstones have formed

  10. Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.

    Directory of Open Access Journals (Sweden)

    Valerie Steen

    Full Text Available The Prairie Pothole Region (PPR of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs. We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971-2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981-2000 and projected future distributions to climate scenarios for 2040-2049. Species were projected to, on average, lose almost half their current habitat (-46%. However, individual species projections varied widely, from +8% (Upland Sandpiper to -100% (Wilson's Snipe. Variable importance ranks indicated that land cover (wetland and upland variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.

  11. Identification of subpopulations of prairie voles differentially susceptible to peer influence to decrease high alcohol intake.

    Science.gov (United States)

    Anacker, Allison M J; Ryabinin, Andrey E

    2013-01-01

    Peer influences are critical in the decrease of alcohol (ethanol) abuse and maintenance of abstinence. We previously developed an animal model of inhibitory peer influences on ethanol drinking using prairie voles and here sought to understand whether this influential behavior was due to specific changes in drinking patterns and to variation in a microsatellite sequence in the regulatory region of the vasopressin receptor 1a gene (avpr1a). Adult prairie voles' drinking patterns were monitored in a lickometer apparatus that recorded each lick a subject exhibited during continuous access to water and 10% ethanol during periods of isolation, pair housing of high and low drinkers, and subsequent isolation. Analysis of fluid consumption confirmed previous results that high drinkers typically decrease ethanol intake when paired with low drinkers, but that a subset of voles do not decrease. Analysis of bout structure revealed differences in the number of ethanol drinking bouts in the subpopulations of high drinkers when paired with low drinkers. Lickometer drinking patterns analyzed by visual and by cross-correlation analyses demonstrated that pair housing did not increase the rate of subjects drinking in bouts occurring at the same time. The length of the avpr1a microsatellite did not predict susceptibility to peer influence or any other drinking behaviors. In summary, subpopulations of high drinkers were identified, by fluid intake and number of drinking bouts, which did or did not lower their ethanol intake when paired with a low drinking peer, and these subpopulations should be explored for testing the efficacy of treatments to decrease ethanol use in groups that are likely to be responsive to different types of therapy.

  12. Reduction of neonicotinoid insecticide residues in Prairie wetlands by common wetland plants.

    Science.gov (United States)

    Main, Anson R; Fehr, Jessica; Liber, Karsten; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2017-02-01

    Neonicotinoid insecticides are frequently detected in wetlands during the early to mid-growing period of the Canadian Prairie cropping season. These detections also overlap with the growth of macrophytes that commonly surround agricultural wetlands which we hypothesized may reduce neonicotinoid transport and retention in wetlands. We sampled 20 agricultural wetlands and 11 macrophyte species in central Saskatchewan, Canada, over eight weeks to investigate whether macrophytes were capable of reducing movement of neonicotinoids from cultivated fields and/or reducing concentrations in surface water by accumulating insecticide residues into their tissues. Study wetlands were surrounded by clothianidin-treated canola and selected based on the presence (n=10) or absence (n=10) of a zonal plant community. Neonicotinoids were positively detected in 43% of wetland plants, and quantified in 8% of all plant tissues sampled. Three plant species showed high rates of detection: 78% Equisetum arvense (clothianidin, range: wetlands had higher detection frequency and water concentrations of clothianidin (β±S.E.: -0.77±0.26, P=0.003) and thiamethoxam (β±S.E.: -0.69±0.35, P=0.049) than vegetated wetlands. We assessed the importance of wetland characteristics (e.g. vegetative zone width, emergent plant height, water depth) on neonicotinoid concentrations in Prairie wetlands over time using linear mixed-effects models. Clothianidin concentrations were significantly lower in wetlands surrounded by taller plants (β±S.E.: -0.57±0.12, P≤0.001). The results of this study suggest that macrophytes can play an important role in mitigating water contamination by accumulating neonicotinoids and possibly slowing transport to wetlands during the growing season. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Modelling surface-water depression storage in a Prairie Pothole Region

    Science.gov (United States)

    Hay, Lauren E.; Norton, Parker A.; Viger, Roland; Markstrom, Steven; Regan, R. Steven; Vanderhoof, Melanie

    2018-01-01

    In this study, the Precipitation-Runoff Modelling System (PRMS) was used to simulate changes in surface-water depression storage in the 1,126-km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface-water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface-water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application-ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface-water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface-water depression storage in the calibration procedure resulted in accurate changes in surface-water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface-storage to accurately parameterize surface-water depression storage within the USGS NHM.

  14. Identification of subpopulations of prairie voles differentially susceptible to peer influence to decrease high alcohol intake

    Directory of Open Access Journals (Sweden)

    Allison M.J. Anacker

    2013-07-01

    Full Text Available Peer influences are critical in the decrease of alcohol (ethanol abuse and maintenance of abstinence. We previously developed an animal model of inhibitory peer influences on ethanol drinking using prairie voles and here sought to understand whether this influential behavior was due to specific changes in drinking patterns and to variation in a microsatellite sequence in the regulatory region of the vasopressin receptor 1a gene (avpr1a. Adult prairie voles’ drinking patterns were monitored in a lickometer apparatus that recorded each lick a subject exhibited during continuous access to water and 10% ethanol during periods of isolation, pair housing of high and low drinkers, and subsequent isolation. Analysis of fluid consumption confirmed previous results that high drinkers typically decrease ethanol intake when paired with low drinkers, but that a subset of voles do not decrease. Analysis of bout structure revealed differences in the number of ethanol drinking bouts in the subpopulations of high drinkers when paired with low drinkers. Lickometer drinking patterns analyzed by visual and by cross-correlation analyses demonstrated that pair housing did not increase the rate of subjects drinking in bouts occurring at the same time. The length of the avpr1a microsatellite did not predict susceptibility to peer influence or any other drinking behaviors. In summary, subpopulations of high drinkers were identified by fluid intake and number of drinking bouts, which did or did not lower their ethanol intake when paired with a low drinking peer, and these subpopulations should be explored for testing the efficacy of treatments to decrease ethanol use in groups that are likely to be responsive to different types of therapy.

  15. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies.

    Science.gov (United States)

    Li, Xue; Mupondwa, Edmund

    2014-05-15

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO2 equivalent and 3.06 to 31.01 kg CO2/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from -0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  16. Application of the new keystone-species concept to prairie dogs: How well does it work?

    Science.gov (United States)

    Kotliar, N.B.

    2000-01-01

    It has been suggested that the keystone-species concept should be dropped from ecology and conservation, primarily because the concept is poorly defined. This prompted Power et al. (1996) to refine the definition: keystone species have large effects on community structure or ecosystem function (i.e., high overall importance), and this effect should be large relative to abundance (i.e., high community importance). Using prairie dogs (Cynomys spp.) as an example, I review operational and conceptual difficulties encountered in applying this definition. As applied to prairie dogs, the implicit assumption that overall importance is a linear function of abundance is invalid. In addition, community importance is sensitive to abundance levels, the definition of community, and sampling scale. These problems arise largely from the equation for community importance, as used in conjunction with removal experiments at single abundance levels. I suggest that we shift from the current emphasis on the dualism between keystone and nonkeystone species and instead examine how overall and community importance vary (1) with abundance, (2) across spatial and temporal scales, and (3) under diverse ecological conditions. In addition, I propose that a third criterion be incorporated into the definition: keystone species perform roles not performed by other species or processes. Examination of how these factors vary among populations of keystone species should help identify the factors contributing to, or limiting, keystone-level functions, thereby increasing the usefulness of the keystone-species concept in ecology and conservation. Although the quantitative framework of Power et al. falls short of being fully operational, my conceptual guidelines may improve the usefulness of the keystone-species concept. Careful attention to the factors that limit keystone function will help avoid misplaced emphasis on keystone species at the expense of other species.

  17. Drought-induced recharge promotes long-term storage of porewater salinity beneath a prairie wetland

    Science.gov (United States)

    Levy, Zeno F.; Rosenberry, Donald O.; Moucha, Robert; Mushet, David M.; Goldhaber, Martin B.; LaBaugh, James W.; Fiorentino, Anthony J.; Siegel, Donald I.

    2018-02-01

    Subsurface storage of sulfate salts allows closed-basin wetlands in the semiarid Prairie Pothole Region (PPR) of North America to maintain moderate surface water salinity (total dissolved solids [TDS] from 1 to 10 g L-1), which provides critical habitat for communities of aquatic biota. However, it is unclear how the salinity of wetland ponds will respond to a recent shift in mid-continental climate to wetter conditions. To understand better the mechanisms that control surface-subsurface salinity exchanges during regional dry-wet climate cycles, we made a detailed geoelectrical study of a closed-basin prairie wetland (P1 in the Cottonwood Lake Study Area, North Dakota) that is currently experiencing record wet conditions. We found saline lenses of sulfate-rich porewater (TDS > 10 g L-1) contained in fine-grained wetland sediments 2-4 m beneath the bathymetric low of the wetland and within the currently ponded area along the shoreline of a prior pond stand (c. 1983). During the most recent drought (1988-1993), the wetland switched from a groundwater discharge to recharge function, allowing salts dissolved in surface runoff to move into wetland sediments beneath the bathymetric low of the basin. However, groundwater levels during this time did not decline to the elevation of the saline lenses, suggesting these features formed during more extended paleo-droughts and are stable in the subsurface on at least centennial timescales. We hypothesize a "drought-induced recharge" mechanism that allows wetland ponds to maintain moderate salinity under semiarid climate. Discharge of drought-derived saline groundwater has the potential to increase the salinity of wetland ponds during wet climate.

  18. Inter-annual to multi-decadal variability in prairie water resources over the past millennium

    International Nuclear Information System (INIS)

    Sauchyn, D.

    2008-01-01

    In the Prairie Provinces, declining levels have been recently recorded for various rivers and lakes, and further reductions are projected. These trends reflect human impact in terms of increasing water consumption and possibly anthropogenic climate change. From the coupling of hydrological models and climate change scenarios, researchers have projected lower future summer flows as global warming brings shorter warmer winters and longer and generally drier summers to western Canada. However, the detection and interpretation of trends from gauge records and model outputs are constrained by the relatively short perspective of decades and the uncertainties associated with projecting climate change and its impacts on hydrological regimes. A longer perspective on inter-annual to multi-decadal variability in water resources is available from moisture-sensitive tree-ring chronologies. We have established a dense network of low elevation chronologies spanning the headwaters of the Saskatchewan, Missouri, Churchill and Mackenzie River basins. Standardized tree-ring width for a large sample of trees and sites is a strong regional signal of annual and seasonal hydroclimate, and an especially good proxy of low water levels. Proxy streamflow records, up to 800 years in length, show quasi-periodic variability at inter-annual to multi-decadal scales that correspond to the tempo of sea-surface temperature anomalies. The industrial sponsors of our research, Manitoba Hydro and EPCOR, anticipate the use of our tree-ring reconstructions for informing forecasts of future water supplies and planning adaptation to climate change. Engineers from these companies, and more than 50 other water managers and planners from the Prairie Provinces, attended a workshop in March 2008 to explore potential applications of paleo-hydrological records to water resource management. (author)

  19. Patterns and drivers for wetland connections in the Prairie Pothole Region, United States

    Science.gov (United States)

    Vanderhoof, Melanie; Christensen, Jay R.; Alexander, Laurie C.

    2017-01-01

    Ecosystem function in rivers, lakes and coastal waters depends on the functioning of upstream aquatic ecosystems, necessitating an improved understanding of watershed-scale interactions including variable surface-water flows between wetlands and streams. As surface water in the Prairie Pothole Region expands in wet years, surface-water connections occur between many depressional wetlands and streams. Minimal research has explored the spatial patterns and drivers for the abundance of these connections, despite their potential to inform resource management and regulatory programs including the U.S. Clean Water Act. In this study, wetlands were identified that did not intersect the stream network, but were shown with Landsat images (1990–2011) to become merged with the stream network as surface water expanded. Wetlands were found to spill into or consolidate with other wetlands within both small (2–10 wetlands) and large (>100 wetlands) wetland clusters, eventually intersecting a stream channel, most often via a riparian wetland. These surface-water connections occurred over a wide range of wetland distances from streams (averaging 90–1400 m in different ecoregions). Differences in the spatial abundance of wetlands that show a variable surface-water connection to a stream were best explained by smaller wetland-to-wetland distances, greater wetland abundance, and maximum surface-water extent. This analysis demonstrated that wetland arrangement and surface water expansion are important mechanisms for depressional wetlands to connect to streams and provides a first step to understanding the frequency and abundance of these surface-water connections across the Prairie Pothole Region.

  20. Climate Effects on Plant Range Distributions and Community Structure of Pacific Northwest Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Bridgham, Scott D. [Univ. of Oregon, Eugene, OR (United States); Johnson, Bart [Univ. of Oregon, Eugene, OR (United States)

    2013-09-26

    Pacific Northwest (PNW) prairies are an imperiled ecosystem that contain a large number of plant species with high fidelity to this habitat. The few remaining high-quality PNW prairies harbor a number of sensitive, rare, and endangered plant species that may be further at-risk with climate change. Thus, PNW prairies are an excellent model system to examine how climate change will affect the distribution of native plant species in grassland sites. Our experimental objectives were to determine: (i) how climate change will affect the range distribution of native plant species; (ii) what life history stages are most sensitive to climate change in a group of key indicator native species; (iii) the robustness of current restoration techniques and suites of species to changing climate, and in particular, the relative competitiveness of native species versus exotic invasive species; and (iv) the effects of climate change on carbon and nutrient cycling and soil-microbial-plant feedbacks. We addressed these objectives by experimentally increasing temperature 2.5 to 3.0 ºC above ambient with overhead infrared lamps and increasing wet-season precipitation by 20% above ambient in three upland prairie sites in central-western Washington, central-western Oregon, and southwestern Oregon from fall 2010 through 2012. Additional precipitation was applied within 2 weeks of when it fell so precipitation intensity was increased, particularly during the winter rainy season but with minimal additions during the summer dry season. These three sites also represent a 520-km natural climate gradient of increasing degree of severity of Mediterranean climate from north to south. After removing the extant vegetation, we planted a diverse suite of 12 native species that have their northern range limit someplace within the PNW in each experimental plot. An additional 20 more wide-spread native species were also planted into each plot. We found that recruitment of plant species within their ranges

  1. A comparison of cellulosic fuel yields and separated soil-surface CO2 fluxes in maize and prairie biofuel cropping systems

    Science.gov (United States)

    Nichols, Virginia A.

    It has been suggested that strategic incorporation of perennial vegetation into agricultural landscapes could provide ecosystem services while maintaining agricultural productivity. To evaluate potential use of prairie as a Midwestern cellulosic feedstock, we investigated theoretical cellulosic fuel yields, as well as soil-surface carbon dioxide emissions of prairie-based biofuel systems as compared to maize-based systems on fertile soils in Boone County, IA, USA. Investigated systems were: a maize-soybean rotation grown for grain only, continuous maize grown for grain and stover both with and without a winter rye cover crop, and a 31-species reconstructed prairie grown with and without spring nitrogen fertilization for fall-harvested biomass. From 2009-2013, the highest producing system was N-fertilized prairie, averaging 10.4 Mg ha -1 yr-1 above-ground biomass with average harvest removals of 7.8 Mg ha-1 yr-1. The unfertilized prairie produced 7.4 Mg ha-1 yr-1, averaging harvests of 5.3 Mg ha-1 yr-1. Lowest cellulosic biomass harvests were realized from continuous maize systems, averaging 3.5 Mg ha -1 yr-1 when grown with, and 3.7 Mg ha-1 yr-1 when grown without a winter rye cover crop, respectively. Un-fertilized prairie biomass and maize stover had equivalent dietary conversion ratios at 330 g ethanol kg-1 dry biomass, but N-fertilized prairie was lower at 315. Over four years prairie systems averaged 1287 L cellulosic ethanol ha-1 yr-1 more than maize systems, with fertilization increasing prairie ethanol production by 865 L ha-1 yr-1. Harvested biomass accounted for >90% of ethanol yield variation. A major hurdle in carbon cycling studies is the separation of the soil-surface CO2 flux into its respective components. From 2012-2013 we used a shading method to separate soil-surface CO2 resulting from oxidation of soil organic matter and CO2 derived from live-root activity in three systems: unfertilized prairie, N-fertilized prairie, and continuous maize

  2. Population differences in host immune factors may influence survival of Gunnison's prairie dogs (Cynomys Gunnisoni) during plague outbreaks

    Science.gov (United States)

    Busch, Joseph D.; Van Andel, Roger; Cordova, Jennifer; Colman, Rebecca E.; Keim, Paul; Rocke, Tonie E.; Leid, Jeff G.; Van Pelt, William E.; Wagner, David M.

    2011-01-01

    Over the past 40 yr, epizootics of plague (Yersinia pestis) in northern Arizona have reduced populations of the Gunnison’s prairie dog (Cynomys gunnisoni), with the exception of a large population found in the Aubrey Valley (AV). To examine potential mechanisms accounting for their survival, we collected prairie dog serum samples in 2005–2006 from AV and a neighboring population near Seligman (SE), Arizona. We quantified gene expression at 58 diverse immune proteins using a multiplexed enzyme-linked immunosorbent assay panel. We found a subset of proteins important in coagulation and inflammation (tissue factor [TF], calbindin [Cal], and thrombopoietin [TPO]) and T-cell responses (CD40L and CD40) that were present in AV at levels two to eight times greater than SE. These results suggest that AV and SE animals might differ in their ability to mount an immune response.

  3. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region

    Science.gov (United States)

    Werner, B.A.; Johnson, W. Carter; Guntenspergen, Glenn R.

    2013-01-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.

  4. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region.

    Science.gov (United States)

    Werner, Brett A; Johnson, W Carter; Guntenspergen, Glenn R

    2013-09-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946-1975; 1976-2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.

  5. Patterns of surface burrow plugging in a colony of black-tailed prairie dogs occupied by black-footed ferrets

    Science.gov (United States)

    Eads, David E.; Biggins, Dean E.

    2012-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) can surface-plug openings to a burrow occupied by a black-footed ferret (Mustela nigripes). At a coarse scale, surface plugs are more common in colonies of prairie dogs occupied by ferrets than in colonies without ferrets. However, little is known about spatial and temporal patterns of surface plugging in a colony occupied by ferrets. In a 452-ha colony of black-tailed prairie dogs in South Dakota, we sampled burrow openings for surface plugs and related those data to locations of ferrets observed during spotlight surveys. Of 67,574 burrow openings in the colony between June and September 2007, 3.7% were plugged. In a colony-wide grid of 80 m × 80 m cells, the occurrence of surface plugging (≥1 opening plugged) was greater in cells used by ferrets (93.3% of cells) than in cells not observably used by ferrets (70.6%). Rates of surface plugging (percentages of openings plugged) were significantly higher in cells used by ferrets (median = 3.7%) than in cells without known ferret use (median = 3.2%). Also, numbers of ferret locations in cells correlated positively with numbers of mapped surface plugs in the cells. To investigate surface plugging at finer temporal and spatial scales, we compared rates of surface plugging in 20-m-radius circle-plots centered on ferret locations and in random plots 1–4 days after observing a ferret (Jun–Oct 2007 and 2008). Rates of surface plugging were greater in ferret-plots (median = 12.0%) than in random plots (median = 0%). For prairie dogs and their associates, the implications of surface plugging could be numerous. For instance, ferrets must dig to exit or enter plugged burrows (suggesting energetic costs), and surface plugs might influence microclimates in burrows and consequently influence species that cannot excavate soil (e.g., fleas that transmit the plague bacterium Yersinia pestis).

  6. Assessing the Impact of Climate Variability on Cropland Productivity in the Canadian Prairies Using Time Series MODIS FAPAR

    OpenAIRE

    Taifeng Dong; Jiangui Liu; Jiali Shang; Budong Qian; Ted Huffman; Yinsuo Zhang; Catherine Champagne; Bahram Daneshfar

    2016-01-01

    Cropland productivity is impacted by climate. Knowledge on spatial-temporal patterns of the impacts at the regional scale is extremely important for improving crop management under limiting climatic factors. The aim of this study was to investigate the effects of climate variability on cropland productivity in the Canadian Prairies between 2000 and 2013 based on time series of MODIS (Moderate Resolution Imaging Spectroradiometer) FAPAR (Fraction of Absorbed Photosynthetically Active Radiation...

  7. Stable occupancy by breeding hawks (Buteo spp.) over 25 years on a privately managed bunchgrass prairie in northeastern Oregon, USA

    Science.gov (United States)

    Kennedy, Patricia L.; Bartuszevige, Anne M.; Houle, Marcy; Humphrey, Ann B.; Dugger, Katie M.; Williams, John

    2014-01-01

    Potential for large prairie remnants to provide habitat for grassland-obligate wildlife may be compromised by nonsustainable range-management practices. In 1979–1980, high nesting densities of 3 species of hawks in the genus Buteo—Ferruginous Hawk (Buteo regalis), Red-tailed Hawk (B. jamaicensis), and Swainson's Hawk (B. swainsoni)—were documented on the Zumwalt Prairie and surrounding agricultural areas (34,361 ha) in northeastern Oregon, USA. This area has been managed primarily as livestock summer range since it was homesteaded. Unlike in other prairie remnants, land management on the Zumwalt Prairie was consistent over the past several decades; thus, we predicted that territory occupancy of these 3 species would be stable. We also predicted that territory occupancy would be positively related to local availability of nesting structures within territories. We evaluated these hypotheses using a historical dataset, current survey and habitat data, and occupancy models. In support of our predictions, territory occupancy of all 3 species has not changed over the study period of ∼25 yr, which suggests that local range-management practices are not negatively affecting these taxa. Probability of Ferruginous Hawk occupancy increased with increasing area of aspen, an important nest structure for this species in grasslands. Probability of Swainson's Hawk occupancy increased with increasing area of large shrubs, and probability of Red-tailed Hawk occupancy was weakly associated with area of conifers. In the study area, large shrubs and conifers are commonly used as nesting structures by Swainson's Hawks and Red-tailed Hawks, respectively. Availability of these woody species is changing (increases in conifers and large shrubs, and decline in aspen) throughout the west, and these changes may result in declines in Ferruginous Hawk occupancy and increases in Swainson's Hawk and Red-tailed Hawk occupancy in the future.

  8. Marked disparity in the epidemiology of tuberculosis among Aboriginal peoples on the Canadian prairies: The challenges and opportunities

    Science.gov (United States)

    Long, Richard; Hoeppner, Vernon; Orr, Pamela; Ainslie, Martha; King, Malcolm; Abonyi, Sylvia; Mayan, Maria; Kunimoto, Dennis; Langlois-Klassen, Deanne; Heffernan, Courtney; Lau, Angela; Menzies, Dick

    2013-01-01

    BACKGROUND: While it is established that Aboriginal peoples in the prairie provinces of Canada are disproportionately affected by tuberculosis (TB), little is known about the epidemiology of TB either within or across provincial borders. METHODS: Provincial reporting systems for TB, Statistics Canada censuses and population estimates of Registered Indians provided by Aboriginal Affairs and Northern Development Canada were used to estimate the overall (2004 to 2008) and pulmonary (2007 to 2008) TB rates in the prairie provinces. The place of residence at diagnosis of pulmonary TB cases in 2007 to 2008 was also documented. RESULTS: The age- and sex-adjusted incidence of TB in Registered Indians was 52.6 per 100,000 person-years, 38 times higher than in Canadian-born ‘others’. Incidence rates in Registered Indians were highest in Manitoba and lowest in Alberta. In Alberta and Saskatchewan, on-reserve rates were more than twice that of off-reserve rates. Rates in the Métis and Registered Indians were similar in Saskatchewan (50.0 and 52.2 per 100,000 person-years, respectively). In 2007 to 2008, approximately 90% of Canadian-born pulmonary TB cases in the prairie provinces were Aboriginal. Outside of one metropolitan area (Winnipeg, Manitoba), most Registered Indian and Métis pulmonary TB cases were concentrated in a relatively small number of communities north of the 53rd parallel. Rates of pulmonary TB in 11 of these communities were >300 per 100,000 person-years. In Manitoba, 49% of off-reserve Registered Indian pulmonary cases were linked to high-incidence reserve communities. INTERPRETATION: The epidemiology of TB among Aboriginal peoples on the Canadian prairies is markedly disparate. Pulmonary TB is highly focal, which is both a concern and an opportunity. PMID:23717818

  9. Size and shape information serve as labels in the alarm calls of Gunnison's prairie dogs Cynomys gunnisoni

    Directory of Open Access Journals (Sweden)

    C. N. SLOBODCHIKOFF, William R. BRIGGS, Patricia A DENNIS, Anne-Marie C. HODGE

    2012-10-01

    Full Text Available Some animals have the capacity to produce different alarm calls for terrestrial and aerial predators. However, it is not clear what cognitive processes are involved in generating these calls. One possibility is the position of the predator: Anything on the ground receives a terrestrial predator call, and anything in the air receives an aerial predator call. Another possibility is that animals are able to recognize the physical features of predators and incorporate those into their calls. As a way of elucidating which of these mechanisms plays a primary role in generating the structure of different calls, we performed two field experiments with Gunnison’s prairie dogs. First, we presented the prairie dogs with a circle, a triangle, and a square, each moving across the colony at the same height and speed. Second, we presented the prairie dogs with two squares of differing sizes. DFA statistics showed that 82.6 percent of calls for the circle and 79.2 percent of the calls for the triangle were correctly classified, and 73.3 percent of the calls for the square were classified as either square or circle. Also, 100 percent of the calls for the larger square and 90 percent of the calls for the smaller square were correctly classified. Because both squares and circles are features of terrestrial predators and triangles are features of aerial predators, our results suggest that prairie dogs might have a cognitive mechanism that labels the abstract shape and size of different predators, rather than the position of the predator [Current Zoology 58 (5: 741-748, 2012].

  10. A multi-year comparison of IPCI scores for prairie pothole wetlands: implications of temporal and spatial variation

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.

    2011-01-01

    In the prairie pothole region of North America, development of Indices of Biotic Integrity (IBIs) to detect anthropogenic impacts on wetlands has been hampered by naturally dynamic inter-annual climate fluctuations. Of multiple efforts to develop IBIs for prairie pothole wetlands, only one, the Index of Plant Community Integrity (IPCI), has reported success. We evaluated the IPCI and its ability to distinguish between natural and anthropogenic variation using plant community data collected from 16 wetlands over a 4-year-period. We found that under constant anthropogenic influence, IPCI metric scores and condition ratings varied annually in response to environmental variation driven primarily by natural climate variation. Artificially forcing wetlands that occur along continuous hydrologic gradients into a limited number of discrete classes (e.g., temporary, seasonal, and semi-permanent) further confounded the utility of IPCI metrics. Because IPCI scores vary significantly due to natural climate dynamics as well as human impacts, methodology must be developed that adequately partitions natural and anthropogenically induced variation along continuous hydrologic gradients. Until such methodology is developed, the use of the IPCI to evaluate prairie pothole wetlands creates potential for misdirected corrective or regulatory actions, impairment of natural wetland functional processes, and erosion of public confidence in the wetland sciences.

  11. Validating DNA Polymorphisms Using KASP Assay in Prairie Cordgrass (Spartina pectinata Link Populations in the U.S.

    Directory of Open Access Journals (Sweden)

    Hannah eGraves

    2016-01-01

    Full Text Available Single nucleotide polymorphisms (SNPs are one of the most abundant DNA variants found in plant genomes and are highly efficient when comparing genome and transcriptome sequences. SNP marker analysis can be used to analyze genetic diversity, create genetic maps, and utilize marker-assisted selection breeding in many crop species. In order to utilize these technologies, one must first identify and validate putative SNPs. In this study, 121 putative SNPs, developed from a nuclear transcriptome of prairie cordgrass (Spartina pectinata Link, were analyzed using KASP technology in order to validate the SNPs. Fifty-nine SNPs were validated using a core collection of 38 natural populations and a phylogenetic tree was created with one main clade. Samples from the same population tended to cluster in the same location on the tree. Polymorphisms were identified within 52.6% of the populations, split evenly between the tetraploid and octoploid cytotypes. Twelve selected SNP markers were used to assess the fidelity of tetraploid crosses of prairie cordgrass and their resulting F2 population. These markers were able to distinguish true crosses and selfs. This study provides insight into the genomic structure of prairie cordgrass, but further analysis must be done on other cytotypes to fully understand the structure of this species. This study validates putative SNPs and confirms the potential usefulness of SNP marker technology in future breeding programs of this species.

  12. Evaluation of Yersinia pestis transmission pathways for sylvatic plague in prairie dog populations in the western U.S.

    Science.gov (United States)

    Richgels, Katherine L. D.; Russell, Robin E.; Bron, Gebbiena; Rocke, Tonie E.

    2016-01-01

    Sylvatic plague, caused by the bacterium Yersinia pestis, is periodically responsible for large die-offs in rodent populations that can spillover and cause human mortalities. In the western US, prairie dog populations experience nearly 100% mortality during plague outbreaks, suggesting that multiple transmission pathways combine to amplify plague dynamics. Several alternate pathways in addition to flea vectors have been proposed, such as transmission via direct contact with bodily fluids or inhalation of infectious droplets, consumption of carcasses, and environmental sources of plague bacteria, such as contaminated soil. However, evidence supporting the ability of these proposed alternate pathways to trigger large-scale epizootics remains elusive. Here we present a short review of potential plague transmission pathways and use an ordinary differential equation model to assess the contribution of each pathway to resulting plague dynamics in black-tailed prairie dogs (Cynomys ludovicianus) and their fleas (Oropsylla hirsuta). Using our model, we found little evidence to suggest that soil contamination was capable of producing plague epizootics in prairie dogs. However, in the absence of flea transmission, direct transmission, i.e., contact with bodily fluids or inhalation of infectious droplets, could produce enzootic dynamics, and transmission via contact with or consumption of carcasses could produce epizootics. This suggests that these pathways warrant further investigation.

  13. Final performance report to the Department of Energy by Prairie View A ampersand M University High Energy Physics

    International Nuclear Information System (INIS)

    Judd, D.J.

    1992-01-01

    The High Energy Physics (HEP) group at Prairie View A ampersand M University is a collaboratory with Fermi National Accelerator Laboratory (Fermilab), and the universities listed below. The purpose of this collaboration is to contribute to the understanding of heavy quark hadroproduction. Our efforts began in the early 1980's at Fermilab with the study of the charmonium states, J/ψ and χ, (DE-FG-86ER-40297) and presently with the continued studies of the charmonium system and direct photon production (Fermilab experiment E705) and new studies on bottom production (Fermilab experiment E771) in the High Intensity Laboratory (Proton-West Area) of Fermilab. The Prairie View group will, as a part of their task, be directly responsible for a major part of the PWC system upgrade by developing the electronics for the readouts of the PWC pad chambers. Six in all, these chambers, are a part of new multilevel triggering scheme and represents a departure from the triggering methodology of the previous trigger processors in earlier experiments. The Prairie View group is also involved with the Bottom Collider Detector (BCD) Collaboration which is proposing to study bottom production at the Fermilab Collider and at the Superconducting Super Collider (SSC)

  14. Determining Hydroperiod for Boreal and Prairie Pothole Wetlands using SAR, Optical and LiDAR Remote Sensing Data Fusion

    Science.gov (United States)

    Montgomery, J. S.; Hopkinson, C.; Brisco, B.; Patterson, S.; Chasmer, L.; Mahoney, C.

    2017-12-01

    Cultivation, irrigation networks, and infrastructure have all greatly impacted the ecology and hydrology of the Prairie Pothole and Boreal regions of western Canada. Due to sub-humid climate and high potential evaporation, many wetlands in these natural regions are seldom continuously occupied by water, and are often confined to local depressions. In the Boreal region, wetlands may be difficult to monitor due to their remote location, whereas prairie wetlands have highly varying degrees of surface water and soil saturation throughout the year. This study examines how high-resolution Lidar, Synthetic Aperture Radar (SAR), and optical data can be utilized in spatial-temporal studies to classify wetlands based on water extent, riparian vegetation, and topographic characteristics. An intensity (dB) threshold routine was used to extract open surface water extent to determine hydroperiod. Digital Elevation Models (DEM) are used with a topographic position index to infer local depressions, while Digital Surface Models (DSMs) are used to characterise vegetation structural characteristics within and proximal to wetlands. The proposed framework provides an index of wetland permanence and wetland class, where permanence varies seasonally and annually. Boreal wetland hydroperiod is less variable than that found in prairie pothole wetlands, most notably the semi-permanent class, varying by only 2%, compared to >50% in prairie pothole wetlands. For years studied, prairie pothole wetlands reached maximum water extent following major rainfall events. Seasonal and semi-permanent wetlands were found to have greater change in surface water between years than temporary wetlands (75.3% and 59.1% from average respectively). The lowest frequency of water pixel inundation for seasonal and semi-permanent wetlands was found to be in the year with the most precipitation during the growing season (2013, 384mm), compared to 2014 (289mm), and 2015 (310mm). A combination of statistical analyses

  15. Summary of surface-water-quality data collected for the Northern Rockies Intermontane Basins National Water-Quality Assessment Program in the Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, water years 1999-2001

    Science.gov (United States)

    Beckwith, Michael A.

    2003-01-01

    Water-quality samples were collected at 10 sites in the Clark Fork-Pend Oreille and Spokane River Basins in water years 1999 – 2001 as part of the Northern Rockies Intermontane Basins (NROK) National Water-Quality Assessment (NAWQA) Program. Sampling sites were located in varied environments ranging from small streams and rivers in forested, mountainous headwater areas to large rivers draining diverse landscapes. Two sampling sites were located immediately downstream from the large lakes; five sites were located downstream from large-scale historical mining and oreprocessing areas, which are now the two largest “Superfund” (environmental remediation) sites in the Nation. Samples were collected during a wide range of streamflow conditions, more frequently during increasing and high streamflow and less frequently during receding and base-flow conditions. Sample analyses emphasized major ions, nutrients, and selected trace elements. Streamflow during the study ranged from more than 130 percent of the long-term average in 1999 at some sites to 40 percent of the long-term average in 2001. River and stream water in the study area exhibited small values for specific conductance, hardness, alkalinity, and dissolved solids. Dissolved oxygen concentrations in almost all samples were near saturation. Median total nitrogen and total phosphorus concentrations in samples from most sites were smaller than median concentrations reported for many national programs and other NAWQA Program study areas. The only exceptions were two sites downstream from large wastewater-treatment facilities, where median concentrations of total nitrogen exceeded the national median. Maximum concentrations of total phosphorus in samples from six sites exceeded the 0.1 milligram per liter threshold recommended for limiting nuisance aquatic growth. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc were largest in samples from sites downstream from historical mining and ore

  16. Quantifying Hydroperiod, Fire and Nutrient Effects on the Composition of Plant Communities in Marl Prairie of the Everglades: a Joint Probability Method Based Model

    Science.gov (United States)

    Zhai, L.

    2017-12-01

    Plant community can be simultaneously affected by human activities and climate changes, and quantifying and predicting this combined effect on plant community by appropriate model framework which is validated by field data is complex, but very useful to conservation management. Plant communities in the Everglades provide an unique set of conditions to develop and validate this model framework, because they are both experiencing intensive effects of human activities (such as changing hydroperiod by drainage and restoration projects, nutrients from upstream agriculture, prescribed fire, etc.) and climate changes (such as warming, changing precipitation patter, sea level rise, etc.). More importantly, previous research attention focuses on plant communities in slough ecosystem (including ridge, slough and their tree islands), very few studies consider the marl prairie ecosystem. Comparing with slough ecosystem featured by remaining consistently flooded almost year-round, marl prairie has relatively shorter hydroperiod (just in wet-season of one year). Therefore, plant communities of marl prairie may receive more impacts from hydroperiod change. In addition to hydroperiod, fire and nutrients also affect the plant communities in the marl prairie. Therefore, to quantify the combined effects of water level, fire, and nutrients on the composition of the plant communities, we are developing a joint probability method based vegetation dynamic model. Further, the model is being validated by field data about changes of vegetation assemblage along environmental gradients in the marl prairie. Our poster showed preliminary data from our current project.

  17. Classifying the hydrologic function of prairie potholes with remote sensing and GIS

    Science.gov (United States)

    Rover, Jennifer R.; Wright, C.K.; Euliss, Ned H.; Mushet, David M.; Wylie, Bruce K.

    2011-01-01

    A sequence of Landsat TM/ETM+ scenes capturing the substantial surface water variations exhibited by prairie pothole wetlands over a drought to deluge period were analyzed in an attempt to determine the general hydrologic function of individual wetlands (recharge, flow-through, and discharge). Multipixel objects (water bodies) were clustered according to their temporal changes in water extents. We found that wetlands receiving groundwater discharge responded differently over the time period than wetlands that did not. Also, wetlands located within topographically closed discharge basins could be distinguished from discharge basins with overland outlets. Field verification data showed that discharge wetlands with closed basins were most distinct and identifiable with reasonable accuracies (user’s accuracy = 97%, producer’s accuracy = 71%). The classification of other hydrologic function types had lower accuracies reducing the overall accuracy for the four hydrologic function classes to 51%. A simplified classification approach identifying only two hydrologic function classes was 82%. Although this technique has limited success for detecting small wetlands, Landsat-derived multipixel-object clustering can reliably differentiate wetlands receiving groundwater discharge and provides a new approach to quantify wetland dynamics in landscape scale investigations and models.

  18. Hydrogeochemistry of prairie pothole region wetlands: Role of long-term critical zone processes

    Science.gov (United States)

    Goldhaber, Martin B.; Mills, Christopher T.; Morrison, Jean M.; Stricker, Craig A.; Mushet, David M.; LaBaugh, James W.

    2014-01-01

    This study addresses the geologic and hydrogeochemical processes operating at a range of scales within the prairie pothole region (PPR). The PPR is a 750,000 km2portion of north central North America that hosts millions of small wetlands known to be critical habitat for waterfowl and other wildlife. At a local scale, we characterized the geochemical evolution of the 92-ha Cottonwood Lake study area (CWLSA), located in North Dakota, USA. Critical zone processes are the long-term determinant of wetland water and groundwater geochemistry via the interaction of oxygenated groundwater with pyrite in the underlying glacial till. Pyrite oxidation produced a brown, iron oxide-bearing surface layer locally over 13 m thick and an estimated minimum of 1.3 × 1010 g sulfate (SO42 −) at CWLSA. We show that the majority of this SO42− now resides in solid-phase gypsum (CaSO4•2H2O) and gypsum-saturated groundwater.

  19. Aquatic-macroinvertebrate communities of Prairie-Pothole wetlands and lakes under a changed climate

    Science.gov (United States)

    McLean, Kyle I.; Mushet, David M.; Renton, David A.; Stockwell, Craig A.

    2016-01-01

    Understanding how aquatic-macroinvertebrate communities respond to changes in climate is important for biodiversity conservation in the Prairie Pothole Region and other wetland-rich landscapes. We sampled macroinvertebrate communities of 162 wetlands and lakes previously sampled from 1966 to 1976, a much drier period compared to our 2012–2013 sampling timeframe. To identify possible influences of a changed climate and predation pressures on macroinvertebrates, we compared two predictors of aquatic-macroinvertebrate communities: ponded-water dissolved-ion concentration and vertebrate-predator presence/abundance. Further, we make inferences of how macroinvertebrate communities were structured during the drier period when the range of dissolved-ion concentrations was much greater and fish occurrence in aquatic habitats was rare. We found that aquatic-macroinvertebrate community structure was influenced by dissolved-ion concentrations through a complex combination of direct and indirect relationships. Ion concentrations also influenced predator occurrence and abundance, which indirectly affected macroinvertebrate communities. It is important to consider both abiotic and biotic gradients when predicting how invertebrate communities will respond to climate change. Generally, in the wetlands and lakes we studied, freshening of ponded water resulted in more homogenous communities than occurred during a much drier period when salinity range among sites was greater.

  20. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region.

    Science.gov (United States)

    Ando, Amy W; Mallory, Mindy L

    2012-04-24

    Climate change is likely to alter the spatial distributions of species and habitat types but the nature of such change is uncertain. Thus, climate change makes it difficult to implement standard conservation planning paradigms. Previous work has suggested some approaches to cope with such uncertainty but has not harnessed all of the benefits of risk diversification. We adapt Modern Portfolio Theory (MPT) to optimal spatial targeting of conservation activity, using wetland habitat conservation in the Prairie Pothole Region (PPR) as an example. This approach finds the allocations of conservation activity among subregions of the planning area that maximize the expected conservation returns for a given level of uncertainty or minimize uncertainty for a given expected level of returns. We find that using MPT instead of simple diversification in the PPR can achieve a value of the conservation objective per dollar spent that is 15% higher for the same level of risk. MPT-based portfolios can also have 21% less uncertainty over benefits or 6% greater expected benefits than the current portfolio of PPR conservation. Total benefits from conservation investment are higher if returns are defined in terms of benefit-cost ratios rather than benefits alone. MPT-guided diversification can work to reduce the climate-change-induced uncertainty of future ecosystem-service benefits from many land policy and investment initiatives, especially when outcomes are negatively correlated between subregions of a planning area.

  1. Do interactions of land use and climate affect productivity of waterbirds and prairie-pothole wetlands?

    Science.gov (United States)

    Anteau, Michael J.

    2012-01-01

    Availability of aquatic invertebrates on migration and breeding areas influences recruitment of ducks and shorebirds. In wetlands of Prairie Pothole Region (PPR), aquatic invertebrate production primarily is driven by interannual fluctuations of water levels in response to wet-dry cycles in climate. However, this understanding comes from studying basins that are minimally impacted by agricultural landscape modifications. In the past 100–150 years, a large proportion of wetlands within the PPR have been altered; often water was drained from smaller to larger wetlands at lower elevations creating consolidated, interconnected basins. Here I present a case study and I hypothesize that large basins receiving inflow from consolidation drainage have reduced water-level fluctuations in response to climate cycles than those in undrained landscapes, resulting in relatively stable wetlands that have lower densities of invertebrate forage for ducks and shorebirds and also less foraging habitat, especially for shorebirds. Furthermore, stable water-levels and interconnected basins may favor introduced or invasive species (e.g., cattail [Typha spp.] or fish) because native communities "evolved" in a dynamic and isolated system. Accordingly, understanding interactions between water-level fluctuations and landscape modifications is a prerequisite step to modeling effects of climate change on wetland hydrology and productivity and concomitant recruitment of waterbirds.

  2. Voluntary locomotor activity mitigates oxidative damage associated with isolation stress in the prairie vole (Microtus ochrogaster).

    Science.gov (United States)

    Fletcher, Kelsey L; Whitley, Brittany N; Treidel, Lisa A; Thompson, David; Williams, Annie; Noguera, Jose C; Stevenson, Jennie R; Haussmann, Mark F

    2015-07-01

    Organismal performance directly depends on an individual's ability to cope with a wide array of physiological challenges. For social animals, social isolation is a stressor that has been shown to increase oxidative stress. Another physiological challenge, routine locomotor activity, has been found to decrease oxidative stress levels. Because we currently do not have a good understanding of how diverse physiological systems like stress and locomotion interact to affect oxidative balance, we studied this interaction in the prairie vole (Microtus ochrogaster). Voles were either pair housed or isolated and within the isolation group, voles either had access to a moving wheel or a stationary wheel. We found that chronic periodic isolation caused increased levels of oxidative stress. However, within the vole group that was able to run voluntarily, longer durations of locomotor activity were associated with less oxidative stress. Our work suggests that individuals who demonstrate increased locomotor activity may be better able to cope with the social stressor of isolation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Comparing the hydrology of grassed and cultivated catchments in the semi-arid Canadian prairies

    Science.gov (United States)

    van der Kamp, G.; Hayashi, M.; Gallén, D.

    2003-02-01

    At the St Denis National Wildlife Area in the prairie region of southern Saskatchewan, Canada, water levels in wetlands have been monitored since 1968. In 1980 and 1983 a total of about one-third of the 4 km2 area was converted from cultivation to an undisturbed cover of brome grass. A few years after this conversion all the wetlands within the area of grass dried out; they have remained dry since, whereas wetlands in adjacent cultivated lands have held water as before. Field measurements show that introduction of undisturbed grass reduces water input to the wetlands mainly through a combination of efficient snow trapping and enhanced infiltration into frozen soil. In winter, the tall brome grass traps most of the snowfall, whereas in the cultivated fields more wind transport of snow occurs, especially for short stubble and fallow fields. Single-ring infiltration tests were conducted during snowmelt, while the soil was still frozen, and again in summer. The infiltrability of the frozen soil in the grassland is high enough to absorb most or all of the snowmelt, whereas in the cultivated fields the infiltration into the frozen soil is limited and significant runoff occurs. In summer, the infiltrability increases for the cultivated fields, but the grassland retains a much higher infiltrability than the cultivated land. The development of enhanced infiltrability takes several years after the conversion from cultivation to grass, and is likely due to the gradual development of macropores, such as root holes, desiccation cracks, and animal burrows.

  4. Indicators of wetland condition for the prairie pothole region of the United States.

    Science.gov (United States)

    Guntenspergen, G R; Peterson, S A; Leibowitz, S G; Cowardin, L M

    2002-09-01

    We describe a study designed to evaluate the performance of wetland condition indicators of the Prairie Pothole Region (PPR) of the north central United States. Basin and landscape scale indicators were tested in 1992 and 1993 to determine their ability to discriminate between the influences of grassland dominated and cropland dominated landscapes in the PPR. Paired plots were selected from each of the major regions of the PPR. Among the landscape scale indicators tested, those most capable of distinguishing between the two landscapes were: 1) frequency of drained wetland basins. 2) total length of drainage ditch per plot, 3) amount of exposed soil in the upland subject to erosion, 4) indices of change in area of wetland covered by water, and 5) number of breeding duck pairs. Basin scale indicators including soil phosphorus concentrations and invertebrate taxa richness showed some promise: however, plant species richness was the only statistically significant basin scale indicator distinguishing grassland dominated from cropland dominated landscapes. Although our study found a number of promising candidate indicators, one of our conclusions is that basin scale indicators present a number of implementation problems. including: skill level requirements, site access denials, and recession of site access by landowners. Alternatively, we suggest that the use of landscape indicators based on remote sensing can be an effective means of assessing wetland integrity.

  5. Variable effects of dipteran parasitoids and management treatment on grasshopper fecundity in a tallgrass prairie.

    Science.gov (United States)

    Laws, A N; Joern, A

    2012-04-01

    Grasshoppers host a number of parasitoids, but little is known about their impact on grasshopper life history attributes or how those impacts may vary with land use. Here, we report on a three-year survey of nine grasshopper species in a tallgrass prairie managed with fire and bison grazing treatments. We measured parasitoid prevalence and the impact of parasitoid infection on grasshopper fecundity to determine if grasshopper-parasitoid interactions varied with management treatment. Adult female grasshoppers were collected every three weeks from eight watersheds managed with different prescribed burning and grazing treatments. Grasshopper fecundity with and without parasitoids was estimated through dissections of reproductive tracts. Dipteran parasitoids from two families (Nemestrinidae and Tachinidae) were observed infecting grasshoppers. We found significant effects of grazing treatment, but not burn interval, on grasshopper-parasitoid interactions. Parasitoids were three times more abundant in watersheds with bison grazing than in ungrazed watersheds, and the relative abundance of nemestrinid and tachinid flies varied with grazing treatment. Parasitoid prevalence varied among grasshopper species from grasshopper fecundity, with stronger effects on current reproduction than on past reproduction. Furthermore, current fecundity in parasitized grasshoppers was lower in grazed watersheds compared to ungrazed watersheds. Nemestrinid parasitoids generally had stronger impacts on grasshopper fecundity than tachinid parasitoids, the effects of which were more variable.

  6. Density mediates grasshopper performance in response to temperature manipulation and spider predation in tallgrass prairie.

    Science.gov (United States)

    Laws, A N; Joern, A

    2017-04-01

    Species interactions are often context-dependent, where outcomes require an understanding of influences among multiple biotic and abiotic factors. However, it remains unclear how abiotic factors such as temperature combine with important biotic factors such as density-dependent food limitation and predation to influence species interactions. Using a native grassland - grasshopper - wolf spider model food chain in tallgrass prairie, we conducted a manipulative field experiment to examine how predator-prey interactions respond to manipulations of temperature, grasshopper density, and food chain length. We find that grasshopper performance responses to temperature and predator treatments were density dependent. At high densities, grasshopper survival decreased with increased temperature when no spiders were present. When spiders were present, grasshopper survival was reduced, and this effect was strongest in the cooled treatment. In contrast, grasshopper survival did not vary significantly with spider presence or among temperature treatments at low grasshopper densities. Our results indicate that context-dependent species interactions are common and highlight the importance of understanding how and when key biotic and abiotic factors combine to influence species interactions.

  7. Tier 2 guidelines and remediation of Tebuthiuron on a native prairie site

    Energy Technology Data Exchange (ETDEWEB)

    Bessie, K.; Harckham, N.; Dance, T. [EBA Engineering Consultants Ltd., Calgary, AB (Canada); Burk, A. [EnCana Corp., Calgary, AB (Canada); Stephenson, G. [Stantec Consulting, Guelph, ON (Canada); Corbet, B. [Access Analytical Laboratories Inc., Calgary, AB (Canada)

    2009-10-01

    Tebuthiuron is a sterilant used to control vegetation at upstream and midstream petroleum sites. This article discussed the remediation processes used to reclaim a native prairie site contaminated with tebuthiuron. The site was located within a dry mixed grass natural area. A literature review was conducted to establish soil eco-contact guidelines specific to tebuthiuron. A site-specific ecotoxicity assessment was then conducted using a liquid chromatograph to detect tebuthiuron limits in the contaminated soils. A soil sampling technique was used to delineate the affected areas at the site. Site soils were spiked with various concentrations of tebuthiuron ranging from 0.00003 mg/kg to 3000 mg/kg. Test species included a Folsomia candida, an earthworm, and 4 plant species. The study showed that the invertebrate species were less sensitive to tebuthiuron than the plant species. A groundwater assessment showed that tebuthiuron levels exceeded Tier 1 groundwater remediation guidelines. A multilayer hydro-geological model showed that remediation guidelines were orders of magnitude greater than Tier 1 groundwater remediation. A thermal desorption technique was used to remediate the site. 7 refs., 8 figs.

  8. Cryptic sexual dimorphism in spatial memory and hippocampal oxytocin receptors in prairie voles (Microtus ochrogaster).

    Science.gov (United States)

    Rice, Marissa A; Hobbs, Lauren E; Wallace, Kelly J; Ophir, Alexander G

    2017-09-01

    Sex differences are well documented and are conventionally associated with intense sex-specific selection. For example, spatial memory is frequently better in males, presumably due to males' tendency to navigate large spaces to find mates. Alternatively, monogamy (in which sex-specific selection is relatively relaxed) should diminish or eliminate differences in spatial ability and the mechanisms associated with this behavior. Nevertheless, phenotypic differences between monogamous males and females persist, sometimes cryptically. We hypothesize that sex-specific cognitive demands are present in monogamous species that will influence neural and behavioral phenotypes. The effects of these demands should be observable in spatial learning performance and neural structures associated with spatial learning and memory. We analyzed spatial memory performance, hippocampal volume and cell density, and hippocampal oxytocin receptor (OTR) expression in the socially monogamous prairie vole. Compared to females, males performed better in a spatial memory and spatial learning test. Although we found no sex difference in hippocampal volume or cell density, male OTR density was significantly lower than females, suggesting that performance may be regulated by sub-cellular mechanisms within the hippocampus that are less obvious than classic neuroanatomical features. Our results suggest an expanded role for oxytocin beyond facilitating social interactions, which may function in part to integrate social and spatial information. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Fecal microbiota of lambs fed purple prairie clover (Dalea purpurea Vent.) and alfalfa (Medicago sativa).

    Science.gov (United States)

    Huang, Qianqian; Holman, Devin B; Alexander, Trevor; Hu, Tianming; Jin, Long; Xu, Zhongjun; McAllister, Tim A; Acharya, Surya; Zhao, Guoqi; Wang, Yuxi

    2018-01-01

    The present study assessed the effect of purple prairie clover (PPC) and PPC condensed tannins (CT) on the fecal microbiota of lambs using high-throughput 16S rRNA gene pyrosequencing. A total of 18 individual lambs were randomly divided into three groups and fed either green chop alfalfa (Alf), a 40:60 (DM basis; Mix) mixture of Alf and PPC, or Mix supplemented with polyethylene glycol (Mix-P) for 18 days. Fecal samples were collected on days 13 through 18 using digital rectal retrieval. The DNA of fecal samples was extracted and the microbial 16S rRNA gene amplicons were sequenced using 454 pyrosequencing. Regardless of diet, the bacterial community was dominated by Firmicutes and Bacteroidetes with many sequences unclassified at the genus level. Forage type and CT had no effect on the fecal microbial composition at the phylum level or on α-diversity. Compared to the Alf diet, the Mix diet reduced the relative abundance of Akkermansia (P = 0.03) and Asteroleplasma (P = 0.05). Fecal microbial populations in Alf and Mix-P clustered separately from each other when assessed using unweighted UniFrac (P < 0.05). These results indicate that PPC CT up to 36 g/kg DM in the diet had no major effect on fecal microbial flora at the phyla level and exerted only minor effects on the genera composition of fecal microbiota in lambs.

  10. Abundance and density of lesser prairie-chickens and leks in Texas

    Science.gov (United States)

    Timmer, Jennifer M.; Butler, M.J.; Ballard, Warren; Boal, Clint W.; Whitlaw, Heather A.

    2013-01-01

    Lesser prairie-chickens (LEPCs; Tympanuchus pallidicinctus) have experienced population declines due to both direct and indirect habitat loss, including conversion of native rangeland to cropland and disturbance from energy development. Our objectives were to 1) determine the current density of LEPC leks and LEPCs within the Texas (USA) occupied range, including areas with high potential for wind-energy development; and 2) find new leks. To estimate lek and LEPC density, we employed a line-transect-based aerial survey method using a Robinson 22 helicopter to count leks. We surveyed 26,810.9 km of transect in the spring of 2010 and 2011 and we detected 96 leks. We estimated a density of 2.0 leks/100 km(2) (90% CI = 1.4-2.7 leks/100 km(2)) and 12.3 LEPCs/100 km(2) (90% CI = 8.5-17.9 LEPCs/100 km(2)) and an abundance of 293.6 leks (90% CI = 213.9-403.0 leks) and 1,822.4 LEPCs (90% CI = 1,253.7-2,649.1 LEPCs) for our sampling frame. Our best model indicated that lek size and lek type (AIC(c) wt = 0.235) influenced lek detectability. Lek detectability was greater for larger leks and natural leks versus man-made leks. Our statewide survey efforts provide wildlife managers and biologists with population estimates, new lek locations, and areas to target for monitoring and conservation.

  11. Prioritizing bird conservation actions in the Prairie Hardwood transition of the Midwestern United States

    Science.gov (United States)

    Thogmartin, Wayne E.; Crimmins, Shawn M.; Pearce, Jennie

    2014-01-01

    Large-scale planning for the conservation of species is often hindered by a poor understanding of factors limiting populations. In regions with declining wildlife populations, it is critical that objective metrics of conservation success are developed to ensure that conservation actions achieve desired results. Using spatially explicit estimates of bird abundance, we evaluated several management alternatives for conserving bird populations in the Prairie Hardwood Transition of the United States. We designed landscapes conserving species at 50% of their current predicted abundance as well as landscapes attempting to achieve species population targets (which often required the doubling of current abundance). Conserving species at reduced (half of current) abundance led to few conservation conflicts. However, because of extensive modification of the landscape to suit human use, strategies for achieving regional population targets for forest bird species would be difficult under even ideal circumstances, and even more so if maintenance of grassland bird populations is also desired. Our results indicated that large-scale restoration of agricultural lands to native grassland and forest habitats may be the most productive conservation action for increasing bird population sizes but the level of landscape transition required to approach target bird population sizes may be societally unacceptable.

  12. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region

    Science.gov (United States)

    Ando, Amy W.; Mallory, Mindy L.

    2012-01-01

    Climate change is likely to alter the spatial distributions of species and habitat types but the nature of such change is uncertain. Thus, climate change makes it difficult to implement standard conservation planning paradigms. Previous work has suggested some approaches to cope with such uncertainty but has not harnessed all of the benefits of risk diversification. We adapt Modern Portfolio Theory (MPT) to optimal spatial targeting of conservation activity, using wetland habitat conservation in the Prairie Pothole Region (PPR) as an example. This approach finds the allocations of conservation activity among subregions of the planning area that maximize the expected conservation returns for a given level of uncertainty or minimize uncertainty for a given expected level of returns. We find that using MPT instead of simple diversification in the PPR can achieve a value of the conservation objective per dollar spent that is 15% higher for the same level of risk. MPT-based portfolios can also have 21% less uncertainty over benefits or 6% greater expected benefits than the current portfolio of PPR conservation. Total benefits from conservation investment are higher if returns are defined in terms of benefit–cost ratios rather than benefits alone. MPT-guided diversification can work to reduce the climate-change–induced uncertainty of future ecosystem-service benefits from many land policy and investment initiatives, especially when outcomes are negatively correlated between subregions of a planning area. PMID:22451914

  13. Effects of herbivory on the reproductive effort of 4 prairie perennials

    Directory of Open Access Journals (Sweden)

    Bradley Kate L

    2002-02-01

    Full Text Available Abstract Background Herbivory can affect every aspect of a plant's life. Damaged individuals may show decreased survivorship and reproductive output. Additionally, specific plant species (legumes and tissues (flowers are often selectively targeted by herbivores, like deer. These types of herbivory influence a plant's growth and abundance. The objective of this study was to identify the effects of leaf and meristem removal (simulated herbivory within an exclosure on fruit and flower production in four species (Rhus glabra, Rosa arkansana, Lathyrus venosus, and Phlox pilosa which are known targets of deer herbivory. Results Lathyrus never flowered or went to seed, so we were unable to detect any treatment effects. Leaf removal did not affect flower number in the other three species. However, Phlox, Rosa, and Rhus all showed significant negative correlations between seed mass and leaf removal. Meristem removal had a more negative effect than leaf removal on flower number in Phlox and on both flower number and seed mass in Rosa. Conclusions Meristem removal caused a greater response than defoliation alone in both Phlox and Rosa, which suggests that meristem loss has a greater effect on reproduction. The combination of leaf and meristem removal as well as recruitment limitation by deer, which selectively browse for these species, is likely to be one factor contributing to their low abundance in prairies.

  14. Technoeconomic analysis of biojet fuel production from camelina at commercial scale: Case of Canadian Prairies.

    Science.gov (United States)

    Li, Xue; Mupondwa, Edmund; Tabil, Lope

    2018-02-01

    This study undertakes technoeconomic analysis of commercial production of hydro-processed renewable jet (HRJ) fuel from camelina oil in the Canadian Prairies. An engineering economic model designed in SuperPro Designer® investigated capital investment, scale, and profitability of producing HRJ and co-products (biodiesel, naphtha, LPG, and propane) based on biorefinery plant sizes of 112.5-675 million L annum -1 . Under base case scenario, the minimum selling price (MSP) of HRJ was $1.06 L -1 for a biorefinery plant with size of 225 million L. However, it could range from $0.40 to $1.71 L -1 given variations in plant capacity, feedstock cost, and co-product credits. MSP is highly sensitive to camelina feedstock cost and co-product credits, with little sensitivity to capital cost, discount rate, plant capacity, and hydrogen cost. Marginal and average cost curves suggest the region could support an HRJ plant capacity of up to 675 million L annum -1 (capital investment of $167 million). Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. A model for backscattering characteristics of tall prairie grass canopies at microwave frequencies

    International Nuclear Information System (INIS)

    Bakhtiari, S.; Zoughi, R.

    1991-01-01

    We have developed a discrete microwave scattering model, describing the radar backscattering coefficient from two treatments (burned and unburned) of tall prairie grass canopies at VV (electric field vector of the transmitted and received signals are vertically oriented) and HH (electric field vector of the transmitted and received signals and horizontally oriented) polarizations, based on the physical, biophysical, and geometrical characteristics of such canopies. Grass blades are modeled as thin and finite dielectric ellipsoids with arbitrary orientations. Scattering by an individual grass blade is formulated using a generalization of the Rayleigh—Gans approximation with a quasistatic solution for the expansion of the interior field. By associating, with each grass blade, various appropriate distribution functions, the relative orientation, location, height, cross section, and permittivity of each grass blade is taken into account. This makes for a more realistic overall description of the canopy. Kirchhoff's surface scattering is used to model the backscatter from the soil surface. An incoherent summation of the effect of grass blades and soil surface is adopted to obtain the total canopy backscattering coefficient, taking into account the attenuation experienced by the signal as it travels through the canopy. The results of this model are given for 1.5, 5, and 10 GHz (L-, C-, and X-band). Although for the shorter wavelengths (X-band) the Rayleigh—Gans criteria is not totally satisfied, nevertheless, the limited available measured X-band data compare relatively well with the results of this model both quantitatively and qualitatively. (author)

  16. Evaluation of Seasonality in Shallow Groundwater Dynamics and Storage in an Urban Prairie Nature Preserve Using a High-Frequency Sensing Network

    Science.gov (United States)

    Rivera, V. A.; Hernandez-Gonzalez, L. M.; Phillips, C. B.; Nair, A.; Negri, M. C.; Gnaedinger, K. J.; Miller, W. M.; Packman, A. I.

    2017-12-01

    Changing regional climate applies stresses to urban areas in the form of altered weather patterns, requiring new strategies for stormwater runoff management and flood mitigation. At the same time, the proportion of people residing in urban areas is increasing and cities are turning to greenspace as a tool for managing runoff. Gensburg Markham Prairie (GMP), located in Markham, Illinois south of Chicago, is an urban prairie nature preserve and a U.S. National Natural Landmark. Owned by Northeastern Illinois University and managed by the Nature Conservancy, GMP receives runoff from surrounding urban areas and provides valuable stormwater storage, while also hosting high biodiversity and providing critical habitat for sensitive and endemic. A successful management strategy for GMP should preserve both of these valuable ecosystem services. To understand GMP's role within the urban environment, we installed a suite of instruments in 2016 and 2017 to measure surface and groundwater levels, rainfall, soil moisture, and electrical conductivity throughout the prairie. This monitoring network includes 40 sensors collecting high frequency data (every 30 minutes). We are also collecting monthly distributed surface and groundwater samples to quantify a range of anions and cations that signal potentially detrimental anthropogenic impacts on the prairie. In addition, we are using historical and ongoing plant distribution surveys to explore the interactions between spatial patterns in vegetation and water dynamics in the prairie. The high measurement frequency and large diversity of sensor types supports holistic investigation of the response of the prairie to diverse events, including summer thunderstorms, winter road salt runoff, and spring snowmelt. The 18 months of data collected to date reveals clear patterns in response to weather events with influence from soil type and spatial variables. We are using time-series analysis with MODFLOW modelling to explore surface

  17. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies.

    Science.gov (United States)

    Wernerehl, Robert W; Givnish, Thomas J

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis' continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward "drier" sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500-1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward "wetter" sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This study is the

  18. Effects of sex and reproductive experience on the number of orexin A-immunoreactive cells in the prairie vole brain.

    Science.gov (United States)

    Donlin, Michael; Cavanaugh, Breyanna L; Spagnuolo, Olivia S; Yan, Lily; Lonstein, Joseph S

    2014-07-01

    Large populations of cells synthesizing the neuropeptide orexin (OX) exist in the caudal hypothalamus of all species examined and are implicated in physiological and behavioral processes including arousal, stress, anxiety and depression, reproduction, and goal-directed behaviors. Hypothalamic OX expression is sexually dimorphic in different directions in laboratory rats (F>M) and mice (M>F), suggesting different roles in male and female physiology and behavior that are species-specific. We here examined if the number of hypothalamic cells immunoreactive for orexin A (OXA) differs between male and female prairie voles (Microtus ochrogaster), a socially monogamous species that pairbonds after mating and in which both sexes care for offspring, and if reproductive experience influences their number of OXA-immunoreactive (OXA-ir) cells. It was found that the total number of OXA-ir cells did not differ between the sexes, but females had more OXA-ir cells than males in anterior levels of the caudal hypothalamus, while males had more OXA-ir cells posteriorly. Sexually experienced females sacrificed 12 days after the birth of their first litter, or one day after birth of a second litter, had more OXA-ir cells in anterior levels but not posterior levels of the caudal hypothalamus compared to females housed with a brother (incest avoidance prevents sibling mating). Male prairie voles showed no effect of reproductive experience but showed an unexpected effect of cohabitation duration regardless of mating. The sex difference in the distribution of OXA-ir cells, and their increased number in anterior levels of the caudal hypothalamus of reproductively experienced female prairie voles, may reflect a sex-specific mechanism involved in pairbonding, parenting, or lactation in this species. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America

    International Nuclear Information System (INIS)

    Hoggarth, Cameron G.J.; Hall, Britt D.; Mitchell, Carl P.J.

    2015-01-01

    Using enriched stable 201 Hg injections into intact sediment cores, we provide the first reported Hg methylation potential rate constants (k m ) in prairie wetland ponds (0.016–0.17 d −1 ). Our k m values were similar to other freshwater wetlands and did not differ in ponds categorized with high compared to low surface water concentrations of sulphate. Sites with high sulphate had higher proportions of methylmercury (MeHg) in sediment (2.9 ± 1.6% vs. 1.0 ± 0.3%) and higher surface water MeHg concentrations (1.96 ± 1.90 ng L −1 vs. 0.56 ± 0.55 ng L −1 ). Sediment-porewater partitioning coefficients were small, and likely due to high ionic activity. Our work suggests while k m measurements are useful for understanding mercury cycling processes, they are less important than surface water MeHg concentrations for assessing MeHg risks to biota. Significant differences in MeHg concentrations between sites with high and low sulphate concentrations may also inform management decisions concerning wetland remediation and creation. - Highlights: • Wetlands of the PPR provide many vital ecosystem services, but can have high MeHg concentrations. • Methylation potentials in prairie ponds are similar to other freshwater wetlands. • MeHg and %MeHg in surface water of high sulphate ponds was greater than low sulphate ponds. • Sediment-porewater partitioning coefficients were small compared to other systems. • Potential methylation rate constants did not correlate to surface water concentrations. - Prairie wetland ponds with higher sulphate concentrations have greater sediment and surface water methylmercury concentrations, but potential methylation rates do not differ

  20. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies

    Science.gov (United States)

    Wernerehl, Robert W.; Givnish, Thomas J.

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis’ continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward “drier” sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500–1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward “wetter” sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This

  1. Sparrow nest survival in relation to prescribed fire and woody plant invasion in a northern mixed-grass prairie

    Science.gov (United States)

    Murphy, Robert K.; Shaffer, Terry L.; Grant, Todd A.; Derrig, James L.; Rubin, Cory S.; Kerns, Courtney K.

    2017-01-01

    Prescribed fire is used to reverse invasion by woody vegetation on grasslands, but managers often are uncertain whether influences of shrub and tree reduction outweigh potential effects of fire on nest survival of grassland birds. During the 2001–2003 breeding seasons, we examined relationships of prescribed fire and woody vegetation to nest survival of clay-colored sparrow (Spizella pallida) and Savannah sparrow (Passerculus sandwichensis) in mixed-grass prairie at Des Lacs National Wildlife Refuge in northwestern North Dakota, USA. We assessed relationships of nest survival to 1) recent fire history, in terms of number of breeding seasons (2, 3, or 4–5) since the last prescribed fire, and 2) prevalence of trees and tall (>1.5 m) shrubs in the landscape and of low (≤1.5 m) shrubs within 5 m of nests. Nest survival of both species exhibited distinct patterns related to age of the nest and day of year, but bore no relationship to fire history. Survival of clay-colored sparrow nests declined as the amount of trees and tall shrubs within 100 m increased, but we found no relationship to suggest nest parasitism by brown-headed cowbirds (Molothrus ater) as an underlying mechanism. We found little evidence linking nest survival of Savannah sparrow to woody vegetation. Our results suggest that fire can be used to restore northern mixed-grass prairies without adversely affecting nest survival of ≥2 widespread passerine species. Survival of nests of clay-colored sparrow may increase when tall woody cover is reduced by fire. Our data lend support to the use of fire for reducing scattered patches of tall woody cover to enhance survival of nests of ≥1 grassland bird species in northern mixed-grass prairies, but further study is needed that incorporates experimental approaches and assessments of shorter term effects of fire on survival of nests of grassland passerines.

  2. Nucleus accumbens core medium spiny neuron electrophysiological properties and partner preference behavior in the adult male prairie vole, Microtus ochrogaster.

    Science.gov (United States)

    Willett, Jaime A; Johnson, Ashlyn G; Vogel, Andrea R; Patisaul, Heather B; McGraw, Lisa A; Meitzen, John

    2018-04-01

    Medium spiny neurons (MSNs) in the nucleus accumbens have long been implicated in the neurobiological mechanisms that underlie numerous social and motivated behaviors as studied in rodents such as rats. Recently, the prairie vole has emerged as an important model animal for studying social behaviors, particularly regarding monogamy because of its ability to form pair bonds. However, to our knowledge, no study has assessed intrinsic vole MSN electrophysiological properties or tested how these properties vary with the strength of the pair bond between partnered voles. Here we performed whole cell patch-clamp recordings of MSNs in acute brain slices of the nucleus accumbens core (NAc) of adult male voles exhibiting strong and weak preferences for their respective partnered females. We first document vole MSN electrophysiological properties and provide comparison to rat MSNs. Vole MSNs demonstrated many canonical electrophysiological attributes shared across species but exhibited notable differences in excitability compared with rat MSNs. Second, we assessed male vole partner preference behavior and tested whether MSN electrophysiological properties varied with partner preference strength. Male vole partner preference showed extensive variability. We found that decreases in miniature excitatory postsynaptic current amplitude and the slope of the evoked action potential firing rate to depolarizing current injection weakly associated with increased preference for the partnered female. This suggests that excitatory synaptic strength and neuronal excitability may be decreased in MSNs in males exhibiting stronger preference for a partnered female. Overall, these data provide extensive documentation of MSN electrophysiological characteristics and their relationship to social behavior in the prairie vole. NEW & NOTEWORTHY This research represents the first assessment of prairie vole nucleus accumbens core medium spiny neuron intrinsic electrophysiological properties and

  3. A meta-analysis of lesser prairie-chicken nesting and brood-rearing habitats: implications for habitat management

    Science.gov (United States)

    Hagen, Christian A.; Grisham, Blake A.; Boal, Clint W.; Haukos, David A.

    2013-01-01

    The distribution and range of lesser prairie-chicken (Tympanuchus pallidicinctus) has been reduced by >90% since European settlement of the Great Plains of North America. Currently, lesser prairie-chickens occupy 3 general vegetation communities: sand sagebrush (Artemisia filifolia), sand shinnery oak (Quercus havardii), and mixed-grass prairies juxtaposed with Conservation Reserve Program grasslands. As a candidate for protection under the Endangered Species Act, there is a need for a synthesis that characterizes habitat structure rangewide. Thus, we conducted a meta-analysis of vegetation characteristics at nest sites and brood habitats to determine whether there was an overall effect (Hedges' d) of habitat selection and to estimate average (95% CI) habitat characteristics at use sites. We estimated effect sizes (di) from the difference between use (nests and brood sites) and random sampling sites for each study (n = 14), and derived an overall effect size (d++). There was a general effect for habitat selection as evidenced by low levels of variation in effect sizes across studies and regions. There was a small to medium effect (d++) = 0.20-0.82) of selection for greater vertical structure (visual obstruction) by nesting females in both vegetation communities, and selection against bare ground (d++ = 0.20-0.58). Females with broods exhibited less selectivity for habitat components except for vertical structure. The variation of d++ was greater during nesting than brooding periods, signifying a seasonal shift in habitat use, and perhaps a greater range of tolerance for brood-rearing habitat. The overall estimates of vegetation cover were consistent with those provided in management guidelines for the species.

  4. A Risk Model for the Lyme Disease Vector Ixodes scapularis (Acari: Ixodidae) in the Prairie Provinces of Canada.

    Science.gov (United States)

    Gabriele-Rivet, Vanessa; Koffi, Jules K; Pelcat, Yann; Arsenault, Julie; Cheng, Angela; Lindsay, L Robbin; Lysyk, Timothy J; Rochon, Kateryn; Ogden, Nicholas H

    2017-07-01

    Lyme disease is emerging in Canada due to geographic range expansion of the tick vector Ixodes scapularis Say. Recent areas of emergence include parts of the southeastern Canadian Prairie region. We developed a map of potential risk areas for future I. scapularis establishment in the Canadian Prairie Provinces. Six I. scapularis risk algorithms were developed using different formulations of three indices for environmental suitability: temperature using annual cumulative degree-days > 0 °C (DD > 0 °C; obtained from Moderate Resolution Imaging Spectroradiometer satellite data as an index of conditions that allow I. scapularis to complete its life cycle), habitat as a combined geolayer of forest cover and agricultural land use, and rainfall. The relative performance of these risk algorithms was assessed using receiver-operating characteristic (ROC) area under the curve (AUC) analysis with data on presence-absence of I. scapularis obtained from recent field surveillance in the Prairie Provinces accumulated from a number of sources. The ROC AUC values for the risk algorithms were significantly different (P  0 °C, habitat as a simple dichotomous variable of presence or absence of forest, and normalized rainfall had the highest AUC of 0.74, representing "fair to good" performance of the risk algorithm. This algorithm had good (>80%) sensitivity in predicting positive I. scapularis surveillance sites, but low (50%) specificity as expected in this region where not all environmentally suitable habitats are expected to be occupied. Further prospective studies are needed to validate and perhaps improve the risk algorithm. © Crown copyright 2017.

  5. Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie.

    Directory of Open Access Journals (Sweden)

    Joseph D Coolon

    Full Text Available Anthropogenic changes are altering the environmental conditions and the biota of ecosystems worldwide. In many temperate grasslands, such as North American tallgrass prairie, these changes include alteration in historically important disturbance regimes (e.g., frequency of fires and enhanced availability of potentially limiting nutrients, particularly nitrogen. Such anthropogenically-driven changes in the environment are known to elicit substantial changes in plant and consumer communities aboveground, but much less is known about their effects on soil microbial communities. Due to the high diversity of soil microbes and methodological challenges associated with assessing microbial community composition, relatively few studies have addressed specific taxonomic changes underlying microbial community-level responses to different fire regimes or nutrient amendments in tallgrass prairie. We used deep sequencing of the V3 region of the 16S rRNA gene to explore the effects of contrasting fire regimes and nutrient enrichment on soil bacterial communities in a long-term (20 yrs experiment in native tallgrass prairie in the eastern Central Plains. We focused on responses to nutrient amendments coupled with two extreme fire regimes (annual prescribed spring burning and complete fire exclusion. The dominant bacterial phyla identified were Proteobacteria, Verrucomicrobia, Bacteriodetes, Acidobacteria, Firmicutes, and Actinobacteria and made up 80% of all taxa quantified. Chronic nitrogen enrichment significantly impacted bacterial community diversity and community structure varied according to nitrogen treatment, but not phosphorus enrichment or fire regime. We also found significant responses of individual bacterial groups including Nitrospira and Gammaproteobacteria to long-term nitrogen enrichment. Our results show that soil nitrogen enrichment can significantly alter bacterial community diversity, structure, and individual taxa abundance, which have

  6. Evaluation of environmental data relating to selected nuclear power plant sites. Prairie Island Nuclear Generating Plant site

    International Nuclear Information System (INIS)

    Murarka, I.P.

    1976-11-01

    Environmental monitoring data for 1973 through 1975 pertaining to the Prairie Island Nuclear Generating Station (which began commercial operation in December 1973) were analyzed by the most practical qualitative and quantitative methods. Evaluations of aquatic and terrestrial biotic data are presented in this report. The data indicate no significant immediate deleterious effects on the biota from plant operation, thus confirming preoperational predictions. Although the station has not operated long enough to reveal long-term deleterious effects, present indications do not lead to a concerned prediction that any are developing. Recommendations are suggested for improving monitoring techniques

  7. Understanding the relationship between the variability in agrometeorological indices and adaptation practices across the Canadian Prairies

    Science.gov (United States)

    Chipanshi, A.; Qi, D.; Zhang, Y.; Cherneski, P.

    2017-12-01

    In an attempt to understand how agriculture will adapt to the changing and variable climate, crop based agrometeorological indices including the Effective Growing Degree Days (EGDDs), Growing Season Length (GSL), Heat waves, Water Demand (Precipitation - Evapotranspiration) and the Standardized Precipitation Evapotranspiration Index (SPEI) were analyzed in terms of frequency, duration and trend over a 63-year timeframe (1950 to 2012) from the Canadian Prairies and related to crop production. The heat based indices (EGDD, GSL and Heat waves) increased over the analysis period due to an upward increase in the observed mean temperature. The change was most noticeable in the northern portion of the study area where agriculture is limited by insufficient heat units under the present climate. Heat waves became more frequent in the southern parts of the study area (there were more days above the 30oC threshold). Water availability as assessed from water demand (P-PE) and SPEI trended downward especially in Alberta and Saskatchewan. In spite of the increased severity and frequency in water deficits, there was a noticeable reduction in the variability of crop yield over time. This was attributed to the increased adaptive capacity that has been gained through the use of improved seed hybrids, fertilizer, the use of fungicides and adoption of best management practices such as zero till and direct seeding. After crop yields were de-trended to remove effects of technology, the cumulative precipitation during the growing season explained the majority of the variance in crop yield. This initial analysis has set the stage for analyzing the characteristics of agrometeorological indices under climate change scenarios and how accumulated precipitation during the growing season will affect crop yield and production.

  8. Evapotranspiration and the water budget of prairie potholes in North Dakota

    Science.gov (United States)

    Shjeflo, J.B.

    1968-01-01

    The mass-transfer method was used to study the hydrologic behavior of 10 prairie potholes in central North Dakota during the 5-year period 1960-64. Many of the potholes went dry when precipitation was low. The average evapotranspiration during the May to October period each year was 2.11 feet, and the average seepage was 0.60 foot. These averages remained nearly constant for both wet and dry years. The greatest source of water for the potholes was the direct rainfall on the pond surface; this supplied 1.21 feet per year. Spring snowmelt supplied 0.79 foot of water and runoff from the land surface during the summer supplied 0.53 foot. Even though the water received from snowmelt was only 31 percent of the total, it was probably the most vital part of the annual water supply. This water was available in the spring, when waterfowl were nesting, and generally lasted until about July 1, even with no additional direct rainfall on the pond or runoff from the drainage basin. The average runoff from the land surface into pothole 3 was found to be 1.2 inches per year- 1 inch from snowmelt and 0.2 inch from rainfall.'The presence of growing aquatic plants, such as bulrushes and cattails, was a complicating factor in making measurements. New computation procedures had to be devised to define the variable mass-transfer coefficient. Rating periods were divided into 6-hour units for the vegetated potholes. The instruments had to be carefully maintained, as water levels had to be recorded with such accuracy that changes of 0.001 foot could be detected. In any research project involving the measurements of physical quantities, the results are dependent upon the accuracy and dependability of the instruments used; this was especially true during this project.

  9. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance

    Science.gov (United States)

    Larson, D.L.; Anderson, P.J.; Newton, W.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  10. Preserving prairies: Understanding temporal and spatial patterns of invasive annual bromes in the Northern Great Plains

    Science.gov (United States)

    Ashton, Isabel; Symstad, Amy J.; Davis, Christopher; Swanson, Daniel J.

    2016-01-01

    Two Eurasian invasive annual brome grasses, cheatgrass (Bromus tectorum) and Japanese brome (Bromus japonicus), are well known for their impact in steppe ecosystems of the western United States where these grasses have altered fire regimes, reduced native plant diversity and abundance, and degraded wildlife habitat. Annual bromes are also abundant in the grasslands of the Northern Great Plains (NGP), but their impact and ecology are not as well studied. It is unclear whether the lessons learned from the steppe will translate to the mixed-grass prairie where native plant species are adapted to frequent fires and grazing. Developing a successful annual brome management strategy for National Park Service units and other NGP grasslands requires better understanding of (1) the impact of annual bromes on grassland condition; (2) the dynamics of these species through space and time; and (3) the relative importance of environmental factors within and outside managers' control for these spatiotemporal dynamics. Here, we use vegetation monitoring data collected from 1998 to 2015 in 295 sites to relate spatiotemporal variability of annual brome grasses to grassland composition, weather, physical environmental characteristics, and ecological processes (grazing and fire). Concern about the impact of these species in NGP grasslands is warranted, as we found a decline in native species richness with increasing annual brome cover. Annual brome cover generally increased over the time of monitoring but also displayed a 3- to 5-yr cycle of reduction and resurgence. Relative cover of annual bromes in the monitored areas was best predicted by park unit, weather, extant plant community, slope grade, soil composition, and fire history. We found no evidence that grazing reduced annual brome cover, but this may be due to the relatively low grazing pressure in our study. By understanding the consequences and patterns of annual brome invasion, we will be better able to preserve and restore

  11. Biodiversity assessment among two Nebraska prairies: a comparison between traditional and phylogenetic diversity indices.

    Science.gov (United States)

    Aust, Shelly K; Ahrendsen, Dakota L; Kellar, P Roxanne

    2015-01-01

    Conservation of the evolutionary diversity among organisms should be included in the selection of priority regions for preservation of Earth's biodiversity. Traditionally, biodiversity has been determined from an assessment of species richness (S), abundance, evenness, rarity, etc. of organisms but not from variation in species' evolutionary histories. Phylogenetic diversity (PD) measures evolutionary differences between taxa in a community and is gaining acceptance as a biodiversity assessment tool. However, with the increase in the number of ways to calculate PD, end-users and decision-makers are left wondering how metrics compare and what data are needed to calculate various metrics. In this study, we used massively parallel sequencing to generate over 65,000 DNA characters from three cellular compartments for over 60 species in the asterid clade of flowering plants. We estimated asterid phylogenies from character datasets of varying nucleotide quantities, and then assessed the effect of varying character datasets on resulting PD metric values. We also compared multiple PD metrics with traditional diversity indices (including S) among two endangered grassland prairies in Nebraska (U.S.A.). Our results revealed that PD metrics varied based on the quantity of genes used to infer the phylogenies; therefore, when comparing PD metrics between sites, it is vital to use comparable datasets. Additionally, various PD metrics and traditional diversity indices characterize biodiversity differently and should be chosen depending on the research question. Our study provides empirical results that reveal the value of measuring PD when considering sites for conservation, and it highlights the usefulness of using PD metrics in combination with other diversity indices when studying community assembly and ecosystem functioning. Ours is just one example of the types of investigations that need to be conducted across the tree of life and across varying ecosystems in order to build

  12. Concentrations of methylmercury in invertebrates from wetlands of the Prairie Pothole Region of North America

    International Nuclear Information System (INIS)

    Bates, Lara M.; Hall, Britt D.

    2012-01-01

    Prairie wetlands may be important sites of mercury (Hg) methylation resulting in elevated methylmercury (MeHg) concentrations in water, sediments and biota. Invertebrates are an important food resource and may act as an indicator of MeHg exposure to higher organisms. In 2007–2008, invertebrates were collected from wetland ponds in central Saskatchewan, categorized into functional feeding groups (FFGs) and analyzed for total Hg (THg) and MeHg. Methylmercury and THg concentrations in four FFGs ranged from 0.2–393.5 ng·g −1 and 9.7–507.1 ng·g −1 , respectively. Methylmercury concentrations generally increased from gastropods with significantly lower average MeHg concentrations compared to other invertebrate taxa. Surrounding land use (agricultural, grassland and organic agricultural) may influence MeHg concentrations in invertebrates, with invertebrate MeHg concentrations being higher from organic ponds (457.5 ± 156.7 ng·g −1 ) compared to those from grassland ponds (74.8 ± 14.6 ng·g −1 ) and ponds on agricultural lands (32.8 ± 6.2 ng·g −1 ). - Highlights: ► MeHg concentrations ranged from 0.2 to 393.5 ng·g −1 and generally increased with trophic level. ► Gastropods had significantly lower average MeHg concentrations compared to other invertebrates. ► Surrounding land use may influence MeHg concentrations in invertebrates. ► MeHg concentrations were higher in organic ponds compared to grassland and agricultural ponds. - Methylmercury concentrations in aquatic invertebrates in wetlands of the Great Plains of North America may differ depending on the land use of adjacent farmland.

  13. Prairie Canal Well No. 1, Calcasieu Parish, Louisiana. Volume 1. Completion and testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The Prairie Canal Company, Inc. Well No. 1, approximately 8 miles south of the city of Lake Charles, Louisiana, was tested through the annulus between 5-1/2 inch casing and 2-3/8 inch tubing. The interval tested was from 14,782 to 14,820 feet. The geological section was the Hackberry Sand, a member of the Oligocene Frio formation. Produced water was injected into a disposal well which was perforated in several Miocene Sands from 3070 to 4600 feet. Original plans were to test a section of the Hackberry sand from 14,976 to 15,024 feet. This primary zone, however, produced a large amount of sand, shale, gravel, and rocks during early flow periods and was abandoned in favor of the secondary zone. Four pressure drawdown flow tests and three pressure buildup tests were conducted during a 12-day period. A total of 36,505 barrels of water was produced. The highest sustained flow rate was approximately 7100 BWPD. The gas-to-water ratio, measured during testing, ranged from 41 to 50 SCF/BBL. There is disagreement as to the saturation value of the reservoir brine, which may be between 43.3 and 49.7 SCF/BBL. The methane content of the flare line gas averaged 88.4 mole percent. The CO/sub 2/ content averaged 8.4 mole percent. Measured values of H/sub 2/S in the gas were between 12 and 24 ppM.

  14. Extremes of heat, drought and precipitation depress reproductive performance in shortgrass prairie passerines

    Science.gov (United States)

    Conrey, Reesa Y.; Skagen, Susan K.; Yackel, Amy; Panjabi, Arvind O.

    2016-01-01

    Climate change elevates conservation concerns worldwide because it is likely to exacerbate many identified threats to animal populations. In recent decades, grassland birds have declined faster than other North American bird species, a loss thought to be due to habitat loss and fragmentation and changing agricultural practices. Climate change poses additional threats of unknown magnitude to these already declining populations. We examined how seasonal and daily weather conditions over 10 years influenced nest survival of five species of insectivorous passerines native to the shortgrass prairie and evaluate our findings relative to future climate predictions for this region. Daily nest survival (n = 870) was best predicted by a combination of daily and seasonal weather variables, age of nest, time in season and bird habitat guild. Within a season, survival rates were lower on very hot days (temperatures ≥ 35 °C), on dry days (with a lag of 1 day) and on stormy days (especially for those species nesting in shorter vegetation). Across years, survival rates were also lower during warmer and drier breeding seasons. Clutch sizes were larger when early spring temperatures were cool and the week prior to egg-laying was wetter and warming. Climate change is likely to exacerbate grassland bird population declines because projected climate conditions include rising temperatures, more prolonged drought and more intense storms as the hydrological cycle is altered. Under varying realistic scenarios, nest success estimates were halved compared to their current average value when models both increased the temperature (3 °C) and decreased precipitation (two additional dry days during a nesting period), thus underscoring a sense of urgency in identifying and addressing the current causes of range-wide declines.

  15. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands.

    Science.gov (United States)

    Dalcin Martins, Paula; Hoyt, David W; Bansal, Sheel; Mills, Christopher T; Tfaily, Malak; Tangen, Brian A; Finocchiaro, Raymond G; Johnston, Michael D; McAdams, Brandon C; Solensky, Matthew J; Smith, Garrett J; Chin, Yu-Ping; Wilkins, Michael J

    2017-08-01

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions. © 2017 John Wiley & Sons Ltd.

  16. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Dalcin Martins, Paula [Microbiology Department, The Ohio State University, Columbus OH 43210 USA; Hoyt, David W. [Environmental Molecular Sciences Laboratory, Richland WA 99350 USA; Bansal, Sheel [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Mills, Christopher T. [United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Building 20, Denver Federal Center Denver CO 80225 USA; Tfaily, Malak [Environmental Molecular Sciences Laboratory, Richland WA 99350 USA; Tangen, Brian A. [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Finocchiaro, Raymond G. [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Johnston, Michael D. [School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA; McAdams, Brandon C. [School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA; Solensky, Matthew J. [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Smith, Garrett J. [Microbiology Department, The Ohio State University, Columbus OH 43210 USA; Chin, Yu-Ping [School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA; Wilkins, Michael J. [Microbiology Department, The Ohio State University, Columbus OH 43210 USA; School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA

    2017-02-23

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR, and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations, or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield non-competitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.

  17. Combining multiple sources of data to inform conservation of Lesser Prairie-Chicken populations

    Science.gov (United States)

    Ross, Beth; Haukos, David A.; Hagen, Christian A.; Pitman, James

    2018-01-01

    Conservation of small populations is often based on limited data from spatially and temporally restricted studies, resulting in management actions based on an incomplete assessment of the population drivers. If fluctuations in abundance are related to changes in weather, proper management is especially important, because extreme weather events could disproportionately affect population abundance. Conservation assessments, especially for vulnerable populations, are aided by a knowledge of how extreme events influence population status and trends. Although important for conservation efforts, data may be limited for small or vulnerable populations. Integrated population models maximize information from various sources of data to yield population estimates that fully incorporate uncertainty from multiple data sources while allowing for the explicit incorporation of environmental covariates of interest. Our goal was to assess the relative influence of population drivers for the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) in the core of its range, western and southern Kansas, USA. We used data from roadside lek count surveys, nest monitoring surveys, and survival data from telemetry monitoring combined with climate (Palmer drought severity index) data in an integrated population model. Our results indicate that variability in population growth rate was most influenced by variability in juvenile survival. The Palmer drought severity index had no measurable direct effects on adult survival or mean number of offspring per female; however, there were declines in population growth rate following severe drought. Because declines in population growth rate occurred at a broad spatial scale, declines in response to drought were likely due to decreases in chick and juvenile survival rather than emigration outside of the study area. Overall, our model highlights the importance of accounting for environmental and demographic sources of variability, and provides a thorough

  18. Extensive shared polymorphism at non-MHC immune genes in recently diverged North American prairie grouse

    Science.gov (United States)

    Minias, Piotr; Bateson, Zachary W.; Whittingham, Linda A.; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O.

    2018-01-01

    Gene polymorphisms shared between recently diverged species are thought to be widespread and most commonly reflect introgression from hybridization or retention of ancestral polymorphism through incomplete lineage sorting. Shared genetic diversity resulting from incomplete lineage sorting is usually maintained for a relatively short period of time, but under strong balancing selection it may persist for millions of years beyond species divergence (balanced trans-species polymorphism), as in the case of the major histocompatibility complex (MHC) genes. However, balancing selection is much less likely to act on non-MHC immune genes. The aim of this study was to investigate the patterns of shared polymorphism and selection at non-MHC immune genes in five grouse species from Centrocercus and Tympanuchus genera. For this purpose, we genotyped five non-MHC immune genes that do not interact directly with pathogens, but are involved in signaling and regulate immune cell growth. In contrast to previous studies with MHC, we found no evidence for balancing selection or balanced trans-species polymorphism among the non-MHC immune genes. No haplotypes were shared between genera and in most cases more similar allelic variants sorted by genus. Between species within genera, however, we found extensive shared polymorphism, which was most likely attributable to introgression or incomplete lineage sorting following recent divergence and large ancestral effective population size (i.e., weak genetic drift). Our study suggests that North American prairie grouse may have attained relatively low degree of reciprocal monophyly at nuclear loci and reinforces the rarity of balancing selection in non-MHC immune genes.

  19. Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought

    Energy Technology Data Exchange (ETDEWEB)

    Wagle, Pradeep; Xiao, Xiangming; Torn, Margaret S.; Cook, David R.; Matamala, Roser; Fischer, Marc L.; Jin, Cui; Dong, Jinwei; Biradar, Chandrashekhar

    2014-09-01

    Drought affects vegetation photosynthesis and growth.Many studies have used the normalized difference vegetation index (NDVI), which is calculated as the normalized ratio between near infrared and red spectral bands in satellite images, to evaluate the response of vegetation to drought. In this study, we examined the impacts of drought on three vegetation indices (NDVI, enhanced vegetation index, EVI, and land surface water index, LSWI) and CO2 flux from three tallgrass prairie eddy flux tower sites in the U.S. Gross primary production (GPP) was also modeled using a satellite-based Vegetation Photosynthesis Model (VPM), and the modeled GPP (GPPVPM) was compared with the GPP (GPPEC) derived from eddy covariance measurements. Precipitation at two sites in Oklahoma was 30% below the historical mean in both years of the study period (2005–2006), while the site in Illinois did not experience drought in the 2005–2007 study period. The EVI explained the seasonal dynamics of GPP better than did NDVI. The LSWI dropped below zero during severe droughts in the growing season, showing its potential to track drought. The result shows that GPP was more sensitive to drought than were vegetation indices, and EVI and LSWI were more sensitive than NDVI. We developed a modified function (Wscalar), calculated as a function of LSWI, to account for the effect of severe droughts on GPP in VPM. The GPPVPM from the modified VPM accounted for the rapid reduction in GPP during severe droughts and the seasonal dynamics of GPPVPM agreed reasonably well with GPPEC. Our analysis shows that 8-day averaged values (temperature, vapor-pressure deficit) do not reflect the short-term extreme climate events well, suggesting that satellite based models may need to be run at daily or hourly scales, especially under unfavorable climatic conditions.

  20. Mortality of Siberian polecats and black-footed ferrets released onto prairie dog colonies

    Science.gov (United States)

    Biggins, D.E.; Miller, B.J.; Hanebury, L.R.; Powell, R.A.

    2011-01-01

    Black-footed ferrets (Mustela nigripes) likely were extirpated from the wild in 19851986, and their repatriation depends on captive breeding and reintroduction. Postrelease survival of animals can be affected by behavioral changes induced by captivity. We released neutered Siberian polecats (M. eversmanii), close relatives of ferrets, in 19891990 on black-tailed prairie dog (Cynomys ludovicianus) colonies in Colorado and Wyoming initially to test rearing and reintroduction techniques. Captive-born polecats were reared in cages or cages plus outdoor pens, released from elevated cages or into burrows, and supplementally fed or not fed. We also translocated wild-born polecats from China in 1990 and released captive-born, cage-reared black-footed ferrets in 1991, the 1st such reintroduction of black-footed ferrets. We documented mortality for 55 of 92 radiotagged animals in these studies, mostly due to predation (46 cases). Coyotes (Canis latrans) killed 31 ferrets and polecats. Supplementally fed polecats survived longer than nonprovisioned polecats. With a model based on deaths per distance moved, survival was highest for wild-born polecats, followed by pen-experienced, then cage-reared groups. Indexes of abundance (from spotlight surveys) for several predators were correlated with mortality rates of polecats and ferrets due to those predators. Released black-footed ferrets had lower survival rates than their ancestral population in Wyoming, and lower survival than wild-born and translocated polecats, emphasizing the influence of captivity. Captive-born polecats lost body mass more rapidly postrelease than did captive-born ferrets. Differences in hunting efficiency and prey selection provide further evidence that these polecats and ferrets are not ecological equivalents in the strict sense. ?? 2011 American Society of Mammalogists.

  1. Bison grazing increases arthropod abundance and diversity in a tallgrass prairie.

    Science.gov (United States)

    Moran, Matthew D

    2014-10-01

    How grazing-induced ecosystem changes by ungulates indirectly affect other consumers is a question of great interest. I investigated the effect of grazing by American Bison (Bos bison L.) on an arthropod community in tallgrass prairie. Grazing increased the abundance of arthropods, an increase that was present in both herbivorous and carnivorous assemblages, but not in detritivores. The increase in herbivores and reduction in plant biomass from grazing resulted in an arthropod herbivore load almost three times higher in grazed plots compared with controls. Among herbivores, the sap-feeding insect guild was dramatically more abundant, while chewing herbivores were not affected. Herbivorous and carnivorous arthropod richness was higher in grazed plots, although the response was strongest among herbivores. Arthropod abundance on individual grasses and forbs was significantly higher in grazed areas, while plant type had no effect on abundance, indicating that the change was ecosystem-wide and not simply in response to a reduction in grass biomass from grazing. The response of arthropods to grazing was strongest in the early part of the growing season. Published research shows that ungulate grazing, although decreasing available biomass to other consumers, enhances plant quality by increasing nitrogen level in plants. The arthropod results of this study suggest higher plant quality outweighs the potential negative competitive effects of plant biomass removal, although other activities of bison could not be ruled out as the causative mechanism. Because arthropods are extremely abundant organisms in grasslands and a food source for other consumers, bison may represent valuable management tools for maintaining biodiversity.

  2. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming.

    Science.gov (United States)

    Xu, Xia; Shi, Zheng; Li, Dejun; Zhou, Xuhui; Sherry, Rebecca A; Luo, Yiqi

    2015-10-01

    Soil respiration is recognized to be influenced by temperature, moisture, and ecosystem production. However, little is known about how plant community structure regulates responses of soil respiration to climate change. Here, we used a 13-year field warming experiment to explore the mechanisms underlying plant community regulation on feedbacks of soil respiration to climate change in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate temperature about 2 °C since November 1999. Annual clipping was used to mimic hay harvest. Our results showed that experimental warming significantly increased soil respiration approximately from 10% in the first 7 years (2000-2006) to 30% in the next 6 years (2007-2012). The two-stage warming stimulation of soil respiration was closely related to warming-induced increases in ecosystem production over the years. Moreover, we found that across the 13 years, warming-induced increases in soil respiration were positively affected by the proportion of aboveground net primary production (ANPP) contributed by C3 forbs. Functional composition of the plant community regulated warming-induced increases in soil respiration through the quantity and quality of organic matter inputs to soil and the amount of photosynthetic carbon (C) allocated belowground. Clipping, the interaction of clipping with warming, and warming-induced changes in soil temperature and moisture all had little effect on soil respiration over the years (all P > 0.05). Our results suggest that climate warming may drive an increase in soil respiration through altering composition of plant communities in grassland ecosystems. © 2015 John Wiley & Sons Ltd.

  3. Assessment of lesser prairie-chicken lek density relative to landscape characteristics in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Timmer, Jennifer; Butler, Matthew; Ballard, Warren; Boal, Clint; Whitlaw, Heather

    2012-08-31

    My 2.5-yr Master's project accomplished the objectives of estimating lesser prairie-chicken (LPC) lek density and abundance in the Texas occupied range and modeling anthropogenic and landscape features associated with lek density by flying helicopter lek surveys for 2 field seasons and employing a line-transect distance sampling method. This project was important for several reasons. Firstly, wildlife managers and biologists have traditionally monitored LPC populations with road-based surveys that may result in biased estimates and do not provide access to privately-owned or remote property. From my aerial surveys and distance sampling, I was able to provide accurate density and abundance estimates, as well as new leks and I detected LPCs outside the occupied range. Secondly, recent research has indicated that energy development has the potential to impact LPCs through avoidance of tall structures, increased mortality from raptors perching on transmission lines, disturbance to nesting hens, and habitat loss/fragmentation. Given the potential wind energy development in the Texas Panhandle, spatial models of current anthropogenic and vegetative features (such as transmission lines, roads, and percent native grassland) influencing lek density were needed. This information provided wildlife managers and wind energy developers in Texas with guidelines for how change in landscape features could impact LPCs. Lastly, LPC populations have faced range-wide declines over the last century and they are currently listed as a candidate species under the Endangered Species Act. I was able to provide timely information on LPC populations in Texas that will be used during the listing process.

  4. Direct and indirect effects of climate change on a prairie plant community.

    Directory of Open Access Journals (Sweden)

    Peter B Adler

    2009-09-01

    Full Text Available Climate change directly affects species by altering their physical environment and indirectly affects species by altering interspecific interactions such as predation and competition. Recent studies have shown that the indirect effects of climate change may amplify or counteract the direct effects. However, little is known about the the relative strength of direct and indirect effects or their potential to impact population persistence.We studied the effects of altered precipitation and interspecific interactions on the low-density tiller growth rates and biomass production of three perennial grass species in a Kansas, USA mixed prairie. We transplanted plugs of each species into local neighborhoods of heterospecific competitors and then exposed the plugs to a factorial manipulation of growing season precipitation and neighbor removal. Precipitation treatments had significant direct effects on two of the three species. Interspecific competition also had strong effects, reducing low-density tiller growth rates and aboveground biomass production for all three species. In fact, in the presence of competitors, (log tiller growth rates were close to or below zero for all three species. However, we found no convincing evidence that per capita competitive effects changed with precipitation, as shown by a lack of significant precipitation x competition interactions.We found little evidence that altered precipitation will influence per capita competitive effects. However, based on species' very low growth rates in the presence of competitors in some precipitation treatments, interspecific interactions appear strong enough to affect the balance between population persistence and local extinction. Therefore, ecological forecasting models should include the effect of interspecific interactions on population growth, even if such interaction coefficients are treated as constants.

  5. Methamphetamine Consumption Inhibits Pair Bonding and Hypothalamic Oxytocin in Prairie Voles.

    Directory of Open Access Journals (Sweden)

    Caroline M Hostetler

    Full Text Available Methamphetamine (MA abuse has been linked to violence, risk-taking behaviors, decreased sexual inhibition, and criminal activity. It is important to understand mechanisms underlying these drug effects for prevention and treatment of MA-associated social problems. Previous studies have demonstrated that experimenter-administered amphetamine inhibits pair bonding and increases aggression in monogamous prairie voles. It is not currently known whether similar effects on social behaviors would be obtained under conditions during which the drug is voluntarily (actively administered. The current study investigated whether MA drinking affects pair bonding and what neurocircuits are engaged. In Experiment 1, we exposed male and female voles to 4 days each of 20 and 40 mg/L MA under a continuous 2-bottle choice (2BC procedure. Animals were housed either singly or in mesh-divided cages with a social partner. Voles consumed MA in a drinking solution, but MA drinking was not affected by either sex or housing condition. In Experiment 2, we investigated whether MA drinking disrupts social bonding by measuring aggression and partner preference formation following three consecutive days of 18-hour/day access to 100 mg/L MA in a 2BC procedure. Although aggression toward a novel opposite-sex animal was not affected by MA exposure, partner preference was inhibited in MA drinking animals. Experiment 3 examined whether alterations in hypothalamic neuropeptides provide a potential explanation for the inhibition of partner preference observed in Experiment 2. MA drinking led to significant decreases in oxytocin, but not vasopressin, in the paraventricular nucleus of the hypothalamus. These experiments are the first investigation into how voluntary pre-exposure to MA affects the development of social attachment in a socially monogamous species and identify potential neural circuits involved in these effects.

  6. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico

    Directory of Open Access Journals (Sweden)

    Neville Paul

    2006-12-01

    Full Text Available Abstract Background We conducted Geographic Information System (GIS habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. Results We found 16% of suitable habitat (6% of the study area distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82% occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM. We identified 88,190 ha (10% of the study area of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Conclusion Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool.

  7. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico.

    Science.gov (United States)

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-12-04

    We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. We found 16% of suitable habitat (6% of the study area) distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area) distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82%) occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM). We identified 88,190 ha (10% of the study area) of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA) contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool.

  8. Influence of richness and seeding density on invasion resistance in experimental tallgrass prairie restorations

    Science.gov (United States)

    Nemec, Kristine T.; Allen, Craig R.; Helzer, Christopher J.; Wedin, David A.

    2013-01-01

    In recent years, agricultural producers and non-governmental organizations and agencies have restored thousands of hectares of cropland to grassland in the Great Plains of the United States. However, little is known about the relationships between richness and seeding density in these restorations and resistance to invasive plant species. We assessed the effects of richness and seeding density on resistance to invasive and other unseeded plant species in experimental tallgrass prairie plots in central Nebraska. In 2006, twenty-four 55 m × 55 m plots were planted with six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Conservation Reserve Program mix, CP25), at low and high seeding densities. There was a significant negative relationship between richness and basal cover of unseeded perennial forbs/legumes and unseeded perennial/annual grasses, abundance of bull thistle (Cirsium vulgare), and the number of inflorescences removed from smooth brome (Bromus inermis) transplants. Invasion resistance may have been higher in the high richness treatments because of the characteristics of the dominant species in these plots or because of greater interspecific competition for limiting resources among forbs/legumes with neighboring plants belonging to the same functional group. Seeding density was not important in affecting invasion resistance, except in the cover of unseeded grasses. Increasing seed mix richness may be more effective than increasing the seeding density for decreasing invasion by unseeded perennial species, bull thistle, and smooth brome.

  9. Intergenerational transmission of alloparental behavior and oxytocin and vasopressin receptor distribution in the prairie vole

    Directory of Open Access Journals (Sweden)

    Allison M Perkeybile

    2015-07-01

    Full Text Available Variation in the early environment has the potential to permanently alter offspring behavior and development. We have previously shown that naturally occurring variation in biparental care of offspring in the prairie vole is related to differences in social behavior of the offspring. It was not, however, clear whether the behavioral differences seen between offspring receiving high compared to low amounts of parental care were the result of different care experiences or were due to shared genetics with their high-contact or low-contact parents. Here we use cross-fostering methods to determine the mode of transmission of alloparental behavior and oxytocin receptor (OTR and vasopressin V1a receptor (V1aR binding from parent to offspring. Offspring were cross-fostered or in-fostered on postnatal day 1 and parental care received was quantified in the first week postpartum. At weaning, offspring underwent an alloparental care test and brains were then collected from all parents and offspring to examine OTR and V1aR binding. Results indicate that alloparental behavior of offspring was predicted by the parental behavior of their rearing parents. Receptor binding for both OTR and V1aR tended to be predicted by the genetic mothers for female offspring and by the genetic fathers for male offspring. These findings suggest a different role of early experience and genetics in shaping behavior compared to receptor distribution and support the notion of sex-dependent outcomes, particularly in the transmission of receptor binding patterns.

  10. Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming

    Directory of Open Access Journals (Sweden)

    X. Cheng

    2011-06-01

    Full Text Available The influence of global warming on soil organic matter (SOM dynamics in terrestrial ecosystems remains unclear. In this study, we combined soil fractionation with isotope analyses to examine SOM dynamics after nine years of experimental warming in a North America tallgrass prairie. Soil samples from the control plots and the warmed plots were separated into four aggregate sizes (>2000 μm, 250–2000 μm, 53–250 μm, and <53 μm, and three density fractions (free light fraction – LF, intra-aggregate particulate organic matter – iPOM, and mineral-associated organic matter – mSOM. All fractions were analyzed for their carbon (C and nitrogen (N content, and δ13C and δ15N values. Warming did not significantly effect soil aggregate distribution and stability but increased C4-derived C input into all fractions with the greatest in LF. Warming also stimulated decay rates of C in whole soil and all aggregate sizes. C in LF turned over faster than that in iPOM in the warmed soils. The δ15N values of soil fractions were more enriched in the warmed soils than those in the control, indicating that warming accelerated loss of soil N. The δ15N values changed from low to high, while C:N ratios changed from high to low in the order LF, iPOM, and mSOM due to increased degree of decomposition and mineral association. Overall, warming increased the input of C4-derived C by 11.6 %, which was offset by the accelerated loss of soil C. Our results suggest that global warming simultaneously stimulates C input via shift in species composition and decomposition of SOM, resulting in negligible net change in soil C.

  11. Lesser prairie-chicken nest site selection, microclimate, and nest survival in association with vegetation response to a grassland restoration program

    Science.gov (United States)

    Boal, Clint W.; Grisham, Blake A.; Haukos, David A.; Zavaleta, Jennifer C.; Dixon, Charles

    2014-01-01

    Climate models predict that the region of the Great Plains Landscape Conservation Cooperative (GPLCC) will experience increased maximum and minimum temperatures, reduced frequency but greater intensity of precipitation events, and earlier springs. These climate changes along with different landscape management techniques may influence the persistence of the lesser prairie-chicken (Tympanuchus pallidicinctus), a candidate for protection under the Endangered Species Act and a priority species under the GPLCC, in positive or negative ways. The objectives of this study were to conduct (1) a literature review of lesser prairie-chicken nesting phenology and ecology, (2) an analysis of thermal aspects of lesser prairie-chicken nest microclimate data, and (3) an analysis of nest site selection, nest survival, and vegetation response to 10 years of tebuthiuron and/or grazing treatments. We found few reports in the literature containing useful data on the nesting phenology of lesser prairie-chickens; therefore, managers must rely on short-term observations and measurements of parameters that provide some predictive insight into climate impacts on nesting ecology. Our field studies showed that prairie-chickens on nests were able to maintain relatively consistent average nest temperature of 31 °C and nest humidities of 56.8 percent whereas average external temperatures (20.3–35.0 °C) and humidities (35.2–74.9 percent) varied widely throughout the 24 hour (hr) cycle. Grazing and herbicide treatments within our experimental areas were designed to be less intensive than in common practice. We determined nest locations by radio-tagging hen lesser prairie-chickens captured at leks, which are display grounds at which male lesser prairie-chickens aggregate and attempt to attract a female for mating. Because nest locations selected by hen lesser prairie-chicken are strongly associated with the lek at which they were captured, we assessed nesting habitat use on the basis of hens

  12. Transmissibility of the monkeypox virus clades via respiratory transmission: investigation using the prairie dog-monkeypox virus challenge system.

    Directory of Open Access Journals (Sweden)

    Christina L Hutson

    Full Text Available Monkeypox virus (MPXV is endemic within Africa where it sporadically is reported to cause outbreaks of human disease. In 2003, an outbreak of human MPXV occurred in the US after the importation of infected African rodents. Since the eradication of smallpox (caused by an orthopoxvirus (OPXV related to MPXV and cessation of routine smallpox vaccination (with the live OPXV vaccinia, there is an increasing population of people susceptible to OPXV diseases. Previous studies have shown that the prairie dog MPXV model is a functional animal model for the study of systemic human OPXV illness. Studies with this model have demonstrated that infected animals are able to transmit the virus to naive animals through multiple routes of exposure causing subsequent infection, but were not able to prove that infected animals could transmit the virus exclusively via the respiratory route. Herein we used the model system to evaluate the hypothesis that the Congo Basin clade of MPXV is more easily transmitted, via respiratory route, than the West African clade. Using a small number of test animals, we show that transmission of viruses from each of the MPXV clade was minimal via respiratory transmission. However, transmissibility of the Congo Basin clade was slightly greater than West African MXPV clade (16.7% and 0% respectively. Based on these findings, respiratory transmission appears to be less efficient than those of previous studies assessing contact as a mechanism of transmission within the prairie dog MPXV animal model.

  13. Using stable isotopes to understand hydrochemical processes in and around a Prairie Pothole wetland in the Northern Great Plains, USA

    International Nuclear Information System (INIS)

    Mills, Christopher T.; Goldhaber, Martin B.; Stricker, Craig A.; Holloway, JoAnn M.; Morrison, Jean M.; Ellefsen, Karl J.; Rosenberry, Donald O.; Thurston, Roland S.

    2011-01-01

    Highlights: → A stable isotope study of the hydrochemistry of a Prairie Pothole wetland system. → δ 18 O H2O and δ 2 H H2O values show salt concentration by transpiration at wetland edge. → A range of δ 34 S SO4 values indicate SO 4 source and reduction processes. → Isotopic mixing lines show interaction of surface and groundwater at wetland edge. - Abstract: Millions of internally drained wetland systems in the Prairie Potholes region of the northern Great Plains (USA and Canada) provide indispensable habitat for waterfowl and a host of other ecosystem services. The hydrochemistry of these systems is complex and a crucial control on wetland function, flora and fauna. Wetland waters can have high concentrations of SO 4 2- due to the oxidation of large amounts of pyrite in glacial till that is in part derived from the Pierre shale. Water chemistry including δ 18 O H2O , δ 2 H H2O , and δ 34 S SO4 values, was determined for groundwater, soil pore water, and wetland surface water in and around a discharge wetland in North Dakota. The isotopic data for the first time trace the interaction of processes that affect wetland chemistry, including open water evaporation, plant transpiration, and microbial SO 4 reduction.

  14. Influence of land use and climate on wetland breeding birds in the Prairie Pothole region of Canada

    Science.gov (United States)

    Forcey, G.M.; Linz, G.M.; Thogmartin, W.E.; Bleier, W.J.

    2007-01-01

    Bird populations are influenced by a variety of factors at both small and large scales that range from the presence of suitable nesting habitat, predators, and food supplies to climate conditions and land-use patterns. We evaluated the influences of regional climate and land-use variables on wetland breeding birds in the Canada section of Bird Conservation Region 11 (CA-BCR11), the Prairie Potholes. We used bird abundance data from the North American Breeding Bird Survey, land-use data from the Prairie Farm Rehabilitation Administration, and weather data from the National Climatic Data and Information Archive to model effects of regional environmental variables on bird abundance. Models were constructed a priori using information from published habitat associations in the literature, and fitting was performed with WinBUGS using Markov chain Monte Carlo techniques. Both land-use and climate variables contributed to predicting bird abundance in CA-BCR11, although climate predictors contributed the most to improving model fit. Examination of regional effects of climate and land use on wetland birds in CA-BCR11 revealed relationships with environmental covariates that are often overlooked by small-scale habitat studies. Results from these studies can be used to improve conservation and management planning for regional populations of avifauna. ?? 2007 NRC.

  15. From "Duck Factory" to "Fish Factory": Climate induced changes in vertebrate communities of prairie pothole wetlands and small lakes

    Science.gov (United States)

    McLean, Kyle I.; Mushet, David M.; Stockwell, Craig A.

    2016-01-01

    The Prairie Pothole Region’s myriad wetlands and small lakes contribute to its stature as the “duck factory” of North America. The fishless nature of the region’s aquatic habitats, a result of frequent drying, freezing, and high salinity, influences its importance to waterfowl. Recent precipitation increases have resulted in higher water levels and wetland/lake freshening. In 2012–13, we sampled chemical characteristics and vertebrates (fish and salamanders) of 162 Prairie Pothole wetlands and small lakes. We used non-metric multidimensional scaling, principal component analysis, and bootstrapping techniques to reveal relationships. We found fish present in a majority of sites (84 %). Fish responses to water chemistry varied by species. Fathead minnows (Pimephales promelas) and brook sticklebacks (Culaea inconstans) occurred across the broadest range of conditions. Yellow perch (Perca flavescens) occurred in a smaller, chemically defined, subset. Iowa darters (Etheostoma exile) were restricted to the narrowest range of conditions. Tiger salamanders (Ambystoma mavortium) rarely occurred in lakes with fish. We also compared our chemical data to similar data collected in 1966–1976 to explore factors contributing to the expansion of fish into previously fishless sites. Our work contributes to a better understanding of relationships between aquatic biota and climate-induced changes in this ecologically important area.

  16. Comparison of Monkeypox Virus Clade Kinetics and Pathology within the Prairie Dog Animal Model Using a Serial Sacrifice Study Design

    Directory of Open Access Journals (Sweden)

    Christina L. Hutson

    2015-01-01

    Full Text Available Monkeypox virus (MPXV infection of the prairie dog is valuable to studying systemic orthopoxvirus disease. To further characterize differences in MPXV clade pathogenesis, groups of prairie dogs were intranasally infected (8×103 p.f.u. with Congo Basin (CB or West African (WA MPXV, and 28 tissues were harvested on days 2, 4, 6, 9, 12, 17, and 24 postinfection. Samples were evaluated for the presence of virus and gross and microscopic lesions. Virus was recovered from nasal mucosa, oropharyngeal lymph nodes, and spleen earlier in CB challenged animals (day 4 than WA challenged animals (day 6. For both groups, primary viremia (indicated by viral DNA was seen on days 6–9 through day 17. CB MPXV spread more rapidly, accumulated to greater levels, and caused greater morbidity in animals compared to WA MPXV. Histopathology and immunohistochemistry (IHC findings, however, were similar. Two animals that succumbed to disease demonstrated abundant viral antigen in all organs tested, except for brain. Dual-IHC staining of select liver and spleen sections showed that apoptotic cells (identified by TUNEL tended to colocalize with poxvirus antigen. Interestingly splenocytes were labelled positive for apoptosis more often than hepatocytes in both MPXV groups. These findings allow for further characterization of differences between MPXV clade pathogenesis, including identifying sites that are important during early viral replication and cellular response to viral infection.

  17. Radionuclides in small mammals of the Saskatchewan prairie, including implications for the boreal forest and Arctic tundra

    International Nuclear Information System (INIS)

    Thomas, P.A.

    1995-01-01

    The focus of the study reported was to collect and examine baseline data on radionuclides in small prairie mammal food chains and to assess the feasibility of using small mammals as radionuclide monitors in terrestrial ecosystems, in anticipation of possible future nuclear developments in northern Saskatchewan and the Northwest Territories. The study report begins with a literature review that summarizes existing data on radionuclides in small mammals, their food, the ambient environment in Canadian terrestrial ecosystems, principles of terrestrial radioecology, soil and vegetation studies, and food chain studies. It then describes a field study conducted to investigate small mammal food chains at three southwestern Saskatchewan prairie sites. Activities included collection and analysis of water, soil, grains, and foliage samples; trapping of small mammals such as mice and voles, and analysis of gastrointestinal tract samples; and determination of food chain transfer of selected radionuclides from soil to plants and to small mammals. Recommendations are made for future analyses and monitoring of small mammals. Appendices include information on radiochemical methods, soil/vegetation studies and small mammal studies conducted at northern Saskatchewan mine sites, and analyses of variance

  18. Breeding biologies, pollinators and seed beetles of two prairie-clovers, Dalea ornata and D. searlsiae (Fabaceae: Amorpheae), from the Intermountain West USA

    Science.gov (United States)

    Two prairie-clovers, Dalea ornata and D. searlsiae, are perennial forbs that flower during early summer throughout the Colombia Plateau and Great Basin of the western USA, respectively. Their seed is desirable for use in rangeland restoration. We experimentally characterized the breeding biologies ...

  19. Sound transmission at ground level in a short-grass prairie habitat and its implications for long-range communication in the swift fox Vulpes velox

    DEFF Research Database (Denmark)

    Darden, Safi K; Pedersen, Simon B; Larsen, Ole N

    2008-01-01

    The acoustic environment of swift foxes Vulpes velox vocalizing close to the ground and the effect of propagation on individual identity information in vocalizations were quantified in a transmission experiment in prairie habitat. Sounds were propagated (0.45 m above the ground) at distances up t...

  20. Responses of Juvenile Black-tailed Prairie Dogs ( Cynomys ludovicianus ) to a Commercially Produced Oral Plague Vaccine Delivered at Two Doses.

    Science.gov (United States)

    Cárdenas-Canales, Elsa M; Wolfe, Lisa L; Tripp, Daniel W; Rocke, Tonie E; Abbott, Rachel C; Miller, Michael W

    2017-10-01

    We confirmed safety and immunogenicity of mass-produced vaccine baits carrying an experimental, commercial-source plague vaccine (RCN-F1/V307) expressing Yersinia pestis V and F1 antigens. Forty-five juvenile black-tailed prairie dogs ( Cynomys ludovicianus ) were randomly divided into three treatment groups (n=15 animals/group). Animals in the first group received one standard-dose vaccine bait (5×10 7 plaque-forming units [pfu]; STD). The second group received a lower-dose bait (1×10 7 pfu; LOW). In the third group, five animals received two standard-dose baits and 10 were left untreated but in contact. Two vaccine-treated and one untreated prairie dogs died during the study, but laboratory analyses ruled out vaccine involvement. Overall, 17 of 33 (52%; 95% confidence interval for binomial proportion [bCI] 34-69%) prairie dogs receiving vaccine-laden bait showed a positive anti-V antibody response on at least one sampling occasion after bait consumption, and eight (24%; bCI 11-42%) showed sustained antibody responses. The STD and LOW groups did not differ (P≥0.78) in their proportions of overall or sustained antibody responses after vaccine bait consumption. Serum from one of the nine (11%; bCI 0.3-48%) surviving untreated, in-contact prairie dogs also had detectable antibody on one sampling occasion. We did not observe any adverse effects related to oral vaccination.

  1. Net Fluxes of CO2, but not N20 or CH4, are Affected Following Agronomic-Scale Additions of Urea to Prairie and Arable Soils

    Science.gov (United States)

    Microbial production of carbon dioxide (CO2) increased with nitrogen (N) application rate for both arable and prairie soils incubated at 21 °C. Rate of N applied as urea (0, 11, 56, 112 kg N ha-1) did not affect soil methane consumption and nitrous oxide production for soil collected from either ec...

  2. Effects of including saponins (Micro-aid®) on intake, rumen fermentation, and digestibility in steers fed low-quality prairie hay

    Science.gov (United States)

    Sixteen ruminally-cannulated crossbred steers (529 ± 45 kg initial body weight, BW) were used to evaluate in situ dry matter (DM), neutral detergent fiber (aNDF), and N degradation characteristics of low quality prairie hay, blood urea nitrogen (BUN) and rumen fermentation parameters in steers provi...

  3. Prevalence of Yersinia pestis in rodents and fleas associated with black-tailed prairie dogs (Cynomys ludovicianus) at Thunder Basin National Grassland, Wyoming

    Science.gov (United States)

    Thiagarajan, Bala; Bai, Ying; Gage, Kenneth L.; Cully, Jack F.

    2008-01-01

    Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off.

  4. Development and application of a spatial IBM to forecast greater prairie-chicken population responses to land use in the Flint Hills region of Kansas - SCB meeting

    Science.gov (United States)

    Greater prairie-chicken (Tympanachus cupido) populations have been on the decline for decades. Recent efforts to reverse this trend are focusing on two specific disturbance regimes, cattle grazing and field burning, both prevalent in the Flint Hill region of Kansas -- an area of...

  5. Development and application of a spatial IBM to forecast greater prairie-chicken population responses to land use in the Flint Hills region of Kansas

    Science.gov (United States)

    Greater prairie-chicken (Tympanachus cupido) populations have been on the decline for decades. Recent efforts to reverse this trend are focusing on two specific disturbance regimes, cattle grazing and field burning, both prevalent in the Flint Hill region of Kansas -- an area of...

  6. Effects of prescribed burning and litter type on litter decomposition and nutrient release in mixed-grass prairie in Eastern Montana

    Science.gov (United States)

    Fire can affect litter decomposition and carbon (C) and nitrogen (N) dynamics. Here, we examined the effect of summer fire and three litter types on litter decomposition and litter C and N dynamics in a northern mixed-grass prairie over a 24 month period starting ca. 14 months after fire. Over all...

  7. Environmental monitoring and ecological studies program. 1974 annual report for the Prairie Island Nuclear Generating Plant near Red Wing, Minnesota. Volume II

    International Nuclear Information System (INIS)

    1975-06-01

    Data are presented from studies on the effects of thermal effluents from the Prairie Island nuclear power plant on fish and invertebrate populations in the Mississippi River in the vicinity of the plant. Populations of aquatic and terrestrial plants and birds in the immediate vicinity of the plant were also characterized. (U.S.)

  8. Evaluation of the greenhouse effect gases (CO2, CH4, N2O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002

    International Nuclear Information System (INIS)

    Soussana, J.F.

    2002-12-01

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO 2 and CH 4 (by the breeding animals on grass) and N 2 O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  9. Effects of N on plant response to heat-wave: a field study with prairie vegetation.

    Science.gov (United States)

    Wang, Dan; Heckathorn, Scott A; Mainali, Kumar; Hamilton, E William

    2008-11-01

    More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic ecological impacts. Increasing nitrogen (N) availability and its dynamics will likely impact plant responses to heat stress and carbon (C) sequestration in terrestrial ecosystems. This field study examined the effects of N availability on plant response to heat-stress (HS) treatment in naturally-occurring vegetation. HS (5 d at ambient or 40.5 degrees C) and N treatments (+/-N) were applied to 16 1 m(2) plots in restored prairie vegetation dominated by Andropogon gerardii (warm-season C4 grass) and Solidago canadensis (warm-season C3 forb). Before, during, and after HS, air, canopy, and soil temperature were monitored; net CO2 assimilation (P(n)), quantum yield of photosystem II (Phi(PSII)), stomatal conductance (g(s)), and leaf water potential (Psi(w)) of the dominant species and soil respiration (R(soil)) of each plot were measured daily during HS. One week after HS, plots were harvested, and C% and N% were determined for rhizosphere and bulk soil, and above-ground tissue (green/senescent leaf, stem, and flower). Photosynthetic N-use efficiency (PNUE) and N resorption rate (NRR) were calculated. HS decreased P(n), g(s), Psi(w), and PNUE for both species, and +N treatment generally increased these variables (+/-HS), but often slowed their post-HS recovery. Aboveground biomass tended to decrease with HS in both species (and for green leaf mass in S. canadensis), but decrease with +N for A. gerardii and increase with +N for S. canadensis. For A. gerardii, HS tended to decrease N% in green tissues with +N, whereas in S. canadensis, HS increased N% in green leaves. Added N decreased NRR for A. gerardii and HS increased NRR for S. canadensis. These results suggest that heat waves, though transient, could have significant effects on plants, communities, and ecosystem N cycling, and N can influence the effect of heat waves.

  10. Spatially explicit modeling of blackbird abundance in the Prairie Pothole Region

    Science.gov (United States)

    Forcey, Greg M.; Thogmartin, Wayne E.; Linz, George M.; McKann, Patrick C.; Crimmins, Shawn M.

    2015-01-01

    Knowledge of factors influencing animal abundance is important to wildlife biologists developing management plans. This is especially true for economically important species such as blackbirds (Icteridae), which cause more than $100 million in crop damages annually in the United States. Using data from the North American Breeding Bird Survey, the National Land Cover Dataset, and the National Climatic Data Center, we modeled effects of regional environmental variables on relative abundance of 3 blackbird species (red-winged blackbird,Agelaius phoeniceus; yellow-headed blackbird, Xanthocephalus xanthocephalus; common grackle, Quiscalus quiscula) in the Prairie Pothole Region of the central United States. We evaluated landscape covariates at 3 logarithmically related spatial scales (1,000 ha, 10,000 ha, and 100,000 ha) and modeled weather variables at the 100,000-ha scale. We constructed models a priori using information from published habitat associations. We fit models with WinBUGS using Markov chain Monte Carlo techniques. Both landscape and weather variables contributed strongly to predicting blackbird relative abundance (95% credibility interval did not overlap 0). Variables with the strongest associations with blackbird relative abundance were the percentage of wetland area and precipitation amount from the year before bird surveys were conducted. The influence of spatial scale appeared small—models with the same variables expressed at different scales were often in the best model subset. This large-scale study elucidated regional effects of weather and landscape variables, suggesting that management strategies aimed at reducing damages caused by these species should consider the broader landscape, including weather effects, because such factors may outweigh the influence of localized conditions or site-specific management actions. The regional species distributional models we developed for blackbirds provide a tool for understanding these broader

  11. A long-term perspective on anthropogenic activities and management strategies in a prairie wetland

    Science.gov (United States)

    Hobbs, J. M.; Hobbs, W.; LaFrancois, T.; Edlund, M.; Theissen, K. M.; Zimmer, K.; Hanson, M.

    2012-12-01

    Multiple stressors to shallow lake/wetland ecosystems have the ability to control the relative stability of alternative states (clear, macrophyte-dominated or turbid, algal dominated). As a consequence, the use of remedial biomanipulations to induce trophic cascades and shift a turbid lake to a clear state is often only a temporary solution. Here we show the instability of short-term manipulations in the shallow Lake Christina (a Class V wetland in the prairie ecoregion of western Minnesota, USA) is governed by the long-term state following a regime shift in the lake. During the modern, managed period of the lake, three top-down manipulations (fish kills) were undertaken inducing temporary (5-10 years) unstable clear-water states. Paleoecological remains of diatoms, along with proxies of primary production (total chlorophyll a and total organic carbon accumulation rate) and trophic state (total P) from sediment records clearly show a single regime shift in the lake during the early 1950s; following this shift, the functioning of the lake ecosystem is dominated by a persistent turbid state. We find that multiple stressors contributed to the regime shift. First, the lake began to eutrophy (from agricultural land use and/or increased waterfowl populations), leading to a dramatic increase in primary production. Soon after, the construction of a dam in 1936 effectively doubled the depth of the lake, compounded by increases in regional humidity; this resulted in an increase in planktivorous and benthivorous fish reducing phytoplankton grazers. These factors further conspired to increase the stability of a turbid regime during the modern managed period, such that switches to a clear-water state were inherently unstable and the lake consistently returned to a turbid state. We conclude that while top-down manipulations have had measurable impacts on the lake state, they have not been effective in providing a return to an ecosystem similar to the stable historical period

  12. Hydropedological model of vertisol formation along the Gulf Coast Prairie land resource area of Texas

    Directory of Open Access Journals (Sweden)

    S. G. Driese

    2009-11-01

    Full Text Available Vertisols are clayey soils containing slickensides and wedge-shaped aggregates formed by shrink-swell processes in seasonally wet climates. The dynamic distribution of macro- and microvoids as a by-product of this unique pedoturbation process, accompanied by microtopographic lows and highs (gilgai, mitigate our ability to make accurate and precise interpretations of aquic and hydric conditions in these problem soils. We studied Vertisols across a subhumid to humid climosequence to assess the formation of redoximorphic features on shallow, linear (nondepressional landscape positions in response to varying levels of rainfall. Approximately 1000 mm of mean annual precipitation (MAP is required to form soft iron masses that then increase in abundance, and to shallower depths, with increasing rainfall. Soft iron masses with diffuse boundaries become more abundant with higher rainfall in microlows, whereas masses with nondiffuse boundaries become more common in microhighs. Most soft iron masses form in oxygenated ped interiors as water first saturates and then reduces void walls where iron depletions form. In contrast, at least 1276 mm of MAP is needed to form iron pore linings in both microlow and microhigh topographic positions. Iron depletions do not correlate with rainfall in terms of abundance or depth of occurrence. The quantity of crayfish burrows co-varies with rainfall and first appears coincidentally with soft iron masses in microlows near 1000 mm of MAP; they do not appear until nearly 1400 mm of MAP in microhighs. Dithionite-citrate extractable and ammonium-oxalate extractable iron oxides increase systematically with rainfall indicating more frequent episodes of iron reduction and precipitation into pedogenic segregations. The sum of our data suggests that Vertisols forming in the Coast Prairie of Texas with MAP greater than 1276 mm should be classified as aquerts because of the presence of aquic conditions. These same soils may also meet

  13. Projected changes to short- and long-duration precipitation extremes over the Canadian Prairie Provinces

    Science.gov (United States)

    Masud, M. B.; Khaliq, M. N.; Wheater, H. S.

    2017-09-01

    The effects of climate change on April-October short- and long-duration precipitation extremes over the Canadian Prairie Provinces were evaluated using a multi-Regional Climate Model (RCM) ensemble available through the North American Regional Climate Change Assessment Program. Simulations considered include those performed with six RCMs driven by the National Centre for Environmental Prediction (NCEP) reanalysis II product for the 1981-2000 period and those driven by four Atmosphere-Ocean General Circulation Models (AOGCMs) for the current 1971-2000 and future 2041-2070 periods (i.e. a total of 11 current-to-future period simulation pairs). A regional frequency analysis approach was used to develop 2-, 5-, 10-, 25-, and 50-year return values of precipitation extremes from NCEP and AOGCM-driven current and future period simulations that respectively were used to study the performance of RCMs and projected changes for selected return values at regional, grid-cell and local scales. Performance errors due to internal dynamics and physics of RCMs studied for the 1981-2000 period reveal considerable variation in the performance of the RCMs. However, the performance errors were found to be much smaller for RCM ensemble averages than for individual RCMs. Projected changes in future climate to selected regional return values of short-duration (e.g. 15- and 30-min) precipitation extremes and for longer return periods (e.g. 50-year) were found to be mostly larger than those to the longer duration (e.g. 24- and 48-h) extremes and short return periods (e.g. 2-year). Overall, projected changes in precipitation extremes were larger for southeastern regions followed by southern and northern regions and smaller for southwestern and western regions of the study area. The changes to return values were also found to be statistically significant for the majority of the RCM-AOGCM simulation pairs. These projections might be useful as a key input for the future planning of urban

  14. Repeated burning of eastern tallgrass prairie increases richness and diversity, stabilizing late successional vegetation.

    Science.gov (United States)

    Bowles, Marlin L; Jones, Michael D

    2013-03-01

    Understanding temporal effects of fire frequency on plant species diversity and vegetation structure is critical for managing tallgrass prairie (TGP), which occupies a mid-continental longitudinal precipitation and productivity gradient. Eastern TGP has contributed little information toward understanding whether vegetation-fire interactions are uniform or change across this biome. We resampled 34 fire-managed mid- and late-successional ungrazed TGP remnants occurring across a dry to wet-mesic moisture gradient in the Chicago region of Illinois, USA. We compared hypotheses that burning acts either as a stabilizing force or causes change in diversity and structure, depending upon fire frequency and successional stage. Based on western TGP, we expected a unimodal species richness distribution across a cover-productivity gradient, variable functional group responses to fire frequency, and a negative relationship between fire frequency and species richness. Species diversity was unimodal across the cover gradient and was more strongly humpbacked in stands with greater fire frequency. In support of a stabilizing hypothesis, temporal similarity of late-successional vegetation had a logarithmic relationship with increasing fire frequency, while richness and evenness remained stable. Temporal similarity within mid-successional stands was not correlated with fire frequency, while richness increased and evenness decreased over time. Functional group responses to fire frequency were variable. Summer forb richness increased under high fire frequency, while C4 grasses, spring forbs, and nitrogen-fixing species decreased with fire exclusion. On mesic and wet-mesic sites, vegetation structure measured by the ratio of woody to graminoid species was negatively correlated with abundance of forbs and with fire frequency. Our findings that species richness responds unimodally to an environmental-productivity gradient, and that fire exclusion increases woody vegetation and leads to loss

  15. Hydropedological model of vertisol formation along the Gulf Coast Prairie land resource area of Texas

    Science.gov (United States)

    Nordt, L. C.; Driese, S. G.

    2009-11-01

    Vertisols are clayey soils containing slickensides and wedge-shaped aggregates formed by shrink-swell processes in seasonally wet climates. The dynamic distribution of macro- and microvoids as a by-product of this unique pedoturbation process, accompanied by microtopographic lows and highs (gilgai), mitigate our ability to make accurate and precise interpretations of aquic and hydric conditions in these problem soils. We studied Vertisols across a subhumid to humid climosequence to assess the formation of redoximorphic features on shallow, linear (nondepressional) landscape positions in response to varying levels of rainfall. Approximately 1000 mm of mean annual precipitation (MAP) is required to form soft iron masses that then increase in abundance, and to shallower depths, with increasing rainfall. Soft iron masses with diffuse boundaries become more abundant with higher rainfall in microlows, whereas masses with nondiffuse boundaries become more common in microhighs. Most soft iron masses form in oxygenated ped interiors as water first saturates and then reduces void walls where iron depletions form. In contrast, at least 1276 mm of MAP is needed to form iron pore linings in both microlow and microhigh topographic positions. Iron depletions do not correlate with rainfall in terms of abundance or depth of occurrence. The quantity of crayfish burrows co-varies with rainfall and first appears coincidentally with soft iron masses in microlows near 1000 mm of MAP; they do not appear until nearly 1400 mm of MAP in microhighs. Dithionite-citrate extractable and ammonium-oxalate extractable iron oxides increase systematically with rainfall indicating more frequent episodes of iron reduction and precipitation into pedogenic segregations. The sum of our data suggests that Vertisols forming in the Coast Prairie of Texas with MAP greater than 1276 mm should be classified as aquerts because of the presence of aquic conditions. These same soils may also meet the definition of

  16. Prairie Pothole Region wetlands and subsurface drainage systems: Key factors for determining drainage setback distances

    Science.gov (United States)

    Tangen, Brian; Wiltermuth, Mark T.

    2018-01-01

    Use of agricultural subsurface drainage systems in the Prairie Pothole Region of North America continues to increase, prompting concerns over potential negative effects to the Region's vital wetlands. The U.S. Fish and Wildlife Service protects a large number of wetlands through conservation easements that often utilize standard lateral setback distances to provide buffers between wetlands and drainage systems. Because of a lack of information pertaining to the efficacy of these setback distances for protecting wetlands, information is required to support the decision making for placement of subsurface drainage systems adjacent to wetlands. We used qualitative graphical analyses and data comparisons to identify characteristics of subsurface drainage systems and wetland catchments that could be considered when assessing setback distances. We also compared setback distances with catchment slope lengths to determine if they typically exclude drainage systems from the catchment. We demonstrated that depth of a subsurface drainage system is a key factor for determining drainage setback distances. Drainage systems located closer to the surface (shallow) typically could be associated with shorter lateral setback distances compared with deeper systems. Subsurface drainage systems would be allowed within a wetland's catchment for 44–59% of catchments associated with wetland conservation easements in North Dakota. More specifically, results suggest that drainage setback distances generally would exclude drainage systems from catchments of the smaller wetlands that typically have shorter slopes in the adjacent upland contributing area. For larger wetlands, however, considerable areas of the catchment would be vulnerable to drainage that may affect wetland hydrology. U.S. Fish and Wildlife Service easements are associated with > 2,000 km2 of wetlands in North Dakota, demonstrating great potential to protect these systems from drainage depending on policies for installing

  17. Long-term spatial heterogeneity in mallard distribution in the Prairie pothole region

    Science.gov (United States)

    Janke, Adam K.; Anteau, Michael J.; Stafford, Joshua D.

    2017-01-01

    The Prairie Pothole Region (PPR) of north-central United States and south-central Canada supports greater than half of all breeding mallards (Anas platyrhynchos) annually counted in North America and is the focus of widespread conservation and research efforts. Allocation of conservation resources for this socioeconomically important population would benefit from an understanding of the nature of spatiotemporal variation in distribution of breeding mallards throughout the 850,000 km2 landscape. We used mallard counts from the Waterfowl Breeding Population and Habitat Survey to test for spatial heterogeneity and identify high- and low-abundance regions of breeding mallards over a 50-year time series. We found strong annual spatial heterogeneity in all years: 90% of mallards counted annually were on an average of only 15% of surveyed segments. Using a local indicator of spatial autocorrelation, we found a relatively static distribution of low-count clusters in northern Montana, USA, and southern Alberta, Canada, and a dynamic distribution of high-count clusters throughout the study period. Distribution of high-count clusters shifted southeast from northwestern portions of the PPR in Alberta and western Saskatchewan, Canada, to North and South Dakota, USA, during the latter half of the study period. This spatial redistribution of core mallard breeding populations was likely driven by interactions between environmental variation that created favorable hydrological conditions for wetlands in the eastern PPR and dynamic land-use patterns related to upland cropping practices and government land-retirement programs. Our results highlight an opportunity for prioritizing relatively small regions within the PPR for allocation of wetland and grassland conservation for mallard populations. However, the extensive spatial heterogeneity in core distributions over our study period suggests such spatial prioritization will have to overcome challenges presented by dynamic land

  18. Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function

    Directory of Open Access Journals (Sweden)

    P. A. Fay

    2011-10-01

    Full Text Available Precipitation and temperature drive many aspects of terrestrial ecosystem function. Climate change scenarios predict increasing precipitation variability and temperature, and long term experiments are required to evaluate the ecosystem consequences of interannual climate variation, increased growing season (intra-annual rainfall variability, and warming. We present results from an experiment applying increased growing season rainfall variability and year round warming in native tallgrass prairie. During ten years of study, total growing season rainfall varied 2-fold, and we found ~50–200% interannual variability in plant growth and aboveground net primary productivity (ANPP, leaf carbon assimilation (ACO2, and soil CO2 efflux (JCO2 despite only ~40% variation in mean volumetric soil water content (0–15 cm, Θ15. Interannual variation in soil moisture was thus amplified in most measures of ecosystem response. Differences between years in Θ15 explained the greatest portion (14–52% of the variation in these processes. Experimentally increased intra-annual season rainfall variability doubled the amplitude of intra-annual soil moisture variation and reduced Θ15 by 15%, causing most ecosystem processes to decrease 8–40% in some or all years with increased rainfall variability compared to ambient rainfall timing, suggesting reduced ecosystem rainfall use efficiency. Warming treatments increased soil temperature at 5 cm depth, particularly during spring, fall, and winter. Warming advanced canopy green up in spring, increased winter JCO2, and reduced summer JCO2 and forb ANPP, suggesting that the effects of warming differed in cooler versus warmer parts of the year. We conclude that (1 major ecosystem processes in this grassland may be substantially altered by predicted changes in

  19. The effects of differential prenatal and postnatal social enviroments on sexual maturation of young prairie deermice (Peromyscus maniculatus bairdii).

    Science.gov (United States)

    Thomas, D; Terman, C R

    1975-05-01

    We compared the influence of different social enviroments on sexual maturation of young prairie deermice. Between 12 and 48 hr after parturition, one-half of a litter from a population was exchanged with one-half of a litter from a bisexual pair. In each situation the remaining half-litter served as controls for the exchange procedure. The testes and vesicular weights of population-reared males were significantly larger than those of males reared by bisexual pairs, irrespective of prenatal enviroment. Generally, population-reared females also had larger reproductive organs than those reared by bisexual pairs, although these differences were not statistically significant. There were no significant differences in the adrenal weights of males or females, but females reared by bisexual pairs had larger absolute and relative adrenals than females reared in populations.

  20. What community characteristics help or hinder rural communities in becoming age-friendly? Perspectives from a Canadian prairie province.

    Science.gov (United States)

    Spina, John; Menec, Verena H

    2015-06-01

    Age-friendly initiatives are increasingly promoted as a policy solution to healthy aging, The primary objective of this article was to examine older adults' and key stakeholders' perceptions of the factors that either help or hinder a community from becoming age-friendly in the context of rural Manitoba, a Canadian prairie province. Twenty-four older adults and 17 key informants completed a qualitative interview. The findings show that contextual factors including size, location, demographic composition, ability to secure investments, and leadership influence rural communities' ability to become age-friendly. Government must consider the challenges these communities face in becoming more age-friendly and develop strategies to support communities. © The Author(s) 2013.

  1. Settlement patterns, GIS, remote sensing, and the late prehistory of the Black Prairie in east central Mississippi

    Science.gov (United States)

    Johnson, Jay K.

    1991-01-01

    Data recovered as the result of a recent field project designed to test a model of the distribution of protohistoric settlement in an unusual physiographic zone in eastern Mississippi are examined using GIS based techniques to manipulate soil and stream distance information. Significant patterning is derived. The generally thin soils and uniform substratum of the Black Prairie in combination with a distinctive settlement pattern offer a promising opportunity for the search for site specific characteristics within airborne imagery. Landsat TM data provide information on modern ground cover which is used as a mask to select areas in which a multivariate search for archaeological site signatures within a TIMS image is most likely to prove fruitful.

  2. Evidence for a climate-induced ecohydrological state shift in wetland ecosystems of the southern Prairie Pothole Region

    Science.gov (United States)

    McKenna, Owen; Mushet, David M.; Rosenberry, Donald O.; LaBaugh, James W.

    2017-01-01

    Changing magnitude, frequency, and timing of precipitation can influence aquatic-system hydrological, geochemical, and biological processes, in some cases resulting in system-wide shifts to an alternate state. Since the early 1990s, the southern Prairie Pothole Region has been subjected to an extended period of increased wetness resulting in marked changes to aquatic systems defining this region. We explored numerous lines of evidence to identify: (1) how the recent wet period compared to historical variability, (2) hydrological, geochemical, and biological responses, and (3) how these responses might represent a state shift in the region’s wetland ecosystems. We analyzed long-term climate records and compared how different hydrological variables responded in this wet period compared to decades before the observed shift. Additionally, we used multi-decadal records of waterfowl population and subsurface tile drain records to explore wildlife and human responses to a shifting climate. Since 1993, a novel precipitation regime corresponded with increased pond numbers, ponded-water depths, lake levels, stream flows, groundwater heights, soil-moisture, waterfowl populations, and installation of subsurface tile drains in agricultural fields. These observed changes reflect an alteration in water storage and movement across the landscape that in turn has altered solute sources and concentrations of prairie-pothole wetlands and has increased pond permanence. Combined, these changes represent significant evidence for a state shift in the ecohydrological functioning of the region’s wetland ecosystems, a shift that may require a significant refinement of the previously developed “wetland continuum” concept.

  3. A comparison of methods to estimate daily global solar irradiation from other climatic variables on the Canadian prairies

    International Nuclear Information System (INIS)

    Barr, A.G.; McGinn, S.M.; Cheng, S.B.

    1996-01-01

    Historic estimates of daily global solar irradiation are often required for climatic impact studies. Regression equations with daily global solar irradiation, H, as the dependent variable and other climatic variables as the independent variables provide a practical way to estimate H at locations where it is not measured. They may also have potential to estimate H before 1953, the year of the first routine H measurements in Canada. This study compares several regression equations for calculating H on the Canadian prairies. Simple linear regression with daily bright sunshine duration as the dependent variable accounted for 90% of the variation of H in summer and 75% of the variation of H in winter. Linear regression with the daily air temperature range as the dependent variable accounted for 45% of the variation of H in summer and only 6% of the variation of H in winter. Linear regression with precipitation status (wet or dry) as the dependent variable accounted for only 35% of the summer-time variation in H, but stratifying other regression analyses into wet and dry days reduced their root-mean-squared errors. For periods with sufficiently dense bright sunshine observations (i.e. after 1960), however, H was more accurately estimated from spatially interpolated bright sunshine duration than from locally observed air temperature range or precipitation status. The daily air temperature range and precipitation status may have utility for estimating H for periods before 1953, when they are the only widely available climatic data on the Canadian prairies. Between 1953 and 1989, a period of large climatic variation, the regression coefficients did not vary significantly between contrasting years with cool-wet, intermediate and warm-dry summers. They should apply equally well earlier in the century. (author)

  4. Effect of vegetation on the energy balance and evapotranspiration in tallgrass prairie: a paired study with eddy covariance systems

    Science.gov (United States)

    Sun, X.; Zou, C.; Wilcox, B. P.; Stebler, E.

    2017-12-01

    Whole-year measurement with eddy covariance system was carried out over two adjoining plots with contrasting vegetation coverage in tallgrass prairie, one was treated with herbicide and mowing while the other one kept as undisturbed control. The magnitude and phase difference between soil heat storage and ground heat flux were explicitly examined for its relative weights and energy balance. Surface turbulent flux (sensible heat and latent heat) accounted for about 85% of available energy at both sites, implying that vegetation coverage didn't significantly influence the closure scenario of energy imbalance. The seasonal and daily pattern of energy partitioning were dramatically different between the contrasting sites during growing season. The treated site received slightly lower net radiation due to high albedo, had higher sensible heat, and reduced latent heat due to reduction on transpiration. Annual evapotranspiration (ET) in treated site was only accounts for about 73% of annual ET in control. Meanwhile, lower surface conductance and decoupling factor showed that vegetation removal would increase the sensibility of ET to vapor pressure deficit and soil drought. ET dynamics is controlled by leaf area and net radiation when soil moisture is high, while soil drought caused stomata closure and subdued ET during drought. Stomata closure and transpiration reduction caused decline in ET, surface conductance, and decoupling factor. Soil moisture storage served as an important reservoir to meet peak ET demand during growing season. In summary, ET was the dominant component of water balance in tallgrass prairie, and any land management alterring the albedo, soil mositure storage, or canopy phenology (e.g., NDVI) could significantly affect energy and water budgets in .

  5. Determination of nutritional value of native prairie José Manuel Pando Province, Municipality of Santiago de Machaca

    Directory of Open Access Journals (Sweden)

    Instituto de Investigación en Ciencia Animal y Tecnología (IICAT

    2015-10-01

    Full Text Available This research work was conducted in the municipality of Santiago de Machaca which is the first section of the province, José Manuel Pando, it is located at the southeast of the Department of La Paz, at a distance of 205 km, from the city of La Paz. The objectives of this research were to: determine the biomass and floristic composition according to vegetative site, the stocking of native grasslands and the chemical composition of native prairie. The results were the following: the biomass composition and floristic composition is diverse, (35 native forrage species were identified in the vegetative site pampa, Marsh (11, hillside (18 and Hill (33. The capacity of stocking ability of (DC a stocking of native grasslands, Urtica flabellata (Itapallu (2.46; Bromus catharticus (bromus (1.26; Trifolium pratensis (Layulayu (1.38; Iberis sp. (tears of Virgin (1.55 and Hordium muticum (tail of mouse (1.64. Regarding chemical composition, the forage species with higher crude protein content of (% is Urtica flabellata (Itapallu, Bromus catharticus (bromus, 181,66 is 25.77%, forage species with higher energy content Kcal100/g Kcal100/g. and forage specie with higher content of iron mg / 100 g was Iberis sp. (Tears of Virgin, 20,97 mg / 100g. These identified species should be preserved and disseminated, since they showed greater amount of production and quality in content of nutrients required by animals. The conservation of these native species identified improve weight gain, consumption of native forage throughout the year, the chemical content, these native species studied, improve quality and cover the requirements from consumption of dry matter and nutrients required by animals. Finally this condition will positively affect the economy of the producers. It is recommended that these native species should be preserved and disseminated on the Prairies, since they showed greater amount of production and quality in content of nutrients required by animals.

  6. Through the Looking Glass: Muslim Women on Television—An Analysis of 24, Lost, and Little Mosque on the Prairie

    Directory of Open Access Journals (Sweden)

    Faiza Hirji

    2011-01-01

    Full Text Available In the ten years that have passed since September 11, 2001, media discourses regarding Muslims have changed superficially while essentializing stereotypes have been reinforced for the general public. This is true of many forms of media, but this paper focuses on popular television entertainment, and the way in which this has framed the Muslim woman. Media have had a longstanding fascination with the Muslim woman but this appears to have grown during the war in Afghanistan. Despite greater attention to this subject, the overarching discourses do not seem to be more complex than they were during previous events, such as the 1979 Revolution in Iran. Indeed, portrayals of Muslim women on television are arguably more regressive now than on September 10, 2001. Admittedly, at that time, it would probably have been unthinkable to imagine a series such as Little Mosque on the Prairie, and this show does constitute a significant source of change. However, when looking at depictions of female Muslim characters on shows such as Little Mosque and other popular network shows from the last ten years, such as 24, it is clear that television after 9/11 has not evolved in its depiction of the Muslim woman. Drawing upon existing literature regarding historical depictions, and utilizing a textual analysis of contemporary shows such as 24, Little Mosque on the Prairie and Lost, this paper interrogates the role of entertainment media in advancing pluralist discourses, and investigates the limitations and possibilities of historical and contemporary depictions of Muslim women in such media.

  7. Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles.

    Science.gov (United States)

    Johnson, Zachary V; Walum, Hasse; Jamal, Yaseen A; Xiao, Yao; Keebaugh, Alaine C; Inoue, Kiyoshi; Young, Larry J

    2016-03-01

    Oxytocin (OT) is a deeply conserved nonapeptide that acts both peripherally and centrally to modulate reproductive physiology and sociosexual behavior across divergent taxa, including humans. In vertebrates, the distribution of the oxytocin receptor (OTR) in the brain is variable within and across species, and OTR signaling is critical for a variety of species-typical social and reproductive behaviors, including affiliative and pair bonding behaviors in multiple socially monogamous lineages of fishes, birds, and mammals. Early work in prairie voles suggested that the endogenous OT system modulates mating-induced partner preference formation in females but not males; however, there is significant evidence that central OTRs may modulate pair bonding behavior in both sexes. In addition, it remains unclear how transient windows of central OTR signaling during sociosexual interaction modulate neural activity to produce enduring shifts in sociobehavioral phenotypes, including the formation of selective social bonds. Here we re-examine the role of the central OT system in partner preference formation in male prairie voles using a selective OTR antagonist delivered intracranially. We then use the same antagonist to examine how central OTRs modulate behavior and immediate early gene (Fos) expression, a metric of neuronal activation, in males during brief sociosexual interaction with a female. Our results suggest that, as in females, OTR signaling is critical for partner preference formation in males and enhances correlated activation across sensory and reward processing brain areas during sociosexual interaction. These results are consistent with the hypothesis that central OTR signaling facilitates social bond formation by coordinating activity across a pair bonding neural network. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The extra-atmospheric masses of small meteoric fireballs from the Prairie and the Canadian camera networks.

    Science.gov (United States)

    Popelenskaya, N.

    2007-08-01

    Existing methods of definition of extra-atmospheric masses of small meteoric bodies according to supervision of their movement in an atmosphere contain the certain arbitrariness. Vigorous attempts to overcome a divergence of results of calculations on the basis of various approaches often lead to physically incorrect conclusions. The output consists in patient accumulation of estimations and calculations for gradual elimination uncertainties. The equations of meteoric physics include two dimensionless parameters - factor ablation ? and factor of braking ?. In work are cited the data processing supervision of small meteors Prairie and Canadian networks, by a finding of values of parameters ? and ? with use of a method of the least squares. Also values of heights blackout a meteor which turn out from conditions of full destruction or final braking with use of the received values of ? and ? are considered. In prevailing number of supervision for considered meteors braking is insignificant. Results of calculations of height of blackout meteors confirm suitability of the approximations used in work for the description of movement of small meteors. In work results of calculation of extra-atmospheric masses with use of factor of braking for meteoric bodies of the spherical form with density of an ice and a stone are presented. On the basis of the received results discrepancy of photometric masses to values of masses of the input, received on observable braking proves to be true. In most cases received magnitude of masses essentially less photometric masses. Processing of supervision of small meteors Prairie and Canadian camera networks has shown, that the so-called photometric mass mismatches values of mass of the input, defined on observable braking. Acceptance of photometric value as the mass defining braking of a body, leads to obviously underestimated values of density of substance meteoric body. The further researches on specification of interpretation of supervision

  9. Chronic metals ingestion by prairie voles produces sex-specific deficits in social behavior: an animal model of autism.

    Science.gov (United States)

    Curtis, J Thomas; Hood, Amber N; Chen, Yue; Cobb, George P; Wallace, David R

    2010-11-12

    We examined the effects of chronic metals ingestion on social behavior in the normally highly social prairie vole to test the hypothesis that metals may interact with central dopamine systems to produce the social withdrawal characteristic of autism. Relative to water-treated controls, 10 weeks of chronic ingestion of either Hg(++) or Cd(++) via drinking water significantly reduced social contact by male voles when they were given a choice between isolation or contact with an unfamiliar same-sex conspecific. The effects of metals ingestion were specific to males: no effects of metals exposure were seen in females. Metals ingestion did not alter behavior of males allowed to choose between isolation or their familiar cage-mates, rather than strangers. We also examined the possibility that metals ingestion affects central dopamine functioning by testing the voles' locomotor responses to peripheral administration of amphetamine. As with the social behavior, we found a sex-specific effect of metals on amphetamine responses. Males that consumed Hg(++) did not increase their locomotor activity in response to amphetamine, whereas similarly treated females and males that ingested only water significantly increased their locomotor activities. Thus, an ecologically relevant stimulus, metals ingestion, produced two of the hallmark characteristics of autism - social avoidance and a male-oriented bias. These results suggest that metals exposure may contribute to the development of autism, possibly by interacting with central dopamine function, and support the use of prairie voles as a model organism in which to study autism. (c) 2010 Elsevier B.V. All rights reserved.

  10. Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles

    Science.gov (United States)

    Johnson, Zachary V.; Walum, Hasse; Jamal, Yaseen A.; Xiao, Yao; Keebaugh, Alaine C.; Inoue, Kiyoshi; Young, Larry J.

    2016-01-01

    Oxytocin (OT) is a deeply conserved nonapeptide that acts both peripherally and centrally to modulate reproductive physiology and sociosexual behavior across divergent taxa, including humans. In vertebrates, the distribution of the oxytocin receptor (OTR) in the brain is variable within and across species, and OTR signaling is critical for a variety of species-typical social and reproductive behaviors, including affiliative and pair bonding behaviors in multiple socially monogamous lineages of fishes, birds, and mammals. Early work in prairie voles suggested that the endogenous OT system modulates mating-induced partner preference formation in females but not males; however, there is significant evidence that central OTRs may modulate pair bonding behavior in both sexes. In addition, it remains unclear how transient windows of central OTR signaling during sociosexual interaction modulate neural activity to produce enduring shifts in sociobehavioral phenotypes, including the formation of selective social bonds. Here we re-examine the role of the central OT system in partner preference formation in male prairie voles using a selective OTR antagonist delivered intracranially. We then use the same antagonist to examine how central OTRs modulate behavior and immediate early gene (Fos) expression, a metric of neuronal activation, in males during brief sociosexual interaction with a female. Our results suggest that, as in females, OTR signaling is critical for partner preference formation in males and enhances correlated activation across sensory and reward processing brain areas during sociosexual interaction. These results are consistent with the hypothesis that central OTR signaling facilitates social bond formation by coordinating activity across a pair bonding neural network. PMID:26643557

  11. The oxytocin system promotes resilience to the effects of neonatal isolation on adult social attachment in female prairie voles

    Science.gov (United States)

    Barrett, C E; Arambula, S E; Young, L J

    2015-01-01

    Genes and social experiences interact to create variation in social behavior and vulnerability to develop disorders of the social domain. Socially monogamous prairie voles display remarkable diversity in neuropeptide receptor systems and social behavior. Here, we examine the interaction of early-life adversity and brain oxytocin receptor (OTR) density on adult social attachment in female prairie voles. First, pups were isolated for 3 h per day, or unmanipulated, from postnatal day 1–14. Adult subjects were tested on the partner preference (PP) test to assess social attachment and OTR density in the brain was quantified. Neonatal social isolation impaired female PP formation, without affecting OTR density. Accumbal OTR density was, however, positively correlated with the percent of time spent huddling with the partner in neonatally isolated females. Females with high accumbal OTR binding were resilient to neonatal isolation. These results are consistent with the hypothesis that parental nurturing shapes neural systems underlying social relationships by enhancing striatal OTR signaling. Thus, we next determined whether early touch, mimicking parental licking and grooming, stimulates hypothalamic OT neuron activity. Tactile stimulation induced immediate-early gene activity in OT neurons in neonates. Finally, we investigated whether pharmacologically potentiating OT release using a melanocortin 3/4 agonist, melanotan-II (10 mg kg−1 subcutaneously), would mitigate the social isolation-induced impairments in attachment behavior. Neonatal melanotan-II administration buffered against the effects of early isolation on partner preference formation. Thus, variation in accumbal OTR density and early OT release induced by parental nurturing may moderate susceptibility to early adverse experiences, including neglect. PMID:26196439

  12. Understanding the Impacts of AFEX™ Pretreatment and Densification on the Fast Pyrolysis of Corn Stover, Prairie Cord Grass, and Switchgrass.

    Science.gov (United States)

    Sundaram, Vijay; Muthukumarappan, Kasiviswanathan; Gent, Stephen

    2017-03-01

    Lignocellulosic feedstocks corn stover, prairie cord grass, and switchgrass were subjected to ammonia fiber expansion (AFEX™) pretreatment and densified using extrusion pelleting and ComPAKco densification technique. The effects of AFEX™ pretreatment and densification were studied on the fast pyrolysis product yields. Feedstocks were milled in a hammer mill using three different screen sizes (2, 4, and 8 mm) and were subjected to AFEX™ pretreatment. The untreated and AFEX™-pretreated feedstocks were moisture adjusted at three levels (5, 10, and 15 % wb) and were extruded using a lab-scale single screw extruder. The barrel temperature of the extruder was maintained at 75, 100, and 125 °C. Durability of the extruded pellets made from AFEX™-pretreated corn stover, prairie cord grass, and switchgrass varied from 94.5 to 99.2, 94.3 to 98.7, and 90.1 to 97.5 %, respectively. Results of the thermogravimetric analysis showed the decrease in the decomposition temperature of the all the feedstocks after AFEX™ pretreatment indicating the increase in thermal stability. Loose and densified feedstocks were subjected to fast pyrolysis in a lab-scale reactor, and the yields (bio-oil and bio-char) were measured. Bio-char obtained from the AFEX™-pretreated feedstocks exhibited increased bulk and particle density compared to the untreated feedstocks. The properties of the bio-oil were statistically similar for the untreated, AFEX™-pretreated, and AFEX™-pretreated densified feedstocks. Based on the bio-char and bio-oil yields, the AFEX™-pretreated feedstocks and the densified AFEX™-pretreated feedstocks (pellets and PAKs) exhibited similar behavior. Hence, it can be concluded that densifying the AFEX™-pretreated feedstocks could be a viable option in the biomass-processing depots to reduce the transportation costs and the logistical impediments without affecting the product yields.

  13. The oxytocin system promotes resilience to the effects of neonatal isolation on adult social attachment in female prairie voles.

    Science.gov (United States)

    Barrett, C E; Arambula, S E; Young, L J

    2015-07-21

    Genes and social experiences interact to create variation in social behavior and vulnerability to develop disorders of the social domain. Socially monogamous prairie voles display remarkable diversity in neuropeptide receptor systems and social behavior. Here, we examine the interaction of early-life adversity and brain oxytocin receptor (OTR) density on adult social attachment in female prairie voles. First, pups were isolated for 3 h per day, or unmanipulated, from postnatal day 1-14. Adult subjects were tested on the partner preference (PP) test to assess social attachment and OTR density in the brain was quantified. Neonatal social isolation impaired female PP formation, without affecting OTR density. Accumbal OTR density was, however, positively correlated with the percent of time spent huddling with the partner in neonatally isolated females. Females with high accumbal OTR binding were resilient to neonatal isolation. These results are consistent with the hypothesis that parental nurturing shapes neural systems underlying social relationships by enhancing striatal OTR signaling. Thus, we next determined whether early touch, mimicking parental licking and grooming, stimulates hypothalamic OT neuron activity. Tactile stimulation induced immediate-early gene activity in OT neurons in neonates. Finally, we investigated whether pharmacologically potentiating OT release using a melanocortin 3/4 agonist, melanotan-II (10 mg kg(-1) subcutaneously), would mitigate the social isolation-induced impairments in attachment behavior. Neonatal melanotan-II administration buffered against the effects of early isolation on partner preference formation. Thus, variation in accumbal OTR density and early OT release induced by parental nurturing may moderate susceptibility to early adverse experiences, including neglect.

  14. Temporal and spatial patterns of wetland extent influence variability of surface water connectivity in the Prairie Pothole Region, United States

    Science.gov (United States)

    Vanderhoof, Melanie; Alexander, Laurie C.; Todd, Jason

    2016-01-01

    Context. Quantifying variability in landscape-scale surface water connectivity can help improve our understanding of the multiple effects of wetlands on downstream waterways. Objectives. We examined how wetland merging and the coalescence of wetlands with streams varied both spatially (among ecoregions) and interannually (from drought to deluge) across parts of the Prairie Pothole Region. Methods. Wetland extent was derived over a time series (1990-2011) using Landsat imagery. Changes in landscape-scale connectivity, generated by the physical coalescence of wetlands with other surface water features, were quantified by fusing static wetland and stream datasets with Landsat-derived wetland extent maps, and related to multiple wetness indices. The usage of Landsat allows for decadal-scale analysis, but limits the types of surface water connections that can be detected. Results. Wetland extent correlated positively with the merging of wetlands and wetlands with streams. Wetness conditions, as defined by drought indices and runoff, were positively correlated with wetland extent, but less consistently correlated with measures of surface water connectivity. The degree of wetland-wetland merging was found to depend less on total wetland area or density, and more on climate conditions, as well as the threshold for how wetland/upland was defined. In contrast, the merging of wetlands with streams was positively correlated with stream density, and inversely related to wetland density. Conclusions. Characterizing the degree of surface water connectivity within the Prairie Pothole Region in North America requires consideration of 1) climate-driven variation in wetness conditions and 2) within-region variation in wetland and stream spatial arrangements.

  15. Montana Valley and Foothill Prairies Ecoregion: Chapter 6 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Taylor, Janis L.

    2012-01-01

    The Montana Valley and Foothill Prairies Ecoregion comprises numerous intermountain valleys and low-elevation foothill prairies spread across the western half of Montana, on both sides of the Continental Divide (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion, which covers approximately 64,658 km2 (24,965 mi2), includes the Flathead Valley and the valleys surrounding Helena, Missoula, Bozeman, Billings, Anaconda, Dillon, and Lewistown (fig. 1). These valleys are generally characterized by shortgrass prairie vegetation and are flanked by forested mountains (Woods and others, 1999); thus, the valleys’ biotas with regards to fish and insects are comparable. In many cases, the valleys are conduits for some of the largest rivers in the state, including Clark Fork and the Missouri, Jefferson, Madison, Flathead, Yellowstone, Gallatin, Smith, Big Hole, Bitterroot, and Blackfoot Rivers (fig. 2). The Montana Valley and Foothill Prairies Ecoregion also includes the “Rocky Mountain front,” an area of prairies along the eastern slope of the northern Rocky Mountains. Principal land uses within the ecoregion include farming, grazing, and mining. The valleys serve as major transportation and utility corridors and also contain the majority of Montana’s human population. The Montana Valley and Foothill Prairies Ecoregion extends into 17 mostly rural counties throughout western Montana. Only three of the counties—Carbon, Yellowstone, and Missoula—are part of a metropolitan statistical area with contiguous built-up areas tied to an employment center. Nearly two-thirds of Montana residents live in nonmetropolitan counties (Albrecht, 2008). Ten of the counties within the ecoregion had population growth rates greater than national averages (9–13 percent) between 1970 and 2000 (table 1). Ravalli and Gallatin Counties had the highest growth rates. Population growth was largely due to amenity-related inmigration and an economy dependent on tourism

  16. Measuring and predicting the transport of actinides and fission product contaminants in unsaturated prairie soil

    Science.gov (United States)

    Sims, D. J.

    Soil samples have been taken in 2001 from the area of a 1951 release from an underground storage tank of 6.7 L of an aqueous solution of irradiated uranium (360 GBq). A simulation of the dispersion of the actinides and fission products was conducted in the laboratory using irradiated natural uranium, non-irradiated natural uranium and metal standards dissolved in acidic aqueous solutions and added to soil columns containing uncontaminated prairie soil. The lab soil columns were allowed 12 to 14 months for contaminant transport. Soil samples were analyzed using gamma-ray spectroscopy, neutron activation analysis (NAA) and liquid scintillation counting (LSC) to determine the elemental concentrations of U, Cs and Sr. Diffusion coefficients from the 50 year soil samples and the lab soil samples were determined. The measured diffusion coefficients from the field samples were 3.0 x 10-4 cm2 s-1 (Cs-137), 1.8 x 10-5 cm2 s-1 (U-238) and 2.6 x 10-3 cm2 s-1 (Sr-90) and the values determined from lab simulation were 5 x 10-6 cm 2 s-1 (Cs-137), 3 x 10-5 cm2 s-1 (U-238) and 1.9 x 10-5 cm 2 s-1 (Sr-90). The differences between the sets of diffusion coefficients can be attributed to differences in retardation effects, weather effects and changes in the soil characteristics when transporting, such as porosity. The analytical work showed that Cs-137 content of soil can be determined effectively using gamma-ray spectroscopy; U-238 content can be measured using NAA; and Sr-90 content can be measured using LSC. For non- and low-radioactive species, it was shown that both flame atomic absorption spectrometry (FAAS) and inductively-coupled plasma-mass spectrometry (ICP-MS) gave comparable results for Sr, Cs and Sm, with the average values ranging from 0.5 to 4.5 ppm of each other. The U-238 content results from NAA and from ICP-MS showed general agreement with an average difference of 81.3 ppm on samples having concentrations up to 988.2 ppm. The difference may have been due to matrix

  17. Environmental monitoring and ecological studies program. 1974 annual report for the Prairie Island Nuclear Generating Plant near Red Wing, Minnesota. Volume I

    International Nuclear Information System (INIS)

    1975-06-01

    Data are presented from studies on the effects of thermal effluents from the Prairie Island nuclear power plant on water temperature and primary productivity of phytoplankton in the Mississippi River downstream from the site. Results of measurements showed that plant-heated waters had dropped to near normal temperatures at the end of the discharge canal. The size and shape of the thermal plume at Prairie Island were determined. The chemical composition of water samples collected upstream was compared to that of samples collected downstream from the plant. Plankton species and seasonal succession patterns were characterized both at the plant site and downstream from the plant for any evidence of changes resulting from plant operations. The effects of entrainment of plankton in the cooling water system was also studied. Data are included on invertebrates in water samples collected at various locations. (U.S.)

  18. Texture-contrast profile development across the prairie-forest ecotone in northern Minnesota, USA, and its relation to soil aggregation and clay dispersion.

    Science.gov (United States)

    Kasmerchak, C. S.; Mason, J. A.

    2016-12-01

    Along the prairie-forest ecotone, Alfisols with distinct clay-enriched B horizons are found under forest, established only within the past 4 ka, including outlying patches of prairie groves surrounded by prairie. Grassland soils only 5-10 km away from the vegetation boundary show much weaker texture-contrast. In order for clay to be dispersed it must first be released from aggregates upper horizons, which occurs when exposed top soil undergoes wetting and mechanical stress. The relationship between physiochemical soil characteristics and soil aggregation/clay dispersion is of particular interest in explaining texture-contrast development under forest. Soil samples were collected along a transect in northern Minnesota on gentle slopes in similar glacial sediment. Aggregate stability experiments show Mollisol A and B horizons have the most stable aggregates, while Alfisol E horizons have the weakest aggregates and disintegrate rapidly. This demonstrates the strong influence of OM and exchange chemistry on aggregation. Analysis of other physiochemical soil characteristics such as base saturation and pH follow a gradual decreasing eastward trend across the study sites, and do not abruptly change at the prairie-forest boundary like soil morphology does. Linear models show the strongest relationship between rapid aggregate disintegration and ECEC, although they only explain 47-50% of the variance. Higher surface charge enhances aggregation by allowing for greater potential of cation bridging between OM and clay particles. ECEC also represents multiple soil characteristics such as OC, clay, mineralogy, and carbonate presence, suggesting the relationship between aggregation stability and soil characteristics is not simple. Given the parent material consists of calcareous glacial sediment, abundant Ca2+ and Mg2+ from carbonates weathering also contributes to enhanced aggregation in upper horizons. Differences in the rates of bioturbation, most likely also contribute

  19. Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America

    Science.gov (United States)

    Tangen, Brian A.; Finocchiaro, Raymond G.; Gleason, Robert A.

    2015-01-01

    Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increased methane (CH4) emissions associated with restoration may outweigh potential benefits. A comprehensive, 4-year study of 119 wetland catchments was conducted in the Prairie Pothole Region of the north-central U.S. to assess the effects of land use on greenhouse gas (GHG) fluxes and soil properties.

  20. Spatial and temporal use of a prairie dog colony by coyotes and rabbits: potential indirect effects on endangered black-footed ferrets

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Livieri, Travis M.

    2015-01-01

    In western North America, endangered black-footed ferrets Mustela nigripes are conserved via reintroduction to colonies of prairie dogs Cynomys spp., their primary prey. Predation is an important source of mortality; coyotes Canis latrans appear to be the most problematic predator, accounting for 67% of known predation events on radio-tagged ferrets. Little is known about what factors affect spatial use of prairie dog colonies by coyotes, or how other animals might affect interactions between coyotes and ferrets. During June–October 2007–2008, we used spotlight surveys to monitor coyotes and ferrets (both years) and rabbits Sylvilagus spp. (first year) on a 452-ha colony of black-tailed prairie dogs Cynomys ludovicianus in the Conata Basin, South Dakota. Coyotes appeared to select areas of the colony used by rabbits, suggesting coyotes hunted rabbits, a common item in their diet. Between midnight and sunrise, ferrets were most commonly observed during early morning (01:00–03:00 h), whereas coyotes were observed mostly during dawn (04:00 h – sunrise) when ferrets were rarely seen. These temporal differences in the timing of observations suggest ferrets tend to remain underground in burrows when coyotes are most active. Coyotes appeared to be attracted to rabbits in both space and time, suggesting the risk of predation for ferrets might relate to the abundance and locations of rabbits in prairie dog colonies.

  1. Long-term decrease of atmospheric test 137Cs in the soil-prairie plant-milk pathway in southern Chile

    International Nuclear Information System (INIS)

    Schuller, P.; Ellies, A.; Handl, J.

    1998-01-01

    The time dependency of nuclear test 137 Cs in soil, prairie plants, and milk was observed on pastures of seven dairy farms in the 10th Region, Chile, from 1982 to 1997, without any appreciable deposition of radioactive fallout after 1983. Whereas the 137 Cs concentration in the soil decreased at a rate close to that of the radionuclide's physical decay during the whole observation period, the rate of decrease of the 137 Cs concentration in the prairie plants and in the milk, having been very rapid between 1982--1990, became slower between 1991--1997. The effective half-lives of the concentration in plants were found to be 5.6 y and 12 y during the first and second observation periods, respectively. Similar half-lives of 5.5 y and 13 y were found for the concentration decline in milk during each period. These data clearly demonstrate a reduction in the long-term decrease of the 137 Cs plant uptake, and consequently in the decrease of the 137 Cs concentration in milk, resulting from a decline of 137 Cs availability for prairie plants in the Hapludand soils over the whole 15-y observation period

  2. Altered Connexin 43 and Connexin 45 protein expression in the heart as a function of social and environmental stress in the prairie vole.

    Science.gov (United States)

    Grippo, Angela J; Moffitt, Julia A; Henry, Matthew K; Firkins, Rachel; Senkler, Jonathan; McNeal, Neal; Wardwell, Joshua; Scotti, Melissa-Ann L; Dotson, Ashley; Schultz, Rachel

    2015-01-01

    Exposure to social and environmental stressors may influence behavior as well as autonomic and cardiovascular regulation, potentially leading to depressive disorders and cardiac dysfunction including elevated sympathetic drive, reduced parasympathetic function, and ventricular arrhythmias. The cellular mechanisms that underlie these interactions are not well understood. One mechanism may involve alterations in the expression of Connexin43 (Cx43) and Connexin45 (Cx45), gap junction proteins in the heart that play an important role in ensuring efficient cell-to-cell coupling and the maintenance of cardiac rhythmicity. The present study investigated the hypothesis that long-term social isolation, combined with mild environmental stressors, would produce both depressive behaviors and altered Cx43 and Cx45 expression in the left ventricle of prairie voles - a socially monogamous rodent model. Adult, female prairie voles were exposed to either social isolation (n = 22) or control (paired, n = 23) conditions (4 weeks), alone or in combination with chronic mild stress (CMS) (1 week). Social isolation, versus paired control conditions, produced significantly (p Social isolation (alone) reduced (p social and environmental stress in the prairie vole.

  3. Fatherhood reduces the survival of adult-generated cells and affects various types of behaviors in the prairie vole (Microtus ochrogaster)

    Science.gov (United States)

    Lieberwirth, Claudia; Wang, Yue; Jia, Xixi; Liu, Yan

    2013-01-01

    Motherhood has profound effects on physiology, neuronal plasticity, and behavior. We conducted a series of experiments to test the hypothesis that fatherhood, similarly to motherhood, affects brain plasticity (such as cell proliferation and survival) and various behaviors in the highly social prairie vole (Microtus ochrogaster). In Experiment 1, adult males were housed with their same-sex cage mate (control), single-housed (isolation), or housed with a receptive female to mate and produce offspring (father) for 6 weeks. Fatherhood significantly reduced cell survival (assessed by bromodeoxyuridine labeling), but not cell proliferation (assessed by Ki67 labeling), in the amygdala, dentate gyrus of the hippocampus, and ventromedial hypothalamus, suggesting that fatherhood affects brain plasticity. In Experiment 2, neither acute (20 min) nor chronic (20 min daily for 10 consecutive days) pup exposure altered cell proliferation or survival in the brain, but chronic pup exposure increased circulating corticosterone levels. These data suggest that reduced cell survival in the brain of prairie vole fathers was unlikely to be due to the level of pup exposure and display of paternal behavior, and may not be mediated by circulating corticosterone. The effects of fatherhood on various behaviors (including anxiety-like, depression-like, and social behaviors) were examined in Experiment 3. The data indicated that fatherhood increased anxiety- and depression-like behaviors as well as altered aggression and social recognition memory in male prairie voles. These results warrant further investigation of a possible link between brain plasticity and behavioral changes observed due to fatherhood. PMID:23899240

  4. Presence of Antibodies to Leptospira spp. in Black-tailed Prairie Dogs ( Cynomys ludovicianus ) and Beavers ( Castor canadensis ) in Northwestern Mexico.

    Science.gov (United States)

    López-Pérez, Andrés M; Carreón-Arroyo, Gerardo; Atilano, Daniel; Vigueras-Galván, Ana L; Valdez, Carlos; Toyos, Daniel; Mendizabal, Daniel; López-Islas, Jonathan; Suzán, Gerardo

    2017-10-01

    Leptospires are widespread spirochete bacteria that infect mammals, including rodents and humans. We investigated the presence of Leptospira antibodies in two species of rodents from San Pedro River Basin (SPRB) in northwestern Mexico as part of the black-tailed prairie dog ( Cynomys ludovicianus ) monitoring plan and the North American beaver ( Castor canadensis ) reintroduction program. We sampled a total of 26 black-tailed prairie dogs and three beavers during October-November 2015. We detected antibodies against Leptospira spp. by microagglutination test in 12 (46%) prairie dogs and in two (67%) beavers. The antibody titers for seropositive rodents varied from 1:100 to 1:200, but none of the animals showed clinical signs of disease. We found seven Leptospira spp. serogroups (Autumnalis, Australis, Bataviae, Canicola, Celledoni, Grippotyphosa, and Sejroe) circulating in rodent species in SPRB. We did not find any differences between sex and age concerning Leptospira-positive rodents. Our findings suggest the presence of endemic cycles and potential risks of Leptospira infection in both species from SPRB. Although the impact of this infection on threatened species remains unclear, human activities and environmental stress might facilitate the emergence or reemergence of leptospirosis disease as has been reported elsewhere.

  5. Using Halogens (Cl, Br, F, I) and Stable Isotopes of Water (δ18O, δ2H) to Trace Hydrological and Biogeochemical Processes in Prairie Wetlands

    Science.gov (United States)

    Levy, Z. F.; Lu, Z.; Mills, C. T.; Goldhaber, M. B.; Rosenberry, D. O.; Mushet, D.; Siegel, D. I.; Fiorentino, A. J., II; Gade, M.; Spradlin, J.

    2014-12-01

    Prairie pothole wetlands are ubiquitous features of the Great Plains of North America, and important habitat for amphibians and migratory birds. The salinity of proximal wetlands varies highly due to groundwater-glacial till interactions, which influence wetland biota and associated ecosystem functions. Here we use halogens and stable isotopes of water to fingerprint hydrological and biogeochemical controls on salt cycling in a prairie wetland complex. We surveyed surface, well, and pore waters from a groundwater recharge wetland (T8) and more saline closed (P1) and open (P8) basin discharge wetlands in the Cottonwood Lake Study Area (ND) in August/October 2013 and May 2014. Halogen concentrations varied over a broad range throughout the study area (Cl = 2.2 to 170 mg/L, Br = 13 to 2000 μg/L, F = evaporation-enriched pond water (δ18O = -9.5 to -2.71 ‰) mixes with shallow groundwater in the top 0.6 m of fringing wetland soils and 1.2 m of the substrate in the center of P1. Our results suggest endogenous sources for Br and I within the prairie landscape that may be controlled by biological mechanisms or weathering of shale from glacial till.

  6. Evaluation of Turf-Grass and Prairie-Vegetated Rain Gardens in a Clay and Sand Soil, Madison, Wisconsin, Water Years 2004-08

    Science.gov (United States)

    Selbig, William R.; Balster, Nicholas

    2010-01-01

    The U.S. Geological Survey, in cooperation with a consortium of 19 cities, towns, and villages in Dane County, Wis., undertook a study to compare the capability of rain gardens with different vegetative species and soil types to infiltrate stormwater runoff from the roof of an adjacent structure. Two rain gardens, one planted with turf grass and the other with native prairie species, were constructed side-by-side in 2003 at two locations with different dominant soil types, either sand or clay. Each rain garden was sized to a ratio of approximately 5:1 contributing area to receiving area and to a depth of 0.5 foot. Each rain garden, regardless of vegetation or soil type, was capable of storing and infiltrating most of the runoff over the 5-year study period. Both rain gardens in sand, as well as the prairie rain garden in clay, retained and infiltrated 100 percent of all precipitation and snowmelt events during water years 2004-07. The turf rain garden in clay occasionally had runoff exceed its confining boundaries, but was still able to retain 96 percent of all precipitation and snowmelt events during the same time period. Precipitation intensity and number of antecedent dry days were important variables that influenced when the storage capacity of underlying soils would become saturated, which resulted in pooled water in the rain gardens. Because the rooftop area that drained runoff to each rain garden was approximately five times larger than the area of the rain garden itself, evapotranspiration was a small percentage of the annual water budget. For example, during water year 2005, the maximum evapotranspiration of total influent volume ranged from 21 percent for the turf rain garden in clay to 25 percent for the turf rain garden in sand, and the minimum ranged from 12 percent for the prairie rain garden in clay to 19 percent for the prairie rain garden in sand. Little to no runoff left each rain garden as effluent and a small percentage of runoff returned to the

  7. Evaluation of the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002; Bilan des emissions de gaz a effet de serre (CO{sub 2}, CH{sub 4}, N{sub 2}O) en prairie paturee et dans des exploitations d'elevage herbager. GES-Prairies. Rapport de la premiere tranche du projet Decembre 2002

    Energy Technology Data Exchange (ETDEWEB)

    Soussana, J.F

    2002-12-15

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO{sub 2} and CH{sub 4} (by the breeding animals on grass) and N{sub 2}O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  8. The protective effects of social bonding on behavioral and pituitary-adrenal axis reactivity to chronic mild stress in prairie voles.

    Science.gov (United States)

    McNeal, Neal; Appleton, Katherine M; Johnson, Alan Kim; Scotti, Melissa-Ann L; Wardwell, Joshua; Murphy, Rachel; Bishop, Christina; Knecht, Alison; Grippo, Angela J

    2017-03-01

    Positive social interactions may protect against stress. This study investigated the beneficial effects of pairing with a social partner on behaviors and neuroendocrine function in response to chronic mild stress (CMS) in 13 prairie vole pairs. Following 5 days of social bonding, male and female prairie voles were exposed to 10 days of CMS (mild, unpredictable stressors of varying durations, for instance, strobe light, white noise, and damp bedding), housed with either the social partner (paired group) or individually (isolated group). Active and passive behavioral responses to the forced swim test (FST) and tail-suspension test (TST), and plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone, were measured in all prairie voles following the CMS period. Both female and male prairie voles housed with a social partner displayed lower durations of passive behavioral responses (immobility, a maladaptive behavioral response) in the FST (mean ± SEM; females: 17.3 ± 5.4 s; males: 9.3 ± 4.6 s) and TST (females: 56.8 ± 16.4 s; males: 40.2 ± 11.3 s), versus both sexes housed individually (females, FST: 98.6 ± 12.9 s; females, TST: 155.1 ± 19.3 s; males, FST: 92.4 ± 14.1 s; males, TST: 158.9 ± 22.0 s). Female (but not male) prairie voles displayed attenuated plasma stress hormones when housed with a male partner (ACTH: 945 ± 24.7 pg/ml; corticosterone: 624 ± 139.5 ng/ml), versus females housed individually (ACTH: 1100 ± 23.2 pg/ml; corticosterone: 1064 ± 121.7 ng/ml). These results may inform understanding of the benefits of social interactions on stress resilience. Lay Summary: Social stress can lead to depression. The study of social bonding and stress using an animal model will inform understanding of the protective effects of social bonds. This study showed that social bonding in a rodent model can protect against behavioral responses to stress, and may

  9. A comparison of native tallgrass prairie and plains bluestem forage systems for cow-calf production in the southern great plains.

    Science.gov (United States)

    Coleman, S W; Phillips, W A; Volesky, J D; Buchanan, D

    2001-07-01

    The objective of this study was to compare an introduced warm-season perennial grass (plains bluestem, Bothriochloa ischaemum) to native tallgrass prairie for cow-calf production. Three systems were used, two based on tallgrass prairie with two different forms of protein supplementation and one based on plains bluestem as the primary forage. The systems were as follows: 1) native tallgrass prairie with pelleted oilseed meal as the winter protein supplement (native-control); 2) native tallgrass prairie with limited access to wheat pasture as the winter protein supplement (native-wheat); and 3) plains bluestem with limited access to wheat pasture as the protein supplement (bluestem-wheat). Oilseed meal protein supplements were fed twice weekly. Cows grazing wheat pasture were allowed 6 h of grazing twice weekly. Ninety-nine cows per year were used over the 3-yr study. Cows were sired by either Charolais, Gelbvieh, Angus, or Hereford bulls out of commercial Angus-Hereford dams. Calves were sired by Simmental bulls. Calving and weaning rate increased over time but did not differ among systems or breed types. System did not influence the size or body condition score of cows or the performance of calves, but changes in the weight and condition scores of cows were greater on either native system than on the bluestem-wheat system. Cows from Charolais and Gelbvieh bulls were taller (P < 0.05), and heavier (P < 0.05), and weaned heavier (P < 0.05) calves than cows from Angus or Hereford bulls. The weight of cows on the bluestem-wheat system tended to decrease over time, whereas cows grazing on the native systems tended to gain weight over time. The native-control system was the most profitable system based on cow production. If excess hay produced from the bluestem-wheat system was sold as a cash crop, then this system was the most profitable. In general, we conclude that limit-grazing wheat pasture is a viable alternative to oilseed meal as protein supplement for wintering

  10. Resilience of Socio-Hydrological Systems in Canadian Prairies to Agricultural Drainage: Policy Analysis and Modelling Approach

    Science.gov (United States)

    Wheater, H. S.; Xu, L.; Gober, P.; Pomeroy, J. W.; Wong, J.

    2017-12-01

    Extensive agricultural drainage of lakes and wetlands in the Canadian Prairies has led to benefits for agricultural production, but has had a substantial influence on hydrological regimes and wetland extent. There is need for the potential impacts of current policy in changing the socio-hydrological resilience of prairie wetland basins in response to agricultural drainage to be examined. Whilst wetland drainage can increase agricultural productivity, it can also reduce stocks of natural capital and decrease ecosystem services, such as pollutant retention, habitat for waterfowls, carbon sequestration, and downstream flood attenuation. Effective policies that balance drainage benefits and negative externalities have to consider pricing. This is explored here using the Cold Regions Hydrological Model for hydrological simulations and the Inclusive Wealth approach for modelling in support of cost-benefit analysis. Inclusive wealth aggregates the value of natural, human, and technological assets used to produce social welfare. A shadow price, defined as the marginal change in social value for a marginal change in the current stock quantity, is used to valuate assets that contribute to social welfare. The shadow price of each asset is estimated by taking into account the social and economic benefits and external losses of wetland services caused by wetland drainage. The coupled model was applied to the Smith Creek Research Basin in south-eastern Saskatchewan, Canada where wetland drainage has caused major alterations of the hydrological regime including increased peak flows, discharge volumes and duration of streamflow. Changes in depressional storage in wetlands was used to calculate the corresponding changes of inclusive wealth over a 30-year period under the impacts from the limitation proposed in the Agricultural Water Management Strategy of Saskatchewan. The adjusted societal values of drainage demonstrate the dynamics between changes in hydrological conditions of

  11. Initial results of experimental studies of prairie dogs in arid grasslands: Implications for landscape conservation and the importance of scale (Resultados Iniciales de Estudios Experimentales en Perros Llaneros de Pastizales Aridos: Implicaciones Para la Conservacion del Paisaje y la Importancia de Escala)

    Science.gov (United States)

    Charles Curtin

    2006-01-01

    Numerous ecologists and conservationists believe that prairie dogs increase ecosystem diversity and preserve the function of grasslands (Whicker and Detling 1988, Miller et al. 1994, Jones et al. 1994, Power et al. 1996, Weltzin et al. 1997, Miller et al. 2000), yet this perspective is controversial (Stapp 1998). In contrast, many ranchers and land owners view prairie...

  12. Influence of agriculture on aquatic invertebrate communities of temporary wetlands in the Prairie Pothole Region of North Dakota, USA

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.

    1999-01-01

    We evaluated the influence of intensive agriculture on invertebrate communities of temporary wetlands as indicated by aquatic invertebrate resting eggs, shells, and cases remaining after wetlands dried. To facilitate the comparison, we sampled 19 wetlands within cropland areas and 19 wetlands within grassland areas. We found resting eggs, shells, and cases of significantly more taxa and greater numbers of cladoceran resting eggs (ephippia), planorbid and physid snail shells, and ostracod shells in wetlands within grasslands than in croplands. We also successfully incubated greater numbers of cladocerans and ostracods from soil samples collected from grassland sites. We were unable to detect differences in the viability of cladoceran ephippia between grassland and cropland wetlands, but our sample size was small due to an absence of ephippia in most cropland wetlands sampled; 74% of the cropland wetlands were devoid of cladoceran ephippia whereas ephippia were well represented in nearly all of our grassland sites. Our results corroborate findings of other investigators that prairie pothole wetlands have been negatively impacted by human activ-, ities. Our study demonstrates that aquatic invertebrates of temporary wetlands have, been negatively impacted by intensive agriculture and suggests that future studies need to assess the influence of agricultural practices on wetland-dependant wildlife.

  13. Persistence and transformation of the herbicide (/sup 14/C)glufosinate-ammonium in prairie soils under laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.E.

    The degradation of the herbicide (/sup 14/C)glufosinate-ammonium (the ammonium salt of DL-homoalanin-4-ylmethylphosphinic acid), at a rate of 2 ppm, was studied in three prairie soils at 85% of their field capacity moisture at both 20 and 10/sup 0/C. In all soils the herbicide was biologically transformed to degradation product(s) that underwent further slow degradation with release of (/sup 14/C)carbon dioxide. At 20/sup 0/C, the soil half-life values for the (/sup 14/C)herbicide were 3-7 days and, at 10/sup 0/C, 8-11 days. Over a 90-day incubation period at 20/sup 0/C, between 28 and 55% of the applied radioactivity was released from treated soils as (/sup 14/C)carbon dioxide; solvent-extractable degradation product(s) accounted for 19-37% of the applied radioactivity; between 2.4 and 9.5% of the initial /sup 14/C was incorporated into soil microbial biomass and 7-13% into the fulvic, humic, and humin soil fractions.

  14. Persistence and transformation of the herbicide [14C]glufosinate-ammonium in prairie soils under laboratory conditions

    International Nuclear Information System (INIS)

    Smith, A.E.

    1988-01-01

    The degradation of the herbicide [ 14 C]glufosinate-ammonium (the ammonium salt of DL-homoalanin-4-ylmethylphosphinic acid), at a rate of 2 ppm, was studied in three prairie soils at 85% of their field capacity moisture at both 20 and 10 0 C. In all soils the herbicide was biologically transformed to degradation product(s) that underwent further slow degradation with release of [ 14 C]carbon dioxide. At 20 0 C, the soil half-life values for the [ 14 C]herbicide were 3-7 days and, at 10 0 C, 8-11 days. Over a 90-day incubation period at 20 0 C, between 28 and 55% of the applied radioactivity was released from treated soils as [ 14 C]carbon dioxide; solvent-extractable degradation product(s) accounted for 19-37% of the applied radioactivity; between 2.4 and 9.5% of the initial 14 C was incorporated into soil microbial biomass and 7-13% into the fulvic, humic, and humin soil fractions

  15. Spatial and temporal variation in suspended sediment, organic matter, and turbidity in a Minnesota prairie river: implications for TMDLs.

    Science.gov (United States)

    Lenhart, Christian F; Brooks, Kenneth N; Heneley, Daniel; Magner, Joseph A

    2010-06-01

    The Minnesota River Basin (MRB), situated in the prairie pothole region of the Upper Midwest, contributes excessive sediment and nutrient loads to the Upper Mississippi River. Over 330 stream channels in the MRB are listed as impaired by the Minnesota Pollution Control Agency, with turbidity levels exceeding water quality standards in much of the basin. Addressing turbidity impairment requires an understanding of pollutant sources that drive turbidity, which was the focus of this study. Suspended volatile solids (SVS), total suspended solids (TSS), and turbidity were measured over two sampling seasons at ten monitoring stations in Elm Creek, a turbidity impaired tributary in the MRB. Turbidity levels exceeded the Minnesota standard of 25 nephelometric units in 73% of Elm Creek samples. Turbidity and TSS were correlated (r (2) = 0.76), yet they varied with discharge and season. High levels of turbidity occurred during periods of high stream flow (May-June) because of excessive suspended inorganic sediment from watershed runoff, stream bank, and channel contributions. Both turbidity and TSS increased exponentially downstream with increasing stream power, bank height, and bluff erosion. However, organic matter discharged from wetlands and eutrophic lakes elevated SVS levels and stream turbidity in late summer when flows were low. SVS concentrations reached maxima at lake outlets (50 mg/l) in August. Relying on turbidity measurements alone fails to identify the cause of water quality impairment whether from suspended inorganic sediment or organic matter. Therefore, developing mitigation measures requires monitoring of both TSS and SVS from upstream to downstream reaches.

  16. Moving Targets and Biodiversity Offsets for Endangered Species Habitat: Is Lesser Prairie Chicken Habitat a Stock or Flow?

    Directory of Open Access Journals (Sweden)

    Todd K. BenDor

    2014-03-01

    Full Text Available The US Fish and Wildlife Service will make an Endangered Species Act listing decision for the lesser prairie chicken (Tympanuchus pallidicinctus; “LPC” in March 2014. Based on the findings of a single, Uzbek antelope study, conservation plans put forth for the LPC propose to modify and re-position habitat in the landscape through a series of temporary preservation/restoration efforts. We argue that for certain species, including the LPC, dynamic habitat offsets represent a dangerous re-interpretation of habitat provision and recovery programs, which have nearly-universally viewed ecosystem offsets (habitat, wetlands, streams, etc. as “stocks” that accumulate characteristics over time. Any effort to create a program of temporary, moving habitat offsets must consider species’ (1 life history characteristics, (2 behavioral tendencies (e.g., avoidance of impacted areas, nesting/breeding site fidelity, and (3 habitat restoration characteristics, including long temporal lags in reoccupation. If misapplied, species recovery programs using temporary, moving habitat risk further population declines.

  17. Prospective evidence for independent nitrogen and phosphorus limitation of grasshopper (Chorthippus curtipennis) growth in a tallgrass prairie.

    Science.gov (United States)

    Rode, Madison; Lemoine, Nathan P; Smith, Melinda D

    2017-01-01

    Insect herbivores play a pivotal role in regulating plant production and community composition, and their role in terrestrial ecosystems is partly determined by their feeding behavior and performance among plants of differing nutritional quality. Historically, nitrogen (N) has been considered the primary limiting nutrient of herbivorous insects, but N is only one of many potential nutrients important to insect performance. Of these nutrients, phosphorus (P) is perhaps the most important because somatic growth depends upon P-rich ribosomal RNA. Yet relatively few studies have assessed the strength of P-limitation for terrestrial insects and even fewer have simultaneously manipulated both N and P to assess the relative strengths of N- and P-limitation. Here, we tested for potential N and P limitation, as well as N:P co-limitation, on Chorthippis curtipennis (Orthoptera, Acrididae), an abundant member of arthropod communities of central US prairies. Our results demonstrate weak evidence for both N and P limitation of C. curtipennis growth rates in laboratory feeding assays. Importantly, P-limitation was just as strong as N-limitation, but we found no evidence for NP co-limitation in our study. Furthermore, nutrient limitation was not apparent in field studies, suggesting that insect growth rates may be predominately controlled by other factors, including temperature and predation. Our results suggest that P should be jointly considered, along with N, as a primary determinant of herbivore feeding behavior under both current and future climate conditions.

  18. An experimental analysis of grasshopper community responses to fire and livestock grazing in a northern mixed-grass prairie.

    Science.gov (United States)

    Branson, David H; Sword, Gregory A

    2010-10-01

    The outcomes of grasshopper responses to both vertebrate grazing and fire vary across grassland ecosystems, and are strongly influenced by local climactic factors. Thus, the possible application of grazing and fire as components of an ecologically based grasshopper management strategy must be investigated in regional studies. In this study, we examined the effects of grazing and fire on grasshopper population density and community composition in a northern Great Plains mixed-grass prairie. We employed a large-scale, replicated, and fully-factorial manipulative experimental design across 4 yr to examine the separate and interactive effects of three grazing systems in burned and unburned habitats. Grasshopper densities were low throughout the 4-yr study and 1 yr of pretreatment sampling. There was a significant fire by grazing interaction effect on cumulative density and community composition, resulting from burned season long grazing pastures having higher densities than unburned pastures. Shannon diversity and grasshopper species richness were significantly higher with twice-over rotational livestock grazing. The ability to draw strong conclusions regarding the nature of species composition shifts and population changes in the presence of fire and grazing is complicated by the large site differences and low grasshopper densities. The results reinforce the importance of long-term research to examine the effects of habitat manipulation on grasshopper population dynamics.

  19. Pastures to Prairies to Pools: An Update on Natural Resource Damages Settlement Projects at the Fernald Preserve - 13198

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Jane [Fernald Preserve Site Manager, DOE Office of Legacy Management, Harrison, Ohio (United States); Schneider, Tom [Fernald Project Manager, Ohio Environmental Protection Agency, Dayton, Ohio (United States); Hertel, Bill [Project Manager, S.M. Stoller Corporation, Harrison, Ohio (United States); Homer, John [Environmental Scientist, S.M. Stoller Corporation, Harrison, Ohio (United States)

    2013-07-01

    The DOE Office of Legacy Management oversees implementation and monitoring of two ecological restoration projects at the Fernald Preserve, Fernald, Ohio, that are funded through a CERCLA natural resource damage settlement. Planning and implementation of on-property ecological restoration projects is one component of compensation for natural resource injury. The Paddys Run Tributary Project involves creation of vernal pool wetland habitat with adjacent forest restoration. The Triangle Area Project is a mesic tall-grass prairie establishment, similar to other efforts at the Fernald Preserve. The goal of the Fernald Natural Resource Trustees is to establish habitat for Ambystomatid salamander species, as well as grassland birds. Field implementation of these projects was completed in May 2012. Herbaceous cover and woody vegetation survival was determined in August and September 2012. Results show successful establishment of native vegetation. Additional monitoring will be needed to determine whether project goals have been met. As with the rest of the Fernald Preserve, ecological restoration has helped turn a DOE liability into a community asset. (authors)

  20. Approach to ecological assessment of power-plant-intake (316b) related issues: the Prairie Island case

    International Nuclear Information System (INIS)

    Adams, S.M.; Vaughan, D.S.; Hildebrand, S.G.; Kumar, K.D.

    1981-04-01

    Assessment approaches and strategies useful in addressing important issues in section 316(b) of the 1972 Federal Water Pollution Control Act are illustrated in this report through the analysis and evaluation of the Prairie Island Nuclear Station 316(b) data base. The main issues in 316(b) demonstrations, cooling water intake operation and location, involve determining the impacts of entrainment and impingement. Entrainment impacts were addressed by applying the equivalent adult approach and correcting for inherent biases and by determining the through-plant survival of zooplankton. An assessment of impingement impacts was made by comparing for each of various species the number of fish impinged to estimates of population size. Densities of plankton and fish were compared between the intake area and an alternate area to determine if the location of the present intake minimizes impacts. No definitive conclusion relative to the best location of the intake could be made because of high year to year variability in the data and the differential dominance of trophic groups between areas

  1. Building Trust in Natural Resource Management Within Local Communities: A Case Study of the Midewin National Tallgrass Prairie

    Science.gov (United States)

    Davenport, Mae A.; Leahy, Jessica E.; Anderson, Dorothy H.; Jakes, Pamela J.

    2007-03-01

    Communities neighboring federally protected natural areas regularly weigh the costs and benefits of the administering agency’s programs and policies. While most agencies integrate public opinion into decision making, efforts to standardize and formalize public involvement have left many local communities feeling marginalized, spurring acrimony and opposition. A significant body of research has examined barriers to effective public participation as well as strategies for relationship building in planning processes; many of which point to trust as a key factor. Trust is especially tenuous in local communities. This paper explores perceptions of trust, expectations for management, as well as constraints to building trust. In-depth interviews were conducted with 21 community members and USDA Forest Service personnel at the Midewin National Tallgrass Prairie in northeastern Illinois. The interviews revealed that trust is perceived as important to effective management. Distinct expectations for management outcomes and processes emerged, including the values, knowledge, and capacity demonstrated in management decisions and actions and opportunities provided for communication, collaboration, and cooperation within the agency-community relationship. The case study identified several constraints to building trust, including competing values, knowledge gaps, limited community engagement, and staff turnover.

  2. Intraspecific variation in estrogen receptor alpha and the expression of male sociosexual behavior in two populations of prairie voles.

    Science.gov (United States)

    Cushing, Bruce S; Razzoli, Maria; Murphy, Anne Z; Epperson, Pamela M; Le, Wei-Wei; Hoffman, Gloria E

    2004-08-06

    Estrogen (E) regulates a variety of male sociosexual behaviors. We hypothesize that there is a relationship between the distribution of estrogen receptor alpha (ERalpha) and the degree of male social behavior. To test this hypothesis, ERalpha immunoreactivity (IR) was compared in prairie voles (Microtus ochrogaster) from Illinois (IL), which are highly social, and Kansas (KN), which are less social. The expression of androgen receptors (AR) in males also was compared between populations. The expression of ERalpha and AR were compared in brains from KN and IL males and females using immunocytochemistry (ICC). There were significant intrapopulational differences, with males expressing less ERalpha-IR than females in the medial preoptic area, ventromedial nucleus, ventrolateral portion of the hypothalamus, and bed nucleus of the stria terminalis (BST). IL males also displayed less ERalpha-IR in the medial amygdala (MeA) than IL females. While IL males expressed significantly less ERalpha-IR in the BST and MeA than KN males, there was no difference in AR-IR. Differences in the pattern of ERalpha-IR between KN and IL males were behaviorally relevant, as low levels of testosterone (T) were more effective in restoring sexual activity in castrated KN males than IL males. The lack of difference in AR combined with lower expression of ERalpha-IR in IL males suggests that behavioral differences in response to T are associated with aromatization of T to E and that reduced sensitivity to E may facilitate prosocial behavior in males.

  3. Correlations between in situ denitrification activity and nir-gene abundances in pristine and impacted prairie streams

    International Nuclear Information System (INIS)

    Graham, David W.; Trippett, Clare; Dodds, Walter K.; O'Brien, Jonathan M.; Banner, Eric B.K.; Head, Ian M.; Smith, Marilyn S.; Yang, Richard K.; Knapp, Charles W.

    2010-01-01

    Denitrification is a process that reduces nitrogen levels in headwaters and other streams. We compared nirS and nirK abundances with the absolute rate of denitrification, the longitudinal coefficient of denitrification (i.e., K den , which represents optimal denitrification rates at given environmental conditions), and water quality in seven prairie streams to determine if nir-gene abundances explain denitrification activity. Previous work showed that absolute rates of denitrification correlate with nitrate levels; however, no correlation has been found for denitrification efficiency, which we hypothesise might be related to gene abundances. Water-column nitrate and soluble-reactive phosphorus levels significantly correlated with absolute rates of denitrification, but nir-gene abundances did not. However, nirS and nirK abundances significantly correlated with K den , as well as phosphorus, although no correlation was found between K den and nitrate. These data confirm that absolute denitrification rates are controlled by nitrate load, but intrinsic denitrification efficiency is linked to nirS and nirK gene abundances. - Denitrification efficiency best correlated to nirS and nirK gene abundances.

  4. Effect of nitrogen source concentration on curdlan production by Agrobacterium sp. ATCC 31749 grown on prairie cordgrass hydrolysates.

    Science.gov (United States)

    West, Thomas P

    2016-01-01

    The effect of nitrogen source concentration on the production of the polysaccharide curdlan by the bacterium Agrobacterium sp. ATCC 31749 from hydrolysates of prairie cordgrass was examined. The highest curdlan concentrations were produced by ATCC 31749 when grown on a medium containing a solids-only hydrolysate and the nitrogen source ammonium phosphate (2.2 mM) or on a medium containing a complete hydrolysate and 3.3 mM ammonium phosphate. The latter medium sustained a higher level of bacterial curdlan production than the former medium after 144 hr. Biomass production by ATCC 31749 was highest after 144 hr when grown on a medium containing a solids-only hydrolysate and 2.2 or 8.7 mM ammonium phosphate. On the medium containing the complete hydrolysate, biomass production by ATCC 31749 was highest after 144 hr when 3.3 mM ammonium phosphate was present. Bacterial biomass production after 144 hr was greater on the complete hydrolysate medium compared to the solids-only hydrolysate medium. Curdlan yield produced by ATCC 31749 after 144 hr from the complete hydrolysate medium containing 3.3 mM ammonium phosphate was higher than from the solids-only hydrolysate medium containing 2.2 mM ammonium phosphate.

  5. Wetland selection by breeding and foraging black terns in the Prairie Pothole Region of the United States

    Science.gov (United States)

    Steen, Valerie A.; Powell, Abby N.

    2012-01-01

    We examined wetland selection by the Black Tern (Chlidonias niger), a species that breeds primarily in the prairie pothole region, has experienced population declines, and is difficult to manage because of low site fidelity. To characterize its selection of wetlands in this region, we surveyed 589 wetlands throughout North and South Dakota. We documented breeding at 5% and foraging at 17% of wetlands. We created predictive habitat models with a machine-learning algorithm, Random Forests, to explore the relative role of local wetland characteristics and those of the surrounding landscape and to evaluate which characteristics were important to predicting breeding versus foraging. We also examined area-dependent wetland selection while addressing the passive sampling bias