WorldWideScience

Sample records for spokane valley-rathdrum prairie

  1. Ground-Water Flow Model for the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Hsieh, Paul A.; Barber, Michael E.; Contor, Bryce A.; Hossain, Md. Akram; Johnson, Gary S.; Jones, Joseph L.; Wylie, Allan H.

    2007-01-01

    This report presents a computer model of ground-water flow in the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in Spokane County, Washington, and Bonner and Kootenai Counties, Idaho. The aquifer is the sole source of drinking water for more than 500,000 residents in the area. In response to the concerns about the impacts of increased ground-water withdrawals resulting from recent and projected urban growth, a comprehensive study was initiated by the Idaho Department of Water Resources, the Washington Department of Ecology, and the U.S. Geological Survey to improve the understanding of ground-water flow in the aquifer and of the interaction between ground water and surface water. The ground-water flow model presented in this report is one component of this comprehensive study. The primary purpose of the model is to serve as a tool for analyzing aquifer inflows and outflows, simulating the effects of future changes in ground-water withdrawals from the aquifer, and evaluating aquifer management strategies. The scale of the model and the level of detail are intended for analysis of aquifer-wide water-supply issues. The SVRP aquifer model was developed by the Modeling Team formed within the comprehensive study. The Modeling Team consisted of staff and personnel working under contract with the Idaho Department of Water Resources, personnel working under contract with the Washington Department of Ecology, and staff of the U.S. Geological Survey. To arrive at a final model that has the endorsement of all team members, decisions on modeling approach, methodology, assumptions, and interpretations were reached by consensus. The ground-water flow model MODFLOW-2000 was used to simulate ground-water flow in the SVPR aquifer. The finite-difference model grid consists of 172 rows, 256 columns, and 3 layers. Ground-water flow was simulated from September 1990 through September 2005 using 181 stress periods of 1 month each. The areal extent of the model encompasses an area of

  2. Impacts of future changes on groundwater recharge and flow in highly-connected river-aquifer systems: A case study of the Spokane Valley-Rathdrum Prairie Aquifer

    Science.gov (United States)

    Nguyen, T. T.; Baxter, H.; Barber, M. E.; Hossain, A.; Orr, C. H.; Adam, J. C.

    2013-12-01

    The Spokane, Washington-Coeur d'Alene, Idaho Corridor is well-known for its Spokane Valley-Rathdrum Prairie (SVRP) Aquifer which is a sole source of drinking water for more than 500,000 people. The aquifer is highly connected to the Spokane River and responds very fast to natural and human perturbations, making it relatively vulnerable to climate and anthropogenic changes in future decades. Recent studies have indicated a decline in minimum daily flow in the Spokane River in the last 100 years, while projecting an increase in cool-season precipitation into the future. We investigated the potential impacts of these projected future climate-driven hydrologic changes on groundwater recharge and flow in the SVRP. A distributed, physically-based hydrological model, the Precipitation Runoff Modeling System (PRMS), was coupled with an existing Modular three-dimensional finite-difference ground-water model (MODFLOW) to have better estimates of recharge into the SVRP as well as the interaction of surface water and groundwater. The couple model was calibrated and validated at a daily time-step within the Model-Independent Parameter Estimation (PEST) framework using 16 years of both observed streamflow and observed well data (1990 - 2005). To assess future climate change impacts, statistically downscaled climate projections of temperature and precipitation between 2010 and 2050 from four general circulation models were used. The results from the coupled model provide insight on the interplay between snowmelt, streamflow, groundwater recharge and discharge in such a highly-connected system. Moreover, the relative sensitivities of groundwater recharge and flow with respect to changes in climate and land cover are also examined. These results can be used as good references for long term water resources management and planning in the region.

  3. Characterizing the occurrence, sources, and variability of radon in pacific northwest homes

    International Nuclear Information System (INIS)

    Turk, B.H.; Prill, R.J.; Grimsrud, D.T.; Moed, B.A.; Sextro, R.G.

    1990-01-01

    A compilation of data from earlier studies of 172 homes in the Pacific Northwest indicated that approximately 65 percent of the 46 homes tested in the Spokane River Valley/Rathdrum Prairie region of eastern Washington/northern Idaho had heating season indoor radon ( 222 Rn) concentrations above the U.S. EPA guideline of 148 Bq m -3 (4 pCi L -1 ). A subset of 35 homes was selected for additional study. The primary source of indoor radon in the Spokane River Valley/Rathdrum Prairie was pressure-driven flow of soil gas containing moderate radon concentrations (geometric mean concentration of 16,000 Bq m -3 ) from the highly permeable soils (geometric mean permeability of 5 x 10 -11 m 2 ) surrounding the house substructures. Estimated soil gas entry rates ranged from 0.4 to 39 m 3 h -1 and 1 percent to 21 percent of total building air infiltration. Radon from other sources, including domestic water supplies and building materials was negligible. In high radon homes, winter indoor levels averaged 13 times higher than summer concentrations, while in low radon homes winter levels averaged only 2.5 times higher. Short-term variations in indoor radon were observed to be dependent upon indoor-outdoor temperature differences, wind speed, and operation of forced-air furnace fans. Forced-air furnace operations, along with leaky return ducts and plenums, and openings between the substructure and upper floors enhanced mixing of radon laden substructure air throughout the rest of the building

  4. Prairie Chicken

    Data.gov (United States)

    Kansas Data Access and Support Center — An outline of the general range occupied by greayter and lesser prairie chickens. The range was delineated by expert opinion, then varified by local wildlife...

  5. Water Budgets for Coeur d'Alene Lake, Idaho, Water Years 2000-2005

    Science.gov (United States)

    Maupin, Molly A.; Weakland, Rhonda J.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, calculated annual water budgets and a mean annual water budget for Coeur d'Alene Lake, Idaho, for water years 2000 through 2005. Mean annual inflow to Coeur d'Alene Lake, including precipitation, was about 167,110 million cubic feet. Mean annual outflow, including evaporation, but excluding wastewater effluent to the Spokane River, was about 167,850 million cubic feet. The amount of water lost from Coeur d'Alene Lake and the Spokane River to the Spokane Valley-Rathdrum Prairie aquifer was estimated at 7,250 million cubic feet. Mean annual precipitation into Coeur d'Alene Lake was 3,267 million cubic feet, which exceeded mean annual evaporation of 2,483 million cubic feet. Withdrawals directly from the lake and from wells within a 1,000 foot buffer of the lakeshore for domestic and municipal water uses were reported. However, only the estimate for the consumptive use part of the withdrawals, 265 million cubic feet, was considered in the budget. Mean annual change in lake storage resulted in a net loss of about 49 million cubic feet. The mean annual residual value was about -8,310 million cubic feet.

  6. Spokane Tribal Hatchery, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peone, Tim L. (Spokane Tribe of Indians, Willpinit, WA)

    2003-03-01

    The Spokane Tribal Hatchery (Galbraith Springs) project originated from the Northwest Power Planning Council (NPPC) 1987 Columbia Basin Fish and Wildlife Program. The goal of this project is to aid in the restoration and enhancement of the Lake Roosevelt and Banks Lake fisheries adversely affected by the construction and operation of Grand Coulee Dam. The objective is to produce kokanee salmon and rainbow trout for release into Lake Roosevelt for maintaining a viable fishery. The goal and objective of this project adheres to the NPPC Resident Fish Substitution Policy and specifically to the biological objectives addressed in the NPPC Columbia River Basin Fish and Wildlife Program to mitigate for hydropower related fish losses in the blocked area above Chief Joseph/Grand Coulee Dams.

  7. Spokane Tribal Hatchery, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peone, Tim L. (Spokane Tribe of Indians, Wellpinit, WA)

    2004-05-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting a harvestable fishery for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). A collaborative multi-agency artificial production program for the Lake Roosevelt and Banks Lake fisheries exists consisting of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and the Lake Roosevelt Kokanee and Rainbow Trout Net Pen Rearing Projects. These projects operate complementary of one another to target an annual release of 1 million yearling kokanee and 500,000 yearling rainbow trout for Lake Roosevelt and 1.4 million kokanee fry/fingerlings for Banks Lake. Combined fish stocking by the hatcheries and net pen rearing projects in 2003 included: 899,168 kokanee yearlings released into Lake Roosevelt; 1,087,331 kokanee fry/fingerlings released into Banks Lake, 44,000 rainbow trout fingerlings and; 580,880 rainbow trout yearlings released into Lake Roosevelt. Stock composition of 2003 releases consisted of Lake Whatcom kokanee, 50:50 diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2003 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to harvestable rainbow trout and kokanee salmon fisheries. An increase in kokanee harvest was primarily owing to new release strategies. Walleye predation, early maturity and entrainment through Grand Coulee Dam continues to

  8. Spokane Tribal Hatchery, 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peone, Tim L. (Spokane Tribe of Indians, Wellpinit, WA)

    2006-03-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting harvestable fisheries for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). The Spokane Tribe, Washington Department of Fish and Wildlife, Colville Confederated Tribes and Lake Roosevelt Development Association/Lake Roosevelt Volunteer Net Pen Project are cooperating in a comprehensive artificial production program to produce kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) for annual releases into the project area. The program consists of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and Lake Roosevelt Rainbow Trout Net Pen Rearing Projects. The Lake Roosevelt and Banks Lake Fisheries Evaluation Program monitor and evaluates release strategies and production methods for the aforementioned projects. Between 1985 and 2005 the projects have collectively produced up to 800,000 rainbow trout and 4 million kokanee salmon for release into Lake Roosevelt and 1.4 million kokanee fry for Banks Lake annually. In 2005, the annual release goal included 3.3 million kokanee fry, 475,000 kokanee yearlings and 500,000 rainbow trout yearlings. Fish produced by this project in 2005 to meet collective fish production and release goals included: 3,446,438 kokanee fingerlings, 347,730 rainbow trout fingerlings and 525,721 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Meadow Creek and Lake Whatcom kokanee, diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and

  9. Spokane Tribal Hatchery, 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peone, Tim L. (Spokane Tribe of Indians, Wellpinit, WA)

    2005-03-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting a harvestable fishery for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). A collaborative multi-agency artificial production program for the Lake Roosevelt and Banks Lake fisheries exists consisting of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and the Lake Roosevelt Kokanee and Rainbow Trout Net Pen Rearing Projects. These projects operate complementary of one another to target an annual release of 1 million yearling kokanee and 500,000 yearling rainbow trout for Lake Roosevelt and 1.4 million kokanee fry/fingerlings for Banks Lake. Fish produced by this project in 2004 to meet collective fish production and release goals included: 1,655,722 kokanee fingerlings, 537,783 rainbow trout fingerlings and 507,660 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Lake Whatcom kokanee, 50:50 diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2004 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to harvestable rainbow trout and kokanee salmon fisheries. An increase in kokanee harvest was primarily owing to new release strategies. Walleye predation, early maturity and entrainment through Grand Coulee Dam continues to have a negative impact on adult kokanee returns and limits the

  10. 76 FR 27668 - ASC Machine Tools, Inc., Spokane Valley, WA; Notice of Negative Determination on Reconsideration

    Science.gov (United States)

    2011-05-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,971] ASC Machine Tools, Inc... workers and former workers of ASC Machine Tools, Inc., Spokane Valley, Washington (the subject firm). The..., component parts of equipment, and spare parts. Workers are not separately identifiable by article produced...

  11. Notification: EPA Region 10 Management Controls Over Allowing Substantial Public Funds to Construct the Spokane County Wastewater Treatment Facility

    Science.gov (United States)

    January 20, 2012. This EPA's OIG is initiating a review from an OIG hotline complaint regarding whether federal funds were properly used to construct the new Spokane County wastewater treatment facility in accordance with 40 CFR 35, Subpart K.

  12. Long-term Planning for Sustainable Water and Wastewater Infrastructure in Wellpinit, Washington, for the Spokane Tribe of Indians

    Science.gov (United States)

    The Spokane Tribe initiated a long-term planning process for a water and wastewater infrastructure system that can support the tribe’s goals to add compact, mixed-use development in the town of Wellpinit.

  13. Applications of a Complimentary Modeling Framework to Improve Regional-Scale Groundwater Prediction

    Science.gov (United States)

    Valocchi, A. J.; Demissie, Y.

    2010-12-01

    Computational models of groundwater flow are important tools that help guide management policies and decisions. Modern inverse modeling techniques lead to improved model calibration and knowledge of parameter sensitivity and uncertainty. However, their effectiveness in real world groundwater model application is often limited because of the complexity and heterogeneity of natural subsurface systems as well as the insufficiency of representative measured data. Models are often used to make predictions to evaluate the impact of future scenarios or management policies quite different from the historical conditions that provided the data used for calibration. Models are normally calibrated to yield a good overall match (e.g., as measured by the least squares error criterion) to all the available data, while predictions often focus upon critical spatial locations with the largest impact upon social or hydro-ecological factors. We present a complementary modeling framework to improve the performance of inverse modeling by integrating a calibrated physically-based groundwater model with error-correcting data-driven models to handle the bias and uncertainties arising mainly from ignored or misrepresented processes in the groundwater model. The feasibility of adopting the framework is enhanced by advances in measurement technology and observation networks that are leading to increased amounts of hydrologic data. We have previously published an application of the framework to a hypothetical problem, showing promising results. We present application of the framework to two complex real-world case studies where calibrated MODFLOW models have been developed: the Spokane Valley Rathdrum Prairie and Republican River Compact Administration models. The MODFLOW and data-driven models are calibrated to a portion of the available data, and prediction accuracy is assessed using the remaining data. We find that in general the prediction accuracy of using the complementary model is

  14. Ecological indicators of water quality in the Spokane River, Idaho and Washington, 1998 and 1999

    Science.gov (United States)

    MacCoy, Dorene E.; Maret, Terry R.

    2003-01-01

    A water-quality investigation of the Spokane River was completed during summer low-flow conditions in 1998 and 1999 as part of the USGS NAWQA Program, in cooperation with the WDOE. (Abbreviations used in this report are defined on the last page.) Samples for analyses of water chemistry; bed sediment; aquatic communities (fish, macroinvertebrates, and algae); contaminants in tissue (fish and macroinvertebrates); and associated measures of habitat were collected at six sites downstream from Coeur d’Alene Lake between river miles 63 and 100. These data provided baseline information to evaluate the water-quality status of the Spokane River and can be used to determine the ecological risk to aquatic organisms from contaminants.

  15. Metropolitan Spokane Region Water Resources Study. Appendix E. Environment and Recreation

    Science.gov (United States)

    1976-01-01

    Q ATER:a-ESOURCE8 STUDY pet ropoli an no APPENDIX E En- go n a o -Ir LIST OF REPORTS AND APPENDICES REPORTS Summary Report Technical Report APPEND...AnimalsSmall Animals 315.52- 1Muskrats 315.52- 2Mink 315.52- 2 Beaver 315.52- 3Racoon 315.52- 3 Otter 315.52- 3Bobcat 315.52- 3Aquatic Game Birds 315.52...racoon, otter and bobcats ar- present in varying numbers in the etudy area. Fur-bearing animals are generally abundant throughout the en- tire Spokane

  16. Hobo Orator Union: Class Composition and the Spokane Free Speech Fight of the Industrial Workers of the World

    Science.gov (United States)

    May, Matthew S.

    2011-01-01

    From 1909 to 1910, the public performance of soap-box oratory began to effect dramatic changes in the composition of migrant workers throughout the Pacific Northwest. Municipal authorities in Spokane attempted to curb the formation of a union of hobo orators by outlawing public speech-making within the city fire limits. The ensuing confrontation…

  17. 77 FR 12873 - Draft Environmental Impact Statement for the Proposed Spokane Tribe of Indians West Plains Casino...

    Science.gov (United States)

    2012-03-02

    ... structure, site retail, commercial building, tribal cultural center, and police/ fire station within the... Main Street, Spokane, Washington 99201. The DEIS is also available online at: http://www.westplainseis... shown in the ADDRESSES section of this notice, during regular business hours, 8 a.m. to 4:30 p.m...

  18. Black-tailed prairie dog status and future conservation planning

    Science.gov (United States)

    Daniel W. Mulhern; Craig J. Knowles

    1997-01-01

    The black-tailed prairie dog is one of five prairie dog species estimated to have once occupied up to 100 million ha or more in North America. The area occupied by black-tailed prairie dogs has declined to approximately 2% of its former range. Conversion of habitat to other land uses and widespread prairie dog eradication efforts combined with sylvatic plague,

  19. The prairie dog as a keystone species

    Science.gov (United States)

    Kotliar, Natasha B.; Miller, Brian J.; Reading, Richard P.; Clark, Timothy W.; Hoogland, John L.

    2006-01-01

    The prairie dog has a pronounced impact on its grassland ecosystem (King 1955; Uresk and Bjugstad 1983; Miller et al. 1994; Society for Conservation Biology 1994; Wuerthner 1997; Johnsgard 2005). They maintain short vegetation by their grazing and by selective removal of tall plants and shrubs; provide shelter, foraging grounds, and nesting habitat for a diverse array of animals; serve as prey for many predators; and alter soil chemistry.Do these impacts mean that the prairie dog is a keystone species? To investigate, we first scrutinize the definition for a keystone species. We then document both vertebrates and invertebrates that associate with prairie dogs and their colony-sites. We examine ecosystem processes at colony-sites, and then assess whether the prairie dog is a legitimate keystone species. Finally, we explore the implications of keystone status for the conservation of prairie dogs.

  20. Potential Hydroelectric Power Upriver Dam: City of Spokane Department of Utilities Water Division

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    The technical, economic, environmental and institutional feasibility of increasing the power generation capacity of the City of Spokane's Upriver Dam Complex by installing additional generating facilities and/or modifying existing facilities were studied. It is proposed that the existing powerhouse be uprated from 3.9 to 4.5 MW and that a new powerhouse be constructed with two 4.5 MW turbines to provide an annual additional energy production of 62.3 million kWh. No adverse environmental or safety effects are foreseen, the socio-institutional impacts will be beneficial, there is a market for the power produced, and the benefit/cost ratio is advantageous. (LCL)

  1. Prairie Change Analysis 1991-2008

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset displays the results of a prairie/savanna change analysis study completed in May 2010. The area reviewed consists of 1,521 sites identified by Minnesota...

  2. Tornado Mitigation in the Canadian Prairie Region

    OpenAIRE

    Durage, Samanthi, Prof.

    2014-01-01

    Tornadoes are a destructive form of the extreme weather associated with thunderstorms. Canada gets more tornadoes than any other country with the exception of the US. This paper presents some results of a study on tornado mitigation in the Canadian Prairie region. Initially, a regression-based analysis of the Prairie tornado database was conducted, and the trend for the number of tornadoes reported in each year is discussed in this paper. The detection, warning, communication, and evacuation ...

  3. Radon and remedial action in Spokane River Valley residences: an interim report

    International Nuclear Information System (INIS)

    Turk, B.H.; Prill, R.J.; Fisk, W.J.; Grimsrud, D.T.; Moed, B.A.; Sextro, R.G.

    1986-03-01

    Fifty-six percent of 46 residences monitored in the Spokane River Valley in eastern Washington/northern Idaho have indoor radon concentrations above the National Council for Radiation Protection (NCRP) guidelines of 8 pCi/1. Indoor levels were over 20 pCi/1 in eight homes, and ranged up to 132 pCi/1 in one house. Radon concentrations declined by factors of 4 to 38 during summer months. Measurements of soil emanation rates, domestic water supply concentrations, and building material flux rates indicate that diffusion of radon does not significantly contribute to the high concentrations observed. Rather, radon entry is dominated by pressure-driven bulk soil gas transport, aggravated by the local subsurface soil composition and structure. A variety of radon control strategies are being evaluated in 14 of these homes. Sub-surface ventilation by depressurization and overpressurization, basement overpressurization, and crawlspace ventilation are capable of successfully reducing radon levels below 5 pCi/1 in these homes. House ventilation is appropriate in buildings with low-moderate concentrations, while sealing of cracks has been relatively ineffective

  4. Observation: Leafy spurge control in western prairie fringed orchid habitat

    Science.gov (United States)

    Donald R. Kirby; Rodney G. Lym; John J. Sterling; Carolyn Hull Sieg

    2003-01-01

    The western prairie fringed orchid (Platanthera praeclara Sheviak and Bowles) is a threatened species of the tallgrass prairie. Invasion by leafy spurge (Euphorbiaes esula L.) is a serious threat to western prairie fringed orchid habitat. The obiectives of this study were to develop a herbicide treatment to control leafy spurge...

  5. Soil change induced by prairie dogs across three ecological sites

    Science.gov (United States)

    Prairie dogs (Cynomys spp.) can influence vegetation dynamics and landscape hydrology by altering soil properties, yet few studies have evaluated soil responses to prairie dog activities across a range of soil types. This study was conducted to quantify prairie dog effects on soil properties within...

  6. Northern Prairie Wildlife Research Center

    Science.gov (United States)

    ,

    2009-01-01

    The Northern Prairie Wildlife Research Center (NPWRC) conducts integrated research to fulfill the Department of the Interior's responsibilities to the Nation's natural resources. Located on 600 acres along the James River Valley near Jamestown, North Dakota, the NPWRC develops and disseminates scientific information needed to understand, conserve, and wisely manage the Nation's biological resources. Research emphasis is primarily on midcontinental plant and animal species and ecosystems of the United States. During the center's 40-year history, its scientists have earned an international reputation for leadership and expertise on the biology of waterfowl and grassland birds, wetland ecology and classification, mammalian behavior and ecology, grassland ecosystems, and application of statistics and geographic information systems. To address current science challenges, NPWRC scientists collaborate with researchers from other U.S. Geological Survey centers and disciplines (Biology, Geography, Geology, and Water) and with biologists and managers in the Department of the Interior (DOI), other Federal agencies, State agencies, universities, and nongovernmental organizations. Expanding upon its scientific expertise and leadership, the NPWRC is moving in new directions, including invasive plant species, restoration of native habitats, carbon sequestration and marketing, and ungulate management on DOI lands.

  7. Invasive plants affect prairie soil biology

    Science.gov (United States)

    Non-native or exotic plants often cause ecological and environmental damage in ecosystems where they invade and become established. These invasive plants may be the most serious threat to plant diversity in prairies, especially those in scattered remnants, which may be particularly vulnerable to rap...

  8. Photochemical Attenuation of Pesticides in Prairie Potholes

    Science.gov (United States)

    Zeng, T.; Arnold, W. A.

    2013-12-01

    Prairie potholes are small, shallow, glacially-derived wetlands scattered across a vast region extending from Midwestern United States into south central Canada known as the Prairie Pothole Region (PPR). They constitute one of the largest inland wetland systems on Earth and play a prominent role in sustaining the regional biodiversity and productivity. Throughout the PPR, historic and contemporary conversion of native prairie for agriculture resulted in a pronounced loss of potholes. Remaining potholes have become interspersed within a matrix of agricultural landscape and trap nonpoint source pollutants such as pesticides from adjacent farmland, which has raised concerns regarding negative impacts on the water quality of downstream water bodies. The fate and persistence of pesticides in potholes, however, remains largely unexplored. Prairie potholes are typically characterized by shallow depth (i.e., large photic zone) and high levels of dissolved organic matter (DOM), making them ideal for photochemical reactions. In this context, we collected pothole water samples from North Dakota to investigate the rates and mechanisms of sunlight-induced attenuation of pesticides. The photodegradation kinetics and pathways of sixteen pesticides in the pothole water were monitored under both simulated and natural sunlight. For most pesticides, photolysis accelerated in the pothole water relative to the buffer control, which pointed to the importance of photosensitized processes (i.e., indirect photolysis). Upon solar irradiation, a mixture of photochemically produced reactive intermediates (PPRIs), such as carbonate radical, hydroxyl radical, singlet oxygen, and triplet-excited state DOM, formed in the pothole water. The major pathways through which pesticides degraded were inferred from the relative contribution attributable to specific PPRIs via quencher experiments. Different classes of pesticides exhibited contrasting photochemical behavior, but singlet oxygen and triplet

  9. Cardiochilinae and Ichneutinae (Hymenoptera: Braconidae) of Konza Prairie

    Science.gov (United States)

    The results of a survey of Cardiochilinae and Ichneutinae (Hymenoptera: Braconidae) at Konza Prairie near Manhattan, Kansas are reported. Eleven sites representing prairie and woodland/wetland areas, including gallery forest, were sampled in 2001 and 2005 using Malaise traps and a canopy trap. Selec...

  10. Chicago's Columbus Park: The Prairie Idealized. Teaching with Historic Places.

    Science.gov (United States)

    Bachrach, Julia Sniderman; Nathan, Jo Ann

    Twenty-four year old Jens Jensen came to the United States, settled in Chicago (Illinois), and promptly fell in love with the Midwest's prairie landscape. Although some thought that prairie was boring, monotonous, and ordinary, Jensen saw great beauty in the tree-filled groves, long winding rivers, natural rock formations and waterfalls, and the…

  11. Restoration and winter avian use of isolated prairies in eastern Texas

    Science.gov (United States)

    D. Craig Rudolph; Dave E. Plair; Dan Jones; J. Howard Williamson; Clifford E. Shackelford; Richard R. Schaefer; Joshua B. Pierce

    2014-01-01

    Numerous isolated prairies exist, or existed, on the West Gulf Coastal Plain east of the main distribution of the prairie ecosystem. Changing land-use patterns and suppression of wildfire have destroyed almost all of these small prairie occurrences. Intensified restoration and management of degraded prairie habitat on the Sam Houston National Forest in southeastern...

  12. Use of ecological sites in managing wildlife and livestock: An example with prairie dogs

    Science.gov (United States)

    Prairie dogs are a native rodent found in the mixed grass prairie of the northern Great Plains. Prairie dogs can have an adverse impact on the amount of forages available for grazing livestock. In the Native American community, prairie dogs are often valued as a cultural resource and as an importan...

  13. Prairie Monitoring Protocol Development: North Coast and Cascades Network

    Science.gov (United States)

    McCoy, Allen; Dalby, Craig

    2009-01-01

    The purpose of the project was to conduct research that will guide development of a standard approach to monitoring several components of prairies within the North Coast and Cascades Network (NCCN) parks. Prairies are an important element of the natural environment at many parks, including San Juan Island National Historical Park (NHP) and Ebey's Landing National Historical Reserve (NHR). Forests have been encroaching on these prairies for many years, and so monitoring of the prairies is an important resource issue. This project specifically focused on San Juan Island NHP. Prairies at Ebey's Landing NHR will be monitored in the future, but that park was not mapped as part of this prototype project. In the interest of efficiency, the Network decided to investigate two main issues before launching a full protocol development effort: (1) the imagery requirements for monitoring prairie components, and (2) the effectiveness of software to assist in extracting features from the imagery. Several components of prairie monitoring were initially identified as being easily tracked using aerial imagery. These components included prairie/forest edge, broad prairie composition (for example, shrubs, scattered trees), and internal exclusions (for example, shrubs, bare ground). In addition, we believed that it might be possible to distinguish different grasses in the prairies if the imagery were of high enough resolution. Although the areas in question at San Juan Island NHP are small enough that mapping on the ground with GPS (Global Positioning System) would be feasible, other applications could benefit from aerial image acquisition on a regular, recurring basis and thereby make the investment in aerial imagery worthwhile. The additional expense of orthorectifying the imagery also was determined to be cost-effective.

  14. Oxytocin reduces alcohol consumption in prairie voles.

    Science.gov (United States)

    Stevenson, J R; Wenner, S M; Freestone, D M; Romaine, C C; Parian, M C; Christian, S M; Bohidar, A E; Ndem, J R; Vogel, I R; O'Kane, C M

    2017-10-01

    Alcohol use disorder (AUD) negatively affects millions of people every year in the United States, and effective treatments for AUD are still needed. The neuropeptide oxytocin has shown promise for reducing alcohol drinking in mice and rats. Because oxytocin also plays a key role in complex prosocial behaviors like bonding and attachment, we tested the effect of oxytocin on alcohol drinking in prairie voles, a species that both consumes high amounts of alcohol and forms oxytocin dependent social bonds in a manner similar to humans. Oxytocin treatment (1.0, 3.0, and 10.0mg/kg, i.p.) reduced alcohol consumption in male and female prairie voles in animals that had access to 15% ethanol vs water every other day for 12 alcohol drinking sessions. In animals with continuous access to 15% alcohol and water, oxytocin (3.0mg/kg) reduced alcohol consumption only in the first hour of access after treatment, with no significant effects on consumption over the 24-hr period. In an open field locomotor test, oxytocin (1.0, 3.0, and 10.0mg/kg, i.p.) did not affect overall locomotor activity; however, ethanol (2g/kg, i.p.) increased locomotor activity in males and females, and produced anxiolytic effects (increased time in the center of an open field) in females only. Because prairie voles have been shown to match the alcohol consumption of their cage mate, we evaluated the relationship between cage mates' alcohol drinking. There was an overall pattern of social facilitation (consumption by one cage mate predicted consumption by the other cage mate); however, we found significant individual differences across cages in which many cages did not show significant matching, and, in some cases one cage mate's consumption negatively predicted the other cage mate's consumption. Overall, our data provide support for the potential of oxytocin as a treatment to reduce alcohol consumption. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Drought, Climate Change and the Canadian Prairies

    Science.gov (United States)

    Stewart, R. E.

    2010-03-01

    The occurrence of drought is a ubiquitous feature of the global water cycle. Such an extreme does not necessarily lead to an overall change in the magnitude of the global water cycle but it of course affects the regional cycling of water. Droughts are recurring aspects of weather and climate extremes as are floods and tornadoes, but they differ substantially since they have long durations and lack easily identified onsets and terminations. Drought is a relatively common feature of the North American and Canadian climate system and all regions of the continent are affected from time-to-time. However, it tends to be most common and severe over the central regions of the continent. The Canadian Prairies are therefore prone to drought. Droughts in the Canadian Prairies are distinctive in North America. The large scale atmospheric circulations are influenced by blocking from intense orography to the west and long distances from all warm ocean-derived atmospheric water sources; growing season precipitation is generated by a highly complex combination of frontal and convective systems; seasonality is severe and characterized by a relatively long snow-covered and short growing seasons; local surface runoff is primarily produced by snowmelt water; there is substantial water storage potential in the poorly drained, post-glacial topography; and aquifers are overlain by impermeable glacial till, but there are also important permeable aquifers. One example of Prairie drought is the recent one that began in 1999 with cessation of its atmospheric component in 2004/2005 and many of its hydrological components in 2005. This event produced the worst drought for at least a hundred years in parts of the Canadian Prairies. Even in the dust bowl of the 1930s, no single year over the central Prairies were drier than in 2001. The drought affected agriculture, recreation, tourism, health, hydro-electricity, and forestry in the Prairies. Gross Domestic Product fell some 5.8 billion and

  16. Seasonal acclimation of prairie deer mice

    Science.gov (United States)

    Andrews, R. V.; Belknap, R. W.

    1993-12-01

    Prairie deer mice responded to long nights by reducing their metabolic rates, core temperatures, thermal conductances and incremental metabolic responses to cold stimulus, while increasing their capacities for nonshivering thermogenesis. Some winter animals spontaneously entered daily torpor in the mornings and thereby further reduced their metabolic rates and core temperatures. Provision of exogenous melatonin (by subdermal implants) mimiced short photoperiod effects on metabolic rates and core temperatures of wild-caught, laboratory maintained animals. Provision of supplemental dietary tryptophan to laboratory animals conditioned to natural light cycles mimiced metabolic effects of long nights in summer animals, and further reduced metabolic rates of winter mice, but did not affect their core temperature levels. Newly caught, laboratory maintained deer mice responded to natural seasonal clues of shortphotoperiod and increased dietary tryptophan by reducing their resting energy requirements through both lower metabolic and lower core temperature levels. Short photoperiod and seasonal change also promoted gonadal involution, and resulted in more socially tolerant huddling by mice with reduced core temperature. Reduced 24-hour LH excretion rates were also observed in winter animals which were exposed to seasonal light cycles at warm (25°C) room temperatures. We propose that seasonal acclimatization involves pineal effects on sex hormone-influenced social behaviors and on resting metabolism. These effects serve to conserve resting energy expenditure and promote hypothermic insulation by wild prairie deer mice.

  17. Sylvatic plague vaccine and management of prairie dogs

    Science.gov (United States)

    Rocke, Tonie E.

    2012-01-01

    Scientists at the USGS National Wildlife Health Center (NWHC), in collaboration with colleagues at the University of Wisconsin (UW), have developed a sylvatic plague vaccine that shows great promise in protecting prairie dogs against plague (Mencher and others, 2004; Rocke and others, 2010). Four species of prairie dogs reside in the United States and Canada, and all are highly susceptible to plague and regularly experience outbreaks with devastating losses. Along with habitat loss and poisoning, plague has contributed to a significant historical decline in prairie dog populations. By some estimates, prairie dogs now occupy only 1 to 2 percent of their former range (Proctor and others, 2006), with prairie dog colonies being now much smaller and fragmented than they were historically, making individual colonies more vulnerable to elimination by plague (Antolin and others, 2002). At least one species, the Utah prairie dog (Cynomys parvidens) is listed by the U.S. Fish and Wildlife Service (FWS) as "threatened." Controlling plague is a vital concern for ongoing management and conservation efforts for prairie dogs. Current efforts to halt the spread of plague in prairie dog colonies typically rely on dusting individual prairie dog burrows with pesticides to kill plague-infected fleas. Although flea-control insecticides, such as deltamethrin, are useful in stopping plague outbreaks in these prairie dog colonies, dusting of burrows is labor intensive and time consuming and may affect other insects and arthropods. As an alternative approach, NWHC and UW scientists developed a sylvatic plague vaccine (SPV) for prairie dogs that can be delivered via oral bait. Laboratory studies have shown that consumption of this vaccine-laden bait by different prairie dog species results in significant protection against plague infection that can last for at least 9 months (Rocke and others, 2010; Rocke, unpublished). Work has now shifted to optimizing baits and distribution methods for

  18. Resistance to plague among black-tailed prairie dog populations.

    Science.gov (United States)

    Rocke, Tonie E; Williamson, Judy; Cobble, Kacy R; Busch, Joseph D; Antolin, Michael F; Wagner, David M

    2012-02-01

    In some rodent species frequently exposed to plague outbreaks caused by Yersinia pestis, resistance to the disease has evolved as a population trait. As a first step in determining if plague resistance has developed in black-tailed prairie dogs (Cynomys ludovicianus), animals captured from colonies in a plague-free region (South Dakota) and two plague-endemic regions (Colorado and Texas) were challenged with Y. pestis at one of three doses (2.5, 250, or 2500 mouse LD50s). South Dakota prairie dogs were far more susceptible to plague than Colorado and Texas prairie dogs (pplague resistance.

  19. Disease Limits Populations: Plague and Black-Tailed Prairie Dogs

    OpenAIRE

    Cully, Jack F.; Johnson, Tammi L.; Collinge, Sharon K.; Ray, Chris

    2010-01-01

    Plague is an exotic vector-borne disease caused by the bacterium Yersinia pestis that causes mortality rates approaching 100% in black-tailed prairie dogs (Cynomys ludovicianus). We mapped the perimeter of the active portions of black-tailed prairie dog colonies annually between 1999 and 2005 at four prairie dog colony complexes in areas with a history of plague, as well as at two complexes that were located outside the distribution of plague at the time of mapping and had therefore never bee...

  20. Public knowledge and perceptions of black-tailed prairie dogs

    Science.gov (United States)

    Lamb, B.L.; Cline, K.

    2003-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) historically occupied an 11-state region of the United States. We surveyed 1,900 residents (response rate 56%) of this region to understand citizen knowledge and perceptions about prairie dogs and their management. Those who have direct experience - e.g., those who live very close to prairie dog colonies or know the location of the nearest colony - have higher levels of knowledge. A significantly higher level of knowledge was documented among those who were politically active when compared with the general public. Those who found environmental issues difficult to understand were associated with lower knowledge. People with direct experience were likely to hold negative views, whereas those holding environmentalist values were likely to express positive attitudes toward the species. Although those with higher education reported more knowledge, there was no link between a person's level of knowledge and perceptions of prairie dog management.

  1. Two decades of prairie restoration at Fermilab, Batavia, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Betz, R.F. [Northeastern Illinois Univ., Chicago, IL (United States); Lootens, R.J.; Becker, M.K. [Fermi National Accelerator Lab., Batavia, IL (United States)

    1996-12-31

    Successional Restoration is the method being used to restore the prairie at Fermilab on the former agricultural fields. This involves an initial planting, using aggressive species that have wide ecological tolerances which will grow well on abandoned agricultural fields. Collectively, these species are designated as the prairie matrix. The species used for this prairie matrix compete with and eventually eliminate most weedy species. They also provide an adequate fuel load capable of sustaining a fire within a few years after a site has been initially planted. Associated changes in the biological and physical structure of the soil help prepare the way for the successful introduction of plants of the later successional species. Only after the species of the prairie matrix are well established, is the species diversity increased by introducing species with narrower ecological tolerances. These species are thus characteristic of the later successional stages.

  2. Carcass Search & Recovery Guidelines for Black Tailed Prairie Dogs

    Science.gov (United States)

    The availability of dead or intoxicated prairie dogs above ground will be monitored, recorded and these carcasses will be properly disposed of, in accordance with the procedures described on this page.

  3. NPP Grassland: Konza Prairie, USA, 1984-1990, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains three ASCII files (.txt format). Two files contain above-ground biomass and productivity data for a humid temperate tall-grass prairie...

  4. Disease limits populations: plague and black-tailed prairie dogs.

    Science.gov (United States)

    Cully, Jack F; Johnson, Tammi L; Collinge, Sharon K; Ray, Chris

    2010-01-01

    Plague is an exotic vector-borne disease caused by the bacterium Yersinia pestis that causes mortality rates approaching 100% in black-tailed prairie dogs (Cynomys ludovicianus). We mapped the perimeter of the active portions of black-tailed prairie dog colonies annually between 1999 and 2005 at four prairie dog colony complexes in areas with a history of plague, as well as at two complexes that were located outside the distribution of plague at the time of mapping and had therefore never been affected by the disease. We hypothesized that the presence of plague would significantly reduce overall black-tailed prairie dog colony area, reduce the sizes of colonies on these landscapes, and increase nearest-neighbor distances between colonies. Within the region historically affected by plague, individual colonies were smaller, nearest-neighbor distances were greater, and the proportion of potential habitat occupied by active prairie dog colonies was smaller than at plague-free sites. Populations that endured plague were composed of fewer large colonies (>100 ha) than populations that were historically plague free. We suggest that these differences among sites in colony size and isolation may slow recolonization after extirpation. At the same time, greater intercolony distances may also reduce intercolony transmission of pathogens. Reduced transmission among smaller and more distant colonies may ultimately enhance long-term prairie dog population persistence in areas where plague is present.

  5. Interspecific comparisons of sylvatic plague in prairie dogs

    Science.gov (United States)

    Cully, J.F.; Williams, E.S.

    2001-01-01

    Of the 3 major factors (habitat loss, poisoning, and disease) that limit abundance of prairie dogs today, sylvatic plague caused by Yersinia pestis is the 1 factor that is beyond human control. Plague epizootics frequently kill >99% of prairie dogs in infected colonies. Although epizootics of sylvatic plague occur throughout most of the range of prairie dogs in the United States and are well described, long-term maintenance of plague in enzootic rodent species is not well documented or understood. We review dynamics of plague in white-tailed (Cynomys leucurus), Gunnison's (C. gunnisoni), and black-tailed (C. ludovicianus) prairie dogs, and their rodent and flea associates. We use epidemiologic concepts to support an enzootic hypothesis in which the disease is maintained in a dynamic state, which requires transmission of Y. pestis to be slower than recruitment of new susceptible mammal hosts. Major effects of plague are to reduce colony size of black-tailed prairie dogs and increase intercolony distances within colony complexes. In the presence of plague, black-tailed prairie dogs will probably survive in complexes of small colonies that are usually >3 km from their nearest neighbor colonies.

  6. Black-tailed prairie dogs, cattle, and the conservation of North America's arid grasslands.

    Directory of Open Access Journals (Sweden)

    Rodrigo Sierra-Corona

    Full Text Available Prairie dogs (Cynomys spp. have been eliminated from over 95% of their historic range in large part from direct eradication campaigns to reduce their purported competition with cattle for forage. Despite the longstanding importance of this issue to grassland management and conservation, the ecological interactions between cattle and prairie dogs have not been well examined. We address this issue through two complementary experiments to determine if cattle and prairie dogs form a mutualistic grazing association similar to that between prairie dogs and American bison. Our experimental results show that cattle preferentially graze along prairie dog colony edges and use their colony centers for resting, resembling the mutualistic relationship prairie dogs have with American bison. Our results also show that prairie dog colonies are not only an important component of the grassland mosaic for maintaining biodiversity, but also provide benefits to cattle, thereby challenging the long-standing view of prairie dogs as an undesirable pest species in grasslands.

  7. A Habitat-Based Approach to Management of Tallgrass Prairies at the Tewaukon National Wildlife Refuge

    Science.gov (United States)

    1999-11-01

    consuming. Problems often exist with invasive exotic vegetation [e.g., leafy spurge { Euphorbia esculd), smooth bromegrass {Bromus inermis), Kentucky...Pycnanthemum virginianum (common mountain mint) Rudbeckia hirta (black-eyed susan) Senecio plattensis (prairie ragwort) Sisyrinchium campestre (prairie

  8. Tradeoffs in ecosystem services of prairies managed for bioenergy production

    Science.gov (United States)

    Jarchow, Meghann Elizabeth

    The use of perennial plant materials as a renewable source of energy may constitute an important opportunity to improve the environmental sustainability of managed land. Currently, the production of energy from agricultural products is primarily in the form of ethanol from corn grain, which used more than 45% of the domestic U.S. corn crop in 2011. Concomitantly, using corn grain to produce ethanol has promoted landscape simplification and homogenization through conversion of Conservation Reserve Program grasslands to annual row crops, and has been implicated in increasing environmental damage, such as increased nitrate leaching into water bodies and increased rates of soil erosion. In contrast, perennial prairie vegetation has the potential to be used as a bioenergy feedstock that produces a substantial amount of biomass as well as numerous ecosystem services. Reincorporating prairies to diversify the landscape of the Midwestern U.S. at strategic locations could provide more habitat for animals, including beneficial insects, and decrease nitrogen, phosphorus, and sediment movement into water bodies. In this dissertation, I present data from two field experiments that examine (1) how managing prairies for bioenergy production affects prairie ecology and agronomic performance and (2) how these prairie systems differ from corn systems managed for bioenergy production. Results of this work show that there are tradeoffs among prairie systems and between corn and prairie systems with respect to the amount of harvested biomass, root production, nutrient export, feedstock characteristics, growing season utilization, and species and functional group diversity. These results emphasize the need for a multifaceted approach to fully evaluate bioenergy feedstock production systems.

  9. 75 FR 21649 - Endangered and Threatened Wildlife and Plants; Attwater's Prairie-Chicken (Tympanuchus cupido...

    Science.gov (United States)

    2010-04-26

    ...] Endangered and Threatened Wildlife and Plants; Attwater's Prairie-Chicken (Tympanuchus cupido attwateri... availability of the Attwater's Prairie-Chicken (Tympanuchus cupido attwateri) Recovery Plan, Second Revision. A recovery plan was originally completed for the Attwater's prairie-chicken in 1983 and revised in 1993...

  10. 77 FR 47660 - Attwater Prairie Chicken National Wildlife Refuge, Austin and Colorado Counties, TX; Final...

    Science.gov (United States)

    2012-08-09

    ...-FF02R06000] Attwater Prairie Chicken National Wildlife Refuge, Austin and Colorado Counties, TX; Final... Prairie Chicken National Wildlife Refuge (Refuge, NWR). In this final CCP, we describe how we will [email protected] . Include ``Attwater Prairie Chicken NWR final CCP'' in the subject line of the message...

  11. 76 FR 77245 - Attwater Prairie Chicken National Wildlife Refuge, Austin and Colorado Counties, TX...

    Science.gov (United States)

    2011-12-12

    ...-FF02R06000] Attwater Prairie Chicken National Wildlife Refuge, Austin and Colorado Counties, TX... (EA) for Attwater Prairie Chicken National Wildlife Refuge (Refuge, NWR), located approximately 60... Prairie Chicken NWR draft CCP and EA'' in the subject line of the message. Fax: Attn: Monica Kimbrough...

  12. Attwater's prairie-chicken-its life history and management

    Science.gov (United States)

    Lehmann, Valgene W.

    1941-01-01

    Attwater's prairie chicken, a characteristic bird of the Texas coastal prairie, is closely related to the now extinct heath-hen of northeastern North America. Once abundant in an area extending from the coastal tall-grass prairies of southwestern Louisiana and Texas west and south to near Port Isabel, it has decreased in numbers as man has exploited its habitat, until now it is threatened with the same fate as that of the heath-hen.Important factors limiting the numbers of the bird include excessive or persistent rainfall during the nesting season, heavy grazing, excessive pasture burning, agricultural operations, and overshooting. Management will usually involve protection from excessive killing, improvement of food and cover, and control of predators and of the kill by hunters. Responsibility for this rests with the landowner.Optimum prairie chicken range apparently consists of well-drained grassland, with some weeds or shrubs, the cover varying in density from light to heavy; and with surface water available in summer; diversification within the grassland type is essential. In the absence of ample refuges for the species, probably all other favorable factors together will fail to save Attwater's prairie chicken from extinction.This number continues the series of the North American Fauna issued by the Bureau of Biological Survey, of the United States Department of Agriculture, prior to its transfer and consolidation with the Bureau of Fisheries on June 30, 1940, to form the Fish and Wildlife Service, in the Department of the Interior.

  13. Outcomes of senior reach gatekeeper referrals: comparison of the Spokane gatekeeper program, Colorado Senior Reach, and Mid-Kansas Senior Outreach.

    Science.gov (United States)

    Bartsch, David A; Rodgers, Vicki K; Strong, Don

    2013-01-01

    Outcomes of older adults referred for care management and mental health services through the senior reach gatekeeper model of case finding were examined in this study and compared with the Spokane gatekeeper model Colorado Senior Reach and the Mid-Kansas Senior Outreach (MKSO) programs are the two Senior Reach Gatekeeper programs modeled after the Spokane program, employing the same community education and gatekeeper model and with mental health treatment for elderly adults in need of support. The three mature programs were compared on seniors served isolation, and depression ratings. Nontraditional community gatekeepers were trained and referred seniors in need. Findings indicate that individuals served by the two Senior Reach Gatekeeper programs demonstrated significant improvements. Isolation indicators such as social isolation decreased and depression symptoms and suicide ideation also decreased. These findings for two Senior Reach Gatekeeper programs demonstrate that the gatekeeper approach to training community partners worked in referring at-risk seniors in need in meeting their needs, and in having a positive impact on their lives.

  14. Spent fuel storage at Prairie Island: January 1995 status

    International Nuclear Information System (INIS)

    Closs, J.; Kress, L.

    1995-01-01

    The disposal of spent nuclear fuel has been an issue for the US since the inception of the commercial nuclear power industry. In the past decade, it has become a critical factor in the continued operation of some nuclear power plants, including the two units at Prairie Island. As the struggles and litigation over storage alternatives wage on, spent fuel pools continue to fill and plants edge closer to premature shutdown. Due to the delays in the construction of a federal repository, many nuclear power plants have had to seek interim storage alternatives. In the case of Prairie Island, the safest and most feasible option is dry cask storage. This paper discusses the current status of the Independent Spent Fuel Storage Installation (ISFSI) Project at Prairie Island. It provides a historical background to the project, discusses the notable developments over the past year, and presents the projected plans of the Northern States Power Company (NSP) in regards to spent fuel storage

  15. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies.

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  16. Des broussailles dans les prairies alpines

    Directory of Open Access Journals (Sweden)

    Olivier Camacho

    2009-03-01

    expliquer pourquoi l'embroussaillement gagne des prairies encore exploitées. Si la fauche permet de lutter efficacement contre l’avancée des ligneux, il n’en est pas de même dans les prairies pâturées non fauchées où la capacité de prélèvement par les troupeaux s’avère faible par rapport à la production d’herbe. Cette situation se répète d’année en année et c’est la cause la plus probable de la propagation des ligneux. Pour sécuriser leur système fourrager et pour simplifier le travail, les éleveurs constituent des unités de pâturage surdimensionnées par rapport aux besoins des animaux. Ils mettent en œuvre des pratiques de rattrapage, consistant en un entretien mécanique complémentaire au pâturage, pour contenir la dynamique des ligneux. De telles pratiques, exigeantes en travail, ne sont pas mises en œuvre sur toutes les pâtures. L’analyse des pratiques par des agronomes complète ainsi les études de milieux physiques et socio-économiques tant au niveau de la parcelle pâturée qu’à celui de la vallée.

  17. Resistance to plague among black-tailed prairie dog populations

    Science.gov (United States)

    Rocke, Tonie E.; Williamson, Judy; Cobble, Kacy R.; Busch, Joseph D.; Antolin, Michael F.; Wagner, David M.

    2012-01-01

    In some rodent species frequently exposed to plague outbreaks caused by Yersinia pestis, resistance to the disease has evolved as a population trait. As a first step in determining if plague resistance has developed in black-tailed prairie dogs (Cynomys ludovicianus), animals captured from colonies in a plague-free region (South Dakota) and two plague-endemic regions (Colorado and Texas) were challenged with Y. pestis at one of three doses (2.5, 250, or 2500 mouse LD50s). South Dakota prairie dogs were far more susceptible to plague than Colorado and Texas prairie dogs (pdogs were quite similar in their response, with overall survival rates of 50% and 60%, respectively. Prairie dogs from these states were heterogenous in their response, with some animals dying at the lowest dose (37% and 20%, respectively) and some surviving even at the highest dose (29% and 40%, respectively). Microsatellite analysis revealed that all three groups were distinct genetically, but further studies are needed to establish a genetic basis for the observed differences in plague resistance.

  18. Nutrient removal by prairie filter strips in agricultural landscapes

    Science.gov (United States)

    X. Zhou; M.J. Helmers; H. Asbjornsen; R. Kolka; M.D. Tomer; R.M. Cruse

    2014-01-01

    Nitrogen (N) and phosphorus (P) from agricultural landscapes have been identified as primary sources of excess nutrients in aquatic systems. The main objective of this study was to evaluate the effectiveness of prairie filter strips (PFS) in removing nutrients from cropland runoff in 12 small watersheds in central Iowa. Four treatments with PFS of different spatial...

  19. Food habits of nesting prairie falcons in Campbell County

    Science.gov (United States)

    John R. Squires; Stanley H. Anderson; Robert Oakleaf

    1989-01-01

    Fifteen species of prey were utilized by nesting Prairie Falcons (Falco mexicanus) as determined through pellet analysis. Thirteen-lined Ground Squirrels (Spermophilus tridecemlineatus), the most common prey, were present in 91% of the pellets, followed by Western Meadowlarks (Sturnella neglecta) which were present in 56% of pellets. Horned Larks (Eremophila...

  20. Butterfly responses to prairie restoration through fire and grazing

    Science.gov (United States)

    Vogel, Jennifer A.; Debinski, Diane M.; Koford, Rolf R.; Miller, J.R.

    2007-01-01

    The development of land for modern agriculture has resulted in losses of native prairie habitat. The small, isolated patches of prairie habitat that remain are threatened by fire suppression, overgrazing, and invasion by non-native species. We evaluated the effects of three restoration practices (grazing only, burning only, and burning and grazing) on the vegetation characteristics and butterfly communities of remnant prairies. Total butterfly abundance was highest on prairies that were managed with burning and grazing and lowest on those that were only burned. Butterfly species richness did not differ among any of the restoration practices. Butterfly species diversity was highest on sites that were only burned. Responses of individual butterfly species to restoration practices were highly variable. In the best predictive regression model, total butterfly abundance was negatively associated with the percent cover of bare ground and positively associated with the percent cover of forbs. Canonical correspondence analysis revealed that sites with burned only and grazed only practices could be separated based on their butterfly community composition. Butterfly communities in each of the three restoration practices are equally species rich but different practices yield compositionally different butterfly communities. Because of this variation in butterfly species responses to different restoration practices, there is no single practice that will benefit all species or even all species within habitat-specialist or habitat-generalist habitat guilds. ?? 2007 Elsevier Ltd. All rights reserved.

  1. Selected hydrologic data, Camas Prairie, south-central Idaho

    Science.gov (United States)

    Young, H.W.; Backsen, R.L.; Kenyon, K.S.

    1978-01-01

    This report presents data collected during a 1-year study of the water resources of Camas Prairie, Idaho. Included are records of wells, discharge measurements of streams, hydrographs of water levels in wells, water-quality data, and drillers ' logs of wells. The data are conveniently made available to supplement an interpretive report, which will be published separately. (Woodard-USGS)

  2. Recommended methods for range-wide monitoring of prairie dogs in the United States

    Science.gov (United States)

    McDonald, Lyman L.; Stanley, Thomas R.; Otis, David L.; Biggins, Dean E.; Stevens, Patricia D.; Koprowski, John L.; Ballard, Warren

    2011-01-01

    One of the greatest challenges for conserving grassland, prairie scrub, and shrub-steppe ecosystems is maintaining prairie dog populations across the landscape. Of the four species of prairie dogs found in the United States, the Utah prairie dog (Cynomys parvidens) is listed under the Endangered Species Act (ESA) as threatened, the Gunnison's prairie dog (C. gunnisoni) is a candidate for listing in a portion of its range, and the black-tailed prairie dog (C. ludovicianus) and white-tailed prairie dog (C. leucurus) have each been petitioned for listing at least once in recent history. Although the U.S. Fish and Wildlife Service (USFWS) determined listing is not warranted for either the black-tailed prairie dog or white-tailed prairie dog, the petitions and associated reviews demonstrated the need for the States to monitor and manage for self-sustaining populations. In response to these findings, a multi-State conservation effort was initiated for the nonlisted species which included the following proposed actions: (1) completing an assessment of each prairie dog species in each State, (2) developing a range-wide monitoring protocol for each species using a statistically valid sampling procedure that would allow comparable analyses across States, and (3) monitoring prairie dog status every 3-5 years depending upon the species. To date, each State has completed an assessment and currently is monitoring prairie dog status; however, for some species, the inconsistency in survey methodology has made it difficult to compare data year-to-year or State-to-State. At the Prairie Dog Conservation Team meeting held in November 2008, there was discussion regarding the use of different methods to survey prairie dogs. A recommendation from this meeting was to convene a panel in a workshop-type forum and have the panel review the different methods being used and provide recommendations for range-wide monitoring protocols for each species of prairie dog. Consequently, the Western

  3. Sources, transport, and trends for selected trace metals and nutrients in the Coeur d'Alene and Spokane River Basins, Idaho, 1990-2013

    Science.gov (United States)

    Clark, Gregory M.; Mebane, Christopher A.

    2014-01-01

    Data collected at 18 streamflow-gaging and water-quality sampling sites in the Coeur d’Alene and Spokane River Basins of northern Idaho were used to estimate mean streamflow‑weighted concentrations and annual loads of total and dissolved cadmium, lead, and zinc, and total phosphorus (TP) and nitrogen (TN) for water years (WYs) 2009–13. Chronic Ambient Water Quality Criteria (AWQC) and AWQC ratios also were calculated to evaluate Idaho aquatic life criteria for chronic exposure to cadmium and zinc in streams. At four sites with a longer period of record, a Seasonal Kendall trend test was used to assess historical trends in the concentrations of total cadmium, lead, and zinc, and chronic AWQC ratios for cadmium and zinc during WYs 1990–2013.

  4. Diets of swift foxes (Vulpes velox) in continuous and fragmented prairie in Northwestern Texas

    Science.gov (United States)

    Kamler, J.F.; Ballard, W.B.; Wallace, M.C.; Gipson, P.S.

    2007-01-01

    Distribution of the swift fox (Vulpes velox) has declined dramatically since the 1800s, and suggested causes of this decline are habitat fragmentation and transformation due to agricultural expansion. However, impacts of fragmentation and human-altered habitats on swift foxes still are not well understood. To better understand what effects these factors have on diets of swift foxes, scats were collected in northwestern Texas at two study sites, one of continuous native prairie and one representing fragmented native prairie interspersed with agricultural and fields in the Conservation Reserve Program. Leporids, a potential food source, were surveyed seasonally on both sites. Diets of swift foxes differed between sites; insects were consumed more on continuous prairie, whereas mammals, birds, and crops were consumed more on fragmented prairie. Size of populations of leporids were 2-3 times higher on fragmented prairie, and swift foxes responded by consuming more leporids on fragmented (11.1% frequency occurrence) than continuous (3.8%) prairie. Dietary diversity was greater on fragmented prairie during both years of the study. Differences in diets between sites suggested that the swift fox is an adaptable and opportunistic feeder, able to exploit a variety of food resources, probably in relation to availability of food. We suggest that compared to continuous native prairie, fragmented prairie can offer swift foxes a more diverse prey base, at least within the mosaic of native prairie, agricultural, and fields that are in the Conservation Reserve Program.

  5. Ecosystem engineering varies spatially: a test of the vegetation modification paradigm for prairie dogs

    Science.gov (United States)

    Baker, Bruce W.; Augustine, David J.; Sedgwick, James A.; Lubow, Bruce C.

    2013-01-01

    Colonial, burrowing herbivores can be engineers of grassland and shrubland ecosystems worldwide. Spatial variation in landscapes suggests caution when extrapolating single-place studies of single species, but lack of data and the need to generalize often leads to ‘model system’ thinking and application of results beyond appropriate statistical inference. Generalizations about the engineering effects of prairie dogs (Cynomys sp.) developed largely from intensive study at a single complex of black-tailed prairie dogs C. ludovicianus in northern mixed prairie, but have been extrapolated to other ecoregions and prairie dog species in North America, and other colonial, burrowing herbivores. We tested the paradigm that prairie dogs decrease vegetation volume and the cover of grasses and tall shrubs, and increase bare ground and forb cover. We sampled vegetation on and off 279 colonies at 13 complexes of 3 prairie dog species widely distributed across 5 ecoregions in North America. The paradigm was generally supported at 7 black-tailed prairie dog complexes in northern mixed prairie, where vegetation volume, grass cover, and tall shrub cover were lower, and bare ground and forb cover were higher, on colonies than at paired off-colony sites. Outside the northern mixed prairie, all 3 prairie dog species consistently reduced vegetation volume, but their effects on cover of plant functional groups varied with prairie dog species and the grazing tolerance of dominant perennial grasses. White-tailed prairie dogs C. leucurus in sagebrush steppe did not reduce shrub cover, whereas black-tailed prairie dogs suppressed shrub cover at all complexes with tall shrubs in the surrounding habitat matrix. Black-tailed prairie dogs in shortgrass steppe and Gunnison's prairie dogs C. gunnisoni in Colorado Plateau grassland both had relatively minor effects on grass cover, which may reflect the dominance of grazing-tolerant shortgrasses at both complexes. Variation in modification of

  6. No evidence of deer mouse involvement in plague (Yersinia pestis) epizootics in prairie dogs.

    Science.gov (United States)

    Salkeld, Daniel J; Stapp, Paul

    2008-06-01

    Plague, the disease caused by the bacterium Yersinia pestis, can have devastating impacts on black-tailed prairie dog (Cynomys ludovicianus) colonies. One suggested mechanism behind sporadic prairie dog die-offs involves an alternative mammal host, such as the deer mouse (Peromyscus maniculatus), which often inhabits prairie dog colonies. We examined the flea populations of deer mice to investigate the potential of flea-borne transmission of plague between deer mice and prairie dogs in northern Colorado, where plague is active in prairie dog colonies. Deer mice were predominantly infested with the flea Aetheca wagneri, and were rarely infested with prairie dog fleas, Oropsylla hirsuta. Likelihood of flea infestation increased with average monthly temperature, and flea loads were higher in reproductive animals. These results suggest that the deer mouse is an unlikely maintenance host of plague in this region.

  7. Climate impacts on the agribusiness sectors of a prairie economy

    International Nuclear Information System (INIS)

    Arthur, L.M.; Kooten, G.C. Van.

    1992-01-01

    Global warming is likely to result in increased agricultural output on the Canadian prairies. However, using input-output analysis, it is shown that the potential impact of global warming on agribusiness, while significant, is both uncertain and relatively small compared to the impact of government agricultural policies pertaining to the grain and livestock sectors. Furthermore, caution is required in deciding whether or not western Canada and prairie agribusinesses are net beneficiaries of a greenhouse effect because climate-induced changes in agricultural output elsewhere in the world still need to be taken into account. Most previous studies on American and European agriculture under the greenhouse effect predict reduced yields of current crops, which could mean improved markets for Canadian crops. 27 refs., 4 figs., 2 tabs

  8. Sexual selection and mating chronology of Lesser Prairie-Chickens

    Science.gov (United States)

    Behney, Adam C.; Grisham, Blake A.; Boal, Clint W.; Whitlaw, Heather A.; Haukos, David A.

    2012-01-01

    Little is known about mate selection and lek dynamics of Lesser Prairie-Chickens (Tympanuchus pallidicinctus). We collected data on male territory size and location on leks, behavior, and morphological characteristics and assessed the importance of these variables on male Lesser Prairie-Chicken mating success during spring 2008 and 2009 in the Texas Southern High Plains. We used discrete choice models and found that males that were less idle were chosen more often for mating. Our results also suggest that males with smaller territories obtained more copulations. Morphological characteristics were weaker predictors of male mating success. Peak female attendance at leks occurred during the 1-week interval starting 13 April during both years of study. Male prairie-chickens appear to make exploratory movements to, and from, leks early in the lekking season; 13 of 19 males banded early (23 Feb–13 Mar) in the lekking season departed the lek of capture and were not reobserved (11 yearlings, 2 adults). Thirty-three percent (range  =  26–51%) of males on a lek mated (yearlings  =  44%, adults  =  20%) and males that were more active experienced greater mating success.

  9. Resting state brain networks in the prairie vole.

    Science.gov (United States)

    Ortiz, Juan J; Portillo, Wendy; Paredes, Raul G; Young, Larry J; Alcauter, Sarael

    2018-01-19

    Resting state functional magnetic resonance imaging (rsfMRI) has shown the hierarchical organization of the human brain into large-scale complex networks, referred as resting state networks. This technique has turned into a promising translational research tool after the finding of similar resting state networks in non-human primates, rodents and other animal models of great value for neuroscience. Here, we demonstrate and characterize the presence of resting states networks in Microtus ochrogaster, the prairie vole, an extraordinary animal model to study complex human-like social behavior, with potential implications for the research of normal social development, addiction and neuropsychiatric disorders. Independent component analysis of rsfMRI data from isoflurane-anestethized prairie voles resulted in cortical and subcortical networks, including primary motor and sensory networks, but also included putative salience and default mode networks. We further discuss how future research could help to close the gap between the properties of the large scale functional organization and the underlying neurobiology of several aspects of social cognition. These results contribute to the evidence of preserved resting state brain networks across species and provide the foundations to explore the use of rsfMRI in the prairie vole for basic and translational research.

  10. Pesticide photolysis in prairie potholes: probing photosensitized processes.

    Science.gov (United States)

    Zeng, Teng; Arnold, William A

    2013-07-02

    Prairie pothole lakes (PPLs) are glacially derived, ecologically important water bodies found in central North America and represent a unique setting in which extensive agriculture occurs within wetland ecosystems. In the Prairie Pothole Region (PPR), elevated pesticide use and increasing hydrologic connectivity have raised concerns about the impact of nonpoint source agricultural pollution on the water quality of PPLs and downstream aquatic systems. Despite containing high dissolved organic matter (DOM) levels, the photoreactivity of the PPL water and the photochemical fate of pesticides entering PPLs are largely unknown. In this study, the photodegradation of sixteen pesticides was investigated in PPL waters sampled from North Dakota, under simulated and natural sunlight. Enhanced pesticide removal rates in the irradiated PPL water relative to the control buffer pointed to the importance of indirect photolysis pathways involving photochemically produced reactive intermediates (PPRIs). The steady-state concentrations of carbonate radical, hydroxyl radical, singlet oxygen, and triplet-excited state DOM were measured and second-order rate constants for reactions of pesticides with these PPRIs were calculated. Results from this study underscore the role of DOM as photosensitizer in limiting the persistence of pesticides in prairie wetlands through photochemical reactions.

  11. Prairie rattlesnake envenomation in 27 New World camelids.

    Science.gov (United States)

    Sonis, J M; Hackett, E S; Callan, R J; Holt, T N; Hackett, T B

    2013-01-01

    Morbidity and case fatality from rattlesnake envenomation is regionally specific because of variability in relative toxicity of the species of snake encountered. A previous report of rattlesnake envenomation in New World camelids (NWC) from the western coastal United States documented high case fatality rates and guarded prognosis for survival. To describe clinical findings, treatments, and outcome of NWC with prairie rattlesnake (Crotalus viridis viridis) envenomation in the Rocky Mountain region of the United States. Twenty-seven NWC admitted to the Colorado State University Veterinary Teaching Hospital for evaluation of acute rattlesnake envenomation between 1992 and 2012. Medical records of NWC evaluated for rattlesnake envenomation as coded by the attending clinician and identified by a database search were reviewed retrospectively. Month of admission, signalment, area of bite, clinical and clinicopathologic data, treatments, and outcome were recorded. Twenty-five llamas and 2 alpacas were admitted for envenomation. Llamas were overrepresented compared to hospital caseload. The face was the most common site of envenomation, observed in 96% of recorded cases. Presenting clinical signs included fever, tachypnea, tachycardia, and respiratory distress. Nine animals required a tracheotomy. Median hospitalization time was 3 days and overall survival rate was 69%. Case fatality rate for prairie rattlesnake envenomation in NWC was lower than that reported in the Western coastal region of the United States and similar to that reported for prairie rattlesnake envenomation in horses. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  12. Lead exposure in Canada geese of the Eastern Prairie Population

    Science.gov (United States)

    DeStefano, S.; Brand, C.J.; Rusch, D.H.; Finley, Daniel L.; Gillespie, M.M.

    1991-01-01

    We monitored lead exposure in Eastern Prairie Population Canada geese during summer-winter, 1986-1987 and 1987-1988 at 5 areas. Blood lead concentrations in geese trapped during summer at Cape Churchill Manitoba were below levels indicative of recent lead exposure (0.18 ppm). Geese exposed to lead (≥0.18 ppm blood lead) increased to 7.6% at Oak Hammock Wildlife Management Area (WMA), southern Manitoba, where lead shot was still in use, and to 10.0% at Roseau River WMA, northern Minnesota, when fall-staging geese were close to a source of lead shot in Manitoba. Proportion of birds exposed to lead dropped to exposure to lead before the hunting season. Lead exposure rose to 10.0% after hunting ended and then decreased to 5.2% in late winter. Incidence of lead shot in gizzards and concentrations of lead in livers supported blood assay data. Soil samples indicated that lead shot continues to be available to geese at Swan Lake, even though the area was established as a non-toxic shot zone in 1978. Steel shot zones have reduced lead exposure in the Eastern Prairie Population, but lead shot persists in the environment and continues to account for lead exposure and mortality in Eastern Prairie Population Canada geese.

  13. Duration of plague (Yersinia pestis) outbreaks in black-tailed prairie dog (Cynomys ludovicianus) colonies of northern Colorado.

    Science.gov (United States)

    St Romain, Krista; Tripp, Daniel W; Salkeld, Daniel J; Antolin, Michael F

    2013-09-01

    Plague, caused by the bacterium Yersinia pestis, triggers die-offs in colonies of black-tailed prairie dogs (Cynomys ludovicianus), but the time-frame of plague activity is not well understood. We document plague activity in fleas from prairie dogs and their burrows on three prairie dog colonies that suffered die-offs. We demonstrate that Y. pestis transmission occurs over periods from several months to over a year in prairie dog populations before observed die-offs.

  14. COMPARISON OF THE POPULATIONS OF COMMON WOOD-NYMPH BUTTERFLIES IN BURNED PRAIRIE, UNBURNED PRAIRIE AND OLD FIELD GRASSES

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, M.; Walton, R.

    2007-01-01

    Common wood-nymph butterfl ies are found throughout the United States and Canada. However, not much is known about how they overwinter or their preferences for particular grasses and habitats. In this study, the impact of prairie management plans on the abundance of the wood-nymph population was assessed, as well as the preference of these butterfl ies for areas with native or non-native grasses. The abundance of common wood-nymph butterfl ies was determined using Pollard walks; more common wood-nymph butterfl ies were found in the European grasses than were found in the burned and unburned prairie sites. The majority of the vegetation at each of the three sites was identifi ed and documented. Using a 1 X 3 ANOVA analysis, it was determined there were signifi cantly more butterfl ies in the European grasses than in the burned and unburned prairie sites (p < 0.0005). There was no signifi cant difference between the burned and unburned treatments of the prairie on the common wood-nymph population. A multiple variable linear regression model described the effect of temperature and wind speed on the number of observed common wood-nymph butterfl ies per hour (p = 0.026). These preliminary results need to be supplemented with future studies. Quadrat analysis of the vegetation from all three sites should be done to search for a correlation between common wood-nymph butterfl y abundance per hour and the specifi c types or quantity of vegetation at each site. The effect of vegetation height and density on the observer’s visual fi eld should also be assessed.

  15. 75 FR 57055 - Endangered and Threatened Wildlife and Plants; Draft Revised Recovery Plan for Utah Prairie Dog

    Science.gov (United States)

    2010-09-17

    ...] Endangered and Threatened Wildlife and Plants; Draft Revised Recovery Plan for Utah Prairie Dog AGENCY: Fish... recovery plan for the Utah prairie dog (Cynomys parvidens). This species is federally listed as threatened... and peer reviewers in an appendix to the approved recovery plan. The Utah prairie dog (Cynomys...

  16. 77 FR 24975 - Endangered and Threatened Wildlife and Plants; Revised Recovery Plan for the Utah Prairie Dog

    Science.gov (United States)

    2012-04-26

    ...-FF06E00000] Endangered and Threatened Wildlife and Plants; Revised Recovery Plan for the Utah Prairie Dog... Utah prairie dog (Cynomys parvidens). This species is federally listed as threatened under the... recovery plan for the Utah prairie dog. The Service and other Federal agencies also will take these...

  17. 78 FR 26302 - Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken as a Threatened...

    Science.gov (United States)

    2013-05-06

    ...; 4500030113] RIN 1018-AY21 Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken... the lesser prairie-chicken (Tympanuchus pallidicinctus). In addition, we announce the reopening of the public comment period on the December 11, 2012, proposed rule to list the lesser prairie-chicken as a...

  18. 78 FR 75306 - Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken as a Threatened...

    Science.gov (United States)

    2013-12-11

    ...; 4500030113] RIN 1018-AY21 Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken... the conservation of the lesser prairie-chicken (Tympanuchus pallidicinctus). In addition, we announce... prairie-chicken as a threatened species under the Act. We also announce the availability of the final...

  19. Effects of Prairie Reconstruction on Soil-Water and Groundwater Nutrient Concentrations, Neal Smith National Wildlife Refuge

    Science.gov (United States)

    Prairie reconstruction is increasingly viewed as a viable best management practice for reducing nutrient losses in agricultural regions. At the Neal Smith National Wildlife Refuge in Prairie City, IA, we are monitoring the effects of prairie reconstruction on subsurface water quality at a single sit...

  20. Black-tailed prairie dog (Cynomys ludovicianus) response to seasonality and frequency of fire

    Science.gov (United States)

    Felicia D. Archuleta

    2014-01-01

    Fragmentation of the landscape, habitat loss, and fire suppression, all a result of European settlement and activities, have precipitated both the decline of Black-tailed prairie dog (Cynomys ludovicianus) populations and the occurrence of fire throughout the Great Plains, including the Shortgrass steppe of northeastern New Mexico. The presence of Black-tailed prairie...

  1. Effect of mid-summer haying on growth and reproduction in prairie forbs

    Science.gov (United States)

    Becky Begay; Helen M. Alexander; Erin Questad

    2011-01-01

    Mid-summer haying is a common management practice for prairies; plant species could differ in the effect of haying on subsequent growth and reproduction. We examined the effect of haying on prairie species by performing a clipping experiment. For each of seven species, sixteen plants were chosen and half were randomly assigned to a clipping treatment and half to a...

  2. Review of black-tailed prairie dog reintroduction strategies and site selection: Arizona reintroduction

    Science.gov (United States)

    Sarah L. Hale; John L. Koprowski; Holly Hicks

    2013-01-01

    The black-tailed prairie dog (Cynomys ludovicianus) was once widely distributed throughout the western United States; however, anthropogenic influences have reduced the species’ numbers to 2 percent of historical populations. Black-tailed prairie dogs are described as a keystone species in the grassland ecosystem, and provide many unique services, including burrows for...

  3. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn-soybean croplands.

    Science.gov (United States)

    Schulte, Lisa A; Niemi, Jarad; Helmers, Matthew J; Liebman, Matt; Arbuckle, J Gordon; James, David E; Kolka, Randall K; O'Neal, Matthew E; Tomer, Mark D; Tyndall, John C; Asbjornsen, Heidi; Drobney, Pauline; Neal, Jeri; Van Ryswyk, Gary; Witte, Chris

    2017-10-17

    Loss of biodiversity and degradation of ecosystem services from agricultural lands remain important challenges in the United States despite decades of spending on natural resource management. To date, conservation investment has emphasized engineering practices or vegetative strategies centered on monocultural plantings of nonnative plants, largely excluding native species from cropland. In a catchment-scale experiment, we quantified the multiple effects of integrating strips of native prairie species amid corn and soybean crops, with prairie strips arranged to arrest run-off on slopes. Replacing 10% of cropland with prairie strips increased biodiversity and ecosystem services with minimal impacts on crop production. Compared with catchments containing only crops, integrating prairie strips into cropland led to greater catchment-level insect taxa richness (2.6-fold), pollinator abundance (3.5-fold), native bird species richness (2.1-fold), and abundance of bird species of greatest conservation need (2.1-fold). Use of prairie strips also reduced total water runoff from catchments by 37%, resulting in retention of 20 times more soil and 4.3 times more phosphorus. Corn and soybean yields for catchments with prairie strips decreased only by the amount of the area taken out of crop production. Social survey results indicated demand among both farming and nonfarming populations for the environmental outcomes produced by prairie strips. If federal and state policies were aligned to promote prairie strips, the practice would be applicable to 3.9 million ha of cropland in Iowa alone.

  4. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands

    Science.gov (United States)

    Helmers, Matthew J.; Liebman, Matt; James, David E.; Kolka, Randall K.; O’Neal, Matthew E.; Tomer, Mark D.; Tyndall, John C.; Asbjornsen, Heidi; Drobney, Pauline; Neal, Jeri; Van Ryswyk, Gary; Witte, Chris

    2017-01-01

    Loss of biodiversity and degradation of ecosystem services from agricultural lands remain important challenges in the United States despite decades of spending on natural resource management. To date, conservation investment has emphasized engineering practices or vegetative strategies centered on monocultural plantings of nonnative plants, largely excluding native species from cropland. In a catchment-scale experiment, we quantified the multiple effects of integrating strips of native prairie species amid corn and soybean crops, with prairie strips arranged to arrest run-off on slopes. Replacing 10% of cropland with prairie strips increased biodiversity and ecosystem services with minimal impacts on crop production. Compared with catchments containing only crops, integrating prairie strips into cropland led to greater catchment-level insect taxa richness (2.6-fold), pollinator abundance (3.5-fold), native bird species richness (2.1-fold), and abundance of bird species of greatest conservation need (2.1-fold). Use of prairie strips also reduced total water runoff from catchments by 37%, resulting in retention of 20 times more soil and 4.3 times more phosphorus. Corn and soybean yields for catchments with prairie strips decreased only by the amount of the area taken out of crop production. Social survey results indicated demand among both farming and nonfarming populations for the environmental outcomes produced by prairie strips. If federal and state policies were aligned to promote prairie strips, the practice would be applicable to 3.9 million ha of cropland in Iowa alone. PMID:28973922

  5. The role of prairie dogs as a keystone species: response to Stapp

    Science.gov (United States)

    B. Miller; R. Reading; J. Hoogland; T. Clark; G. Ceballos; R. List; S. Forrest; L. Hanebury; P. Manzano; J. Pacheco; D. Uresk

    2000-01-01

    Stapp (1998) recently argued that it was premature to characterize prairie dogs (Cynomys spp.) as keystone species. In particular, Stapp directed much of his criticism at a paper some of us wrote (Miller et al. 1994). He mistakenly interprets the main objective of our paper as providing evidence that prairie dogs are keystone species. Rather, the...

  6. Armillaria root rot in the Canadian prairie provinces. Information report No. -X-329

    Energy Technology Data Exchange (ETDEWEB)

    Mallet, K.I.

    1992-01-01

    Armillaria root rot is one of the most important diseases of forest trees in the prairie provinces of Canada. Information on symptoms, detection, and damage caused by the disease is given. The Armillaria species in the prairie provinces, their geographic distribution and host range is discussed. Means of spread and control of the disease are described.

  7. Prairie dog decline reduces the supply of ecosystem services and leads to desertification of semiarid grasslands.

    Directory of Open Access Journals (Sweden)

    Lourdes Martínez-Estévez

    Full Text Available Anthropogenic impacts on North American grasslands, a highly endangered ecosystem, have led to declines of prairie dogs, a keystone species, over 98% of their historical range. While impacts of this loss on maintenance of grassland biodiversity have been widely documented, much less is known about the consequences on the supply of ecosystem services. Here we assessed the effect of prairie dogs in the supply of five ecosystem services by comparing grasslands currently occupied by prairie dogs, grasslands devoid of prairie dogs, and areas that used to be occupied by prairie dogs that are currently dominated by mesquite scrub. Groundwater recharge, regulation of soil erosion, regulation of soil productive potential, soil carbon storage and forage availability were consistently quantitatively or qualitatively higher in prairie dog grasslands relative to grasslands or mesquite scrub. Our findings indicate a severe loss of ecosystem services associated to the absence of prairie dogs. These findings suggest that contrary to a much publicize perception, especially in the US, prairie dogs are fundamental in maintaining grasslands and their decline have strong negative impacts in human well - being through the loss of ecosystem services.

  8. Notice of release of: 1)Majestic germplasm and 2) Spectrum germplasm western prairie clover

    Science.gov (United States)

    Two natural-track selected germplasms of western prairie clover [Dalea ornata (Douglas ex Hook.) Eaton & J. Wright] [Fabaceae] have been released for use in revegetation of semiarid rangelands in the western USA. Western prairie clover is a perennial leguminous forb that occurs naturally in Idaho, ...

  9. 77 FR 75119 - Dakota Prairie Grasslands, North Dakota; Oil and Gas Development Supplemental Environmental...

    Science.gov (United States)

    2012-12-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Dakota Prairie Grasslands, North Dakota; Oil and Gas... to prepare a supplemental environmental impact statement. SUMMARY: In June of 2003, the Dakota... Dakota Prairie Grasslands Land and Resource Management Plan, based on the 2001 Northern Great Plains...

  10. Sylvatic plague in a Canadian black-tailed prairie dog (Cynomys ludovicianus).

    Science.gov (United States)

    Antonation, Kym S; Shury, Todd K; Bollinger, Trent K; Olson, Adam; Mabon, Philip; Van Domselaar, Gary; Corbett, Cindi R

    2014-07-01

    In 2010, a black-tailed prairie dog (Cynomys ludovicianus) was found dead in Grasslands National Park, Saskatchewan, Canada. Postmortem gross and histologic findings indicated bacterial septicemia, likely due to Yersinia pestis, which was confirmed by molecular analysis. This is the first report of Y. pestis in the prairie dog population within Canada.

  11. Doryctinae (Hymenoptera: Braconidae) of Konza Prairie excluding species of Heterospilus Haliday

    Science.gov (United States)

    The results of a survey of Doryctinae (Hymenoptera: Braconidae) at Konza Prairie, excluding species of Heterospilus Haliday, are reported. Eleven sites representing prairie and woodland/wetland areas, including gallery forest, were sampled in 2001 and 2005 using Malaise and canopy traps. Topographic...

  12. A novel approach for assessing density and range-wide abundance of prairie dogs

    Science.gov (United States)

    Aaron N. Facka; Paulette L. Ford; Gary W. Roemer

    2008-01-01

    Habitat loss, introduced disease, and government-sponsored eradication programs have caused population declines in all 5 species of prairie dogs. Black-tailed prairie dogs (Cynomys ludovicianus) currently occupy only about 2% of an extensive geographic range (160 million hectares) and were recently considered for listing under the United States...

  13. Citizen knowledge and perception of black-tailed prairie dog management: Report to respondents

    Science.gov (United States)

    Sexton, Natalie R.; Brinson, Ayeisha; Ponds, Phadrea D.; Cline, Kurt; Lamb, Berton L.

    2001-01-01

    What do citizens know about black-tailed prairie dogs, and where do they get their information? When management decisions need to be made regarding an animal such as the black-tailed prairie dog, an understanding of the species and its relationship to humans is necessary. This includes knowing the biology of the animal, where it lives, and how it interacts with other animals. But it is equally important for those making decisions about the species to understand citizens’ knowledge and perceptions so managers can effectively communicate with the public and help the public participate in planning and decision making activities. Unfortunately, what is known about public knowledge, perception, and preferences concerning prairie dog management is limited to data from only a few areas. This study attempts to answer the question: What do people in the short-grass prairie region of the United States know and think about black-tailed prairie dogs?

  14. Precipitation, Climate Change, and Parasitism of Prairie Dogs by Fleas that Transmit Plague.

    Science.gov (United States)

    Eads, David A; Hoogland, John L

    2017-08-01

    Fleas (Insecta: Siphonaptera) are hematophagous ectoparasites that can reduce the fitness of vertebrate hosts. Laboratory populations of fleas decline under dry conditions, implying that populations of fleas will also decline when precipitation is scarce under natural conditions. If precipitation and hence vegetative production are reduced, however, then herbivorous hosts might suffer declines in body condition and have weakened defenses against fleas, so that fleas will increase in abundance. We tested these competing hypotheses using information from 23 yr of research on 3 species of colonial prairie dogs in the western United States: Gunnison's prairie dog (Cynomys gunnisoni, 1989-1994), Utah prairie dog (Cynomys parvidens, 1996-2005), and white-tailed prairie dog (Cynomys leucurus, 2006-2012). For all 3 species, flea-counts per individual varied inversely with the number of days in the prior growing season with >10 mm of precipitation, an index of the number of precipitation events that might have caused a substantial, prolonged increase in soil moisture and vegetative production. Flea-counts per Utah prairie dog also varied inversely with cumulative precipitation of the prior growing season. Furthermore, flea-counts per Gunnison's and white-tailed prairie dog varied inversely with cumulative precipitation of the just-completed January and February. These results complement research on black-tailed prairie dog (Cynomys ludovicianus) and might have important ramifications for plague, a bacterial disease transmitted by fleas that devastates populations of prairie dogs. In particular, our results might help to explain why, at some colonies, epizootics of plague, which can kill >95% of prairie dogs, are more likely to occur during or shortly after periods of reduced precipitation. Climate change is projected to increase the frequency of droughts in the grasslands of western North America. If so, then climate change might affect the occurrence of plague epizootics

  15. Treatment of black-tailed prairie dog burrows with deltamethrin to control fleas (Insecta: Siphonaptera) and plague

    Science.gov (United States)

    Seery, D.B.; Biggins, D.E.; Montenieri, J.A.; Enscore, R.E.; Tanda, D.T.; Gage, K.L.

    2003-01-01

    Burrows within black-tailed prairie dog (Cynomys ludovicianus) colonies on the Rocky Mountain Arsenal National Wildlife Refuge, Colorado, were dusted with deltamethrin insecticide to reduce flea (Insecta: Siphonaptera) abundance. Flea populations were monitored pre- and posttreatment by combing prairie dogs and collecting fleas from burrows. A single application of deltamethrin significantly reduced populations of the plague vector Oropsylla hirsuta, and other flea species on prairie dogs and in prairie dog burrows for at least 84 d. A plague epizootic on the Rocky Mountain Arsenal National Wildlife Refuge caused high mortality of prairie dogs on some untreated colonies, but did not appear to affect nearby colonies dusted with deltamethrin.

  16. Season and application rates affect vaccine bait consumption by prairie dogs in Colorado and Utah, USA

    Science.gov (United States)

    Tripp, Daniel W.; Rocke, Tonie E.; Streich, Sean P.; Brown, Nathanael L.; Fernandez, Julia Rodriguez-Ramos; Miller, Michael W.

    2014-01-01

    Plague, a zoonotic disease caused by the bacterium Yersinia pestis, causes high rates of mortality in prairie dogs (Cynomys spp.). An oral vaccine against plague has been developed for prairie dogs along with a palatable bait to deliver vaccine and a biomarker to track bait consumption. We conducted field trials between September 2009 and September 2012 to develop recommendations for bait distribution to deliver plague vaccine to prairie dogs. The objectives were to evaluate the use of the biomarker, rhodamine B, in field settings to compare bait distribution strategies, to compare uptake of baits distributed at different densities, to assess seasonal effects on bait uptake, and to measure bait uptake by nontarget small mammal species. Rhodamine B effectively marked prairie dogs' whiskers during these field trials. To compare bait distribution strategies, we applied baits around active burrows or along transects at densities of 32, 65, and 130 baits/ha. Distributing baits at active burrows or by transect did not affect uptake by prairie dogs. Distributing baits at rates of ≥65/ha (or ≥1 bait/active burrow) produced optimal uptake, and bait uptake by prairie dogs in the autumn was superior to uptake in the spring. Six other species of small mammals consumed baits during these trials. All four species of tested prairie dogs readily consumed the baits, demonstrating that vaccine uptake will not be an obstacle to plague control via oral vaccination.

  17. Factors influencing uptake of sylvatic plague vaccine baits by prairie dogs

    Science.gov (United States)

    Abbott, Rachel C.; Russell, Robin E.; Richgels, Katherine; Tripp, Daniel W.; Matchett, Marc R.; Biggins, Dean E.; Rocke, Tonie E.

    2017-01-01

    Sylvatic plague vaccine (SPV) is a virally vectored bait-delivered vaccine expressing Yersinia pestis antigens that can protect prairie dogs (Cynomys spp.) from plague and has potential utility as a management tool. In a large-scale 3-year field trial, SPV-laden baits containing the biomarker rhodamine B (used to determine bait consumption) were distributed annually at a rate of approximately 100–125 baits/hectare along transects at 58 plots encompassing the geographic ranges of four species of prairie dogs. We assessed site- and individual-level factors related to bait uptake in prairie dogs to determine which were associated with bait uptake rates. Overall bait uptake for 7820 prairie dogs sampled was 70% (95% C.I. 69.9–72.0). Factors influencing bait uptake rates by prairie dogs varied by species, however, in general, heavier animals had greater bait uptake rates. Vegetation quality and day of baiting influenced this relationship for black-tailed, Gunnison’s, and Utah prairie dogs. For these species, baiting later in the season, when normalized difference vegetation indices (a measure of green vegetation density) are lower, improves bait uptake by smaller animals. Consideration of these factors can aid in the development of species-specific SPV baiting strategies that maximize bait uptake and subsequent immunization of prairie dogs against plague.

  18. Factors Influencing Uptake of Sylvatic Plague Vaccine Baits by Prairie Dogs.

    Science.gov (United States)

    Abbott, Rachel C; Russell, Robin E; Richgels, Katherine L D; Tripp, Daniel W; Matchett, Marc R; Biggins, Dean E; Rocke, Tonie E

    2017-11-20

    Sylvatic plague vaccine (SPV) is a virally vectored bait-delivered vaccine expressing Yersinia pestis antigens that can protect prairie dogs (Cynomys spp.) from plague and has potential utility as a management tool. In a large-scale 3-year field trial, SPV-laden baits containing the biomarker rhodamine B (used to determine bait consumption) were distributed annually at a rate of approximately 100-125 baits/hectare along transects at 58 plots encompassing the geographic ranges of four species of prairie dogs. We assessed site- and individual-level factors related to bait uptake in prairie dogs to determine which were associated with bait uptake rates. Overall bait uptake for 7820 prairie dogs sampled was 70% (95% C.I. 69.9-72.0). Factors influencing bait uptake rates by prairie dogs varied by species, however, in general, heavier animals had greater bait uptake rates. Vegetation quality and day of baiting influenced this relationship for black-tailed, Gunnison's, and Utah prairie dogs. For these species, baiting later in the season, when normalized difference vegetation indices (a measure of green vegetation density) are lower, improves bait uptake by smaller animals. Consideration of these factors can aid in the development of species-specific SPV baiting strategies that maximize bait uptake and subsequent immunization of prairie dogs against plague.

  19. Protecting Black-Footed Ferrets and Prairie Dogs Against Sylvatic Plague

    Science.gov (United States)

    Rocke, Tonie E.

    2008-01-01

    Scientists at the USGS National Wildlife Health Center (NWHC), in collaboration with colleagues at other federal agencies and the University of Wisconsin, are developing and testing vaccines that can be used to protect black-footed ferrets and prairie dogs against plague. The black-footed ferret is commonly regarded as the most endangered mammal in North America, and sylvatic plague is a major impediment to its recovery. The three prairie dog species (Gunnison's, black-tailed, and white-tailed prairie dogs), upon which the ferret depends for food and whose burrows they use for shelter, have been drastically reduced from historical levels, resulting in the near extinction of the ferret. All three species are considered 'at risk' and have been petitioned for listing as 'threatened' or 'endangered' by the U.S. Fish and Wildlife Service (FWS). Additionally, the Utah prairie dog is listed as threatened and the Mexican prairie dog is considered endangered in Mexico. Like the black-footed ferret, all five prairie dog species are highly susceptible to plague and regularly experience outbreaks with devastating losses. Controlling plague outbreaks in prairie dogs and ferrets is a vital concern for ongoing recovery programs and conservation efforts for both species.

  20. Spatial variation in keystone effects: Small mammal diversity associated with black-tailed prairie dog colonies

    Science.gov (United States)

    Cully, J.F.; Collinge, S.K.; Van Nimwegen, R. E.; Ray, C.; Johnson, W.C.; Thiagarajan, Bala; Conlin, D.B.; Holmes, B.E.

    2010-01-01

    Species with extensive geographic ranges may interact with different species assemblages at distant locations, with the result that the nature of the interactions may vary spatially. Black-tailed prairie dogs Cynomys ludovicianus occur from Canada to Mexico in grasslands of the western Great Plains of North America. Black-tailed prairie dogs alter vegetation and dig extensive burrow systems that alter grassland habitats for plants and other animal species. These alterations of habitat justify the descriptor " ecological engineer," and the resulting changes in species composition have earned them status as a keystone species. We examined the impact of black-tailed prairie dogs on small mammal assemblages by trapping at on- and off-colony locations at eight study areas across the species' geographic range. We posed 2 nested hypotheses: 1) prairie dogs function as a keystone species for other rodent species; and 2) the keystone role varies spatially. Assuming that it does, we asked what are the sources of the variation? Black-tailed prairie dogs consistently functioned as a keystone species in that there were strong statistically significant differences in community composition on versus off prairie dog colonies across the species range in prairie grassland. Small mammal species composition varied along both latitudinal and longitudinal gradients, and species richness varied from 4 to 11. Assemblages closer together were more similar; such correlations approximately doubled when including only on- or off-colony grids. Black-tailed prairie dogs had a significant effect on associated rodent assemblages that varied regionally, dependent upon the composition of the local rodent species pool. Over the range of the black-tailed prairie dog, on-colony rodent richness and evenness were less variable, and species composition was more consistent than off-colony assemblages. ?? 2010 The Authors.

  1. Lesser prairie-chicken avoidance of trees in a grassland landscape

    Science.gov (United States)

    Lautenbach, Joseph M.; Plumb, Reid T.; Robinson, Samantha G.; Hagen, Christian A.; Haukos, David A.; Pitman, James C.

    2016-01-01

    Grasslands are among the most imperiled ecosystems in North America. Reasons that grasslands are threatened include conversion to row-crop agriculture, fragmentation, and changes in fire regimes. The reduction of fire processes in remaining prairies has resulted in tree encroachment and establishment in grasslands, further reducing grassland quantity and quality. Grassland birds have been experiencing precipitous population declines in recent decades, commensurate with landscape changes to grasslands. The lesser prairie-chicken (Tympanuchus pallidicinctus Ridgway) is a declining species of prairie grouse of conservation concern. We used second- and third-order habitat selection metrics to test if female lesser prairie-chickens avoid grasslands where trees were present. Our results indicated that female lesser prairie-chickens selected habitats avoiding the nearest trees by 283 m on average, nearly twice as far as would be expected at random. Lesser prairie-chickens were 40 times more likely to use habitats with tree densities of 0 trees ∙ ha− 1 than habitats with 5 trees ∙ ha− 1. Probability of use indicated that lesser prairie-chickens were 19 times more likely to use habitats 1000 m from the nearest tree when compared with using habitats 0 m from the nearest tree. Nest survival was not affected at densities 2 trees ∙ ha− 1. Avoidance of trees could be due to perceived increased predation risk, reduced habitat quality, or a combination of these potentially confounding factors. Preventing further establishment and expansion of trees in landscapes occupied by lesser prairie-chickens could contribute to the continued persistence of the species. Additionally, restoring grasslands through tree removal may facilitate conservation efforts for grassland species such as the lesser prairie-chicken by improving habitat quality and promoting expansion of occupied range.

  2. Rangewide genetic analysis of Lesser Prairie-Chicken reveals population structure, range expansion, and possible introgression

    Science.gov (United States)

    Oyler-McCance, Sara J.; DeYoung, Randall W; Fike, Jennifer; Hagen, Christian A.; Johnson, Jeff A.; Larsson, Lena C.; Patten, Michael

    2016-01-01

    The distribution of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) has been markedly reduced due to loss and fragmentation of habitat. Portions of the historical range, however, have been recolonized and even expanded due to planting of conservation reserve program (CRP) fields that provide favorable vegetation structure for Lesser Prairie-Chickens. The source population(s) feeding the range expansion is unknown, yet has resulted in overlap between Lesser and Greater Prairie-Chickens (T. cupido) increasing the potential for hybridization. Our objectives were to characterize connectivity and genetic diversity among populations, identify source population(s) of recent range expansion, and examine hybridization with the Greater Prairie-Chicken. We analyzed 640 samples from across the range using 13 microsatellites. We identified three to four populations corresponding largely to ecoregions. The Shinnery Oak Prairie and Sand Sagebrush Prairie represented genetically distinct populations (F ST > 0.034 and F ST > 0.023 respectively). The Shortgrass/CRP Mosaic and Mixed Grass ecoregions appeared admixed (F ST = 0.009). Genetic diversity was similar among ecoregions and N e ranged from 142 (95 % CI 99–236) for the Shortgrass/CRP Mosaic to 296 (95 % CI 233–396) in the Mixed Grass Prairie. No recent migration was detected among ecoregions, except asymmetric dispersal from both the Mixed Grass Prairie and to a lesser extent the Sand Sagebrush Prairie north into adjacent Shortgrass/CRP Mosaic (m = 0.207, 95 % CI 0.116–0.298, m = 0.097, 95 % CI 0.010–0.183, respectively). Indices investigating potential hybridization in the Shortgrass/CRP Mosaic revealed that six of the 13 individuals with hybrid phenotypes were significantly admixed suggesting hybridization. Continued monitoring of diversity within and among ecoregions is warranted as are actions promoting genetic connectivity and range expansion.

  3. Native prairie revegetation on wellsites in southeastern Alberta

    International Nuclear Information System (INIS)

    Soulodre, E.; Naeth, A.; Hammermeister, A.

    1999-01-01

    The Native Prairie Revegetation Research Project (NPRRP) was initiated to address concerns about wellsite revegetation of native grassland. The objective was to determine the impact of alternative seeding treatments on soil and vegetation and to produce a quantifiable description of what constitutes successful revegetation of native prairie sites. Four wellsites, each site comprising four revegetation treatment plots and an undisturbed control plot, have been chosen for field study. The revegetation treatments included natural recovery without seeding; current mix dominated by native wheatgrass cultivars; simple mix seeding containing wheatgrasses plus other native grasses, and diverse mix seeding with a mixture of wheatgrasses, other grasses and thirteen perennial forbs. The plant communities were monitored for biomass production, species richness, species composition and a combination of factors which include density, frequency, canopy cover and basal cover, these collectively representing importance value. Nitrogen availability in the soil was also monitored. Results showed high importance values for wheatgrasses for all seeded treatments. Perennial non-wheatgrasses had low importance values in the seeded treatment but higher importance in the control plot. The dominance of wheatgrasses in the seeded treatments resulted in communities that differed significantly from both the control and natural recovery communities, probably due to suppression of the growth of other grasses

  4. Spatiotemporal dynamics of black-tailed prairie dog colonies affected by plague

    Science.gov (United States)

    Augustine, D.J.; Matchett, M.R.; Toombs, T.P.; Cully, J.F.; Johnson, T.L.; Sidle, John G.

    2008-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) are a key component of the disturbance regime in semi-arid grasslands of central North America. Many studies have compared community and ecosystem characteristics on prairie dog colonies to grasslands without prairie dogs, but little is known about landscape-scale patterns of disturbance that prairie dog colony complexes may impose on grasslands over long time periods. We examined spatiotemporal dynamics in two prairie dog colony complexes in southeastern Colorado (Comanche) and northcentral Montana (Phillips County) that have been strongly influenced by plague, and compared them to a complex unaffected by plague in northwestern Nebraska (Oglala). Both plague-affected complexes exhibited substantial spatiotemporal variability in the area occupied during a decade, in contrast to the stability of colonies in the Oglala complex. However, the plague-affected complexes differed in spatial patterns of colony movement. Colonies in the Comanche complex in shortgrass steppe shifted locations over a decade. Only 10% of the area occupied in 1995 was still occupied by prairie dogs in 2006. In 2005 and 2006 respectively, 74 and 83% of the total area of the Comanche complex occurred in locations that were not occupied in 1995, and only 1% of the complex was occupied continuously over a decade. In contrast, prairie dogs in the Phillips County complex in mixed-grass prairie and sagebrush steppe primarily recolonized previously occupied areas after plague-induced colony declines. In Phillips County, 62% of the area occupied in 1993 was also occupied by prairie dogs in 2004, and 12% of the complex was occupied continuously over a decade. Our results indicate that plague accelerates spatiotemporal movement of prairie dog colonies, and have significant implications for landscape-scale effects of prairie dog disturbance on grassland composition and productivity. These findings highlight the need to combine landscape-scale measures of

  5. Flea and Small Mammal Species Composition in Mixed-Grass Prairies: Implications for the Maintenance of Yersinia pestis.

    Science.gov (United States)

    Maestas, Lauren P; Britten, Hugh B

    2017-07-01

    Maintenance of sylvatic plague in prairie dogs (Cynomis spp.) was once thought unlikely due to high mortality rates; yet more recent findings indicate that low-level enzootic plague may be maintained in susceptible prairie dog populations. Another hypothesis for the maintenance of sylvatic plague involves small mammals, other than prairie dogs, as an alternative reservoir in the sylvatic plague system. These hypotheses, however, are not mutually exclusive, as both prairie dogs and small mammals could together be driving sylvatic cycles of plague. The concept of a bridging vector has been used to explain the transmission of pathogens from one host species to another. In the case of sylvatic plague, this would require overlap in fleas between small mammals and prairie dogs, and potentially other species such as carnivores. Our goal was to evaluate the level of flea sharing between black-tailed prairie dogs (Cynomis ludovicianus) and other small mammals in a mixed-grass prairie in South Dakota. We investigated the species richness of small mammals and small-mammal fleas in a mixed-grass prairie system and compared findings with previous studies from a short-grass ecosystem in Colorado. Over the summer field seasons 2014-2016 we live-trapped small mammals, collected fleas, and showed differences between both the flea and small mammal composition of the two systems. We also recorded higher densities of deer mice and lower densities of northern grasshopper mice in mixed versus shortgrass prairies. We confirmed, as is the case in shortgrass prairies, a lack of substantial flea species overlap on small mammal hosts and fleas from prairie dogs and their burrows. Moreover this study demonstrates that although small mammals may not play a large part in interepizootic plague cycling in shortgrass prairie ecosystems, their role in mixed-grass prairies requires further evaluation.

  6. Nitrogen recycling in prairie species managed for biomass production

    Science.gov (United States)

    Smith, L.; Jackson, R. D.

    2011-12-01

    Plant nutrient recycling is an important mechanism for nitrogen (N) retention in plants and has been identified as a means for reducing N losses in perennial grass systems managed for biomass production. Warm-season (C4 photosynthesis) prairie grasses are thought to be inherently good at recycling N, because they often thrive in nutrient-limited native grasslands where N recycling strategies would be advantageous. Results from studies of plant responses to altered N resources and the subsequent ability or need for plants to resorb N in high-productivity environments have been equivocal. We addressed N resorption of four species -- Panicum virgatum in a switchgrass monoculture, and Andropogen gerardii, Sorghastrum nutans and Helianthus grosseserratus in a restored prairie -- and their responses to fertilizer additions of 0, 50, or 150 kg N ha-1 on productive mollisols. We hypothesized that senesced leaf N (the final N concentration retained in a senesced leaf) would increase with fertility, while N resorption efficiency (the proportion of original green leaf N resorbed after senescence) would decrease with fertility. N resorption efficiency rates in the prairie differed mainly by species without significant treatment effects. Helianthus grosseserratus resorption efficiency was highest (69.0 ± 2.6% [s.e.]), followed by Sorghastrum nutans (47.9 ± 5.4%) and Andropogen gerardii (35.3 ± 5.7%). Panicum virgatum resorption efficiencies responded opposite to our predictions with the highest resorption rates in the high-fertility treatment (62.9 ± 5.7%) and the lowest resorption rates in the unfertilized treatment (49.4 ± 6.1%). Fertilizer effects were only significant in senesced Panicum virgatum leaves, but across all species, plants with high green leaf N tended to also have higher senesced leaf N. This suggests that plants with high N resorption efficiencies may resorb a higher proportion of original leaf N because there is more N to remobilize. However, these

  7. Anticoagulant Prairie Dog Bait Risk Mitigation Measures to Protect Endangered Species

    Science.gov (United States)

    This Web page contains information on how certified pesticide applicators can use anticoagulant prairie dog bait products such as Rozol and Kaput-D while minimizing exposure risks to listed and non-target species.

  8. Investigation of the Transcriptome of Prairie Cord Grass, a New Cellulosic Biomass Crop

    KAUST Repository

    Gedye, Kristene

    2010-09-15

    Prairie cordgrass (Spartina pectinata Bosc ex Link) is being developed as a cellulosic biomass crop. Development of this species will require numerous steps, including breeding, agronomy, and characterization of the species genome. The research in this paper describes the first investigation of the transcriptome of prairie cordgrass via Next Generation Sequencing Technology, 454 GS FLX. A total of 556,198 expressed sequence tags (ESTs) were produced from four prairie cordgrass tissues: roots, rhizomes, immature inflorescence, and hooks. These ESTs were assembled into 26,302 contigs and 71,103 singletons. From these data were identified, EST-SSR (simple sequence repeat) regions and cell wall biosynthetic pathway genes suitable for the development of molecular markers which can aid the breeding process of prairie cordgrass by means of marker assisted selection.

  9. A coupled dynamical-copula downscaling approach for temperature projections over the Canadian Prairies

    Science.gov (United States)

    Zhou, Xiong; Huang, Guohe; Wang, Xiuquan; Fan, Yurui; Cheng, Guanhui

    2017-11-01

    In this study, a coupled dynamical-copula downscaling approach was developed through integrating the Providing Regional Climates for Impacts Studies (PRECIS) modeling system and the copula method. This approach helps to reflect detailed features at local scales based on dynamical downscaling, while also effectively simulating the interactions between large-scale atmospheric variables (predictors) and local surface variables (predictands). The performance of the proposed approach in reproducing historical climatology of the Canadian Prairies was evaluated through comparison with observations. Future climate projections generated by the developed approach were analyzed over three time slices (i.e., the 2030s, 2050s, and 2080s) to help understand the plausible changes in temperature over the Canadian Prairies in response to global warming. The results showed that there would be an apparent increasing pattern over the Canadian Prairies. The projections of future temperature over three time slices can provide decision makers with valuable information for climate change impacts assessment over the Canadian Prairies.

  10. GHG PSD Permit: Cheyenne Light, Fuel & Power / Black Hills Power, Inc. – Cheyenne Prairie Generating Station

    Science.gov (United States)

    This page contains the final PSD permit for the Cheyenne Light, Fuel & Power / Black Hills Power, Inc. Cheyenne Prairie Generating Station, located in Laramie, Wyoming, and operated by Black Hills Service Company.

  11. 78 FR 17224 - Environmental Impact Statement; Proposed South Puget Sound Prairie Habitat Conservation Plan...

    Science.gov (United States)

    2013-03-20

    ..., trails, vegetation management, structures, recreational activities, scientific research; construction and... rare prairie species protection or restoration. Washington State's Growth Management Act requires..., Montana, and Washington, and was historically found in Oregon. Taylor's checkerspot (Euphydryas editha...

  12. Estimating numbers of greater prairie-chickens using mark-resight techniques

    Science.gov (United States)

    Clifton, A.M.; Krementz, D.G.

    2006-01-01

    Current monitoring efforts for greater prairie-chicken (Tympanuchus cupido pinnatus) populations indicate that populations are declining across their range. Monitoring the population status of greater prairie-chickens is based on traditional lek surveys (TLS) that provide an index without considering detectability. Estimators, such as immigration-emigration joint maximum-likelihood estimator from a hypergeometric distribution (IEJHE), can account for detectability and provide reliable population estimates based on resightings. We evaluated the use of mark-resight methods using radiotelemetry to estimate population size and density of greater prairie-chickens on 2 sites at a tallgrass prairie in the Flint Hills of Kansas, USA. We used average distances traveled from lek of capture to estimate density. Population estimates and confidence intervals at the 2 sites were 54 (CI 50-59) on 52.9 km 2 and 87 (CI 82-94) on 73.6 km2. The TLS performed at the same sites resulted in population ranges of 7-34 and 36-63 and always produced a lower population index than the mark-resight population estimate with a larger range. Mark-resight simulations with varying male:female ratios of marks indicated that this ratio was important in designing a population study on prairie-chickens. Confidence intervals for estimates when no marks were placed on females at the 2 sites (CI 46-50, 76-84) did not overlap confidence intervals when 40% of marks were placed on females (CI 54-64, 91-109). Population estimates derived using this mark-resight technique were apparently more accurate than traditional methods and would be more effective in detecting changes in prairie-chicken populations. Our technique could improve prairie-chicken management by providing wildlife biologists and land managers with a tool to estimate the population size and trends of lekking bird species, such as greater prairie-chickens.

  13. Catch the wave: prairie dogs assess neighbours’ awareness using contagious displays

    OpenAIRE

    Hare, James F.; Campbell, Kevin L.; Senkiw, Robert W.

    2014-01-01

    The jump–yip display of black-tailed prairie dogs (Cynomys ludovicianus) is contagious, spreading through a prairie dog town as ‘the wave’ through a stadium. Because contagious communication in primates serves to assess conspecific social awareness, we investigated whether instigators of jump–yip bouts adjusted their behaviour relative to the response of conspecifics recruited to display bouts. Increased responsiveness of neighbouring town members resulted in bout initiators devoting a signif...

  14. Weed problem on the newly established prairie cordgrass (Spartina pectinata plantations intended for energetic purposes

    Directory of Open Access Journals (Sweden)

    Tomasz SEKUTOWSKI

    2012-09-01

    Full Text Available In our research conducted in years 2009-2011 three herbicides were examined in the respect of their usefulness at the plantation of prairie cordgrass (Spartina pectinata intended for energetic purposes. In the light of the conducted observations, it seems that selectivity of particular herbicides for prairie cordgrass plants and their effectiveness on particular weed species depend mainly on the growing phase of the plants as well as on particular weed species.

  15. Weed problem on the newly established prairie cordgrass (Spartina pectinata plantations intended for energetic purposes

    Directory of Open Access Journals (Sweden)

    Tomasz SEKUTOWSKI

    2012-06-01

    Full Text Available In our research conducted in years 2009-2011 three herbicides were examined in the respect of their usefulness at the plantation of prairie cordgrass (Spartina pectinata intended for energetic purposes. In the light of the conducted observations, it seems that selectivity of particular herbicides for prairie cordgrass plants and their effectiveness on particular weed species depend mainly on the growing phase of the plants as well as on particular weed species.

  16. Field-Level Financial Assessment of Contour Prairie Strips for Enhancement of Environmental Quality

    Science.gov (United States)

    Tyndall, John C.; Schulte, Lisa A.; Liebman, Matthew; Helmers, Matthew

    2013-09-01

    The impacts of strategically located contour prairie strips on sediment and nutrient runoff export from watersheds maintained under an annual row crop production system have been studied at a long-term research site in central Iowa. Data from 2007 to 2011 indicate that the contour prairie strips utilized within row crop-dominated landscapes have greater than proportionate and positive effects on the functioning of biophysical systems. Crop producers and land management agencies require comprehensive information about the Best Management Practices with regard to performance efficacy, operational/management parameters, and the full range of financial parameters. Here, a farm-level financial model assesses the establishment, management, and opportunity costs of contour prairie strips within cropped fields. Annualized, depending on variable opportunity costs the 15-year present value cost of utilizing contour prairie strips ranges from 590 to 865 ha-1 year-1 (240-350 ac-1 year-1). Expressed in the context of "treatment area" (e.g., in this study 1 ha of prairie treats 10 ha of crops), the costs of contour prairie strips can also be viewed as 59 to about 87 per treated hectare (24-35 ac-1). If prairie strips were under a 15-year CRP contract, total per acre cost to farmers would be reduced by over 85 %. Based on sediment, phosphorus, and nitrogen export data from the related field studies and across low, medium, and high land rent scenarios, a megagram (Mg) of soil retained within the watershed costs between 7.79 and 11.46 mg-1, phosphorus retained costs between 6.97 and 10.25 kg-1, and nitrogen retained costs between 1.59 and 2.34 kg-1. Based on overall project results, contour prairie strips may well become one of the key conservation practices used to sustain US Corn Belt agriculture in the decades to come.

  17. Extreme plasticity in thermoregulatory behaviors of free-ranging black-tailed prairie dogs

    Science.gov (United States)

    Lehmer, E.M.; Savage, L.T.; Antolin, M.F.; Biggins, D.E.

    2006-01-01

    In the natural environment, hibernating sciurids generally remain dormant during winter and enter numerous deep torpor bouts from the time of first immergence in fall until emergence in spring. In contrast, black-tailed prairie dogs (Cynomys ludovicianus) remain active throughout winter but periodically enter short and shallow bouts of torpor. While investigating body temperature (Tb) patterns of black-tailed prairie dogs from six separate colonies in northern Colorado, we observed one population that displayed torpor patterns resembling those commonly seen in hibernators. Five individuals in this population experienced multiple torpor bouts in immediate succession that increased in length and depth as winter progressed, whereas 16 prairie dogs in five neighboring colonies remained euthermic for the majority of winter and entered shallow bouts of torpor infrequently. Our results suggest that these differences in torpor patterns did not result from differences in the physiological indicators that we measured because the prairie dogs monitored had similar body masses and concentrations of stored lipids across seasons. Likewise, our results did not support the idea that differences in overwinter Tb patterns between prairie dogs in colonies with differing torpor patterns resulted from genetic differences between populations; genetic analyses of prairie dog colonies revealed high genetic similarity between the populations and implied that individuals regularly disperse between colonies. Local environmental conditions probably played a role in the unusual T b patterns experienced by prairie dogs in the colony where hibernation-like patterns were observed; this population received significantly less rainfall than neighboring colonies during the summer growing seasons before, during, and after the year of the winter in which they hibernated. Our study provides a rare example of extreme plasticity in thermoregulatory behaviors of free-ranging prairie dogs and provides

  18. Rodent and flea abundance fail to predict a plague epizootic in black-tailed prairie dogs.

    Science.gov (United States)

    Brinkerhoff, Robert Jory; Collinge, Sharon K; Ray, Chris; Gage, Ken L

    2010-01-01

    Small rodents are purported to be enzootic hosts of Yersinia pestis and may serve as sources of infection to prairie dogs or other epizootic hosts by direct or flea-mediated transmission. Recent research has shown that small rodent species composition and small rodent flea assemblages are influenced by the presence of prairie dogs, with higher relative abundance of both small rodents and fleas at prairie dog colony sites compared to grasslands without prairie dogs. However, it is unclear if increased rodent or flea abundance predisposes prairie dogs to infection with Y. pestis. We tracked rodent and flea occurrence for 3 years at a number of prairie dog colony sites in Boulder County, Colorado, before, during, and after a local plague epizootic to see if high rodent or flea abundance was associated with plague-affected colonies when compared to colonies that escaped infection. We found no difference in preepizootic rodent abundance or flea prevalence or abundance between plague-positive and plague-negative colonies. Further, we saw no significant before-plague/after-plague change in these metrics at either plague-positive or plague-negative sites. We did, however, find that small rodent species assemblages changed in the year following prairie dog die-offs at plague-affected colonies when compared to unaffected colonies. In light of previous research from this system that has shown that landscape features and proximity to recently plagued colonies are significant predictors of plague occurrence in prairie dogs, we suggest that landscape context is more important to local plague occurrence than are characteristics of rodent or flea species assemblages.

  19. A baiting system for delivery of an oral plague vaccine to black-tailed prairie dogs

    Science.gov (United States)

    Creekmore, Terry E.; Rocke, Tonie E.; Hurley, J.

    2002-01-01

    Laboratory and field studies were conducted between July and October 1999 to identify bait preference, biomarker efficacy, and bait acceptance rates for delivering an oral plague vaccine to black-tailed prairie dogs (Cynomys ludovicianus). Twenty juvenile captive prairie dogs were offered alfalfa baits containing either alfalfa, alfalfa and 5% molasses, or alfalfa, 5% molasses and 4% salt. Based on the results of these trials we selected a bait containing alfalfa, 7% molasses, and 1% salt for field trials to determine bait acceptance rates by free-ranging animals. The biomarkers DuPont Blue dye, iophenoxic acid, and tetracycline hydrochloride were orally administered to captive prairie dogs to determine their efficacy. Only tetracycline proved effective as a biomarker. Two field trials were conducted at separate prairie dog colonies located at the Buffalo Gap National Grassland (Pennington County, South Dakota, USA). In Trial 1, three baits containing tetracycline were distributed around each active burrow entrance and an additional bait was placed inside the burrow (1,276 baits total). In Trial 2, baits were distributed at the same density per burrow as Trial 1, but along transects spaced 10 m apart (1,744 baits total). Trapping began 3 days after bait distribution, and 30 prairie dogs then were captured at each site to determine the percentage of animals marked. In Trial 1, 67% of the prairie dogs captured had tetracycline deposits indicative of bait consumption. In Trial 2, 83% of the prairie dogs had ingested a bait. Approximately 15% of the animals in both trials ate more than one bait. Fleas (Opisocrostis hirsutus) were found on 64 of 70 (91%) of the prairie dogs captured during this study.

  20. Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles

    OpenAIRE

    Grippo, Angela J.; Gerena, Davida; Huang, Jonathan; Kumar, Narmda; Shah, Maulin; Ughreja, Raj; Carter, C. Sue

    2007-01-01

    Supportive social interactions may be protective against stressors and certain mental and physical illness, while social isolation may be a powerful stressor. Prairie voles are socially monogamous rodents that model some of the behavioral and physiological traits displayed by humans, including sensitivity to social isolation. Neuroendocrine and behavioral parameters, selected for their relevance to stress and depression, were measured in adult female and male prairie voles following 4 weeks o...

  1. Mountain plover nest survival in relation to prairie dog and fire dynamics in shortgrass steppe

    Science.gov (United States)

    Augustine, David J.; Skagen, Susan K.

    2014-01-01

    Disturbed xeric grasslands with short, sparse vegetation provide breeding habitat for mountain plovers (Charadrius montanus) across the western Great Plains. Maintaining local disturbance regimes through prairie dog conservation and prescribed fire may contribute to the sustainability of recently declining mountain plover populations, but these management approaches can be controversial. We estimated habitat-specific mountain plover densities and nest survival rates on black-tailed prairie dog (Cynomys ludovicianus) colonies and burns in the shortgrass steppe of northeastern Colorado. Mountain plover densities were similar on prairie dog colonies (5.9 birds/km2; 95% CI = 4.7–7.4) and sites burned during the preceding dormant season (6.7 birds/km2; 95% CI = 4.6–9.6), whereas the 29-day nest survival rate was greater on prairie dog colonies (0.81 in 2011 and 0.39 in 2012) compared to the burned sites (0.64 in 2011 and 0.17 in 2012). Reduced nest survival in 2012 compared to 2011 was associated with higher maximum daily temperatures in 2012, consistent with a previous weather-based model of mountain plover nest survival in the southern Great Plains. Measurements of mountain plover density relative to time since disturbance showed that removal of prairie dog disturbance by sylvatic plague reduced mountain plover density by 70% relative to active prairie dog colonies after 1 year. Plover densities declined at a similar rate (by 78%) at burned sites between the first and second post-burn growing season. Results indicate that black-tailed prairie dog colonies are a particularly important nesting habitat for mountain plovers in the southern Great Plains. In addition, findings suggest that prescribed burning can be a valuable means to create nesting habitat in landscapes where other types of disturbances (such as prairie dog colonies) are limited in distribution and size. 

  2. Impacts of mesquite distribution on seasonal space use of lesser prairie-chickens

    Science.gov (United States)

    Boggie, Matthew A.; Strong, Cody R.; Lusk, Daniel; Carleton, Scott A.; Gould, William R.; Howard, Randy L.; Nichols, Clay T.; Falkowski, Michael J.; Hagen, Christian A.

    2017-01-01

    Loss of native grasslands by anthropogenic disturbances has reduced availability and connectivity of habitat for many grassland species. A primary threat to contiguous grasslands is the encroachment of woody vegetation, which is spurred by disturbances that take on many forms from energy development, fire suppression, and grazing. These disturbances are exacerbated by natural- and human-driven cycles of changes in climate punctuated by drought and desertification conditions. Encroachment of honey mesquite (Prosopis glandulosa) into the prairies of southeastern New Mexico has potentially limited habitat for numerous grassland species, including lesser prairie-chickens (Tympanuchus pallidicinctus). To determine the magnitude of impacts of distribution of mesquite and how lesser prairie-chickens respond to mesquite presence on the landscape in southeastern New Mexico, we evaluated seasonal space use of lesser prairie-chickens in the breeding and nonbreeding seasons. We derived several remotely sensed spatial metrics to characterize the distribution of mesquite. We then used these data to create population-level resource utilization functions and predict intensity of use of lesser prairie-chickens across our study area. Home ranges were smaller in the breeding season compared with the nonbreeding season; however, habitat use was similar across seasons. During both seasons, lesser prairie-chickens used areas closer to leks and largely avoided areas with mesquite. Relative to the breeding season, during the nonbreeding season habitat use suggested a marginal increase in mesquite within areas of low intensity of use, yet aversion to mesquite was strong in areas of medium to high intensity of use. To our knowledge, our study is the first to demonstrate a negative behavioral response by lesser prairie-chickens to woody encroachment in native grasslands. To mitigate one of the possible limiting factors for lesser prairie-chickens, we suggest future conservation

  3. Progress report: baseline monitoring of indicator species (butterflies) at tallgrass prairie restorations

    Science.gov (United States)

    Allain, Larry; Vidrine, Malcolm

    2014-01-01

    This project provides baseline data of butterfly populations at two coastal prairie restoration sites in Louisiana, the Duralde Unit of Lacassine National Wildlife Refuge (hereafter, the Duralde site) and the Cajun Prairie Restoration Project in Eunice (hereafter, the Eunice site). In all, four distinct habitat types representing different planting methods were sampled. These data will be used to assess biodiversity and health of native grasslands and also provide a basis for adaptive management.

  4. Abundance and diaspore weight in rare and common prairie grasses.

    Science.gov (United States)

    Rabinowitz, Deborah

    1978-01-01

    Abundance (g/m 2 ) and diaspore weight are positively correlated in seven species of perennial grasses that occur in prairies. The rare grasses (10.0 g/m 2 ) have heavy dispersal units (2.23 to 2.80 mg). This result is the first reported differentiating trait between related rare and common organisms occurring in same habitat.Three hypotheses that explain this phenomenon are compared; the third most likely holds. First, rare grasses may be rare because their small seeds are less successful in establishment than those of common grasses. Second, if the persistence of small populations is marginal, rare grasses may devote less energy (or other currency) to seed production. Third, rare grasses may be colonizers of spatially and temporally rare microsites appropriate for growth and thus have seeds adapted for longer distance dispersal than those of common grasses. This last hypothesis suggests a new pathway for the evolution of weeds.

  5. Utilization of satellite data for inventorying prairie ponds and lakes

    Science.gov (United States)

    Work, E.A.; Gilmer, D.S.

    1976-01-01

    By using data acquired by LANDSAT-1 (formerly ERTS- 1), studies were conducted in extracting information necessary for formulating management decisions relating to migratory waterfowl. Management decisions are based in part on an assessment ofhabitat characteristics, specifically numbers, distribution, and quality of ponds and lakes in the prime breeding range. This paper reports on a study concerned with mapping open surface water features in the glaciated prairies. Emphasis was placed on the recognition of these features based upon water's uniquely low radiance in a single nearinfrared waveband. The results of this recognition were thematic maps and statistics relating to open surface water. In a related effort, the added information content of multiple spectral wavebands was used for discriminating surface water at a level of detail finer than the virtual resolution of the data. The basic theory of this technique and some preliminary results are described.

  6. Effects of population density on corticosterone levels of prairie voles in the field.

    Science.gov (United States)

    Blondel, Dimitri V; Wallace, Gerard N; Calderone, Stefanie; Gorinshteyn, Marija; St Mary, Colette M; Phelps, Steven M

    2016-01-01

    High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than higher densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary, and mechanistic questions in social behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Flea abundance on black-tailed prairie dogs (Cynomys ludovicianus) increases during plague epizootics.

    Science.gov (United States)

    Tripp, Daniel W; Gage, Kenneth L; Montenieri, John A; Antolin, Michael F

    2009-06-01

    Black-tailed prairie dogs (Cynomys ludovicianus) on the Great Plains of the United States are highly susceptible to plague, caused by the bacterium Yersinia pestis, with mortality on towns during plague epizootics often approaching 100%. The ability of flea-borne transmission to sustain disease spread has been questioned because of inefficiency of flea vectors. However, even with low individual efficiency, overall transmission can be increased if flea abundance (the number of fleas on hosts) increases. Changes in flea abundance on hosts during plague outbreaks were recorded during a large-scale study of plague outbreaks in prairie dogs in north central Colorado during 3 years (2004-2007). Fleas were collected from live-trapped black-tailed prairie dogs before and during plague epizootics and tested by PCR for the presence of Y. pestis. The predominant fleas were two prairie dog specialists (Oropsylla hirsuta and Oropsylla tuberculata cynomuris), and a generalist flea species (Pulex simulans) was also recorded from numerous mammals in the area. The three species differ in seasonal abundance, with greatest abundance in spring (February and March) and fall (September and October). Flea abundance and infestation intensity increased during epizootics and were highest on prairie dogs with Y. pestis-infected fleas. Seasonal occurrence of epizootics among black-tailed prairie dogs was found to coincide with seasonal peaks in flea abundance. Concentration of infected fleas on surviving animals may account for rapid spread of plague during epizootics. In particular, the role of the generalist flea P. simulans was previously underappreciated.

  8. A plague epizootic in the black-tailed prairie dog (Cynomys ludovicianus).

    Science.gov (United States)

    Pauli, Jonathan N; Buskirk, Steven W; Williams, Elizabeth S; Edwards, William H

    2006-01-01

    Plague is the primary cause for the rangewide decline in prairie dog (Cynomys spp.) distribution and abundance, yet our knowledge of plague dynamics in prairie dog populations is limited. Our understanding of the effects of plague on the most widespread species, the black-tailed prairie dog (C. ludovicianus), is particularly weak. During a study on the population biology of black-tailed prairie dogs in Wyoming, USA, plague was detected in a colony under intensive monitoring, providing a unique opportunity to quantify various consequences of plague. The epizootic reduced juvenile abundance by 96% and adult abundance by 95%. Of the survivors, eight of nine adults and one of eight juveniles developed antibodies to Yersinia pestis. Demographic groups appeared equally susceptible to infection, and age structure was unaffected. Survivors occupied three small coteries and exhibited improved body condition, but increased flea infestation compared to a neighboring, uninfected colony. Black-tailed prairie dogs are capable of surviving a plague epizootic and reorganizing into apparently functional coteries. Surviving prairie dogs may be critical in the repopulation of plague-decimated colonies and, ultimately, the evolution of plague resistance.

  9. Classification of Prairie basins by their hysteretic connected functions

    Science.gov (United States)

    Shook, K.; Pomeroy, J. W.

    2017-12-01

    Diagnosing climate change impacts in the post-glacial landscapes of the North American Prairies through hydrological modelling is made difficult by drainage basin physiography. The region is cold, dry and flat with poorly developed stream networks, and so the basin area that is hydrologically connected to the stream outlet varies with basin depressional storage. The connected area controls the contributing area for runoff reaching the stream outlet. As depressional storage fills, ponds spill from one to another; the chain of spilling ponds allows water to flow over the landscape and increases the connected area of the basin. As depressional storage decreases, the connected fraction drops dramatically. Detailed, fine-scale models and remote sensing have shown that the relationship between connected area and the depressional storage is hysteretic in Prairie basins and that the nature of hysteresis varies with basin physiography. This hysteresis needs to be represented in hydrological models to calculate contributing area, and therefore streamflow hydrographs. Parameterisations of the hysteresis are needed for large-scale models used for climate change diagnosis. However, use of parameterisations of hysteresis requires guidance on how to represent them for a particular basin. This study shows that it is possible to relate the shape of hysteretic functions as determined by detailed models to the overall physiography of the basin, such as the fraction of the basin below the outlet, and remote sensing estimates of depressional storage, using the size distribution and location of maximum ponded water areas. By classifying basin physiography, the hysteresis of connected area - storage relationships can be estimated for basins that do not have high-resolution topographic data, and without computationally-expensive high-resolution modelling.

  10. Effects of climate on numbers of northern prairie wetlands

    Science.gov (United States)

    Larson, Diane L.

    1995-01-01

    The amount of water held in individual wetland basins depends not only on local climate patterns but also on groundwater flow regime, soil permeability, and basin size. Most wetland basins in the northern prairies hold water in some years and are dry in others. To assess the potential effect of climate change on the number of wetland basins holding water in a given year, one must first determine how much of the variability in number of wet basins is accounted for by climatic variables. I used multiple linear regression to examine the relationship between climate variables and percentage of wet basins throughout the Prairie Pothole Region of Canada and the United States. The region was divided into three areas: parkland, Canadian grassland, and United States grassland (i.e., North Dakota and South Dakota). The models - which included variables for spring and fall temperature, yearly precipitation, the previous year's count of wet basins, and for grassland areas, the previous fall precipitation - accounted for 63 to 65% of the variation in the number of wet basins. I then explored the sensitivities of the models to changes in temperature and precipitation, as might be associated with increased greenhouse gas concentrations. Parkland wetlands are shown to be much more vulnerable to increased temperatures than are wetlands in either Canadian or United States grasslands. Sensitivity to increased precipitation did not vary geographically. These results have implications for waterfowl and other wildlife populations that depend on availability of wetlands in the parklands for breeding or during periods of drought in the southern grasslands.

  11. The Corps of Engineers and Prairie Restoration: Synopsis of the First Corps Prairie Workshop, Follow-up Actions, and Thoughts on the Future of Prairie Restoration and Management on Operational Projects

    Science.gov (United States)

    2009-06-01

    recognized that grassland management and control of invasive woody species such as salt cedar (Tamarix spp.) and honey mesquite ( Prosopis ... glandulosa ) will improve habitat value and water yield on operational projects.  Authorities for prairie restoration and management may need to be

  12. COMPUTED TOMOGRAPHIC FEATURES OF INCISOR PSEUDO-ODONTOMAS IN PRAIRIE DOGS (CYNOMYS LUDOVICIANUS).

    Science.gov (United States)

    Pelizzone, Igor; Di Ianni, Francesco; Volta, Antonella; Gnudi, Giacomo; Manfredi, Sabrina; Bertocchi, Mara; Parmigiani, Enrico

    2017-05-01

    Maxillary incisor pseudo-odontomas are common in pet prairie dogs and can cause progressive respiratory obstruction, while mandibular pseudo-odontomas are rarely clinically significant. The aim of this retrospective cross-sectional study was to describe CT features of maxillary and mandibular incisor pseudo-odontomas vs. normal incisors in a group of pet prairie dogs. All pet prairie dogs with head CT scans acquired during the period of 2013-2015 were included. A veterinary radiologist who was aware of final diagnosis reviewed CT scans and recorded qualitative features of affected and normal incisors. Mean density values for the pulp cavity and palatal and buccal dentin were also recorded. A total of 16 prairie dogs were sampled (12 normal maxillary incisors, 20 confirmed maxillary incisor pseudo-odontomas, 20 normal mandibular incisors, 12 presumed mandibular incisor pseudo-odontomas). Maxillary incisors with confirmed pseudo-odontomas had a significantly hyperattenuating pulp and dentin in the reserve crown and apical zone, when compared to normal maxillary incisors. Pseudo-odontomas appeared as enlargements of the apical zone with a globular/multilobular hyperattenuating mass formation haphazardly arranged, encroaching on midline and growing caudally and ventrally. Presumed mandibular incisor pseudo-odontomas had similar CT characteristics. In 60% of prairie dogs with maxillary incisor pseudo-odontomas, the hard palate was deformed and the mass bulged into the oral cavity causing loss of the palatine bone. The common nasal meatus was partially or totally obliterated in 81.8% of prairie dogs with maxillary pseudo-odontomas. Findings supported the use of CT for characterizing extent of involvement and surgical planning in prairie dogs with pseudo-odontomas. © 2017 American College of Veterinary Radiology.

  13. Relatedness of Macrophomina phaseolina isolates from tallgrass prairie, maize, soybean and sorghum.

    Science.gov (United States)

    Saleh, A A; Ahmed, H U; Todd, T C; Travers, S E; Zeller, K A; Leslie, J F; Garrett, K A

    2010-01-01

    Agricultural and wild ecosystems may interact through shared pathogens such as Macrophomina phaseolina, a generalist clonal fungus with more than 284 plant hosts that is likely to become more important under climate change scenarios of increased heat and drought stress. To evaluate the degree of subdivision in populations of M. phaseolina in Kansas agriculture and wildlands, we compared 143 isolates from maize fields adjacent to tallgrass prairie, nearby sorghum fields, widely dispersed soybean fields and isolates from eight plant species in tallgrass prairie. Isolate growth phenotypes were evaluated on a medium containing chlorate. Genetic characteristics were analysed based on amplified fragment length polymorphisms and the sequence of the rDNA-internal transcribed spacer (ITS) region. The average genetic similarity was 58% among isolates in the tallgrass prairie, 71% in the maize fields, 75% in the sorghum fields and 80% in the dispersed soybean fields. The isolates were divided into four clusters: one containing most of the isolates from maize and soybean, two others containing isolates from wild plants and sorghum, and a fourth containing a single isolate recovered from Solidago canadensis in the tallgrass prairie. Most of the sorghum isolates had the dense phenotype on media containing chlorate, while those from other hosts had either feathery or restricted phenotypes. These results suggest that the tallgrass prairie supports a more diverse population of M. phaseolina per area than do any of the crop species. Subpopulations show incomplete specialization by host. These results also suggest that inoculum produced in agriculture may influence tallgrass prairie communities, and conversely that different pathogen subpopulations in tallgrass prairie can interact there to generate 'hybrids' with novel genetic profiles and pathogenic capabilities.

  14. Annual Climatology of the Diurnal Cycle on the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    Alan K Betts

    2016-01-01

    Full Text Available We show the annual climatology of the diurnal cycle, stratified by opaque cloud, using the full hourly resolution of the Canadian Prairie data. The opaque cloud field itself has distinct cold and warm season diurnal climatologies; with a near-sunrise peak of cloud in the cold season and an early afternoon peak in the warm season. There are two primary climate states on the Canadian Prairies, separated by the freezing point of water, because a reflective surface snow cover acts as a climate switch. Both cold and warm season climatologies can be seen in the transition months of November, March and April with a large difference in mean temperature. In the cold season with snow, the diurnal ranges of temperature and relative humidity increase quasi-linearly with decreasing cloud, and increase from December to March with increased solar forcing. The warm season months, April to September, show a homogeneous coupling to the cloud cover, and a diurnal cycle of temperature and humidity that depends only on net longwave. Our improved representation of the diurnal cycle shows that the warm season coupling between diurnal temperature range and net longwave is weakly quadratic through the origin, rather than the linear coupling shown in earlier papers. We calculate the conceptually important 24-h imbalances of temperature and relative humidity (and other thermodynamic variables as a function of opaque cloud cover. In the warm season under nearly clear skies, there is a warming of +2oC and a drying of -6% over the 24-h cycle, which is about 12% of their diurnal ranges. We summarize results on conserved variable diagrams and explore the impact of surface windspeed on the diurnal cycle in the cold and warm seasons. In all months, the fall in minimum temperature is reduced with increasing windspeed, which reduces the diurnal temperature range. In July and August, there is an increase of afternoon maximum temperature and humidity at low windspeeds, and a

  15. Persistence of black-tailed prairie-dog populations affected by plague in northern Colorado, USA.

    Science.gov (United States)

    George, Dylan B; Webb, Colleen T; Pepin, Kim M; Savage, Lisa T; Antolini, Michael F

    2013-07-01

    The spatial distribution of prairie dog (Cynomys ludovicianus) colonies in North America has changed from large, contiguous populations to small, isolated colonies in metapopulations. One factor responsible for this drastic change in prairie-dog population structure is plague (caused by the bacterium Yersinia pestis). We fit stochastic patch occupancy models to 20 years of prairie-dog colony occupancy data from two discrete metapopulations (west and east) in the Pawnee National Grassland in Colorado, USA, that differ in connectivity among suitable habitat patches. We conducted model selection between two hypothesized modes of plague movement: independent of prairie-dog dispersal (colony-area) vs. plague movement consistent with prairie-dog dispersal (connectivity to extinct colonies). The best model, which fit the data well (area under the curve [AUC]: 0.94 west area; 0.79 east area), revealed that over time the proportion of extant colonies was better explained by colony size than by connectivity to extinct (plagued) colonies. The idea that prairie dogs are not likely to be the main vector that spreads Y. pestis across the landscape is supported by the observation that colony extinctions are primarily caused by plague, prairie-dog dispersal is short range, and connectivity to extinct colonies was not selected as a factor in the models. We also conducted simulations with the best model to examine long-term patterns of colony occupancy and persistence of prairie-dog metapopulations. In the case where the metapopulations persist, our model predicted that the western metapopulation would have a colony occupancy rate approximately 2.5 times higher than that of the eastern metapopulation (-50% occupied colonies vs. 20%) in 50 years, but that the western metapopulation has -80% chance of extinction in 100 years while the eastern metapopulation has a less than 25% chance. Extinction probability of individual colonies depended on the frequency with which colonies of the

  16. Effects of sexual dimorphism and landscape composition on the trophic behavior of Greater Prairie-Chicken.

    Directory of Open Access Journals (Sweden)

    Beatriz Blanco-Fontao

    Full Text Available Partitioning of ecological niche is expected in lekking species that show marked sexual size dimorphism as a consequence of sex-specific ecological constraints. However, niche partitioning is uncertain in species with moderate sexual dimorphism. In addition, the ecological niche of a species may also be affected by landscape composition; particularly, agricultural fragmentation may greatly influence the trophic behavior of herbivores. We studied trophic niche variation in Greater Prairie-Chickens (Tympanuchus cupido, a grouse species that shows moderate sex-dimorphism. Greater Prairie-Chickens are native to tallgrass prairies of North America, although populations persist in less natural mosaics of cropland and native habitats. We used stable isotope analysis of carbon and nitrogen in blood, claws and feathers to assess seasonal differences in trophic niche breadth and individual specialization between male and female Greater Prairie-Chickens, and between birds living in continuous and fragmented landscapes. We found that females showed broader niches and higher individual specialization than males, especially in winter and autumn. However, differences between females and males were smaller in spring when birds converge at leks, suggesting that females and males may exhibit similar feeding behaviors during the lekking period. In addition, we found that birds living in native prairies showed greater annual trophic variability than conspecifics in agricultural mosaic landscapes. Native habitats may provide greater dietary diversity, resulting in greater diversity of feeding strategies.

  17. Effects of sexual dimorphism and landscape composition on the trophic behavior of Greater Prairie-Chicken.

    Science.gov (United States)

    Blanco-Fontao, Beatriz; Sandercock, Brett K; Obeso, José Ramón; McNew, Lance B; Quevedo, Mario

    2013-01-01

    Partitioning of ecological niche is expected in lekking species that show marked sexual size dimorphism as a consequence of sex-specific ecological constraints. However, niche partitioning is uncertain in species with moderate sexual dimorphism. In addition, the ecological niche of a species may also be affected by landscape composition; particularly, agricultural fragmentation may greatly influence the trophic behavior of herbivores. We studied trophic niche variation in Greater Prairie-Chickens (Tympanuchus cupido), a grouse species that shows moderate sex-dimorphism. Greater Prairie-Chickens are native to tallgrass prairies of North America, although populations persist in less natural mosaics of cropland and native habitats. We used stable isotope analysis of carbon and nitrogen in blood, claws and feathers to assess seasonal differences in trophic niche breadth and individual specialization between male and female Greater Prairie-Chickens, and between birds living in continuous and fragmented landscapes. We found that females showed broader niches and higher individual specialization than males, especially in winter and autumn. However, differences between females and males were smaller in spring when birds converge at leks, suggesting that females and males may exhibit similar feeding behaviors during the lekking period. In addition, we found that birds living in native prairies showed greater annual trophic variability than conspecifics in agricultural mosaic landscapes. Native habitats may provide greater dietary diversity, resulting in greater diversity of feeding strategies.

  18. Morning ambush attacks by black-footed ferrets on emerging prairie dogs

    Science.gov (United States)

    Eads, D.A.; Biggins, D.E.; Jachowski, D.S.; Livieri, T.M.; Millspaugh, J.J.; Forsberg, M.

    2010-01-01

    Black-footed ferrets (Mustela nigripes) often hunt at night, attacking normally diurnal prairie dogs (Cynomys spp.) in underground burrow systems. While monitoring black-footed ferrets in South Dakota during morning daylight hours, we observed an adult female ferret ambush a black-tailed prairie dog (C. ludovicianus) emerging from a burrow. On a neighboring colony, we observed a second adult female ferret engaging in similar ambush behaviors on 12 occasions, although prey was not visible. We retrospectively assessed radio-telemetry data on white-tailed prairie dogs (C. leucurus) and a male and a female ferret to evaluate ferret activity in relation to timing of prairie dog emergence. Activity of radio-collared ferrets was high during the hourly period when prairie dogs first emerged and the following 2 hr, relative to later daylight hours. Such behavior is consistent with behaviors observed in South Dakota. Nighttime movements by ferrets might involve hunting but also reconnaissance of prey preparatory to morning ambush attacks.

  19. The development and adoption of conservation tillage systems on the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    L. Awada

    2014-03-01

    Full Text Available One of the major agricultural innovations on the Canadian Prairies over the last 40 years has been the introduction of conservation tillage (CT. Conservation tillage-a system that includes minimum and zero tillage (ZT -was introduced as an alternative to traditional (conventional tillage (TT to control soil degradation and to promote agricultural sustainability. The development and adoption of CT systems involved pioneer farmers, engineers, scientists, and farmer associations. By the end of the 1970s, CT started to take shape on the Prairies, but for a number of economic, technical, political and social reasons, the adoption of CT did not occur on any major scale before the 1990s. Today, more than 75% of the Prairie's cropland is under some form of CT with more than 50% under ZT. In this paper, the factors behind the development and adoption of conservation tillage technology on the Prairies in the period between 1930 and 2011 are reviewed. Then, some of the benefits of the adoption of CT on the Prairies are highlighted. The data show that CT and ZT became profitable for the majority of farmers during and after the 1990s, and that the increased use of CT contributed to the dramatic decrease in the area under summerfallow and to the increase in the area sown to canola and pulse crops. These changes contributed to the reduction of all forms of land degradation and to decreases in agricultural greenhouse gas (GHG emissions.

  20. Factors that affect parasitism of black-tailed prairie dogs by fleas

    Science.gov (United States)

    Eads, David A.; Hoogland, John L.

    2016-01-01

    Fleas (Insecta: Siphonaptera) are hematophagous ectoparasites that feed on vertebrate hosts. Fleas can reduce the fitness of hosts by interfering with immune responses, disrupting adaptive behaviors, and transmitting pathogens. The negative effects of fleas on hosts are usually most pronounced when fleas attain high densities. In lab studies, fleas desiccate and die under dry conditions, suggesting that populations of fleas will tend to decline when precipitation is scarce under natural conditions. To test this hypothesis, we compared precipitation vs. parasitism of black-tailed prairie dogs (Cynomys ludovicianus) by fleas at a single colony during May and June of 13 consecutive years (1976–1988) at Wind Cave National Park, South Dakota, USA. The number of fleas on prairie dogs decreased with increasing precipitation during both the prior growing season (April through August of the prior year) and the just-completed winter–spring (January through April of current year). Due to the reduction in available moisture and palatable forage in dry years, herbivorous prairie dogs might have been food-limited, with weakened behavioral and immunological defenses against fleas. In support of this hypothesis, adult prairie dogs of low mass harbored more fleas than heavier adults. Our results have implications for the spread of plague, an introduced bacterial disease, transmitted by fleas, that devastates prairie dog colonies and, in doing so, can transform grassland ecosystems.

  1. Population genetic structure of the prairie dog flea and plague vector, Oropsylla hirsuta.

    Science.gov (United States)

    Brinkerhoff, R Jory; Martin, Andrew P; Jones, Ryan T; Collinge, Sharon K

    2011-01-01

    Oropsylla hirsuta is the primary flea of the black-tailed prairie dog and is a vector of the plague bacterium, Yersinia pestis. We examined the population genetic structure of O. hirsuta fleas collected from 11 prairie dog colonies, 7 of which had experienced a plague-associated die-off in 1994. In a sample of 332 O. hirsuta collected from 226 host individuals, we detected 24 unique haplotype sequences in a 480 nucleotide segment of the cytochrome oxidase II gene. We found significant overall population structure but we did not detect a signal of isolation by distance, suggesting that O. hirsuta may be able to disperse relatively quickly at the scale of this study. All 7 colonies that were recently decimated by plague showed signs of recent population expansion, whereas 3 of the 4 plague-negative colonies showed haplotype patterns consistent with stable populations. These results suggest that O. hirsuta populations are affected by plague-induced prairie dog die-offs and that flea dispersal among prairie dog colonies may not be dependent exclusively on dispersal of prairie dogs. Re-colonization following plague events from plague-free refugia may allow for rapid flea population expansion following plague epizootics.

  2. Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes

    Science.gov (United States)

    Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.

    2016-01-01

    Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.

  3. Burrow dusting or oral vaccination prevents plague-associated prairie dog colony collapse

    Science.gov (United States)

    Tripp, Daniel W.; Rocke, Tonie E.; Runge, Jonathan P.; Abbott, Rachel C.; Miller, Michael W.

    2017-01-01

    Plague impacts prairie dogs (Cynomys spp.), the endangered black-footed ferret (Mustela nigripes) and other sensitive wildlife species. We compared efficacy of prophylactic treatments (burrow dusting with deltamethrin or oral vaccination with recombinant “sylvatic plague vaccine” [RCN-F1/V307]) to placebo treatment in black-tailed prairie dog (C. ludovicianus) colonies. Between 2013 and 2015, we measured prairie dog apparent survival, burrow activity and flea abundance on triplicate plots (“blocks”) receiving dust, vaccine or placebo treatment. Epizootic plague affected all three blocks but emerged asynchronously. Dust plots had fewer fleas per burrow (P vaccine or placebo plots. Burrow activity and prairie dog density declined sharply in placebo plots when epizootic plague emerged. Patterns in corresponding dust and vaccine plots were less consistent and appeared strongly influenced by timing of treatment applications relative to plague emergence. Deltamethrin or oral vaccination enhanced apparent survival within two blocks. Applying insecticide or vaccine prior to epizootic emergence blunted effects of plague on prairie dog survival and abundance, thereby preventing colony collapse. Successful plague mitigation will likely entail strategic combined uses of burrow dusting and oral vaccination within large colonies or colony complexes.

  4. 76 FR 31906 - Endangered and Threatened Wildlife and Plants; Revising the Special Rule for the Utah Prairie Dog

    Science.gov (United States)

    2011-06-02

    ... the allowed take was having an effect that was inconsistent with the conservation of the Utah prairie... conservation of the species if we received substantive evidence that the permitted take was having an effect... allowing the prairie dog population to achieve unnaturally high densities. The resulting overpopulation...

  5. Students' Perceptions of a Highly Controversial yet Keystone Species, the Black-Tailed Prairie Dog: A Case Study

    Science.gov (United States)

    Fox-Parrish, Lynne; Jurin, Richard R.

    2008-01-01

    The authors used a case-study methodology to explore the perceptions of 30 9th-grade biology students relative to black-tailed prairie dogs. The case study, which involved classroom- and field-based experiences that focused on black-tailed prairie dogs, revealed 3 major themes: apathy, egocentrism, and naive conceptions. The authors had hoped that…

  6. Macroinvertebrates in North American tallgrass prairie soils: effects of fire, mowing, and fertilization on density and biomass

    Science.gov (United States)

    M.A. Callaham; J.M. Blair; T.C. Todd; D.J. Kitchen; M.R. Whiles

    2003-01-01

    The responses of tallgrass prairie plant communities and ecosystem processes to fire and grazing are well characterized. However, responses of invertebrate consumer groups. and particularly soil-dwelling organisms, to these disturbances are not well known. At Konza Prairie Biological Station. we sampled soil macroinvertebrates in 1994 and 1999 as part of a long-term...

  7. Map of mixed prairie grassland vegetation, Rocky Flats, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Clark, S J.V.; Webber, P J; Komarkova, V; Weber, W A

    1980-01-01

    A color vegetation map at the scale of 1:12,000 of the area surrounding the Rocky Flats, Rockwell International Plant near Boulder, Colorado, provides a permanent record of baseline data which can be used to monitor changes in both vegetation and environment and thus to contribute to future land management and land-use policies. Sixteen mapping units based on species composition were identified, and characterized by two 10-m/sup 2/ vegetation stands each. These were grouped into prairie, pasture, and valley side on the basis of their species composition. Both the mapping units and these major groups were later confirmed by agglomerative clustering analysis of the 32 vegetation stands on the basis of species composition. A modified Bray and Curtis ordination was used to determine the environmental factor complexes controlling the distribution of vegetation at Rocky flats. Recommendations are made for future policies of environmental management and predictions of the response to environmental change of the present vegetation at the Rocky Flats site.

  8. Whole body vibration exposure patterns in Canadian prairie farmers.

    Science.gov (United States)

    Zeng, Xiaoke; Kociolek, Aaron M; Khan, Muhammad Idrees; Milosavljevic, Stephan; Bath, Brenna; Trask, Catherine

    2017-08-01

    Whole body vibration is a significant physical risk factor associated with low back pain. This study assessed farmers' exposure to whole body vibration on the Canadian prairies according to ISO 2631-1. Eighty-seven vibration measurements were collected with a triaxial accelerometer embedded in a rubber seat pad at the operator-seat interface of agricultural machinery, including tractors, combines, pickup trucks, grain trucks, sprayers, swathers, all-terrain vehicles, and skid steers. Whole body vibration was highest in the vertical axis, with a mean (range) frequency-weighted root mean squared acceleration of 0.43 m/s 2 (0.19-1.06 m/s 2 ). Mean crest factors exceeded 9 in all 3 axes, indicating high mechanical shock content. The vertical axis vibration dose value was 7.55 m/s 1.75 (2.18-37.59 m/s 1.75 ), with 41.4% of measurements within or above the health guidance caution zone. These high exposures in addition to an ageing agricultural workforce may increase health risks even further, particularly for the low back. Practitioner Summary: Agricultural workers are frequently exposed to whole body vibration while operating farm equipment, presenting a substantial risk to musculoskeletal health including the low back. Assessing vibration exposure is critical in promoting a safe occupational environment, and may inform interventions to reduce farmer's exposure to vibration.

  9. Effects of Long-Term Developmental Patterns of Adiposity on Levels of C-Reactive Protein and Fibrinogen among North-American Men and Women: The Spokane Heart Study

    Directory of Open Access Journals (Sweden)

    Trynke Hoekstra

    2014-06-01

    Full Text Available This study examined the heterogeneity in BMI development by identifying distinct developmental trajectories. These trajectories were further investigated by relating them to markers of low-grade inflammation later in life. Data from approximately 400 healthy volunteers participating in the Spokane Heart Study were collected in 2-year intervals, and four waves of data were available for the current analyses. Body weight was measured by BMI and low-grade inflammation by high-sensitivity C-reactive protein (CRP and fibrinogen. Up to date statistical techniques, i.e. latent class growth models, were used to analyse heterogeneity in body weight, and linear regressions were run to analyse possible associations between trajectories of body weight and CRP/fibrinogen levels. Six trajectories were identified (three stable, two increasing, and one decreasing which differed significantly on CRP/fibrinogen levels, highlighting the importance of weight trajectories. The differences were only partly explained by variations in lifestyle habits.

  10. Selected trace-element and synthetic-organic compound data for streambed sediment from the Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, 1998

    Science.gov (United States)

    Beckwith, Michael A.

    2002-01-01

    Streambed-sediment samples were collected at 22 sites during the summer of 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Sampling sites in the Clark Fork-Pend Oreille and Spokane River basins represented a wide range of environmental conditions including pristine mountain streams and large rivers affected by mining-related and urban activities. Samples were analyzed for 45 inorganic major and trace elements, 109 syn­thetic organic compounds, and carbon. This report pre­sents the selected results of streambed-sediment sampling from the Clark Fork-Pend Oreille and Spo­kane River basins in Montana, Idaho, and Washington.

  11. Conservation Reserve Program mitigates grassland loss in the lesser prairie-chicken range of Kansas

    Directory of Open Access Journals (Sweden)

    David Spencer

    2017-01-01

    Full Text Available Since the beginning of the 20th century, the overall occupied range of the lesser prairie-chicken (Tympanuchus pallidicinctus has declined by 84% commensurate with population trends. Much of this decline has been attributed to the loss and fragmentation of native grasslands throughout the lesser prairie-chicken range. However, quantification of changes in land cover in the distribution of the lesser prairie-chicken is lacking. Our objectives were to (1 document changes in the areal extent and connectivity of grasslands in the identified lesser prairie-chicken range in Kansas, USA, (>60% of extant lesser prairie-chicken population from the 1950s to 2013 using remotely sensed data and (2 assess the potential of the Conservation Reserve Program (U.S. Department of Agriculture Program converting cropland to permanent cover; CRP to mitigate grassland loss. Digital land cover maps were generated on a decadal time step through spectral classification of LANDSAT images and visual analysis of aerial photographs (1950s and 1960s. Landscape composition and configuration were assessed using FRAGSTATS to compute a variety of landscape metrics measuring changes in the amount of grassland present as well as changes in the size and configuration of grassland patches. With the exception of a single regional portion of the range, nearly all of the grassland converted to cropland in the lesser prairie-chicken range of Kansas occurred prior to the 1950s. Prior to the implementation of CRP, the amount of grassland decreased 3.6% between the 1950s and 1985 from 18,455 km2 to 17,788 km2. Since 1985, the overall amount of grassland in the lesser prairie-chicken range has increased 11.9% to 19,898 km2 due to implementation of CRP, although the area of grassland decreased between 1994 and 2013 as CRP contracts were not renewed by landowners. Since 1986 grassland in Kansas became more connected and less fragmented in response to the CRP. While the CRP has been successful

  12. Conservation Reserve Program mitigates grassland loss in the lesser prairie-chicken range of Kansas

    Science.gov (United States)

    Haukos, David A.; Spencer, David; Hagen, Christian A.; Daniels, Melinda D.; Goodin, Doug

    2017-01-01

    Since the beginning of the 20th century, the overall occupied range of the lesser prairie-chicken (Tympanuchus pallidicinctus) has declined by 84% commensurate with population trends. Much of this decline has been attributed to the loss and fragmentation of native grasslands throughout the lesser prairie-chicken range. However, quantification of changes in land cover in the distribution of the lesser prairie-chicken is lacking. Our objectives were to (1) document changes in the areal extent and connectivity of grasslands in the identified lesser prairie-chicken range in Kansas, USA, (>60% of extant lesser prairie-chicken population) from the 1950s to 2013 using remotely sensed data and (2) assess the potential of the Conservation Reserve Program (U.S. Department of Agriculture Program converting cropland to permanent cover; CRP) to mitigate grassland loss. Digital land cover maps were generated on a decadal time step through spectral classification of LANDSAT images and visual analysis of aerial photographs (1950s and 1960s). Landscape composition and configuration were assessed using FRAGSTATS to compute a variety of landscape metrics measuring changes in the amount of grassland present as well as changes in the size and configuration of grassland patches. With the exception of a single regional portion of the range, nearly all of the grassland converted to cropland in the lesser prairie-chicken range of Kansas occurred prior to the 1950s. Prior to the implementation of CRP, the amount of grassland decreased 3.6% between the 1950s and 1985 from 18,455 km2 to 17,788 km2. Since 1985, the overall amount of grassland in the lesser prairie-chicken range has increased 11.9% to 19,898 km2 due to implementation of CRP, although the area of grassland decreased between 1994 and 2013 as CRP contracts were not renewed by landowners. Since 1986 grassland in Kansas became more connected and less fragmented in response to the CRP. While the CRP has been successful in

  13. Prairie wetland complexes as landscape functional units in a changing climate

    Science.gov (United States)

    Johnson, W. Carter; Werner, Brett; Guntenspergen, Glenn R.; Voldseth, Richard A.; Millett, Bruce; Naugle, David E.; Tulbure, Mirela; Carroll, Rosemary W.H.; Tracy, John; Olawsky, Craig

    2010-01-01

    The wetland complex is the functional ecological unit of the prairie pothole region (PPR) of central North America. Diverse complexes of wetlands contribute high spatial and temporal environmental heterogeneity, productivity, and biodiversity to these glaciated prairie landscapes. Climatewarming simulations using the new model WETLANDSCAPE (WLS) project major reductions in water volume, shortening of hydroperiods, and less-dynamic vegetation for prairie wetland complexes. The WLS model portrays the future PPR as a much less resilient ecosystem: The western PPR will be too dry and the eastern PPR will have too few functional wetlands and nesting habitat to support historic levels of waterfowl and other wetland-dependent species. Maintaining ecosystem goods and services at current levels in a warmer climate will be a major challenge for the conservation community.

  14. Vaccines for Conservation: Plague, Prairie Dogs & Black-Footed Ferrets as a Case Study.

    Science.gov (United States)

    Salkeld, Daniel J

    2017-09-01

    The endangered black-footed ferret (Mustela nigripes) is affected by plague, caused by Yersinia pestis, both directly, as a cause of mortality, and indirectly, because of the impacts of plague on its prairie dog (Cynomys spp.) prey base. Recent developments in vaccines and vaccine delivery have raised the possibility of plague control in prairie dog populations, thereby protecting ferret populations. A large-scale experimental investigation across the western US shows that sylvatic plague vaccine delivered in oral baits can increase prairie dog survival. In northern Colorado, an examination of the efficacy of insecticides to control fleas and plague vaccine shows that timing and method of plague control is important, with different implications for long-term and large-scale management of Y. pestis delivery. In both cases, the studies show that ambitious field-work and cross-sectoral collaboration can provide potential solutions to difficult issues of wildlife management, conservation and disease ecology.

  15. Prairies Thrive Where Row Crops Drown: A Comparison of Yields in Upland and Lowland Topographies in the Upper Midwest US

    Directory of Open Access Journals (Sweden)

    Adam C. von Haden

    2016-05-01

    Full Text Available Cellulosic biofuel production is expected to increase in the US, and the targeted establishment of biofuel agriculture in marginal lands would reduce competition between biofuels and food crops. While poorly drained, seasonally saturated lowland landscape positions are marginal for production of row crops and switchgrass (Panicum virgatum L., it is unclear whether species-diverse tallgrass prairie yield would suffer similarly in saturated lowlands. Prairie yields typically increase as graminoids become more dominant, but it is uncertain whether this trend is due to greater aboveground net primary productivity (ANPP or higher harvest efficiency in graminoids compared to forbs. Belowground biomass, a factor that is important to ecosystem service provisioning, is reduced when switchgrass is grown in saturated lowlands, but it is not known whether the same is true in species-diverse prairie. Our objectives were to assess the effect of topography on yields and live belowground biomass in row crops and prairie, and to determine the mechanisms by which relative graminoid abundance influences tallgrass prairie yield. We measured yield, harvest efficiency, and live belowground biomass in upland and lowland landscape positions within maize silage (Zea mays L., winter wheat (Triticum aestivum L., and restored tallgrass prairie. Maize and winter wheat yields were reduced by more than 60% in poorly drained lowlands relative to well-drained uplands, but diverse prairie yields were equivalent in both topographic settings. Prairie yields increased by approximately 45% as the relative abundance of graminoids increased from 5% to 95%. However, this trend was due to higher harvest efficiency of graminoids rather than greater ANPP compared to forbs. In both row crops and prairie, live belowground biomass was similar between upland and lowland locations, indicating consistent biomass nutrient sequestration potential and soil organic matter inputs between topographic

  16. Interactive Effects of Black-Tailed Prairie Dogs and Cattle on Shrub Encroachment in a Desert Grassland Ecosystem.

    Science.gov (United States)

    Ponce-Guevara, Eduardo; Davidson, Ana; Sierra-Corona, Rodrigo; Ceballos, Gerardo

    2016-01-01

    The widespread encroachment of woody plants throughout the semi-arid grasslands in North America has largely resulted from overgrazing by domestic livestock, fire suppression, and loss of native large and small mammalian herbivores. Burrowing-herbivorous mammals, such as prairie dogs (Cynomys spp.), help control shrub encroachment through clipping of shrubs and consumption of their seedlings, but little is known about how this important ecological role interacts with and may be influenced by co-existing large herbivores, especially domestic livestock. Here, we established a long-term manipulative experiment using a 2 × 2 factorial design to assess the independent and interactive effects of black-tailed prairie dogs (Cynomys ludovicianus) and cattle (Bos taurus) on honey mesquite (Prosopis glandulosa) abundance and structure. We found that, after five years, mesquite abundance was three to five times greater in plots where prairie dogs were removed compared to plots where they occurred together or alone, respectively. While both prairie dogs and cattle reduced mesquite cover, the effect of prairie dogs on reducing mesquite abundance, cover, and height was significantly greater than that by cattle. Surprisingly, cattle grazing enhanced prairie dog abundance, which, in turn, magnified the effects of prairie dogs on mesquite shrubs. Mesquite canopy cover per hectare was three to five times greater where prairie dogs and cattle were absent compared to where they occurred together or by themselves; whereas, cumulative mesquite height was two times lower on sites where prairie dog and cattle occurred together compared to where they occurred alone or where neither occurred. Data from our experimental study demonstrate that prairie dogs and moderate grazing by cattle can suppress mesquite growth, and, when their populations are properly managed, they may interact synergistically to significantly limit mesquite encroachment in desert grasslands.

  17. Interactive Effects of Black-Tailed Prairie Dogs and Cattle on Shrub Encroachment in a Desert Grassland Ecosystem.

    Directory of Open Access Journals (Sweden)

    Eduardo Ponce-Guevara

    Full Text Available The widespread encroachment of woody plants throughout the semi-arid grasslands in North America has largely resulted from overgrazing by domestic livestock, fire suppression, and loss of native large and small mammalian herbivores. Burrowing-herbivorous mammals, such as prairie dogs (Cynomys spp., help control shrub encroachment through clipping of shrubs and consumption of their seedlings, but little is known about how this important ecological role interacts with and may be influenced by co-existing large herbivores, especially domestic livestock. Here, we established a long-term manipulative experiment using a 2 × 2 factorial design to assess the independent and interactive effects of black-tailed prairie dogs (Cynomys ludovicianus and cattle (Bos taurus on honey mesquite (Prosopis glandulosa abundance and structure. We found that, after five years, mesquite abundance was three to five times greater in plots where prairie dogs were removed compared to plots where they occurred together or alone, respectively. While both prairie dogs and cattle reduced mesquite cover, the effect of prairie dogs on reducing mesquite abundance, cover, and height was significantly greater than that by cattle. Surprisingly, cattle grazing enhanced prairie dog abundance, which, in turn, magnified the effects of prairie dogs on mesquite shrubs. Mesquite canopy cover per hectare was three to five times greater where prairie dogs and cattle were absent compared to where they occurred together or by themselves; whereas, cumulative mesquite height was two times lower on sites where prairie dog and cattle occurred together compared to where they occurred alone or where neither occurred. Data from our experimental study demonstrate that prairie dogs and moderate grazing by cattle can suppress mesquite growth, and, when their populations are properly managed, they may interact synergistically to significantly limit mesquite encroachment in desert grasslands.

  18. Landscape composition creates a threshold influencing Lesser Prairie-Chicken population resilience to extreme drought

    Science.gov (United States)

    Ross, Beth E.; Haukos, David A.; Hagen, Christian A.; Pitman, James C.

    2016-01-01

    Habitat loss and degradation compound the effects of climate change on wildlife, yet responses to climate and land cover change are often quantified independently. The interaction between climate and land cover change could be intensified in the Great Plains region where grasslands are being converted to row-crop agriculture concurrent with increased frequency of extreme drought events. We quantified the combined effects of land cover and climate change on a species of conservation concern in the Great Plains, the Lesser Prairie-Chicken (Tympanuchus pallidicinctus  ). We combined extreme drought events and land cover change with lek count surveys in a Bayesian hierarchical model to quantify changes in abundance of male Lesser Prairie-Chickens from 1978 to 2014 in Kansas, the core of their species range. Our estimates of abundance indicate a gradually decreasing population through 2010 corresponding to drought events and reduced grassland areas. Decreases in Lesser Prairie-Chicken abundance were greatest in areas with increasing row-crop to grassland land cover ratio during extreme drought events, and decreased grassland reduces the resilience of Lesser Prairie-Chicken populations to extreme drought events. A threshold exists for Lesser Prairie-Chickens in response to the gradient of cropland:grassland land cover. When moving across the gradient of grassland to cropland, abundance initially increased in response to more cropland on the landscape, but declined in response to more cropland after the threshold (δ=0.096, or 9.6% cropland). Preservation of intact grasslands and continued implementation of initiatives to revert cropland to grassland should increase Lesser Prairie-Chicken resilience to extreme drought events due to climate change.

  19. Impact of Prairie Cover on Hydraulic Conductivity and Storm Water Runoff

    Science.gov (United States)

    Herkes, D. M. G.; Gori, A.; Juan, A.

    2017-12-01

    Houston has long struggled to find effective solutions to its historic flooding problems. Conventional strategies have revolved around constructing hard infrastructure such as levees or regional detention ponds to reduce flood impacts. However, there has been a recent shift to explore the implementation of nature-based solutions in reducing flood impacts. This is due to the price of structural mechanisms, as well as their failure to adequately protect areas from flooding during the latest flood events. One alternative could be utilizing the natural water retention abilities of native Texas prairies. This study examines the effect of Texas prairie areas in increasing soil infiltration capacities, thereby increasing floodwater storage and reducing surface runoff. For this purpose, an infiltration study of 15 sites was conducted on lands owned by the Katy Prairie Conservancy within Cypress Creek watershed. Located in Northwest Houston, it is an area which had been heavily impacted by recent flood events. Each sampling site was selected to represent a particular land cover or vegetation type, ranging from developed open space to native prairies. Field test results are then compared to literature values of soil infiltration capacity in order to determine the infiltration benefit of each vegetation type. Test results show that certain vegetation, especially prairies, significantly increase the infiltration capacity of the underlying soil. For example, the hydraulic conductivity of prairie on sandy loam soil is approximately an order of magnitude higher than that of the soil itself. Finally, a physics-based hydrologic model is utilized to evaluate the flood reduction potential of native Texas prairie. This model represents Cypress Creek watershed in gridded cell format, and allows varying hydraulic and infiltration parameters at each cell. Design storms are run to obtain flow hydrographs for selected watch points in the study area. Two scenarios are simulated and compared

  20. Effects of stress on parental care are sexually dimorphic in prairie voles

    OpenAIRE

    Bales, KL; Kramer, KM; Lewis-Reese, AD; Carter, CS

    2006-01-01

    The effects of stress on parental care are poorly understood, especially in biparental species where males also display care. Data from previous studies in prairie voles, as well as parallels with pair-bonding behavior, suggest the hypothesis that a stressful experience might facilitate parental care in males but not in females. In the present study, male and female prairie voles were exposed to either a 3-min swim stressor or no stressor; 45 min later each animal was tested in a parental car...

  1. Use of rhodamine B as a biomarker for oral plague vaccination of prairie dogs.

    Science.gov (United States)

    Fernandez, Julia Rodriguez-Ramos; Rocke, Tonie E

    2011-07-01

    Oral vaccination against Yersinia pestis could provide a feasible approach for controlling plague in prairie dogs (Cynomys spp.) for conservation and public health purposes. Biomarkers are useful in wildlife vaccination programs to demonstrate exposure to vaccine baits. Rhodamine B (RB) was tested as a potential biomarker for oral plague vaccination because it allows nonlethal sampling of animals through hair, blood, and feces. We found that RB is an appropriate marker for bait uptake studies of black-tailed prairie dogs (C. ludovicianus) when used at concentrations 10 mg RB per kg target animal mass. Whiskers with follicles provided the best sample for RB detection.

  2. Bee communities along a prairie restoration chronosequence: similar abundance and diversity, distinct composition.

    Science.gov (United States)

    Tonietto, Rebecca K; Ascher, John S; Larkin, Daniel J

    2017-04-01

    Recognition of the importance of bee conservation has grown in response to declines of managed honey bees and some wild bee species. Habitat loss has been implicated as a leading cause of declines, suggesting that ecological restoration is likely to play an increasing role in bee conservation efforts. In the midwestern United States, restoration of tallgrass prairie has traditionally targeted plant community objectives without explicit consideration for bees. However, restoration of prairie vegetation is likely to provide ancillary benefits to bees through increased foraging and nesting resources. We investigated community assembly of bees across a chronosequence of restored eastern tallgrass prairies and compared patterns to those in control and reference habitats (old fields and prairie remnants, respectively). We collected bees for 3 yr and measured diversity and abundance of in-bloom flowering plants, vegetation structure, ground cover, and surrounding land use as predictors of bee abundance and bee taxonomic and functional diversity. We found that site-level variables, but not site type or restoration age, were significant predictors of bee abundance (bloom diversity, P = 0.004; bare ground cover, P = 0.02) and bee diversity (bloom diversity, P = 0.01). There were significant correlations between overall composition of bee and blooming plant communities (Mantel test, P = 0.002), and both plant and bee assemblages in restorations were intermediate between those of old fields and remnant prairies. Restorations exhibited high bee beta diversity, i.e., restored sites' bee assemblages were taxonomically and functionally differentiated from each other. This pattern was strong in younger restorations (20 yr), suggesting restored prairie bee communities become more similar to one another and more similar to remnant prairie bee communities over time with the arrival of more species and functional groups of bees. Our results indicate that old fields

  3. Field-level financial assessment of contour prairie strips for enhancement of environmental quality.

    Science.gov (United States)

    Tyndall, John C; Schulte, Lisa A; Liebman, Matthew; Helmers, Matthew

    2013-09-01

    The impacts of strategically located contour prairie strips on sediment and nutrient runoff export from watersheds maintained under an annual row crop production system have been studied at a long-term research site in central Iowa. Data from 2007 to 2011 indicate that the contour prairie strips utilized within row crop-dominated landscapes have greater than proportionate and positive effects on the functioning of biophysical systems. Crop producers and land management agencies require comprehensive information about the Best Management Practices with regard to performance efficacy, operational/management parameters, and the full range of financial parameters. Here, a farm-level financial model assesses the establishment, management, and opportunity costs of contour prairie strips within cropped fields. Annualized, depending on variable opportunity costs the 15-year present value cost of utilizing contour prairie strips ranges from $590 to $865 ha(-1) year(-1) ($240-$350 ac(-1) year(-1)). Expressed in the context of "treatment area" (e.g., in this study 1 ha of prairie treats 10 ha of crops), the costs of contour prairie strips can also be viewed as $59 to about $87 per treated hectare ($24-$35 ac(-1)). If prairie strips were under a 15-year CRP contract, total per acre cost to farmers would be reduced by over 85 %. Based on sediment, phosphorus, and nitrogen export data from the related field studies and across low, medium, and high land rent scenarios, a megagram (Mg) of soil retained within the watershed costs between $7.79 and $11.46 mg(-1), phosphorus retained costs between $6.97 and $10.25 kg(-1), and nitrogen retained costs between $1.59 and $2.34 kg(-1). Based on overall project results, contour prairie strips may well become one of the key conservation practices used to sustain US Corn Belt agriculture in the decades to come.

  4. Assessing diversity of prairie plants using remote sensing

    Science.gov (United States)

    Gamon, J. A.; Wang, R.

    2017-12-01

    Biodiversity loss endangers ecosystem services and is considered as a global change that may generate unacceptable environmental consequences for the Earth system. Global biodiversity observations are needed to provide a better understanding of biodiversity - ecosystem services relationships and to provide a stronger foundation for conserving the Earth's biodiversity. While remote sensing metrics have been applied to estimate α biodiversity directly through optical diversity, a better understanding of the mechanisms behind the optical diversity-biodiversity relationship is needed. We designed a series of experiments at Cedar Creek Ecosystem Science Reserve, MN, to investigate the scale dependence of optical diversity and explore how species richness, evenness, and composition affect optical diversity. We collected hyperspectral reflectance of 16 prairie species using both a full-range field spectrometer fitted with a leaf clip, and an imaging spectrometer carried by a tram system to simulate plot-level images with different species richness, evenness, and composition. Two indicators of spectral diversity were explored: the coefficient of variation (CV) of spectral reflectance in space, and spectral classification using a Partial Least Squares Discriminant Analysis (PLS-DA). Our results showed that sampling methods (leaf clip-derived data vs. image-derived data) affected the optical diversity estimation. Both optical diversity indices were affected by species richness and evenness (P<0.001 for each case). At fine spatial scales, species composition also had a substantial influence on optical diversity. CV was sensitive to the background soil influence, but the spectral classification method was insensitive to background. These results provide a critical foundation for assessing biodiversity using imaging spectrometry and these findings can be used to guide regional studies of biodiversity estimation using high spatial and spectral resolution remote sensing.

  5. The scale dependence of optical diversity in a prairie ecosystem

    Science.gov (United States)

    Gamon, J. A.; Wang, R.; Stilwell, A.; Zygielbaum, A. I.; Cavender-Bares, J.; Townsend, P. A.

    2015-12-01

    Biodiversity loss, one of the most crucial challenges of our time, endangers ecosystem services that maintain human wellbeing. Traditional methods of measuring biodiversity require extensive and costly field sampling by biologists with extensive experience in species identification. Remote sensing can be used for such assessment based upon patterns of optical variation. This provides efficient and cost-effective means to determine ecosystem diversity at different scales and over large areas. Sampling scale has been described as a "fundamental conceptual problem" in ecology, and is an important practical consideration in both remote sensing and traditional biodiversity studies. On the one hand, with decreasing spatial and spectral resolution, the differences among different optical types may become weak or even disappear. Alternately, high spatial and/or spectral resolution may introduce redundant or contradictory information. For example, at high resolution, the variation within optical types (e.g., between leaves on a single plant canopy) may add complexity unrelated to specie richness. We studied the scale-dependence of optical diversity in a prairie ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, USA using a variety of spectrometers from several platforms on the ground and in the air. Using the coefficient of variation (CV) of spectra as an indicator of optical diversity, we found that high richness plots generally have a higher coefficient of variation. High resolution imaging spectrometer data (1 mm pixels) showed the highest sensitivity to richness level. With decreasing spatial resolution, the difference in CV between richness levels decreased, but remained significant. These findings can be used to guide airborne studies of biodiversity and develop more effective large-scale biodiversity sampling methods.

  6. Microbial Community Responses to Glycine Addition in Kansas Prairie Soils

    Science.gov (United States)

    Bottos, E.; Roy Chowdhury, T.; White, R. A., III; Brislawn, C.; Fansler, S.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.

    2015-12-01

    Advances in sequencing technologies are rapidly expanding our abilities to unravel aspects of microbial community structure and function in complex systems like soil; however, characterizing the highly diverse communities is problematic, due primarily to challenges in data analysis. To tackle this problem, we aimed to constrain the microbial diversity in a soil by enriching for particular functional groups within a community through addition of "trigger substrates". Such trigger substrates, characterized by low molecular weight, readily soluble and diffusible in soil solution, representative of soil organic matter derivatives, would also be rapidly degradable. A relatively small energy investment to maintain the cell in a state of metabolic alertness for such substrates would be a better evolutionary strategy and presumably select for a cohort of microorganisms with the energetics and cellular machinery for utilization and growth. We chose glycine, a free amino acid (AA) known to have short turnover times (in the range of hours) in soil. As such, AAs are a good source of nitrogen and easily degradable, and can serve as building blocks for microbial proteins and other biomass components. We hypothesized that the addition of glycine as a trigger substrate will decrease microbial diversity and evenness, as taxa capable of metabolizing it are enriched in relation to those that are not. We tested this hypothesis by incubating three Kansas native prairie soils with glycine for 24 hours at 21 degree Celsius, and measured community level responses by 16S rRNA gene sequencing, metagenomics, and metatranscriptomics. Preliminary evaluation of 16S rRNA gene sequences revealed minor changes in bacterial community composition in response to glycine addition. We will also present data on functional gene abundance and expression. The results of these analyses will be useful in designing sequencing strategies aimed at dissecting and deciphering complex microbial communities.

  7. Continuous Cropping and Moist Deep Convection on the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    Devon E. Worth

    2012-12-01

    Full Text Available Summerfallow is cropland that is purposely kept out of production during a growing season to conserve soil moisture. On the Canadian Prairies, a trend to continuous cropping with a reduction in summerfallow began after the summerfallow area peaked in 1976. This study examined the impact of this land-use change on convective available potential energy (CAPE, a necessary but not sufficient condition for moist deep convection. All else being equal, an increase in CAPE increases the probability-of-occurrence of convective clouds and their intensity if they occur. Representative Bowen ratios for the Black, Dark Brown, and Brown soil zones were determined for 1976: the maximum summerfallow year, 2001: our baseline year, and 20xx: a hypothetical year with the maximum-possible annual crop area. Average mid-growing-season Bowen ratios and noon solar radiation were used to estimate the reduction in the lifted index (LI from land-use weighted evapotranspiration in each study year. LI is an index of CAPE, and a reduction in LI indicates an increase in CAPE. The largest reductions in LI were found for the Black soil zone. They were −1.61 ± 0.18, −1.77 ± 0.14 and −1.89 ± 0.16 in 1976, 2001 and 20xx, respectively. These results suggest that, all else being equal, the probability-of-occurrence of moist deep convection in the Black soil zone was lower in 1976 than in the base year 2001, and it will be higher in 20xx when the annual crop area reaches a maximum. The trend to continuous cropping had less impact in the drier Dark Brown and Brown soil zones.

  8. Interactions among American badgers, black-footed ferrets, and prairie dogs in the grasslands of western North America

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Grassel, Shaun M.; Livieri, Travis M.; Licht, Daniel S.; Proulx, Gilbert; Do Linh San, Emmanuel

    2016-01-01

    American badgers (Taxidea taxus) and black-footed ferrets (Mustela nigripes) sometimes occur sympatrically within colonies of prairie dogs (Cynomys spp.) in the grasslands of western North America. From the perspective of a simplified food web, badgers are consumers of ferrets and, to a greater extent, prairie dogs; ferrets are specialized consumers of prairie dogs; and prairie dogs are consumers of vegetation. We review information on the predatory behaviours of badgers, which collectively demonstrate that badgers exhibit complex hunting strategies to improve their probability of capturing prairie dogs and, perhaps, ferrets. We also review studies of interactions between badgers and ferrets, which suggest that there is selective pressure on badgers to compete with ferrets, and pressure on ferrets to compete with and avoid badgers. We then speculate as to how prairie dogs might shape interactions between badgers and ferrets, and how badgers could spread the plague bacterium (Yersinia pestis) among prairie dog colonies. Lastly, we provide recommendations for research on this tractable system of semi-fossorial predators and prey.

  9. Efficacy of a fipronil bait in reducing the number of fleas (Oropsylla spp.) infesting wild black-tailed prairie dogs.

    Science.gov (United States)

    Poché, David M; Hartman, Daniel; Polyakova, Larisa; Poché, Richard M

    2017-06-01

    Bubonic plague (Yersinia pestis) is a deadly zoonosis with black-tailed prairie dogs (Cynomys ludovicianus) as a reservoir host in the United States. Systemic insecticides are a promising means of controlling the vectors, Oropsylla spp. fleas, infesting these prairie dogs, subsequently disrupting the Y. pestis cycle. The objective of this study was to conduct a field trial evaluating the efficacy of a grain rodent bait containing fipronil (0.005%) against fleas infesting prairie dogs. The study was performed in Larimer County, CO, where bait was applied to a treatment area containing a dense prairie dog population, three times over a three-week period. Prairie dogs were captured and combed for fleas during four study periods (pre-, mid-, 1 st post-, and 2 nd post-treatment). Results indicated the use of bait containing fipronil significantly reduced flea burden. The bait containing fipronil was determined to reduce the mean number of fleas per prairie dog >95% for a minimum of 52 days post-initial treatment application and 31 days post-final treatment application. These results suggest the potential for this form of treatment to reduce flea population density on prairie dogs, and subsequently plague transmission, among mammalian hosts across the United States and beyond. © 2017 The Society for Vector Ecology.

  10. In vitro culture and in vitro fertilization techniques for prairie voles (Microtus ochrogaster).

    Science.gov (United States)

    Horie, Kengo; Hidema, Shizu; Hirayama, Takashi; Nishimori, Katsuhiko

    2015-08-07

    Prairie vole (Microtus ochrogaster) is a highly social animal and is a commonly used animal model for neuropsychopharmacological and psychiatric studies. To date, only a few reports on the development of transgenic prairie voles which was primarily due to the suboptimal development of assisted reproductive technology (ART) in prairie voles. Limitations in ART further hinder the development of genetically modified prairie voles such as the application of conventional gene targeting technologies using embryonic stem (ES) or induced pluripotent stem (iPS) cells to generate chimeric prairie voles. Moreover, recent advancement in genome-editing tools such as transcription activator-like effector nuclease (TALEN) and clustered regulatory interspaced short palindromic repeat (CRISPR)/Cas technology provide an unprecedented opportunity to create gene targeting animal model and the development of ART in prairie voles is necessary for future development of novel transgenic prairie vole model. We have established efficient method for in vitro embryo culture and sperm cryopreservation with high fertilization rate. In G-1 PLUS and G-2 PLUS sequential culture condition, 81.0% (# of Blastocysts/total n) of one-cell embryos developed to blastocysts. In contrary, no embryos were developed to blastocyst stage in KSOM medium (0/total # of embryos in culture). In vitro fertilization rate using fresh and frozen-thawed sperm was 32.6% and 29.3%, respectively. This is the first report of IVF using cryopreserved prairie vole sperm. We employed mouse IVF methods in prairie voles and optimize culture conditions using human G-1/G-2 PLUS sequential culture method that resulted in high embryonic development rate. The development in vole reproductive technology will facilitate the generation of transgenic voles in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Land use effects on pesticides in sediments of prairie pothole wetlands in North and South Dakota

    Science.gov (United States)

    McMurry, Scott T.; Belden, Jason B.; Smith, Loren M.; Morrison, Shane A.; Daniel, Dale W.; Euliss, Betty R.; Euliss, Ned H. Jr.; Kensinger, Bart J.; Tangen, Brian

    2016-01-01

    Prairie potholes are the dominant wetland type in the intensively cultivated northern Great Plains of North America, and thus have the potential to receive pesticide runoff and drift. We examined the presence of pesticides in sediments of 151 wetlands split among the three dominant land use types, Conservation Reserve Program (CRP), cropland, and native prairie, in North and South Dakota in 2011. Herbicides (glyphosate and atrazine) and fungicides were detected regularly, with no insecticide detections. Glyphosate was the most detected pesticide, occurring in 61% of all wetlands, with atrazine in only 8% of wetlands. Pyraclostrobin was one of five fungicides detected, but the only one of significance, being detected in 31% of wetlands. Glyphosate was the only pesticide that differed by land use, with concentrations in cropland over four-times that in either native prairie or CRP, which were equal in concentration and frequency of detection. Despite examining several landscape variables, such as wetland proximity to specific crop types, watershed size, and others, land use was the best variable explaining pesticide concentrations in potholes. CRP ameliorated glyphosate in wetlands at concentrations comparable to native prairie and thereby provides another ecosystem service from this expansive program.

  12. Status of black-tailed prairie dog (Cynomys ludovicianus) in Sonora, Mexico

    Science.gov (United States)

    Reyna A. Castillo-Gamez; Rafael Arenas-Wong; Luis Castillo-Quijada; Verónica Coronado-Peraza; Abigail Enríquez-Munguia; Mirna Federico-Ortega; Alejandra García-Urrutia; Alba Lozano-Gámez; Romeo Méndez-Estrella; Laura Ochoa-Figueroa; J. R. Romo-León; Guy Kruse-Llergo; Iván Parra-Salazar

    2005-01-01

    Prairie dog is a keystone species throughout the habitat where it occurs, but its populations have declined about 98% in the last century. This species has been considered of international importance for the United States of America, Canada, and Mexico. Only two populations are recorded for Mexico, and the westernmost (isolated by Sierra Madre...

  13. Sediment removal by prairie filter strips in row-cropped ephemeral watersheds

    Science.gov (United States)

    Matthew J. Helmers; Xiaobo Zhou; Heidi Asbjornsen; Randy Kolka; Mark D. Tomer; Richard M. Cruse

    2012-01-01

    Twelve small watersheds in central Iowa were used to evaluate the eff ectiveness of prairie filter strips (PFS) in trapping sediment from agricultural runoff. Four treatments with PFS of different size and location (100% rowcrop, 10% PFS of total watershed area at footslope, 10% PFS at footslope and in contour strips, 20% PFS at footslope and in contour strips)...

  14. First flowering dates and flowering periods of prairie plants at Woodworth, North Dakota

    Science.gov (United States)

    Callow, J.M.; Kantrud, H.A.; Higgins, K.F.

    1992-01-01

    We recorded flowering events for 97 species of prairie plants for 2-6 years near Woodworth, ND. Earliest and latest flower initiation dates varied by year. Temperature seemed much more important than precipitation in influencing phenology of species that bloom from late March through May, but no strong climatic effect was evident for plants that bloom later in the growing season.

  15. Intrusion of soil covered uranium mill tailings by whitetail prairie dogs and Richardson's ground squirrels

    International Nuclear Information System (INIS)

    Shuman, R.

    1984-01-01

    The primary objective of the reclamation of uranium mill tailings is the long-term isolation of the matrial from the biosphere. Fossorial and semi-fossorial species represent a potentially disruptive influence as a result of their burrowing habits. The potential for intrusion was investigated with respect to two sciurids, the whitetail prairie dog (Cynomys leucurus) and Richardson's ground squirrel (Spermophilus richardsonii). Populations of prairie dogs were established on a control area, lacking a tailings layer, and two experimental areas, underlain by a waste layer, in southeastern Wyoming. Weekly measurements of prairie dog mound surface activities were conducted to demonstrate penetration, or lack thereof, of the tailings layer. Additionally, the impact of burrowing upon radon flux was determined. Limited penetration of the waste layer was noted after which frequency of inhabitance of the intruding burrow system declined. No significant changes in radon flux were detected. In another experiment, it was found that Richardson's ground squirrels burrowed to less extreme depths when confronted by mill tailings. Additional work at an inactive tailings pile in western Colorado revealed repeated intrusion through a shallow cover, and subsequent transport of radioactive material to the ground surface by prairie dogs. Radon flux from burrow entrances was significantly greater than that from undisturbed ground. Data suggested that textural and pH properties of tailings material may act to discourage repeated intrusion at some sites. 58 references

  16. Effects of prairie fragmentation on the nest success of breeding birds in the midcontinental United States

    Science.gov (United States)

    Herkert, J.R.; Reinking, D.L.; Wiedenfeld, D.A.; Winter, M.; Zimmerman, J.L.; Jensen, W.E.; Finck, E.J.; Koford, Rolf R.; Wolfe, D.H.; Sherrod, S.K.; Jenkins, M.A.; Faaborg, John; Robinson, S.K.

    2003-01-01

    Grassland fragmentation and habitat loss are hypothesized to be contributing to widespread grassland bird declines in North America due to the adverse effects of fragmentation on breeding bird abundance and reproductive success. To assess the effects of fragmentation on the reproductive success of grassland birds, we measured rates of nest predation and brood parasitism for four species of birds ( Grasshopper Sparrow [Ammodramus savannaru], Henslow's Sparrow[Ammodramus henslowii], Eastern Meadowlark [ Sturnella magna], and Dickcissel [ Spiza Americana] ) in 39 prairie fragments ranging from 24 to>40,000 ha in size in five states in the mid-continental United States. Throughout the region, nest-predation rates were significantly influenced by habitat fragmentation. Nest predation was highest in small (1000 ha ) prairie fragments. Rates of brood parasitism by Brown-headed Cowbirds (   Molothrus ater ), however, were not consistently related to fragment size and instead were more strongly related to regional cowbird abundance, being significantly higher in regions with high cowbird abundance. Differences in nest-predation rates between large fragments ( 54–68% of all nests lost to predators ) and small fragments ( 78–84% lost to predators ) suggest that fragmentation of prairie habitats may be contributing to regional declines of grassland birds. Maintaining grassland bird populations, therefore, may require protection and restoration of large prairie areas.

  17. Nitrogen and carbon dynamics in prairie vegetation strips across topographical gradients in mixed Central Iowa agroecosystems

    Science.gov (United States)

    Marlín Pérez-Suárez; Michael J. Castellano; Randall Kolka; Heidi Asbjornsen; Matthew. Helmers

    2014-01-01

    Reductions of nitrogen (N) export from agricultural lands because of changes in specific N stocks andfluxes by incorporation of small amounts of prairie vegetation strips (PVS) are poorly understood. Theprimary objective of this study was to evaluate the effect of the presence and topographical position of PVSon soil and plant carbon (C) and N stocks relative to annual...

  18. Restoring sand shinnery oak prairies with herbicide and grazing in New Mexico

    Science.gov (United States)

    Zavaleta, Jennifer C.; Haukos, David A.; Grisham, Blake A.; Boal, Clint W.; Dixon, Charles

    2016-01-01

    Sand shinnery oak (Quercus havardii) prairies are increasingly disappearing and increasingly degraded in the Southern High Plains of Texas and New Mexico. Restoring and managing sand shinnery oak prairie can support biodiversity, specific species of conservation concern, and livestock production. We measured vegetation response to four treatment combinations of herbicide (tebuthiuron applied at 0.60 kg/ha) and moderate-intensity grazing (50% removal of annual herbaceous production) over a 10-year period in a sand shinnery oak prairie of eastern New Mexico. We compared the annual vegetation response to the historical climax plant community (HCPC) as outlined by the U.S. Department of Agriculture Ecological Site Description. From 2 to 10 years postapplication, tebuthiuron-treated plots had reduced shrub cover with twice as much forb and grass cover as untreated plots. Tebuthiuron-treated plots, regardless of the presence of grazing, most frequently met HCPC. Tebuthiuron and moderate-intensity grazing increased vegetation heterogeneity and, based on comparison of the HCPC, successfully restored sand shinnery oak prairie to a vegetation composition similar to presettlement.

  19. Population status of prairie dogs (Cynomys ludovicianus) in the San Pedro River Basin, Sonora

    Science.gov (United States)

    Efren Moreno-Arzate; Carlos A. Lopez Gonzalez; Gerardo Carreon Arroyo

    2013-01-01

    The black tailed prairie dog (Cynomys ludovicianus) is a species of conservation concern for Mexico, the United States and Canada. Populations in Mexico (including those in Sonora), which are considered endangered by the Mexican authority, require additional conservation efforts to maintain them on the long term. Our objective was to determine population size and...

  20. Preliminary study of prairies forested with Eucalyptus sp. at the northwestern Uruguayan soils

    International Nuclear Information System (INIS)

    Carrasco-Letelier, L.; Eguren, G.; Castineira, C.; Parra, O.; Panario, D.

    2004-01-01

    The forestation of Uruguayan natural prairie soil does not always ensure an increase of soil carbon sink. - The land cover change of Uruguayan Forestal Plan provoked biogeochemical changes on horizon Au 1 of Argiudols; in native prairies which were replaced by monoculture Eucalyptus sp. plantation with 20 year rotations as trees. Five fields forested and six natural prairies were compared. The results not only show a statistical significant soil acidification, diminution of soil organic carbon, increase of aliphaticity degree of humic substances, and increase of affinity and capacity of hydrolytic activity from soil microbial communities for forested sites with Eucalyptus sp. but also, a tendency of podzolization and/or mineralization by this kind of land cover changes, with a net soil organic lost of 16.6 tons ha -1 in the horizon Au 1 of soil under Eucalyptus sp. plantation compared with prairie. Besides, these results point out the necessity of correction of the methodology used by assigned Uruguayan commission to assess the national net emission of greenhouse gases, since the mineralization and/or podzolization process detected in forested soil imply a overestimation of soil organic carbon. The biochemical parameters show a statistical significant correlation between the soil organic carbon status and these parameters which were presented as essential for the correct evaluation of Uruguayan soil carbon sink

  1. Sodium co-limits and catalyzes macronutrients in a prairie food web

    DEFF Research Database (Denmark)

    Kaspari, Michael; Roeder, Karl A.; Benson, Brittany

    2017-01-01

    Nitrogen and phosphorus frequently limit terrestrial plant production, but have a mixed record in regulating the abundance of terrestrial invertebrates. We contrasted four ways that Na could interact with an NP fertilizer to shape the plants and invertebrates of an inland prairie. We applied NP a...

  2. 78 FR 35017 - Prairie Power, Inc. v. Ameren Services Company, Ameren Illinois Company, Ameren Transmission...

    Science.gov (United States)

    2013-06-11

    ... Energy Regulatory Commission Prairie Power, Inc. v. Ameren Services Company, Ameren Illinois Company, Ameren Transmission Company of Illinois; Notice of Complaint Take notice that on May 31, 2013, pursuant.... (Complainant) filed a formal complaint against Ameren Services Company, Ameren Illinois Company and Ameren...

  3. Estimated carrying capacity for cattle competing with prairie dogs and forage utilization in western South Dakota

    Science.gov (United States)

    Daniel W. Uresk; Deborah D. Paulson

    1988-01-01

    Carrying capacities for cattle competing with black-tailed prairie dogs (Cynomys ludovicianus) were estimated by a linear programming technique for management of cool-season grasses in western South Dakota. Forage utilization was allowed to range from 20% to 80%. Under management for cool-season grasses (western wheatgrass (Agropyron smithii...

  4. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Prairie Potholes

    Science.gov (United States)

    2006-05-01

    Soybeans 0 Glycyrrhiza lepidota AmericanLicorice 2 Graminae Grass UK Gratiola neglecta Hedge Hyssop 0 Grindelia sp. Gumweed 1...dominant (northern) and areas where row crops (corn, soybeans ) are grown (southern). The southern PPR is in Land Resource Region M and the northern...Calamagrostis stricta Slimstem Reedgrass 5 Calamovilfa longifolia Prairie Sandreed 5 Calystegia sepium Hedge Bindweed 0 Capsella bursa-pastoris

  5. Impacts of a human disturbance on greater prairie chickens: Insights from a spatial IBM

    Science.gov (United States)

    The Flint Hills of Kansas are home to the largest remaining tallgrass prairie ecosystem in North America. The Flint Hills are currently managed under an early season burn-intensive stocking regime, whereby ranchers will ignite the majority of pasture land each year to increase r...

  6. Spread of plague among black-tailed prairie dogs is associated with colony spatial characteristics

    Science.gov (United States)

    Johnson, T.L.; Cully, J.F.; Collinge, S.K.; Ray, C.; Frey, C.M.; Sandercock, B.K.

    2011-01-01

    Sylvatic plague (Yersinia pestis) is an exotic pathogen that is highly virulent in black-tailed prairie dogs (Cynomys ludovicianus) and causes widespread colony losses and individual mortality rates >95%. We investigated colony spatial characteristics that may influence inter-colony transmission of plague at 3 prairie dog colony complexes in the Great Plains. The 4 spatial characteristics we considered include: colony size, Euclidean distance to nearest neighboring colony, colony proximity index, and distance to nearest drainage (dispersal) corridor. We used multi-state mark-recapture models to determine the relationship between these colony characteristics and probability of plague transmission among prairie dog colonies. Annual mapping of colonies and mark-recapture analyses of disease dynamics in natural colonies led to 4 main results: 1) plague outbreaks exhibited high spatial and temporal variation, 2) the site of initiation of epizootic plague may have substantially influenced the subsequent inter-colony spread of plague, 3) the long-term effect of plague on individual colonies differed among sites because of how individuals and colonies were distributed, and 4) colony spatial characteristics were related to the probability of infection at all sites although the relative importance and direction of relationships varied among sites. Our findings suggest that conventional prairie dog conservation management strategies, including promoting large, highly connected colonies, may need to be altered in the presence of plague. ?? 2011 The Wildlife Society.

  7. Testing for thresholds in a semiarid grassland: The influence of prairie dogs and plague

    Science.gov (United States)

    State and transition models for semiarid grasslands in the Great Plains of North America suggest that the presence of herbivorous black-tailed prairie dogs (Cynomys ludovicianus) on a site (1) creates a vegetation state characterized by increased dominance of annual forbs and unpalatable bunchgrasse...

  8. Vegetation dynamics of restored and remnant Willamette Valley, OR wet prairie wetlands

    Science.gov (United States)

    Wet prairie wetlands are now one of the rarest habitat types in the Willamette Valley of Oregon, USA. Less than two percent of their historic extent remains, with most having been converted into agricultural fields (Christy and Alverson 2011, ONHP 1983). This habitat is the obl...

  9. Decline of Sweetgrass Spurs Restoration of Coastal Prairie Habitat (South Carolina)

    Science.gov (United States)

    Angela C. Halfacre; Zachary Hart

    2003-01-01

    A muhly grass, locally known as sweetgrass (Muhlenbergia filipes Curtis; Prinson and Batson 1971), is a culturally valued and historically important component of the coastal prairie ecosystems in the South Atlantic Coast Plain region of the United States. In the 18th century, enslaved Africans began collecting sweetgrass and other native plants to...

  10. Ranching and prairie dogs (La actividad ganadera y los perros llaneros)

    Science.gov (United States)

    Dustin Long; Joe Truett

    2006-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) historically occupied grasslands throughout much of the Great Plains and the American Southwest from Canada to Mexico (Hall 1981: 412-415). During the last 100 years this species has declined to a small fraction of its historic range and abundance because of eradication programs, loss of habitat and...

  11. Raptor community composition in the Texas Southern High Plains lesser prairie-chicken range

    Science.gov (United States)

    Behney, A.C.; Boal, Clint W.; Whitlaw, Heather A.; Lucia, D.R.

    2012-01-01

    Predation can be a factor in preventing prey population growth and sustainability when prey populations are small and fragmented, and when predator density is unrelated to the density of the single prey species. We conducted monthly raptor surveys from February 2007 to May 2009 in adjacent areas of the Texas Southern High Plains (USA) that do and do not support lesser prairie-chickens (Tympanuchus pallidicinctus), a candidate for protection under the Endangered Species Act. During the summer period corresponding to prairie-chicken nesting and brood-rearing, Swainson's hawks (Buteo swainsoni) were the most abundant raptor. During the lekking and overwintering period, the raptor community was diverse, with northern harriers (Circus cyaneus) being the most abundant species. Raptor abundance peaked during the early autumn and was lowest during the spring. Utility poles were a significant predictor of raptor density at survey points and Swainson's hawks and all raptors, pooled, were found in greater densities in non-prairie-chicken habitat dominated by mesquite (Prosopis glandulosa). Avian predation risk on prairie-chickens, based on presence and abundance of raptors, appears to be greatest during winter when there is a more abundant and diverse raptor community, and in areas with utility poles.

  12. Burrow Dusting or Oral Vaccination Prevents Plague-Associated Prairie Dog Colony Collapse.

    Science.gov (United States)

    Tripp, Daniel W; Rocke, Tonie E; Runge, Jonathan P; Abbott, Rachel C; Miller, Michael W

    2017-09-01

    Plague impacts prairie dogs (Cynomys spp.), the endangered black-footed ferret (Mustela nigripes) and other sensitive wildlife species. We compared efficacy of prophylactic treatments (burrow dusting with deltamethrin or oral vaccination with recombinant "sylvatic plague vaccine" [RCN-F1/V307]) to placebo treatment in black-tailed prairie dog (C. ludovicianus) colonies. Between 2013 and 2015, we measured prairie dog apparent survival, burrow activity and flea abundance on triplicate plots ("blocks") receiving dust, vaccine or placebo treatment. Epizootic plague affected all three blocks but emerged asynchronously. Dust plots had fewer fleas per burrow (P plague emerged. Patterns in corresponding dust and vaccine plots were less consistent and appeared strongly influenced by timing of treatment applications relative to plague emergence. Deltamethrin or oral vaccination enhanced apparent survival within two blocks. Applying insecticide or vaccine prior to epizootic emergence blunted effects of plague on prairie dog survival and abundance, thereby preventing colony collapse. Successful plague mitigation will likely entail strategic combined uses of burrow dusting and oral vaccination within large colonies or colony complexes.

  13. Sylvatic plague reduces genetic variability in black-tailed prairie dogs.

    Science.gov (United States)

    Trudeau, Kristie M; Britten, Hugh B; Restani, Marco

    2004-04-01

    Small, isolated populations are vulnerable to loss of genetic diversity through in-breeding and genetic drift. Sylvatic plague due to infection by the bacterium Yersinia pestis caused an epizootic in the early 1990s resullting in declines and extirpations of many black-tailed prairie dog (Cynomys ludovicianus) colonies in north-central Montana, USA. Plague-induced population bottlenecks may contribute to significant reductions in genetic variability. In contrast, gene flow maintains genetic variability within colonies. We investigated the impacts of the plague epizootic and distance to nearest colony on levels of genetic variability in six prairie dog colonies sampled between June 1999 and July 2001 using 24 variable randomly amplified polymorphic DNA (RAPD) markers. Number of effective alleles per locus (n(e)) and gene diversity (h) were significantly decreased in the three colonies affected by plague that were recovering from the resulting bottlenecks compared with the three colonies that did not experience plague. Genetic variability was not significantly affected by geographic distance between colonies. The majority of variance in gene fieqnencies was found within prairie clog colonies. Conservation of genetic variability in black-tailed prairie dogs will require the preservation of both large and small colony complexes and the gene flow amonog them.

  14. Effects of wind energy development on nesting ecology of greater prairie-chickens in fragmented grasslands.

    Science.gov (United States)

    McNew, Lance B; Hunt, Lyla M; Gregory, Andrew J; Wisely, Samantha M; Sandercock, Brett K

    2014-08-01

    Wind energy is targeted to meet 20% of U.S. energy needs by 2030, but new sites for development of renewable energy may overlap with important habitats of declining populations of grassland birds. Greater Prairie-Chickens (Tympanuchus cupido) are an obligate grassland bird species predicted to respond negatively to energy development. We used a modified before-after control-impact design to test for impacts of a wind energy development on the reproductive ecology of prairie-chickens in a 5-year study. We located 59 and 185 nests before and after development, respectively, of a 201 MW wind energy facility in Greater Prairie-Chicken nesting habitat and assessed nest site selection and nest survival relative to proximity to wind energy infrastructure and habitat conditions. Proximity to turbines did not negatively affect nest site selection (β = 0.03, 95% CI = -1.2-1.3) or nest survival (β = -0.3, 95% CI = -0.6-0.1). Instead, nest site selection and survival were strongly related to vegetative cover and other local conditions determined by management for cattle production. Integration of our project results with previous reports of behavioral avoidance of oil and gas facilities by other species of prairie grouse suggests new avenues for research to mitigate impacts of energy development. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  15. Interannual variability in the extent of wetland-stream connectivity within the Prairie Pothole Region

    Science.gov (United States)

    Melanie Vanderhoof; Laurie Alexander

    2016-01-01

    The degree of hydrological connectivity between wetland systems and downstream receiving waters can be expected to influence the volume and variability of stream discharge. The Prairie Pothole Region contains a high density of depressional wetland features, a consequence of glacial retreat. Spatial variability in wetland density, drainage evolution, and precipitation...

  16. Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens

    Energy Technology Data Exchange (ETDEWEB)

    Sandercock, Brett K. [Kansas State Univ., Manhattan, KS (United States)

    2013-05-22

    This report summarizes the results of a seven-year, DOE-funded research project, conducted by researchers from Kansas State University and the National Wind Coordinating Collaborative, to assess the effects of wind energy development in Kansas on the population and reproduction of greater prairie chickens.

  17. Burning reveals cryptic diversity and promotes coexistence of native species in a restored California prairie

    Science.gov (United States)

    Grassland and prairie restoration projects in California often result in long-term establishment of only a few native plant species, even when they begin with a diverse palette of species. A likely explanation for the disappearance of certain native species over time is that they are outcompeted by ...

  18. Burning reveals cryptic plant diversity and promotes coexistence in a California prairie restoration experiment

    Science.gov (United States)

    Grassland and prairie restoration projects in California often result in long-term establishment of only a few native plant species, even when they begin with a diverse seed palette. A likely explanation for the disappearance of certain native species over time is that they are excluded through comp...

  19. Impacts of black-tailed prairie dog rodenticides on nontarget passerines

    Science.gov (United States)

    Anthony D. Apa; Daniel W. Uresk; Raymond L. Linder

    1991-01-01

    In 1983 zinc phosphide, strychnine with prebait, and strychnine without prebait were applied to black-tailed prairie dog (Cynomys Zudovicianus) colonies in west central South Dakota. Short-term (four days later) and long-term (one year later) impacts of the rodenticides on Horned Larks (Eremophila alpestris) and other...

  20. Black-tailed prairie dog populations one year after treatment with rodenticides

    Science.gov (United States)

    Anthony D. Apa; Daniel W. Uresk; Raymond L. Linder

    1990-01-01

    Three rodenticide treatments, zinc phosphide with prebait, strychnine with prebait, and strychnine without prebait, were applied to black-tailed prairie dog (Cynomys ludovicianus) colonies in west central South Dakota. Results were compared immediately posttreatment and for one year after application. Zinc phosphide was the most effective for...

  1. Neonicotinoid insecticide removal by prairie strips in row-cropped watersheds with historical seed coating use

    Science.gov (United States)

    Hladik, Michelle L.; Bradbury, Steven; Schulte, Lisa A.; Helmers, Matthew; Witte, Christopher; Kolpin, Dana W.; Garrett, Jessica D.; Harris, Mary

    2017-01-01

    Neonicotinoids are a widely used class of insecticides that are commonly applied as seed coatings for agricultural crops. Such neonicotinoid use may pose a risk to non-target insects, including pollinators and natural enemies of crop pests, and ecosystems. This study assessed neonicotinoid residues in groundwater, surface runoff water, soil, and native plants adjacent to corn and soybean crop fields with a history of being planted with neonicotinoid-treated seeds from 2008-2013. Data from six sites with the same crop management history, three with and three without in-field prairie strips, were collected in 2015-2016, 2-3 years after neonicotinoid (clothianidin and imidacloprid) seed treatments were last used. Three of the six neonicotinoids analyzed were detected in at least one environmental matrix: the two applied as seed coatings on the fields (clothianidin and imidacloprid) and another widely used neonicotinoid (thiamethoxam). Sites with prairie strips generally had lower concentrations of neonicotinoids: groundwater and footslope soil neonicotinoid concentrations were significantly lower in the sites with prairie strips than those without; mean concentrations for groundwater were 11 and 20 ng/L (p = 0.048) and <1 and 6 ng/g (p = 0.0004) for soil, respectively. Surface runoff water concentrations were not significantly (p = 0.38) different for control sites (44 ng/L) or sites with prairie strips (140 ng/L). Consistent with the decreased inputs of neonicotinoids, concentrations tended to decrease over the sampling timeframe. Two sites recorded concentration increases, however, potentially due to disturbance of previous applications or influence from nearby fields where use of seed treatments continued. There were no detections (limit of detection: 1 ng/g) of neonicotinoids in the foliage or roots of plants comprising prairie strips, indicating a low likelihood of exposure to pollinators and other insects visiting these plants following the cessation of seed

  2. Long-term lesser prairie-chicken nest ecology in response to grassland management

    Science.gov (United States)

    Fritts, Sarah R.; Grisham, Blake A.; Haukos, David A.; Boal, Clint W.; Patten, Michael; Wolfe, Don H.; Dixon, Charles; Cox, Robert D.; Heck, Willard R.

    2016-01-01

    Long-term population and range declines from habitat loss and fragmentation caused the lesser prairie-chicken (Tympanuchus pallidicinctus) to be a species of concern throughout its range. Current lesser prairie-chicken range in New Mexico and Texas is partially restricted to sand shinnery oak (Quercus havardii; hereafter shinnery oak) prairies, on which cattle grazing is the main socioeconomic driver for private landowners. Cattle producers within shinnery oak prairies often focus land management on shrub eradication using the herbicide tebuthiuron to promote grass production for forage; however, herbicide application alone, and in combination with grazing, may affect nest site selection and nest survival of lesser prairie-chickens through the reduction of shinnery oak and native grasses. We used a controlled, paired, completely randomized design study to assess the influence of grazing and tebuthiuron application and their combined use on nest site selection and nest survival from 2001 to 2010 in Roosevelt County, New Mexico, USA at 2 spatial scales (i.e., treatment and microhabitat) in 4 treatments: tebuthiuron with grazing, tebuthiuron without grazing, no tebuthiuron with grazing, and a control of no tebuthiuron and no grazing. Grazing treatment was a short-duration system in which plots were grazed once during the dormant season and once during the growing season. Stocking rate was calculated each season based on measured forage production and applied to remove ≤25% of available herbaceous material per season. At the treatment scale, we compared nest site selection among treatments using 1-way χ2 tests and nest survival among treatments using a priori candidate nest survival models in Program MARK. At the microhabitat scale, we identified important habitat predictors of nest site selection and nest survival using logistic regression and a priori candidate nest survival models in Program MARK, respectively. Females typically used treatments as expected and

  3. Patch-Burn Grazing Effects on the Ecological Integrity of Tallgrass Prairie Streams.

    Science.gov (United States)

    Jackson, Karen E; Whiles, Matt R; Dodds, Walter K; Reeve, John D; Vandermyde, Jodi M; Rantala, Heidi M

    2015-07-01

    Conversion to agriculture, habitat fragmentation, and the loss of native grazers have made tallgrass prairie one of the most endangered ecosystems. One management option for the remaining prairie parcels, patch-burn grazing (PBG), applies a controlled burn to a portion of the prairie to attract cattle, creating a mosaic of more- and less-grazed patches. Although beneficial to cattle and grassland birds, the potential impacts of PBG on streams have not been studied, and a holistic approach is needed to ensure against adverse effects. We used a Before-After-Control-Impact design to assess potential impacts of PBG with and without riparian protection on tallgrass prairie headwater streams. We sampled stream macroinvertebrates and benthic organic matter 2 yr before and 2 yr during PBG treatments on two grazed watersheds with riparian fencing (fenced), two unfenced grazed watersheds (unfenced), and two ungrazed (control) watersheds. Very fine benthic organic matter increased significantly (51%) in unfenced streams compared with controls ( 250 µm) increased 3-fold in the unfenced streams compared with controls ( = 0.008). The contribution of fine inorganic sediments to total substrata increased 28% in unfenced streams during PBG, which was significantly different from controls ( = 0.03). Additionally, the abundance of Ephemeroptera, Plecoptera, and Trichoptera taxa decreased from 7635 to 687 individuals m in unfenced streams, which was significantly lower than in control streams ( = 0.008). Our results indicate that PBG adversely influences prairie streams through sediment inputs and reductions in sensitive invertebrate taxa, but riparian fencing can alleviate these impacts. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Predicting Greater Prairie-Chicken Lek Site Suitability to Inform Conservation Actions.

    Directory of Open Access Journals (Sweden)

    Torre J Hovick

    Full Text Available The demands of a growing human population dictates that expansion of energy infrastructure, roads, and other development frequently takes place in native rangelands. Particularly, transmission lines and roads commonly divide rural landscapes and increase fragmentation. This has direct and indirect consequences on native wildlife that can be mitigated through thoughtful planning and proactive approaches to identifying areas of high conservation priority. We used nine years (2003-2011 of Greater Prairie-Chicken (Tympanuchus cupido lek locations totaling 870 unique leks sites in Kansas and seven geographic information system (GIS layers describing land cover, topography, and anthropogenic structures to model habitat suitability across the state. The models obtained had low omission rates (0.81, indicating high model performance and reliability of predicted habitat suitability for Greater Prairie-Chickens. We found that elevation was the most influential in predicting lek locations, contributing three times more predictive power than any other variable. However, models were improved by the addition of land cover and anthropogenic features (transmission lines, roads, and oil and gas structures. Overall, our analysis provides a hierarchal understanding of Greater Prairie-Chicken habitat suitability that is broadly based on geomorphological features followed by land cover suitability. We found that when land features and vegetation cover are suitable for Greater Prairie-Chickens, fragmentation by anthropogenic sources such as roadways and transmission lines are a concern. Therefore, it is our recommendation that future human development in Kansas avoid areas that our models identified as highly suitable for Greater Prairie-Chickens and focus development on land cover types that are of lower conservation concern.

  5. The innate immune response may be important for surviving plague in wild Gunnison's prairie dogs

    Science.gov (United States)

    Busch, Joseph D.; Van Andel, Roger; Stone, Nathan E.; Cobble, Kacy R.; Nottingham, Roxanne; Lee, Judy; VerSteeg, Michael; Corcoran, Jeff; Cordova, Jennifer; Van Pelt, William E.; Shuey, Megan M.; Foster, Jeffrey T.; Schupp, James M.; Beckstrom-Sternberg, Stephen; Beckstrom-Sternberg, James; Keim, Paul; Smith, Susan; Rodriguez-Ramos, Julia; Williamson, Judy L.; Rocke, Tonie E.; Wagner, David M.

    2013-01-01

    Prairie dogs (Cynomys spp.) are highly susceptible to Yersinia pestis, with ≥99% mortality reported from multiple studies of plague epizootics. A colony of Gunnison's prairie dogs (Cynomys gunnisoni) in the Aubrey Valley (AV) of northern Arizona appears to have survived several regional epizootics of plague, whereas nearby colonies have been severely affected by Y. pestis. To examine potential mechanisms accounting for survival in the AV colony, we conducted a laboratory Y. pestis challenge experiment on 60 wild-caught prairie dogs from AV and from a nearby, large colony with frequent past outbreaks of plague, Espee (n = 30 per colony). Test animals were challenged subcutaneously with the fully virulent Y. pestis strain CO92 at three doses: 50, 5,000, and 50,000 colony-forming units (cfu); this range is lethal in black-tailed prairie dogs (Cynomys ludovicianus). Contrary to our expectations, only 40% of the animals died. Although mortality trended higher in the Espee colony (50%) compared with AV (30%), the differences among infectious doses were not statistically significant. Only 39% of the survivors developed moderate to high antibody levels to Y. pestis, indicating that mechanisms other than humoral immunity are important in resistance to plague. The ratio of neutrophils to lymphocytes was not correlated with plague survival in this study. However, several immune proteins with roles in innate immunity (VCAM-1, CXCL-1, and vWF) were upregulated during plague infection and warrant further inquiry into their role for protection against this disease. These results suggest plague resistance exists in wild populations of the Gunnison's prairie dog and provide important directions for future studies.

  6. Exposure of small rodents to plague during epizootics in black-tailed prairie dogs.

    Science.gov (United States)

    Stapp, Paul; Salkeld, Daniel J; Eisen, Rebecca J; Pappert, Ryan; Young, John; Carter, Leon G; Gage, Kenneth L; Tripp, Daniel W; Antolin, Michael F

    2008-07-01

    Plague, caused by the bacterium Yersinia pestis, causes die-offs of colonies of prairie dogs (Cynomys ludovicianus). It has been argued that other small rodents are reservoirs for plague, spreading disease during epizootics and maintaining the pathogen in the absence of prairie dogs; yet there is little empirical support for distinct enzootic and epizootic cycles. Between 2004 and 2006, we collected blood from small rodents captured in colonies in northern Colorado before, during, and for up to 2 yr after prairie dog epizootics. We screened 1,603 blood samples for antibodies to Y. pestis, using passive hemagglutination and inhibition tests, and for a subset of samples we cultured blood for the bacterium itself. Of the four species of rodents that were common in colonies, the northern grasshopper mouse (Onychomys leucogaster) was the only species with consistent evidence of plague infection during epizootics, with 11.1-23.1% of mice seropositive for antibody to Y. pestis during these events. Seropositive grasshopper mice, thirteen-lined ground squirrels (Spermophilus tridecemlineatus), and deer mice (Peromyscus maniculatus) were captured the year following epizootics. The appearance of antibodies to Y. pestis in grasshopper mice coincided with periods of high prairie dog mortality; subsequently, antibody prevalence rates declined, with no seropositive individuals captured 2 yr after epizootics. We did not detect plague in any rodents off of colonies, or on colonies prior to epizootics, and found no evidence of persistent Y. pestis infection in blood cultures. Our results suggest that grasshopper mice could be involved in epizootic spread of Y. pestis, and possibly, serve as a short-term reservoir for plague, but provide no evidence that the grasshopper mouse or any small rodent acts as a long-term, enzootic host for Y. pestis in prairie dog colonies.

  7. The innate immune response may be important for surviving plague in wild Gunnison's prairie dogs.

    Science.gov (United States)

    Busch, Joseph D; Van Andel, Roger; Stone, Nathan E; Cobble, Kacy R; Nottingham, Roxanne; Lee, Judy; VerSteeg, Michael; Corcoran, Jeff; Cordova, Jennifer; Van Pelt, William; Shuey, Megan M; Foster, Jeffrey T; Schupp, James M; Beckstrom-Sternberg, Stephen; Beckstrom-Sternberg, James; Keim, Paul; Smith, Susan; Rodriguez-Ramos, Julia; Williamson, Judy L; Rocke, Tonie E; Wagner, David M

    2013-10-01

    Prairie dogs (Cynomys spp.) are highly susceptible to Yersinia pestis, with ≥99% mortality reported from multiple studies of plague epizootics. A colony of Gunnison's prairie dogs (Cynomys gunnisoni) in the Aubrey Valley (AV) of northern Arizona appears to have survived several regional epizootics of plague, whereas nearby colonies have been severely affected by Y. pestis. To examine potential mechanisms accounting for survival in the AV colony, we conducted a laboratory Y. pestis challenge experiment on 60 wild-caught prairie dogs from AV and from a nearby, large colony with frequent past outbreaks of plague, Espee (n = 30 per colony). Test animals were challenged subcutaneously with the fully virulent Y. pestis strain CO92 at three doses: 50, 5,000, and 50,000 colony-forming units (cfu); this range is lethal in black-tailed prairie dogs (Cynomys ludovicianus). Contrary to our expectations, only 40% of the animals died. Although mortality trended higher in the Espee colony (50%) compared with AV (30%), the differences among infectious doses were not statistically significant. Only 39% of the survivors developed moderate to high antibody levels to Y. pestis, indicating that mechanisms other than humoral immunity are important in resistance to plague. The ratio of neutrophils to lymphocytes was not correlated with plague survival in this study. However, several immune proteins with roles in innate immunity (VCAM-1, CXCL-1, and vWF) were upregulated during plague infection and warrant further inquiry into their role for protection against this disease. These results suggest plague resistance exists in wild populations of the Gunnison's prairie dog and provide important directions for future studies.

  8. The predicted influence of climate change on lesser prairie-chicken reproductive parameters

    Science.gov (United States)

    Grisham, Blake A.; Boal, Clint W.; Haukos, David A.; Davis, D.; Boydston, Kathy K.; Dixon, Charles; Heck, Willard R.

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001-2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter's linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Nina events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.

  9. Lesser prairie-chicken fence collision risk across its northern distribution

    Science.gov (United States)

    Robinson, Samantha G.; Haukos, David A.; Plumb, Reid T.; Hagen, Christian A.; Pitman, James C.; Lautenbach, Joseph M.; Sullins, Daniel S.; Kraft, John D.; Lautenbach, Jonathan D.

    2016-01-01

    Livestock fences have been hypothesized to significantly contribute to mortality of lesser prairie-chickens (Tympanuchus pallidicinctus); however, quantification of mortality due to fence collisions is lacking across their current distribution. Variation in fence density, landscape composition and configuration, and land use could influence collision risk of lesser prairie-chickens. We monitored fences within 3 km of known leks during spring and fall and surveyed for signs of collision occurrence within 20 m of fences in 6 study sites in Kansas and Colorado, USA during 2013 and 2014. We assessed mortality locations of radio-tagged birds (n = 286) for evidence of fence collisions and compared distance to fence relative to random points. Additionally, we quantified locations, propensity, and frequency of fences crossed by lesser prairie-chickens. We tested for landscape and vegetative characteristics that influenced fence-cross propensity and frequency of global positioning system (GPS)-marked birds. A minimum of 12,706 fence crossings occurred by GPS-marked lesser prairie-chickens. We found 3 carcasses and 12 additional possible instances of evidence of collision during >2,800 km of surveyed fences. We found evidence for a single suspected collision based on carcass evidence for 148 mortalities of transmittered birds. Mortality locations of transmittered birds were located at distances from fences 15% farther than expected at random. Our data suggested minimal biological significance and indicated that propensity and frequency of fence crossings were random processes. Lesser prairie-chickens do not appear to be experiencing significant mortality risk due to fence collisions in Kansas and Colorado. Focusing resources on other limiting factors (i.e., habitat quality) has greater potential for impact on population demography than fence marking and removal.

  10. Specificity in Sociality: Mice and Prairie Voles Exhibit Different Patterns of Peer Affiliation

    Directory of Open Access Journals (Sweden)

    Annaliese K. Beery

    2018-03-01

    Full Text Available Social behavior is often described as a unified concept, but highly social (group-living species exhibit distinct social structures and may make different social decisions. Prairie voles (Microtus ochrogaster are socially monogamous rodents that often reside in extended family groups, and exhibit robust preferences for familiar social partners (same- and opposite-sex during extended choice tests, although short-term preferences are not known. Mice (Mus musculus are gregarious and colonial, but in brief laboratory tests of social preference they typically prefer social novelty. This preference for novel vs. familiar peers may represent a species-specific difference in social decision-making between mice and prairie voles. However, the tests used to measure preferences in each species differ markedly in duration and degree of contact, such that the behaviors cannot be directly compared. We assessed whether social preferences for novelty or familiarity differed between mice and prairie voles of both sexes when assessed with matching protocols: the sociability/social preference test (SPT typically used in mice (short, no direct contact, and the partner preference test (PPT used in voles (long, direct contact. A subset of voles also underwent a PPT using barriers (long, no direct contact. In the short SPT, behavior did not differ between species. In the longer test, pronounced partner preferences emerged in prairie voles, but mice exhibited no social preferences and rarely huddled. No sex differences were evident in either test. Direct physical contact was required for partner preferences in huddling time in voles, but preference for the partner chamber was evident with or without contact. Both prairie voles and mice are social, but they exhibit important differences in the specificity and extent of their social behavior. While mice are often used to study social approach and other behaviors, voles are a more suitable species for the study of

  11. Defining western prairie fringed orchid (Platanthera praeclara) habitat

    Science.gov (United States)

    Knudson, Michael David

    Terrestrial orchids are at the forefront of the discussion about anthropogenically-driven extinction with more species threatened globally than any other plant family, mostly because of loss of habitat. The Western Prairie Fringed Orchid ( Platanthera praeclara) is a threatened species found on the Sheyenne National Grassland in southeast North Dakota, USA. This conservation area that is a vital refuge for this species is subject to management for multiple uses including livestock grazing and recreation. Orchids are subject to continuous monitoring, but knowledge of the relationship between landscape indicators and orchid locations is limited. Research is needed to provide a greater understanding of the landscape relative to orchid habitat to develop conservation management strategies suited to dealing with threats arising from future interactions between land management and use, and climate change. The spatial distribution of orchid habitat was defined using a suite of indicators that characterize topography, moisture, and vegetation cover and compared with orchid point-based field observations. High resolution infrared imagery, a LiDAR-derived DEM, and well observations were used to characterize landscape properties. The NDVI (a measure of vegetation cover), the Topographic Wetness Index (TWI: a measure of moisture on the landscape), the Topographic Position Index (TPI: a measure of position on the landscape), and the depth to groundwater (a measure of the depth from the land surface to the groundwater surface) provided the best set of indicators of orchid habitat. Comparison between orchid locations and landscape indicators identified orchid metrics (+/-2 sigma) used to classify landscape indicators which were combined to create orchid habitat maps. This study supports that distribution of orchid habitat are influenced by the selected landscape indicators, each providing important information to the analysis. Comparison of orchid metrics with groundwater

  12. Proteomic responses of switchgrass and prairie cordgrass to senescence

    Directory of Open Access Journals (Sweden)

    Bimal ePaudel

    2016-03-01

    Full Text Available Senescence in biofuel grasses is a critical issue because early senescence decreases potential biomass production by limiting aerial growth and development. 2-Dimensional, differential in-gel electrophoresis (2D-DIGE followed by mass spectrometry of selected protein spots was used to evaluate differences between leaf proteomes of early (ES- and late- senescing (LS genotypes of Prairie cordgrass (ES/LS PCG and switchgrass (ES/LS SG, just before and after senescence was initiated. Analysis of the manually filtered and statistically evaluated data indicated that 69 proteins were significantly differentially abundant across all comparisons, and a majority (41 % were associated with photosynthetic processes as determined by gene ontology analysis. Ten proteins were found in common between PCG and SG, and nine and 18 proteins were unique to PCG and SG respectively. Five of the 10 differentially abundant spots common to both species were increased in abundance, and five were decreased in abundance. Leaf proteomes of the LS genotypes of both grasses analyzed before senescence contained significantly higher abundances of a 14-3-3 like protein and a glutathione-S-transferase protein when compared to the ES genotypes, suggesting differential cellular metabolism in the LS versus the ES genotypes. The higher abundance of 14-3-3 like proteins may be one factor that impacts the senescence process in both LS PCG and LS SG. Aconitase dehydratase was found in greater abundance in all four genotypes after the onset of senescence, consistent with literature reports from genetic and transcriptomic studies. A Rab protein of the Ras family of G proteins and an s-adenosylmethionine synthase were more abundant in ES PCG when compared with the LS PCG. In contrast, several proteins associated with photosynthesis and carbon assimilation were detected in greater abundance in LS PCG when compared to ES PCG, suggesting that a loss of these proteins potentially contributed to

  13. Global warming and prairie wetlands: potential consequences for waterfowl habitat

    Science.gov (United States)

    Poiani, Karen A.; Johnson, W. Carter

    1991-01-01

    The accumulation of greenhouse gasses in the atmosphere is expected to warm the earth's climate at an unprecedented rate (Ramanathan 1988, Schneider 1989). If the climate models are correct, within 100 years the earth will not only be warmer than it has been during the past million years, but the change will have occurred more rapidly than any on record. Many profound changes in the earth's environment are expected, including rising sea level, increasing aridity in continental interiors, and melting permafrost. Ecosystems are expected to respond variously to a rapidly changing climate. Tree ranges in eastern North American are expected to shift northward, and seed dispersal may not be adequate to maintain current diversity (Cohn 1989, Johnson and Webb 1989). In coastal wetlands, rising sea level from melting icecaps and thermal expansion could flood salt-grass marshes and generally reduce the size and productivity of the intertidal zone (Peters and Darling 1985). As yet, little attention has been given to the possible effects of climatic warming on inland prairie wetland ecosystems. These wetlands, located in the glaciated portion of the North American Great Plains (Figure 1), constitute the single most important breeding area for waterfowl on this continent (Hubbard 1988). This region annually produces 50-80% of the continent's total duck production (Batt et al. 1989). These marshes also support a variety of other wildlife, including many species of nongame birds, muskrat, and mink (Kantrud et al. 1989a). Prairie wetlands are relatively shallow, water-holding depressions that vary in size, water permanence, and water chemistry. Permanence types include temporary ponds (typically holding water for a few weeks in the springs), seasonal ponds (holding water from spring until early summer), semipermanent ponds (holding water throughout the growing season during most years), and large permanent lakes (Stewart and Kantrud 1971). Refilling usually occurs in spring from

  14. 76 FR 20911 - Endangered and Threatened Wildlife and Plants; 90-Day Finding on a Petition To List the Prairie...

    Science.gov (United States)

    2011-04-14

    ... dissolved solids, Escherichia coli, Enterococcus, turbidity, chlorides, selenium, sulfates, lead...; (b) Genetics and taxonomy; (c) Historical and current range, including distribution patterns; (d... Information Taxonomy and Description The prairie chub is a small fish that was originally described by Hubbs...

  15. Research and Monitoring Special Use Permit [Minnesota Zoo's Prairie Butterfly Conservation Program on Chase Lake National Wildlife Refuge : 2016

    Data.gov (United States)

    Department of the Interior — The Minnesota Zoo’s Prairie Butterfly Conservation Program partners with numerous federal, state, and local agencies to establish the world’s first and only ex situ...

  16. A qualitative study on student attitudes towards a controversial species, the black-tailed prairie dog (Cynomys ludovicianus)

    Science.gov (United States)

    Fox-Parrish, Lynne

    This case study determined the attitudes held by high school students toward a controversial, yet keystone, species of the Great Plains, the black-tailed prairie dog. Black-tailed prairie dogs have declined dramatically over the past century as a result of large scale poisoning programs, plague, shooting, and habitat loss. The eradication programs put forth were primarily the result of strongly held misconceptions regarding black-tailed prairie dogs. The misconceptions are ingrained in many agricultural and/or rural communities throughout the prairie dogs' range. The decline of this species has resulted in the decline of many other species and the near extinction of the black-footed ferret. Biodiversity continues to decline and the health of the prairie dog ecosystem (i.e. prairie habitats) is in jeopardy. Although studies have shown that landowners and the adult population that live within the range of black-tailed prairie dogs harbor negative attitudes, nothing is known about the attitudes of adolescents. With an eco-feminist theoretical perspective, a case study methodology was used. Thirty 9th grade students comprised the case. The students lived in a mid-sized urban northern Colorado city whose county ranks 5th in the nation and 1st state wide for the value of their agricultural products. Black-tailed prairie dogs could be found throughout the city and adjacent areas. Students were engaged in a year-long "lesson" on black-tailed prairie dogs and conducted a field research experiment on an active prairie dog town. Interviews were conducted in May 2004. Follow-up interviews were conducted in May 2005. Other data collected were: observations, photographs, journals, and classroom documents. Themes generated were devised by a constant comparative method of data analysis. Three major themes emerged: apathy, egocentrism, and naive conceptions. Two smaller themes also emerged: caring and hopelessness. Adolescents are our future policy and decision makers; therefore

  17. The effects of black-tailed prairie dogs on plant communities within a complex urban landscape: an ecological surprise?

    Science.gov (United States)

    Beals, Stower C; Hartley, Laurel M; Prevéy, Janet S; Seastedt, Timothy R

    2014-05-01

    Historically, prairie dogs (Cynomys spp.) have been considered essential keystone species of western United States grassland ecosystems because they provide unique services and increase vegetation community richness, evenness, and diversity. However, the effects of black-tailed prairie dogs (Cynomys ludovicianus) on lands adjacent to or surrounded by urban areas may not result in the same ecosystem benefits historically associated with their presence. An urban landscape presents prairie dogs with movement challenges unparalleled in natural landscapes, as well as suites of nonnative plant species that are more common in disturbed areas. This study examined a complex ecosystem where vegetation communities are being influenced by directional environmental change, and quantified the synergistic effects resulting from the protective management of a native keystone species. The data set for this analysis was comprised of 71 paired (occupied by prairie dogs vs. unoccupied) vegetation surveys and 156 additional unpaired surveys collected from around the city of Boulder, Colorado, USA for 14 yr. Linear mixed models were used to compare data from transects occupied and unoccupied by prairie dogs, as well as to evaluate the effect of prairie dog occupation duration. In the absence of prairie dogs, vegetation in this region exhibited declines in native grasses, no changes in introduced grasses, and increases in native and nonnative forbs and bare soil over the study interval. In the presence of prairie dogs, these observed directional changes were nearly all amplified at rates four to 10 times greater than when prairie dogs were absent. Areas in Boulder occupied by prairie dogs also had significantly lower richness, evenness, and diversity of plant species, compared to unoccupied areas. Analysis of plant functional groups revealed the significant reduction of perennial native grasses, as well as a significantly higher cover of introduced forbs in occupied areas. Prairie dogs

  18. Interactive effects between nest microclimate and nest vegetation structure confirm microclimate thresholds for Lesser Prairie-Chicken nest survival

    Science.gov (United States)

    Grisham, Blake A.; Godar, Alixandra J.; Boal, Clint W.; Haukos, David A.

    2016-01-01

    The range of Lesser Prairie-Chickens (Tympanuchus pallidicinctus) spans 4 unique ecoregions along 2 distinct environmental gradients. The Sand Shinnery Oak Prairie ecoregion of the Southern High Plains of New Mexico and Texas is environmentally isolated, warmer, and more arid than the Short-Grass, Sand Sagebrush, and Mixed-Grass Prairie ecoregions in Colorado, Kansas, Oklahoma, and the northeast panhandle of Texas. Weather is known to influence Lesser Prairie-Chicken nest survival in the Sand Shinnery Oak Prairie ecoregion; regional variation may also influence nest microclimate and, ultimately, survival during incubation. To address this question, we placed data loggers adjacent to nests during incubation to quantify temperature and humidity distribution functions in 3 ecoregions. We developed a suite of a priori nest survival models that incorporated derived microclimate parameters and visual obstruction as covariates in Program MARK. We monitored 49 nests in Mixed-Grass, 22 nests in Sand Shinnery Oak, and 30 nests in Short-Grass ecoregions from 2010 to 2014. Our findings indicated that (1) the Sand Shinnery Oak Prairie ecoregion was hotter and drier during incubation than the Mixed- and Short-Grass ecoregions; (2) nest microclimate varied among years within ecoregions; (3) visual obstruction was positively associated with nest survival; but (4) daily nest survival probability decreased by 10% every half-hour when temperature was greater than 34°C and vapor pressure deficit was less than −23 mmHg during the day (about 0600–2100 hours). Our major finding confirmed microclimate thresholds for nest survival under natural conditions across the species' distribution, although Lesser Prairie-Chickens are more likely to experience microclimate conditions that result in nest failures in the Sand Shinnery Oak Prairie ecoregion. The species would benefit from identification of thermal landscapes and management actions that promote cooler, more humid nest microclimates.

  19. Grooming behaviors of black-tailed prairie dogs are influenced by flea parasitism, conspecifics, and proximity to refuge

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Eads, Samantha L.

    2017-01-01

    Grooming is a common animal behavior that aids in ectoparasite defense. Ectoparasites can stimulate grooming, and natural selection can also favor endogenous mechanisms that evoke periodic bouts of “programmed” grooming to dislodge or kill ectoparasites before they bite or feed. Moreover, grooming can function as a displacement or communication behavior. We compared the grooming behaviors of adult female black-tailed prairie dogs (Cynomys ludovicianus) on colonies with or without flea control via pulicide dust. Roughly 91% of the prairie dogs sampled on the non-dusted colony carried at least one flea, whereas we did not find fleas on two dusted colonies. During focal observations, prairie dogs on the non-dusted colony groomed at higher frequencies and for longer durations than prairie dogs on the dusted colonies, lending support to the hypothesis that fleas stimulated grooming. However, the reduced amount of time spent grooming on the dusted colonies suggested that approximately 25% of grooming might be attributed to factors other than direct stimulation from ectoparasites. Non-dusted colony prairie dogs rarely autogroomed when near each other. Dusted colony prairie dogs autogroomed for shorter durations when far from a burrow opening (refuge), suggesting a trade-off between self-grooming and antipredator defense. Allogrooming was detected only on the non-dusted colony and was limited to adult females grooming young pups. Grooming appears to serve an antiparasitic function in C. ludovicianus. Antiparasitic grooming might aid in defense against fleas that transmit the plague bacterium Yersinia pestis. Plague was introduced to North America ca. 1900 and now has a strong influence on most prairie dog populations, suggesting a magnified effect of grooming on prairie dog fitness.

  20. Aerial surveys adjusted by ground surveys to estimate area occupied by black-tailed prairie dog colonies

    Science.gov (United States)

    Sidle, John G.; Augustine, David J.; Johnson, Douglas H.; Miller, Sterling D.; Cully, Jack F.; Reading, Richard P.

    2012-01-01

    Aerial surveys using line-intercept methods are one approach to estimate the extent of prairie dog colonies in a large geographic area. Although black-tailed prairie dogs (Cynomys ludovicianus) construct conspicuous mounds at burrow openings, aerial observers have difficulty discriminating between areas with burrows occupied by prairie dogs (colonies) versus areas of uninhabited burrows (uninhabited colony sites). Consequently, aerial line-intercept surveys may overestimate prairie dog colony extent unless adjusted by an on-the-ground inspection of a sample of intercepts. We compared aerial line-intercept surveys conducted over 2 National Grasslands in Colorado, USA, with independent ground-mapping of known black-tailed prairie dog colonies. Aerial line-intercepts adjusted by ground surveys using a single activity category adjustment overestimated colonies by ≥94% on the Comanche National Grassland and ≥58% on the Pawnee National Grassland. We present a ground-survey technique that involves 1) visiting on the ground a subset of aerial intercepts classified as occupied colonies plus a subset of intercepts classified as uninhabited colony sites, and 2) based on these ground observations, recording the proportion of each aerial intercept that intersects a colony and the proportion that intersects an uninhabited colony site. Where line-intercept techniques are applied to aerial surveys or remotely sensed imagery, this method can provide more accurate estimates of black-tailed prairie dog abundance and trends

  1. Possible vector dissemination by swift foxes following a plague epizootic in black-tailed prairie dogs in northwestern Texas.

    Science.gov (United States)

    McGee, Brady K; Butler, Matthew J; Pence, Danny B; Alexander, James L; Nissen, Janet B; Ballard, Warren B; Nicholson, Kerry L

    2006-04-01

    To determine whether swift foxes (Vulpes velox) could facilitate transmission of Yersinia pestis to uninfected black-tailed prairie dog (Cynomys ludovicianus) colonies by acquiring infected fleas, ectoparasite and serologic samples were collected from swift foxes living adjacent to prairie dog towns during a 2004 plague epizootic in northwestern Texas, USA. A previous study (1999-2001) indicated that these swift foxes were infested almost exclusively with the flea Pulex irritans. Black-tailed prairie dogs examined from the study area harbored only Pulex simulans and Oropsylla hirsuta. Although P. irritans was most common, P. simulans and O. hirsuta were collected from six swift foxes and a single coyote (Canis latrans) following the plague epizootic. Thus, both of these canids could act as transport hosts (at least temporarily) of prairie dog fleas following the loss of their normal hosts during a plague die-off. All six adult swift foxes tested positive for antibodies to Y. pestis. All 107 fleas from swift foxes tested negative for Y. pestis by mouse inoculation. Although swift foxes could potentially carry Y. pestis to un-infected prairie dog colonies, we believe they play only a minor role in plague epidemiology, considering that they harbored just a few uninfected prairie dog fleas (P. simulans and O. hirsuta).

  2. Habitat edge, land management, and rates of brood parasitism in tallgrass prairie.

    Science.gov (United States)

    Patten, Michael A; Shochat, Eyal; Reinking, Dan L; Wolfe, Donald H; Sherrod, Steve K

    2006-04-01

    Bird populations in North America's grasslands have declined sharply in recent decades. These declines are traceable, in large part, to habitat loss, but management of tallgrass prairie also has an impact. An indirect source of decline potentially associated with management is brood parasitism by the Brown-headed Cowbird (Molothrus ater), which has had substantial negative impacts on many passerine hosts. Using a novel application of regression trees, we analyzed an extensive five-year set of nest data to test how management of tallgrass prairie affected rates of brood parasitism. We examined seven landscape features that may have been associated with parasitism: presence of edge, burning, or grazing, and distance of the nest from woody vegetation, water, roads, or fences. All five grassland passerines that we included in the analyses exhibited evidence of an edge effect: the Grasshopper Sparrow (Ammodramus savannarum), Henslow's Sparrow (A. henslowii), Dickcissel (Spiza americana), Red-winged Blackbird (Agelaius phoeniceus), and Eastern Meadowlark (Sturnella magna). The edge was represented by narrow strips of woody vegetation occurring along roadsides cut through tallgrass prairie. The sparrows avoided nesting along these woody edges, whereas the other three species experienced significantly higher (1.9-5.3x) rates of parasitism along edges than in prairie. The edge effect could be related directly to increase in parasitism rate with decreased distance from woody vegetation. After accounting for edge effect in these three species, we found evidence for significantly higher (2.5-10.5x) rates of parasitism in grazed plots, particularly those burned in spring to increase forage, than in undisturbed prairie. Regression tree analysis proved to be an important tool for hierarchically parsing various landscape features that affect parasitism rates. We conclude that, on the Great Plains, rates of brood parasitism are strongly associated with relatively recent road cuts

  3. Decline of Hesperia ottoe (Lepidoptera: Hesperiidae in Northern Tallgrass Prairie Preserves

    Directory of Open Access Journals (Sweden)

    Ann B. Swengel

    2013-11-01

    Full Text Available We counted butterflies on transect surveys during Hesperia ottoe flight period in 1988–2011 at tallgrass prairie preserves in four states (Illinois, Iowa, Minnesota, Wisconsin, divided into units cross-referenced to vegetation type and management history. H. ottoe occurred only in dry and sand prairie types, and was significantly more abundant in undegraded than semi-degraded prairie, and in discontinuous sod (with numerous unvegetated areas due to bare sand and/or rock outcrops than in continuous sod. This skipper was significantly more abundant in small sites compared to medium and large sites, even when the analysis was limited to undegraded prairie analyzed separately by sod type. H. ottoe was significantly under-represented in year-burn 0 (the first growing season after fire compared to an expected distribution proportional to survey effort. However, H. ottoe was also over-represented in fire-managed units compared to non-fire-managed units. However, by far most units and sites were in fire management and most populations declined to subdetection during this study. Peak abundance post-fire occurred in a later year-burn in discontinuous sod and was much higher than in continuous sod. We also analyze H. ottoe status and trend in midwestern prairie preserves by compiling a dataset of our and others’ butterfly surveys from 1974 to 2011. Only 1/9 sites with continuous sod had detectable H. ottoe in recent year(s. In discontinuous sod, 2/6 did, with two sites lacking data for the last few years. The number of years H. ottoe was still detectable after preservation and the number of years to consistent non-detection were both significantly higher in discontinuous than continuous sod. Both measures of population persistence averaged over twice as long in discontinuous than continuous sod, and correlated negatively with prairie size. The year when consistent non-detection began varied over several decades among sites. Despite the currently urgent

  4. Decline of Hesperia ottoe (Lepidoptera: Hesperiidae) in Northern Tallgrass Prairie Preserves.

    Science.gov (United States)

    Swengel, Ann B; Swengel, Scott R

    2013-11-20

    We counted butterflies on transect surveys during Hesperia ottoe flight period in 1988-2011 at tallgrass prairie preserves in four states (Illinois, Iowa, Minnesota, Wisconsin), divided into units cross-referenced to vegetation type and management history. H. ottoe occurred only in dry and sand prairie types, and was significantly more abundant in undegraded than semi-degraded prairie, and in discontinuous sod (with numerous unvegetated areas due to bare sand and/or rock outcrops) than in continuous sod. This skipper was significantly more abundant in small sites compared to medium and large sites, even when the analysis was limited to undegraded prairie analyzed separately by sod type. H. ottoe was significantly under-represented in year-burn 0 (the first growing season after fire) compared to an expected distribution proportional to survey effort. However, H. ottoe was also over-represented in fire-managed units compared to non-fire-managed units. However, by far most units and sites were in fire management and most populations declined to subdetection during this study. Peak abundance post-fire occurred in a later year-burn in discontinuous sod and was much higher than in continuous sod. We also analyze H. ottoe status and trend in midwestern prairie preserves by compiling a dataset of our and others' butterfly surveys from 1974 to 2011. Only 1/9 sites with continuous sod had detectable H. ottoe in recent year(s). In discontinuous sod, 2/6 did, with two sites lacking data for the last few years. The number of years H. ottoe was still detectable after preservation and the number of years to consistent non-detection were both significantly higher in discontinuous than continuous sod. Both measures of population persistence averaged over twice as long in discontinuous than continuous sod, and correlated negatively with prairie size. The year when consistent non-detection began varied over several decades among sites. Despite the currently urgent need to identify

  5. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA

    Science.gov (United States)

    Tripp, Daniel W.; Rocke, Tonie E.; Streich, Sean P.; Abbott, Rachel C.; Osorio, Jorge E.; Miller, Michael W.

    2015-01-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  6. Plague in a Colony of Gunnison's Prairie Dogs ( Cynomys gunnisoni) Despite Three Years of Infusions of Burrows with 0.05% Deltamethrin to Kill Fleas.

    Science.gov (United States)

    Hoogland, John L; Biggins, Dean E; Blackford, Nathaniel; Eads, David A; Long, Dustin; Rodriguez, Mariana Rivera; Ross, Lauren M; Tobey, Sarah; White, Emma M

    2017-12-29

    At Valles Caldera National Preserve in New Mexico, USA, infusing Gunnison's prairie dog ( Cynomys gunnisoni) burrows with an insecticide dust containing 0.05% deltamethrin killed fleas which transmit bubonic plague. The reduction in the number of fleas per prairie dog was significant and dramatic immediately after infusions, with a suggestion that the reduction persisted for as long as 12 mo. Despite the lower flea counts, however, a plague epizootic killed >95% of prairie dogs after 3 yr of infusions (once per year). More research is necessary for a better understanding of the efficacy of insecticide dusts at lowering flea counts and protecting prairie dogs from plague.

  7. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA.

    Science.gov (United States)

    Tripp, Daniel W; Rocke, Tonie E; Streich, Sean P; Abbott, Rachel C; Osorio, Jorge E; Miller, Michael W

    2015-04-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  8. Sexual fidelity trade-offs promote regulatory variation in the prairie vole brain.

    Science.gov (United States)

    Okhovat, Mariam; Berrio, Alejandro; Wallace, Gerard; Ophir, Alexander G; Phelps, Steven M

    2015-12-11

    Individual variation in social behavior seems ubiquitous, but we know little about how it relates to brain diversity. Among monogamous prairie voles, levels of vasopressin receptor (encoded by the gene avpr1a) in brain regions related to spatial memory predict male space use and sexual fidelity in the field. We find that trade-offs between the benefits of male fidelity and infidelity are reflected in patterns of territorial intrusion, offspring paternity, avpr1a expression, and the evolutionary fitness of alternative avpr1a alleles. DNA variation at the avpr1a locus includes polymorphisms that reliably predict the epigenetic status and neural expression of avpr1a, and patterns of DNA diversity demonstrate that avpr1a regulatory variation has been favored by selection. In prairie voles, trade-offs in the fitness consequences of social behaviors seem to promote neuronal and molecular diversity. Copyright © 2015, American Association for the Advancement of Science.

  9. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.

    2015-01-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research.

  10. Development and Evaluation of Microsatellite Markers for a Native Prairie Perennial, Echinacea angustifolia (Asteraceae

    Directory of Open Access Journals (Sweden)

    Jennifer L. Ison

    2013-11-01

    Full Text Available Premise of the study: Microsatellite loci for the native prairie perennial Echinacea angustifolia were developed and evaluated for future use in population structure and paternity studies. Methods and Results: A total of 50 trinucleotide microsatellite regions were identified though an enrichment protocol that prescreens for microsatellite repeats before ligating into a vector. Of these, 11 loci were polymorphic and in Hardy—Weinberg equilibrium in three populations with varying numbers of plants. The loci had between three and 14 alleles and collectively provided high paternity exclusion probabilities. Conclusions: These sets of microsatellite primers will provide researchers and land managers with valuable information on the population genetic structure and gene flow between fragmented prairie populations.

  11. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America.

    Science.gov (United States)

    Eads, David A; Biggins, Dean E

    2015-08-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research. © 2015 Society for Conservation Biology.

  12. Widespread Use and Frequent Detection of Neonicotinoid Insecticides in Wetlands of Canada's Prairie Pothole Region

    Science.gov (United States)

    Main, Anson R.; Headley, John V.; Peru, Kerry M.; Michel, Nicole L.; Cessna, Allan J.; Morrissey, Christy A.

    2014-01-01

    Neonicotinoids currently dominate the insecticide market as seed treatments on Canada's major Prairie crops (e.g., canola). The potential impact to ecologically significant wetlands in this dominantly agro-environment has largely been overlooked while the distribution of use, incidence and level of contamination remains unreported. We modelled the spatial distribution of neonicotinoid use across the three Prairie Provinces in combination with temporal assessments of water and sediment concentrations in wetlands to measure four active ingredients (clothianidin, thiamethoxam, imidacloprid and acetamiprid). From 2009 to 2012, neonicotinoid use was increasing; by 2012, applications covered an estimated ∼11 million hectares (44% of Prairie cropland) with >216,000 kg of active ingredients. Thiamethoxam, followed by clothianidin, were the dominant seed treatments by mass and area. Areas of high neonicotinoid use were identified as high density canola or soybean production. Water sampled four times from 136 wetlands (spring, summer, fall 2012 and spring 2013) across four rural municipalities in Saskatchewan similarly revealed clothianidin and thiamethoxam in the majority of samples. In spring 2012 prior to seeding, 36% of wetlands contained at least one neonicotinoid. Detections increased to 62% in summer 2012, declined to 16% in fall, and increased to 91% the following spring 2013 after ice-off. Peak concentrations were recorded during summer 2012 for both thiamethoxam (range: neonicotinoid concentrations (which did not exceed 20 ng/L). Wetlands situated in barley, canola and oat fields consistently contained higher mean concentrations of neonicotinoids than in grasslands, but no individual crop singularly influenced overall detections or concentrations. Distribution maps indicate neonicotinoid use is increasing and becoming more widespread with concerns for environmental loading, while frequently detected neonicotinoid concentrations in Prairie wetlands suggest high

  13. The relative contribution of climate to changes in lesser prairie-chicken abundance

    Science.gov (United States)

    Ross, Beth E.; Haukos, David A.; Hagen, Christian A.; Pitman, James

    2016-01-01

    Managing for species using current weather patterns fails to incorporate the uncertainty associated with future climatic conditions; without incorporating potential changes in climate into conservation strategies, management and conservation efforts may fall short or waste valuable resources. Understanding the effects of climate change on species in the Great Plains of North America is especially important, as this region is projected to experience an increased magnitude of climate change. Of particular ecological and conservation interest is the lesser prairie-chicken (Tympanuchus pallidicinctus), which was listed as “threatened” under the U.S. Endangered Species Act in May 2014. We used Bayesian hierarchical models to quantify the effects of extreme climatic events (extreme values of the Palmer Drought Severity Index [PDSI]) relative to intermediate (changes in El Niño Southern Oscillation) and long-term climate variability (changes in the Pacific Decadal Oscillation) on trends in lesser prairie-chicken abundance from 1981 to 2014. Our results indicate that lesser prairie-chicken abundance on leks responded to environmental conditions of the year previous by positively responding to wet springs (high PDSI) and negatively to years with hot, dry summers (low PDSI), but had little response to variation in the El Niño Southern Oscillation and the Pacific Decadal Oscillation. Additionally, greater variation in abundance on leks was explained by variation in site relative to broad-scale climatic indices. Consequently, lesser prairie-chicken abundance on leks in Kansas is more strongly influenced by extreme drought events during summer than other climatic conditions, which may have negative consequences for the population as drought conditions intensify throughout the Great Plains.

  14. Alcohol’s Effects on Pair-Bond Maintenance in Male Prairie Voles

    Directory of Open Access Journals (Sweden)

    Andre T. Walcott

    2017-11-01

    Full Text Available Alcohol abuse can have devastating effects on social relationships. In particular, discrepant patterns of heavy alcohol consumption are associated with increased rates of separation and divorce. Previous studies have attempted to model these effects of alcohol using socially monogamous prairie voles. These studies showed that alcohol consumption can inhibit the formation of pair bonds in this species. While these findings indicated that alcohol’s effects on social attachments can involve biological mechanisms, the formation of pair bonds does not properly model long-term human attachments. To overcome this caveat, this study explored whether discordant or concordant alcohol consumption between individuals within established pairs affects maintenance of pair bonds in male prairie voles. Male and female prairie voles were allowed to form a pair bond for 1 week. Following this 1-week cohabitation period, males received access to 10% continuous ethanol; meanwhile, their female partners had access to either alcohol and water or just water. When there was a discrepancy in alcohol consumption, male prairie voles showed a decrease in partner preference (PP. Conversely, when concordant drinking occurred, males showed no inhibition in PP. Further analysis revealed a decrease in oxytocin immunoreactivity in the paraventricular nucleus of alcohol-exposed males that was independent of the drinking status of their female partners. On the other hand, only discordant alcohol consumption resulted in an increase of FosB immunoreactivity in the periaqueductal gray of male voles, a finding suggesting a potential involvement of this brain region in the effects of alcohol on maintenance of pair bonds. Our studies provide the first evidence that alcohol has effects on established pair bonds and that partner drinking status plays a large role in these effects.

  15. Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada's Prairie Pothole Region.

    Directory of Open Access Journals (Sweden)

    Anson R Main

    Full Text Available Neonicotinoids currently dominate the insecticide market as seed treatments on Canada's major Prairie crops (e.g., canola. The potential impact to ecologically significant wetlands in this dominantly agro-environment has largely been overlooked while the distribution of use, incidence and level of contamination remains unreported. We modelled the spatial distribution of neonicotinoid use across the three Prairie Provinces in combination with temporal assessments of water and sediment concentrations in wetlands to measure four active ingredients (clothianidin, thiamethoxam, imidacloprid and acetamiprid. From 2009 to 2012, neonicotinoid use was increasing; by 2012, applications covered an estimated ∼11 million hectares (44% of Prairie cropland with >216,000 kg of active ingredients. Thiamethoxam, followed by clothianidin, were the dominant seed treatments by mass and area. Areas of high neonicotinoid use were identified as high density canola or soybean production. Water sampled four times from 136 wetlands (spring, summer, fall 2012 and spring 2013 across four rural municipalities in Saskatchewan similarly revealed clothianidin and thiamethoxam in the majority of samples. In spring 2012 prior to seeding, 36% of wetlands contained at least one neonicotinoid. Detections increased to 62% in summer 2012, declined to 16% in fall, and increased to 91% the following spring 2013 after ice-off. Peak concentrations were recorded during summer 2012 for both thiamethoxam (range:

  16. Implementation of an advanced digital feedwater control system at the Prairie Island nuclear generating station

    International Nuclear Information System (INIS)

    Paris, R.E.; Gaydos, K.A.; Hill, J.O.; Whitson, S.G.; Wirkkala, R.

    1990-05-01

    EPRI Project RP2126-4 was a cooperative effort between TVA, EPRI, and Westinghouse which resulted in the demonstration of a prototype of a full range, fully automatic feedwater control system, using fault tolerant digital technology, at the TVA Sequoyah simulator site. That prototype system also included advanced signal validation algorithms and an advanced man-machine interface that used CRT-based soft-control technology. The Westinghouse Advanced Digital Feedwater Control System (ADFCS) upgrade, which contains elements that were part of that prototype system, has since been installed at Northern States Power's Prairie Island Unit 2. This upgrade was very successful due to the use of an advanced control system design and the execution of a well coordinated joint effort between the utility and the supplier. The project experience is documented in this report to help utilities evaluate the technical implications of such a project. The design basis of the Prairie Island ADFCS signal validation for input signal failure fault tolerance is outlined first. Features of the industry-proven system control algorithms are then described. Pre-shipment hardware-in-loop and factory acceptance testing of the Prairie Island system are summarized. Post-shipment site testing, including preoperational and plant startup testing, is also summarized. Plant data from the initial system startup is included. The installation of the Prairie Island ADFCS is described, including both the feedwater control instrumentation and the control board interface. Modification of the plant simulator and operator and I ampersand C personnel training are also discussed. 6 refs., 14 figs., 3 tabs

  17. Understanding the prairie-forest transitional zone in northern Minnesota through variations in soil chemistry

    Science.gov (United States)

    Kasmerchak, C. S.; Mason, J. A.

    2015-12-01

    Boundaries between soil types are not discrete, but instead there are transitional zones that exhibit characteristics of soil types that they border. The prairie-forest transitional zone is seen throughout North America and Eurasia. Prairie soils (Mollisols) and deciduous forest soils (Alfisols) demonstrate interesting contrasts in morphology. Understanding variations in chemical properties is key to understanding nutrient cycling and retention, ecosystem development, and furthering the field of soil geography. Research sites are located in northern Minnesota's eastern forest, western prairie, and the transitional forested zone between. Evidence of clay translocation is a key indicator of Alfisol development. The double layer theory suggests chemical factors allowing clays to be dispersed/flocculated are ionic strength of the solution, relative abundance of Na+ and di- or trivalent cations, and pH (Sposito, 1984; van Olphen, 1977). In initial stages of soil formation exchangeable bases (Na+, K+, Ca++, and Mg++) occupy 100% of clay exchange sites, but as soil develops are these replaced by acidity ions (H+ and Al3+) and base saturation decreases. The relationship between exchangeable cations and clay dispersion is understood in lower horizons where Ca++ and Mg++ are abundant, and clay is flocculated, but this is not well understood in upper horizons. However it is suggested that clay dispersion can occur in upper horizons of pH values between 7 and 5 (van Breeman and Buurman, 2002). CEC values are expected to be much higher in soils where clay is flocculated and base ion concentration is high. Preliminary analyses supports that differences in these chemical factors are key indicators of varying rates of soil development, and explain geographic distribution of soils in this region. Through further lab work and data analysis, the relative importance of these chemical properties will come to light and the drivers prairie-forest soil transition will be better understood.

  18. Grassland Bird Responses to Three Edge Types in a Fragmented Mixed-Grass Prairie

    Directory of Open Access Journals (Sweden)

    Maggi S. Sliwinski

    2012-12-01

    Full Text Available One possible factor that may have contributed to the decline of grassland bird populations is edge avoidance. In the mixed-grass prairie, habitat fragmentation is often caused by juxtaposition of habitats with vegetation that is structurally similar to prairie, making it difficult to understand why birds avoid habitat edges. We hypothesized that display height or resource-use strategy, i.e., the degree to which a species depends on grassland habitat, might explain variation in sensitivity to habitat edges among different species of grassland birds. To test our hypotheses, we used data on the abundance of grassland birds in native mixed-grass prairie fields in southern Alberta, Canada, from 2000 to 2002. Point counts were conducted up to 4.1 km from croplands, 2.2 km from roads, and 1.8 km from wetlands. We used nonlinear regression models to determine the distance at which relative abundance of 12 bird species changed in response to edge, and linear regression to determine if display height or resource-use strategy explained variation in response to different types of edges. Variation in response to edge was not explained by display height or resource-use strategy. However, six species avoided wetland edges, two avoided roads, and four avoided cropland. Two species of conservation concern, Chestnut-collared Longspurs (Calcarius ornatus and Sprague's Pipits (Anthus spragueii, declined in abundance by 25% or more within 1.95 km and 0.91 km, respectively, of cropland edges. Because Chestnut-collared Longspurs avoided croplands to at least 1.95 km, it will be important to prevent further fragmentation of mixed-grass prairies by agriculture.

  19. Native weeds and exotic plants: relationships to disturbance in mixed grass prairie

    Science.gov (United States)

    Larson, D.L.

    2003-01-01

    The paper compares distributions of native weedy species and exotic species with respect to three kinds of disturbance, roads, trails, and prairie dog towns. Data were collected at the north and south units of Theodore Roosevelt National Park and at Wind Cave National Park. The paper concludes that many exotic species differ substantially from native weeds in their exploitation of disturbance. It is thus not useful to manage exotics as if they were just another weed.

  20. Native weeds and exotic plants: Relationships to disturbance in mixed-grass prairie

    Science.gov (United States)

    Larson, D.L.

    2003-01-01

    Disturbance frequently is implicated in the spread of invasive exotic plants. Disturbances may be broadly categorized as endogenous (e.g., digging by fossorial animals) or exogenous (e.g., construction and maintenance of roads and trails), just as weedy species may be native or exotic in origin. The objective of this study was to characterize and compare exotic and native weedy plant occurrence in and near three classes of disturbance -digging by prairie dogs (an endogenous disturbance to which native plants have had the opportunity to adapt), paved or gravel roads (an exogenous disturbance without natural precedent), and constructed trails (an exogenous disturbance with a natural precedent in trails created by movement of large mammals) - in three geographically separate national park units. I used plant survey data from the North and South Units of Theodore Roosevelt National Park and Wind Cave National Park in the northern mixed-grass prairie of western North and South Dakota, USA, to characterize the distribution of weedy native and exotic plants with respect to the three disturbance classes as well as areas adjacent to them. There were differences both in the susceptibility of the disturbance classes to invasion and in the distributions of native weeds and exotic species among the disturbance classes. Both exotic and native weedy species richness were greatest in prairie dog towns and community composition there differed most from undisturbed areas. Exotic species were more likely to thrive near roadways, where native weedy species were infrequently encountered. Exotic species were more likely to have spread beyond the disturbed areas into native prairie than were weedy native species. The response of individual exotic plant species to the three types of disturbance was less consistent than that of native weedy species across the three park units.

  1. Potential contributions of mature prairie and turfgrass to phosphorus in urban runoff.

    Science.gov (United States)

    Steinke, K; Kussow, W R; Stier, J C

    2013-07-01

    Urban vegetative plantings are considered desirable to mitigate and filter stormwater runoff and nonpoint-source pollution. Phosphorus fertilization of turfgrass may enhance P in urban runoff; however, the amount of P from nonfertilized, native vegetation that could potentially replace some turf is not known. This study was conducted to measure the relative contributions of nonfertilized, native prairie vegetation and fertilized turfgrass to runoff water and P loads. Six replicates of side-by-side mature urban prairie and turfgrass were monitored for mean annual runoff volumes and P loads, biomass production, vegetative nutrient composition, and changes in soil moisture. Vegetation type did not significantly affect seasonal or annual runoff volumes or P loads. The mean annual total P loads of 0.46 kg ha for prairie and 0.28 kg ha for turfgrass were significant and comparable to those reported by other researchers when studied separately. Total P concentrations in runoff water from prairie and turf vegetation were above USEPA limits, averaging 1.86 and 1.63 mg L, respectively, over 2 yr. Averaged across 2 yr, 78% of runoff P was collected when the soil was frozen. Biomass P reductions over the period of November to April were strongly related to quantities of runoff total P from frozen soil ( = 0.874). Phosphorus losses from urban areas appeared to be primarily correlated with runoff depth, not vegetation type, because correlation coefficients revealed 86 and 45% of the Year 1 and Year 2 total P loads were directly accounted for by runoff volumes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Prairie and turf buffer strips for controlling runoff from paved surfaces.

    Science.gov (United States)

    Steinke, K; Stier, J C; Kussow, W R; Thompson, A

    2007-01-01

    Eutrophication of surface waters due to nonpoint source pollution from urban environments has raised awareness of the need to decrease runoff from roads and other impervious surfaces. These concerns have led to precautionary P application restrictions on turf and requirements for vegetative buffer strips. The impacts of two plant communities and three impervious/pervious surface ratios were assessed on runoff water quality and quantity. A mixed forb/grass prairie and a Kentucky bluegrass (Poa pratensis L.) blend were seeded and runoff was monitored and analyzed for total volume, total P, soluble P, soluble organic P, bioavailable P, total suspended solids, and total organic suspended solids. Mean annual runoff volumes, all types of mean annual P nutrient losses, and sediment loads were not significantly affected by treatments because over 80% of runoff occurred during frozen soil conditions. Total P losses from prairie and turf were similar, averaging 1.96 and 2.12 kg ha(-1) yr(-1), respectively. Vegetation appeared to be a likely contributor of nutrients, particularly from prairie during winter dormancy. When runoff occurred during non-frozen soil conditions turf allowed significantly (P runoff volumes compared with prairie vegetation and the 1:2 and 1:4 impervious/pervious surface ratios had less runoff than the 1:1 ratio (P runoff occurs during frozen ground conditions, vegetative buffers strips alone are unlikely to dramatically reduce runoff and nutrient loading into surface waters. Regardless of vegetation type or size, natural nutrient biogeochemical cycling will cause nutrient loss in surface runoff waters, and these values may represent baseline thresholds below which values cannot be obtained.

  3. Moth diversity in three biofuel crops and native prairie in Illinois.

    Science.gov (United States)

    Harrison, Terry; Berenbaum, May R

    2013-06-01

    The expanding demand for biofuel feedstock may lead to large-scale conscription of land for monoculture production of biofuel crops with concomitant substantial negative impacts on biodiversity. We compared moth diversity in light-trap samples from corn, miscanthus, switchgrass and native prairie, to determine whether there is an observable relationship between plant species diversity and moth abundance and diversity. Moth alpha diversity was highest in prairie and was higher in switchgrass than in the other two biofuel crops. Beta diversity generally was low among the biofuel crops, and prairie shared lower beta diversity with switchgrass than with corn or miscanthus. Analysis of variance showed no significant differences in moth abundance per species among treatments. The alpha and beta diversity index findings are consistent with those of other studies on arthropods in biofuel crops and provide evidence to suggest that large-scale conversion of acreage to biofuel crops may have substantial negative effects on arthropod biodiversity both within the cropping systems and in the surrounding landscape. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.

  4. Lateral Approach for Excision of Maxillary Incisor Pseudo-Odontoma in Prairie Dogs (Cynomys ludovicianus).

    Science.gov (United States)

    Pelizzone, Igor; Vitolo, Gaetano D; D'Acierno, Massimo; Stefanello, Damiano; Forlani, Annalisa; Broich, Guido

    2016-01-01

    To describe our experience with lateral approach for excision of maxillary pseudo-odontomas and to illustrate surgical outcomes and postoperative complications in seven pet prairie dogs. Excision of 11 maxillary pseudo-odontomas was performed in seven prairie dogs with a lateral approach technique and clinical presentation, duration of surgery, time and type of post-surgical complications, presence or absence of symptom recurrence, time to follow-up, overall survival time and causes of death of each case were recorded. Duration of surgery, postoperative hospitalization and time to autonomous feeding were 54.8 min, 58 h and 1 day, respectively. Recurrence of respiratory symptoms was observed in four cases. Mean follow-up time was 632 days. Six out of seven cases were still alive at the end of the study. The lateral approach to excision showed good and promising results for treatment of maxillary pseudo-odontomas in prairie dogs. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

    Directory of Open Access Journals (Sweden)

    Catherine S. Jarnevich

    2016-06-01

    Full Text Available Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

  6. Revegetation of wellsite disturbances on Fescue Prairie in east-central Alberta

    International Nuclear Information System (INIS)

    Woosaree, J.; Puhl, M.

    1999-01-01

    It has been observed that past methods of revegetating disturbed land in Alberta by using commercially-available species of grasses has had limited success in terms of biodiversity, the reason being that commercial forage species are highly competitive, and as such not only prevented the original prairie species from returning to reclaimed sites, but in some cases they have migrated from reclaimed sites and invaded surrounding native prairie. Alfalfa, crested wheatgrass, Kentucky bluegrass and Canada bluegrass are believed to be the most invasive of these commercially available species. Because their use in the past has resulted in landscape fragmentation, they are not recommended for use on wellsites located on native prairie. The limited mix of available native grass cultivars also have had limited success in increasing species diversity. Cross seeding has been suggested as one method for reducing the effect of inter-specific competition on the species emergence. However, the general view of government and industry is that improved methods of revegetation of wellsite disturbances and new guidelines for determining reclamation success are required to establish more ecologically compatible plant communities on well site disturbances 4 refs., 1 tab., 3 figs

  7. A multivariate analysis of biophysical parameters of tallgrass prairie among land management practices and years

    Science.gov (United States)

    Griffith, J.A.; Price, K.P.; Martinko, E.A.

    2001-01-01

    Six treatments of eastern Kansas tallgrass prairie - native prairie, hayed, mowed, grazed, burned and untreated - were studied to examine the biophysical effects of land management practices on grasslands. On each treatment, measurements of plant biomass, leaf area index, plant cover, leaf moisture and soil moisture were collected. In addition, measurements were taken of the Normalized Difference Vegetation Index (NDVI), which is derived from spectral reflectance measurements. Measurements were taken in mid-June, mid-July and late summer of 1990 and 1991. Multivariate analysis of variance was used to determine whether there were differences in the set of variables among treatments and years. Follow-up tests included univariate t-tests to determine which variables were contributing to any significant difference. Results showed a significant difference (p treatments in the composite of parameters during each of the months sampled. In most treatment types, there was a significant difference between years within each month. The univariate tests showed, however, that only some variables, primarily soil moisture, were contributing to this difference. We conclude that biomass and % plant cover show the best potential to serve as long-term indicators of grassland condition as they generally were sensitive to effects of different land management practices but not to yearly change in weather conditions. NDVI was insensitive to precipitation differences between years in July for most treatments, but was not in the native prairie. Choice of sampling time is important for these parameters to serve effectively as indicators.

  8. Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

    Science.gov (United States)

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Grisham, Blake A.; Timmer, Jennifer M.; Boal, Clint W.; Butler, Matthew; Pitman, James C.; Kyle, Sean; Klute, David; Beauprez, Grant M.; Janus, Allan; Van Pelt, William E.

    2016-01-01

    Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

  9. Model estimation of land-use effects on water levels of northern Prairie wetlands

    Science.gov (United States)

    Voldseth, R.A.; Johnson, W.C.; Gilmanov, T.; Guntenspergen, G.R.; Millett, B.V.

    2007-01-01

    Wetlands of the Prairie Pothole Region exist in a matrix of grassland dominated by intensive pastoral and cultivation agriculture. Recent conservation management has emphasized the conversion of cultivated farmland and degraded pastures to intact grassland to improve upland nesting habitat. The consequences of changes in land-use cover that alter watershed processes have not been evaluated relative to their effect on the water budgets and vegetation dynamics of associated wetlands. We simulated the effect of upland agricultural practices on the water budget and vegetation of a semipermanent prairie wetland by modifying a previously published mathematical model (WETSIM). Watershed cover/land-use practices were categorized as unmanaged grassland (native grass, smooth brome), managed grassland (moderately heavily grazed, prescribed burned), cultivated crops (row crop, small grain), and alfalfa hayland. Model simulations showed that differing rates of evapotranspiration and runoff associated with different upland plant-cover categories in the surrounding catchment produced differences in wetland water budgets and linked ecological dynamics. Wetland water levels were highest and vegetation the most dynamic under the managed-grassland simulations, while water levels were the lowest and vegetation the least dynamic under the unmanaged-grassland simulations. The modeling results suggest that unmanaged grassland, often planted for waterfowl nesting, may produce the least favorable wetland conditions for birds, especially in drier regions of the Prairie Pothole Region. These results stand as hypotheses that urgently need to be verified with empirical data.

  10. Evaluation of monkeypox virus infection of prairie dogs (Cynomys ludovicianus) using in vivo bioluminescent imaging

    Science.gov (United States)

    Falendysz, Elizabeth A.; Londoño-Navas, Angela M.; Meteyer, Carol U.; Pussini, Nicola; Lopera, Juan G.; Osorio, Jorge E.; Rocke, Tonie E.

    2014-01-01

    Monkeypox (MPX) is a re-emerging zoonotic disease that is endemic in Central and West Africa, where it can cause a smallpox-like disease in humans. Despite many epidemiologic and field investigations of MPX, no definitive reservoir species has been identified. Using recombinant viruses expressing the firefly luciferase (luc) gene, we previously demonstrated the suitability of in vivo bioluminescent imaging (BLI) to study the pathogenesis of MPX in animal models. Here, we evaluated BLI as a novel approach for tracking MPX virus infection in black-tailed prairie dogs (Cynomys ludovicianus). Prairie dogs were affected during a multistate outbreak of MPX in the US in 2003 and have since been used as an animal model of this disease. Our BLI results were compared with PCR and virus isolation from tissues collected postmortem. Virus was easily detected and quantified in skin and superficial tissues by BLI before and during clinical phases, as well as in subclinical secondary cases, but was not reliably detected in deep tissues such as the lung. Although there are limitations to viral detection in larger wild rodent species, BLI can enhance the use of prairie dogs as an animal model of MPX and can be used for the study of infection, disease progression, and transmission in potential wild rodent reservoirs.

  11. Managing prairie dogs by managing plague: a vaccine for the future?

    Science.gov (United States)

    Johnson, Terry B.; Rocke, Tonie E.; Gober, Pete; Van Pelt, Bill E.; Miller, Michael W.; Tripp, Daniel W.; Abbott, Rachel C.; Bergman, David L.

    2014-01-01

    The Black-footed Ferret Recovery Implementation Team Executive Committee is conducting a project to develop,and (hopefully) eventually implement, a plague vaccination program for prairie dogs. The project is a component of the WesternAssociation of Fish and Wildlife Agencies Grasslands Conservation Initiative. An effective, field-worthy vaccine against plaguecould be the biggest breakthrough in recovery efforts for the black-footed ferret since the 1981 rediscovery of wild ferrets nearMeeteetse, Wyoming. If proven efficacious, the vaccine could help agencies and stakeholder cooperators maintain specificpopulations of prairie dogs at robust levels, thus enhancing range-wide conservation of those species, as well recovery of the ferret,while enabling control of other prairie dog populations to resolve site-specific agricultural and human health concerns. The resultsof laboratory and field-testing in the early stages of developing this vaccine are preliminary but mostly encouraging. A plan forbroad-scale application is being developed for possible use when testing has been completed and (if warranted) the vaccine isregistered for governmental use. An overview of all aspects of the project is discussed.

  12. Spatial Variation in Frequency and Intensity of Antibiotic Interactions among Streptomycetes from Prairie Soil

    Science.gov (United States)

    Davelos, Anita L.; Kinkel, Linda L.; Samac, Deborah A.

    2004-01-01

    Antibiotic interactions are believed to be significant to microbial fitness in soil, yet little is known of the frequency, intensity, and diversity of antibiotic inhibition and resistance among indigenous microbes. To begin to address these issues, we studied the abilities of streptomycete isolates from prairie soil to inhibit growth and display resistance to antibiotics produced by a test collection of 10 streptomycete isolates. Wide variations in antibiotic inhibition and resistance for prairie isolates among three locations and four soil depths within a 1-m2 plot were revealed. Fewer than 10% of 153 prairie isolates inhibited all 10 test isolates, while more than 40% of the isolates did not inhibit any of the test isolates. No field isolate was resistant to all of the test isolates, nor was any isolate susceptible to all of the test isolates. No correlation between inhibition and resistance phenotypes was found, suggesting that inhibition and resistance are under independent selection. The significant spatial variation in the frequency and intensity of antibiotic inhibition implies that the fitness benefits of antibiotic production are not the same among locations in soil. In contrast, the consistency of resistance over space indicates that its significance to fitness across locations is stable or the costs of maintaining resistance in the absence of selection are small or nonexistent. The spatial clustering of antibiotic inhibitory activity suggests a variable matrix of selection pressures and microbial responses across the soil landscape. PMID:14766588

  13. Grasshopper fecundity responses to grazing and fire in a tallgrass prairie.

    Science.gov (United States)

    Laws, Angela N; Joern, Anthony

    2011-10-01

    Grasshopper abundance and diversity vary with management practices such as fire and grazing. Understanding how grasshopper life history traits such as fecundity respond to management practices is key to predicting grasshopper population dynamics in heterogeneous environments. Landscape-level experimental fire and bison grazing treatments at the Konza Prairie Biological Station (Manhattan, KS) provide an opportunity to examine how management affects grasshopper fecundity. Here we report on grasshopper fecundity for nine common species at Konza Prairie. From 2007 to 2009, adult female grasshoppers were collected every 3 wk from eight watersheds that varied in fire and grazing treatments. Fecundity was measured by examining female reproductive tracts, which contain a record of past and current reproductive activity. Body size was a poor predictor of fecundity for all species. Despite large differences in vegetation structure and composition with management regime (grazing and fire interval), we observed little effect of management on grasshopper fecundity. Habitat characteristics (grasshopper density, vegetation biomass, and vegetation quality; measured in 2008 and 2009) were better predictors of past fecundity than current fecundity, with species-specific responses. Fecundity increased throughout the summer, indicating that grasshoppers were able to acquire sufficient nutritional resources for egg production in the early fall when vegetation quality is generally low. Because fecundity did not vary across management treatments, population stage structure may be more important for determining population level reproduction than management regime at Konza Prairie.

  14. Immunization of black-tailed prairie dog against plague through consumption of vaccine-laden baits.

    Science.gov (United States)

    Rocke, Tonie E; Smith, Susan R; Stinchcomb, Dan T; Osorio, Jorge E

    2008-10-01

    Prairie dogs (Cynomys spp.) are highly susceptible to Yersinia pestis and, along with other wild rodents, are significant reservoirs of plague for other wildlife and humans in the western United States. A recombinant raccoon poxvirus, expressing the F1 antigen of Y. pestis, was incorporated into a palatable bait and offered to three groups (n = 18, 19, and 20) of black-tailed prairie dogs (Cynomys ludovicianus) for voluntary consumption, either one, two, or three times, at roughly 3-wk intervals. A control group (n = 19) received baits containing raccoon poxvirus without the inserted antigen. Mean antibody titers to Y. pestis F1 antigen increased significantly in all groups ingesting the vaccine-laden baits, whereas the control group remained negative. Upon challenge with virulent Y. pestis, immunized groups had higher survival rates (38%) than the unimmunized control group (11%). The mean survival time of groups ingesting vaccine-laden baits either two or three times was significantly higher than that of animals ingesting vaccine-laden baits just one time and of animals in the control group. These results show that oral immunization of prairie dogs against plague provides some protection against challenge at dosages that simulate simultaneous delivery of the plague bacterium by numerous (3-10) flea bites.

  15. Characterization of the oxytocin system regulating affiliative behavior in female prairie voles.

    Science.gov (United States)

    Ross, H E; Cole, C D; Smith, Y; Neumann, I D; Landgraf, R; Murphy, A Z; Young, L J

    2009-09-15

    Oxytocin regulates partner preference formation and alloparental behavior in the socially monogamous prairie vole (Microtus ochrogaster) by activating oxytocin receptors in the nucleus accumbens of females. Mating facilitates partner preference formation, and oxytocin-immunoreactive fibers in the nucleus accumbens have been described in prairie voles. However, there has been no direct evidence of oxytocin release in the nucleus accumbens during sociosexual interactions, and the origin of the oxytocin fibers is unknown. Here we show for the first time that extracellular concentrations of oxytocin are increased in the nucleus accumbens of female prairie vole during unrestricted interactions with a male. We further show that the distribution of oxytocin-immunoreactive fibers in the nucleus accumbens is conserved in voles, mice and rats, despite remarkable species differences in oxytocin receptor binding in the region. Using a combination of site-specific and peripheral infusions of the retrograde tracer Fluorogold, we demonstrate that the nucleus accumbens oxytocin-immunoreactive fibers likely originate from paraventricular and supraoptic hypothalamic neurons. This distribution of retrogradely labeled neurons is consistent with the hypothesis that striatal oxytocin fibers arise from collaterals of magnocellular neurons of the neurohypophysial system. If correct, this may serve to coordinate peripheral and central release of oxytocin with appropriate behavioral responses associated with reproduction, including pair bonding after mating, and maternal responsiveness following parturition and during lactation.

  16. Direct and indirect responses of tallgrass prairie butterflies to prescribed burning

    Science.gov (United States)

    Vogel, Jennifer A.; Koford, Rolf R.; Debinski, Diane M.

    2010-01-01

    Fire is an important tool in the conservation and restoration of tallgrass prairie ecosystems. We investigated how both the vegetation composition and butterfly community of tallgrass prairie remnants changed in relation to the elapsed time (in months) since prescribed fire. Butterfly richness and butterfly abundance were positively correlated with the time since burn. Habitat-specialist butterfly richness recovery time was greater than 70 months post-fire and habitat-specialist butterfly abundance recovery time was approximately 50 months post-fire. Thus, recovery times for butterfly populations after prescribed fires in our study were potentially longer than those previously reported. We used Path Analysis to evaluate the relative contributions of the direct effect of time since fire and the indirect effects of time since fire through changes in vegetation composition on butterfly abundance. Path models highlighted the importance of the indirect effects of fire on habitat features, such as increases in the cover of bare ground. Because fire return intervals on managed prairie remnants are often less than 5 years, information on recovery times for habitat-specialist insect species are of great importance. ?? 2010 Springer Science+Business Media B.V.

  17. Production of germline transgenic prairie voles (Microtus ochrogaster) using lentiviral vectors.

    Science.gov (United States)

    Donaldson, Zoe R; Yang, Shang-Hsun; Chan, Anthony W S; Young, Larry J

    2009-12-01

    The study of alternative model organisms has yielded tremendous insights into the regulation of behavioral and physiological traits not displayed by more widely used animal models, such as laboratory rats and mice. In particular, comparative approaches often exploit species ideally suited for investigating specific phenomenon. For instance, comparative studies of socially monogamous prairie voles and polygamous meadow voles have been instrumental toward gaining an understanding of the genetic and neurobiological basis of social bonding. However, laboratory studies of less commonly used organisms, such as prairie voles, have been limited by a lack of genetic tools, including the ability to manipulate the genome. Here, we show that lentiviral vector-mediated transgenesis is a rapid and efficient approach for creating germline transgenics in alternative laboratory rodents. Injection of a green fluorescent protein (GFP)-expressing lentiviral vector into the perivitelline space of 23 single-cell embryos yielded three live offspring (13 %), one of which (33%) contained germline integration of a GFP transgene driven by the human ubiquitin-C promoter. In comparison, transfer of 23 uninjected embryos yielded six live offspring (26%). Green fluorescent protein is present in all tissues examined and is expressed widely in the brain. The GFP transgene is heritable and stably expressed until at least the F(2) generation. This technology has the potential to allow investigation of specific gene candidates in prairie voles and provides a general protocol to pursue germline transgenic manipulation in many different rodent species.

  18. Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens

    Energy Technology Data Exchange (ETDEWEB)

    Sandercock, Brett K. [Kansas State University

    2013-05-22

    Executive Summary 1. We investigated the impacts of wind power development on the demography, movements, and population genetics of Greater Prairie-Chickens (Tympanuchus cupido) at three sites in northcentral and eastern Kansas for a 7-year period. Only 1 of 3 sites was developed for wind power, the 201MW Meridan Way Wind Power Facility at the Smoky Hills site in northcentral Kansas. Our project report is based on population data for prairie chickens collected during a 2-year preconstruction period (2007-2008), a 3-year postconstruction period (2009-2011) and one final year of lek surveys (2012). Where relevant, we present preconstruction data from our field studies at reference sites in the northern Flint Hills (2007-2009) and southern Flint Hills (2006-2008). 2. We addressed seven potential impacts of wind power development on prairie chickens: lek attendance, mating behavior, use of breeding habitat, fecundity rates, natal dispersal, survival rates, and population numbers. Our analyses of pre- and postconstruction impacts are based on an analysis of covariance design where we modeled population performance as a function of treatment period, distance to eventual or actual site of the nearest wind turbine, and the interaction of these factors. Our demographic and movement data from the 6-year study period at the Smoky Hills site included 23 lek sites, 251 radio-marked females monitored for 287 bird-years, and 264 nesting attempts. Our genetic data were based on genotypes of 1,760 females, males and chicks that were screened with a set of 27 microsatellite markers that were optimized in the lab. 3. In our analyses of lek attendance, the annual probability of lek persistence during the preconstruction period was ~0.9. During the postconstruction period, distance to nearest turbine did not have a significant effect on the probability of lek persistence. However, the probability of lek persistence increased from 0.69 at 0 m to 0.89 at 30 km from turbines, and most

  19. An emerging crisis across northern prairie refuges: Prevalence of invasive plants and a plan for adaptive management

    Science.gov (United States)

    Grant, T.A.; Flanders-Wanner, B.; Shaffer, T.L.; Murphy, R.K.; Knutsen, G.A.

    2009-01-01

    In the northern Great Plains, native prairies managed by the U.S. Fish and Wildlife Service (Service) can be pivotal in conservation of North America's biological diversity. From 2002 to 2006, we surveyed 7,338 belt transects to assess the general composition of mixed-grass and tallgrass prairie vegetation across five "complexes" (i.e., administrative groupings) of national wildlife refuges managed by the Service in North Dakota and South Dakota. Native grasses and forbs were common (mean frequency of occurrence 47%-54%) on two complexes but uncommon (4%-13%) on two others. Conversely, an introduced species of grass, smooth brome (Bromus inermis), accounted for 45% to 49% of vegetation on two complexes and another species, Kentucky bluegrass (Poa pratensis) accounted for 27% to 36% of the vegetation on three of the complexes. Our data confirm prior suspicions of widespread invasion by introduced species of plants on Service-owned tracts of native prairie, changes that likely stem in part from a common management history of little or no disturbance (e.g., defoliation by grazing or fire). However, variability in the degree and type of invasion among prairie tracts suggests that knowledge of underlying causes (e.g., edaphic or climatic factors, management histories) could help managers more effectively restore prairies. We describe an adaptive management approach to acquire such knowledge while progressing with restoration. More specifically, we propose to use data from inventories of plant communities on Service-owned prairies to design and implement, as experiments, optimal restoration strategies. We will then monitor these experiments and use the results to refine future strategies. This comprehensive, process-oriented approach should yield reliable and robust recommendations for restoration and maintenance of native prairies in the northern Great Plains. 2009 by the Board of Regents of the University of Wisconsin System.

  20. Using occupancy models to investigate the prevalence of ectoparasitic vectors on hosts: an example with fleas on prairie dogs

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Doherty, Paul F.; Gage, Kenneth L.; Huyvaert, Kathryn P.; Long, Dustin H.; Antolin, Michael F.

    2013-01-01

    Ectoparasites are often difficult to detect in the field. We developed a method that can be used with occupancy models to estimate the prevalence of ectoparasites on hosts, and to investigate factors that influence rates of ectoparasite occupancy while accounting for imperfect detection. We describe the approach using a study of fleas (Siphonaptera) on black-tailed prairie dogs (Cynomys ludovicianus). During each primary occasion (monthly trapping events), we combed a prairie dog three consecutive times to detect fleas (15 s/combing). We used robust design occupancy modeling to evaluate hypotheses for factors that might correlate with the occurrence of fleas on prairie dogs, and factors that might influence the rate at which prairie dogs are colonized by fleas. Our combing method was highly effective; dislodged fleas fell into a tub of water and could not escape, and there was an estimated 99.3% probability of detecting a flea on an occupied host when using three combings. While overall detection was high, the probability of detection was always dogs, flea occupancy was heightened in old/natural colonies of prairie dogs, and on hosts that were in poor condition. Occupancy was initially low in plots with high densities of prairie dogs, but, as the study progressed, the rate of flea colonization increased in plots with high densities of prairie dogs in particular. Our methodology can be used to improve studies of ectoparasites, especially when the probability of detection is low. Moreover, the method can be modified to investigate the co-occurrence of ectoparasite species, and community level factors such as species richness and interspecific interactions.

  1. An adaptive approach to invasive plant management on U.S. Fish and Wildlife Service-owned native prairies in the Prairie Pothole Region: decision support under uncertainity

    Science.gov (United States)

    Gannon, Jill J.; Moore, Clinton T.; Shaffer, Terry L.; Flanders-Wanner, Bridgette

    2011-01-01

    Much of the native prairie managed by the U.S. Fish and Wildlife Service (Service) in the Prairie Pothole Region (PPR) is extensively invaded by the introduced cool-season grasses smooth brome (Bromus inermis) and Kentucky bluegrass (Poa pratensis). The central challenge to managers is selecting appropriate management actions in the face of biological and environmental uncertainties. We describe the technical components of a USGS management project, and explain how the components integrate and inform each other, how data feedback from individual cooperators serves to reduce uncertainty across the whole region, and how a successful adaptive management project is coordinated and maintained on a large scale. In partnership with the Service, the U.S. Geological Survey is developing an adaptive decision support framework to assist managers in selecting management actions under uncertainty and maximizing learning from management outcomes. The framework is built around practical constraints faced by refuge managers and includes identification of the management objective and strategies, analysis of uncertainty and construction of competing decision models, monitoring, and mechanisms for model feedback and decision selection. Nineteen Service field stations, spanning four states of the PPR, are participating in the project. They share a common management objective, available management strategies, and biological uncertainties. While the scope is broad, the project interfaces with individual land managers who provide refuge-specific information and receive updated decision guidance that incorporates understanding gained from the collective experience of all cooperators.

  2. New insights into the phylogenetics and population structure of the prairie falcon (Falco mexicanus)

    Science.gov (United States)

    Doyle, Jacqueline M.; Bell, Douglas A.; Bloom, Peter H.; Emmons, Gavin; Fesnock, Amy; Katzner, Todd; LePre, Larry; Leonard, Kolbe; SanMiguel, Phillip; Westerman, Rick; DeWoody, J. Andrew

    2018-01-01

    BackgroundManagement requires a robust understanding of between- and within-species genetic variability, however such data are still lacking in many species. For example, although multiple population genetics studies of the peregrine falcon (Falco peregrinus) have been conducted, no similar studies have been done of the closely-related prairie falcon (F. mexicanus) and it is unclear how much genetic variation and population structure exists across the species’ range. Furthermore, the phylogenetic relationship of F. mexicanus relative to other falcon species is contested. We utilized a genomics approach (i.e., genome sequencing and assembly followed by single nucleotide polymorphism genotyping) to rapidly address these gaps in knowledge.ResultsWe sequenced the genome of a single female prairie falcon and generated a 1.17 Gb (gigabases) draft genome assembly. We generated maximum likelihood phylogenetic trees using complete mitochondrial genomes as well as nuclear protein-coding genes. This process provided evidence that F. mexicanus is an outgroup to the clade that includes the peregrine falcon and members of the subgenus Hierofalco. We annotated > 16,000 genes and almost 600,000 high-quality single nucleotide polymorphisms (SNPs) in the nuclear genome, providing the raw material for a SNP assay design featuring > 140 gene-associated markers and a molecular-sexing marker. We subsequently genotyped ~ 100 individuals from California (including the San Francisco East Bay Area, Pinnacles National Park and the Mojave Desert) and Idaho (Snake River Birds of Prey National Conservation Area). We tested for population structure and found evidence that individuals sampled in California and Idaho represent a single panmictic population.ConclusionsOur study illustrates how genomic resources can rapidly shed light on genetic variability in understudied species and resolve phylogenetic relationships. Furthermore, we found evidence of a single, randomly mating

  3. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie

    Science.gov (United States)

    Manning, George C.; Baer, Sara G.; Blair, John M.

    2017-12-01

    Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies ( P < 0.05). Available inorganic N, microbial biomass N, total N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies ( P < 0.05). Microbial biomass C, total organic C, and total soil N were positively correlated with FQI ( P < 0.05). This study shows that floristic quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.

  4. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie.

    Science.gov (United States)

    Manning, George C; Baer, Sara G; Blair, John M

    2017-12-01

    Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies (P soil bulk density were also higher in grazed prairie soil over all fire frequencies (P soil N were positively correlated with FQI (P soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.

  5. Long-term prairie falcon population changes in relation to prey abundance, weather, land uses, and habitat conditions

    Science.gov (United States)

    Steenhof, Karen; Kochert, Michael N.; Carpenter, L.B.; Lehman, Robert N.

    1999-01-01

    We studied a nesting population of Prairie Falcons (Falco mexicanus) in the Snake River Birds of Prey National Conservation Area (NCA) from 1974-1997 to identify factors that influence abundance and reproduction. Our sampling period included two major droughts and associated crashes in Townsend's ground squirrel (Spermophilus townsendii) populations. The number of Prairie Falcon pairs found on long-term survey segments declined significantly from 1976-1997. Early declines were most severe at the eastern end of the NCA, where fires and agriculture have changed native shrubsteppe habitat. More recent declines occurred in the portion of canyon near the Orchard Training Area (OTA), where the Idaho Army National Guard conducts artillery firing and tank maneuvers. Overall Prairie Falcon reproductive rates were tied closely to annual indexes of ground squirrel abundance, but precipitation before and during the breeding season was related inversely to some measures of reproduction. Most reproductive parameters showed no significant trends over time, but during the 1990s, nesting success and productivity were lower in the stretch of canyon near the OTA than in adjacent areas. Extensive shrub loss, by itself, did not explain the pattern of declines in abundance and reproduction that we observed. Recent military training activities likely have interacted with fire and livestock grazing to create less than favorable foraging opportunities for Prairie Falcons in a large part of the NCA. To maintain Prairie Falcon populations in the NCA, managers should suppress wildfires, restore native plant communities, and regulate potentially incompatible land uses.

  6. Use of vegetation sampling and analysis to detect a problem within a portion of a prairie restoration project.

    Science.gov (United States)

    Franson, Raymond; Scholes, Chad; Krabbe, Stephen

    2017-01-02

    In June 2005, the Department of Energy (DOE) began establishing the 60-ha Howell Prairie around the disposal cell at the DOE Weldon Spring Site (WSS). Prairies were historically present in the area of the site. Quantitative Cover sampling was used to quantify Total Cover, Native Grass Cover, Non-Native Grass Cover, Native Forb Cover, Non-Native Forb Cover, Warm Season (C 4 Grass), Cool Season (C 3 Grass), Perennial Cover and Annual Cover, Litter, and Bare Ground. Four permanent vegetation sampling plots were established. The first 4 years of vegetation measurements at Howell Prairie were made during above-average rainfall years on burned and unburned plots. The fifth-year (2012) vegetation measurements were made after below-average rainfall. Five years of results not only document the consistency of the restoration effort in three areas, but also demonstrate deficiencies in Grass Cover in a fourth area. The results are not only useful for Howell Prairie, but will be useful for restoration work throughout the region. Restoration work suffers from a lack of success monitoring and in this case from a lack of available reference areas. Floristic Quality Indices are used to make qualitative comparisons of the site to Konza Prairie sites.

  7. Small mammals associated with colonies of black-tailed prairie dogs (Cynomys ludovicianus) in the Southern High Plains

    Science.gov (United States)

    Pruett, A.L.; Boal, C.W.; Wallace, M.C.; Whitlaw, Heather A.; Ray, J.D.

    2010-01-01

    We compared diversity and abundance of small mammals at colonies of black-tailed prairie dogs (Cynomys ludovicianus) and paired non-colony sites. Of colonies of black-tailed prairie dogs in our study area, >80 were on slopes of playa lakes; thus, we used sites of colonies and non-colonies that were on slopes of playa lakes. We trapped small mammals on 29 pairs of sites. Overall abundance did not differ between types of sites, but some taxa exhibited associations with colonies (Onychomys leucogaster) or non-colonies (Chaetodipus hispidus, Reithrodontomys, Sigmodon hispidus). Diversity and evenness of small mammals did not differ between colonies and non-colonies in 2002, but were higher on non-colonies in 2003. Although we may not have detected some rare or infrequently occurring species, our data reveal differences in diversity and evenness of more common species among the types of sites. Prairie dogs are touted as a keystone species with their colonies associated with a greater faunal diversity than adjacent lands. Our findings contradict several studies reporting greater diversity and abundance of small mammals at colonies of prairie dogs. We suggest that additional research across a wider landscape and incorporating landscape variables beyond the immediate trapping plot may further elucidate interspecific associations between black-tailed prairie dogs and species of small rodents.

  8. Deltamethrin flea-control preserves genetic variability of black-tailed prairie dogs during a plague outbreak

    Science.gov (United States)

    Jones, P.H.; Biggins, D.E.; Eads, D.A.; Eads, S.L.; Britten, H.B.

    2012-01-01

    Genetic variability and structure of nine black-tailed prairie dog (BTPD, Cynomys ludovicianus) colonies were estimated with 15 unlinked microsatellite markers. A plague epizootic occurred between the first and second years of sampling and our study colonies were nearly extirpated with the exception of three colonies in which prairie dog burrows were previously dusted with an insecticide, deltamethrin, used to control fleas (vectors of the causative agent of plague, Yersinia pestis). This situation provided context to compare genetic variability and structure among dusted and non-dusted colonies pre-epizootic, and among the three dusted colonies pre- and post-epizootic. We found no statistical difference in population genetic structures between dusted and non-dusted colonies pre-epizootic. On dusted colonies, gene flow and recent migration rates increased from the first (pre-epizootic) year to the second (post-epizootic) year which suggested dusted colonies were acting as refugia for prairie dogs from surrounding colonies impacted by plague. Indeed, in the dusted colonies, estimated densities of adult prairie dogs (including dispersers), but not juveniles (non-dispersers), increased from the first year to the second year. In addition to preserving BTPDs and many species that depend on them, protecting colonies with deltamethrin or a plague vaccine could be an effective method to preserve genetic variability of prairie dogs. ?? 2011 Springer Science+Business Media B.V.

  9. Valuing ecosystem and economic services across land-use scenarios in the Prairie Pothole Regions of the Dakotas, USA

    Science.gov (United States)

    Gascoigne, William R.; Hoag, Dana; Koontz, Lynne; Tangen, Brian A.; Shaffer, Terry L.; Gleason, Robert A.

    2011-01-01

    This study uses biophysical values derived for the Prairie Pothole Region (PPR) of North and South Dakota, in conjunction with value transfer methods, to assess environmental and economic tradeoffs under different policy-relevant land-use scenarios over a 20-year period. The ecosystem service valuation is carried out by comparing the biophysical and economic values of three focal services (i.e. carbon sequestration, reduction in sedimentation, and waterfowl production) across three focal land uses in the region [i.e. native prairie grasslands, lands enrolled in the Conservation Reserve and Wetlands Reserve Programs (CRP/WRP), and cropland]. This study finds that CRP/WRP lands cannot mitigate (hectare for hectare) the loss of native prairie from a social welfare standpoint. Land use scenarios where native prairie loss was minimized, and CRP/WRP lands were increased, provided the most societal benefit. The scenario modeling projected native prairie conversion to cropland over the next 20 years would result in a social welfare loss valued at over $4 billion when considering the study's three ecosystem services, and a net loss of about $3.4 billion when reductions in commodity production are accounted for.

  10. Flea abundance, diversity, and plague in Gunnison's prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in northern New Mexico

    Science.gov (United States)

    Megan M. Friggens; Robert R. Parmenter; Michael Boyden; Paulette L. Ford; Kenneth Gage; Paul Keim

    2010-01-01

    Plague, a flea-transmitted infectious disease caused by the bacterium Yersinia pestis, is a primary threat to the persistence of prairie dog populations (Cynomys spp.). We conducted a 3-yr survey (2004-2006) of fleas from Gunnison's prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in Valles Caldera National Preserve in New Mexico. Our...

  11. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States.

    Science.gov (United States)

    Fierer, Noah; Ladau, Joshua; Clemente, Jose C; Leff, Jonathan W; Owens, Sarah M; Pollard, Katherine S; Knight, Rob; Gilbert, Jack A; McCulley, Rebecca L

    2013-11-01

    Native tallgrass prairie once dominated much of the midwestern United States, but this biome and the soil microbial diversity that once sustained this highly productive system have been almost completely eradicated by decades of agricultural practices. We reconstructed the soil microbial diversity that once existed in this biome by analyzing relict prairie soils and found that the biogeographical patterns were largely driven by changes in the relative abundance of Verrucomicrobia, a poorly studied bacterial phylum that appears to dominate many prairie soils. Shotgun metagenomic data suggested that these spatial patterns were associated with strong shifts in carbon dynamics. We show that metagenomic approaches can be used to reconstruct below-ground biogeochemical and diversity gradients in endangered ecosystems; such information could be used to improve restoration efforts, given that even small changes in below-ground microbial diversity can have important impacts on ecosystem processes.

  12. Prevalence and abundance of fleas in black-tailed prairie dog burrows: implications for the transmission of plague (Yersinia pestis).

    Science.gov (United States)

    Salkeld, Dan J; Stapp, Paul

    2008-06-01

    Plague, the disease caused by the bacterium Yersinia pestis, can have devastating impacts on North American wildlife. Epizootics, or die-offs, in prairie dogs (Cynomys ludovicianus) occur sporadically and fleas (Siphonaptera) are probably important in the disease's transmission and possibly as maintenance hosts of Y. pestis between epizootics. We monitored changes in flea abundance in prairie dog burrows in response to precipitation, temperature, and plague activity in shortgrass steppe in northern Colorado. Oropsylla hirsuta was the most commonly found flea, and it increased in abundance with temperature. In contrast, Oropsylla tuberculata cynomuris declined with rising temperature. During plague epizootics, flea abundance in burrows increased and then subsequently declined after the extirpation of their prairie dog hosts.

  13. Effects of weather and plague-induced die-offs of prairie dogs on the fleas of northern grasshopper mice.

    Science.gov (United States)

    Salkeld, Daniel J; Stapp, Paul

    2009-05-01

    Plague, the disease caused by the bacterium Yersinia pestis, can have devastating impacts on black-tailed prairie dogs (Cynomys ludovicianus Ord). Other mammal hosts living on prairie dog colonies may be important in the transmission and maintenance of plague. We examined the flea populations of northern grasshopper mice (Onychomys leucogaster Wied) before, during, and after plague epizootics in northern Colorado and studied the influence of host and environmental factors on flea abundance patterns. Grasshopper mice were frequently infested with high numbers of fleas, most commonly Pleochaetis exilis Jordan and Thrassis fotus Jordan. Flea loads changed in response to both environmental temperature and rainfall. After plague-induced prairie dog die-offs, flea loads and likelihood of infestation were unchanged for P. exilis, but T. fotus loads declined.

  14. Land-use change, economics, and rural well-being in the Prairie Pothole Region of the United States

    Science.gov (United States)

    Gascoigne, William R.; Hoag, Dana L.K.; Johnson, Rex R.; Koontz, Lynne M.; Thomas, Catherine Cullinane

    2013-01-01

    This fact sheet highlights findings included in a comprehensive new report (see USGS Professional Paper 1800) which investigated land-use change, economic characteristics, and rural community well-being in the Prairie Pothole Region of the United States. Once one of the largest grassland-wetlands ecosystems on earth, the North American prairie has experienced extensive conversion to cultivated agriculture, with farming becoming the dominant land use in the region over the last century. Both perennial habitat lands and agricultural croplands retain importance economically, socially, and culturally. Greatly increased oil and gas development in recent years brought rises in employment and income but also stressed infrastructure, cost of living, and crime rates. Research described in these reports focuses on land-use dynamics and illuminates how economic variables and rural development in the Prairie Pothole Region might be influenced as land uses change.

  15. Validation of the DNDC model in order to simulate future greenhouse gas emissions and soil carbon changes from the Prairie-Pothole region of North Dakota following prairie conversion to agriculture

    Science.gov (United States)

    Suddick, E.; Phillips, R. L.; Waldron, S. E.; Davidson, E. A.

    2012-12-01

    The Prairie Pothole Region (PPR) in North America is home to a diverse range of habitats that support large populations of water fowl and other bird species. Some of the habitats such as the native prairie grasslands of the PPR are under threat due to conversion to cropland. Despite the importance of the PPR, little research has been conducted in this region to understand the impact land-use changes will have on greenhouse gas emissions and soil organic carbon storage (SOC). Therefore, process based biogeochemical models such as the Denitrification Decomposition (DNDC) model can be used to simulate the potential effects that future land-use change will have upon the cycling of carbon and nitrogen in both agricultural and non-agricultural ecosystems. The objective of this study was to validate the DNDC model for two different ecosystems within the PPR region. We aimed to test the ability of the model to predict the flux of the greenhouse gas nitrous oxide (N2O) and SOC changes in both an agricultural cropping system and a natural prairie in order to understand future land use change scenarios and forecast the change in N2O and SOC following prairie conversion to agriculture. Using a baseline climate scenario from observed daily measurements at each site, the DNDC model was tested against observed static chamber field measurements of N2O measured from April 2009 to December 2011, as well as being tested against other ancillary soil measurements (e.g., soil moisture and temperature) from an alfalfa cropping system and a native prairie grassland in the PPR of North Dakota, USA. Soils from the native prairie were classified as a non hydric clay loam with a SOC content of 0.033 kg C kg-1, where the alfalfa cropping system was a non hydric silt loam with a SOC content of 0.019 kg C kg-1. Initial results indicate that simulated N2O emissions at both sites and the change in SOC with conversion of prairie to cropland were generally in agreement with observed field

  16. Black-footed ferrets and recreational shooting influence the attributes of black-tailed prairie dog burrows

    Science.gov (United States)

    Biggins, Dean E.; Ramakrishnan, Shantini; Goldberg, Amanda R.; Eads, David A.

    2012-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) plug burrows occupied by black-footed ferrets (Mustela nigripes), and they also plug burrows to entomb dead prairie dogs. We further evaluated these phenomena by sampling connectivity and plugging of burrow openings on prairie dog colonies occupied by ferrets, colonies where recreational shooting was allowed, and colonies with neither shooting nor ferrets. We counted burrow openings on line surveys and within plots, classified surface plugging, and used an air blower to examine subsurface connectivity. Colonies with ferrets had lower densities of openings, fewer connected openings (suggesting increased subsurface plugging), and more surface plugs compared to colonies with no known ferrets. Colonies with recreational shooting had the lowest densities of burrow openings, and line-survey data suggested colonies with shooting had intermediate rates of surface plugging. The extent of surface and subsurface plugging could have consequences for the prairie dog community by changing air circulation and escape routes of burrow systems and by altering energetic relationships. Burrow plugging might reduce prairie dogs' risk of predation by ferrets while increasing risk of predation by American badgers (Taxidea taxus); however, the complexity of the trade-off is increased if plugging increases the risk of predation on ferrets by badgers. Prairie dogs expend more energy plugging and digging when ferrets or shooting are present, and ferrets increase their energy expenditures when they dig to remove those plugs. Microclimatic differences in plugged burrow systems may play a role in flea ecology and persistence of the flea-borne bacterium that causes plague (Yersinia pestis).

  17. Regional differences in mu and kappa opioid receptor G-protein activation in brain in male and female prairie voles.

    Science.gov (United States)

    Martin, T J; Sexton, T; Kim, S A; Severino, A L; Peters, C M; Young, L J; Childers, S R

    2015-12-17

    Prairie voles are unusual mammals in that, like humans, they are capable of forming socially monogamous pair bonds, display biparental care, and engage in alloparental behaviors. Both mu and kappa opioid receptors are involved in behaviors that either establish and maintain, or result from pair bond formation in these animals. Mu and kappa opioid receptors both utilize inhibitory G-proteins in signal transduction mechanisms, however the efficacy by which these receptor subtypes stimulate G-protein signaling across the prairie vole neuraxis is not known. Utilizing [(35)S]GTPγS autoradiography, we characterized the efficacy of G-protein stimulation in coronal sections throughout male and female prairie vole brains by [D-Ala2,NMe-Phe4,Gly-ol5]-enkephalin (DAMGO) and U50,488H, selective mu and kappa opioid agonists, respectively. DAMGO stimulation was highest in the forebrain, similar to that found with other rodent species. U-50,488H produced greater stimulation in prairie voles than is typically seen in mice and rats, particularly in select forebrain areas. DAMGO produced higher stimulation in the core versus the shell of the nucleus accumbens (NAc) in females, while the distribution of U-50,488H stimulation was the opposite. There were no gender differences for U50,488H stimulation of G-protein activity across the regions examined, while DAMGO stimulation was greater in sections from females compared to those from males for NAc core, entopeduncular nucleus, and hippocampus. These data suggest that the kappa opioid system may be more sensitive to manipulation in prairie voles compared to mice and rats, and that female prairie voles may be more sensitive to mu agonists in select brain regions than males. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. An integrated multi-level watershed-reservoir modeling system for examining hydrological and biogeochemical processes in small prairie watersheds.

    Science.gov (United States)

    Zhang, Hua; Huang, Guo H; Wang, Dunling; Zhang, Xiaodong; Li, Gongchen; An, Chunjiang; Cui, Zheng; Liao, Renfei; Nie, Xianghui

    2012-03-15

    Eutrophication of small prairie reservoirs presents a major challenge in water quality management and has led to a need for predictive water quality modeling. Studies are lacking in effectively integrating watershed models and reservoir models to explore nutrient dynamics and eutrophication pattern. A water quality model specific to small prairie water bodies is also desired in order to highlight key biogeochemical processes with an acceptable degree of parameterization. This study presents a Multi-level Watershed-Reservoir Modeling System (MWRMS) to simulate hydrological and biogeochemical processes in small prairie watersheds. It integrated a watershed model, a hydrodynamic model and an eutrophication model into a flexible modeling framework. It can comprehensively describe hydrological and biogeochemical processes across different spatial scales and effectively deal with the special drainage structure of small prairie watersheds. As a key component of MWRMS, a three-dimensional Willows Reservoir Eutrophication Model (WREM) is developed to addresses essential biogeochemical processes in prairie reservoirs and to generate 3D distributions of various water quality constituents; with a modest degree of parameterization, WREM is able to meet the limit of data availability that often confronts the modeling practices in small watersheds. MWRMS was applied to the Assiniboia Watershed in southern Saskatchewan, Canada. Extensive efforts of field work and lab analysis were undertaken to support model calibration and validation. MWRMS demonstrated its ability to reproduce the observed watershed water yield, reservoir water levels and temperatures, and concentrations of several water constituents. Results showed that the aquatic systems in the Assiniboia Watershed were nitrogen-limited and sediment flux played a crucial role in reservoir nutrient budget and dynamics. MWRMS can provide a broad context of decision support for water resources management and water quality

  19. Forage preferences in two species of prairie dog (Cynomys parvidens and Cynomus ludovicianus): Implications for hibernation and facultative heterothermy

    Science.gov (United States)

    Lehmer, E.M.; Biggins, D.E.; Antolin, M.F.

    2006-01-01

    Several laboratory studies have shown that the ingestion of dietary linoleic (18:2 ??6) acid before winter can promote deep and continuous torpor, whereas excess consumption of ??-linolenic acid (18:3 ??3) can interfere with an animal's ability to reach and maintain low body temperatures during torpor. As mammalian heterotherms obtain linoleic and ??-linolenic acid strictly from the diet, diet selection has been proposed as a mechanism that allows hibernators to ingest levels of linoleic and ??-linolenic acid that promote favorable torpor patterns. Here diet, dietary nutrient content and patterns of forage preference of a representative hibernator, the Utah prairie dog Cynomys parvidens, and a facultative heterotherm, the black-tailed prairie dog Cynomys ludovicianus, were examined under natural field conditions. Diets of black-tailed (BTPD) and Utah prairie dogs (UTPD) differed across seasons (BTPD F26,108=9.59, P<0.01; UTPD F38,80=3.25, P<0.01) and elevations (BTPD F26,108=20.15, P<0.01; UTPD F38,80=20.51, P<0.01), and forage preference indices indicate that neither species randomly selected plant species relative to their abundance on colonies in any season. Black-tailed prairie dogs did not consume or avoid consumption of plant species based on levels of total lipids, linoleic acid, ??-linolenic acid or nitrogen. Considering only the plants consumed, black-tailed prairie dogs appeared to prefer plants with low levels of ??-linolenic acid (F1,19=5.81, P=0.03), but there were no detectable relationships between preference and other nutrients. Utah prairie dogs consumed plants higher in ??-linolenic acid (t=1.98, P=0.05) and avoided plants high in linoleic acid (t=-2.02, P=0.04), but consumption-avoidance decisions did not appear to be related to nitrogen or total lipids. Of the plants consumed, Utah prairie dogs again preferred plants high in ??-linolenic acid (F1,17=4.62, P=0.05). Levels of linoleic and ??-linolenic acid were positively correlated in plants

  20. Early Intranasal Vasopressin Administration Impairs Partner Preference in Adult Male Prairie Voles (Microtus ochrogaster).

    Science.gov (United States)

    Simmons, Trenton C; Balland, Jessica F; Dhauna, Janeet; Yang, Sang Yun; Traina, Jason L; Vazquez, Jessica; Bales, Karen L

    2017-01-01

    Research supports a modulatory role for arginine vasopressin (AVP) in the expression of socially motivated behaviors in mammals. The acute effects of AVP administration are demonstrably pro-social across species, providing the justification for an ever-increasing measure of clinical interest over the last decade. Combining these results with non-invasive intranasal delivery results in an attractive system for offering intranasal AVP (IN-AVP) as a therapeutic for the social impairments of children with autism spectrum disorder. But, very little is known about the long-term effects of IN-AVP during early development. In this experiment, we explored whether a single week of early juvenile administration of IN-AVP (low = 0.05 IU/kg, medium = 0.5 IU/kg, high = 5.0 IU/kg) could impact behavior across life in prairie voles. We found increases in fecal boli production during open field and novel object recognition testing for the medium dose in both males and females. Medium-dose females also had significantly more play bouts than control when exposed to novel conspecifics during the juvenile period. Following sexual maturity, the medium and high doses of IN-AVP blocked partner preference formation in males, while no such impairment was found for any of the experimental groups in females. Finally, the high-dose selectively increased adult male aggression with novel conspecifics, but only after extended cohabitation with a mate. Our findings confirm that a single week of early IN-AVP treatment can have organizational effects on behavior across life in prairie voles. Specifically, the impairments in pair-bonding behavior experienced by male prairie voles should raise caution when the prosocial effects of acute IN-AVP demonstrated in other studies are extrapolated to long-term treatment.

  1. Developing a framework for evaluating tallgrass prairie reconstruction methods and management

    Science.gov (United States)

    Larson, Diane L.; Ahlering, Marissa; Drobney, Pauline; Esser, Rebecca; Larson, Jennifer L.; Viste-Sparkman, Karen

    2018-01-01

    The thousands of hectares of prairie reconstructed each year in the tallgrass prairie biome can provide a valuable resource for evaluation of seed mixes, planting methods, and post-planting management if methods used and resulting characteristics of the prairies are recorded and compiled in a publicly accessible database. The objective of this study was to evaluate the use of such data to understand the outcomes of reconstructions over a 10-year period at two U.S. Fish and Wildlife Service refuges. Variables included number of species planted, seed source (combine-harvest or combine-harvest plus hand-collected), fire history, and planting method and season. In 2015 we surveyed vegetation on 81 reconstructions and calculated proportion of planted species observed; introduced species richness; native species richness, evenness and diversity; and mean coefficient of conservatism. We conducted exploratory analyses to learn how implied communities based on seed mix compared with observed vegetation; which seeding or management variables were influential in the outcome of the reconstructions; and consistency of responses between the two refuges. Insights from this analysis include: 1) proportion of planted species observed in 2015 declined as planted richness increased, but lack of data on seeding rate per species limited conclusions about value of added species; 2) differing responses to seeding and management between the two refuges suggest the importance of geographic variability that could be addressed using a public database; and 3) variables such as fire history are difficult to quantify consistently and should be carefully evaluated in the context of a public data repository.

  2. Climate change alters plant biogeography in Mediterranean prairies along the West Coast, USA.

    Science.gov (United States)

    Pfeifer-Meister, Laurel; Bridgham, Scott D; Reynolds, Lorien L; Goklany, Maya E; Wilson, Hannah E; Little, Chelsea J; Ferguson, Aryana; Johnson, Bart R

    2016-02-01

    Projected changes in climate are expected to have widespread effects on plant community composition and diversity in coming decades. However, multisite, multifactor climate manipulation studies that have examined whether observed responses are regionally consistent and whether multiple climate perturbations are interdependent are rare. Using such an experiment, we quantified how warming and increased precipitation intensity affect the relative dominance of plant functional groups and diversity across a broad climate gradient of Mediterranean prairies. We implemented a fully factorial climate manipulation of warming (+2.5-3.0 °C) and increased wet-season precipitation (+20%) at three sites across a 520-km latitudinal gradient in the Pacific Northwest, USA. After seeding with a nearly identical mix of native species at all sites, we measured plant community composition (i.e., cover, richness, and diversity), temperature, and soil moisture for 3 years. Warming and the resultant drying of soils altered plant community composition, decreased native diversity, and increased total cover, with warmed northern communities becoming more similar to communities further south. In particular, after two full years of warming, annual cover increased and forb cover decreased at all sites mirroring the natural biogeographic pattern. This suggests that the extant climate gradient of increasing heat and drought severity is responsible for a large part of the observed biogeographic pattern of increasing annual invasion in US West Coast prairies as one moves further south. Additional precipitation during the rainy season did little to relieve drought stress and had minimal effects on plant community composition. Our results suggest that the projected increase in drought severity (i.e., hotter, drier summers) in Pacific Northwest prairies may lead to increased invasion by annuals and a loss of forbs, similar to what has been observed in central and southern California, resulting in

  3. Early Intranasal Vasopressin Administration Impairs Partner Preference in Adult Male Prairie Voles (Microtus ochrogaster

    Directory of Open Access Journals (Sweden)

    Trenton C. Simmons

    2017-06-01

    Full Text Available Research supports a modulatory role for arginine vasopressin (AVP in the expression of socially motivated behaviors in mammals. The acute effects of AVP administration are demonstrably pro-social across species, providing the justification for an ever-increasing measure of clinical interest over the last decade. Combining these results with non-invasive intranasal delivery results in an attractive system for offering intranasal AVP (IN-AVP as a therapeutic for the social impairments of children with autism spectrum disorder. But, very little is known about the long-term effects of IN-AVP during early development. In this experiment, we explored whether a single week of early juvenile administration of IN-AVP (low = 0.05 IU/kg, medium = 0.5 IU/kg, high = 5.0 IU/kg could impact behavior across life in prairie voles. We found increases in fecal boli production during open field and novel object recognition testing for the medium dose in both males and females. Medium-dose females also had significantly more play bouts than control when exposed to novel conspecifics during the juvenile period. Following sexual maturity, the medium and high doses of IN-AVP blocked partner preference formation in males, while no such impairment was found for any of the experimental groups in females. Finally, the high-dose selectively increased adult male aggression with novel conspecifics, but only after extended cohabitation with a mate. Our findings confirm that a single week of early IN-AVP treatment can have organizational effects on behavior across life in prairie voles. Specifically, the impairments in pair-bonding behavior experienced by male prairie voles should raise caution when the prosocial effects of acute IN-AVP demonstrated in other studies are extrapolated to long-term treatment.

  4. Characteristics of lesser prairie-chicken (Tympanuchus pallidicinctus) long-distance movements across their distribution

    Science.gov (United States)

    Earl, Julia E.; Fuhlendorf, Samuel D.; Haukos, David A.; Tanner, Ashley M.; Elmore, Dwayne; Carleton, Scott A.

    2016-01-01

    Long-distance movements are important adaptive behaviors that contribute to population, community, and ecosystem connectivity. However, researchers have a poor understanding of the characteristics of long-distance movements for most species. Here, we examined long-distance movements for the lesser prairie-chicken (Tympanuchus pallidicinctus), a species of conservation concern. We addressed the following questions: (1) At what distances could populations be connected? (2) What are the characteristics and probability of dispersal movements? (3) Do lesser prairie-chickens display exploratory and round-trip movements? (4) Do the characteristics of long-distance movements vary by site? Movements were examined from populations using satellite GPS transmitters across the entire distribution of the species in New Mexico, Oklahoma, Kansas, and Colorado. Dispersal movements were recorded up to 71 km net displacement, much farther than hitherto recorded. These distances suggest that there may be greater potential connectivity among populations than previously thought. Dispersal movements were displayed primarily by females and had a northerly directional bias. Dispersal probabilities ranged from 0.08 to 0.43 movements per year for both sexes combined, although these movements averaged only 16 km net displacement. Lesser prairie-chickens displayed both exploratory foray loops and round-trip movements. Half of round-trip movements appeared seasonal, suggesting a partial migration in some populations. None of the long-distance movements varied by study site. Data presented here will be important in parameterizing models assessing population viability and informing conservation planning, although further work is needed to identify landscape features that may reduce connectivity among populations.

  5. Evaluation of capture techniques on lesser prairie-chicken trap injury and survival

    Science.gov (United States)

    Grisham, Blake A.; Boal, Clint W.; Mitchell, Natasia R.; Gicklhorn, Trevor S.; Borsdorf, Philip K.; Haukos, David A.; Dixon, Charles

    2015-01-01

    Ethical treatment of research animals is required under the Animal Welfare Act. This includes trapping methodologies that reduce unnecessary pain and duress. Traps used in research should optimize animal welfare conditions within the context of the proposed research study. Several trapping techniques are used in the study of lesser prairie-chickens, despite lack of knowledge of trap injury caused by the various methods. From 2006 to 2012, we captured 217, 40, and 144 lesser prairie-chickens Tympanuchus pallidicinctus using walk-in funnel traps, rocket nets, and drop nets, respectively, in New Mexico and Texas, to assess the effects of capture technique on injury and survival of the species. We monitored radiotagged, injured lesser prairie-chickens 7–65 d postcapture to assess survival rates of injured individuals. Injuries occurred disproportionately among trap type, injury type, and sex. The predominant injuries were superficial cuts to the extremities of males captured in walk-in funnel traps. However, we observed no mortalities due to trapping, postcapture survival rates of injured birds did not vary across trap types, and the daily survival probability of an injured and uninjured bird was ≥99%. Frequency and intensity of injuries in walk-in funnel traps are due to the passive nature of these traps (researcher cannot select specific individuals for capture) and incidental capture of individuals not needed for research. Comparatively, rocket nets and drop nets allow observers to target birds for capture and require immediate removal of captured individuals from the trap. Based on our results, trap injuries would be reduced if researchers monitor and immediately remove birds from walk-in funnels before they injure themselves; move traps to target specific birds and reduce recaptures; limit the number of consecutive trapping days on a lek; and use proper netting techniques that incorporate quick, efficient, trained handling procedures.

  6. Cover Image Identification of Plant Species for Crop Pollinator Habitat Enhancement in the Northern Prairies

    Directory of Open Access Journals (Sweden)

    Diana Bizecki Robson

    2014-09-01

    Full Text Available Wild pollinators have a positive impact on the productivity of insect-pollinated crops. Consequently, landowners are being encouraged to maintain and grow wildflower patches to provide habitat for important pollinators. Research on plant-pollinator interaction matrices indicates that a small number of “core” plants provide a disproportionately high amount of pollen and nectar to insects. This matrix data can be used to help design wildflower plantings that provide optimal resources for desirable pollinators. Existing interaction matrices from three tall grass prairie preserves in the northern prairies were used to identify core plant species that are visited by wild pollinators of a common insect-pollinated crop, namely canola (Brassica napus L.. The wildflower preferences of each insect taxon were determined using quantitative insect visitation and floral abundance data. Phenology data were used to calculate the degree of floral synchrony between the wildflowers and canola. Using this information I ranked the 41 wildflowers that share insect visitors with canola according to how useful they are for providing pollinators with forage before and after canola flowers. The top five species were smooth blue aster (Symphyotrichum laeve (L. A. & D. Löve, stiff goldenrod (Solidago rigida L., wild bergamot (Monarda fistulosa L., purple prairie-clover (Dalea purpurea Vent. and Lindley’s aster (Symphyotrichum ciliolatum (Lindl. A. & D. Löve. By identifying the most important wild insects for crop pollination, and determining when there will be “pollen and nectar gaps”, appropriate plant species can be selected for companion plantings to increase pollinator populations and crop production.

  7. Monkeypox disease transmission in an experimental setting: prairie dog animal model.

    Directory of Open Access Journals (Sweden)

    Christina L Hutson

    Full Text Available Monkeypox virus (MPXV is considered the most significant human public health threat in the genus Orthopoxvirus since the eradication of variola virus (the causative agent of smallpox. MPXV is a zoonotic agent endemic to forested areas of Central and Western Africa. In 2003, MPXV caused an outbreak in the United States due to the importation of infected African rodents, and subsequent sequential infection of North American prairie dogs (Cynomys ludovicianus and humans. In previous studies, the prairie dog MPXV model has successfully shown to be very useful for understanding MPXV since the model emulates key characteristics of human monkeypox disease. In humans, percutaneous exposure to animals has been documented but the primary method of human-to-human MPXV transmission is postulated to be by respiratory route. Only a few animal model studies of MPXV transmission have been reported. Herein, we show that MPXV infected prairie dogs are able to transmit the virus to naive animals through multiple transmission routes. All secondarily exposed animals were infected with MPXV during the course of the study. Notably, animals secondarily exposed appeared to manifest more severe disease; however, the disease course was very similar to those of experimentally challenged animals including inappetence leading to weight loss, development of lesions, production of orthopoxvirus antibodies and shedding of similar levels or in some instances higher levels of MPXV from the oral cavity. Disease was transmitted via exposure to contaminated bedding, co-housing, or respiratory secretions/nasal mucous (we could not definitively say that transmission occurred via respiratory route exclusively. Future use of the model will allow us to evaluate infection control measures, vaccines and antiviral strategies to decrease disease transmission.

  8. Simplified Volume-Area-Depth Method for Estimating Water Storage of Isolated Prairie Wetlands

    Science.gov (United States)

    Minke, A. G.; Westbrook, C. J.; van der Kamp, G.

    2009-05-01

    There are millions of wetlands in shallow depressions on the North American prairies but the quantity of water stored in these depressions remains poorly understood. Hayashi and van der Kamp (2000) used the relationship between volume (V), area (A) and depth (h) to develop an equation for estimating wetland storage. We tested the robustness of their full and simplified V-A-h methods to accurately estimate volume for the range of wetland shapes occurring across the Prairie Pothole Region. These results were contrasted with two commonly implemented V-A regression equations to determine which method estimates volume most accurately. We used detailed topographic data for 27 wetlands in Smith Creek and St. Denis watersheds, Saskatchewan that ranged in surface area and basin shape. The full V-A-h method was found to accurately estimate storage (errors A equations performed poorly, with volume underestimated by an average of 15% and 50% Analysis of the simplified V-A-h method showed that volume errors of spring, following snowmelt when water levels are near the peak, and also in late summer prior to water depths dropping below 10 cm. These guidelines for applying the simplified V-A-h method will allow for accurate volume estimations when detailed topographic data are not available. Since the V-A equations were outperformed by the full and simplified V-A-h methods, we conclude that wetland depth and basin morphology should be considered when estimating volume. This will improve storage estimations of natural and human-impacted wetlands in the PPR. Considering more than half of prairie wetlands have been de-water though agricultural drainage, it is important to have accurate methods to estimate storage in order to assess the impact of wetland storage on watershed runoff.

  9. Pharmacokinetic Profiles of Meloxicam and Sustained-release Buprenorphine in Prairie Dogs (Cynomys ludovicianus).

    Science.gov (United States)

    Cary, Cynthia D; Lukovsky-Akhsanov, Nicole L; Gallardo-Romero, Nadia F; Tansey, Cassandram M; Ostergaard, Sharon D; Taylor, Willie D; Morgan, Clint N; Powell, Nathaniel; Lathrop, George W; Hutson, Christina L

    2017-03-01

    In this study, we evaluated the pharmacokinetic profiles of meloxicam and sustained-release (SR) buprenorphine in prairie dogs. The 4 treatment groups were: low-dose meloxicam (0.2 mg/kg SC), high-dose meloxicam (4 mg/kg SC), low-dose buprenorphine SR (0.9 mg/kg SC), and high-dose buprenorphine SR (1.2 mg/kg SC). The highest plasma concentrations occurred within 4 h of administration for both meloxicam treatment groups. The therapeutic range of meloxicam in prairie dogs is currently unknown. However, as compared with the therapeutic range documented in other species (0.39 - 0.91 μg/mL), the mean plasma concentration of meloxicam fell below the minimal therapeutic range prior to 24 h in the low-dose group but remained above therapeutic levels for more than 72 h in the high-dose group. These findings suggest that the current meloxicam dosing guidelines may be subtherapeutic for prairie dogs. The highest mean plasma concentration for buprenorphine SR occurred at the 24-h time point (0.0098 μg/mL) in the low-dose group and at the 8-h time point (0.015 μg/mL) for the high-dose group. Both dosages of buprenorphine SR maintained likely plasma therapeutic levels (0.001 μg/mL, based on previous rodent studies) beyond 72 h. Given the small scale of the study and sample size, statistical analysis was not performed. The only adverse reactions in this study were mild erythematous reactions at injection sites for buprenorphine SR.

  10. Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles.

    Science.gov (United States)

    Grippo, Angela J; Gerena, Davida; Huang, Jonathan; Kumar, Narmda; Shah, Maulin; Ughreja, Raj; Carter, C Sue

    2007-01-01

    Supportive social interactions may be protective against stressors and certain mental and physical illness, while social isolation may be a powerful stressor. Prairie voles are socially monogamous rodents that model some of the behavioral and physiological traits displayed by humans, including sensitivity to social isolation. Neuroendocrine and behavioral parameters, selected for their relevance to stress and depression, were measured in adult female and male prairie voles following 4 weeks of social isolation versus paired housing. In Experiment 1, oxytocin-immunoreactive cell density was higher in the hypothalamic paraventricular nucleus (PVN) and plasma oxytocin was elevated in isolated females, but not in males. In Experiment 2, sucrose intake, used as an operational definition of hedonia, was reduced in both sexes following 4 weeks of isolation. Animals then received a resident-intruder test, and were sacrificed either 10 min later for the analysis of circulating hormones and peptides, or 2h later to examine neural activation, indexed by c-Fos expression in PVN cells immunoreactive for oxytocin or corticotropin-releasing factor (CRF). Compared to paired animals, plasma oxytocin, ACTH and corticosterone were elevated in isolated females and plasma oxytocin was elevated in isolated males, following the resident-intruder test. The proportion of cells double-labeled for c-Fos and oxytocin or c-Fos and CRF was elevated in isolated females, and the proportion of cells double-labeled for c-Fos and oxytocin was elevated in isolated males following this test. These findings suggest that social isolation induces behavioral and neuroendocrine responses relevant to depression in male and female prairie voles, although neuroendocrine responses in females may be especially sensitive to isolation.

  11. Chlorophacinone residues in mammalian prey at a black-tailed prairie dog colony

    Science.gov (United States)

    Vyas, Nimish B.; Hulse, Craig S.; Rice, Clifford P.

    2012-01-01

    Black-tailed prairie dogs (BTPDs), Cynomys ludovicianus, are an important prey for raptors; therefore, the use of the rodenticide Rozol (0.005% chlorophacinone active ingredient) to control BTPDs raises concern for secondary poisonings resulting from the consumption of contaminated prey by raptors. In the present study, the authors observed Rozol exposure and adverse effects to mammalian prey on 11 of 12 search days of the study. Mammalian hepatic chlorophacinone residues ranged from 0.44 to 7.56 µg/g. Poisoned prey availability was greater than previously reported.

  12. Spatially explicit modeling of lesser prairie-chicken lek density in Texas

    Science.gov (United States)

    Timmer, Jennifer M.; Butler, M.J.; Ballard, Warren; Boal, Clint W.; Whitlaw, Heather A.

    2014-01-01

    As with many other grassland birds, lesser prairie-chickens (Tympanuchus pallidicinctus) have experienced population declines in the Southern Great Plains. Currently they are proposed for federal protection under the Endangered Species Act. In addition to a history of land-uses that have resulted in habitat loss, lesser prairie-chickens now face a new potential disturbance from energy development. We estimated lek density in the occupied lesser prairie-chicken range of Texas, USA, and modeled anthropogenic and vegetative landscape features associated with lek density. We used an aerial line-transect survey method to count lesser prairie-chicken leks in spring 2010 and 2011 and surveyed 208 randomly selected 51.84-km(2) blocks. We divided each survey block into 12.96-km(2) quadrats and summarized landscape variables within each quadrat. We then used hierarchical distance-sampling models to examine the relationship between lek density and anthropogenic and vegetative landscape features and predict how lek density may change in response to changes on the landscape, such as an increase in energy development. Our best models indicated lek density was related to percent grassland, region (i.e., the northeast or southwest region of the Texas Panhandle), total percentage of grassland and shrubland, paved road density, and active oil and gas well density. Predicted lek density peaked at 0.39leks/12.96km(2) (SE=0.09) and 2.05leks/12.96km(2) (SE=0.56) in the northeast and southwest region of the Texas Panhandle, respectively, which corresponds to approximately 88% and 44% grassland in the northeast and southwest region. Lek density increased with an increase in total percentage of grassland and shrubland and was greatest in areas with lower densities of paved roads and lower densities of active oil and gas wells. We used the 2 most competitive models to predict lek abundance and estimated 236 leks (CV=0.138, 95% CI=177-306leks) for our sampling area. Our results suggest that

  13. Conflicting research on the demography, ecology, and social behavior of Gunnison's prairie dogs (Cynomys gunnisoni)

    Science.gov (United States)

    Hoogland, John L.; Cully, Jack F.; Rayor, Linda S.; Fitzgerald, James P.

    2012-01-01

    Gunnison's prairie dogs (Cynomys gunnisoni) are rare, diurnal, colonial, burrowing, ground-dwelling squirrels. Studies of marked individuals living under natural conditions in the 1970s, 1980s, and 1990s showed that males are heavier than females throughout the year; that adult females living in the same territory are consistently close kin; and that females usually mate with the sexually mature male(s) living in the home territory. Research from 2007 through 2010 challenges all 3 of these findings. Here we discuss how different methods might have led to the discrepancies.

  14. Use of Rhodamine B as a biomarker for oral plague vaccination of prairie dogs

    Science.gov (United States)

    Fernandez, Julia Rodriguez-Ramos; Rocke, Tonie E.

    2011-01-01

    Oral vaccination against Yersinia pestis could provide a feasible approach for controlling plague in prairie dogs (Cynomys spp.) for conservation and public health purposes. Biomarkers are useful in wildlife vaccination programs to demonstrate exposure to vaccine baits. Rhodamine B (RB) was tested as a potential biomarker for oral plague vaccination because it allows nonlethal sampling of animals through hair, blood, and feces. We found that RB is an appropriate marker for bait uptake studies of C. ludovicianus) when used at concentrations 10 mg RB per kg target animal mass. Whiskers with follicles provided the best sample for RB detection.

  15. Microsatellite Markers in the Western Prairie Fringed Orchid, Platanthera praeclara (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Andrew A. Ross

    2013-04-01

    Full Text Available Premise of the study: Primers for 31 microsatellite-containing loci were developed for the threatened orchid Platanthera praeclara to enable characterization of the population genetics of this tallgrass prairie native. Methods and Results: Sixteen polymorphic microsatellite loci were identified from four populations. Six of these loci were not in linkage disequilibrium. The average number of alleles per locus per population ranged from 6.4 to 8.9. Conclusions: The results indicate that six of the polymorphic loci will be useful in future studies of population structure, gene flow, and genetic diversity.

  16. Coleoptera species inhabiting prairie wetlands of the Cottonwood Lake Area, Stutsman County, North Dakota

    Science.gov (United States)

    Hanson, B.A.; Swanson, G.A.

    1989-01-01

    The aquatic Coleoptera of a prairie wetland complex in Stutsman County, North Dakota, were collected from April 1979 to November 1980. Identification of 2594 individuals confirmed 57 species, including seven new records for North Dakota. Two seasonally flooded and two semipermanent wetlands, totaling 7.43 ha, contained 53% of the Dytiscidae, 43% of the Haliplidae, 38% of the Hydrophilidae, and 22% of the Gyrinidae species previously identified from North Dakota. Although 49.1% of the Coleoptera species occurred in both types of wetlands, the occurrence of 29 species varied by wetland class.

  17. Native Prairie Adaptive Management: a multi region adaptive approach to invasive plant management on Fish and Wildlife Service owned native prairies

    Science.gov (United States)

    Gannon, Jill J.; Shaffer, Terry L.; Moore, Clinton T.

    2013-01-01

    Much of the native prairie managed by the U.S. Fish and Wildlife Service (FWS) in the Prairie Pothole Region (PPR) of the northern Great Plains is extensively invaded by the introduced cool-season grasses, smooth brome (Bromus inermis) and Kentucky bluegrass (Poa pratensis). Management to suppress these invasive plants has had poor to inconsistent success. The central challenge to managers is selecting appropriate management actions in the face of biological and environmental uncertainties. In partnership with the FWS, the U.S. Geological Survey (USGS) developed an adaptive decision support framework to assist managers in selecting management actions under uncertainty and maximizing learning from management outcomes. This joint partnership is known as the Native Prairie Adaptive Management (NPAM) initiative. The NPAM decision framework is built around practical constraints faced by FWS refuge managers and includes identification of the management objective and strategies, analysis of uncertainty and construction of competing decision models, monitoring, and mechanisms for model feedback and decision selection. Nineteen FWS field stations, spanning four states of the PPR, have participated in the initiative. These FWS cooperators share a common management objective, available management strategies, and biological uncertainties. Though the scope is broad, the initiative interfaces with individual land managers who provide site-specific information and receive updated decision guidance that incorporates understanding gained from the collective experience of all cooperators. We describe the technical components of this approach, how the components integrate and inform each other, how data feedback from individual cooperators serves to reduce uncertainty across the whole region, and how a successful adaptive management project is coordinated and maintained on a large scale. During an initial scoping workshop, FWS cooperators developed a consensus management objective

  18. A decision support tool for adaptive management of native prairie ecosystems

    Science.gov (United States)

    Hunt, Victoria M.; Jacobi, Sarah; Gannon, Jill J.; Zorn, Jennifer E.; Moore, Clinton; Lonsdorf, Eric V.

    2016-01-01

    The Native Prairie Adaptive Management initiative is a decision support framework that provides cooperators with management-action recommendations to help them conserve native species and suppress invasive species on prairie lands. We developed a Web-based decision support tool (DST) for the U.S. Fish and Wildlife Service and the U.S. Geological Survey initiative. The DST facilitates cross-organizational data sharing, performs analyses to improve conservation delivery, and requires no technical expertise to operate. Each year since 2012, the DST has used monitoring data to update ecological knowledge that it translates into situation-specific management-action recommendations (e.g., controlled burn or prescribed graze). The DST provides annual recommendations for more than 10,000 acres on 20 refuge complexes in four U.S. states. We describe how the DST promotes the long-term implementation of the program for which it was designed and may facilitate decision support and improve ecological outcomes of other conservation efforts.

  19. Chronic social isolation enhances reproduction in the monogamous prairie vole (Microtus ochrogaster).

    Science.gov (United States)

    Perry, Adam N; Carter, C Sue; Cushing, Bruce S

    2016-06-01

    Chronic stressors are generally considered to disrupt reproduction and inhibit mating. Here we test the hypothesis that a chronic stressor, specifically social isolation, can facilitate adaptive changes that enhance/accelerate reproductive effort. In general, monogamous species display high levels of prosociality, delayed sexual maturation, and greater parental investment in fewer, higher quality offspring compared with closely related polygynous species. We predicted that chronic social isolation would promote behavioral and neurochemical patterns in prairie voles associated with polygyny. Male and female prairie voles were isolated for four weeks and changes in mating behavior, alloparental care, estrogen receptor (ER) α expression and tyrosine hydroxylase (TH) expression in brain regions regulating sociosexual behavior were examined. In males, isolation accelerated copulation, increased ERα in the medial amygdala (MEApd) and bed nucleus of the stria terminalis (BSTpm), and reduced TH expression in the MEApd and BSTpm, but had no effect on alloparental behavior. In females, isolation resulted in more rapid estrus induction and reduced TH expression in the MEApd and BSTpm, but had no effect on estradiol sensitivity or ERα expression. The results support the hypothesis that ERα expression in the MEApd and BSTpm is a critical determinant of male copulatory behavior and/or mating system. The lack of change in alloparental behavior suggests that changes in prosocial behavior are selective and regulated by different mechanisms. The results also suggest that TH in the MEApd and BSTpm may play a critical role in determining mating behavior in both sexes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Implications of climate change for wetland-dependent birds in the Prairie Pothole Region

    Science.gov (United States)

    Steen, Valerie; Skagen, Susan K.; Melcher, Cynthia P.

    2016-01-01

    The habitats and food resources required to support breeding and migrant birds dependent on North American prairie wetlands are threatened by impending climate change. The North American Prairie Pothole Region (PPR) hosts nearly 120 species of wetland-dependent birds representing 21 families. Strategic management requires knowledge of avian habitat requirements and assessment of species most vulnerable to future threats. We applied bioclimatic species distribution models (SDMs) to project range changes of 29 wetland-dependent bird species using ensemble modeling techniques, a large number of General Circulation Models (GCMs), and hydrological climate covariates. For the U.S. PPR, mean projected range change, expressed as a proportion of currently occupied range, was −0.31 (± 0.22 SD; range − 0.75 to 0.16), and all but two species were projected to lose habitat. Species associated with deeper water were expected to experience smaller negative impacts of climate change. The magnitude of climate change impacts was somewhat lower in this study than earlier efforts most likely due to use of different focal species, varying methodologies, different modeling decisions, or alternative GCMs. Quantification of the projected species-specific impacts of climate change using species distribution modeling offers valuable information for vulnerability assessments within the conservation planning process.

  1. Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie.

    Science.gov (United States)

    Schuster, Michael J

    2016-03-01

    Anthropogenic nitrogen deposition and projected increases in rainfall variability (the frequency of drought and heavy rainfall events) are expected to strongly influence ecosystem processes such as litter decomposition. However, how these two global change factors interact to influence litter decomposition is largely unknown. I examined how increased rainfall variability and nitrogen addition affected mass and nitrogen loss of litter from two tallgrass prairie species, Schizachyrium scoparium and Solidago canadensis, and isolated the effects of each during plant growth and during litter decomposition. I increased rainfall variability by consolidating ambient rainfall into larger events and simulated chronic nitrogen deposition using a slow-release urea fertilizer. S. scoparium litter decay was more strongly regulated by the treatments applied during plant growth than by those applied during decomposition. During plant growth, increased rainfall variability resulted in S. scoparium litter that subsequently decomposed more slowly and immobilized more nitrogen than litter grown under ambient conditions, whereas nitrogen addition during plant growth accelerated subsequent mass loss of S. scoparium litter. In contrast, S. canadensis litter mass and N losses were enhanced under either N addition or increased rainfall variability both during plant growth and during decomposition. These results suggest that ongoing changes in rainfall variability and nitrogen availability are accelerating nutrient cycling in tallgrass prairies through their combined effects on litter quality, environmental conditions, and plant community composition.

  2. Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses.

    Science.gov (United States)

    Wilson, Gail W T; Hickman, Karen R; Williamson, Melinda M

    2012-07-01

    Soil organisms play important roles in regulating ecosystem-level processes and the association of arbuscular mycorrhizal (AM) fungi with a plant species can be a central force shaping plant species' ecology. Understanding how mycorrhizal associations are affected by plant invasions may be a critical aspect of the conservation and restoration of native ecosystems. We examined the competitive ability of old world bluestem, a non-native grass (Caucasian bluestem [Bothriochloa bladhii]), and the influence of B. bladhii competition on AM root colonization of native warm-season prairie grasses (Andropogon gerardii or Schizachyrium scoparium), using a substitutive design greenhouse competition experiment. Competition by the non-native resulted in significantly reduced biomass production and AM colonization of the native grasses. To assess plant-soil feedbacks of B. bladhii and Bothriochloa ischaemum, we conducted a second greenhouse study which examined soil alterations indirectly by assessing biomass production and AM colonization of native warm-season grasses planted into soil collected beneath Bothriochloa spp. This study was conducted using soil from four replicate prairie sites throughout Kansas and Oklahoma, USA. Our results indicate that a major mechanism in plant growth suppression following invasion by Bothriochloa spp. is the alteration in soil microbial communities. Plant growth was tightly correlated with AM root colonization demonstrating that mycorrhizae play an important role in the invasion of these systems by Bothriochloa spp. and indicating that the restoration of native AM fungal communities may be a fundamental consideration for the successful establishment of native grasses into invaded sites.

  3. Climate variability and change and water supply on the Canadian Prairies

    International Nuclear Information System (INIS)

    Nicholaichuk, W.

    1991-01-01

    The status of water resources on the Canadian Prairies, the related results of recent climate change studies, and research needs, are reviewed. With climate change, it is expected that farming practices will be pushed northwards, the precipitation/evapotranspiration balance will shift, and changes will occur in streamflow, flood risk and water quality. While all models show a warming trend on the Prairies, they differ on changes that might be expected. Some indicate increases in precipitation while others indicate decreases. Required research needed to improve understanding of the issues includes: models to improve computations of evapotranspiration and evaporation over large areas; reliable models of glacier behavior and responses to climatic variation and change; improved areal measurements for precipitation, evaporation, soil moisture, groundwater and runoff; improvements in global circulation models that include feedback mechanisms based on physical land/atmosphere processes; validation of hydrological processes at different levels; and assessment of the role of landscape in regional processes under natural conditions and human influence. 6 refs., 1 tab

  4. Ecological and Landscape Drivers of Neonicotinoid Insecticide Detections and Concentrations in Canada's Prairie Wetlands.

    Science.gov (United States)

    Main, Anson R; Michel, Nicole L; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2015-07-21

    Neonicotinoids are commonly used seed treatments on Canada's major prairie crops. Transported via surface and subsurface runoff into wetlands, their ultimate aquatic fate remains largely unknown. Biotic and abiotic wetland characteristics likely affect neonicotinoid presence and environmental persistence, but concentrations vary widely between wetlands that appear ecologically (e.g., plant composition) and physically (e.g., depth) similar for reasons that remain unclear. We conducted intensive surveys of 238 wetlands, and documented 59 wetland (e.g., dominant plant species) and landscape (e.g., surrounding crop) characteristics as part of a novel rapid wetland assessment system. We used boosted regression tree (BRT) analysis to predict both probability of neonicotinoid analytical detection and concentration. BRT models effectively predicted the deviance in neonicotinoid detection (62.4%) and concentration (74.7%) from 21 and 23 variables, respectively. Detection was best explained by shallow marsh plant species identity (34.8%) and surrounding crop (13.9%). Neonicotinoid concentration was best explained by shallow marsh plant species identity (14.9%) and wetland depth (14.2%). Our research revealed that plant composition is a key indicator and/or driver of neonicotinoid presence and concentration in Prairie wetlands. We recommend wetland buffers consisting of diverse native vegetation be retained or restored to minimize neonicotinoid transport and retention in wetlands, thereby limiting their potential effects on wetland-dependent organisms.

  5. Northern Prairie Wildlife Research Center—Celebrating 50 years of science

    Science.gov (United States)

    Austin, Jane E.; Shaffer, Terry L.; Igl, Lawrence D.; Johnson, Douglas H.; Krapu, Gary L.; Larson, Diane L.; Mech, L. David; Mushet, David M.; Sovada, Marsha A.

    2017-10-30

    The Northern Prairie Wildlife Research Center (NPWRC) celebrated its 50-year anniversary in 2015. This report is written in support of that observance. We document why and how the NPWRC came to be and describe some of its many accomplishments and the influence the Center’s research program has had on natural resource management. The history is organized by major research themes, proceeds somewhat chronologically within each theme, and covers the Center’s first 50 years of research. During that period, Center scientists authored more than 1,700 publications and reports. More than 1,000 seasonal or temporary field personnel, and more than 100 graduate students, contributed to the Center’s success; many went on to have exemplary careers in natural resource management, conservation, and education. The mission of the Northern Prairie Wildlife Research Center today remains true to the original vision: to provide the knowledge needed to understand, conserve, and manage the Nation’s natural resources for current and future generations, with an emphasis on species and ecosystems of the northern Great Plains. The Center’s first 50 years of applied biological research provides a deep scientific foundation on which to address emerging issues for the natural resources in the northern Great Plains and beyond.

  6. Regional Variation in mtDNA of the Lesser Prairie-Chicken

    Science.gov (United States)

    Hagen, Christian A.; Pitman, James C.; Sandercock, Brett K.; Wolfe, Don H.; Robel, Robel J.; Applegate, Roger D.; Oyler-McCance, Sara J.

    2010-01-01

    Cumulative loss of habitat and long-term decline in the populations of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) have led to concerns for the species' viability throughout its range in the southern Great Plains. For more efficient conservation past and present distributions of genetic variation need to be understood. We examined the distribution of mitochondrial DNA (mtDNA) variation in the Lesser Prairie-Chicken across Kansas, Colorado, Oklahoma, and New Mexico. Throughout the range we found little genetic differentiation except for the population in New Mexico, which was significantly different from most other publications. We did, however, find significant isolation by distance at the rangewide scale (r=0.698). We found no relationship between haplotype phylogeny and geography, and our analyses provide evidence for a post-glacial population expansion within the species that is consistent with the idea that speciation within Tympanuchus is recent. Conservation actions that increase the likelihood of genetically viable populations in the future should be evaluated for implementation.

  7. Effects of livestock grazing and well construction on prairie vegetation structure surrounding shallow natural gas wells.

    Science.gov (United States)

    Koper, N; Molloy, K; Leston, L; Yoo, J

    2014-11-01

    Short and sparse vegetation near shallow gas wells has generally been attributed to residual effects from well construction, but other mechanisms might also explain these trends. We evaluated effects of distance to shallow gas wells on vegetation and bare ground in mixed-grass prairies in southern Alberta, Canada, from 2010 to 2011. We then tested three hypotheses to explain why we found shorter vegetation and more bare ground near wells, using cattle fecal pat transects from 2012, and our vegetation quadrats. We evaluated whether empirical evidence suggested that observed patterns were driven by (1) higher abundance of crested wheatgrass (Agropyron cristatum) near wells, (2) residual effects of well construction, or (3) attraction of livestock to wells. Crested wheatgrass occurrence was higher near wells, but this did not explain effects of wells on vegetation structure. Correlations between distance to wells and litter depth were the highest near newer wells, providing support for the construction hypothesis. However, effects of distance to wells on other vegetation metrics did not decline as time since well construction increased, suggesting that other mechanisms explained observed edge effects. Cattle abundance was substantially higher near wells, and this effect corresponded with changes in habitat structure. Our results suggest that both residual effects of well construction and cattle behavior may explain effects of shallow gas wells on habitat structure in mixed-grass prairies, and thus, to be effective, mitigation strategies must address both mechanisms.

  8. Groundwater connectivity of upland-embedded wetlands in the Prairie Pothole Region

    Science.gov (United States)

    Neff, Brian; Rosenberry, Donald O.

    2018-01-01

    Groundwater connections from upland-embedded wetlands to downstream waterbodies remain poorly understood. In principle, water from upland-embedded wetlands situated high in a landscape should flow via groundwater to waterbodies situated lower in the landscape. However, the degree of groundwater connectivity varies across systems due to factors such as geologic setting, hydrologic conditions, and topography. We use numerical models to evaluate the conditions suitable for groundwater connectivity between upland-embedded wetlands and downstream waterbodies in the prairie pothole region of North Dakota (USA). Results show groundwater connectivity between upland-embedded wetlands and other waterbodies is restricted when these wetlands are surrounded by a mounding water table. However, connectivity exists among adjacent upland-embedded wetlands where water–table mounds do not form. In addition, the presence of sand layers greatly facilitates groundwater connectivity of upland-embedded wetlands. Anisotropy can facilitate connectivity via groundwater flow, but only if it becomes unrealistically large. These findings help consolidate previously divergent views on the significance of local and regional groundwater flow in the prairie pothole region.

  9. Prescribed fire: A proposed management tool to facilitate black-tailed prairie dog (Cynomys ludovicianus) colony expansion

    Science.gov (United States)

    Felicia D. Archuleta; Paulette L. Ford

    2013-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) are considered a keystone species in grassland ecosystems. Through their burrowing activities, they conspicuously alter grassland landscapes and provide foraging, shelter and nesting habitat for a diverse array of grassland species, in addition to serving as prey for the endangered black-footed ferret (Mustela nigripes...

  10. Contributions of seed bank and vegetative propagules to vegetation composition on prairie dog colonies in western South Dakota

    Science.gov (United States)

    Emily R. Helms; Lan Xu; Jack L. Butler

    2012-01-01

    Characterizing the contributions of the seed bank and vegetative propagules will enhance our understanding of community resiliency associated with prairie dog disturbances. Our objective was to determine the effects of ecological condition (EC) and distance from burrows on the soil seed bank and vegetative propagules. Based on species composition of the extant...

  11. Fine-scale habitat use of reintroduced black-footed ferrets on prairie dog colonies in New Mexico

    Science.gov (United States)

    Chipault, Jennifer G.; Biggins, Dean E.; Detling, James K.; Long, Dustin H.; Reich, Robin M.

    2012-01-01

    Black-footed ferrets (Mustela nigripes) are among the most endangered animals in North America. Reintroductions of captive-born ferrets onto prairie dog (Cynomys spp.) colonies are crucial to the conservation of the species. In September 2007, captive-born ferrets were released on a black-tailed prairie dog (Cynomys ludovicianus) colony at the Vermejo Park Ranch, New Mexico. Ferret kits experimentally released in areas of comparatively low and high prairie dog burrow densities were located via spotlight surveys. Some maturing ferret kits were subsequently translocated to areas of low and high burrow densities on nearby prairie dog colonies. For 2 months, fine-scale habitat use was quantified by mapping all burrow openings within a 30-m radius of each ferret location. Spatial statistics accounted for autocorrelation in the burrow densities in areas used by ferrets. It was hypothesized that ferrets would select areas of high burrow densities within colonies; however, burrow densities in areas used by ferrets were generally similar to the available burrow densities. Because ferrets used areas with burrow densities similar to densities available at the colony level and because of the potential energetic benefits for ferrets using areas with high burrow densities, releasing ferrets on colonies with high burrow densities might increase reintroduction success.

  12. Resource selection models are useful in predicting fine-scale distributions of black-footed ferrets in prairie dog colonies

    Science.gov (United States)

    Eads, David A.; Jachowski, David S.; Biggins, Dean E.; Livieri, Travis M.; Matchett, Marc R.; Millspaugh, Joshua J.

    2012-01-01

    Wildlife-habitat relationships are often conceptualized as resource selection functions (RSFs)—models increasingly used to estimate species distributions and prioritize habitat conservation. We evaluated the predictive capabilities of 2 black-footed ferret (Mustela nigripes) RSFs developed on a 452-ha colony of black-tailed prairie dogs (Cynomys ludovicianus) in the Conata Basin, South Dakota. We used the RSFs to project the relative probability of occurrence of ferrets throughout an adjacent 227-ha colony. We evaluated performance of the RSFs using ferret space use data collected via postbreeding spotlight surveys June–October 2005–2006. In home ranges and core areas, ferrets selected the predicted "very high" and "high" occurrence categories of both RSFs. Count metrics also suggested selection of these categories; for each model in each year, approximately 81% of ferret locations occurred in areas of very high or high predicted occurrence. These results suggest usefulness of the RSFs in estimating the distribution of ferrets throughout a black-tailed prairie dog colony. The RSFs provide a fine-scale habitat assessment for ferrets that can be used to prioritize releases of ferrets and habitat restoration for prairie dogs and ferrets. A method to quickly inventory the distribution of prairie dog burrow openings would greatly facilitate application of the RSFs.

  13. Spatial and temporal optimization in habitat placement for a threatened plant: the case of the western prairie fringed orchid

    Science.gov (United States)

    John Hof; Carolyn Hull Sieg; Michael Bevers

    1999-01-01

    This paper investigates an optimization approach to determining the placement and timing of habitat protection for the western prairie fringed orchid. This plant’s population dynamics are complex, creating a challenging optimization problem. The sensitivity of the orchid to random climate conditions is handled probabilistically. The plant’s seed, protocorm and above-...

  14. Nest Success and Cause-Specific Nest Failure of Grassland Passerines Breeding in Prairie Grazed by Livestock

    Science.gov (United States)

    This manuscript describes two years of field research on ground-nesting songbird species at Zumwalt Prairie Reserve, northeastern Oregon, USA. Cattle-grazing has long been suspected in declines of ground-nesting songbirds in grazed grassland, primarily due to increased trampling...

  15. A proxy of social mate choice in prairie warblers is correlated with consistent, rapid, low-pitched singing

    Science.gov (United States)

    Bruce E. Byers; Michael E. Akresh; David I. King

    2015-01-01

    In songbirds, female mate choice may be influenced by how well a male performs his songs. Performing songs well may be especially difficult if it requires maximizingmultiple aspects of performance simultaneously.We therefore hypothesized that, in a population of prairie warblers, the males most attractive to females would be those with superior performance in more than...

  16. Importance of prairie wetlands and avian prey to breeding Great Horned Owls (Bubo virginianus) in Northwestern North Dakota

    Science.gov (United States)

    Richard K. Murphy

    1997-01-01

    Prey use by Great Horned Owls (Bubo virginianus) is documented widely in North America, but not in the vast northern Great Plains. During spring through early summer 1986-1987, I recorded 2,900 prey items at 22 Great Horned Owl nesting areas in the prairie pothole farm- and rangelands of northwestern North Dakota. The owls relied heavily on wetland-...

  17. Schoolwomen of the Prairies and Plains: Personal Narratives from Iowa, Kansas, and Nebraska, 1860s-1920s.

    Science.gov (United States)

    Cordier, Mary Hurlbut

    This book depicts the lives of women who taught school in the late 19th and early 20th centuries on the prairies and plains of Iowa, Kansas, and Nebraska. The book is based on the narratives, letters, and diaries of 96 schoolwomen and on interviews with living pioneers, memoirs, school reports, photographs, and other documents. Part 1 includes…

  18. Droughts may increase susceptibility of prairie dogs to fleas: Incongruity with hypothesized mechanisms of plague cycles in rodents

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Long, Dustin H.; Gage, Kenneth L.; Antolin, Michael F.

    2016-01-01

    Plague is a reemerging, rodent-associated zoonosis caused by the flea-borne bacterium Yersinia pestis. As a vector-borne disease, rates of plague transmission may increase when fleas are abundant. Fleas are highly susceptible to desiccation under hot-dry conditions; we posited that their densities decline during droughts. We evaluated this hypothesis with black-tailed prairie dogs (Cynomys ludovicianus) in New Mexico, June–August 2010–2012. Precipitation was relatively plentiful during 2010 and 2012 but scarce during 2011, the driest spring–summer on record for the northeastern grasslands of New Mexico. Unexpectedly, fleas were 200% more abundant in 2011 than in 2010 and 2012. Prairie dogs were in 27% better condition during 2010 and 2012, and they devoted 287% more time to grooming in 2012 than in 2011. During 2012, prairie dogs provided with supplemental food and water were in 23% better condition and carried 40% fewer fleas. Collectively, these results suggest that during dry years, prairie dogs are limited by food and water, and they exhibit weakened defenses against fleas. Long-term data are needed to evaluate the generality of whether droughts increase flea densities and how changes in flea abundance during sequences of dry and wet years might affect plague cycles in mammalian hosts.

  19. Fire and season of post-fire defoliation effects on biomass, composition and cover in mixed-grass prairie

    Science.gov (United States)

    North American prairies are acknowledged to have evolved with grazing following fire. Given this evolutionary fire-grazing interaction, our objective was to determine whether seasonal timing of defoliation following fire alters subsequent productivity and species composition. Following the April 201...

  20. 75 FR 44292 - Northern States Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of...

    Science.gov (United States)

    2010-07-28

    ... and DPR-60] Northern States Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2... assessment, and behavioral observation) of the unescorted access authorization program when making the... under consideration to determine whether it met the criteria established in NRC Management Directive (MD...

  1. Age at vaccination may influence response to sylvatic plague vaccine (SPV) in Gunnison’s prairie dogs (Cynomys gunnisoni)

    Science.gov (United States)

    Rocke, Tonie E.; Tripp, Daniel W.; Lorenzsonn, Faye; Falendysz, Elizabeth A.; Smith, Susan; Williamson, Judy L.; Abbott, Rachel C.

    2015-01-01

    Gunnison’s prairie dogs (Cynomys gunnisoni) have been considered at greater risk from Yersinia pestis (plague) infection in the montane portion of their range compared to populations at lower elevations, possibly due to factors related to flea transmission of the bacteria or greater host susceptibility. To test the latter hypothesis and determine whether vaccination against plague with an oral sylvatic plague vaccine (SPV) improved survival, we captured prairie dogs from a C. g. gunnisoni or “montane” population and a C. g. zuniensis or “prairie” population for vaccine efficacy and challenge studies. No differences (P = 0.63) were found in plague susceptibility in non-vaccinated animals between these two populations; however, vaccinates from the prairie population survived plague challenge at significantly higher rates (P control animals of different ages. These results suggest that host susceptibility is probably not related to the assumed greater risk from plague in the C. g. gunnisoni or “montane” populations of Gunnison’s prairie dogs, and that SPV could be a useful plague management tool for this species, particularly if targeted at younger cohorts.

  2. Landscape structure and plague occurrence in black-tailed prairie dogs on grasslands of the western USA

    Science.gov (United States)

    Collinge, S.K.; Johnson, W.C.; Ray, C.; Matchett, R.; Grensten, J.; Cully, J.F.; Gage, K.L.; Kosoy, M.Y.; Loye, J.E.; Martin, A.P.

    2005-01-01

    Landscape structure influences the abundance and distribution of many species, including pathogens that cause infectious diseases. Black-tailed prairie dogs in the western USA have declined precipitously over the past 100 years, most recently due to grassland conversion and their susceptibility to sylvatic plague. We assembled and analyzed two long-term data sets on plague occurrence in black-tailed prairie dogs to explore the hypotheses that plague occurrence is associated with colony characteristics and landscape context. Our two study areas (Boulder County, Colorado, and Phillips County, Montana) differed markedly in degree of urbanization and other landscape characteristics. In both study areas, we found associations between plague occurrence and landscape and colony characteristics such as the amount of roads, streams and lakes surrounding a prairie dog colony, the area covered by the colony and its neighbors, and the distance to the nearest plague-positive colony. Logistic regression models were similar between the two study areas, with the best models predicting positive effects of proximity to plague-positive colonies and negative effects of road, stream and lake cover on plague occurrence. Taken together, these results suggest that roads, streams and lakes may serve as barriers to plague in black-tailed prairie dog colonies by affecting movement of or habitat quality for plague hosts or for fleas that serve as vectors for the pathogen. The similarity in plague correlates between urban and rural study areas suggests that the correlates of plague are not altered by uniquely urban stressors. ?? Springer 2005.

  3. Calcium-induced contraction and contractile protein of gallbladder smooth muscle after high-cholesterol feeding of prairie dogs

    NARCIS (Netherlands)

    Li, Y. F.; Weisbrodt, N. W.; Moody, F. G.; Coelho, J. C.; Gouma, D. J.

    1987-01-01

    Feeding a high-cholesterol diet to prairie dogs causes a reduction in contractile responses of gallbladder smooth muscle from these animals. In this study, the influence of cholesterol feeding on the contractile response to calcium and on the concentration of the contractile proteins actin and

  4. 78 FR 62300 - Prairie Breeze Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2013-10-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER14-25-000] Prairie Breeze Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Breeze Wind Energy LLC's application for market-based rate authority, with an accompanying rate schedule...

  5. Composition and hydrothermal pretreatment and enzymatic saccharification performance of grasses and legumes from a mixed-species prairie

    Directory of Open Access Journals (Sweden)

    DeMartini Jaclyn D

    2011-11-01

    Full Text Available Abstract Background Mixtures of prairie species (mixed prairie species; MPS have been proposed to offer important advantages as a feedstock for sustainable production of fuels and chemicals. Therefore, understanding the performance in hydrothermal pretreatment and enzymatic hydrolysis of select species harvested from a mixed prairie is valuable in selecting these components for such applications. This study examined composition and sugar release from the most abundant components of a plot of MPS: a C3 grass (Poa pratensis, a C4 grass (Schizachyrium scoparium, and a legume (Lupinus perennis. Results from this study provide a platform to evaluate differences between grass and leguminous species, and the factors controlling their recalcitrance to pretreatment and enzymatic hydrolysis. Results Significant differences were found between the grass and leguminous species, and between the individual anatomical components that influence the recalcitrance of MPS. We found that both grasses contained higher levels of sugars than did the legume, and also exhibited higher sugar yields as a percentage of the maximum possible from combined pretreatment and enzymatic hydrolysis. Furthermore, particle size, acid-insoluble residue (AcIR, and xylose removal were not found to have a direct significant effect on glucan digestibility for any of the species tested, whereas anatomical composition was a key factor in both grass and legume recalcitrance, with the stems consistently exhibiting higher recalcitrance than the other anatomical fractions. Conclusions The prairie species tested in this study responded well to hydrothermal pretreatment and enzymatic saccharification. Information from this study supports recommendations as to which plant types and species are more desirable for biological conversion in a mixture of prairie species, in addition to identifying fractions of the plants that would most benefit from genetic modification or targeted growth.

  6. Using prairie restoration to curtail invasion of Canada thistle: the importance of limiting similarity and seed mix richness

    Science.gov (United States)

    Larson, Diane L.; Bright, J.B.; Drobney, Pauline; Larson, Jennifer L.; Palaia, Nicholas; Rabie, Paul A.; Vacek, Sara; Wells, Douglas

    2013-01-01

    Theory has predicted, and many experimental studies have confirmed, that resident plant species richness is inversely related to invisibility. Likewise, potential invaders that are functionally similar to resident plant species are less likely to invade than are those from different functional groups. Neither of these ideas has been tested in the context of an operational prairie restoration. Here, we tested the hypotheses that within tallgrass prairie restorations (1) as seed mix species richness increased, cover of the invasive perennial forb, Canada thistle (Cirsium arvense) would decline; and (2) guilds (both planted and arising from the seedbank) most similar to Canada thistle would have a larger negative effect on it than less similar guilds. Each hypothesis was tested on six former agricultural fields restored to tallgrass prairie in 2005; all were within the tallgrass prairie biome in Minnesota, USA. A mixed-model with repeated measures (years) in a randomized block (fields) design indicated that seed mix richness had no effect on cover of Canada thistle. Structural equation models assessing effects of cover of each planted and non-planted guild on cover of Canada thistle in 2006, 2007, and 2010 revealed that planted Asteraceae never had a negative effect on Canada thistle. In contrast, planted cool-season grasses and non-Asteraceae forbs, and many non-planted guilds had negative effects on Canada thistle cover. We conclude that early, robust establishment of native species, regardless of guild, is of greater importance in resistance to Canada thistle than is similarity of guilds in new prairie restorations.

  7. Screening of condensed tannins from Canadian prairie forages for anti-Escherichia coli O157:H7 with an emphasis on purple prairie clover (Dalea purpurea Vent).

    Science.gov (United States)

    Wang, Y; Jin, L; Ominski, K H; He, M; Xu, Z; Krause, D O; Acharya, S N; Wittenberg, K M; Liu, X L; Stanford, K; McAllister, T A

    2013-04-01

    Tannins from forages grown (n = 10) on the Canadian prairie, as well as from Quebracho, Rhus semialata, and brown seaweed (Ascophyllum nodosum), were screened for anti-Escherichia coli O157:H7 activity against E. coli O157:H7 strain 3081 at a concentration of 400 μg/ml for each tannin type, except for brown seaweed, which was at 50 μg/ml. Growth of the bacteria was assessed by measuring the optical density at 600 nm over 24 h. Tannin from seaweed at a concentration of 50 μg/ml inhibited growth of strain 3081. Among the terrestrial forages, only condensed tannins (CT) from purple prairie clover (Dalea purpurea Vent; PPC) increased (P < 0.05) the lag time and reduced (P < 0.05) the growth rate of E. coli O157:H7. The anti-E. coli O157:H7 activity of PPC CT was further assessed by culturing E. coli strain ATCC 25922 and eight strains of E. coli O157:H7 with PPC CT at 0, 25, 50, 100, or 200 μg/ml. Selected strains were enumerated after 0, 6, and 24 h of incubation, and fatty acid composition was determined after 24 h of incubation. E. coli strain 25922 was cultured with 0, 50, or 200 μg of CT per ml and harvested during the exponential growth phase for examination by transmission electron microscopy. Increasing CT concentration linearly increased (P < 0.001) the lag times of seven strains and linearly reduced (P < 0.001) the growth rates of eight E. coli O157:H7 strains. Proportions of unsaturated fatty acids in the total fatty acids were decreased (P < 0.01) by CT at 50 μg/ml. Transmission electron microscopy showed that CT disrupted the outer membrane structure. Anti-E. coli O157:H7 activity of PPC CT at levels of up to 200 μg/ml was bacteriostatic rather than bactericidal, and the mechanism of anti-E. coli activity may involve alteration in the fatty acid composition and disruption of the outer membrane of the cell.

  8. Results from three years on the prairie - improving management through volunteer-collected data

    Science.gov (United States)

    Hadley, N.; Force, A.; Holsinger, K.

    2017-12-01

    Citizen science is a nascent and diversifying field with the ability to support wide-ranging outcomes from volunteer education and empowerment to data-driven decisions. Adventure Scientists is a nonprofit organization that focuses on the latter. We approach citizen science through a solutions-oriented lens, in which quality data can influence decisions leading to improved policy, land management and business practices. All our work is interdisciplinary, as we collaborate with partners in government, academia, industry and nonprofits to help fill their data collection needs. In addressing our partners' data needs, it is critical that we align any newfound knowledge with tangible outcomes. Therefore, our projects and partnerships incorporate concrete theories of change and involve the collaborations and relationships necessary to support decision-making. In this presentation, we will highlight Landmark, a landscape-scale project spanning 30,000 acres of North American prairie in Montana, to illustrate one example of a partnership that resulted in improved management from our volunteer-collected data. This was a multi-year citizen science project, where we assisted the American Prairie Reserve's effort to create the largest grasslands and wildlife protected area in the continental U.S. Our partners identified a need to better understand the extent and diversity of wildlife inhabiting and migrating through the space. To provide this enhanced understanding, we helped design and implement a program to collect key wildlife data on the prairie. We recruited, trained and managed specialized volunteers from the outdoor adventure community. Volunteers were responsible for collecting data year-round on animals moving through the landscape to support their management and protection. After three years of data collection and over 19,000 wildlife observations made while monitoring 29 species, the grasslands preserve is now moving forward with an expansive wildlife dataset to

  9. Fire affects root decomposition, soil food web structure, and carbon flow in tallgrass prairie

    Science.gov (United States)

    Shaw, E. Ashley; Denef, Karolien; Milano de Tomasel, Cecilia; Cotrufo, M. Francesca; Wall, Diana H.

    2016-05-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is common and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root-litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root-litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable but also significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition, which, in turn, is significantly affected by fire. Not

  10. Geophysical Investigation of an Abandoned Cemetery: Teachers Discover Evidence of Unmarked Graves in Prairie View, TX

    Science.gov (United States)

    Henning, A. T.; Sawyer, D. S.; Baldwin, R.; Kahera, A.; Thoms, A.

    2007-12-01

    In July 2007, a group of nineteen K-12 teachers investigated an abandoned cemetery in Prairie View, Texas, utilizing ground-penetrating radar (GPR) to image the subsurface. In a period of two weeks, the group acquired and interpreted 59 GPR profiles in Wyatt Chapel Cemetery and surrounding areas in order to determine the local stratigraphy and try to locate unmarked graves. The sandy soil in this area is ideally suited for GPR investigations and numerous geophysical anomalies were identified. Wyatt Chapel Cemetery is located adjacent to the campus of Prairie View A&M University in Prairie View, TX, and is thought to have originated as a slave burial ground in the 1850's. Participants in a summer course at Rice University conducted a geophysical investigation of the site. Participants were in-service K-12 teachers from urban Houston school districts where the majority of students are members of historically underrepresented minority groups. Recruitment efforts targeted educators who are currently teaching science without a science degree. Participants included elementary, middle and high school teachers. This summer experience is followed by a content-intensive academic year course in Physical Geology. GPR is an excellent tool for investigating the sandy soil encountered at Wyatt Chapel Cemetery. The stratigraphy in the area consists of 3-6 feet of reddish-brown, medium-grained sand overlying a light gray, highly compacted clay. The sand-clay boundary appears as a strong reflector on the GPR profiles. Participants identified numerous anomalies in the GPR data and two were excavated. One consisted of a pair of bright hyperbolae, suggesting two edges of a metal object. This excavation resulted in the discovery of a metal plank thought to be a burial cover. The second anomaly consisted of a break in the horizon representing the top of the clay layer, and subsequent excavation revealed a grave shaft. Participants experienced the process of science first-hand and used

  11. Controls on the geochemical evolution of Prairie Pothole Region lakes and wetlands over decadal time scales

    Science.gov (United States)

    Goldhaber, Martin B.; Mills, Christopher T.; Mushet, David M.; McCleskey, R. Blaine; Rover, Jennifer

    2016-01-01

    One hundred sixty-seven Prairie Pothole lakes, ponds and wetlands (largely lakes) previously analyzed chemically during the late 1960’s and early to mid-1970’s were resampled and reanalyzed in 2011–2012. The two sampling periods differed climatically. The earlier sampling took place during normal to slightly dry conditions, whereas the latter occurred during and immediately following exceptionally wet conditions. As reported previously in Mushet et al. (2015), the dominant effect was expansion of the area of these lakes and dilution of their major ions. However, within that context, there were significant differences in the evolutionary pathways of major ions. To establish these pathways, we employed the inverse modeling computer code NetpathXL. This code takes the initial and final lake composition and, using mass balance constrained by the composition of diluting waters, and input and output of phases, calculates plausible geochemical evolution pathways. Despite the fact that in most cases major ions decreased, a subset of the lakes had an increase in SO42−. This distinction is significant because SO42− is the dominant anion in a majority of Prairie Pothole Region wetlands and lakes. For lakes with decreasing SO42−, the proportion of original lake water required for mass balance was subordinate to rainwater and/or overland flow. In contrast, lakes with increasing SO42− between the two sampling episodes tended to be dominated by original lake water. This suite of lakes tended to be smaller and have lower initial SO42−concentrations such that inputs of sulfur from dissolution of the minerals gypsum or pyrite had a significant impact on the final sulfur concentration given the lower dilution factors. Thus, our study provides context for how Prairie Pothole Region water bodies evolve geochemically as climate changes. Because wetland geochemistry in turn controls the ecology of these water bodies, this research contributes to the prediction of the

  12. A projection of lesser prairie chicken (Tympanuchus pallidicinctus) populations range-wide

    Science.gov (United States)

    Cummings, Jonathan W.; Converse, Sarah J.; Moore, Clinton T.; Smith, David R.; Nichols, Clay T.; Allan, Nathan L.; O'Meilia, Chris M.

    2017-08-09

    We built a population viability analysis (PVA) model to predict future population status of the lesser prairie-chicken (Tympanuchus pallidicinctus, LEPC) in four ecoregions across the species’ range. The model results will be used in the U.S. Fish and Wildlife Service's (FWS) Species Status Assessment (SSA) for the LEPC. Our stochastic projection model combined demographic rate estimates from previously published literature with demographic rate estimates that integrate the influence of climate conditions. This LEPC PVA projects declining populations with estimated population growth rates well below 1 in each ecoregion regardless of habitat or climate change. These results are consistent with estimates of LEPC population growth rates derived from other demographic process models. Although the absolute magnitude of the decline is unlikely to be as low as modeling tools indicate, several different lines of evidence suggest LEPC populations are declining.

  13. Effects of Wind Energy Development on Nesting Ecology of Greater Prairie-Chickens in Fragmented Grasslands

    Science.gov (United States)

    McNew, Lance B; Hunt, Lyla M; Gregory, Andrew J; Wisely, Samantha M; Sandercock, Brett K

    2014-01-01

    Wind energy is targeted to meet 20% of U.S. energy needs by 2030, but new sites for development of renewable energy may overlap with important habitats of declining populations of grassland birds. Greater Prairie-Chickens (Tympanuchus cupido) are an obligate grassland bird species predicted to respond negatively to energy development. We used a modified before–after control–impact design to test for impacts of a wind energy development on the reproductive ecology of prairie-chickens in a 5-year study. We located 59 and 185 nests before and after development, respectively, of a 201 MW wind energy facility in Greater Prairie-Chicken nesting habitat and assessed nest site selection and nest survival relative to proximity to wind energy infrastructure and habitat conditions. Proximity to turbines did not negatively affect nest site selection (β = 0.03, 95% CI = −1.2–1.3) or nest survival (β = −0.3, 95% CI = −0.6–0.1). Instead, nest site selection and survival were strongly related to vegetative cover and other local conditions determined by management for cattle production. Integration of our project results with previous reports of behavioral avoidance of oil and gas facilities by other species of prairie grouse suggests new avenues for research to mitigate impacts of energy development. Efectos del Desarrollo de la Energía Eólica sobre la Ecología de Anidación de Gallinas de la Gran Pradera en Pastizales Fragmentados Resumen Se calcula que la energía eólica aportará el 20% de las necesidades energéticas de los Estados Unidos para el 2030, pero nuevos sitios para el desarrollo de energía renovable pueden traslaparse con hábitats importantes de poblaciones declinantes de aves de pastizal. La gallina de la Gran Pradera (Tympanuchus cupido) es una especie de ave obligada de pastizal que se pronostica responderá negativamente al desarrollo energético. Usamos un diseño ADCI modificado para probar los impactos del desarrollo de la energía e

  14. Which fireballs are meteorites - A study of the Prairie Network photographic meteor data

    Science.gov (United States)

    Wetherill, G. W.; Revelle, D. O.

    1981-11-01

    With the exception of three recovered meteorites with photographic fireball data (Pribram, Lost City, Innisfree), there is generally little information regarding the location of meteorites in the solar system prior to their impact on the earth. An investigation is conducted with the objective to identify those fireballs (bright meteor) data from the Prairie Network. The investigation is based on the belief that many small ordinary chondrites must be present among the photographed bright fireballs. Observations of the recovered fireballs are used to identify characteristics of their dynamics while passing through the atmosphere. In this way criteria are established for identifying those fireballs with similar dynamical characteristics. On the basis of the studies, a catalog is provided of fireballs which have a high probability of being ordinary chondrites or other strong meteorites.

  15. Optimization of clean fractionation processing as a pre-treatment technology for prairie cordgrass.

    Science.gov (United States)

    Brudecki, Grzegorz; Cybulska, Iwona; Rosentrater, Kurt; Julson, James

    2012-03-01

    The main objective of this study was to fractionate prairie cordgrass (PCG) obtaining the highest cellulose digestibility. Following clean fractionation (CF) processing, the PCG lignocellulosic biomass was fractionated into three main building blocks: cellulose, hemicellulose and lignin. Effects of processing factors such as time, temperature, catalyst concentration and organic solvent mixture composition were evaluated. Organic solvent-aqueous mixture contained methyl isobutyl ketone (MIBK), ethanol and water in different proportions. Sulfuric acid was used as a catalyst. In order to evaluate the degree of pre-treatment, enzymatic saccharification was employed on the cellulose fraction obtained from the CF process. Response surface methodology was used for process optimization and statistical analysis. Optimal conditions (39 min, 154°C, 0.69% catalyst and 9% MIBK) resulted in 84% glucose yield and 87% acid insoluble lignin (AIL). Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Feeding ecology of arctic-nesting sandpipers during spring migration through the prairie pothole region

    Science.gov (United States)

    Eldridge, J.L.; Krapu, G.L.; Johnson, D.H.

    2009-01-01

    We evaluated food habits of 4 species of spring-migrant calidrid sandpipers in the Prairie Pothole Region (PPR) of North Dakota. Sandpipers foraged in several wetland classes and fed primarily on aquatic dipterans, mostly larvae, and the midge family Chironomidae was the primary food eaten. Larger sandpiper species foraged in deeper water and took larger larvae than did smaller sandpipers. The diverse wetland habitats that migrant shorebirds use in the PPR suggest a landscape-level approach be applied to wetland conservation efforts. We recommend that managers use livestock grazing and other tools, where applicable, to keep shallow, freshwater wetlands from becoming choked with emergent vegetation limiting chironomid production and preventing shorebird use.

  17. Wood and non-wood pulp production. Comparative ecological footprinting on the Canadian prairies

    International Nuclear Information System (INIS)

    Kissinger, Meidad; Fix, Jennifer; Rees, William E.

    2007-01-01

    Pulp production accounts for a major part of the Canadian forest industry. Because of the ecological damage caused by the industry, there has been growing interest in the use of agricultural residues as an alternative or supplementary fibre source for pulp making. The purpose of this study is to determine whether the use of crop residues has the potential to reduce the environmental 'load' associated with pulp production. We answer this question by estimating and comparing the ecological footprints of the currently dominant practice of using spruce and aspen harvested from the boreal forest, with the practice of using plant fibre from the residue of wheat and flax crops commonly grown in the Canadian prairie provinces. The analysis accounts for all major land and energy inputs associated with the two production processes. The study results indicate that the ecological load of pulp production varies among resources and provinces. However, overall, the total eco-footprint of pulped wheat straw is the smallest. (author)

  18. Oropsylla hirsuta (Siphonaptera: Ceratophyllidae) can support plague epizootics in black-tailed prairie dogs (Cynomys ludovicianus) by early-phase transmission of Yersinia pestis.

    Science.gov (United States)

    Wilder, Aryn P; Eisen, Rebecca J; Bearden, Scott W; Montenieri, John A; Gage, Kenneth L; Antolin, Michael F

    2008-06-01

    Plague, caused by the bacterium Yersinia pestis, often leads to rapid decimation of black-tailed prairie dog colonies. Flea-borne transmission of Y. pestis has been thought to occur primarily via blocked fleas, and therefore studies of vector efficiency have focused on the period when blockage is expected to occur (> or =5 days post-infection [p.i.]). Oropsylla hirsuta, a prairie dog flea, rarely blocks and transmission is inefficient > or =5 days p.i.; thus, this flea has been considered incapable of explaining rapid dissemination of Y. pestis among prairie dogs. By infecting wild-caught fleas with Y. pestis and exposing naïve mice to groups of fleas at 24, 48, 72, and 96 h p.i., we examined the early-phase (1-4 days p.i.) efficiency of O. hirsuta to transmit Y. pestis to hosts and showed that O. hirsuta is a considerably more efficient vector at this largely overlooked stage (5.19% of fleas transmit Y. pestis at 24 h p.i.) than at later stages. Using a model of vectorial capacity, we suggest that this level of transmission can support plague at an enzootic level in a population when flea loads are within the average observed for black-tailed prairie dogs in nature. Shared burrows and sociality of prairie dogs could lead to accumulation of fleas when host population is reduced as a result of the disease, enabling epizootic spread of plague among prairie dogs.

  19. Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.

    Directory of Open Access Journals (Sweden)

    Valerie Steen

    Full Text Available The Prairie Pothole Region (PPR of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs. We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971-2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981-2000 and projected future distributions to climate scenarios for 2040-2049. Species were projected to, on average, lose almost half their current habitat (-46%. However, individual species projections varied widely, from +8% (Upland Sandpiper to -100% (Wilson's Snipe. Variable importance ranks indicated that land cover (wetland and upland variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.

  20. Identification of subpopulations of prairie voles differentially susceptible to peer influence to decrease high alcohol intake

    Directory of Open Access Journals (Sweden)

    Allison M.J. Anacker

    2013-07-01

    Full Text Available Peer influences are critical in the decrease of alcohol (ethanol abuse and maintenance of abstinence. We previously developed an animal model of inhibitory peer influences on ethanol drinking using prairie voles and here sought to understand whether this influential behavior was due to specific changes in drinking patterns and to variation in a microsatellite sequence in the regulatory region of the vasopressin receptor 1a gene (avpr1a. Adult prairie voles’ drinking patterns were monitored in a lickometer apparatus that recorded each lick a subject exhibited during continuous access to water and 10% ethanol during periods of isolation, pair housing of high and low drinkers, and subsequent isolation. Analysis of fluid consumption confirmed previous results that high drinkers typically decrease ethanol intake when paired with low drinkers, but that a subset of voles do not decrease. Analysis of bout structure revealed differences in the number of ethanol drinking bouts in the subpopulations of high drinkers when paired with low drinkers. Lickometer drinking patterns analyzed by visual and by cross-correlation analyses demonstrated that pair housing did not increase the rate of subjects drinking in bouts occurring at the same time. The length of the avpr1a microsatellite did not predict susceptibility to peer influence or any other drinking behaviors. In summary, subpopulations of high drinkers were identified by fluid intake and number of drinking bouts, which did or did not lower their ethanol intake when paired with a low drinking peer, and these subpopulations should be explored for testing the efficacy of treatments to decrease ethanol use in groups that are likely to be responsive to different types of therapy.

  1. Predator selection of prairie landscape features and its relation to duck nest success

    Science.gov (United States)

    Phillips, M.L.; Clark, W.R.; Sovada, M.A.; Horn, D.J.; Koford, Rolf R.; Greenwood, R.J.

    2003-01-01

    Mammalian predation is a major cause of mortality for breeding waterfowl in the U.S. Northern Great Plains, and yet we know little about the selection of prairie habitats by predators or how this influences nest success in grassland nesting cover. We selected 2 41.4-km2 study areas in both 1996 and 1997 in North Dakota, USA, with contrasting compositions of perennial grassland. A study area contained either 15-20% perennial grassland (Low Grassland Composition [LGC]) or 45-55% perennial grassland (High Grassland Composition [HGC]). We used radiotelemetry to investigate the selection of 9 landscape cover types by red fox (Vulpes vulpes) and striped skunk (Mephitis mephitis), while simultaneously recording duck nest success within planted cover. The cover types included the edge and core areas of planted cover, wetland edges within planted cover or surrounded by cropland, pastureland, hayland, cropland, roads, and miscellaneous cover types. Striped skunks selected wetland edges surrounded by agriculture over all other cover types in LGC landscapes (P-values for all pairwise comparisons were Duck nest success was greater in HGC landscapes than in LGC landscapes for planted-cover core (P increased amount of planted-cover core area and the increased pastureland selection in HGC landscapes may have diluted predator foraging efficiency in the interior areas of planted cover and contributed to higher nest success in HGC landscapes. Our observations of predator cover-type selection not only support the restoration and management of large blocks of grassland but also indicate the influence of alternative cover types for mitigating nest predation in the Prairie Pothole Region.

  2. Ontogenetic shift in response to prey-derived chemical cues in prairie rattlesnakes Crotalus viridis viridis

    Directory of Open Access Journals (Sweden)

    Anthony J. SAVIOLA, David CHISZAR, Stephen P. MACKESSY

    2012-08-01

    Full Text Available Snakes often have specialized diets that undergo a shift from one prey type to another depending on the life stage of the snake. Crotalus viridis viridis (prairie rattlesnake takes different prey at different life stages, and neonates typically prey on ectotherms, while adults feed almost entirely on small endotherms. We hypothesized that elevated rates of tongue flicking to chemical stimuli should correlate with particular prey consumed, and that this response shifts from one prey type to another as individuals age. To examine if an ontogenetic shift in response to chemical cues occurred, we recorded the rate of tongue flicking for 25 neonate, 20 subadult, and 20 adult (average SVL = 280.9, 552, 789.5 mm, respectively wild-caught C. v. viridis to chemical stimuli presented on a cotton-tipped applicator; water-soluble cues from two ectotherms (prairie lizard, Sceloporus undulatus, and house gecko, Hemidactylus frenatus, two endotherms (deer mouse, Peromyscus maniculatus and lab mouse, Mus musculus, and water controls were used. Neonates tongue flicked significantly more to chemical cues of their common prey, S. undulatus, than to all other chemical cues; however, the response to this lizard’s chemical cues decreased in adult rattlesnakes. Subadults tongue flicked with a higher rate of tongue flicking to both S. undulatus and P. maniculatus than to all other treatments, and adults tongue flicked significantly more to P. maniculatus than to all other chemical cues. In addition, all three sub-classes demonstrated a greater response for natural prey chemical cues over chemical stimuli of prey not encountered in the wild (M. musculus and H. frenatus. This shift in chemosensory response correlated with the previously described ontogenetic shifts in C. v. viridis diet. Because many vipers show a similar ontogenetic shift in diet and venom composition, we suggest that this shift in prey cue discrimination is likely a general phenomenon among viperid

  3. Prediction of snowmelt derived streamflow in a wetland dominated prairie basin

    Directory of Open Access Journals (Sweden)

    X. Fang

    2010-06-01

    Full Text Available The Cold Regions Hydrological Modelling platform (CRHM was used to create a prairie hydrological model for Smith Creek Research Basin (~400 km2, east-central Saskatchewan, Canada. Physically based modules were sequentially linked in CRHM to simulate snow processes, frozen soils, variable contributing area and wetland storage and runoff generation. Five "representative basins" (RBs were defined and each was divided into seven hydrological response units (HRUs: fallow, stubble, grassland, river channel, open water, woodland, and wetland. Model parameters were estimated using field survey data, LiDAR digital elevation model (DEM, SPOT 5 satellite imageries, stream network and wetland inventory GIS data. Model simulations were conducted for 2007/2008 and 2008/2009. No calibration was performed. The model performance in predicting snowpack, soil moisture and streamflow was evaluated against field observations. Root mean square differences (RMSD between simulation and observations ranged from 1.7 to 25.2 mm and from 4.3 to 22.4 mm for the simulated snow accumulation in 2007/2008 and 2008/2009, respectively, with higher RMSD in grassland, river channel, and open water HRUs. Spring volumetric soil moisture was reasonably predicted compared to a point observation in a grassland area, with RMSD of 0.011 and 0.009 for 2008 and 2009 simulations, respectively. The model was able to capture the timing and magnitude of peak spring basin discharge, but it underestimated the cumulative volume of basin discharge by 32% and 56% in spring 2008 and 2009, respectively. The results suggest prediction of Canadian Prairie basin snow hydrology is possible with no calibration if physically based models are used with physically meaningful model parameters that are derived from high resolution geospatial data.

  4. Drought-induced recharge promotes long-term storage of porewater salinity beneath a prairie wetland

    Science.gov (United States)

    Levy, Zeno F.; Rosenberry, Donald O.; Moucha, Robert; Mushet, David M.; Goldhaber, Martin B.; LaBaugh, James W.; Fiorentino, Anthony J.; Siegel, Donald I.

    2018-02-01

    Subsurface storage of sulfate salts allows closed-basin wetlands in the semiarid Prairie Pothole Region (PPR) of North America to maintain moderate surface water salinity (total dissolved solids [TDS] from 1 to 10 g L-1), which provides critical habitat for communities of aquatic biota. However, it is unclear how the salinity of wetland ponds will respond to a recent shift in mid-continental climate to wetter conditions. To understand better the mechanisms that control surface-subsurface salinity exchanges during regional dry-wet climate cycles, we made a detailed geoelectrical study of a closed-basin prairie wetland (P1 in the Cottonwood Lake Study Area, North Dakota) that is currently experiencing record wet conditions. We found saline lenses of sulfate-rich porewater (TDS > 10 g L-1) contained in fine-grained wetland sediments 2-4 m beneath the bathymetric low of the wetland and within the currently ponded area along the shoreline of a prior pond stand (c. 1983). During the most recent drought (1988-1993), the wetland switched from a groundwater discharge to recharge function, allowing salts dissolved in surface runoff to move into wetland sediments beneath the bathymetric low of the basin. However, groundwater levels during this time did not decline to the elevation of the saline lenses, suggesting these features formed during more extended paleo-droughts and are stable in the subsurface on at least centennial timescales. We hypothesize a "drought-induced recharge" mechanism that allows wetland ponds to maintain moderate salinity under semiarid climate. Discharge of drought-derived saline groundwater has the potential to increase the salinity of wetland ponds during wet climate.

  5. Gallbladder filling and emptying during cholesterol gallstone formation in the prairie dog. A cholescintigraphic study

    International Nuclear Information System (INIS)

    Pellegrini, C.A.; Ryan, T.; Broderick, W.; Way, L.W.

    1986-01-01

    We studied gallbladder bile flow before, during, and after cholesterol gallstone formation in the prairie dog using infusion cholescintigraphy with /sup 99m/Tc-diethyl iminodiacetic acid. In 18 fasting animals partitioning of bile between gallbladder and intestine was determined every 15 min for 140 min, and gallbladder response to cholecystokinin (5 U/kg X h) was calculated from the gallbladder ejection fraction. Ten prairie dogs were then placed on a 0.4% cholesterol diet and 8 on a regular diet, and the studies were repeated 1, 2, and 6 wk later. The proportion of hepatic bile that entered the gallbladder relative to the intestine varied from one 15-min period to the next, and averaged 28.2% +/- 5.1% at 140 min. Partial spontaneous gallbladder emptying (ejection fraction 11.5% +/- 5.6%) was intermittently observed. Neither the number nor the ejection fraction of spontaneous gallbladder contractions changed during gallstone formation. By contrast, the percent of gallbladder emptying in response to cholecystokinin decreased from 72.1% +/- 5% to 25.9% +/- 9.3% (p less than 0.025) in the first week and was 14.3% +/- 5.5% at 6 wk (p less than 0.01 from prediet values, not significant from first week). Gallbladder filling decreased from 28.2% +/- 5.1% to 6.7% +/- 3% (p less than 0.01), but this change was only observed after 6 wk, when gallstones had formed. This study shows that bile flow into the gallbladder during fasting is not constant; the gallbladder contracts intermittently; gallbladder emptying in response to exogenous cholecystokinin is altered very early during gallstone formation; and gallbladder filling remains unaffected until later stages, when gallstones have formed

  6. Greenhouse gas flux from cropland and restored wetlands in the Prairie Pothole Region

    Science.gov (United States)

    Gleason, R.A.; Tangen, B.A.; Browne, B.A.; Euliss, N.H.

    2009-01-01

    It has been well documented that restored wetlands in the Prairie Pothole Region of North America do store carbon. However, the net benefit of carbon sequestration in wetlands in terms of a reduction in global warming forcing has often been questioned because of potentially greater emissions of greenhouse gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). We compared gas emissions (N2O, CH4, carbon dioxide [CO2]) and soil moisture and temperature from eight cropland and eight restored grassland wetlands in the Prairie Pothole Region from May to October, 2003, to better understand the atmospheric carbon mitigation potential of restored wetlands. Results show that carbon dioxide contributed the most (90%) to net-GHG flux, followed by CH4 (9%) and N2O (1%). Fluxes of N2O, CH4, CO2, and their combined global warming potential (CO2 equivalents) did not significantly differ between cropland and grassland wetlands. The seasonal pattern in flux was similar in cropland and grassland wetlands with peak emissions of N2O and CH4 occurring when soil water-filled pore space (WFPS) was 40-60% and >60%, respectively; negative CH4 fluxes were observed when WFPS approached 40%. Negative CH4 fluxes from grassland wetlands occurred earlier in the season and were more pronounced than those from cropland sites because WFPS declined more rapidly in grassland wetlands; this decline was likely due to higher infiltration and evapotranspiration rates associated with grasslands. Our results suggest that restoring cropland wetlands does not result in greater emissions of N2O and CH4, and therefore would not offset potential soil carbon sequestration. These findings, however, are limited to a small sample of seasonal wetlands with relatively short hydroperiods. A more comprehensive assessment of the GHG mitigation potential of restored wetlands should include a diversity of wetland types and land-use practices and consider the impact of variable climatic cycles that affect wetland

  7. Inter-annual to multi-decadal variability in prairie water resources over the past millennium

    International Nuclear Information System (INIS)

    Sauchyn, D.

    2008-01-01

    In the Prairie Provinces, declining levels have been recently recorded for various rivers and lakes, and further reductions are projected. These trends reflect human impact in terms of increasing water consumption and possibly anthropogenic climate change. From the coupling of hydrological models and climate change scenarios, researchers have projected lower future summer flows as global warming brings shorter warmer winters and longer and generally drier summers to western Canada. However, the detection and interpretation of trends from gauge records and model outputs are constrained by the relatively short perspective of decades and the uncertainties associated with projecting climate change and its impacts on hydrological regimes. A longer perspective on inter-annual to multi-decadal variability in water resources is available from moisture-sensitive tree-ring chronologies. We have established a dense network of low elevation chronologies spanning the headwaters of the Saskatchewan, Missouri, Churchill and Mackenzie River basins. Standardized tree-ring width for a large sample of trees and sites is a strong regional signal of annual and seasonal hydroclimate, and an especially good proxy of low water levels. Proxy streamflow records, up to 800 years in length, show quasi-periodic variability at inter-annual to multi-decadal scales that correspond to the tempo of sea-surface temperature anomalies. The industrial sponsors of our research, Manitoba Hydro and EPCOR, anticipate the use of our tree-ring reconstructions for informing forecasts of future water supplies and planning adaptation to climate change. Engineers from these companies, and more than 50 other water managers and planners from the Prairie Provinces, attended a workshop in March 2008 to explore potential applications of paleo-hydrological records to water resource management. (author)

  8. Linking phenology and biomass productivity in South Dakota mixed-grass prairie

    Science.gov (United States)

    Rigge, Matthew; Smart, Alexander; Wylie, Bruce; Gilmanov, Tagir; Johnson, Patricia

    2013-01-01

    Assessing the health of rangeland ecosystems based solely on annual biomass production does not fully describe plant community condition; the phenology of production can provide inferences on species composition, successional stage, and grazing impacts. We evaluate the productivity and phenology of western South Dakota mixed-grass prairie using 2000 to 2008 Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index (NDVI) satellite imagery at 250 m spatial resolution. Growing season NDVI images were integrated weekly to produce time-integrated NDVI (TIN), a proxy of total annual biomass production, and integrated seasonally to represent annual production by cool (C3) and warm (C4) season species. Additionally, a variety of phenological indicators including cool season percentage of TIN were derived from the seasonal profiles of NDVI. Cool season percentage and TIN were combined to generate vegetation classes, which served as proxies of plant community condition. TIN decreased with precipitation from east to west across the study area. Alternatively, cool season percentage increased from east to west, following patterns related to the reliability (interannual coefficient of variation [CV]) and quantity of mid-summer precipitation. Cool season TIN averaged 76.8% of total. Seasonal accumulation of TIN corresponded closely (R2 > 0.90) to that of gross photosynthesis data from a carbon flux tower. Field-collected biomass and community composition data were strongly related to the TIN and cool season percentage products. The patterns of vegetation classes were responsive to topographic, edaphic, and land management influences on plant communities. Accurate maps of biomass production, cool/warm season composition, and vegetation classes can improve the efficiency of land management by adjusting stocking rates and season of use to maximize rangeland productivity and achieve conservation objectives. Further, our results clarify the spatial and

  9. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies.

    Science.gov (United States)

    Li, Xue; Mupondwa, Edmund

    2014-05-15

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO2 equivalent and 3.06 to 31.01 kg CO2/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from -0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  10. Application of the new keystone-species concept to prairie dogs: How well does it work?

    Science.gov (United States)

    Kotliar, N.B.

    2000-01-01

    It has been suggested that the keystone-species concept should be dropped from ecology and conservation, primarily because the concept is poorly defined. This prompted Power et al. (1996) to refine the definition: keystone species have large effects on community structure or ecosystem function (i.e., high overall importance), and this effect should be large relative to abundance (i.e., high community importance). Using prairie dogs (Cynomys spp.) as an example, I review operational and conceptual difficulties encountered in applying this definition. As applied to prairie dogs, the implicit assumption that overall importance is a linear function of abundance is invalid. In addition, community importance is sensitive to abundance levels, the definition of community, and sampling scale. These problems arise largely from the equation for community importance, as used in conjunction with removal experiments at single abundance levels. I suggest that we shift from the current emphasis on the dualism between keystone and nonkeystone species and instead examine how overall and community importance vary (1) with abundance, (2) across spatial and temporal scales, and (3) under diverse ecological conditions. In addition, I propose that a third criterion be incorporated into the definition: keystone species perform roles not performed by other species or processes. Examination of how these factors vary among populations of keystone species should help identify the factors contributing to, or limiting, keystone-level functions, thereby increasing the usefulness of the keystone-species concept in ecology and conservation. Although the quantitative framework of Power et al. falls short of being fully operational, my conceptual guidelines may improve the usefulness of the keystone-species concept. Careful attention to the factors that limit keystone function will help avoid misplaced emphasis on keystone species at the expense of other species.

  11. Comparisons of methods for determining dominance rank in male and female prairie voles (Microtus ochrogastor)

    Science.gov (United States)

    Lanctot, Richard B.; Best, Louis B.

    2000-01-01

    Dominance ranks in male and female prairie voles (Microtus ochrogaster) were determined from 6 measurements that mimicked environmental situations that might be encountered by prairie voles in communal groups, including agonistic interactions resulting from competition for food and water and encounters in burrows. Male and female groups of 6 individuals each were tested against one another in pairwise encounters (i.e., dyads) for 5 of the measurements and together as a group in a 6th measurement. Two types of response variables, aggressive behaviors and possession time of a limiting resource, were collected during trials, and those data were used to determine cardinal ranks and principal component ranks for all animals within each group. Cardinal ranks and principal component ranks seldom yielded similar rankings for each animal across measurements. However, dominance measurements that were conducted in similar environmental contexts, regardless of the response variable recorded, ranked animals similarly. Our results suggest that individual dominance measurements assessed situation- or resource-specific responses. Our study demonstrates problems inherent in determining dominance rankings of individuals within groups, including choosing measurements, response variables, and statistical techniques. Researchers should avoid using a single measurement to represent social dominance until they have first demonstrated that a dominance relationship between 2 individuals has been learned (i.e., subsequent interactions show a reduced response rather than an escalation), that this relationship is relatively constant through time, and that the relationship is not context dependent. Such assessments of dominance status between all dyads then can be used to generate dominance rankings within social groups.

  12. Modelling surface-water depression storage in a Prairie Pothole Region

    Science.gov (United States)

    Hay, Lauren E.; Norton, Parker A.; Viger, Roland; Markstrom, Steven; Regan, R. Steven; Vanderhoof, Melanie

    2018-01-01

    In this study, the Precipitation-Runoff Modelling System (PRMS) was used to simulate changes in surface-water depression storage in the 1,126-km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface-water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface-water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application-ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface-water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface-water depression storage in the calibration procedure resulted in accurate changes in surface-water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface-storage to accurately parameterize surface-water depression storage within the USGS NHM.

  13. Patterns and drivers for wetland connections in the Prairie Pothole Region, United States

    Science.gov (United States)

    Vanderhoof, Melanie; Christensen, Jay R.; Alexander, Laurie C.

    2017-01-01

    Ecosystem function in rivers, lakes and coastal waters depends on the functioning of upstream aquatic ecosystems, necessitating an improved understanding of watershed-scale interactions including variable surface-water flows between wetlands and streams. As surface water in the Prairie Pothole Region expands in wet years, surface-water connections occur between many depressional wetlands and streams. Minimal research has explored the spatial patterns and drivers for the abundance of these connections, despite their potential to inform resource management and regulatory programs including the U.S. Clean Water Act. In this study, wetlands were identified that did not intersect the stream network, but were shown with Landsat images (1990–2011) to become merged with the stream network as surface water expanded. Wetlands were found to spill into or consolidate with other wetlands within both small (2–10 wetlands) and large (>100 wetlands) wetland clusters, eventually intersecting a stream channel, most often via a riparian wetland. These surface-water connections occurred over a wide range of wetland distances from streams (averaging 90–1400 m in different ecoregions). Differences in the spatial abundance of wetlands that show a variable surface-water connection to a stream were best explained by smaller wetland-to-wetland distances, greater wetland abundance, and maximum surface-water extent. This analysis demonstrated that wetland arrangement and surface water expansion are important mechanisms for depressional wetlands to connect to streams and provides a first step to understanding the frequency and abundance of these surface-water connections across the Prairie Pothole Region.

  14. Climate Effects on Plant Range Distributions and Community Structure of Pacific Northwest Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Bridgham, Scott D. [Univ. of Oregon, Eugene, OR (United States); Johnson, Bart [Univ. of Oregon, Eugene, OR (United States)

    2013-09-26

    Pacific Northwest (PNW) prairies are an imperiled ecosystem that contain a large number of plant species with high fidelity to this habitat. The few remaining high-quality PNW prairies harbor a number of sensitive, rare, and endangered plant species that may be further at-risk with climate change. Thus, PNW prairies are an excellent model system to examine how climate change will affect the distribution of native plant species in grassland sites. Our experimental objectives were to determine: (i) how climate change will affect the range distribution of native plant species; (ii) what life history stages are most sensitive to climate change in a group of key indicator native species; (iii) the robustness of current restoration techniques and suites of species to changing climate, and in particular, the relative competitiveness of native species versus exotic invasive species; and (iv) the effects of climate change on carbon and nutrient cycling and soil-microbial-plant feedbacks. We addressed these objectives by experimentally increasing temperature 2.5 to 3.0 ºC above ambient with overhead infrared lamps and increasing wet-season precipitation by 20% above ambient in three upland prairie sites in central-western Washington, central-western Oregon, and southwestern Oregon from fall 2010 through 2012. Additional precipitation was applied within 2 weeks of when it fell so precipitation intensity was increased, particularly during the winter rainy season but with minimal additions during the summer dry season. These three sites also represent a 520-km natural climate gradient of increasing degree of severity of Mediterranean climate from north to south. After removing the extant vegetation, we planted a diverse suite of 12 native species that have their northern range limit someplace within the PNW in each experimental plot. An additional 20 more wide-spread native species were also planted into each plot. We found that recruitment of plant species within their ranges

  15. Hydrologic investigations of prairie potholes in North Dakota, 1959-68

    Science.gov (United States)

    Eisenlohr, W.S.

    1972-01-01

    A prairie pothole is a depression in the prau1e, capable of storing water, that is the result of glacial processes. Years ago, there were many hundreds of thousands of prairie potholes in the North-Central United States, but large numbers of them have been drained for agricultural use. This report is limited to studies of prairie potholes in the eastern part of the glaciated northern Great Plains region in North Dakota-a rolling upland area covered with glacial drift, called the Coteau du Missouri. Potholes are wetlands that are the primary breeding area of migratory waterfowl in the United States. If production of waterfowl is to continue, suitable wetlands must be maintained, and even new wetlands created to offset those destroyed for agricultural use. The initial stage of the Garrison Diversion Unit calls for a normal annual diversion from Garrison Reservoir of 60,000 acre-feet of water for this purpose. Many prairie potholes contain large amounts of emergent aquatic vegetatjon known as hydrophytes. Determining the loss of water by transpiration from emergent hydrophytes was one of the major objectives of the present study of the hydrology of prairie potholes. Other hydrologic factors were studied later, but the first part of the study was devoted almost exclusively to the determination of evaporation and transpiration losses at groups of potholes in Ward, Stutsman, and Dickey Counties. The mass-transfer method was used, and by determining the variation in the mass-transfer coefficient throughout a season, the losses by evaporation and transpiration were determined separately. Separate determinations were accomplished by relating the emergent height and the moisture content of the hydrophytes to the rate of transpiration, as determined by the mass-transfer coefficient. Seasonal evaporation from the study potholes clear of vegetation was found to very nearly equal the generalized evaporation values published by the U.S. Weather Bureau. The effect of hydrophytes

  16. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region

    Science.gov (United States)

    Werner, B.A.; Johnson, W. Carter; Guntenspergen, Glenn R.

    2013-01-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.

  17. Population differences in host immune factors may influence survival of Gunnison's prairie dogs (Cynomys Gunnisoni) during plague outbreaks

    Science.gov (United States)

    Busch, Joseph D.; Van Andel, Roger; Cordova, Jennifer; Colman, Rebecca E.; Keim, Paul; Rocke, Tonie E.; Leid, Jeff G.; Van Pelt, William E.; Wagner, David M.

    2011-01-01

    Over the past 40 yr, epizootics of plague (Yersinia pestis) in northern Arizona have reduced populations of the Gunnison’s prairie dog (Cynomys gunnisoni), with the exception of a large population found in the Aubrey Valley (AV). To examine potential mechanisms accounting for their survival, we collected prairie dog serum samples in 2005–2006 from AV and a neighboring population near Seligman (SE), Arizona. We quantified gene expression at 58 diverse immune proteins using a multiplexed enzyme-linked immunosorbent assay panel. We found a subset of proteins important in coagulation and inflammation (tissue factor [TF], calbindin [Cal], and thrombopoietin [TPO]) and T-cell responses (CD40L and CD40) that were present in AV at levels two to eight times greater than SE. These results suggest that AV and SE animals might differ in their ability to mount an immune response.

  18. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region.

    Science.gov (United States)

    Werner, Brett A; Johnson, W Carter; Guntenspergen, Glenn R

    2013-09-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946-1975; 1976-2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.

  19. Summary of surface-water-quality data collected for the Northern Rockies Intermontane Basins National Water-Quality Assessment Program in the Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, water years 1999-2001

    Science.gov (United States)

    Beckwith, Michael A.

    2003-01-01

    Water-quality samples were collected at 10 sites in the Clark Fork-Pend Oreille and Spokane River Basins in water years 1999 – 2001 as part of the Northern Rockies Intermontane Basins (NROK) National Water-Quality Assessment (NAWQA) Program. Sampling sites were located in varied environments ranging from small streams and rivers in forested, mountainous headwater areas to large rivers draining diverse landscapes. Two sampling sites were located immediately downstream from the large lakes; five sites were located downstream from large-scale historical mining and oreprocessing areas, which are now the two largest “Superfund” (environmental remediation) sites in the Nation. Samples were collected during a wide range of streamflow conditions, more frequently during increasing and high streamflow and less frequently during receding and base-flow conditions. Sample analyses emphasized major ions, nutrients, and selected trace elements. Streamflow during the study ranged from more than 130 percent of the long-term average in 1999 at some sites to 40 percent of the long-term average in 2001. River and stream water in the study area exhibited small values for specific conductance, hardness, alkalinity, and dissolved solids. Dissolved oxygen concentrations in almost all samples were near saturation. Median total nitrogen and total phosphorus concentrations in samples from most sites were smaller than median concentrations reported for many national programs and other NAWQA Program study areas. The only exceptions were two sites downstream from large wastewater-treatment facilities, where median concentrations of total nitrogen exceeded the national median. Maximum concentrations of total phosphorus in samples from six sites exceeded the 0.1 milligram per liter threshold recommended for limiting nuisance aquatic growth. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc were largest in samples from sites downstream from historical mining and ore

  20. Stable occupancy by breeding hawks (Buteo spp.) over 25 years on a privately managed bunchgrass prairie in northeastern Oregon, USA

    Science.gov (United States)

    Kennedy, Patricia L.; Bartuszevige, Anne M.; Houle, Marcy; Humphrey, Ann B.; Dugger, Katie M.; Williams, John

    2014-01-01

    Potential for large prairie remnants to provide habitat for grassland-obligate wildlife may be compromised by nonsustainable range-management practices. In 1979–1980, high nesting densities of 3 species of hawks in the genus Buteo—Ferruginous Hawk (Buteo regalis), Red-tailed Hawk (B. jamaicensis), and Swainson's Hawk (B. swainsoni)—were documented on the Zumwalt Prairie and surrounding agricultural areas (34,361 ha) in northeastern Oregon, USA. This area has been managed primarily as livestock summer range since it was homesteaded. Unlike in other prairie remnants, land management on the Zumwalt Prairie was consistent over the past several decades; thus, we predicted that territory occupancy of these 3 species would be stable. We also predicted that territory occupancy would be positively related to local availability of nesting structures within territories. We evaluated these hypotheses using a historical dataset, current survey and habitat data, and occupancy models. In support of our predictions, territory occupancy of all 3 species has not changed over the study period of ∼25 yr, which suggests that local range-management practices are not negatively affecting these taxa. Probability of Ferruginous Hawk occupancy increased with increasing area of aspen, an important nest structure for this species in grasslands. Probability of Swainson's Hawk occupancy increased with increasing area of large shrubs, and probability of Red-tailed Hawk occupancy was weakly associated with area of conifers. In the study area, large shrubs and conifers are commonly used as nesting structures by Swainson's Hawks and Red-tailed Hawks, respectively. Availability of these woody species is changing (increases in conifers and large shrubs, and decline in aspen) throughout the west, and these changes may result in declines in Ferruginous Hawk occupancy and increases in Swainson's Hawk and Red-tailed Hawk occupancy in the future.

  1. Evidence for hydraulic heterogeneity and anisotropy in the mostly carbonate Prairie du Chien Group, southeastern Minnesota, USA

    Science.gov (United States)

    Tipping, R.G.; Runkel, Anthony C.; Alexander, E.C.; Alexander, S.C.; Green, J.A.

    2006-01-01

    In southeastern Minnesota, Paleozoic bedrock aquifers have typically been represented in groundwater flow simulations as isotropic, porous media. To obtain a more accurate hydrogeologic characterization of the Ordovician Prairie du Chien Group, a new approach was tested, combining detailed geologic observations, particularly of secondary porosity, with hydraulic data. Lithologic observations of the depositional and erosional history of the carbonate-dominated bedrock unit constrained characterization of both primary (matrix) and secondary porosity from outcrops and core. Hydrostratigraphic data include outcrop and core observations along with core plug permeability tests. Hydrogeologic data include discrete interval aquifer tests, borehole geophysics, water chemistry and isotope data, and dye trace studies. Results indicate that the Prairie du Chien Group can be subdivided into the Shakopee aquifer at the top, consisting of interbedded dolostone, sandstone and shale, and the underlying Oneota confining unit consisting of thickly bedded dolostone. The boundary between these two hydrogeologic units does not correspond to lithostratigraphic boundaries, as commonly presumed. Groundwater flow in the Shakopee aquifer is primarily through secondary porosity features, most commonly solution-enlarged bedding planes and sub-horizontal and vertical fractures. Regional scale preferential development of cavernous porosity and permeability along specific stratigraphic intervals that correspond to paleokarst were also identified, along with a general depiction of the distribution of vertical and horizontal fractures. The combination of outcrop and core investigations, along with borehole geophysics, discrete interval aquifer tests, water chemistry and isotope data and dye trace studies show that the Prairie du Chien Group is best represented hydrogeologically as heterogeneous and anisotropic. Furthermore, heterogeneity and anisotropy within the Prairie du Chien Group is mappable

  2. Patterns of surface burrow plugging in a colony of black-tailed prairie dogs occupied by black-footed ferrets

    Science.gov (United States)

    Eads, David E.; Biggins, Dean E.

    2012-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) can surface-plug openings to a burrow occupied by a black-footed ferret (Mustela nigripes). At a coarse scale, surface plugs are more common in colonies of prairie dogs occupied by ferrets than in colonies without ferrets. However, little is known about spatial and temporal patterns of surface plugging in a colony occupied by ferrets. In a 452-ha colony of black-tailed prairie dogs in South Dakota, we sampled burrow openings for surface plugs and related those data to locations of ferrets observed during spotlight surveys. Of 67,574 burrow openings in the colony between June and September 2007, 3.7% were plugged. In a colony-wide grid of 80 m × 80 m cells, the occurrence of surface plugging (≥1 opening plugged) was greater in cells used by ferrets (93.3% of cells) than in cells not observably used by ferrets (70.6%). Rates of surface plugging (percentages of openings plugged) were significantly higher in cells used by ferrets (median = 3.7%) than in cells without known ferret use (median = 3.2%). Also, numbers of ferret locations in cells correlated positively with numbers of mapped surface plugs in the cells. To investigate surface plugging at finer temporal and spatial scales, we compared rates of surface plugging in 20-m-radius circle-plots centered on ferret locations and in random plots 1–4 days after observing a ferret (Jun–Oct 2007 and 2008). Rates of surface plugging were greater in ferret-plots (median = 12.0%) than in random plots (median = 0%). For prairie dogs and their associates, the implications of surface plugging could be numerous. For instance, ferrets must dig to exit or enter plugged burrows (suggesting energetic costs), and surface plugs might influence microclimates in burrows and consequently influence species that cannot excavate soil (e.g., fleas that transmit the plague bacterium Yersinia pestis).

  3. Variation in vasopressin receptor (Avpr1a) expression creates diversity in behaviors related to monogamy in prairie voles.

    Science.gov (United States)

    Barrett, Catherine E; Keebaugh, Alaine C; Ahern, Todd H; Bass, Caroline E; Terwilliger, Ernest F; Young, Larry J

    2013-03-01

    Polymorphisms in noncoding regions of the vasopressin 1a receptor gene (Avpr1a) are associated with a variety of socioemotional characteristics in humans, chimpanzees, and voles, and may impact behavior through a site-specific variation in gene expression. The socially monogamous prairie vole offers a unique opportunity to study such neurobiological control of individual differences in complex behavior. Vasopressin 1a receptor (V1aR) signaling is necessary for the formation of the pair bond in males, and prairie voles exhibit greater V1aR binding in the reward-processing ventral pallidum than do asocial voles of the same genus. Diversity in social behavior within prairie voles has been correlated to natural variation in neuropeptide receptor expression in specific brain regions. Here we use RNA interference to examine the causal relationship between intraspecific variation in V1aR and behavioral outcomes, by approximating the degree of naturalistic variation in V1aR expression. Juvenile male prairie voles were injected with viral vectors expressing shRNA sequences targeting Avpr1a mRNA into the ventral pallidum. Down-regulation of pallidal V1aR density resulted in a significant impairment in the preference for a mated female partner and a reduction in anxiety-like behavior in adulthood. No effect on alloparenting was detected. These data demonstrate that within-species naturalistic-like variation in V1aR expression has a profound effect on individual differences in social attachment and emotionality. RNA interference may prove to be a useful technique to unite the fields of behavioral ecology and neurogenetics to perform ethologically relevant studies of the control of individual variation and offer insight into the evolutionary mechanisms leading to behavioral diversity. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Evaluation of Yersinia pestis transmission pathways for sylvatic plague in prairie dog populations in the western U.S.

    Science.gov (United States)

    Richgels, Katherine L. D.; Russell, Robin E.; Bron, Gebbiena; Rocke, Tonie E.

    2016-01-01

    Sylvatic plague, caused by the bacterium Yersinia pestis, is periodically responsible for large die-offs in rodent populations that can spillover and cause human mortalities. In the western US, prairie dog populations experience nearly 100% mortality during plague outbreaks, suggesting that multiple transmission pathways combine to amplify plague dynamics. Several alternate pathways in addition to flea vectors have been proposed, such as transmission via direct contact with bodily fluids or inhalation of infectious droplets, consumption of carcasses, and environmental sources of plague bacteria, such as contaminated soil. However, evidence supporting the ability of these proposed alternate pathways to trigger large-scale epizootics remains elusive. Here we present a short review of potential plague transmission pathways and use an ordinary differential equation model to assess the contribution of each pathway to resulting plague dynamics in black-tailed prairie dogs (Cynomys ludovicianus) and their fleas (Oropsylla hirsuta). Using our model, we found little evidence to suggest that soil contamination was capable of producing plague epizootics in prairie dogs. However, in the absence of flea transmission, direct transmission, i.e., contact with bodily fluids or inhalation of infectious droplets, could produce enzootic dynamics, and transmission via contact with or consumption of carcasses could produce epizootics. This suggests that these pathways warrant further investigation.

  5. A fuzzy-neural system for identification of species-specific alarm calls of Gunnison's prairie dogs.

    Science.gov (United States)

    Placer; Slobodchikoff

    2000-10-26

    In this study we describe the design and application of an automated classification system that utilizes artificial intelligence to corroborate the finding that Gunnison's prairie dogs have different alarm calls for different species of predators. This corroboration is strong because it utilizes an entirely different analysis technique than that used in the original research by Slobodchikoff et al. [Slobodchikoff, C.N., Fischer, C., Shapiro, J., 1986. Predator-specific alarm calls of prairie dogs. Am. Zool. 26, 557] or in subsequent study done by Slobodchikoff et al. [Slobodchikoff, C.N., Kiriazis, J., Fischer, C., Creef, E., 1991. Semantic information distinguishing individual predators in the alarm calls of Gunnison's prairie dogs. Anim. Behav. 42, 713-719]. The study described here also is more completely automated than earlier study in this area. This automation allowed a large volume of field data to be processed where all measurements of relevant parameters were performed through software control. Previous study processed a smaller data set and utilized manual measurement techniques. The new classification system, which combines fuzzy logic and an artificial neural network, classified alarm calls correctly according to the eliciting predator species, achieving accuracy levels ranging from 78.6 to 96.3% on raw field data digitized with low quality audio equipment.

  6. Solidago altissima differs with respect to ploidy frequency and clinal variation across the prairie-forest biome border in Minnesota.

    Science.gov (United States)

    Etterson, Julie R; Toczydlowski, Rachel H; Winkler, Katharine J; Kirschbaum, Jessica A; McAulay, Tim S

    2016-01-01

    Although our awareness of ploidy diversity has expanded with the application of flow cytometry, we still know little about the extent to which cytotypes within mixed-ploidy populations are genetically differentiated across environmental gradients. To address this issue, we reared 14 populations of Solidago altissima spanning the prairie-forest ecotone in Minnesota in a common garden with a watering treatment. We assessed ploidy frequencies and measured survival, flowering phenology, and plant architectural traits for 4 years. All populations harbored multiple cytotypes; prairie populations were dominated by tetraploids, forest populations by hexaploids. Diploids and polyploids differed significantly for 84% of the traits. Beyond average differences, the slope of trait values covaried with latitude and longitude, but this relationship was stronger for diploids than the other two polyploid cytotypes as indicated by numerous ploidy × latitude and ploidy × longitude interactions. For example, the timing of flowering of the cytotypes overlapped in populations sampled from the northeastern hemiboreal forest but differed significantly between cytotypes sampled from populations in the southwestern prairie. The watering treatments had weak effects, and there were no ploidy differences for phenotypic plasticity. Our data show that diploids have diverged genetically to a greater extent than polyploids along the environmental clines sampled in this study. Moreover, different environments favor phenotypic convergence over divergence among cytotypes for some traits. Differences in ploidy frequency and phenotypic divergence among cytotypes across gradients of temperature and precipitation are important considerations for restoration in an age of climate change. © 2016 Botanical Society of America.

  7. A quantitative analysis of naiad mollusks from the Prairie du Chien, Wisconsin dredge material site on the Mississippi River

    Science.gov (United States)

    Havlik, M.E.; Marking, L.L.

    1980-01-01

    The Prairie du Chien dredge material site contains about 100,000 cubic meters of material dredged from the East Channel of the Mississippi Riverin1976. Previous studies in that area suggested a rich molluscan fauna, but most studies were only qualitative or simply observations. Our study of this material was designed to determine the density and diversity of molluscan fauna, to assess changes in the fauna, to identify endemic species previously unreported, and to evaluate the status of the endangered Lampsilis higginsi. Ten cubic meters of dredge material were sieved to recover shells. Molluscan fauna at the site contained38 species of naiades and up to 1,737 identifiable valves per cubic meter. The endangered L. higginsi ranked18th In occurrence, accounted for only 0.52% of the identifiable shells, and averaged about three valves per cubic meter. From a total of 813 kg of naiades and gastropods, 6,339 naiad valves were identified. Five naiad species were collected at the site for the first time, and Eploblasma triquetra had not been reported previously in the Prairie du Chien area. Although the molluscan fauna has changed, the East Channel at Prairie du Chien is obviously suitable for L. higginsi.

  8. Validating DNA Polymorphisms Using KASP Assay in Prairie Cordgrass (Spartina pectinata Link Populations in the U.S.

    Directory of Open Access Journals (Sweden)

    Hannah eGraves

    2016-01-01

    Full Text Available Single nucleotide polymorphisms (SNPs are one of the most abundant DNA variants found in plant genomes and are highly efficient when comparing genome and transcriptome sequences. SNP marker analysis can be used to analyze genetic diversity, create genetic maps, and utilize marker-assisted selection breeding in many crop species. In order to utilize these technologies, one must first identify and validate putative SNPs. In this study, 121 putative SNPs, developed from a nuclear transcriptome of prairie cordgrass (Spartina pectinata Link, were analyzed using KASP technology in order to validate the SNPs. Fifty-nine SNPs were validated using a core collection of 38 natural populations and a phylogenetic tree was created with one main clade. Samples from the same population tended to cluster in the same location on the tree. Polymorphisms were identified within 52.6% of the populations, split evenly between the tetraploid and octoploid cytotypes. Twelve selected SNP markers were used to assess the fidelity of tetraploid crosses of prairie cordgrass and their resulting F2 population. These markers were able to distinguish true crosses and selfs. This study provides insight into the genomic structure of prairie cordgrass, but further analysis must be done on other cytotypes to fully understand the structure of this species. This study validates putative SNPs and confirms the potential usefulness of SNP marker technology in future breeding programs of this species.

  9. Age at vaccination may influence response to sylvatic plague vaccine (SPV) in Gunnison’s prairie dogs (Cynomys gunnisoni)

    Science.gov (United States)

    Rocke, Tonie E.; Tripp, Daniel W.; Lorenzsonn, Faye; Falendysz, Elizabeth A.; Smith, Susan; Williamson, Judy L.; Abbott, Rachel C.

    2015-01-01

    Gunnison’s prairie dogs (Cynomys gunnisoni) have been considered at greater risk from Yersinia pestis (plague) infection in the montane portion of their range compared to populations at lower elevations, possibly due to factors related to flea transmission of the bacteria or greater host susceptibility. To test the latter hypothesis and determine whether vaccination against plague with an oral sylvatic plague vaccine (SPV) improved survival, we captured prairie dogs from a C. g. gunnisoni or “montane” population and a C. g. zuniensis or “prairie” population for vaccine efficacy and challenge studies. No differences (P = 0.63) were found in plague susceptibility in non-vaccinated animals between these two populations; however, vaccinates from the prairie population survived plague challenge at significantly higher rates (P dogs, and that SPV could be a useful plague management tool for this species, particularly if targeted at younger cohorts.

  10. Transmission efficiency of two flea species (Oropsylla tuberculata cynomuris and Oropsylla hirsuta) involved in plague epizootics among prairie dogs.

    Science.gov (United States)

    Wilder, Aryn P; Eisen, Rebecca J; Bearden, Scott W; Montenieri, John A; Tripp, Daniel W; Brinkerhoff, R Jory; Gage, Kenneth L; Antolin, Michael F

    2008-06-01

    Plague, caused by Yersinia pestis, is an exotic disease in North America circulating predominantly in wild populations of rodents and their fleas. Black-tailed prairie dogs (Cynomys ludovicianus) are highly susceptible to infection, often experiencing mortality of nearly all individuals in a town as a result of plague. The fleas of black-tailed prairie dogs are Oropsylla tuberculata cynomuris and Oropsylla hirsuta. We tested the efficiency of O. tuberculata cynomuris to transmit Y. pestis daily from 24 to 96 h postinfection and compared it to previously collected data for O. hirsuta. We found that O. tuberculata cynomuris has over threefold greater transmission efficiency (0.18 infected fleas transmit Y. pestis at 24 h postinfection) than O. hirsuta (0.05 fleas transmit). Using a simple model of flea-borne transmission, we combine these laboratory measurements with field data on monthly flea loads to compare the seasonal vectorial capacity of these two flea species. Coinciding with seasonal patterns of flea abundance, we find a peak in potential for flea-borne transmission in March, during high O. tuberculata cynomuris abundance, and in September-October when O. hirsuta is common. Our findings may be useful in determining the timing of insecticidal dusting to slow plague transmission in black-tailed prairie dogs.

  11. Distribution and abundance of predators that affect duck production--prairie pothole region

    Science.gov (United States)

    Sargeant, A.B.; Greenwood, R.J.; Sovada, M.A.; Shaffer, T.L.

    1993-01-01

    During 1983-88, the relative abundance of 18 species and species-groups of mammalian and avian predators affecting duck production in the prairie pothole region was determined in 33 widely scattered study areas ranging in size from 23-26 km2. Accounts of each studied species and species-group include habitat and history, population structure and reported densities, and information on distribution and abundance from the present study. Index values of undetected, scarce, uncommon, common, or numerous were used to rate abundance of nearly all species in each study area. Principal survey methods were livetrapping of striped skunks (Mephitis mephitis) and Franklin's ground squirrels (Spermophilus franklinii), systematic searches for carnivore tracks in quarter sections (0.65 km2), daily records of sightings of individual predator species, and systematic searches for occupied nests of tree-nesting avian predators. Abundances of predators in individual areas were studied 1-3 years.The distribution and abundance of predator species throughout the prairie pothole region have undergone continual change since settlement of the region by Europeans in the late 1800's. Predator populations in areas we studied differed markedly from those of pristine times. The changes occurred from habitat alterations, human-inflicted mortality of predators, and interspecific relations among predator species. Indices from surveys of tracks revealed a decline in the abundance of red foxes (Vulpes vulpes) and an albeit less consistent decline in the abundance of raccoons (Procyon lotor) with an increase in the abundance of coyotes (Canis latrans). Records of locations of occupied nests revealed great horned owls (Bubo virginianus) and red-tailed hawks (Buteo jamaicensis) tended to nest 0.5 km apart, and American crows (Corvus brachyrhynchos) tended to avoid nesting 0.5 km of nests of red-tailed hawks. Excluding large gulls, for which no measurements of abundance were obtained, the number of

  12. Spatial Organization of "Farmed" Wetlands in Iowa's Prairie Pothole Landscape: Geomorphic and Anthropogenic Controls

    Science.gov (United States)

    Stunkel, K. B.; Basu, N. B.

    2012-12-01

    The Des Moines Lobe landform within North Central Iowa is the southernmost portion of the Prairie Pothole Region (PPR) that extends northwest into Canada. The PPR is a vast landscape dotted with thousands of glacially formed depressional wetlands known as prairie potholes. These potholes provide a wide range of ecological and hydrological services and are notable for their high waterfowl productivity. Within Iowa it is estimated that 95% of the wetlands in the Des Moines Lobe have been drained for agricultural purposes. Wetlands in this region are typically drained by subsurface tile drains in an attempt to lower the water table and increase agricultural productivity. Efforts are also underway in restoring some of these drained wetlands. In order to better understand the hydrological impacts of restoring drained wetlands at the watershed scale, it is important to understand how these depressions are distributed in space throughout the Des Moines Lobe. The overall objective of this study was to (1) understand the size-distribution and spatial organization of depressional features in the Des Moines Lobe as a function of watershed area and landform type; and (2) Explore the role of human impact on the size-distribution and spatial organization by comparing depressions based on 1m LIDAR DEM (surrogate for historic wetlands) with "farmed" wetlands based on National Wetlands Inventory (NWI ) data. It was found that the size-frequency relationship follows a power law regression that varies based on the landform type and the size of the study area. The power law function varies predictably with changes in area, suggesting fractal properties within the watersheds examined. Comparison between the National Wetlands Inventory (NWI) database and the LIDAR images was used to evaluate the effect of human disturbance on the landscape. The LIDAR captures the depressional areas that correspond to wetlands before the landscape was extensively tile-drained, while NWI captures the

  13. Plume Aerosol Size Distribution Modeling and Comparisons to PrAIRie2005 Field Study Data

    Science.gov (United States)

    Cho, S.; Liggio, J.; Makar, P.; Li, S.; Racinthe, J.

    2006-12-01

    As part of the analysis phase of the PrAIRie2005 field study, the effects of different Edmonton-area emission sources on local air-quality are being examined. Four large coal-fired power-plants are located to the West of the city. Here, the effects of these power-plants on urban and regional air-quality will be examined, using both plume and regional air-quality models. During the last few decades, coal-fired power plants have been found to be as a major source of pollution, affecting public-health. According to NACEC (North American Commission for Environmental Corporation, 2001)'s report, 46 of the top 50 air polluters in North America were power plants. The importance of such sources has resulted in several attempts to improve understanding of the basic formation mechanisms of plume particulate matter. Sulphur dioxide contributes to acidifying emissions and to the production of secondary acidic aerosols that have been linked to a number of serious human health problems, acid rain and visibility (Seinfeld and Pandis, 1998; Hidy, 1984; Wilson and McMurray, 1981). Primary particulate matter originating directly from coal-fired power plants may also increase secondary particulate mass by providing a surface for sulphuric acid absorption . Environment Canada's PrAIRie2005 field study between August 12th and September 7th, 2005 included overflights and downwind measurements near the Edmonton powerplants (Wabamun, Sundance, Keephills and Genesee). The data collected consisted of particle size distributions, ozone, NOX, total mass and the chemical composition of fine particles. In order to investigate and improve our understanding of the formation mechanisms and physical properties of power-plant-generated aerosols in the Edmonton area, the Plume Aerosol Microphysical (PAM) model has been employed. This model accounts for gas-phase chemistry, aerosol microphysical processes (i.e. homogeneous/heterogeneous nucleation, condensation/evaporation and coagulation) and

  14. Identification of variables contributing to superovulation efficiency for production of transgenic prairie voles (Microtus ochrogaster

    Directory of Open Access Journals (Sweden)

    Keebaugh Alaine C

    2012-07-01

    Full Text Available Abstract Background The prairie vole (Microtus ochrogaster is an emerging animal model for biomedical research because of its rich sociobehavioral repertoire. Recently, lentiviral transgenic technology has been used to introduce the gene encoding the green fluorescent protein (GFP into the prairie vole germline. However, the efficiency of transgenesis in this species is limited by the inability to reliably produce large numbers of fertilized embryos. Here we examined several factors that may contribute to variability in superovulation success including, age and parentage of the female, and latency to mating after being placed with the male. Methods Females produced from 5 genetically distinct breeder lines were treated with 100 IU of pregnant mare serum gonadotrophin (PMSG and immediately housed with a male separated by a perforated Plexiglas divider. Ovulation was induced 72 hr later with 30 IU of human chorionic gonadotropin (hCG and 2 hrs later mating was allowed. Results Superovulation was most efficient in young females. For example, females aged 6-11 weeks produced more embryos (14 +/- 1.4 embryos as compared to females aged 12-20 weeks (4 +/- 1.6 embryos. Females aged 4-5 weeks did not produce embryos. Further, females that mated within 15 min of male exposure produced significantly more embryos than those that did not. Interestingly, there was a significant effect of parentage. For example, 12 out of 12 females from one breeder pair superovulated (defined as producing 5 or more embryos, while only 2 out of 10 females for other lines superovulated. Conclusions The results of this work suggest that age and genetic background of the female are the most important factors contributing to superovulation success and that latency to mating is a good predictor of the number of embryos to be recovered. Surprisingly we found that cohabitation with the male prior to mating is not necessary for the recovery of embryos but is necessary to recover

  15. Effects of floods on fish assemblages in an intermittent prairie stream

    Science.gov (United States)

    Franssen, N.R.; Gido, K.B.; Guy, C.S.; Tripe, J.A.; Shrank, S.J.; Strakosh, T.R.; Bertrand, K.N.; Franssen, C.M.; Pitts, K.L.; Paukert, C.P.

    2006-01-01

    1. Floods are major disturbances to stream ecosystems that can kill or displace organisms and modify habitats. Many studies have reported changes in fish assemblages after a single flood, but few studies have evaluated the importance of timing and intensity of floods on long-term fish assemblage dynamics. 2. We used a 10-year dataset to evaluate the effects of floods on fishes in Kings Creek, an intermittent prairie stream in north-eastern, Kansas, U.S.A. Samples were collected seasonally at two perennial headwater sites (1995-2005) and one perennial downstream flowing site (1997-2005) allowing us to evaluate the effects of floods at different locations within a watershed. In addition, four surveys during 2003 and 2004 sampled 3-5 km of stream between the long-term study sites to evaluate the use of intermittent reaches of this stream. 3. Because of higher discharge and bed scouring at the downstream site, we predicted that the fish assemblage would have lowered species richness and abundance following floods. In contrast, we expected increased species richness and abundance at headwater sites because floods increase stream connectivity and create the potential for colonisation from downstream reaches. 4. Akaike Information Criteria (AIC) was used to select among candidate regression models that predicted species richness and abundance based on Julian date, time since floods, season and physical habitat at each site. At the downstream site, AIC weightings suggested Julian date was the best predictor of fish assemblage structure, but no model explained >16% of the variation in species richness or community structure. Variation explained by Julian date was primarily attributed to a long-term pattern of declining abundance of common species. At the headwater sites, there was not a single candidate model selected to predict total species abundance and assemblage structure. AIC weightings suggested variation in assemblage structure was associated with either Julian date

  16. Quantifying Hydroperiod, Fire and Nutrient Effects on the Composition of Plant Communities in Marl Prairie of the Everglades: a Joint Probability Method Based Model

    Science.gov (United States)

    Zhai, L.

    2017-12-01

    Plant community can be simultaneously affected by human activities and climate changes, and quantifying and predicting this combined effect on plant community by appropriate model framework which is validated by field data is complex, but very useful to conservation management. Plant communities in the Everglades provide an unique set of conditions to develop and validate this model framework, because they are both experiencing intensive effects of human activities (such as changing hydroperiod by drainage and restoration projects, nutrients from upstream agriculture, prescribed fire, etc.) and climate changes (such as warming, changing precipitation patter, sea level rise, etc.). More importantly, previous research attention focuses on plant communities in slough ecosystem (including ridge, slough and their tree islands), very few studies consider the marl prairie ecosystem. Comparing with slough ecosystem featured by remaining consistently flooded almost year-round, marl prairie has relatively shorter hydroperiod (just in wet-season of one year). Therefore, plant communities of marl prairie may receive more impacts from hydroperiod change. In addition to hydroperiod, fire and nutrients also affect the plant communities in the marl prairie. Therefore, to quantify the combined effects of water level, fire, and nutrients on the composition of the plant communities, we are developing a joint probability method based vegetation dynamic model. Further, the model is being validated by field data about changes of vegetation assemblage along environmental gradients in the marl prairie. Our poster showed preliminary data from our current project.

  17. Hydrogeochemistry of prairie pothole region wetlands: Role of long-term critical zone processes

    Science.gov (United States)

    Goldhaber, Martin B.; Mills, Christopher T.; Morrison, Jean M.; Stricker, Craig A.; Mushet, David M.; LaBaugh, James W.

    2014-01-01

    This study addresses the geologic and hydrogeochemical processes operating at a range of scales within the prairie pothole region (PPR). The PPR is a 750,000 km2portion of north central North America that hosts millions of small wetlands known to be critical habitat for waterfowl and other wildlife. At a local scale, we characterized the geochemical evolution of the 92-ha Cottonwood Lake study area (CWLSA), located in North Dakota, USA. Critical zone processes are the long-term determinant of wetland water and groundwater geochemistry via the interaction of oxygenated groundwater with pyrite in the underlying glacial till. Pyrite oxidation produced a brown, iron oxide-bearing surface layer locally over 13 m thick and an estimated minimum of 1.3 × 1010 g sulfate (SO42 −) at CWLSA. We show that the majority of this SO42− now resides in solid-phase gypsum (CaSO4•2H2O) and gypsum-saturated groundwater.

  18. Quantification of Impurities in Prairie Snowpacks and Evaluation and Assessment of Snow Parameters

    Science.gov (United States)

    Morris, J. N.; Klein, A. G.

    2008-12-01

    Recent measurements of snow impurities collected in North American prairie snowpacks show deposition of significant quantities of atmospheric aerosols and local dust into the snowpack. While concern over the effects of soot and other impurities in atmospheric samplings has been a scientific focus for decades, few efforts have been made to determine the effects of these highly absorbing impurities on snow albedo. These impurities can lower snow albedo in the visible portion of the electromagnetic spectrum by 5-15% with concentrations of only 1 part per million by weight (ppmw). Mass impurities were measured in snowpacks in Dickinson County, Iowa taken at agricultural, lake and other sites during multiple days in 2007 and 2008. The sampling captured two snowfall events in 2008 with snowfall totals exceeding 290 mm. The contaminant contributions to light absorption were determined to be primarily from agricultural dust and black carbon which are identifiable by their wavelength dependence. Impurity concentrations are determined by optical methods. Snow meltwater was filtered through a Nuclepore filter and the filters were analyzed for light absorption using the Integrating Plate (IP) method at 16 equal interval wavelengths across the visible portion of the electromagnetic spectrum. Average impurity concentrations were found to range between 15 and 80 ngC/gm. These concentrations are higher than those typically measured in the Arctic and Antarctic.

  19. Codominant grasses differ in gene expression under experimental climate extremes in native tallgrass prairie

    Science.gov (United States)

    Avolio, Meghan L.; Knapp, Alan K.; Smith, Melinda D.

    2018-01-01

    Extremes in climate, such as heat waves and drought, are expected to become more frequent and intense with forecasted climate change. Plant species will almost certainly differ in their responses to these stressors. We experimentally imposed a heat wave and drought in the tallgrass prairie ecosystem near Manhattan, Kansas, USA to assess transcriptional responses of two ecologically important C4 grass species, Andropogon gerardii and Sorghastrum nutans. Based on previous research, we expected that S. nutans would regulate more genes, particularly those related to stress response, under high heat and drought. Across all treatments, S. nutans showed greater expression of negative regulatory and catabolism genes while A. gerardii upregulated cellular and protein metabolism. As predicted, S. nutans showed greater sensitivity to water stress, particularly with downregulation of non-coding RNAs and upregulation of water stress and catabolism genes. A. gerardii was less sensitive to drought, although A. gerardii tended to respond with upregulation in response to drought versus S. nutans which downregulated more genes under drier conditions. Surprisingly, A. gerardii only showed minimal gene expression response to increased temperature, while S. nutans showed no response. Gene functional annotation suggested that these two species may respond to stress via different mechanisms. Specifically, A. gerardii tends to maintain molecular function while S. nutans prioritizes avoidance. Sorghastrum nutans may strategize abscisic acid response and catabolism to respond rapidly to stress. These results have important implications for success of these two important grass species under a more variable and extreme climate forecast for the future. PMID:29473008

  20. Improving waterfowl production estimates: Results of a test in the prairie pothole region

    Science.gov (United States)

    Arnold, P.M.; Cowardin, L.M.

    1985-01-01

    The U.S. Fish and Wildlife Service in an effort to improve and standardize methods for estimating waterfowl production tested a new technique in the four-county Arrowwood Wetland Management District (WMD) for three years (1982-1984). On 14 randomly selected 10.36 km2 plots, upland and wetland habitat was mapped, classified, and digitized. Waterfowl breeding pairs were counted twice each year and the proportion of wetland basins containing water was determined. Pair numbers and habitat conditions were entered into a computer model developed by Northern Prairie Wildlife Research Center. That model estimates production on small federally owned wildlife tracts, federal wetland easements, and private land. Results indicate that production estimates were most accurate for mallards (Anas platyrhynchos), the species for which the computer model and data base were originally designed. Predictions for the pintail (Anas acuta), gadwall (A. strepa), blue-winged teal (A. discors), and northern shoveler (A. clypeata) were believed to be less accurate. Modeling breeding period dynamics of a waterfowl species and making credible production estimates for a geographic area are possible if the data used in the model are adequate. The process of modeling the breeding period of a species aids in locating areas of insufficient biological knowledge. This process will help direct future research efforts and permit more efficient gathering of field data.

  1. Integration of extrusion and clean fractionation processes as a pre-treatment technology for prairie cordgrass.

    Science.gov (United States)

    Brudecki, Grzegorz; Cybulska, Iwona; Rosentrater, Kurt

    2013-05-01

    Prairie cordgrass (PCG) was pretreated by sequential extrusion and clean fractionation (CF) processing. Following CF, PCG was fractionated into cellulose, hemicellulose and lignin-rich fractions. Cellulose pulp was then enzymatically hydrolyzed, producing glucose. The main purpose of this study was to produce the highest glucose yield as possible. The effects of time, temperature, catalyst concentration and solvent mixture composition on the fractionation were tested. Different proportions of methyl isobutyl ketone (MIBK), ethanol and water with sulfuric acid as a catalyst were evaluated. Optimal conditions for sequential extrusion and clean fractionation (39 min, 129 °C, 0.69% catalyst, and 28% MIBK) resulted in higher glucose yield (92%), and more lignin (87%) and xylan (95%) removal than for clean fractionation alone. Pairwise comparison of raw PCG with extruded PCG clean fractionation revealed no difference in glucose yields, but xylan and AIL removal were higher in the case of clean fractionation of the pre-extruded PCG. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Comparing the hydrology of grassed and cultivated catchments in the semi-arid Canadian prairies

    Science.gov (United States)

    van der Kamp, G.; Hayashi, M.; Gallén, D.

    2003-02-01

    At the St Denis National Wildlife Area in the prairie region of southern Saskatchewan, Canada, water levels in wetlands have been monitored since 1968. In 1980 and 1983 a total of about one-third of the 4 km2 area was converted from cultivation to an undisturbed cover of brome grass. A few years after this conversion all the wetlands within the area of grass dried out; they have remained dry since, whereas wetlands in adjacent cultivated lands have held water as before. Field measurements show that introduction of undisturbed grass reduces water input to the wetlands mainly through a combination of efficient snow trapping and enhanced infiltration into frozen soil. In winter, the tall brome grass traps most of the snowfall, whereas in the cultivated fields more wind transport of snow occurs, especially for short stubble and fallow fields. Single-ring infiltration tests were conducted during snowmelt, while the soil was still frozen, and again in summer. The infiltrability of the frozen soil in the grassland is high enough to absorb most or all of the snowmelt, whereas in the cultivated fields the infiltration into the frozen soil is limited and significant runoff occurs. In summer, the infiltrability increases for the cultivated fields, but the grassland retains a much higher infiltrability than the cultivated land. The development of enhanced infiltrability takes several years after the conversion from cultivation to grass, and is likely due to the gradual development of macropores, such as root holes, desiccation cracks, and animal burrows.

  3. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region

    Science.gov (United States)

    Ando, Amy W.; Mallory, Mindy L.

    2012-01-01

    Climate change is likely to alter the spatial distributions of species and habitat types but the nature of such change is uncertain. Thus, climate change makes it difficult to implement standard conservation planning paradigms. Previous work has suggested some approaches to cope with such uncertainty but has not harnessed all of the benefits of risk diversification. We adapt Modern Portfolio Theory (MPT) to optimal spatial targeting of conservation activity, using wetland habitat conservation in the Prairie Pothole Region (PPR) as an example. This approach finds the allocations of conservation activity among subregions of the planning area that maximize the expected conservation returns for a given level of uncertainty or minimize uncertainty for a given expected level of returns. We find that using MPT instead of simple diversification in the PPR can achieve a value of the conservation objective per dollar spent that is 15% higher for the same level of risk. MPT-based portfolios can also have 21% less uncertainty over benefits or 6% greater expected benefits than the current portfolio of PPR conservation. Total benefits from conservation investment are higher if returns are defined in terms of benefit–cost ratios rather than benefits alone. MPT-guided diversification can work to reduce the climate-change–induced uncertainty of future ecosystem-service benefits from many land policy and investment initiatives, especially when outcomes are negatively correlated between subregions of a planning area. PMID:22451914

  4. Variable effects of dipteran parasitoids and management treatment on grasshopper fecundity in a tallgrass prairie.

    Science.gov (United States)

    Laws, A N; Joern, A

    2012-04-01

    Grasshoppers host a number of parasitoids, but little is known about their impact on grasshopper life history attributes or how those impacts may vary with land use. Here, we report on a three-year survey of nine grasshopper species in a tallgrass prairie managed with fire and bison grazing treatments. We measured parasitoid prevalence and the impact of parasitoid infection on grasshopper fecundity to determine if grasshopper-parasitoid interactions varied with management treatment. Adult female grasshoppers were collected every three weeks from eight watersheds managed with different prescribed burning and grazing treatments. Grasshopper fecundity with and without parasitoids was estimated through dissections of reproductive tracts. Dipteran parasitoids from two families (Nemestrinidae and Tachinidae) were observed infecting grasshoppers. We found significant effects of grazing treatment, but not burn interval, on grasshopper-parasitoid interactions. Parasitoids were three times more abundant in watersheds with bison grazing than in ungrazed watersheds, and the relative abundance of nemestrinid and tachinid flies varied with grazing treatment. Parasitoid prevalence varied among grasshopper species from grasshopper fecundity, with stronger effects on current reproduction than on past reproduction. Furthermore, current fecundity in parasitized grasshoppers was lower in grazed watersheds compared to ungrazed watersheds. Nemestrinid parasitoids generally had stronger impacts on grasshopper fecundity than tachinid parasitoids, the effects of which were more variable.

  5. Density mediates grasshopper performance in response to temperature manipulation and spider predation in tallgrass prairie.

    Science.gov (United States)

    Laws, A N; Joern, A

    2017-04-01

    Species interactions are often context-dependent, where outcomes require an understanding of influences among multiple biotic and abiotic factors. However, it remains unclear how abiotic factors such as temperature combine with important biotic factors such as density-dependent food limitation and predation to influence species interactions. Using a native grassland - grasshopper - wolf spider model food chain in tallgrass prairie, we conducted a manipulative field experiment to examine how predator-prey interactions respond to manipulations of temperature, grasshopper density, and food chain length. We find that grasshopper performance responses to temperature and predator treatments were density dependent. At high densities, grasshopper survival decreased with increased temperature when no spiders were present. When spiders were present, grasshopper survival was reduced, and this effect was strongest in the cooled treatment. In contrast, grasshopper survival did not vary significantly with spider presence or among temperature treatments at low grasshopper densities. Our results indicate that context-dependent species interactions are common and highlight the importance of understanding how and when key biotic and abiotic factors combine to influence species interactions.

  6. Classifying the hydrologic function of prairie potholes with remote sensing and GIS

    Science.gov (United States)

    Rover, Jennifer R.; Wright, C.K.; Euliss, Ned H.; Mushet, David M.; Wylie, Bruce K.

    2011-01-01

    A sequence of Landsat TM/ETM+ scenes capturing the substantial surface water variations exhibited by prairie pothole wetlands over a drought to deluge period were analyzed in an attempt to determine the general hydrologic function of individual wetlands (recharge, flow-through, and discharge). Multipixel objects (water bodies) were clustered according to their temporal changes in water extents. We found that wetlands receiving groundwater discharge responded differently over the time period than wetlands that did not. Also, wetlands located within topographically closed discharge basins could be distinguished from discharge basins with overland outlets. Field verification data showed that discharge wetlands with closed basins were most distinct and identifiable with reasonable accuracies (user’s accuracy = 97%, producer’s accuracy = 71%). The classification of other hydrologic function types had lower accuracies reducing the overall accuracy for the four hydrologic function classes to 51%. A simplified classification approach identifying only two hydrologic function classes was 82%. Although this technique has limited success for detecting small wetlands, Landsat-derived multipixel-object clustering can reliably differentiate wetlands receiving groundwater discharge and provides a new approach to quantify wetland dynamics in landscape scale investigations and models.

  7. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region.

    Science.gov (United States)

    Ando, Amy W; Mallory, Mindy L

    2012-04-24

    Climate change is likely to alter the spatial distributions of species and habitat types but the nature of such change is uncertain. Thus, climate change makes it difficult to implement standard conservation planning paradigms. Previous work has suggested some approaches to cope with such uncertainty but has not harnessed all of the benefits of risk diversification. We adapt Modern Portfolio Theory (MPT) to optimal spatial targeting of conservation activity, using wetland habitat conservation in the Prairie Pothole Region (PPR) as an example. This approach finds the allocations of conservation activity among subregions of the planning area that maximize the expected conservation returns for a given level of uncertainty or minimize uncertainty for a given expected level of returns. We find that using MPT instead of simple diversification in the PPR can achieve a value of the conservation objective per dollar spent that is 15% higher for the same level of risk. MPT-based portfolios can also have 21% less uncertainty over benefits or 6% greater expected benefits than the current portfolio of PPR conservation. Total benefits from conservation investment are higher if returns are defined in terms of benefit-cost ratios rather than benefits alone. MPT-guided diversification can work to reduce the climate-change-induced uncertainty of future ecosystem-service benefits from many land policy and investment initiatives, especially when outcomes are negatively correlated between subregions of a planning area.

  8. Colour-Blind: Discursive Repertoires Teachers Used to Story Racism and Aboriginality in Urban Prairie Schools

    Directory of Open Access Journals (Sweden)

    Tyler McCreary

    2011-12-01

    Full Text Available This qualitative study explores how teachers' constructions of racism consistently minimized its pervasiveness in the school. Teachers constructed racism as individual not systemic, construed it as a phenomenon of places outside the school, and attributed responsibility for addressing racism to other people, particularly Aboriginal populations. Based on written responses from 95 Canadian Prairie teachers from two schools, this research examines the discourses teachers employed to narrate racism, particularly with relation to Aboriginal students. While there were some differences between inner city and suburban teachers, teachers from both environments followed discursive repertoires that absolved themselves of responsibility for addressing racism and maintained the colour-blind image of education. Interrogating these discursive repertoires exposes the systems of denial that block meaningful action upon racialized inequalities and prevent the development of a truly inclusive educational environment. This underlines the need for expanded anti-racist professional development to support critical racial reflexivity among in-service teachers.Keywords: racism in education; critical whiteness studies; in-service teachers; Aboriginal education

  9. Cryptic sexual dimorphism in spatial memory and hippocampal oxytocin receptors in prairie voles (Microtus ochrogaster).

    Science.gov (United States)

    Rice, Marissa A; Hobbs, Lauren E; Wallace, Kelly J; Ophir, Alexander G

    2017-09-01

    Sex differences are well documented and are conventionally associated with intense sex-specific selection. For example, spatial memory is frequently better in males, presumably due to males' tendency to navigate large spaces to find mates. Alternatively, monogamy (in which sex-specific selection is relatively relaxed) should diminish or eliminate differences in spatial ability and the mechanisms associated with this behavior. Nevertheless, phenotypic differences between monogamous males and females persist, sometimes cryptically. We hypothesize that sex-specific cognitive demands are present in monogamous species that will influence neural and behavioral phenotypes. The effects of these demands should be observable in spatial learning performance and neural structures associated with spatial learning and memory. We analyzed spatial memory performance, hippocampal volume and cell density, and hippocampal oxytocin receptor (OTR) expression in the socially monogamous prairie vole. Compared to females, males performed better in a spatial memory and spatial learning test. Although we found no sex difference in hippocampal volume or cell density, male OTR density was significantly lower than females, suggesting that performance may be regulated by sub-cellular mechanisms within the hippocampus that are less obvious than classic neuroanatomical features. Our results suggest an expanded role for oxytocin beyond facilitating social interactions, which may function in part to integrate social and spatial information. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Aquatic-macroinvertebrate communities of Prairie-Pothole wetlands and lakes under a changed climate

    Science.gov (United States)

    McLean, Kyle I.; Mushet, David M.; Renton, David A.; Stockwell, Craig A.

    2016-01-01

    Understanding how aquatic-macroinvertebrate communities respond to changes in climate is important for biodiversity conservation in the Prairie Pothole Region and other wetland-rich landscapes. We sampled macroinvertebrate communities of 162 wetlands and lakes previously sampled from 1966 to 1976, a much drier period compared to our 2012–2013 sampling timeframe. To identify possible influences of a changed climate and predation pressures on macroinvertebrates, we compared two predictors of aquatic-macroinvertebrate communities: ponded-water dissolved-ion concentration and vertebrate-predator presence/abundance. Further, we make inferences of how macroinvertebrate communities were structured during the drier period when the range of dissolved-ion concentrations was much greater and fish occurrence in aquatic habitats was rare. We found that aquatic-macroinvertebrate community structure was influenced by dissolved-ion concentrations through a complex combination of direct and indirect relationships. Ion concentrations also influenced predator occurrence and abundance, which indirectly affected macroinvertebrate communities. It is important to consider both abiotic and biotic gradients when predicting how invertebrate communities will respond to climate change. Generally, in the wetlands and lakes we studied, freshening of ponded water resulted in more homogenous communities than occurred during a much drier period when salinity range among sites was greater.

  11. Technoeconomic analysis of biojet fuel production from camelina at commercial scale: Case of Canadian Prairies.

    Science.gov (United States)

    Li, Xue; Mupondwa, Edmund; Tabil, Lope

    2018-02-01

    This study undertakes technoeconomic analysis of commercial production of hydro-processed renewable jet (HRJ) fuel from camelina oil in the Canadian Prairies. An engineering economic model designed in SuperPro Designer® investigated capital investment, scale, and profitability of producing HRJ and co-products (biodiesel, naphtha, LPG, and propane) based on biorefinery plant sizes of 112.5-675 million L annum -1 . Under base case scenario, the minimum selling price (MSP) of HRJ was $1.06 L -1 for a biorefinery plant with size of 225 million L. However, it could range from $0.40 to $1.71 L -1 given variations in plant capacity, feedstock cost, and co-product credits. MSP is highly sensitive to camelina feedstock cost and co-product credits, with little sensitivity to capital cost, discount rate, plant capacity, and hydrogen cost. Marginal and average cost curves suggest the region could support an HRJ plant capacity of up to 675 million L annum -1 (capital investment of $167 million). Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Evaluation of Seasonality in Shallow Groundwater Dynamics and Storage in an Urban Prairie Nature Preserve Using a High-Frequency Sensing Network

    Science.gov (United States)

    Rivera, V. A.; Hernandez-Gonzalez, L. M.; Phillips, C. B.; Nair, A.; Negri, M. C.; Gnaedinger, K. J.; Miller, W. M.; Packman, A. I.

    2017-12-01

    Changing regional climate applies stresses to urban areas in the form of altered weather patterns, requiring new strategies for stormwater runoff management and flood mitigation. At the same time, the proportion of people residing in urban areas is increasing and cities are turning to greenspace as a tool for managing runoff. Gensburg Markham Prairie (GMP), located in Markham, Illinois south of Chicago, is an urban prairie nature preserve and a U.S. National Natural Landmark. Owned by Northeastern Illinois University and managed by the Nature Conservancy, GMP receives runoff from surrounding urban areas and provides valuable stormwater storage, while also hosting high biodiversity and providing critical habitat for sensitive and endemic. A successful management strategy for GMP should preserve both of these valuable ecosystem services. To understand GMP's role within the urban environment, we installed a suite of instruments in 2016 and 2017 to measure surface and groundwater levels, rainfall, soil moisture, and electrical conductivity throughout the prairie. This monitoring network includes 40 sensors collecting high frequency data (every 30 minutes). We are also collecting monthly distributed surface and groundwater samples to quantify a range of anions and cations that signal potentially detrimental anthropogenic impacts on the prairie. In addition, we are using historical and ongoing plant distribution surveys to explore the interactions between spatial patterns in vegetation and water dynamics in the prairie. The high measurement frequency and large diversity of sensor types supports holistic investigation of the response of the prairie to diverse events, including summer thunderstorms, winter road salt runoff, and spring snowmelt. The 18 months of data collected to date reveals clear patterns in response to weather events with influence from soil type and spatial variables. We are using time-series analysis with MODFLOW modelling to explore surface

  13. Protection of black-tailed prairie dogs (Cynomys ludovicianus) against plague after voluntary consumption of baits containing recombinant raccoon poxvirus vaccine.

    Science.gov (United States)

    Mencher, Jordan S; Smith, Susan R; Powell, Tim D; Stinchcomb, Dan T; Osorio, Jorge E; Rocke, Tonie E

    2004-09-01

    Prairie dogs (Cynomys spp.) are highly susceptible to Yersinia pestis and significant reservoirs of plague for humans in the western United States. A recombinant raccoon poxvirus, expressing the F1 antigen of Y. pestis, was incorporated into a palatable bait and offered to 18 black-tailed prairie dogs (Cynomys ludovicianus) for voluntary consumption; 18 negative control animals received placebo baits. Antibody titers against Y. pestis F1 antigen increased significantly (P < 0.01) in vaccinees, and their survival was significantly higher upon challenge with Y. pestis than that of negative controls (P < 0.01).

  14. Prevalence of the generalist flea Pulex simulans on black-tailed prairie dogs (Cynomys ludovicianus) in New Mexico, USA: the importance of considering imperfect detection.

    Science.gov (United States)

    Eads, David A; Biggins, Dean E; Antolin, Michael F; Long, Dustin H; Huyvaert, Kathryn P; Gage, Kenneth L

    2015-04-01

    If a parasite is not detected during a survey, one of two explanations is possible: the parasite was truly absent or it was present but not detected. We fit occupancy models to account for imperfect detection when combing fleas (Siphonaptera) from black-tailed prairie dogs (Cynomys ludovicianus) during June-August 2012 in the Vermejo Park Ranch, New Mexico, USA. With the use of detection histories from combing events during monthly trapping sessions, we fit occupancy models for two flea species: Oropsylla hirusta (a prairie dog specialist) and Pulex simulans (a generalist). Detection probability was plague bacterium Yersinia pestis, and even function as a reservoir of Y. pestis between outbreaks.

  15. Effects of sex and reproductive experience on the number of orexin A-immunoreactive cells in the prairie vole brain.

    Science.gov (United States)

    Donlin, Michael; Cavanaugh, Breyanna L; Spagnuolo, Olivia S; Yan, Lily; Lonstein, Joseph S

    2014-07-01

    Large populations of cells synthesizing the neuropeptide orexin (OX) exist in the caudal hypothalamus of all species examined and are implicated in physiological and behavioral processes including arousal, stress, anxiety and depression, reproduction, and goal-directed behaviors. Hypothalamic OX expression is sexually dimorphic in different directions in laboratory rats (F>M) and mice (M>F), suggesting different roles in male and female physiology and behavior that are species-specific. We here examined if the number of hypothalamic cells immunoreactive for orexin A (OXA) differs between male and female prairie voles (Microtus ochrogaster), a socially monogamous species that pairbonds after mating and in which both sexes care for offspring, and if reproductive experience influences their number of OXA-immunoreactive (OXA-ir) cells. It was found that the total number of OXA-ir cells did not differ between the sexes, but females had more OXA-ir cells than males in anterior levels of the caudal hypothalamus, while males had more OXA-ir cells posteriorly. Sexually experienced females sacrificed 12 days after the birth of their first litter, or one day after birth of a second litter, had more OXA-ir cells in anterior levels but not posterior levels of the caudal hypothalamus compared to females housed with a brother (incest avoidance prevents sibling mating). Male prairie voles showed no effect of reproductive experience but showed an unexpected effect of cohabitation duration regardless of mating. The sex difference in the distribution of OXA-ir cells, and their increased number in anterior levels of the caudal hypothalamus of reproductively experienced female prairie voles, may reflect a sex-specific mechanism involved in pairbonding, parenting, or lactation in this species. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Sparrow nest survival in relation to prescribed fire and woody plant invasion in a northern mixed-grass prairie

    Science.gov (United States)

    Murphy, Robert K.; Shaffer, Terry L.; Grant, Todd A.; Derrig, James L.; Rubin, Cory S.; Kerns, Courtney K.

    2017-01-01

    Prescribed fire is used to reverse invasion by woody vegetation on grasslands, but managers often are uncertain whether influences of shrub and tree reduction outweigh potential effects of fire on nest survival of grassland birds. During the 2001–2003 breeding seasons, we examined relationships of prescribed fire and woody vegetation to nest survival of clay-colored sparrow (Spizella pallida) and Savannah sparrow (Passerculus sandwichensis) in mixed-grass prairie at Des Lacs National Wildlife Refuge in northwestern North Dakota, USA. We assessed relationships of nest survival to 1) recent fire history, in terms of number of breeding seasons (2, 3, or 4–5) since the last prescribed fire, and 2) prevalence of trees and tall (>1.5 m) shrubs in the landscape and of low (≤1.5 m) shrubs within 5 m of nests. Nest survival of both species exhibited distinct patterns related to age of the nest and day of year, but bore no relationship to fire history. Survival of clay-colored sparrow nests declined as the amount of trees and tall shrubs within 100 m increased, but we found no relationship to suggest nest parasitism by brown-headed cowbirds (Molothrus ater) as an underlying mechanism. We found little evidence linking nest survival of Savannah sparrow to woody vegetation. Our results suggest that fire can be used to restore northern mixed-grass prairies without adversely affecting nest survival of ≥2 widespread passerine species. Survival of nests of clay-colored sparrow may increase when tall woody cover is reduced by fire. Our data lend support to the use of fire for reducing scattered patches of tall woody cover to enhance survival of nests of ≥1 grassland bird species in northern mixed-grass prairies, but further study is needed that incorporates experimental approaches and assessments of shorter term effects of fire on survival of nests of grassland passerines.

  17. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies.

    Science.gov (United States)

    Wernerehl, Robert W; Givnish, Thomas J

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis' continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward "drier" sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500-1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward "wetter" sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This study is the

  18. A meta-analysis of lesser prairie-chicken nesting and brood-rearing habitats: implications for habitat management

    Science.gov (United States)

    Hagen, Christian A.; Grisham, Blake A.; Boal, Clint W.; Haukos, David A.

    2013-01-01

    The distribution and range of lesser prairie-chicken (Tympanuchus pallidicinctus) has been reduced by >90% since European settlement of the Great Plains of North America. Currently, lesser prairie-chickens occupy 3 general vegetation communities: sand sagebrush (Artemisia filifolia), sand shinnery oak (Quercus havardii), and mixed-grass prairies juxtaposed with Conservation Reserve Program grasslands. As a candidate for protection under the Endangered Species Act, there is a need for a synthesis that characterizes habitat structure rangewide. Thus, we conducted a meta-analysis of vegetation characteristics at nest sites and brood habitats to determine whether there was an overall effect (Hedges' d) of habitat selection and to estimate average (95% CI) habitat characteristics at use sites. We estimated effect sizes (di) from the difference between use (nests and brood sites) and random sampling sites for each study (n = 14), and derived an overall effect size (d++). There was a general effect for habitat selection as evidenced by low levels of variation in effect sizes across studies and regions. There was a small to medium effect (d++) = 0.20-0.82) of selection for greater vertical structure (visual obstruction) by nesting females in both vegetation communities, and selection against bare ground (d++ = 0.20-0.58). Females with broods exhibited less selectivity for habitat components except for vertical structure. The variation of d++ was greater during nesting than brooding periods, signifying a seasonal shift in habitat use, and perhaps a greater range of tolerance for brood-rearing habitat. The overall estimates of vegetation cover were consistent with those provided in management guidelines for the species.

  19. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies

    Science.gov (United States)

    Wernerehl, Robert W.; Givnish, Thomas J.

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis’ continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward “drier” sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500–1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward “wetter” sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This

  20. Evaluation of environmental data relating to selected nuclear power plant sites. Prairie Island Nuclear Generating Plant site

    International Nuclear Information System (INIS)

    Murarka, I.P.

    1976-11-01

    Environmental monitoring data for 1973 through 1975 pertaining to the Prairie Island Nuclear Generating Station (which began commercial operation in December 1973) were analyzed by the most practical qualitative and quantitative methods. Evaluations of aquatic and terrestrial biotic data are presented in this report. The data indicate no significant immediate deleterious effects on the biota from plant operation, thus confirming preoperational predictions. Although the station has not operated long enough to reveal long-term deleterious effects, present indications do not lead to a concerned prediction that any are developing. Recommendations are suggested for improving monitoring techniques

  1. On the use of modelling, observations and remote sensing to better understand the Canadian Prairie soil-crop-atmosphere system

    Science.gov (United States)

    Brimelow, Julian Charles

    Thunderstorms have been identified as an important component of the hydrological cycle on the Canadian Prairies, a region that is postulated to have the potential to exert a detectable influence on convective precipitation in the summer. However, very little work has been undertaken exploring and elucidating those aspects of biophysical forcing on the Canadian Prairies that affect lightning activity during the summer months, the constraints under which any linkages operate, and the mechanisms by which surface anomalies modify the structure and moisture content of the convective boundary layer (CBL) so as to modulate lightning activity. Evapotranspiration (ET) from the soil and vegetation canopy is known to be important for modulating the moisture content in the CBL, and this in turn has important implications for the initiation and intensity of deep, moist convection. The Second Generation Prairie Agrometeorological Model (PAMII) of Raddatz (1993) has been used extensively for the purpose of quantifying the evolution of soil moisture and ET in response to atmospheric drivers on the Canadian Prairies. However, the ability of PAMII to simulate the evolution of root-zone soil moisture and ET during the growing season has yet to be verified against a comprehensive set of in-situ observations. In this thesis, we address the above knowledge gaps using unique datasets comprising observed lightning flash data, satellite-derived Normalized Difference Vegetation Index (NDVI) data, observed atmospheric soundings, in-situ soil moisture observations and estimates of daily ET from eddy-covariance systems. A thorough quantitative validation of simulations of root-zone soil moisture and ET from PAMII was undertaken against in-situ soil moisture measurements and ET from eddy-covariance systems at sites on the Canadian Prairies. Our analysis demonstrates that PAMII shows skill in simulating the evolution of bulk root-zone soil moisture content and ET during the growing season, and

  2. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Dalcin Martins, Paula [Microbiology Department, The Ohio State University, Columbus OH 43210 USA; Hoyt, David W. [Environmental Molecular Sciences Laboratory, Richland WA 99350 USA; Bansal, Sheel [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Mills, Christopher T. [United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Building 20, Denver Federal Center Denver CO 80225 USA; Tfaily, Malak [Environmental Molecular Sciences Laboratory, Richland WA 99350 USA; Tangen, Brian A. [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Finocchiaro, Raymond G. [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Johnston, Michael D. [School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA; McAdams, Brandon C. [School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA; Solensky, Matthew J. [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Smith, Garrett J. [Microbiology Department, The Ohio State University, Columbus OH 43210 USA; Chin, Yu-Ping [School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA; Wilkins, Michael J. [Microbiology Department, The Ohio State University, Columbus OH 43210 USA; School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA

    2017-02-23

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR, and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations, or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield non-competitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.

  3. Extensive shared polymorphism at non-MHC immune genes in recently diverged North American prairie grouse.

    Science.gov (United States)

    Minias, Piotr; Bateson, Zachary W; Whittingham, Linda A; Johnson, Jeff A; Oyler-McCance, Sara; Dunn, Peter O

    2018-03-01

    Gene polymorphisms shared between recently diverged species are thought to be widespread and most commonly reflect introgression from hybridization or retention of ancestral polymorphism through incomplete lineage sorting. Shared genetic diversity resulting from incomplete lineage sorting is usually maintained for a relatively short period of time, but under strong balancing selection it may persist for millions of years beyond species divergence (balanced trans-species polymorphism), as in the case of the major histocompatibility complex (MHC) genes. However, balancing selection is much less likely to act on non-MHC immune genes. The aim of this study was to investigate the patterns of shared polymorphism and selection at non-MHC immune genes in five grouse species from Centrocercus and Tympanuchus genera. For this purpose, we genotyped five non-MHC immune genes that do not interact directly with pathogens, but are involved in signaling and regulate immune cell growth. In contrast to previous studies with MHC, we found no evidence for balancing selection or balanced trans-species polymorphism among the non-MHC immune genes. No haplotypes were shared between genera and in most cases more similar allelic variants sorted by genus. Between species within genera, however, we found extensive shared polymorphism, which was most likely attributable to introgression or incomplete lineage sorting following recent divergence and large ancestral effective population size (i.e., weak genetic drift). Our study suggests that North American prairie grouse may have attained relatively low degree of reciprocal monophyly at nuclear loci and reinforces the rarity of balancing selection in non-MHC immune genes.

  4. Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought

    Energy Technology Data Exchange (ETDEWEB)

    Wagle, Pradeep; Xiao, Xiangming; Torn, Margaret S.; Cook, David R.; Matamala, Roser; Fischer, Marc L.; Jin, Cui; Dong, Jinwei; Biradar, Chandrashekhar

    2014-09-01

    Drought affects vegetation photosynthesis and growth.Many studies have used the normalized difference vegetation index (NDVI), which is calculated as the normalized ratio between near infrared and red spectral bands in satellite images, to evaluate the response of vegetation to drought. In this study, we examined the impacts of drought on three vegetation indices (NDVI, enhanced vegetation index, EVI, and land surface water index, LSWI) and CO2 flux from three tallgrass prairie eddy flux tower sites in the U.S. Gross primary production (GPP) was also modeled using a satellite-based Vegetation Photosynthesis Model (VPM), and the modeled GPP (GPPVPM) was compared with the GPP (GPPEC) derived from eddy covariance measurements. Precipitation at two sites in Oklahoma was 30% below the historical mean in both years of the study period (2005–2006), while the site in Illinois did not experience drought in the 2005–2007 study period. The EVI explained the seasonal dynamics of GPP better than did NDVI. The LSWI dropped below zero during severe droughts in the growing season, showing its potential to track drought. The result shows that GPP was more sensitive to drought than were vegetation indices, and EVI and LSWI were more sensitive than NDVI. We developed a modified function (Wscalar), calculated as a function of LSWI, to account for the effect of severe droughts on GPP in VPM. The GPPVPM from the modified VPM accounted for the rapid reduction in GPP during severe droughts and the seasonal dynamics of GPPVPM agreed reasonably well with GPPEC. Our analysis shows that 8-day averaged values (temperature, vapor-pressure deficit) do not reflect the short-term extreme climate events well, suggesting that satellite based models may need to be run at daily or hourly scales, especially under unfavorable climatic conditions.

  5. Assessment of lesser prairie-chicken lek density relative to landscape characteristics in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Timmer, Jennifer; Butler, Matthew; Ballard, Warren; Boal, Clint; Whitlaw, Heather

    2012-08-31

    My 2.5-yr Master's project accomplished the objectives of estimating lesser prairie-chicken (LPC) lek density and abundance in the Texas occupied range and modeling anthropogenic and landscape features associated with lek density by flying helicopter lek surveys for 2 field seasons and employing a line-transect distance sampling method. This project was important for several reasons. Firstly, wildlife managers and biologists have traditionally monitored LPC populations with road-based surveys that may result in biased estimates and do not provide access to privately-owned or remote property. From my aerial surveys and distance sampling, I was able to provide accurate density and abundance estimates, as well as new leks and I detected LPCs outside the occupied range. Secondly, recent research has indicated that energy development has the potential to impact LPCs through avoidance of tall structures, increased mortality from raptors perching on transmission lines, disturbance to nesting hens, and habitat loss/fragmentation. Given the potential wind energy development in the Texas Panhandle, spatial models of current anthropogenic and vegetative features (such as transmission lines, roads, and percent native grassland) influencing lek density were needed. This information provided wildlife managers and wind energy developers in Texas with guidelines for how change in landscape features could impact LPCs. Lastly, LPC populations have faced range-wide declines over the last century and they are currently listed as a candidate species under the Endangered Species Act. I was able to provide timely information on LPC populations in Texas that will be used during the listing process.

  6. Impact of Climate Variability on the Hydrogeochemistry of Ecologically Important Prairie Wetlands and Lakes

    Science.gov (United States)

    Goldhaber, M. B.; Mills, C. T.; Mushet, D. M.; Stricker, C. A.; Rover, J.

    2015-12-01

    The Prairie Pothole region encompasses 715,000 km2 of the north central US and south central Canada and contains millions of small wetlands and lakes. It sustains large populations of shore birds and migratory waterfowl. PPR ecology is influenced by wetland geochemistry, which can range dramatically over short distances (≤ 200m) from dilute Ca2+-HCO3- to saline Na+-Mg2+-SO42- compositions. These compositional differences result, in part, from long-term critical zone processes in upland areas coupled to groundwater inflow, but they are also influenced by climate. Climate impacts on the geochemistry of 167 wetlands/lakes from a 9700 km2 area of North Dakota (USA) were studied. The chemical composition of these wetlands was determined in the early 1970's during slightly dry climatic conditions and again in 2012-2013, a period of exceptional precipitation. Dilution dominated wetland geochemical trends. Concentrations of Cl-, Na+, K+, and Mg2+ generally decreased in 2012-2013 compared to earlier data. In contrast Ca2+ increased, and SO42- change was variable. The processes driving these modifications were evaluated using inverse (mass balance based) geochemical modeling. The decrease in the largely inert ion, Na+ by rainwater addition was used to approximate the net dilution factor of the wetlands which ranged to >9. This volume increase was associated with large expansions of wetland area determined from time-series Landsat data. Introducing dissolution of authigenic CaCO3, a known constituent of wetland sediments, matched the observed Ca2+ increase. Addition of SO42--enriched groundwater (composition determined from well analyses) was required to model wetlands with increased SO42-. Those wetlands with increased SO42- had more negative δ34SSO4 values, a result consistent with a previously established isotopically light marine pyrite source for groundwater SO42-. Understanding the evolution of wetland chemistry may aid in assessing future climatic impacts to the PPR.

  7. Mortality of Siberian polecats and black-footed ferrets released onto prairie dog colonies

    Science.gov (United States)

    Biggins, D.E.; Miller, B.J.; Hanebury, L.R.; Powell, R.A.

    2011-01-01

    Black-footed ferrets (Mustela nigripes) likely were extirpated from the wild in 19851986, and their repatriation depends on captive breeding and reintroduction. Postrelease survival of animals can be affected by behavioral changes induced by captivity. We released neutered Siberian polecats (M. eversmanii), close relatives of ferrets, in 19891990 on black-tailed prairie dog (Cynomys ludovicianus) colonies in Colorado and Wyoming initially to test rearing and reintroduction techniques. Captive-born polecats were reared in cages or cages plus outdoor pens, released from elevated cages or into burrows, and supplementally fed or not fed. We also translocated wild-born polecats from China in 1990 and released captive-born, cage-reared black-footed ferrets in 1991, the 1st such reintroduction of black-footed ferrets. We documented mortality for 55 of 92 radiotagged animals in these studies, mostly due to predation (46 cases). Coyotes (Canis latrans) killed 31 ferrets and polecats. Supplementally fed polecats survived longer than nonprovisioned polecats. With a model based on deaths per distance moved, survival was highest for wild-born polecats, followed by pen-experienced, then cage-reared groups. Indexes of abundance (from spotlight surveys) for several predators were correlated with mortality rates of polecats and ferrets due to those predators. Released black-footed ferrets had lower survival rates than their ancestral population in Wyoming, and lower survival than wild-born and translocated polecats, emphasizing the influence of captivity. Captive-born polecats lost body mass more rapidly postrelease than did captive-born ferrets. Differences in hunting efficiency and prey selection provide further evidence that these polecats and ferrets are not ecological equivalents in the strict sense. ?? 2011 American Society of Mammalogists.

  8. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming.

    Science.gov (United States)

    Xu, Xia; Shi, Zheng; Li, Dejun; Zhou, Xuhui; Sherry, Rebecca A; Luo, Yiqi

    2015-10-01

    Soil respiration is recognized to be influenced by temperature, moisture, and ecosystem production. However, little is known about how plant community structure regulates responses of soil respiration to climate change. Here, we used a 13-year field warming experiment to explore the mechanisms underlying plant community regulation on feedbacks of soil respiration to climate change in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate temperature about 2 °C since November 1999. Annual clipping was used to mimic hay harvest. Our results showed that experimental warming significantly increased soil respiration approximately from 10% in the first 7 years (2000-2006) to 30% in the next 6 years (2007-2012). The two-stage warming stimulation of soil respiration was closely related to warming-induced increases in ecosystem production over the years. Moreover, we found that across the 13 years, warming-induced increases in soil respiration were positively affected by the proportion of aboveground net primary production (ANPP) contributed by C3 forbs. Functional composition of the plant community regulated warming-induced increases in soil respiration through the quantity and quality of organic matter inputs to soil and the amount of photosynthetic carbon (C) allocated belowground. Clipping, the interaction of clipping with warming, and warming-induced changes in soil temperature and moisture all had little effect on soil respiration over the years (all P > 0.05). Our results suggest that climate warming may drive an increase in soil respiration through altering composition of plant communities in grassland ecosystems. © 2015 John Wiley & Sons Ltd.

  9. Probabilistic reliability modeling for oil exploration & production (E&P) facilities in the tallgrass prairie preserve.

    Science.gov (United States)

    Zambrano, Lyda; Sublette, Kerry; Duncan, Kathleen; Thoma, Greg

    2007-10-01

    The aging domestic oil production infrastructure represents a high risk to the environment because of the type of fluids being handled (oil and brine) and the potential for accidental release of these fluids into sensitive ecosystems. Currently, there is not a quantitative risk model directly applicable to onshore oil exploration and production (E&P) facilities. We report on a probabilistic reliability model created for onshore exploration and production (E&P) facilities. Reliability theory, failure modes and effects analysis (FMEA), and event trees were used to develop the model estimates of the failure probability of typical oil production equipment. Monte Carlo simulation was used to translate uncertainty in input parameter values to uncertainty in the model output. The predicted failure rates were calibrated to available failure rate information by adjusting probability density function parameters used as random variates in the Monte Carlo simulations. The mean and standard deviation of normal variate distributions from which the Weibull distribution characteristic life was chosen were used as adjustable parameters in the model calibration. The model was applied to oil production leases in the Tallgrass Prairie Preserve, Oklahoma. We present the estimated failure probability due to the combination of the most significant failure modes associated with each type of equipment (pumps, tanks, and pipes). The results show that the estimated probability of failure for tanks is about the same as that for pipes, but that pumps have much lower failure probability. The model can provide necessary equipment reliability information for proactive risk management at the lease level by providing quantitative information to base allocation of maintenance resources to high-risk equipment that will minimize both lost production and ecosystem damage.

  10. Extremes of heat, drought and precipitation depress reproductive performance in shortgrass prairie passerines

    Science.gov (United States)

    Conrey, Reesa Y.; Skagen, Susan K.; Yackel, Amy; Panjabi, Arvind O.

    2016-01-01

    Climate change elevates conservation concerns worldwide because it is likely to exacerbate many identified threats to animal populations. In recent decades, grassland birds have declined faster than other North American bird species, a loss thought to be due to habitat loss and fragmentation and changing agricultural practices. Climate change poses additional threats of unknown magnitude to these already declining populations. We examined how seasonal and daily weather conditions over 10 years influenced nest survival of five species of insectivorous passerines native to the shortgrass prairie and evaluate our findings relative to future climate predictions for this region. Daily nest survival (n = 870) was best predicted by a combination of daily and seasonal weather variables, age of nest, time in season and bird habitat guild. Within a season, survival rates were lower on very hot days (temperatures ≥ 35 °C), on dry days (with a lag of 1 day) and on stormy days (especially for those species nesting in shorter vegetation). Across years, survival rates were also lower during warmer and drier breeding seasons. Clutch sizes were larger when early spring temperatures were cool and the week prior to egg-laying was wetter and warming. Climate change is likely to exacerbate grassland bird population declines because projected climate conditions include rising temperatures, more prolonged drought and more intense storms as the hydrological cycle is altered. Under varying realistic scenarios, nest success estimates were halved compared to their current average value when models both increased the temperature (3 °C) and decreased precipitation (two additional dry days during a nesting period), thus underscoring a sense of urgency in identifying and addressing the current causes of range-wide declines.

  11. Direct and indirect effects of climate change on a prairie plant community.

    Directory of Open Access Journals (Sweden)

    Peter B Adler

    2009-09-01

    Full Text Available Climate change directly affects species by altering their physical environment and indirectly affects species by altering interspecific interactions such as predation and competition. Recent studies have shown that the indirect effects of climate change may amplify or counteract the direct effects. However, little is known about the the relative strength of direct and indirect effects or their potential to impact population persistence.We studied the effects of altered precipitation and interspecific interactions on the low-density tiller growth rates and biomass production of three perennial grass species in a Kansas, USA mixed prairie. We transplanted plugs of each species into local neighborhoods of heterospecific competitors and then exposed the plugs to a factorial manipulation of growing season precipitation and neighbor removal. Precipitation treatments had significant direct effects on two of the three species. Interspecific competition also had strong effects, reducing low-density tiller growth rates and aboveground biomass production for all three species. In fact, in the presence of competitors, (log tiller growth rates were close to or below zero for all three species. However, we found no convincing evidence that per capita competitive effects changed with precipitation, as shown by a lack of significant precipitation x competition interactions.We found little evidence that altered precipitation will influence per capita competitive effects. However, based on species' very low growth rates in the presence of competitors in some precipitation treatments, interspecific interactions appear strong enough to affect the balance between population persistence and local extinction. Therefore, ecological forecasting models should include the effect of interspecific interactions on population growth, even if such interaction coefficients are treated as constants.

  12. Nutrient Models Developments Using Runoff-Nutrient Relationships in an Agricultural Prairie Basin, Manitoba.

    Science.gov (United States)

    Mahmood, T. H.; Pomeroy, J. W.; Wheater, H. S.; Elliott, J. A.; Baulch, H. M.; Lindenschmidt, K. E.

    2015-12-01

    Nutrient export to streams and lakes from agricultural activities can result in significant deterioration of water quality and aquatic ecosystem health. In Western Canada, particular concerns arise for prairie agricultural systems, which are dominated by the effects of a cold climate. Insufficient attention has been given to understand the links between cold region watershed responses and nutrient concentration and a robust watershed-scale modeling framework is needed to simulate nutrient concentration and loads. Long-term, field observations of nutrient concentration-runoff relationships were used to develop nutrient concentration models for the Tobacco Creek Model Watershed (TCMW) which drains into the Red River basin. Field observations include streamflow concentrations of N and P at multiple scales from two headwater basins. Distinct nutrient concentration-runoff models for snowmelt, rain on snow (ROS) and rainfall runoff processes were developed from observed runoff-nutrient concentration relationships. Snowmelt runoff had a moderately positive correlation with particulate nutrient concentrations but no correlation with that of dissolved nutrients. ROS runoff had a weak relationship with both particulate and dissolved nutrient concentrations. Rainfall runoff had the strongest positive correlation with particulate nutrient concentrations but no association with that of dissolved nutrients. The modeling approach also identified a clear hysteretic behavior in the relationship between runoff and particulate nutrient concentration during the 2013 snowmelt runoff event at the basin outlet gauge. The models provide insight into the hydrological controls on nutrient export from cold regions watersheds and the strong effects of inter-annual climatic variability. Snowmelt runoff is a reliable exporter of large nutrient loads while nutrient export by rainfall runoff exceeded snowmelt runoff during hydrologically wet summers such as 2002, 2005, 2011 and 2013.

  13. Methamphetamine Consumption Inhibits Pair Bonding and Hypothalamic Oxytocin in Prairie Voles.

    Science.gov (United States)

    Hostetler, Caroline M; Phillips, Tamara J; Ryabinin, Andrey E

    2016-01-01

    Methamphetamine (MA) abuse has been linked to violence, risk-taking behaviors, decreased sexual inhibition, and criminal activity. It is important to understand mechanisms underlying these drug effects for prevention and treatment of MA-associated social problems. Previous studies have demonstrated that experimenter-administered amphetamine inhibits pair bonding and increases aggression in monogamous prairie voles. It is not currently known whether similar effects on social behaviors would be obtained under conditions during which the drug is voluntarily (actively) administered. The current study investigated whether MA drinking affects pair bonding and what neurocircuits are engaged. In Experiment 1, we exposed male and female voles to 4 days each of 20 and 40 mg/L MA under a continuous 2-bottle choice (2BC) procedure. Animals were housed either singly or in mesh-divided cages with a social partner. Voles consumed MA in a drinking solution, but MA drinking was not affected by either sex or housing condition. In Experiment 2, we investigated whether MA drinking disrupts social bonding by measuring aggression and partner preference formation following three consecutive days of 18-hour/day access to 100 mg/L MA in a 2BC procedure. Although aggression toward a novel opposite-sex animal was not affected by MA exposure, partner preference was inhibited in MA drinking animals. Experiment 3 examined whether alterations in hypothalamic neuropeptides provide a potential explanation for the inhibition of partner preference observed in Experiment 2. MA drinking led to significant decreases in oxytocin, but not vasopressin, in the paraventricular nucleus of the hypothalamus. These experiments are the first investigation into how voluntary pre-exposure to MA affects the development of social attachment in a socially monogamous species and identify potential neural circuits involved in these effects.

  14. Carbon and nitrogen biogeochemistry of a Prairie Pothole Wetland, Stutsman County, North Dakota, USA

    Science.gov (United States)

    Holloway, JoAnn M.; Goldhaber, Martin B.; Mills, Christopher T.

    2011-01-01

    The concentration and form of dissolved organic C (DOC) and N species (NH4+ and NO3-) were investigated as part of a larger hydrogeochemical study of the Cottonwood Lake Study Area within the Prairie Potholes region. Groundwater, pore water and surface wetland water data were used to help characterize the relationships between surface and groundwater with respect to nutrient dynamics. Photosynthesis and subsequent decomposition of vegetation in these hydrologically dynamic wetlands generates a large amount of dissolved C and N, although the subsurface till, derived in part from organic matter rich Pierre Shale, is a likely secondary source of nutrients in deeper groundwater. While surface water DOC concentrations ranged from 2.2 to 4.6 mM, groundwater values were 0.15 mM to 3.7 mM. Greater specific UV absorbance (SUVA254) in the wetland water column and in soil pore waters relative to groundwater indicate more reactive DOC in the surface to near-surface waters. Circumneutral wetlands had greater SUVA254, possibly because of variations in vegetation communities. The dominant inorganic nitrogen species was NH4+ in both wetland water and most ground water samples. The exceptions were 3 wells with NO3- ranging from 38 to 115 μM. Shallow groundwater wells (Well 28 and Well 13S) with greater connection to wetland surface water had greater NH4+ concentrations (1.1 mM and 120 μM) than other well samples (3–90 μM). Pore water nutrient chemistry was more similar to surface water than ground water. Nitrogen results suggest reducing conditions in both groundwater and surface water, possibly due to the microbial uptake of O2 by decaying vegetation in the wetland water column, labile organic C available in shallow groundwater, or the oxidation of pyrite associated with the subsurface.

  15. Influence of richness and seeding density on invasion resistance in experimental tallgrass prairie restorations

    Science.gov (United States)

    Nemec, Kristine T.; Allen, Craig R.; Helzer, Christopher J.; Wedin, David A.

    2013-01-01

    In recent years, agricultural producers and non-governmental organizations and agencies have restored thousands of hectares of cropland to grassland in the Great Plains of the United States. However, little is known about the relationships between richness and seeding density in these restorations and resistance to invasive plant species. We assessed the effects of richness and seeding density on resistance to invasive and other unseeded plant species in experimental tallgrass prairie plots in central Nebraska. In 2006, twenty-four 55 m × 55 m plots were planted with six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Conservation Reserve Program mix, CP25), at low and high seeding densities. There was a significant negative relationship between richness and basal cover of unseeded perennial forbs/legumes and unseeded perennial/annual grasses, abundance of bull thistle (Cirsium vulgare), and the number of inflorescences removed from smooth brome (Bromus inermis) transplants. Invasion resistance may have been higher in the high richness treatments because of the characteristics of the dominant species in these plots or because of greater interspecific competition for limiting resources among forbs/legumes with neighboring plants belonging to the same functional group. Seeding density was not important in affecting invasion resistance, except in the cover of unseeded grasses. Increasing seed mix richness may be more effective than increasing the seeding density for decreasing invasion by unseeded perennial species, bull thistle, and smooth brome.

  16. Preserving prairies: Understanding temporal and spatial patterns of invasive annual bromes in the Northern Great Plains

    Science.gov (United States)

    Ashton, Isabel; Symstad, Amy J.; Davis, Christopher; Swanson, Daniel J.

    2016-01-01

    Two Eurasian invasive annual brome grasses, cheatgrass (Bromus tectorum) and Japanese brome (Bromus japonicus), are well known for their impact in steppe ecosystems of the western United States where these grasses have altered fire regimes, reduced native plant diversity and abundance, and degraded wildlife habitat. Annual bromes are also abundant in the grasslands of the Northern Great Plains (NGP), but their impact and ecology are not as well studied. It is unclear whether the lessons learned from the steppe will translate to the mixed-grass prairie where native plant species are adapted to frequent fires and grazing. Developing a successful annual brome management strategy for National Park Service units and other NGP grasslands requires better understanding of (1) the impact of annual bromes on grassland condition; (2) the dynamics of these species through space and time; and (3) the relative importance of environmental factors within and outside managers' control for these spatiotemporal dynamics. Here, we use vegetation monitoring data collected from 1998 to 2015 in 295 sites to relate spatiotemporal variability of annual brome grasses to grassland composition, weather, physical environmental characteristics, and ecological processes (grazing and fire). Concern about the impact of these species in NGP grasslands is warranted, as we found a decline in native species richness with increasing annual brome cover. Annual brome cover generally increased over the time of monitoring but also displayed a 3- to 5-yr cycle of reduction and resurgence. Relative cover of annual bromes in the monitored areas was best predicted by park unit, weather, extant plant community, slope grade, soil composition, and fire history. We found no evidence that grazing reduced annual brome cover, but this may be due to the relatively low grazing pressure in our study. By understanding the consequences and patterns of annual brome invasion, we will be better able to preserve and restore

  17. Natural variation in early parental care correlates with social behaviors in adolescent prairie voles (Microtus ochrogaster

    Directory of Open Access Journals (Sweden)

    Allison M Perkeybile

    2013-03-01

    Full Text Available Natural variation in early parental care may contribute to long-term changes in behavior in the offspring. Here we investigate the role of variable early care in biparental prairie voles (Microtus ochrogaster. Total amounts of parental care were initially quantified for 24 breeder pairs and pairs were ranked in relation to one another based on total contact. Consistency in key components of care suggested a trait-like quality to parental care. Based on this ranking, breeder pairs from the top (high-contact and bottom (low-contact quartiles were selected to produce high- and low-contact offspring to investigate adolescent behavior after varying early care. Parental care of subject offspring was again observed postnatally. Offspring of high-contact parents spent more time passively nursing and received more paternal nonhuddling contact while low-contact offspring spent more time actively nursing and received more paternal huddling and pseudohuddling in the first postnatal days. Low-contact offspring also displayed faster rates of development on a number of physical markers. Post-weaning, offspring were evaluated on anxiety-like behavior, social behavior and pre-pulse inhibition to a tactile and an acoustic startle. High-contact offspring spent more time sniffing a juvenile and less time autogrooming. With an infant, high-contact offspring spent more time in nonhuddling contact and less time autogrooming and retrieving than did low-contact offspring. Considering sexes separately, high-contact females spent more time sniffing a novel juvenile than low-contact females. High-contact males spent more time in nonhuddling contact with an infant than low-contact males; while low-contact females retrieved infants more than high-contact females. In both measures of social behavior, high-contact males spent less time autogrooming than low-contact males. These results suggest a relationship between early-life care and differences in social behavior in

  18. Methamphetamine Consumption Inhibits Pair Bonding and Hypothalamic Oxytocin in Prairie Voles.

    Directory of Open Access Journals (Sweden)

    Caroline M Hostetler

    Full Text Available Methamphetamine (MA abuse has been linked to violence, risk-taking behaviors, decreased sexual inhibition, and criminal activity. It is important to understand mechanisms underlying these drug effects for prevention and treatment of MA-associated social problems. Previous studies have demonstrated that experimenter-administered amphetamine inhibits pair bonding and increases aggression in monogamous prairie voles. It is not currently known whether similar effects on social behaviors would be obtained under conditions during which the drug is voluntarily (actively administered. The current study investigated whether MA drinking affects pair bonding and what neurocircuits are engaged. In Experiment 1, we exposed male and female voles to 4 days each of 20 and 40 mg/L MA under a continuous 2-bottle choice (2BC procedure. Animals were housed either singly or in mesh-divided cages with a social partner. Voles consumed MA in a drinking solution, but MA drinking was not affected by either sex or housing condition. In Experiment 2, we investigated whether MA drinking disrupts social bonding by measuring aggression and partner preference formation following three consecutive days of 18-hour/day access to 100 mg/L MA in a 2BC procedure. Although aggression toward a novel opposite-sex animal was not affected by MA exposure, partner preference was inhibited in MA drinking animals. Experiment 3 examined whether alterations in hypothalamic neuropeptides provide a potential explanation for the inhibition of partner preference observed in Experiment 2. MA drinking led to significant decreases in oxytocin, but not vasopressin, in the paraventricular nucleus of the hypothalamus. These experiments are the first investigation into how voluntary pre-exposure to MA affects the development of social attachment in a socially monogamous species and identify potential neural circuits involved in these effects.

  19. Combining multiple sources of data to inform conservation of Lesser Prairie-Chicken populations

    Science.gov (United States)

    Ross, Beth; Haukos, David A.; Hagen, Christian A.; Pitman, James

    2018-01-01

    Conservation of small populations is often based on limited data from spatially and temporally restricted studies, resulting in management actions based on an incomplete assessment of the population drivers. If fluctuations in abundance are related to changes in weather, proper management is especially important, because extreme weather events could disproportionately affect population abundance. Conservation assessments, especially for vulnerable populations, are aided by a knowledge of how extreme events influence population status and trends. Although important for conservation efforts, data may be limited for small or vulnerable populations. Integrated population models maximize information from various sources of data to yield population estimates that fully incorporate uncertainty from multiple data sources while allowing for the explicit incorporation of environmental covariates of interest. Our goal was to assess the relative influence of population drivers for the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) in the core of its range, western and southern Kansas, USA. We used data from roadside lek count surveys, nest monitoring surveys, and survival data from telemetry monitoring combined with climate (Palmer drought severity index) data in an integrated population model. Our results indicate that variability in population growth rate was most influenced by variability in juvenile survival. The Palmer drought severity index had no measurable direct effects on adult survival or mean number of offspring per female; however, there were declines in population growth rate following severe drought. Because declines in population growth rate occurred at a broad spatial scale, declines in response to drought were likely due to decreases in chick and juvenile survival rather than emigration outside of the study area. Overall, our model highlights the importance of accounting for environmental and demographic sources of variability, and provides a thorough

  20. Extensive shared polymorphism at non-MHC immune genes in recently diverged North American prairie grouse

    Science.gov (United States)

    Minias, Piotr; Bateson, Zachary W.; Whittingham, Linda A.; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O.

    2018-01-01

    Gene polymorphisms shared between recently diverged species are thought to be widespread and most commonly reflect introgression from hybridization or retention of ancestral polymorphism through incomplete lineage sorting. Shared genetic diversity resulting from incomplete lineage sorting is usually maintained for a relatively short period of time, but under strong balancing selection it may persist for millions of years beyond species divergence (balanced trans-species polymorphism), as in the case of the major histocompatibility complex (MHC) genes. However, balancing selection is much less likely to act on non-MHC immune genes. The aim of this study was to investigate the patterns of shared polymorphism and selection at non-MHC immune genes in five grouse species from Centrocercus and Tympanuchus genera. For this purpose, we genotyped five non-MHC immune genes that do not interact directly with pathogens, but are involved in signaling and regulate immune cell growth. In contrast to previous studies with MHC, we found no evidence for balancing selection or balanced trans-species polymorphism among the non-MHC immune genes. No haplotypes were shared between genera and in most cases more similar allelic variants sorted by genus. Between species within genera, however, we found extensive shared polymorphism, which was most likely attributable to introgression or incomplete lineage sorting following recent divergence and large ancestral effective population size (i.e., weak genetic drift). Our study suggests that North American prairie grouse may have attained relatively low degree of reciprocal monophyly at nuclear loci and reinforces the rarity of balancing selection in non-MHC immune genes.

  1. Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming

    Directory of Open Access Journals (Sweden)

    X. Cheng

    2011-06-01

    Full Text Available The influence of global warming on soil organic matter (SOM dynamics in terrestrial ecosystems remains unclear. In this study, we combined soil fractionation with isotope analyses to examine SOM dynamics after nine years of experimental warming in a North America tallgrass prairie. Soil samples from the control plots and the warmed plots were separated into four aggregate sizes (>2000 μm, 250–2000 μm, 53–250 μm, and <53 μm, and three density fractions (free light fraction – LF, intra-aggregate particulate organic matter – iPOM, and mineral-associated organic matter – mSOM. All fractions were analyzed for their carbon (C and nitrogen (N content, and δ13C and δ15N values. Warming did not significantly effect soil aggregate distribution and stability but increased C4-derived C input into all fractions with the greatest in LF. Warming also stimulated decay rates of C in whole soil and all aggregate sizes. C in LF turned over faster than that in iPOM in the warmed soils. The δ15N values of soil fractions were more enriched in the warmed soils than those in the control, indicating that warming accelerated loss of soil N. The δ15N values changed from low to high, while C:N ratios changed from high to low in the order LF, iPOM, and mSOM due to increased degree of decomposition and mineral association. Overall, warming increased the input of C4-derived C by 11.6 %, which was offset by the accelerated loss of soil C. Our results suggest that global warming simultaneously stimulates C input via shift in species composition and decomposition of SOM, resulting in negligible net change in soil C.

  2. Small mammals as indicators of short-term and long-term disturbance in mixed prairie

    Science.gov (United States)

    Leis, S.A.; Leslie, David M.; Engle, David M.; Fehmi, J.S.

    2008-01-01

    Disturbance by military maneuvers over short and long time scales may have differential effects on grassland communities. We assessed small mammals as indicators of disturbance by military maneuvers in a mixed prairie in southern Oklahoma USA. We examined sites on two soil series, Foard and Lawton, across a gradient of disturbance intensity. A MANOVA showed that abundance of small mammals was associated (p = 0.03) with short-term (cover of vehicle tracks) disturbance but was not associated (p = 0.12) with long-term (loss of soil organic carbon, SOC) disturbance intensity. At the individual species level, Sigmodon hispidus (cotton rat) and Peromyscus maniculatus (deer mouse) occurred across all levels of disturbance and in both soil types. Only P. maniculatus abundance changed (p short-term disturbance and increased by about one individual per 5% of additional track-cover. Abundance of P. maniculatus also increased (p = 0.04) by about three individuals per 1% increase in soil carbon. Chaetodipus hispidus (hispid pocket mouse) and Reithrodontomys fulvescens (fulvous harvest mouse) only occurred in single soil types limiting their potential as more general indicators. Abundance of P. maniculatus was positively related to shifts in plant species composition and likely reflected changes in vegetation structure (i.e. litter depth) and forage availability resulting from disturbance. Peromyscus maniculatus may be a useful biological indicator of ecosystem change because it responded predictably to both long-term and short-term disturbance and, when coupled with soil, plant, and disturbance history variables, can reveal land condition trends. ?? Springer Science+Business Media B.V. 2007.

  3. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands.

    Science.gov (United States)

    Dalcin Martins, Paula; Hoyt, David W; Bansal, Sheel; Mills, Christopher T; Tfaily, Malak; Tangen, Brian A; Finocchiaro, Raymond G; Johnston, Michael D; McAdams, Brandon C; Solensky, Matthew J; Smith, Garrett J; Chin, Yu-Ping; Wilkins, Michael J

    2017-08-01

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions. © 2017 John Wiley & Sons Ltd.

  4. Intergenerational transmission of alloparental behavior and oxytocin and vasopressin receptor distribution in the prairie vole

    Directory of Open Access Journals (Sweden)

    Allison M Perkeybile

    2015-07-01

    Full Text Available Variation in the early environment has the potential to permanently alter offspring behavior and development. We have previously shown that naturally occurring variation in biparental care of offspring in the prairie vole is related to differences in social behavior of the offspring. It was not, however, clear whether the behavioral differences seen between offspring receiving high compared to low amounts of parental care were the result of different care experiences or were due to shared genetics with their high-contact or low-contact parents. Here we use cross-fostering methods to determine the mode of transmission of alloparental behavior and oxytocin receptor (OTR and vasopressin V1a receptor (V1aR binding from parent to offspring. Offspring were cross-fostered or in-fostered on postnatal day 1 and parental care received was quantified in the first week postpartum. At weaning, offspring underwent an alloparental care test and brains were then collected from all parents and offspring to examine OTR and V1aR binding. Results indicate that alloparental behavior of offspring was predicted by the parental behavior of their rearing parents. Receptor binding for both OTR and V1aR tended to be predicted by the genetic mothers for female offspring and by the genetic fathers for male offspring. These findings suggest a different role of early experience and genetics in shaping behavior compared to receptor distribution and support the notion of sex-dependent outcomes, particularly in the transmission of receptor binding patterns.

  5. Prairie Canal Well No. 1, Calcasieu Parish, Louisiana. Volume 1. Completion and testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The Prairie Canal Company, Inc. Well No. 1, approximately 8 miles south of the city of Lake Charles, Louisiana, was tested through the annulus between 5-1/2 inch casing and 2-3/8 inch tubing. The interval tested was from 14,782 to 14,820 feet. The geological section was the Hackberry Sand, a member of the Oligocene Frio formation. Produced water was injected into a disposal well which was perforated in several Miocene Sands from 3070 to 4600 feet. Original plans were to test a section of the Hackberry sand from 14,976 to 15,024 feet. This primary zone, however, produced a large amount of sand, shale, gravel, and rocks during early flow periods and was abandoned in favor of the secondary zone. Four pressure drawdown flow tests and three pressure buildup tests were conducted during a 12-day period. A total of 36,505 barrels of water was produced. The highest sustained flow rate was approximately 7100 BWPD. The gas-to-water ratio, measured during testing, ranged from 41 to 50 SCF/BBL. There is disagreement as to the saturation value of the reservoir brine, which may be between 43.3 and 49.7 SCF/BBL. The methane content of the flare line gas averaged 88.4 mole percent. The CO/sub 2/ content averaged 8.4 mole percent. Measured values of H/sub 2/S in the gas were between 12 and 24 ppM.

  6. Lesser prairie-chicken nest site selection, microclimate, and nest survival in association with vegetation response to a grassland restoration program

    Science.gov (United States)

    Boal, Clint W.; Grisham, Blake A.; Haukos, David A.; Zavaleta, Jennifer C.; Dixon, Charles

    2014-01-01

    Climate models predict that the region of the Great Plains Landscape Conservation Cooperative (GPLCC) will experience increased maximum and minimum temperatures, reduced frequency but greater intensity of precipitation events, and earlier springs. These climate changes along with different landscape management techniques may influence the persistence of the lesser prairie-chicken (Tympanuchus pallidicinctus), a candidate for protection under the Endangered Species Act and a priority species under the GPLCC, in positive or negative ways. The objectives of this study were to conduct (1) a literature review of lesser prairie-chicken nesting phenology and ecology, (2) an analysis of thermal aspects of lesser prairie-chicken nest microclimate data, and (3) an analysis of nest site selection, nest survival, and vegetation response to 10 years of tebuthiuron and/or grazing treatments. We found few reports in the literature containing useful data on the nesting phenology of lesser prairie-chickens; therefore, managers must rely on short-term observations and measurements of parameters that provide some predictive insight into climate impacts on nesting ecology. Our field studies showed that prairie-chickens on nests were able to maintain relatively consistent average nest temperature of 31 °C and nest humidities of 56.8 percent whereas average external temperatures (20.3–35.0 °C) and humidities (35.2–74.9 percent) varied widely throughout the 24 hour (hr) cycle. Grazing and herbicide treatments within our experimental areas were designed to be less intensive than in common practice. We determined nest locations by radio-tagging hen lesser prairie-chickens captured at leks, which are display grounds at which male lesser prairie-chickens aggregate and attempt to attract a female for mating. Because nest locations selected by hen lesser prairie-chicken are strongly associated with the lek at which they were captured, we assessed nesting habitat use on the basis of hens

  7. Using stable isotopes to understand hydrochemical processes in and around a Prairie Pothole wetland in the Northern Great Plains, USA

    International Nuclear Information System (INIS)

    Mills, Christopher T.; Goldhaber, Martin B.; Stricker, Craig A.; Holloway, JoAnn M.; Morrison, Jean M.; Ellefsen, Karl J.; Rosenberry, Donald O.; Thurston, Roland S.

    2011-01-01

    Highlights: → A stable isotope study of the hydrochemistry of a Prairie Pothole wetland system. → δ 18 O H2O and δ 2 H H2O values show salt concentration by transpiration at wetland edge. → A range of δ 34 S SO4 values indicate SO 4 source and reduction processes. → Isotopic mixing lines show interaction of surface and groundwater at wetland edge. - Abstract: Millions of internally drained wetland systems in the Prairie Potholes region of the northern Great Plains (USA and Canada) provide indispensable habitat for waterfowl and a host of other ecosystem services. The hydrochemistry of these systems is complex and a crucial control on wetland function, flora and fauna. Wetland waters can have high concentrations of SO 4 2- due to the oxidation of large amounts of pyrite in glacial till that is in part derived from the Pierre shale. Water chemistry including δ 18 O H2O , δ 2 H H2O , and δ 34 S SO4 values, was determined for groundwater, soil pore water, and wetland surface water in and around a discharge wetland in North Dakota. The isotopic data for the first time trace the interaction of processes that affect wetland chemistry, including open water evaporation, plant transpiration, and microbial SO 4 reduction.

  8. Wild Birds, a Source of Reticuloendotheliosis Virus Infection for the Endangered Attwater's Prairie-Chicken ( Tympanuchus cupido attwateri)?

    Science.gov (United States)

    Ferro, Pamela J; Morrow, Michael E; Flanagan, Joseph P; Ortego, Brent; Chester, Rebecca E; Mueller, James M; Lupiani, Blanca

    2017-07-01

    Reticuloendotheliosis virus (REV) infects a wide range of avian species. Since 1998, when it was first reported in a captive flock of the endangered Attwater's Prairie-chicken ( Tympanuchus cupido attwateri; APC), REV has plagued APC recovery efforts. While REV frequently occurs in captive bird flocks throughout the world, including commercial poultry, the reservoir for initial infection of flocks is poorly understood. From 2008-16, 412 blood samples and 216 liver samples collected from 32 species of birds on or near Attwater Prairie Chicken National Wildlife Refuge in Colorado County, Texas, US, and 89 blood samples obtained from a Texas game farm that provides thousands of Northern Bobwhites ( Colinus virginianus ) and Ring-necked Pheasants ( Phasianus colchicus ) for hunting throughout Texas, were tested for REV by real-time PCR. Of the 717 samples, one liver sample from a Savannah Sparrow ( Passerculus sandwichensis ) and three blood samples from game farm Ring-necked Pheasants tested positive for REV. These data, although limited, indicate a low prevalence of REV in birds sharing or in close proximity to APC habitat. More-extensive surveillance testing is warranted to determine the spatial and temporal dynamics of REV in wild bird populations and the relative role these birds may play as potential reservoirs for maintaining REV infections in both the wild and captive setting.

  9. Radionuclides in small mammals of the Saskatchewan prairie, including implications for the boreal forest and Arctic tundra

    International Nuclear Information System (INIS)

    Thomas, P.A.

    1995-01-01

    The focus of the study reported was to collect and examine baseline data on radionuclides in small prairie mammal food chains and to assess the feasibility of using small mammals as radionuclide monitors in terrestrial ecosystems, in anticipation of possible future nuclear developments in northern Saskatchewan and the Northwest Territories. The study report begins with a literature review that summarizes existing data on radionuclides in small mammals, their food, the ambient environment in Canadian terrestrial ecosystems, principles of terrestrial radioecology, soil and vegetation studies, and food chain studies. It then describes a field study conducted to investigate small mammal food chains at three southwestern Saskatchewan prairie sites. Activities included collection and analysis of water, soil, grains, and foliage samples; trapping of small mammals such as mice and voles, and analysis of gastrointestinal tract samples; and determination of food chain transfer of selected radionuclides from soil to plants and to small mammals. Recommendations are made for future analyses and monitoring of small mammals. Appendices include information on radiochemical methods, soil/vegetation studies and small mammal studies conducted at northern Saskatchewan mine sites, and analyses of variance

  10. Consumption of baits containing raccoon pox-based plague vaccines protects black-tailed prairie dogs (Cynomys ludovicianus).

    Science.gov (United States)

    Rocke, Tonie E; Pussini, Nicola; Smith, Susan R; Williamson, Judy; Powell, Bradford; Osorio, Jorge E

    2010-01-01

    Baits containing recombinant raccoon poxvirus (RCN) expressing plague antigens (fraction 1 [F1] and a truncated form of the V protein-V307) were offered for voluntary consumption several times over the course of several months to a group of 16 black-tailed prairie dogs (Cynomys ludovicianus). For comparison, another group of prairie dogs (n = 12) was injected subcutaneously (SC) (prime and boost) with 40 microg of F1-V fusion protein absorbed to alum, a vaccine-adjuvant combination demonstrated to elicit immunity to plague in mice and other mammals. Control animals received baits containing RCN without the inserted antigen (n = 8) or injected diluent (n = 7), and as there was no difference in their survival rates by Kaplan-Meier analysis, all of them were combined into one group in the final analysis. Mean antibody titers to Yersinia pestis F1 and V antigen increased (p plague vaccines provides significant protection against challenge at dosages that simulate simultaneous delivery of the plague bacterium by numerous flea bites.

  11. Do pathogens reduce genetic diversity of their hosts? Variable effects of sylvatic plague in black-tailed prairie dogs.

    Science.gov (United States)

    Sackett, Loren C; Collinge, Sharon K; Martin, Andrew P

    2013-05-01

    Introduced diseases can cause dramatic declines in-and even the loss of-natural populations. Extirpations may be followed by low recolonization rates, leading to inbreeding and a loss of genetic variation, with consequences on population viability. Conversely, extirpations may create vacant habitat patches that individuals from multiple source populations can colonize, potentially leading to an influx of variation. We tested these alternative hypotheses by sampling 15 colonies in a prairie dog metapopulation during 7 years that encompassed an outbreak of sylvatic plague, providing the opportunity to monitor genetic diversity before, during and after the outbreak. Analysis of nine microsatellite loci revealed that within the metapopulation, there was no change in diversity. However, within extirpated colonies, patterns varied: In half of the colonies, allelic richness after recovery was less than the preplague conditions, and in the other half, richness was greater than the preplague conditions. Finally, analysis of variation within individuals revealed that prairie dogs present in recolonized colonies had higher heterozygosity than those present before plague. We confirmed plague survivorship in six founders; these individuals had significantly higher heterozygosity than expected by chance. Collectively, our results suggest that high immigration rates can maintain genetic variation at a regional scale despite simultaneous extirpations in spatially proximate populations. Thus, virulent diseases may increase genetic diversity of host populations by creating vacant habitats that allow an influx of genetic diversity. Furthermore, even highly virulent diseases may not eliminate individuals randomly; rather, they may selectively remove the most inbred individuals. © 2013 Blackwell Publishing Ltd.

  12. A large-scale perspective for managing prairie avifauna assemblages across the western US: influences of habitat, land ownership and latitude.

    Science.gov (United States)

    Dreitz, Victoria J; Stinson, Lani T; Hahn, Beth A; Tack, Jason D; Lukacs, Paul M

    2017-01-01

    Future demands for increased food production are expected to have severe impacts on prairie biodiversity and ecosystem integrity. Prairie avifauna of North America have experienced drastic population declines, prompting numerous conservation efforts, which have been informed primarily by small-scale studies. We applied a large-scale perspective that integrates scale dependency in avian responses by analyzing observations of 20 prairie bird species (17 grassland obligates and three sagebrush obligate species) from 2009-2012 in the western prairie region of the United States. We employed a multi-species model approach to examine the relationship of land ownership, habitat, and latitude to landscape-scale species richness. Our findings suggest that patterns and processes influencing avian assemblages at the focal-scale (e.g., inference at the sampling unit) may not function at the landscape-scale (e.g., inference amongst sampling units). Individual species responses to land ownership, habitat and latitude were highly variable. The broad spatial extent of our study demonstrates the need to include lands in private ownership to assess biodiversity and the importance of maintaining habitat diversity to support avian assemblages. Lastly, focal-scale information can document species presence within a study area, but landscape-scale information provides an essential complement to inform conservation actions and policies by placing local biodiversity in the context of an entire region, landscape or ecosystem.

  13. Development and application of a spatial IBM to forecast greater prairie-chicken population responses to land use in the Flint Hills region of Kansas - SCB meeting

    Science.gov (United States)

    Greater prairie-chicken (Tympanachus cupido) populations have been on the decline for decades. Recent efforts to reverse this trend are focusing on two specific disturbance regimes, cattle grazing and field burning, both prevalent in the Flint Hill region of Kansas -- an area of...

  14. Development and application of a spatial IBM to forecast greater prairie-chicken population responses to land use in the Flint Hills region of Kansas

    Science.gov (United States)

    Greater prairie-chicken (Tympanachus cupido) populations have been on the decline for decades. Recent efforts to reverse this trend are focusing on two specific disturbance regimes, cattle grazing and field burning, both prevalent in the Flint Hill region of Kansas -- an area of...

  15. A large-scale perspective for managing prairie avifauna assemblages across the western US: influences of habitat, land ownership and latitude

    Directory of Open Access Journals (Sweden)

    Victoria J. Dreitz

    2017-01-01

    Full Text Available Future demands for increased food production are expected to have severe impacts on prairie biodiversity and ecosystem integrity. Prairie avifauna of North America have experienced drastic population declines, prompting numerous conservation efforts, which have been informed primarily by small-scale studies. We applied a large-scale perspective that integrates scale dependency in avian responses by analyzing observations of 20 prairie bird species (17 grassland obligates and three sagebrush obligate species from 2009–2012 in the western prairie region of the United States. We employed a multi-species model approach to examine the relationship of land ownership, habitat, and latitude to landscape-scale species richness. Our findings suggest that patterns and processes influencing avian assemblages at the focal-scale (e.g., inference at the sampling unit may not function at the landscape-scale (e.g., inference amongst sampling units. Individual species responses to land ownership, habitat and latitude were highly variable. The broad spatial extent of our study demonstrates the need to include lands in private ownership to assess biodiversity and the importance of maintaining habitat diversity to support avian assemblages. Lastly, focal-scale information can document species presence within a study area, but landscape-scale information provides an essential complement to inform conservation actions and policies by placing local biodiversity in the context of an entire region, landscape or ecosystem.

  16. Conformance to Regulatory Guide 1.97 Prairie Island Nuclear Generating Plant, Unit Nos. 1 and 2 (Docket Nos. 50-282 and 50-306)

    International Nuclear Information System (INIS)

    Udy, A.C.

    1985-08-01

    This report provides a review of the Prairie Island Nuclear Generating Plant, Unit Nos. 1 and 2, submittals for Regulatory Guide 1.97, and identifies areas of nonconformance. Any exception to the guidelines is evaluated and those areas where sufficient basis for acceptability is not provided are identified

  17. Sound transmission at ground level in a short-grass prairie habitat and its implications for long-range communication in the swift fox Vulpes velox

    DEFF Research Database (Denmark)

    Darden, Safi K; Pedersen, Simon B; Larsen, Ole N

    2008-01-01

    The acoustic environment of swift foxes Vulpes velox vocalizing close to the ground and the effect of propagation on individual identity information in vocalizations were quantified in a transmission experiment in prairie habitat. Sounds were propagated (0.45 m above the ground) at distances up...

  18. Prevalence of Yersinia pestis in rodents and fleas associated with black-tailed prairie dogs (Cynomys ludovicianus) at Thunder Basin National Grassland, Wyoming

    Science.gov (United States)

    Thiagarajan, Bala; Bai, Ying; Gage, Kenneth L.; Cully, Jack F.

    2008-01-01

    Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off.

  19. Responses of juvenile black-tailed prairie dogs (Cynomys ludovicianus) to a commercially produced oral plague vaccine delivered at two doses

    Science.gov (United States)

    Cárdenas-Canales, Elsa M.; Wolfe, Lisa L.; Tripp. Daniel W.,; Rocke, Tonie E.; Abbott, Rachel C.; Miller, Michael W.

    2017-01-01

    We confirmed safety and immunogenicity of mass-produced vaccine baits carrying an experimental, commercial-source plague vaccine (RCN-F1/V307) expressing Yersinia pestis V and F1 antigens. Forty-five juvenile black-tailed prairie dogs (Cynomys ludovicianus) were randomly divided into three treatment groups (n=15 animals/group). Animals in the first group received one standard-dose vaccine bait (5×107 plaque-forming units [pfu]; STD). The second group received a lower-dose bait (1×107 pfu; LOW). In the third group, five animals received two standard-dose baits and 10 were left untreated but in contact. Two vaccine-treated and one untreated prairie dogs died during the study, but laboratory analyses ruled out vaccine involvement. Overall, 17 of 33 (52%; 95% confidence interval for binomial proportion [bCI] 34−69%) prairie dogs receiving vaccine-laden bait showed a positive anti-V antibody response on at least one sampling occasion after bait consumption, and eight (24%; bCI 11–42%) showed sustained antibody responses. The STD and LOW groups did not differ (P≥0.78) in their proportions of overall or sustained antibody responses after vaccine bait consumption. Serum from one of the nine (11%; bCI 0.3–48%) surviving untreated, in-contact prairie dogs also had detectable antibody on one sampling occasion. We did not observe any adverse effects related to oral vaccination.

  20. Responses of Juvenile Black-tailed Prairie Dogs ( Cynomys ludovicianus ) to a Commercially Produced Oral Plague Vaccine Delivered at Two Doses.

    Science.gov (United States)

    Cárdenas-Canales, Elsa M; Wolfe, Lisa L; Tripp, Daniel W; Rocke, Tonie E; Abbott, Rachel C; Miller, Michael W

    2017-10-01

    We confirmed safety and immunogenicity of mass-produced vaccine baits carrying an experimental, commercial-source plague vaccine (RCN-F1/V307) expressing Yersinia pestis V and F1 antigens. Forty-five juvenile black-tailed prairie dogs ( Cynomys ludovicianus ) were randomly divided into three treatment groups (n=15 animals/group). Animals in the first group received one standard-dose vaccine bait (5×10 7 plaque-forming units [pfu]; STD). The second group received a lower-dose bait (1×10 7 pfu; LOW). In the third group, five animals received two standard-dose baits and 10 were left untreated but in contact. Two vaccine-treated and one untreated prairie dogs died during the study, but laboratory analyses ruled out vaccine involvement. Overall, 17 of 33 (52%; 95% confidence interval for binomial proportion [bCI] 34-69%) prairie dogs receiving vaccine-laden bait showed a positive anti-V antibody response on at least one sampling occasion after bait consumption, and eight (24%; bCI 11-42%) showed sustained antibody responses. The STD and LOW groups did not differ (P≥0.78) in their proportions of overall or sustained antibody responses after vaccine bait consumption. Serum from one of the nine (11%; bCI 0.3-48%) surviving untreated, in-contact prairie dogs also had detectable antibody on one sampling occasion. We did not observe any adverse effects related to oral vaccination.

  1. Prevalence of Yersinia pestis in rodents and fleas associated with black-tailed prairie dogs (Cynomys ludovicianus) at Thunder Basin National Grassland, Wyoming.

    Science.gov (United States)

    Thiagarajan, Bala; Bai, Ying; Gage, Kenneth L; Cully, Jack F

    2008-07-01

    Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off.

  2. Environmental monitoring and ecological studies program. 1974 annual report for the Prairie Island Nuclear Generating Plant near Red Wing, Minnesota. Volume II

    International Nuclear Information System (INIS)

    1975-06-01

    Data are presented from studies on the effects of thermal effluents from the Prairie Island nuclear power plant on fish and invertebrate populations in the Mississippi River in the vicinity of the plant. Populations of aquatic and terrestrial plants and birds in the immediate vicinity of the plant were also characterized. (U.S.)

  3. Mesopredators in the Blackland Prairie of Texas: Occupancy, detection probability, and diversity in relation to landcover change

    Science.gov (United States)

    Hawkins, Nathan Ryan

    The Blackland Prairie of Texas is one of the most heavily altered and threatened ecoregions in North America. A large part of the current threats to the ecoregion are related to rapid urban growth in cities within the Blackland Prairie. Major threats are related to conversion natural and semi-natural land to urban and suburban land, and increased resource demands from the growing urban population. To quantify these changes, I generated landcover maps using unsupervised classification techniques for the years 1984, 1993, 2004, and 2009 in a portion of the central Blackland Prairie centered around Navarro County, Texas and used post-classification comparison to determine the change in landcover. The largest changes in landcover occurred due to the creation of Richland Chambers Reservoir in 1987, and the subsequent flooding of mostly bottomland forest (a loss of 11,858.4ha of water from 1985-1993). This change occurred because of increased demand for water by the population of the Dallas-Fort Worth-Arlington Metropolitan Study Area. Other changes that occurred in the study area included increases in cropland (26,590.14ha from 1985-2009), grass (25,368ha from 1985-2009), and developed (4,877.55ha from 1985-2009) landcover types. Increases in crop and grass landcover types suggest agricultural intensification occurring within the study area, while an increase in developed landcover indicates an increase in urbanization in a mostly rural county. Since changes in landcover have been demonstrated to affect wildlife in other areas, I used motion-sensing camera traps to survey the predator community in the area. I identified species occurring and developed occupancy models using variables that describe a number of landscape features that may be important to those species. Detections were dominated by a few common species, which included coyotes (psi4=0.7778 winter, psi=0.6667 summer), bobcats (psi=0.8889 winter, psi=0.7778 summer), raccoons (psi=1 winter, psi=0.9091 summer

  4. Repeated burning of eastern tallgrass prairie increases richness and diversity, stabilizing late successional vegetation.

    Science.gov (United States)

    Bowles, Marlin L; Jones, Michael D

    2013-03-01

    Understanding temporal effects of fire frequency on plant species diversity and vegetation structure is critical for managing tallgrass prairie (TGP), which occupies a mid-continental longitudinal precipitation and productivity gradient. Eastern TGP has contributed little information toward understanding whether vegetation-fire interactions are uniform or change across this biome. We resampled 34 fire-managed mid- and late-successional ungrazed TGP remnants occurring across a dry to wet-mesic moisture gradient in the Chicago region of Illinois, USA. We compared hypotheses that burning acts either as a stabilizing force or causes change in diversity and structure, depending upon fire frequency and successional stage. Based on western TGP, we expected a unimodal species richness distribution across a cover-productivity gradient, variable functional group responses to fire frequency, and a negative relationship between fire frequency and species richness. Species diversity was unimodal across the cover gradient and was more strongly humpbacked in stands with greater fire frequency. In support of a stabilizing hypothesis, temporal similarity of late-successional vegetation had a logarithmic relationship with increasing fire frequency, while richness and evenness remained stable. Temporal similarity within mid-successional stands was not correlated with fire frequency, while richness increased and evenness decreased over time. Functional group responses to fire frequency were variable. Summer forb richness increased under high fire frequency, while C4 grasses, spring forbs, and nitrogen-fixing species decreased with fire exclusion. On mesic and wet-mesic sites, vegetation structure measured by the ratio of woody to graminoid species was negatively correlated with abundance of forbs and with fire frequency. Our findings that species richness responds unimodally to an environmental-productivity gradient, and that fire exclusion increases woody vegetation and leads to loss

  5. Spatially explicit modeling of blackbird abundance in the Prairie Pothole Region

    Science.gov (United States)

    Forcey, Greg M.; Thogmartin, Wayne E.; Linz, George M.; McKann, Patrick C.; Crimmins, Shawn M.

    2015-01-01

    Knowledge of factors influencing animal abundance is important to wildlife biologists developing management plans. This is especially true for economically important species such as blackbirds (Icteridae), which cause more than $100 million in crop damages annually in the United States. Using data from the North American Breeding Bird Survey, the National Land Cover Dataset, and the National Climatic Data Center, we modeled effects of regional environmental variables on relative abundance of 3 blackbird species (red-winged blackbird,Agelaius phoeniceus; yellow-headed blackbird, Xanthocephalus xanthocephalus; common grackle, Quiscalus quiscula) in the Prairie Pothole Region of the central United States. We evaluated landscape covariates at 3 logarithmically related spatial scales (1,000 ha, 10,000 ha, and 100,000 ha) and modeled weather variables at the 100,000-ha scale. We constructed models a priori using information from published habitat associations. We fit models with WinBUGS using Markov chain Monte Carlo techniques. Both landscape and weather variables contributed strongly to predicting blackbird relative abundance (95% credibility interval did not overlap 0). Variables with the strongest associations with blackbird relative abundance were the percentage of wetland area and precipitation amount from the year before bird surveys were conducted. The influence of spatial scale appeared small—models with the same variables expressed at different scales were often in the best model subset. This large-scale study elucidated regional effects of weather and landscape variables, suggesting that management strategies aimed at reducing damages caused by these species should consider the broader landscape, including weather effects, because such factors may outweigh the influence of localized conditions or site-specific management actions. The regional species distributional models we developed for blackbirds provide a tool for understanding these broader

  6. A long-term perspective on anthropogenic activities and management strategies in a prairie wetland

    Science.gov (United States)

    Hobbs, J. M.; Hobbs, W.; LaFrancois, T.; Edlund, M.; Theissen, K. M.; Zimmer, K.; Hanson, M.

    2012-12-01

    Multiple stressors to shallow lake/wetland ecosystems have the ability to control the relative stability of alternative states (clear, macrophyte-dominated or turbid, algal dominated). As a consequence, the use of remedial biomanipulations to induce trophic cascades and shift a turbid lake to a clear state is often only a temporary solution. Here we show the instability of short-term manipulations in the shallow Lake Christina (a Class V wetland in the prairie ecoregion of western Minnesota, USA) is governed by the long-term state following a regime shift in the lake. During the modern, managed period of the lake, three top-down manipulations (fish kills) were undertaken inducing temporary (5-10 years) unstable clear-water states. Paleoecological remains of diatoms, along with proxies of primary production (total chlorophyll a and total organic carbon accumulation rate) and trophic state (total P) from sediment records clearly show a single regime shift in the lake during the early 1950s; following this shift, the functioning of the lake ecosystem is dominated by a persistent turbid state. We find that multiple stressors contributed to the regime shift. First, the lake began to eutrophy (from agricultural land use and/or increased waterfowl populations), leading to a dramatic increase in primary production. Soon after, the construction of a dam in 1936 effectively doubled the depth of the lake, compounded by increases in regional humidity; this resulted in an increase in planktivorous and benthivorous fish reducing phytoplankton grazers. These factors further conspired to increase the stability of a turbid regime during the modern managed period, such that switches to a clear-water state were inherently unstable and the lake consistently returned to a turbid state. We conclude that while top-down manipulations have had measurable impacts on the lake state, they have not been effective in providing a return to an ecosystem similar to the stable historical period

  7. Comparisons between Canadian prairie MF radars, FPI (green and OH lines and UARS HRDI systems

    Directory of Open Access Journals (Sweden)

    C. E. Meek

    Full Text Available Detailed comparisons have been completed between the MF radars (MFR in the Canadian prairies and three other systems: two ground-based Fabry-Perot interferometers (FPI and the UARS high resolution Doppler imager (HRDI system. The radars were at Sylvan Lake (52°N, 114°W, Robsart 
    (49°N, 109°W and the main continuing facility is at Saskatoon (52°N, 107°W. Statistical comparisons of hourly mean winds (1988-1992 for the Saskatoon MFR and FPI (557.7 nm green line using scatter plots, wind speed-ratios, and direction-difference histograms show excellent agreement for Saskatoon. No serious biases in speeds or directions occur at the height of best agreement, 98 km. If anything, the MFR speeds appear bigger. The same applies to the Sylvan Lake MFR and Calgary FPI, where the best height is 88 km. In both cases these are close to the preferred heights for the emission layers. Differences between measurements seen on individual days are likely related to the influence of gravity waves (GW upon the optical and radar systems, each of which have inherent spatial averaging (350, 50 km respectively, as well as the spatial difference between the nominal measurement locations. For HRDI, similar statistical comparisons are made, using single-overpass satellite winds and hourly means (to improve data quality from MFR. Heights of best agreement, based upon direction-difference histograms, are shown; there is a tendency, beginning near 87 km, for these MFR heights to be 2 or 3 km greater than the HRDI heights. Speeds at these heights are typically larger for the satellite (MFR/HRDI = 0.7–0.8. Reasons for the differences are investigated. It is shown that the estimated errors and short-term (90 min differences are larger for HRDI than for the MFR, indicating more noise or GW contamination. This leads to modest but significant differences in median speed-ratio (MFR/HRDI < 1. Also, comparison

  8. Effects of N on plant response to heat-wave: a field study with prairie vegetation.

    Science.gov (United States)

    Wang, Dan; Heckathorn, Scott A; Mainali, Kumar; Hamilton, E William

    2008-11-01

    More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic ecological impacts. Increasing nitrogen (N) availability and its dynamics will likely impact plant responses to heat stress and carbon (C) sequestration in terrestrial ecosystems. This field study examined the effects of N availability on plant response to heat-stress (HS) treatment in naturally-occurring vegetation. HS (5 d at ambient or 40.5 degrees C) and N treatments (+/-N) were applied to 16 1 m(2) plots in restored prairie vegetation dominated by Andropogon gerardii (warm-season C4 grass) and Solidago canadensis (warm-season C3 forb). Before, during, and after HS, air, canopy, and soil temperature were monitored; net CO2 assimilation (P(n)), quantum yield of photosystem II (Phi(PSII)), stomatal conductance (g(s)), and leaf water potential (Psi(w)) of the dominant species and soil respiration (R(soil)) of each plot were measured daily during HS. One week after HS, plots were harvested, and C% and N% were determined for rhizosphere and bulk soil, and above-ground tissue (green/senescent leaf, stem, and flower). Photosynthetic N-use efficiency (PNUE) and N resorption rate (NRR) were calculated. HS decreased P(n), g(s), Psi(w), and PNUE for both species, and +N treatment generally increased these variables (+/-HS), but often slowed their post-HS recovery. Aboveground biomass tended to decrease with HS in both species (and for green leaf mass in S. canadensis), but decrease with +N for A. gerardii and increase with +N for S. canadensis. For A. gerardii, HS tended to decrease N% in green tissues with +N, whereas in S. canadensis, HS increased N% in green leaves. Added N decreased NRR for A. gerardii and HS increased NRR for S. canadensis. These results suggest that heat waves, though transient, could have significant effects on plants, communities, and ecosystem N cycling, and N can influence the effect of heat waves.

  9. Potential impact of selected agricultural chemical contaminants on a northern prairie wetland: A microcosm evaluation.

    Science.gov (United States)

    Johnson, B Thomas

    1986-05-01

    An aquatic, multicomponent microcosm simulating a northern prairie wetland was used to assess the potential effects of six extensively used agricultural pesticides on this important wildlife habitat. Using a nested experimental design, 16 4-liter aquatic microcosms were treated with three concentrations of each of the pesticides carbofuran, fonofos, phorate, atrazine, treflan and trial-late. The microcosm units were incubated for 30 d in an environmental chamber, with a 16-h light:8-h dark cycle, maintained at 20°C. Specific limnological, biological and toxicological parameters were monitored over time by observing the interactions of water, animals, sediment and plants with the pesticides. The laboratory protocol was designed as an initial, rapid, economical screening test to determine the effect, but not the fate, of chemical contaminants in terms of toxicity, impaired productivity and community biochemical functions. Static acute toxicity tests with Daphnia magna and Chironomus riparius suggested that carbofuran, fonofos, phorate and triallate were very toxic to aquatic invertebrates. For D. magna the 48-h EC50 values were 48, 15, 19 and 57 μg/L, respectively. Invertebrate viability tests indicated rapid changes in the toxicological persistence of these pesticides after microcosm interaction. Populations of D. magna were established in the 10 μg/L test concentration of carbofuran, phorate, triallate and fonofos at 1, 1, 14 and 28 d, respectively. Preexposure of the wetland sediments to either triallate or fonofos did not appear to change the relative toxicological persistence of each compound in the water column. Changes in pH, alkalinity, conductivity, dissolved oxygen, total nitrogen and total phosphorus were also observed with different pesticide treatments. Atrazine significantly reduced gross primary productivity and inhibited algal and macrophytic growth. In general, there was no evidence of significant inhibition of microbial functions in the water or

  10. Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function

    Directory of Open Access Journals (Sweden)

    P. A. Fay

    2011-10-01

    Full Text Available Precipitation and temperature drive many aspects of terrestrial ecosystem function. Climate change scenarios predict increasing precipitation variability and temperature, and long term experiments are required to evaluate the ecosystem consequences of interannual climate variation, increased growing season (intra-annual rainfall variability, and warming. We present results from an experiment applying increased growing season rainfall variability and year round warming in native tallgrass prairie. During ten years of study, total growing season rainfall varied 2-fold, and we found ~50–200% interannual variability in plant growth and aboveground net primary productivity (ANPP, leaf carbon assimilation (ACO2, and soil CO2 efflux (JCO2 despite only ~40% variation in mean volumetric soil water content (0–15 cm, Θ15. Interannual variation in soil moisture was thus amplified in most measures of ecosystem response. Differences between years in Θ15 explained the greatest portion (14–52% of the variation in these processes. Experimentally increased intra-annual season rainfall variability doubled the amplitude of intra-annual soil moisture variation and reduced Θ15 by 15%, causing most ecosystem processes to decrease 8–40% in some or all years with increased rainfall variability compared to ambient rainfall timing, suggesting reduced ecosystem rainfall use efficiency. Warming treatments increased soil temperature at 5 cm depth, particularly during spring, fall, and winter. Warming advanced canopy green up in spring, increased winter JCO2, and reduced summer JCO2 and forb ANPP, suggesting that the effects of warming differed in cooler versus warmer parts of the year. We conclude that (1 major ecosystem processes in this grassland may be substantially altered by predicted changes in

  11. Long-term spatial heterogeneity in mallard distribution in the Prairie pothole region

    Science.gov (United States)

    Janke, Adam K.; Anteau, Michael J.; Stafford, Joshua D.

    2017-01-01

    The Prairie Pothole Region (PPR) of north-central United States and south-central Canada supports greater than half of all breeding mallards (Anas platyrhynchos) annually counted in North America and is the focus of widespread conservation and research efforts. Allocation of conservation resources for this socioeconomically important population would benefit from an understanding of the nature of spatiotemporal variation in distribution of breeding mallards throughout the 850,000 km2 landscape. We used mallard counts from the Waterfowl Breeding Population and Habitat Survey to test for spatial heterogeneity and identify high- and low-abundance regions of breeding mallards over a 50-year time series. We found strong annual spatial heterogeneity in all years: 90% of mallards counted annually were on an average of only 15% of surveyed segments. Using a local indicator of spatial autocorrelation, we found a relatively static distribution of low-count clusters in northern Montana, USA, and southern Alberta, Canada, and a dynamic distribution of high-count clusters throughout the study period. Distribution of high-count clusters shifted southeast from northwestern portions of the PPR in Alberta and western Saskatchewan, Canada, to North and South Dakota, USA, during the latter half of the study period. This spatial redistribution of core mallard breeding populations was likely driven by interactions between environmental variation that created favorable hydrological conditions for wetlands in the eastern PPR and dynamic land-use patterns related to upland cropping practices and government land-retirement programs. Our results highlight an opportunity for prioritizing relatively small regions within the PPR for allocation of wetland and grassland conservation for mallard populations. However, the extensive spatial heterogeneity in core distributions over our study period suggests such spatial prioritization will have to overcome challenges presented by dynamic land

  12. Projected changes to short- and long-duration precipitation extremes over the Canadian Prairie Provinces

    Science.gov (United States)

    Masud, M. B.; Khaliq, M. N.; Wheater, H. S.

    2017-09-01

    The effects of climate change on April-October short- and long-duration precipitation extremes over the Canadian Prairie Provinces were evaluated using a multi-Regional Climate Model (RCM) ensemble available through the North American Regional Climate Change Assessment Program. Simulations considered include those performed with six RCMs driven by the National Centre for Environmental Prediction (NCEP) reanalysis II product for the 1981-2000 period and those driven by four Atmosphere-Ocean General Circulation Models (AOGCMs) for the current 1971-2000 and future 2041-2070 periods (i.e. a total of 11 current-to-future period simulation pairs). A regional frequency analysis approach was used to develop 2-, 5-, 10-, 25-, and 50-year return values of precipitation extremes from NCEP and AOGCM-driven current and future period simulations that respectively were used to study the performance of RCMs and projected changes for selected return values at regional, grid-cell and local scales. Performance errors due to internal dynamics and physics of RCMs studied for the 1981-2000 period reveal considerable variation in the performance of the RCMs. However, the performance errors were found to be much smaller for RCM ensemble averages than for individual RCMs. Projected changes in future climate to selected regional return values of short-duration (e.g. 15- and 30-min) precipitation extremes and for longer return periods (e.g. 50-year) were found to be mostly larger than those to the longer duration (e.g. 24- and 48-h) extremes and short return periods (e.g. 2-year). Overall, projected changes in precipitation extremes were larger for southeastern regions followed by southern and northern regions and smaller for southwestern and western regions of the study area. The changes to return values were also found to be statistically significant for the majority of the RCM-AOGCM simulation pairs. These projections might be useful as a key input for the future planning of urban

  13. A seasonal SIR metapopulation model with an Allee effect with application to controlling plague in prairie dog colonies.

    Science.gov (United States)

    Ekanayake, A J; Ekanayake, D B

    2015-01-01

    For wildlife species living among patchy habitats, disease and the Allee effect (reduced per capita birth rates at low population densities) may together drive a patch's population to extinction, particularly if births are seasonal. Yet local extinction may not be indicative of global extinction, and a patch may become recolonized by migrating individuals. We introduce deterministic and stochastic susceptible, infectious, and immune epidemic models with vector species to study disease in a metapopulation with an Allee effect and seasonal birth and dispersal. We obtain conditions for the existence of a strong Allee effect and existence and stability of a disease-free positive periodic solution. These general models have application to many wildlife diseases. As a case study, we apply them to evaluate dynamics of the sylvatic plague in prairie dog colonies interconnected through dispersal. We further evaluate the effects of control of the vector population and control by immunization on plague eradication.

  14. Settlement patterns, GIS, remote sensing, and the late prehistory of the Black Prairie in east central Mississippi

    Science.gov (United States)

    Johnson, Jay K.

    1991-01-01

    Data recovered as the result of a recent field project designed to test a model of the distribution of protohistoric settlement in an unusual physiographic zone in eastern Mississippi are examined using GIS based techniques to manipulate soil and stream distance information. Significant patterning is derived. The generally thin soils and uniform substratum of the Black Prairie in combination with a distinctive settlement pattern offer a promising opportunity for the search for site specific characteristics within airborne imagery. Landsat TM data provide information on modern ground cover which is used as a mask to select areas in which a multivariate search for archaeological site signatures within a TIMS image is most likely to prove fruitful.

  15. Using stable isotopes to understand hydrochemical processes in and around a Prairie Pothole wetland in the Northern Great Plains, USA

    Science.gov (United States)

    Mills, Christopher T.; Goldhaber, Martin B.; Stricker, Craig A.; Holloway, JoAnn M.; Morrison, Jean M.; Ellefsen, Karl J.; Rosenberry, Donald O.; Thurston, Roland S.

    2011-01-01

    Millions of internally drained wetland systems in the Prairie Potholes region of the northern Great Plains (USA and Canada) provide indispensable habitat for waterfowl and a host of other ecosystem services. The hydrochemistry of these systems is complex and a crucial control on wetland function, flora and fauna. Wetland waters can have high concentrations of SO2-4 due to the oxidation of large amounts of pyrite in glacial till that is in part derived from the Pierre shale. Water chemistry including δ18OH2O, δ2HH2O, and δ34SSO4 values, was determined for groundwater, soil pore water, and wetland surface water in and around a discharge wetland in North Dakota. The isotopic data for the first time trace the interaction of processes that affect wetland chemistry, including open water evaporation, plant transpiration, and microbial SO4 reduction.

  16. What community characteristics help or hinder rural communities in becoming age-friendly? Perspectives from a Canadian prairie province.

    Science.gov (United States)

    Spina, John; Menec, Verena H

    2015-06-01

    Age-friendly initiatives are increasingly promoted as a policy solution to healthy aging, The primary objective of this article was to examine older adults' and key stakeholders' perceptions of the factors that either help or hinder a community from becoming age-friendly in the context of rural Manitoba, a Canadian prairie province. Twenty-four older adults and 17 key informants completed a qualitative interview. The findings show that contextual factors including size, location, demographic composition, ability to secure investments, and leadership influence rural communities' ability to become age-friendly. Government must consider the challenges these communities face in becoming more age-friendly and develop strategies to support communities. © The Author(s) 2013.

  17. Understanding the Impacts of AFEX™ Pretreatment and Densification on the Fast Pyrolysis of Corn Stover, Prairie Cord Grass, and Switchgrass.

    Science.gov (United States)

    Sundaram, Vijay; Muthukumarappan, Kasiviswanathan; Gent, Stephen

    2017-03-01

    Lignocellulosic feedstocks corn stover, prairie cord grass, and switchgrass were subjected to ammonia fiber expansion (AFEX™) pretreatment and densified using extrusion pelleting and ComPAKco densification technique. The effects of AFEX™ pretreatment and densification were studied on the fast pyrolysis product yields. Feedstocks were milled in a hammer mill using three different screen sizes (2, 4, and 8 mm) and were subjected to AFEX™ pretreatment. The untreated and AFEX™-pretreated feedstocks were moisture adjusted at three levels (5, 10, and 15 % wb) and were extruded using a lab-scale single screw extruder. The barrel temperature of the extruder was maintained at 75, 100, and 125 °C. Durability of the extruded pellets made from AFEX™-pretreated corn stover, prairie cord grass, and switchgrass varied from 94.5 to 99.2, 94.3 to 98.7, and 90.1 to 97.5 %, respectively. Results of the thermogravimetric analysis showed the decrease in the decomposition temperature of the all the feedstocks after AFEX™ pretreatment indicating the increase in thermal stability. Loose and densified feedstocks were subjected to fast pyrolysis in a lab-scale reactor, and the yields (bio-oil and bio-char) were measured. Bio-char obtained from the AFEX™-pretreated feedstocks exhibited increased bulk and particle density compared to the untreated feedstocks. The properties of the bio-oil were statistically similar for the untreated, AFEX™-pretreated, and AFEX™-pretreated densified feedstocks. Based on the bio-char and bio-oil yields, the AFEX™-pretreated feedstocks and the densified AFEX™-pretreated feedstocks (pellets and PAKs) exhibited similar behavior. Hence, it can be concluded that densifying the AFEX™-pretreated feedstocks could be a viable option in the biomass-processing depots to reduce the transportation costs and the logistical impediments without affecting the product yields.

  18. Spatial Variability of L-Band Brightness Temperature during Freeze/Thaw Events over a Prairie Environment

    Directory of Open Access Journals (Sweden)

    Alexandre Roy

    2017-08-01

    Full Text Available Passive microwave measurements from space are known to be sensitive to the freeze/thaw (F/T state of the land surface. These measurements are at a coarse spatial resolution (~15–50 km and the spatial variability of the microwave emissions within a pixel can have important effects on the interpretation of the signal. An L-band ground-based microwave radiometer campaign was conducted in the Canadian Prairies during winter 2014–2015 to examine the spatial variability of surface emissions during frozen and thawed periods. Seven different sites within the Kenaston soil monitoring network were sampled five times between October 2014 and April 2015 with a mobile ground-based L-band radiometer system at approximately monthly intervals. The radiometer measurements showed that in a seemingly homogenous prairie landscape, the spatial variability of brightness temperature (TB is non-negligible during both frozen and unfrozen soil conditions. Under frozen soil conditions, TB was negatively correlated with soil permittivity (εG. This correlation was related to soil moisture conditions before the main freezing event, showing that the soil ice volumetric content at least partly affects TB. However, because of the effect of snow on L-Band emission, the correlation between TB and εG decreased with snow accumulation. When compared to satellite measurements, the average TB of the seven plots were well correlated with the Soil Moisture Ocean Salinity (SMOS TB with a root mean square difference of 8.1 K and consistent representation of the strong F/T signal (i.e., TB increases and decreases when soil freezing and thawing, respectively. This study allows better quantitative understanding of the spatial variability in L-Band emissions related to landscape F/T, and will help the calibration and validation of satellite-based F/T retrieval algorithms.

  19. Effect of vegetation on the energy balance and evapotranspiration in tallgrass prairie: a paired study with eddy covariance systems

    Science.gov (United States)

    Sun, X.; Zou, C.; Wilcox, B. P.; Stebler, E.

    2017-12-01

    Whole-year measurement with eddy covariance system was carried out over two adjoining plots with contrasting vegetation coverage in tallgrass prairie, one was treated with herbicide and mowing while the other one kept as undisturbed control. The magnitude and phase difference between soil heat storage and ground heat flux were explicitly examined for its relative weights and energy balance. Surface turbulent flux (sensible heat and latent heat) accounted for about 85% of available energy at both sites, implying that vegetation coverage didn't significantly influence the closure scenario of energy imbalance. The seasonal and daily pattern of energy partitioning were dramatically different between the contrasting sites during growing season. The treated site received slightly lower net radiation due to high albedo, had higher sensible heat, and reduced latent heat due to reduction on transpiration. Annual evapotranspiration (ET) in treated site was only accounts for about 73% of annual ET in control. Meanwhile, lower surface conductance and decoupling factor showed that vegetation removal would increase the sensibility of ET to vapor pressure deficit and soil drought. ET dynamics is controlled by leaf area and net radiation when soil moisture is high, while soil drought caused stomata closure and subdued ET during drought. Stomata closure and transpiration reduction caused decline in ET, surface conductance, and decoupling factor. Soil moisture storage served as an important reservoir to meet peak ET demand during growing season. In summary, ET was the dominant component of water balance in tallgrass prairie, and any land management alterring the albedo, soil mositure storage, or canopy phenology (e.g., NDVI) could significantly affect energy and water budgets in .

  20. The extra-atmospheric masses of small meteoric fireballs from the Prairie and the Canadian camera networks.

    Science.gov (United States)

    Popelenskaya, N.

    2007-08-01

    Existing methods of definition of extra-atmospheric masses of small meteoric bodies according to supervision of their movement in an atmosphere contain the certain arbitrariness. Vigorous attempts to overcome a divergence of results of calculations on the basis of various approaches often lead to physically incorrect conclusions. The output consists in patient accumulation of estimations and calculations for gradual elimination uncertainties. The equations of meteoric physics include two dimensionless parameters - factor ablation ? and factor of braking ?. In work are cited the data processing supervision of small meteors Prairie and Canadian networks, by a finding of values of parameters ? and ? with use of a method of the least squares. Also values of heights blackout a meteor which turn out from conditions of full destruction or final braking with use of the received values of ? and ? are considered. In prevailing number of supervision for considered meteors braking is insignificant. Results of calculations of height of blackout meteors confirm suitability of the approximations used in work for the description of movement of small meteors. In work results of calculation of extra-atmospheric masses with use of factor of braking for meteoric bodies of the spherical form with density of an ice and a stone are presented. On the basis of the received results discrepancy of photometric masses to values of masses of the input, received on observable braking proves to be true. In most cases received magnitude of masses essentially less photometric masses. Processing of supervision of small meteors Prairie and Canadian camera networks has shown, that the so-called photometric mass mismatches values of mass of the input, defined on observable braking. Acceptance of photometric value as the mass defining braking of a body, leads to obviously underestimated values of density of substance meteoric body. The further researches on specification of interpretation of supervision

  1. Interactions between ecological disturbances: burning and grazing and their effects on songbird communities in northern mixed-grass prairies

    Directory of Open Access Journals (Sweden)

    Alexis N. Richardson

    2014-12-01

    Full Text Available Historically, North American prairies were strongly influenced by two natural disturbances, fire and grazing, and their interaction. However, the frequency and size of fires has been greatly altered over time, while native ungulates have been replaced by livestock; this may have had strong ecological influences on modern prairies. The feedback hypothesis proposes that grazing by ungulates will increase the duration of fire effects because ungulates will be attracted to burned patches. We conducted point-count surveys in burned-grazed, burned-ungrazed, unburned-grazed, and unburned-ungrazed sites over a 5-year period following fires that occurred naturally in 2006 in southern Saskatchewan, Canada, to test predictions related to avian community composition related to the feedback hypothesis. Generalized linear mixed models were used to analyze interactions among burning, grazing, and time since burning. Six of the nine avian species we studied responded positively or negatively to burning or grazing, although there were few statistically significant effects on the vegetation structure variables we measured. We found mixed evidence that grazing increased the duration of effects of burning, cumulatively providing little evidence for the feedback hypothesis. Nonetheless, effects of burning and grazing differed from and interacted with one another; for example, short-term effects of burning on Sprague's Pipits (Anthus spragueii and Baird's Sparrows (Ammodramus bairdii were greater than effects of grazing, and effects of grazing and burning in combination were frequently greater than effects of a single disturbance. Therefore, both should be integrated into management for the conservation of grassland songbirds.

  2. Influence of urbanization on demography of little brown bats (Myotis lucifugus in the prairies of North America.

    Directory of Open Access Journals (Sweden)

    Joanna L Coleman

    Full Text Available We address three key gaps in research on urban wildlife ecology: insufficient attention to (1 grassland biomes, (2 individual- and population-level effects, and (3 vertebrates other than birds. We hypothesized that urbanization in the North American Prairies, by increasing habitat complexity (via the proliferation of vertical structures such as trees and buildings, thereby enhancing the availability of day-roosts, tree cover, and insects, would benefit synanthropic bats, resulting in increased fitness among urban individuals.Over three years, we captured more than 1,600 little brown bats (Myotis lucifugus in urban and non-urban riparian sites in and around Calgary, Alberta, Canada. This species dominated bat assemblages throughout our study area, but nowhere more so than in the city. Our data did not support most of our specific predictions. Increased numbers of urban bats did not reflect urbanization-related benefits such as enhanced body condition, reproductive rates, or successful production of juveniles. Instead, bats did best in the transition zone situated between strictly urban and rural areas.We reject our hypothesis and explore various explanations. One possibility is that urban and rural M. lucifugus exhibit increased use of anthropogenic roosts, as opposed to natural ones, leading to larger maternity colonies and higher population densities and, in turn, increased competition for insect prey. Other possibilities include increased stress, disease transmission and/or impacts of noise on urban bats. Whatever the proximate cause, the combination of greater bat population density with decreased body condition and production of juveniles indicates that Calgary does not represent a population source for Prairie bats. We studied a highly synanthropic species in a system where it could reasonably be expected to respond positively to urbanization, but failed to observe any apparent benefits at the individual level, leading us to propose that

  3. Through the Looking Glass: Muslim Women on Television—An Analysis of 24, Lost, and Little Mosque on the Prairie

    Directory of Open Access Journals (Sweden)

    Faiza Hirji

    2011-01-01

    Full Text Available In the ten years that have passed since September 11, 2001, media discourses regarding Muslims have changed superficially while essentializing stereotypes have been reinforced for the general public. This is true of many forms of media, but this paper focuses on popular television entertainment, and the way in which this has framed the Muslim woman. Media have had a longstanding fascination with the Muslim woman but this appears to have grown during the war in Afghanistan. Despite greater attention to this subject, the overarching discourses do not seem to be more complex than they were during previous events, such as the 1979 Revolution in Iran. Indeed, portrayals of Muslim women on television are arguably more regressive now than on September 10, 2001. Admittedly, at that time, it would probably have been unthinkable to imagine a series such as Little Mosque on the Prairie, and this show does constitute a significant source of change. However, when looking at depictions of female Muslim characters on shows such as Little Mosque and other popular network shows from the last ten years, such as 24, it is clear that television after 9/11 has not evolved in its depiction of the Muslim woman. Drawing upon existing literature regarding historical depictions, and utilizing a textual analysis of contemporary shows such as 24, Little Mosque on the Prairie and Lost, this paper interrogates the role of entertainment media in advancing pluralist discourses, and investigates the limitations and possibilities of historical and contemporary depictions of Muslim women in such media.

  4. Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles.

    Science.gov (United States)

    Johnson, Zachary V; Walum, Hasse; Jamal, Yaseen A; Xiao, Yao; Keebaugh, Alaine C; Inoue, Kiyoshi; Young, Larry J

    2016-03-01

    Oxytocin (OT) is a deeply conserved nonapeptide that acts both peripherally and centrally to modulate reproductive physiology and sociosexual behavior across divergent taxa, including humans. In vertebrates, the distribution of the oxytocin receptor (OTR) in the brain is variable within and across species, and OTR signaling is critical for a variety of species-typical social and reproductive behaviors, including affiliative and pair bonding behaviors in multiple socially monogamous lineages of fishes, birds, and mammals. Early work in prairie voles suggested that the endogenous OT system modulates mating-induced partner preference formation in females but not males; however, there is significant evidence that central OTRs may modulate pair bonding behavior in both sexes. In addition, it remains unclear how transient windows of central OTR signaling during sociosexual interaction modulate neural activity to produce enduring shifts in sociobehavioral phenotypes, including the formation of selective social bonds. Here we re-examine the role of the central OT system in partner preference formation in male prairie voles using a selective OTR antagonist delivered intracranially. We then use the same antagonist to examine how central OTRs modulate behavior and immediate early gene (Fos) expression, a metric of neuronal activation, in males during brief sociosexual interaction with a female. Our results suggest that, as in females, OTR signaling is critical for partner preference formation in males and enhances correlated activation across sensory and reward processing brain areas during sociosexual interaction. These results are consistent with the hypothesis that central OTR signaling facilitates social bond formation by coordinating activity across a pair bonding neural network. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles

    Science.gov (United States)

    Johnson, Zachary V.; Walum, Hasse; Jamal, Yaseen A.; Xiao, Yao; Keebaugh, Alaine C.; Inoue, Kiyoshi; Young, Larry J.

    2016-01-01

    Oxytocin (OT) is a deeply conserved nonapeptide that acts both peripherally and centrally to modulate reproductive physiology and sociosexual behavior across divergent taxa, including humans. In vertebrates, the distribution of the oxytocin receptor (OTR) in the brain is variable within and across species, and OTR signaling is critical for a variety of species-typical social and reproductive behaviors, including affiliative and pair bonding behaviors in multiple socially monogamous lineages of fishes, birds, and mammals. Early work in prairie voles suggested that the endogenous OT system modulates mating-induced partner preference formation in females but not males; however, there is significant evidence that central OTRs may modulate pair bonding behavior in both sexes. In addition, it remains unclear how transient windows of central OTR signaling during sociosexual interaction modulate neural activity to produce enduring shifts in sociobehavioral phenotypes, including the formation of selective social bonds. Here we re-examine the role of the central OT system in partner preference formation in male prairie voles using a selective OTR antagonist delivered intracranially. We then use the same antagonist to examine how central OTRs modulate behavior and immediate early gene (Fos) expression, a metric of neuronal activation, in males during brief sociosexual interaction with a female. Our results suggest that, as in females, OTR signaling is critical for partner preference formation in males and enhances correlated activation across sensory and reward processing brain areas during sociosexual interaction. These results are consistent with the hypothesis that central OTR signaling facilitates social bond formation by coordinating activity across a pair bonding neural network. PMID:26643557

  6. Temporal and spatial patterns of wetland extent influence variability of surface water connectivity in the Prairie Pothole Region, United States

    Science.gov (United States)

    Vanderhoof, Melanie; Alexander, Laurie C.; Todd, Jason

    2016-01-01

    Context. Quantifying variability in landscape-scale surface water connectivity can help improve our understanding of the multiple effects of wetlands on downstream waterways. Objectives. We examined how wetland merging and the coalescence of wetlands with streams varied both spatially (among ecoregions) and interannually (from drought to deluge) across parts of the Prairie Pothole Region. Methods. Wetland extent was derived over a time series (1990-2011) using Landsat imagery. Changes in landscape-scale connectivity, generated by the physical coalescence of wetlands with other surface water features, were quantified by fusing static wetland and stream datasets with Landsat-derived wetland extent maps, and related to multiple wetness indices. The usage of Landsat allows for decadal-scale analysis, but limits the types of surface water connections that can be detected. Results. Wetland extent correlated positively with the merging of wetlands and wetlands with streams. Wetness conditions, as defined by drought indices and runoff, were positively correlated with wetland extent, but less consistently correlated with measures of surface water connectivity. The degree of wetland-wetland merging was found to depend less on total wetland area or density, and more on climate conditions, as well as the threshold for how wetland/upland was defined. In contrast, the merging of wetlands with streams was positively correlated with stream density, and inversely related to wetland density. Conclusions. Characterizing the degree of surface water connectivity within the Prairie Pothole Region in North America requires consideration of 1) climate-driven variation in wetness conditions and 2) within-region variation in wetland and stream spatial arrangements.

  7. A novel model for neuroendocrine toxicology: neurobehavioral effects of BPA exposure in a prosocial species, the prairie vole (Microtus ochrogaster).

    Science.gov (United States)

    Sullivan, Alana W; Beach, Elsworth C; Stetzik, Lucas A; Perry, Amy; D'Addezio, Alyssa S; Cushing, Bruce S; Patisaul, Heather B

    2014-10-01

    Impacts on brain and behavior have been reported in laboratory rodents after developmental exposure to bisphenol A (BPA), raising concerns about possible human effects. Epidemiological data suggest links between prenatal BPA exposure and altered affective behaviors in children, but potential mechanisms are unclear. Disruption of mesolimbic oxytocin (OT)/vasopressin (AVP) pathways have been proposed, but supporting evidence is minimal. To address these data gaps, we employed a novel animal model for neuroendocrine toxicology: the prairie vole (Microtus ochrogaster), which are more prosocial than lab rats or mice. Male and female prairie vole pups were orally exposed to 5-μg/kg body weight (bw)/d, 50-μg/kg bw/d, or 50-mg/kg bw/d BPA or vehicle over postnatal days 8-14. Subjects were tested as juveniles in open field and novel social tests and for partner preference as adults. Brains were then collected and assessed for immunoreactive (ir) tyrosine hydroxylase (TH) (a dopamine marker) neurons in the principal bed nucleus of the stria terminalis (pBNST) and TH-ir, OT-ir, and AVP-ir neurons in the paraventricular nucleus of the hypothalamus (PVN). Female open field activity indicated hyperactivity at the lowest dose and anxiety at the highest dose. Effects on social interactions were also observed, and partner preference formation was mildly inhibited at all dose levels. BPA masculinized principal bed nucleus of the stria terminalis TH-ir neuron numbers in females. Additionally, 50-mg/kg bw BPA-exposed females had more AVP-ir neurons in the anterior PVN and fewer OT-ir neurons in the posterior PVN. At the 2 lowest doses, BPA eliminated sex differences in PVN TH-ir neuron numbers and reversed this sex difference at the highest dose. Minimal behavioral effects were observed in BPA-exposed males. These data support the hypothesis that BPA alters affective behaviors, potentially via disruption of OT/AVP pathways.

  8. Individual differences in cortical connections of somatosensory cortex are associated with parental rearing style in prairie voles (Microtus ochrogaster).

    Science.gov (United States)

    Seelke, Adele M H; Perkeybile, Allison M; Grunewald, Rebecca; Bales, Karen L; Krubitzer, Leah A

    2016-02-15

    Early-life sensory experiences have a profound effect on brain organization, connectivity, and subsequent behavior. In most mammals, the earliest sensory inputs are delivered to the developing brain through tactile contact with the parents, especially the mother. Prairie voles (Microtus ochrogaster) are monogamous and, like humans, are biparental. Within the normal prairie vole population, both the type and the amount of interactions, particularly tactile contact, that parents have with their offspring vary. The question is whether these early and pervasive differences in tactile stimulation and social experience between parent and offspring are manifest in differences in cortical organization and connectivity. To address this question, we examined the cortical and callosal connections of the primary somatosensory area (S1) in high-contact (HC) and low-contact (LC) offspring using neuroanatomical tracing techniques. Injection sites within S1 were matched so that direct comparisons between these two groups could be made. We observed several important differences between these groups. The first was that HC offspring had a greater density of intrinsic connections within S1 compared with LC offspring. Additionally, HC offspring had a more restricted pattern of ipsilateral connections, whereas LC offspring had dense connections with areas of parietal and frontal cortex that were more widespread. Finally, LC offspring had a broader distribution of callosal connections than HC offspring and a significantly higher percentage of labeled callosal neurons. This study is the first to examine individual differences in cortical connections and suggests that individual differences in cortical connections may be related to natural differences in parental rearing styles associated with tactile contact. © 2015 Wiley Periodicals, Inc.

  9. Montana Valley and Foothill Prairies Ecoregion: Chapter 6 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Taylor, Janis L.

    2012-01-01

    The Montana Valley and Foothill Prairies Ecoregion comprises numerous intermountain valleys and low-elevation foothill prairies spread across the western half of Montana, on both sides of the Continental Divide (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion, which covers approximately 64,658 km2 (24,965 mi2), includes the Flathead Valley and the valleys surrounding Helena, Missoula, Bozeman, Billings, Anaconda, Dillon, and Lewistown (fig. 1). These valleys are generally characterized by shortgrass prairie vegetation and are flanked by forested mountains (Woods and others, 1999); thus, the valleys’ biotas with regards to fish and insects are comparable. In many cases, the valleys are conduits for some of the largest rivers in the state, including Clark Fork and the Missouri, Jefferson, Madison, Flathead, Yellowstone, Gallatin, Smith, Big Hole, Bitterroot, and Blackfoot Rivers (fig. 2). The Montana Valley and Foothill Prairies Ecoregion also includes the “Rocky Mountain front,” an area of prairies along the eastern slope of the northern Rocky Mountains. Principal land uses within the ecoregion include farming, grazing, and mining. The valleys serve as major transportation and utility corridors and also contain the majority of Montana’s human population. The Montana Valley and Foothill Prairies Ecoregion extends into 17 mostly rural counties throughout western Montana. Only three of the counties—Carbon, Yellowstone, and Missoula—are part of a metropolitan statistical area with contiguous built-up areas tied to an employment center. Nearly two-thirds of Montana residents live in nonmetropolitan counties (Albrecht, 2008). Ten of the counties within the ecoregion had population growth rates greater than national averages (9–13 percent) between 1970 and 2000 (table 1). Ravalli and Gallatin Counties had the highest growth rates. Population growth was largely due to amenity-related inmigration and an economy dependent on tourism

  10. Effects of management practices on grassland birds: Lesser Prairie-Chicken

    Science.gov (United States)

    Jamison, Brent E.; Dechant, Jill A.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Euliss, Betty R.

    2002-01-01

    Information on the habitat requirements and effects of habitat management on grassland birds were summarized from information in more than 4,000 published and unpublished papers. A range map is provided to indicate the breeding distribution of Lesser Prairie-Chicken in the United States and southern Canada. Although birds frequently are observed outside the breeding range indicated, the maps are intended to show areas where managers might concentrate their attention. It may be ineffectual to manage habitat at a site for a species that rarely occurs in an area. The species account begins with a brief capsule statement, which provides the fundamental components or keys to management for the species. A section on breeding range outlines the current breeding distribution of the species in North America. The suitable habitat section describes the breeding habitat and occasionally microhabitat characteristics of the species, especially those habitats that occur in the Great Plains. Details on habitat and microhabitat requirements often provide clues to how a species will respond to a particular management practice. A table near the end of the account complements the section on suitable habitat, and lists the specific habitat characteristics for the species by individual studies. A special section on prey habitat is included for those predatory species that have more specific prey requirements. The area requirements section provides details on territory and home range sizes, minimum area requirements, and the effects of patch size, edges, and other landscape and habitat features on abundance and productivity. It may be futile to manage a small block of suitable habitat for a species that has minimum area requirements that are larger than the area being managed. The Brown-headed Cowbird (Molothrus ater) is an obligate brood parasite of many grassland birds. The section on cowbird brood parasitism summarizes rates of cowbird parasitism, host responses to parasitism, and

  11. Exploring Policy Options to Stop the Loss of Wetlands on Prairie Landscapes

    Science.gov (United States)

    Serran, J.; Creed, I. F.

    2013-12-01

    Wetlands from the prairie pothole region of North America have been disappearing at rapid rates over the past century. Within Canada, the issue of wetland loss is compounded by the lack of high resolution wetland inventories, the lack of information on rates of wetland loss, and the absence of wetland policies to further protect against loss. In Alberta, the situation is particularly problematic as increasing development pressures continue to place wetlands at risk. The 'no net loss' of wetlands policy established in 1993 has been ineffective, as wetland loss has continued, leaving Albertans searching for alternative policy options. An alternative policy option is to shift focus from wetland area to wetland function. We present a wetland function assessment system founded on ecological and hydrological processes for estimating wetland functions, including biodiversity, flood control, and pollution reduction, for a regional watershed in Alberta. First, we establish wetland loss rates using inventory time series from 1960 to present; wetland loss estimates can be derived from a break in slope in the area-frequency relationship. Second, we create a high-resolution wetland inventory using a novel approach that fuses LiDAR data (probability of wetland) with aerial photographs (to distinguish open water and the surrounding wet meadow zone). Third, using this wetland inventory, we identify indicators of wetland function using GIS and remote sensing data and technologies for application at regional watershed scales. Biodiversity indicators include a wetland's condition, ability to provide habitat, and potential for high ecological diversity. Flood control indicators include a wetland's ability to store water, connect to surface drainage network, and desynchronize flood waves throughout the landscape. Pollution control indicators include a wetland's contributing source area of nutrients, mechanisms that transport nutrients to the wetland, and mechanisms that retain

  12. Environmental monitoring and ecological studies program. 1974 annual report for the Prairie Island Nuclear Generating Plant near Red Wing, Minnesota. Volume I

    International Nuclear Information System (INIS)

    1975-06-01

    Data are presented from studies on the effects of thermal effluents from the Prairie Island nuclear power plant on water temperature and primary productivity of phytoplankton in the Mississippi River downstream from the site. Results of measurements showed that plant-heated waters had dropped to near normal temperatures at the end of the discharge canal. The size and shape of the thermal plume at Prairie Island were determined. The chemical composition of water samples collected upstream was compared to that of samples collected downstream from the plant. Plankton species and seasonal succession patterns were characterized both at the plant site and downstream from the plant for any evidence of changes resulting from plant operations. The effects of entrainment of plankton in the cooling water system was also studied. Data are included on invertebrates in water samples collected at various locations. (U.S.)

  13. Spatial and temporal use of a prairie dog colony by coyotes and rabbits: potential indirect effects on endangered black-footed ferrets

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Livieri, Travis M.

    2015-01-01

    In western North America, endangered black-footed ferrets Mustela nigripes are conserved via reintroduction to colonies of prairie dogs Cynomys spp., their primary prey. Predation is an important source of mortality; coyotes Canis latrans appear to be the most problematic predator, accounting for 67% of known predation events on radio-tagged ferrets. Little is known about what factors affect spatial use of prairie dog colonies by coyotes, or how other animals might affect interactions between coyotes and ferrets. During June–October 2007–2008, we used spotlight surveys to monitor coyotes and ferrets (both years) and rabbits Sylvilagus spp. (first year) on a 452-ha colony of black-tailed prairie dogs Cynomys ludovicianus in the Conata Basin, South Dakota. Coyotes appeared to select areas of the colony used by rabbits, suggesting coyotes hunted rabbits, a common item in their diet. Between midnight and sunrise, ferrets were most commonly observed during early morning (01:00–03:00 h), whereas coyotes were observed mostly during dawn (04:00 h – sunrise) when ferrets were rarely seen. These temporal differences in the timing of observations suggest ferrets tend to remain underground in burrows when coyotes are most active. Coyotes appeared to be attracted to rabbits in both space and time, suggesting the risk of predation for ferrets might relate to the abundance and locations of rabbits in prairie dog colonies.

  14. Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America

    Science.gov (United States)

    Tangen, Brian A.; Finocchiaro, Raymond G.; Gleason, Robert A.

    2015-01-01

    Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increased methane (CH4) emissions associated with restoration may outweigh potential benefits. A comprehensive, 4-year study of 119 wetland catchments was conducted in the Prairie Pothole Region of the north-central U.S. to assess the effects of land use on greenhouse gas (GHG) fluxes and soil properties.

  15. Land use and climate affect Black Tern, Northern Harrier, and Marsh Wren abundance in the Prairie Pothole Region of the United States

    Science.gov (United States)

    Forcey, Greg M.; Thogmartin, Wayne E.; Linz, George M.; McKann, Patrick C.

    2014-01-01

    Bird populations are influenced by many environmental factors at both large and small scales. Our study evaluated the influences of regional climate and land-use variables on the Northern Harrier (Circus cyaneus), Black Tern (Childonias niger), and Marsh Wren (Cistothorus palustris) in the prairie potholes of the upper Midwest of the United States. These species were chosen because their diverse habitat preference represent the spectrum of habitat conditions present in the Prairie Potholes, ranging from open prairies to dense cattail marshes. We evaluated land-use covariates at three logarithmic spatial scales (1,000 ha, 10,000 ha, and 100,000 ha) and constructed models a priori using information from published habitat associations and climatic influences. The strongest influences on the abundance of each of the three species were the percentage of wetland area across all three spatial scales and precipitation in the year preceding that when bird surveys were conducted. Even among scales ranging over three orders of magnitude the influence of spatial scale was small, as models with the same variables expressed at different scales were often in the best model subset. Examination of the effects of large-scale environmental variables on wetland birds elucidated relationships overlooked in many smaller-scale studies, such as the influences of climate and habitat variables at landscape scales. Given the spatial variation in the abundance of our focal species within the prairie potholes, our model predictions are especially useful for targeting locations, such as northeastern South Dakota and central North Dakota, where management and conservation efforts would be optimally beneficial. This modeling approach can also be applied to other species and geographic areas to focus landscape conservation efforts and subsequent small-scale studies, especially in constrained economic climates.

  16. Demographics and density estimates of two three-toed box turtle (Terrapene carolina triunguis populations within forest and restored prairie sites in central Missouri

    Directory of Open Access Journals (Sweden)

    Kelly M. O’Connor

    2015-09-01

    Full Text Available Box turtles (Terrapene carolina are widely distributed but vulnerable to population decline across their range. Using distance sampling, morphometric data, and an index of carapace damage, we surveyed three-toed box turtles (Terrapene carolina triunguis at 2 sites in central Missouri, and compared differences in detection probabilities when transects were walked by one or two observers. Our estimated turtle densities within forested cover was less at the Thomas S. Baskett Wildlife Research and Education Center, a site dominated by eastern hardwood forest (d = 1.85 turtles/ha, 95% CI [1.13, 3.03] than at the Prairie Fork Conservation Area, a site containing a mix of open field and hardwood forest (d = 4.14 turtles/ha, 95% CI [1.99, 8.62]. Turtles at Baskett were significantly older and larger than turtles at Prairie Fork. Damage to the carapace did not differ significantly between the 2 populations despite the more prevalent habitat management including mowing and prescribed fire at Prairie Fork. We achieved improved estimates of density using two rather than one observer at Prairie Fork, but negligible differences in density estimates between the two methods at Baskett. Error associated with probability of detection decreased at both sites with the addition of a second observer. We provide demographic data on three-toed box turtles that suggest the use of a range of habitat conditions by three-toed box turtles. This case study suggests that habitat management practices and their impacts on habitat composition may be a cause of the differences observed in our focal populations of turtles.

  17. Demographics and density estimates of two three-toed box turtle (Terrapene carolina triunguis) populations within forest and restored prairie sites in central Missouri.

    Science.gov (United States)

    O'Connor, Kelly M; Rittenhouse, Chadwick D; Millspaugh, Joshua J; Rittenhouse, Tracy A G

    2015-01-01

    Box turtles (Terrapene carolina) are widely distributed but vulnerable to population decline across their range. Using distance sampling, morphometric data, and an index of carapace damage, we surveyed three-toed box turtles (Terrapene carolina triunguis) at 2 sites in central Missouri, and compared differences in detection probabilities when transects were walked by one or two observers. Our estimated turtle densities within forested cover was less at the Thomas S. Baskett Wildlife Research and Education Center, a site dominated by eastern hardwood forest (d = 1.85 turtles/ha, 95% CI [1.13, 3.03]) than at the Prairie Fork Conservation Area, a site containing a mix of open field and hardwood forest (d = 4.14 turtles/ha, 95% CI [1.99, 8.62]). Turtles at Baskett were significantly older and larger than turtles at Prairie Fork. Damage to the carapace did not differ significantly between the 2 populations despite the more prevalent habitat management including mowing and prescribed fire at Prairie Fork. We achieved improved estimates of density using two rather than one observer at Prairie Fork, but negligible differences in density estimates between the two methods at Baskett. Error associated with probability of detection decreased at both sites with the addition of a second observer. We provide demographic data on three-toed box turtles that suggest the use of a range of habitat conditions by three-toed box turtles. This case study suggests that habitat management practices and their impacts on habitat composition may be a cause of the differences observed in our focal populations of turtles.

  18. Parasites of prairie rattlesnakes (Crotalus viridis viridis) and gopher snakes (Pituophis melanoleucus sayi) from the eastern high plains of New Mexico.

    Science.gov (United States)

    Pfaffenberger, G S; Jorgensen, N M; Woody, D D

    1989-04-01

    Three prairie rattlesnakes (Crotalus viridis viridis) and two gopher snakes (Pituophis melanoleucus sayi) from the eastern high plains of New Mexico (USA) were examined for parasites. One cestode (Oochoristica osheroffi), and two nematode (Kalicephalus inermis and Physoloptera retusa) species were recovered from two infected rattlesnakes. One female gopher snake was infected with two nematode (K. inermis and Rhabdias spp.) and one mite (Entonyssus halli) species.

  19. Long-term decrease of atmospheric test 137Cs in the soil-prairie plant-milk pathway in southern Chile

    International Nuclear Information System (INIS)

    Schuller, P.; Ellies, A.; Handl, J.

    1998-01-01

    The time dependency of nuclear test 137 Cs in soil, prairie plants, and milk was observed on pastures of seven dairy farms in the 10th Region, Chile, from 1982 to 1997, without any appreciable deposition of radioactive fallout after 1983. Whereas the 137 Cs concentration in the soil decreased at a rate close to that of the radionuclide's physical decay during the whole observation period, the rate of decrease of the 137 Cs concentration in the prairie plants and in the milk, having been very rapid between 1982--1990, became slower between 1991--1997. The effective half-lives of the concentration in plants were found to be 5.6 y and 12 y during the first and second observation periods, respectively. Similar half-lives of 5.5 y and 13 y were found for the concentration decline in milk during each period. These data clearly demonstrate a reduction in the long-term decrease of the 137 Cs plant uptake, and consequently in the decrease of the 137 Cs concentration in milk, resulting from a decline of 137 Cs availability for prairie plants in the Hapludand soils over the whole 15-y observation period

  20. Characteristics, atmospheric drivers and occurrence patterns of freezing precipitation and ice pellets over the Prairie Provinces and Arctic Territories of Canada: 1964-2005

    Science.gov (United States)

    Kochtubajda, Bohdan; Mooney, Curtis; Stewart, Ronald

    2017-07-01

    Freezing precipitation and ice pellet events on the Canadian Prairies and Arctic territories of Canada often lead to major disruptions to air and ground transportation, damage power grids and prevent arctic caribou and other animals from accessing the plants and lichen they depend on for survival. In a warming climate, these hazards and associated impacts will continue to happen, although their spatial and temporal characteristics may vary. In order to address these issues, the occurrence of freezing rain, freezing drizzle, and ice pellets from 1964 to 2005 is examined using hourly weather observations at 27 manned 24 h weather stations across the different climatic regions of the Prairie Provinces and Arctic Territories of Canada. Because of the enormous size of the area and its diverse climatic regions, many temporal and spatial differences in freezing precipitation and ice pellet characteristics occur. The 12 most widespread freezing rain events over the stu