Sample records for splitting zfs parameters

  1. Terminological confusions and problems at the interface between the crystal field Hamiltonians and the zero-field splitting Hamiltonians—Survey of the CF=ZFS confusion in recent literature

    Energy Technology Data Exchange (ETDEWEB)

    Rudowicz, Czesław, E-mail: [Institute of Physics, West Pomeranian University of Technology, Al. Piastów 17, 70-310 Szczecin (Poland); Karbowiak, Mirosław [Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław (Poland)


    The single transition ions in various crystals or molecules as well as the exchange coupled systems (ECS) of transition ions, especially the single molecule magnets (SMM) or molecular nanomagnets (MNM), have been extensively studied in recent decades using electron magnetic resonance (EMR), optical spectroscopy, and magnetic measurements. Interpretation of magnetic and spectroscopic properties of transition ions is based on two physically distinct types of Hamiltonians: the physical crystal field (CF), or equivalently ligand field (LF), Hamiltonians and the effective spin Hamiltonians (SH), which include the zero-field splitting (ZFS) Hamiltonians. Survey of recent literature has revealed a number of terminological confusions and specific problems occurring at the interface between these Hamiltonians (denoted CF (LF)↔SH (ZFS)). Elucidation of sloppy or incorrect usage of crucial notions, especially those describing or parameterizing crystal fields and zero field splittings, is a very challenging task that requires several reviews. Here we focus on the prevailing confusion between the CF (LF) and SH (ZFS) quantities, denoted as the CF=ZFS confusion, which consists in referring to the parameters (or Hamiltonians), which are the true ZFS (or SH) quantities, as purportedly the CF (LF) quantities. The inverse ZFS=CF confusion, which pertains to the cases of labeling the true CF (LF) quantities as purportedly the ZFS quantities, is considered in a follow-up paper. The two reviews prepare grounds for a systematization of nomenclature aimed at bringing order to the zoo of different Hamiltonians. Specific cases of the CF=ZFS confusion identified in the recent textbooks, review articles, and SMM (MNM)- and EMR-related papers are surveyed and the pertinent misconceptions are outlined. The consequences of the terminological confusions go far beyond simple semantic issues or misleading keyword classifications of papers in journals and scientific databases. Serious

  2. Quantitative analysis of zero-field splitting parameter distributions in Gd(iii) complexes. (United States)

    Clayton, Jessica A; Keller, Katharina; Qi, Mian; Wegner, Julia; Koch, Vanessa; Hintz, Henrik; Godt, Adelheid; Han, Songi; Jeschke, Gunnar; Sherwin, Mark S; Yulikov, Maxim


    The magnetic properties of paramagnetic species with spin S > 1/2 are parameterized by the familiar g tensor as well as "zero-field splitting" (ZFS) terms that break the degeneracy between spin states even in the absence of a magnetic field. In this work, we determine the mean values and distributions of the ZFS parameters D and E for six Gd(iii) complexes (S = 7/2) and critically discuss the accuracy of such determination. EPR spectra of the Gd(iii) complexes were recorded in glassy frozen solutions at 10 K or below at Q-band (∼34 GHz), W-band (∼94 GHz) and G-band (240 GHz) frequencies, and simulated with two widely used models for the form of the distributions of the ZFS parameters D and E. We find that the form of the distribution of the ZFS parameter D is bimodal, consisting roughly of two Gaussians centered at D and -D with unequal amplitudes. The extracted values of D (σD) for the six complexes are, in MHz: Gd-NO3Pic, 485 ± 20 (155 ± 37); Gd-DOTA/Gd-maleimide-DOTA, -714 ± 43 (328 ± 99); iodo-(Gd-PyMTA)/MOMethynyl-(Gd-PyMTA), 1213 ± 60 (418 ± 141); Gd-TAHA, 1361 ± 69 (457 ± 178); iodo-Gd-PCTA-[12], 1861 ± 135 (467 ± 292); and Gd-PyDTTA, 1830 ± 105 (390 ± 242). The sign of D was adjusted based on the Gaussian component with larger amplitude. We relate the extracted P(D) distributions to the structure of the individual Gd(iii) complexes by fitting them to a model that superposes the contribution to the D tensor from each coordinating atom of the ligand. Using this model, we predict D, σD, and E values for several additional Gd(iii) complexes that were not measured in this work. The results of this paper may be useful as benchmarks for the verification of quantum chemical calculations of ZFS parameters, and point the way to designing Gd(iii) complexes for particular applications and estimating their magnetic properties a priori.

  3. Unravelling the zero-field-splitting parameters in Pt-rich polymers with tuned spin-orbit coupling (United States)

    Peroncik, Peter; McLaughlin, Ryan; Sun, Dali; Vardeny, Z. Valy


    Recently pi-conjugated polymers that contain heavy metal Platinum (Pt-polymers, Scientific Reports 3, 2653, 2013) have attracted substantial interest due to their strong and tunable spin-orbit coupling (SOC). The magnetic field effect (MFE), such as magneto-photoluminescence (MPL) is considered to be a viable approach to address the SOC strength in the organics. Alas conventional MFE up to several hundred Gauss is unable to overcome the relative large spin splitting energies in Pt-polymers due to their strong SOC. To overcome this difficulty we study the MPL response in two Pt-polymers at high magnetic field (up to several Telsa). We found that the MPL response is dominated by triplet excitons that are generated in record time, and from the MPL(B) response width we could obtained the triplet zero-field splitting (ZFS) parameters. We found that the ZFS parameters in the Pt-polymers are proportional to the intrachain Pt atom concentration. Research sponsored by the NSF (Grant No. DMR-1104495) and NSF-MRSEC (DMR 1121252) at the University of Utah.

  4. A variable temperature EPR study of Mn(2+)-doped NH(4)Cl(0.9)I(0.1) single crystal at 170 GHz: zero-field splitting parameter and its absolute sign. (United States)

    Misra, Sushil K; Andronenko, Serguei I; Chand, Prem; Earle, Keith A; Paschenko, Sergei V; Freed, Jack H


    EPR measurements have been carried out on a single crystal of Mn(2+)-doped NH(4)Cl(0.9)I(0.1) at 170-GHz in the temperature range of 312-4.2K. The spectra have been analyzed (i) to estimate the spin-Hamiltonian parameters; (ii) to study the temperature variation of the zero-field splitting (ZFS) parameter; (iii) to confirm the negative absolute sign of the ZFS parameter unequivocally from the temperature-dependent relative intensities of hyperfine sextets at temperatures below 10K; and (iv) to detect the occurrence of a structural phase transition at 4.35K from the change in the structure of the EPR lines with temperature below 10K.

  5. Evaluation of ZFS as an efficient WLCG storage backend (United States)

    Ebert, M.; Washbrook, A.


    A ZFS based software raid system was tested for performance against a hardware raid system providing storage based on the traditional Linux file systems XFS and EXT4. These tests were done for a healthy raid array as well as for a degraded raid array and during the rebuild of a raid array. It was found that ZFS performs better in almost all test scenarios. In addition, distinct features of ZFS were tested for WLCG data storage use, like compression and higher raid levels with triple redundancy information. The long term reliability was observed after converting all production storage servers at the Edinburgh WLCG Tier-2 site to ZFS, resulting in about 1.2PB of ZFS based storage at this site.

  6. An Examination Of Fracture Splitting Parameters Of Crackable Connecting Rods

    Directory of Open Access Journals (Sweden)

    Zafer Özdemir


    Full Text Available Fracture splitting method is an innovative processing technique in the field of automobile engine connecting rod (con/rod manufacturing. Compared with traditional method, this technique has remarkable advantages. Manufacturing procedures, equipment and tools investment can be decreased and energy consumption reduced remarkably. Furthermore, product quality and bearing capability can also be improved. It provides a high quality, high accuracy and low cost route for producing connecting rods (con/rods. With the many advantages mentioned above, this method has attracted manufacturers attention and has been utilized in many types of con/rod manufacturing. In this article, the method and the advantages it provides, such as materials, notches for fracture splitting, fracture splitting conditions and fracture splitting equipment are discussed in detail. The paper describes an analysis of examination of fracture splitting parameters and optik-SEM fractography of C70S6 crackable connectıng rod. Force and velocity parameters are investigated. That uniform impact force distrubition starting from the starting notch causes brittle and cleavage failure mode is obtained as a result. This induces to decrease the toughness.

  7. Revealing the consequences and errors of substance arising from the inverse confusion between the crystal (ligand) field quantities and the zero-field splitting ones

    Energy Technology Data Exchange (ETDEWEB)

    Rudowicz, Czesław, E-mail: [Institute of Physics, West Pomeranian University of Technology, Al. Piastów 17, 70-310 Szczecin (Poland); Karbowiak, Mirosław [Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław (Poland)


    Survey of recent literature has revealed a doubly-worrying tendency concerning the treatment of the two distinct types of Hamiltonians, namely, the physical crystal field (CF), or equivalently ligand field (LF), Hamiltonians and the zero-field splitting (ZFS) Hamiltonians, which appear in the effective spin Hamiltonians (SH). The nature and properties of the CF (LF) Hamiltonians have been mixed up in various ways with those of the ZFS Hamiltonians. Such cases have been identified in a rapidly growing number of studies of the transition-ion based systems using electron magnetic resonance (EMR), optical spectroscopy, and magnetic measurements. These findings have far ranging implications since these Hamiltonians are cornerstones for interpretation of magnetic and spectroscopic properties of the single transition ions in various crystals or molecules as well as the exchange coupled systems (ECS) of transition ions, e.g. single molecule magnets (SMM) or single ion magnets (SIM). The seriousness of the consequences of such conceptual problems and related terminological confusions has reached a level that goes far beyond simple semantic issues or misleading keyword classifications of papers in journals and scientific databases. The prevailing confusion, denoted as the CF=ZFS confusion, pertains to the cases of labeling the true ZFS quantities as purportedly the CF (LF) quantities. Here we consider the inverse confusion between the CF (LF) quantities and the SH (ZFS) ones, denoted the ZFS=CF confusion, which consists in referring to the parameters (or Hamiltonians), which are the true CF (LF) quantities, as purportedly the ZFS (or SH) quantities. Specific cases of the ZFS=CF confusion identified in recent textbooks, reviews and papers, especially SMM- and SIM-related ones, are surveyed and the pertinent misconceptions are clarified. The serious consequences of the terminological confusions include misinterpretation of data from a wide range of experimental techniques and

  8. Rapid and precise determination of zero-field splittings by terahertz time-domain electron paramagnetic resonance spectroscopy. (United States)

    Lu, Jian; Ozel, I Ozge; Belvin, Carina A; Li, Xian; Skorupskii, Grigorii; Sun, Lei; Ofori-Okai, Benjamin K; Dincă, Mircea; Gedik, Nuh; Nelson, Keith A


    Zero-field splitting (ZFS) parameters are fundamentally tied to the geometries of metal ion complexes. Despite their critical importance for understanding the magnetism and spectroscopy of metal complexes, they are not routinely available through general laboratory-based techniques, and are often inferred from magnetism data. Here we demonstrate a simple tabletop experimental approach that enables direct and reliable determination of ZFS parameters in the terahertz (THz) regime. We report time-domain measurements of electron paramagnetic resonance (EPR) signals associated with THz-frequency ZFSs in molecular complexes containing high-spin transition-metal ions. We measure the temporal profiles of the free-induction decays of spin resonances in the complexes at zero and nonzero external magnetic fields, and we derive the EPR spectra via numerical Fourier transformation of the time-domain signals. In most cases, absolute values of the ZFS parameters are extracted from the measured zero-field EPR frequencies, and the signs can be determined by zero-field measurements at two different temperatures. Field-dependent EPR measurements further allow refined determination of the ZFS parameters and access to the g -factor. The results show good agreement with those obtained by other methods. The simplicity of the method portends wide applicability in chemistry, biology and material science.

  9. Spectroscopic and magnetic properties of Fe2+ (3d6; S = 2) ions in Fe(NH4)2(SO4)2·6H2O - Modeling zero-field splitting and Zeeman electronic parameters by microscopic spin Hamiltonian approach (United States)

    Zając, Magdalena; Rudowicz, Czesław; Ohta, Hitoshi; Sakurai, Takahiro


    Utilizing the package MSH/VBA, based on the microscopic spin Hamiltonian (MSH) approach, spectroscopic and magnetic properties of Fe2+ (3d6; S = 2) ions at (nearly) orthorhombic sites in Fe(NH4)2(SO4)2·6H2O (FASH) are modeled. The zero-field splitting (ZFS) parameters and the Zeeman electronic (Ze) factors are predicted for wide ranges of values of the microscopic parameters, i.e. the spin-orbit (λ), spin-spin (ρ) coupling constants, and the crystal-field (ligand-field) energy levels (Δi) within the 5D multiplet. This enables to consider the dependence of the ZFS parameters bkq (in the Stevens notation), or the conventional ones (e.g., D and E), and the Zeeman factors gi on λ, ρ, and Δi. By matching the theoretical SH parameters and the experimental ones measured by electron magnetic resonance (EMR), the values of λ, ρ, and Δi best describing Fe2+ ions in FASH are determined. The novel aspect is prediction of the fourth-rank ZFS parameters and the ρ(spin-spin)-related contributions, not considered in previous studies. The higher-order contributions to the second- and fourth-rank ZFSPs are found significant. The MSH predictions provide guidance for high-magnetic field and high-frequency EMR (HMF-EMR) measurements and enable assessment of suitability of FASH for application as high-pressure probes for HMF-EMR studies. The method employed here and the present results may be also useful for other structurally related Fe2+ (S = 2) systems.

  10. Permanently split capacitor motor-study of the design parameters (United States)

    Sarac, Vasilija; Stefanov, Goce


    Paper analyzes the influence of various design parameters on torque of permanently split capacitor motor. Motor analytical model is derived and it is used for calculating the performance characteristics of basic motor model. The acquired analytical model is applied in optimization software that uses genetic algorithms (GA) as an optimization method. Optimized motor model with increased torque is derived by varying three motor parameters in GA program: winding turns ratio, average air gap flux density and motor stack length. Increase of torque has been achieved for nominal operation but also at motor starting. Accuracy of the derived models is verified by Simulink. The acquired values of several motor parameters from transient characteristics of Simulink models are compared with the corresponding values obtained from analytical models of both motors, basic and optimized. Numerical analysis, based on finite element method (FEM), is also performed for both motor models. As a result of the FEM analysis, magnetic flux density in motor cross-section is calculated and adequate conclusions are derived in relation to core saturation and air gap flux density in both motor models.

  11. Revealing the consequences and errors of substance arising from the inverse confusion between the crystal (ligand) field quantities and the zero-field splitting ones (United States)

    Rudowicz, Czesław; Karbowiak, Mirosław


    Survey of recent literature has revealed a doubly-worrying tendency concerning the treatment of the two distinct types of Hamiltonians, namely, the physical crystal field (CF), or equivalently ligand field (LF), Hamiltonians and the zero-field splitting (ZFS) Hamiltonians, which appear in the effective spin Hamiltonians (SH). The nature and properties of the CF (LF) Hamiltonians have been mixed up in various ways with those of the ZFS Hamiltonians. Such cases have been identified in a rapidly growing number of studies of the transition-ion based systems using electron magnetic resonance (EMR), optical spectroscopy, and magnetic measurements. These findings have far ranging implications since these Hamiltonians are cornerstones for interpretation of magnetic and spectroscopic properties of the single transition ions in various crystals or molecules as well as the exchange coupled systems (ECS) of transition ions, e.g. single molecule magnets (SMM) or single ion magnets (SIM). The seriousness of the consequences of such conceptual problems and related terminological confusions has reached a level that goes far beyond simple semantic issues or misleading keyword classifications of papers in journals and scientific databases. The prevailing confusion, denoted as the CF=ZFS confusion, pertains to the cases of labeling the true ZFS quantities as purportedly the CF (LF) quantities. Here we consider the inverse confusion between the CF (LF) quantities and the SH (ZFS) ones, denoted the ZFS=CF confusion, which consists in referring to the parameters (or Hamiltonians), which are the true CF (LF) quantities, as purportedly the ZFS (or SH) quantities. Specific cases of the ZFS=CF confusion identified in recent textbooks, reviews and papers, especially SMM- and SIM-related ones, are surveyed and the pertinent misconceptions are clarified. The serious consequences of the terminological confusions include misinterpretation of data from a wide range of experimental techniques and

  12. A split-optimization approach for obtaining multiple solutions in single-objective process parameter optimization. (United States)

    Rajora, Manik; Zou, Pan; Yang, Yao Guang; Fan, Zhi Wen; Chen, Hung Yi; Wu, Wen Chieh; Li, Beizhi; Liang, Steven Y


    It can be observed from the experimental data of different processes that different process parameter combinations can lead to the same performance indicators, but during the optimization of process parameters, using current techniques, only one of these combinations can be found when a given objective function is specified. The combination of process parameters obtained after optimization may not always be applicable in actual production or may lead to undesired experimental conditions. In this paper, a split-optimization approach is proposed for obtaining multiple solutions in a single-objective process parameter optimization problem. This is accomplished by splitting the original search space into smaller sub-search spaces and using GA in each sub-search space to optimize the process parameters. Two different methods, i.e., cluster centers and hill and valley splitting strategy, were used to split the original search space, and their efficiency was measured against a method in which the original search space is split into equal smaller sub-search spaces. The proposed approach was used to obtain multiple optimal process parameter combinations for electrochemical micro-machining. The result obtained from the case study showed that the cluster centers and hill and valley splitting strategies were more efficient in splitting the original search space than the method in which the original search space is divided into smaller equal sub-search spaces.

  13. Systematic theoretical investigation of the zero-field splitting in Gd(III) complexes: Wave function and density functional approaches

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shehryar, E-mail:; Odelius, Michael, E-mail: [Department of Physics, Stockholm University, AlbaNova University Center, S-106 91 Stockholm (Sweden); Kubica-Misztal, Aleksandra [Institute of Physics, Jagiellonian University, ul. Reymonta 4, PL-30-059 Krakow (Poland); Kruk, Danuta [Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Sloneczna 54, Olsztyn PL-10710 (Poland); Kowalewski, Jozef [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)


    The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H{sub 2}O){sup −}, Gd(III)DTPA(H{sub 2}O){sup 2−}, and Gd(III)(H{sub 2}O){sub 8}{sup 3+} in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.

  14. X-Band Electron Paramagnetic Resonance Comparison of Mononuclear Mn(IV)-oxo and Mn(IV)-hydroxo Complexes and Quantum Chemical Investigation of Mn(IV) Zero-Field Splitting. (United States)

    Leto, Domenick F; Massie, Allyssa A; Colmer, Hannah E; Jackson, Timothy A


    X-band electron paramagnetic resonance (EPR) spectroscopy was used to probe the ground-state electronic structures of mononuclear Mn(IV) complexes [Mn(IV)(OH)2(Me2EBC)](2+) and [Mn(IV)(O)(OH)(Me2EBC)](+). These compounds are known to effect C-H bond oxidation reactions by a hydrogen-atom transfer mechanism. They provide an ideal system for comparing Mn(IV)-hydroxo versus Mn(IV)-oxo motifs, as they differ by only a proton. Simulations of 5 K EPR data, along with analysis of variable-temperature EPR signal intensities, allowed for the estimation of ground-state zero-field splitting (ZFS) and (55)Mn hyperfine parameters for both complexes. From this analysis, it was concluded that the Mn(IV)-oxo complex [Mn(IV)(O)(OH)(Me2EBC)](+) has an axial ZFS parameter D (D = +1.2(0.4) cm(-1)) and rhombicity (E/D = 0.22(1)) perturbed relative to the Mn(IV)-hydroxo analogue [Mn(IV)(OH)2(Me2EBC)](2+) (|D| = 0.75(0.25) cm(-1); E/D = 0.15(2)), although the complexes have similar (55)Mn values (a = 7.7 and 7.5 mT, respectively). The ZFS parameters for [Mn(IV)(OH)2(Me2EBC)](2+) were compared with values obtained previously through variable-temperature, variable-field magnetic circular dichroism (VTVH MCD) experiments. While the VTVH MCD analysis can provide a reasonable estimate of the magnitude of D, the E/D values were poorly defined. Using the ZFS parameters reported for these complexes and five other mononuclear Mn(IV) complexes, we employed coupled-perturbed density functional theory (CP-DFT) and complete active space self-consistent field (CASSCF) calculations with second-order n-electron valence-state perturbation theory (NEVPT2) correction, to compare the ability of these two quantum chemical methods for reproducing experimental ZFS parameters for Mn(IV) centers. The CP-DFT approach was found to provide reasonably acceptable values for D, whereas the CASSCF/NEVPT2 method fared worse, considerably overestimating the magnitude of D in several cases. Both methods were poor in

  15. ZFS on RBODs - Leveraging RAID Controllers for Metrics and Enclosure Management

    Energy Technology Data Exchange (ETDEWEB)

    Stearman, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Traditionally, the Lustre file system has relied on the ldiskfs file system with reliable RAID (Redundant Array of Independent Disks) storage underneath. As of Lustre 2.4, ZFS was added as a backend file system, with built-in software RAID, thereby removing the need of expensive RAID controllers. ZFS was designed to work with JBOD (Just a Bunch Of Disks) storage enclosures under the Solaris Operating System, which provided a rich device management system. Long time users of the Lustre file system have relied on the RAID controllers to provide metrics and enclosure monitoring and management services, with rich APIs and command line interfaces. This paper will study a hybrid approach using an advanced full featured RAID enclosure which is presented to the host as a JBOD, This RBOD (RAIDed Bunch Of Disks) allows ZFS to do the RAID protection and error correction, while the RAID controller handles management of the disks and monitors the enclosure. It was hoped that the value of the RAID controller features would offset the additional cost, and that performance would not suffer in this mode. The test results revealed that the hybrid RBOD approach did suffer reduced performance.

  16. Zero-field splitting in the isoelectronic aqueous Gd(III) and Eu(II) complexes from a first principles analysis (United States)

    Khan, S.; Peters, V.; Kowalewski, J.; Odelius, M.


    The zero-field splitting (ZFS) of the ground state octet in aqueous Eu(II) and Gd(III) solutions was investigated through multi- configurational quantum chemical calculations and ab initio molecular dynamics (AIMD) simulations. Investigation of the ZFS of the lanthanide ions is essential to understand the electron spin dynamics and nuclear spin relaxation around paramagnetic ions and consequently the mechanisms underlying applications like magnetic resonance imaging. We found by comparing clusters at identical geometries but different metallic centres that there is not a simple relationship for their ZFS, in spite of the complexes being isoelectronic - each containing 7 unpaired f electrons. Through sampling it was established that inclusion of the first hydration shell has a dominant (over 90 %) influence on the ZFS. Extended sampling of aqueous Gd(III) showed that the 2 nd order spin Hamiltonian formalism is valid and that the rhombic ZFS component is decisive.

  17. Superposition model analysis of nickel(II) ions in trigonal bipyramidal complexes exhibiting huge zero field splitting (aka ‘giant magnetic anisotropy’)

    Energy Technology Data Exchange (ETDEWEB)

    Rudowicz, Czesław, E-mail: [Faculty of Chemistry, A. Mickiewicz University, 61-614 Poznań (Poland); Institute of Physics, West Pomeranian University of Technology, Szczecin (Poland); Açıkgöz, Muhammed [Department of Chemistry, Rutgers University, Newark, New Jersey 07102 (United States); Gnutek, Paweł [Institute of Physics, West Pomeranian University of Technology, Szczecin (Poland)


    Graphical abstract: Using crystal structure data for [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) as well as taking into account the Jahn-Teller distortions of five-fold coordinated Ni-complexes revealed by DFT geometry optimization, the ZFSPs are predicted for several structural models and wide ranges of model parameters. - Highlights: • Semiempirical study of potential SMM [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br). • Superposition model analysis of zero field splitting (ZFS) parameters carried out. • Jahn-Teller distortions revealed by DFT geometry optimization considered. • SPM predicts D(ZFS) of observed magnitudes with positive or negative signs. • Results corroborate giant ZFS, which shall not be equated with magnetic anisotropy. - Abstract: Potential single-ion magnet Ni{sup 2+} systems: [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) reveal unusually high zero field splitting (ZFS). The ZFS parameter (ZFSP) D{sub expt} = −120 to −180 cm{sup −1} was determined indirectly by high-magnetic field, high-frequency electron magnetic resonance (HMF-EMR). Modeling ZFSPs using the density functional theory (DFT) codes predicts D values: −100 to −200 cm{sup −1}. Such ZFSP values may seem controversial in view of the D values usually not exceeding several tens of cm{sup −1} for Ni{sup 2+} ions. To corroborate or otherwise these results and elucidate the origin of the huge ZFS (named inappropriately as ‘giant uniaxial magnetic anisotropy’) and respective wavefunctions, we have undertaken semiempirical modeling based on the crystal field (CF) and spin Hamiltonians (SH) theory. In this paper, a feasibility study is carried out to ascertain if superposition model (SPM) calculations may yield such huge D values for these Ni{sup 2+} systems. Using crystal structure data for [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) as well as taking into account the Jahn

  18. Theoretical investigations of the spin-Hamiltonian parameters and local structural distortion of Fe(3+): ZnAl2O4 crystals. (United States)

    Yang, Zi-Yuan


    The relations between the spin-Hamiltonian (SH) parameters and the structural parameters of the Fe(3+) ions in Fe(3+): ZnAl2O4 crystals have been established by means of the microscopic spin Hamiltonian theory and the superposition model (SPM). On the basis of this, the local structure distortion, the second-order zero-field splitting (ZFS) parameter D, the fourth-order ZFS parameter (a-F), and the Zeeman g-factors g factors: g//, g⊥, and Δg(=g//-g⊥) for Fe(3+) ions in Fe(3+): ZnAl2O4 crystals, for the first time taking into account the electronic magnetic interactions, i.e. the spin-spin (SS), the spin-other-orbit (SOO), and the orbit-orbit (OO) interactions, besides the well-known spin-orbit (SO) interaction, are theoretically investigated using complete diagonalization method (CDM). This investigation reveals that the local structure distortion effect plays an important role in explaining the spectroscopic properties of Fe(3+) ions in Fe(3+): ZnAl2O4 crystals. The theoretical second-order ZFS parameter D, the fourth-order ZFS parameter (a-F), and the Zeeman g-factors: g//, g⊥, and Δg of the ground state for Fe(3+) ion in Fe(3+): ZnAl2O4 crystals yield a good agreement with experiment findings by taking into account the lattice distortions: ΔR=0.0191nm and Δθ=0.076°. In conclusion, our research shows that there is a slight local structure distortion for Fe(3+) ions in Fe(3+): ZnAl2O4 crystals, but the site of Fe(3+) still retains D3d symmetry. On the other hand, it is found for Fe(3+) ions in Fe(3+): ZnAl2O4 crystals that the SO mechanism is the most important one, whereas the contributions to the SH parameters from other four mechanisms, including the SS, SOO, OO, and SO∼SS∼SOO∼OO mechanisms are not appreciable, especially for the ZFS parameter D. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Design-Parameters Setup for Power-Split Dual-Regime IVT (United States)

    Preda, Ion; Ciolan, Gheorghe; Covaciu, Dinu


    To analyze the working possibilities of power-split infinitely variable transmissions (IVTs) it is necessary to follow a systematic approach. The method proposed in this paper consists of generating a block diagram of the transmission and then, based on this diagram, to derive the kinematics and dynamics equations of the transmission. For an actual numerical case, the derived equations are used to find characteristic values of the transmission components (gear and chain drives, planetary units) necessary to calculate the speed ratios, the speeds, torques and powers acting on the shafts and coupling (control) elements, and even to estimate the overall efficiency of the transmission.

  20. Gate voltage and structure parameter modulated spin splitting in AlGaN/GaN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Zhang, R.; Zhang, Z.; Liu, B.; Fu, Deyi; Zhao, C.Z.; Xie, Z.L.; Xiu, X.Q.; Zheng, Y.D. [Nanjing National Lab of Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and Department of Physics, Nanjing University, Nanjing 210093 (China)


    In this paper, considerable magnitude of spin splitting for the conduction subband at the Fermi energy is obtained in AlGaN quantum wells (QWs) grown along the c-axis. We have analyzed how the magnitude of spin splitting of the first electron subband in AlGaN QWs with different sheet carrier concentration changes as a function of applied gate voltage, well width, and Al content in the barrier. It is also found that the contribution to spin splitting from Dresselhaus term is much larger than that from Rashba term, the contribution of Dresselhaus term to the total spin splitting depends greatly on the carrier concentrations, the change of well width has little effect on total spin splitting, and the magnitude of spin splitting can be greatly modulated by Al content in the barrier, gate voltage, and sheet carrier concentration. The internal polarized electric field is crucial for considerable spin splitting in III-nitride QWs. Moreover, the magnitude of total spin splitting calculated here is comparable with other theoretical and experimental values observed in III-nitride heterostructures. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Calculation of the zero-field splitting D and g(perp)parameters in EPR for d3 spin systems in strong and moderate axial fields

    NARCIS (Netherlands)

    Kool, Th.W.; Bollegraaf, B.


    Numerical and analytical methods are used to investigate the calculation of the zero field splitting |2D| and g(perp) parameters in EPR for octahedrally surrounded d3 spin systems (S = 3/2) in strong and moderate axial crystal fields (|D|>=h{\

  2. EMR-related problems at the interface between the crystal field Hamiltonians and the zero-field splitting Hamiltonians

    Directory of Open Access Journals (Sweden)

    Rudowicz Czesław


    Full Text Available The interface between optical spectroscopy, electron magnetic resonance (EMR, and magnetism of transition ions forms the intricate web of interrelated notions. Major notions are the physical Hamiltonians, which include the crystal field (CF (or equivalently ligand field (LF Hamiltonians, and the effective spin Hamiltonians (SH, which include the zero-field splitting (ZFS Hamiltonians as well as to a certain extent also the notion of magnetic anisotropy (MA. Survey of recent literature has revealed that this interface, denoted CF (LF ↔ SH (ZFS, has become dangerously entangled over the years. The same notion is referred to by three names that are not synonymous: CF (LF, SH (ZFS, and MA. In view of the strong need for systematization of nomenclature aimed at bringing order to the multitude of different Hamiltonians and the associated quantities, we have embarked on this systematization. In this article, we do an overview of our efforts aimed at providing a deeper understanding of the major intricacies occurring at the CF (LF ↔ SH (ZFS interface with the focus on the EMR-related problems for transition ions.

  3. Embryo splitting


    Karl Illmensee; Mike Levanduski


    Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board appr...

  4. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee


    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  5. Two-parameter fracture mechanical analysis of a near-crack-tip stress field in wedge splitting test specimens

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Veselý, V.; Řoutil, L.


    Roč. 89, 21-22 (2011), s. 1852-1858 ISSN 0045-7949. [International Conference on Civil, Structural and Enviromental Engineering Computing /12./. Funchal, Madeira, 01.09.2009-04.09.2009] Institutional research plan: CEZ:AV0Z20410507 Keywords : Wedge splitting test * Stress intensity factor * T-stress * Numerical simulation * Direct method Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.874, year: 2011

  6. Interplay of Zero-Field Splitting and Excited State Geometry Relaxation in fac-Ir(ppy)3. (United States)

    Gonzalez-Vazquez, José P; Burn, Paul L; Powell, Benjamin J


    The lowest energy triplet state, T1, of organometallic complexes based on iridium(III) is of fundamental interest, as the behavior of molecules in this state determines the suitability of the complex for use in many applications, e.g., organic light-emitting diodes. Previous characterization of T1 in fac-Ir(ppy)3 suggests that the trigonal symmetry of the complex is weakly broken in the excited state. Here we report relativistic time dependent density functional calculations of the zero-field splitting (ZFS) of fac-Ir(ppy)3 in the ground state (S0) and lowest energy triplet (T1) geometries and at intermediate geometries. We show that the energy scale of the geometry relaxation in the T1 state is large compared to the ZFS. Thus, the natural analysis of the ZFS and the radiative decay rates, based on the assumption that the structural distortion is a small perturbation, fails dramatically. In contrast, our calculations of these quantities are in good agreement with experiment.

  7. Comparison of healing parameters in porcine full-thickness wounds transplanted with skin micrografts, split-thickness skin grafts, and cultured keratinocytes. (United States)

    Kiwanuka, Elizabeth; Hackl, Florian; Philip, Justin; Caterson, Edward J; Junker, Johan P E; Eriksson, Elof


    Transplantation of skin micrografts (MGs), split-thickness skin grafts (STSGs), or cultured autologous keratinocytes (CKs) enhances the healing of large full-thickness wounds. This study compares these methods in a porcine wound model, investigating the utility of micrograft transplantation in skin restoration. Full-thickness wounds were created on Yorkshire pigs and assigned to one of the following treatment groups: MGs, STSGs, CKs, wet nontransplanted, or dry nontransplanted. Dry wounds were covered with gauze and the other groups' wounds were enclosed in a polyurethane chamber containing saline. Biopsies were collected 6, 12, and 18 days after wounding. Quantitative and qualitative wound healing parameters including macroscopic scar appearance, wound contraction, neoepidermal maturation, rete ridge formation, granulation tissue thickness and width, and scar tissue formation were studied. Transplanted wounds scored lower on the Vancouver Scar Scale compared with nontransplanted wounds, indicating a better healing outcome. All transplanted wounds exhibited significantly lower contraction compared with nontransplanted wounds. Wounds transplanted with either MGs, STSGs, or CKs showed a significant increase in re-epithelialization compared with nontransplanted wounds. Wounds transplanted with MGs or STSGs exhibited improved epidermal healing compared with nongrafted wounds. Furthermore, transplantation with STSGs or MGs led to less scar tissue formation compared with the nontransplanted wounds. No significant impact on scar formation was observed after transplantation of CKs. Qualitative and quantitative measurements collected from full-thickness porcine wounds show that transplantation of MGs improve wound healing parameters and is comparable to treatment with STSGs. Published by Elsevier Inc.

  8. Splitting Descartes

    DEFF Research Database (Denmark)

    Schilhab, Theresa


    Kognition og Pædagogik vol. 48:10-18. 2003 Short description : The cognitivistic paradigm and Descartes' view of embodied knowledge. Abstract: That the philosopher Descartes separated the mind from the body is hardly news: He did it so effectively that his name is forever tied to that division....... But what exactly is Descartes' point? How does the Kartesian split hold up to recent biologically based learning theories?...

  9. Stabilisation of sagittal split advancement osteotomies with miniplates: a prospective, multicentre study with two-year follow-up. Part II. Radiographic parameters.

    NARCIS (Netherlands)

    Borstlap, W.A.; Stoelinga, P.J.W.; Hoppenreijs, T.J.M.; Hof, M.A. van 't


    This prospective study implied a two-year follow-up on a group of patients that underwent a Bilateral Sagittal Split Osteotomy (BSSO) for advancement (n=222) of the mandible that were treated in seven institutions following the same treatment protocol. The aim of Part II of this study was to

  10. Stabilisation of sagittal split advancement osteotomies with miniplates: a prospective, multicentre study with two-year follow-up. Part I. Clinical parameters.

    NARCIS (Netherlands)

    Borstlap, W.A.; Stoelinga, P.J.W.; Hoppenreijs, T.J.M.; Hof, M.A. van 't


    The principal aim of this study was to assess the postoperative stability of bilateral sagittal split osteotomies (BSSO) using two miniplates. Part I reports on the clinical results including treatment characteristics, nerve functions, TMJ function, occlusional relapse and patient satisfaction. This

  11. Multi-parameter crack tip stress state description for evaluation of nonlinear zone width in silicate composite specimens in component splitting/bending test geometry

    Czech Academy of Sciences Publication Activity Database

    Veselý, V.; Frantík, P.; Sopek, J.; Malíková, L.; Seitl, Stanislav


    Roč. 38, č. 2 (2015), s. 200-214 ISSN 8756-758X R&D Projects: GA ČR(CZ) GAP104/11/0833 Institutional support: RVO:68081723 Keywords : near-crack tip fields * Williams series * higher-order terms * stress field * failure criterion * nonlinear zone * quasi-brittle fracture * splitting-bending geometry Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.838, year: 2015

  12. Splitting strings on integrable backgrounds

    International Nuclear Information System (INIS)

    Vicedo, Benoit


    We use integrability to construct the general classical splitting string solution on R x S 3 . Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet σ-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL 2 (C). (orig.)

  13. Subchannel and bundle friction factors and flow split parameters for laminar transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays

    International Nuclear Information System (INIS)

    Hawley, J.T.; Chiu, C.; Todreas, N.E.; Rohsenow, W.M.


    Correlations are presented for subchannel and bundle friction factors and flowsplit parameters for laminar, transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays. These results are obtained from pressure drop models of flow in individual subchannels. For turbulent flow, an existing pressure drop model for flow in edge subchannels is extended, and the resulting edge subchannel friction factor is identified. Using the expressions for flowsplit parameters and the equal pressure drops assumption, the interior subchannel and bundle friction factors are obtained. For laminar flow, models are developed for pressure drops of individual subchannels. From these models, expressions for the subchannel friction factors are identified and expressions for the flowsplit parameters are derived

  14. Randomized, double-blinded, vehicle-controlled, split-face study to evaluate the effects of topical application of a Gold Silk Sericin/Niacinamide/Signaline complex on biophysical parameters related to skin ageing. (United States)

    Berardesca, E; Ardigo, M; Cameli, N; Mariano, M; Agozzino, M; Matts, P J


    To investigate the effects of topical application of a Gold Silk Sericin (GSS) complex on biophysical parameters related to skin ageing. A range of non-invasive bioengineering methods were deployed in an 8-week randomized, double-blinded, vehicle-controlled, split-face study among 40 female subjects aged 40-70. Endpoints measured included expert grades of skin condition, stratum corneum (SC) hydration, SC barrier function, elasticity and surface topography. The GSS complex produced significant single-variable (P < 0.05) improvements in SC hydration, barrier function, elasticity and surface topography compared with the Vehicle control. The GSS complex examined in this study represents an interesting new cosmetic topical technology with which to address multiple aspects of aged/photoaged female facial skin. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  15. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar


    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...... as possible. Evaluations show that the proposed protocol provides considerable gains over the standard tree splitting protocol applying SIC. The improvement comes at the expense of an increased feedback and receiver complexity....

  16. Split Cord Malformations

    Directory of Open Access Journals (Sweden)

    Yurdal Gezercan


    Full Text Available Split cord malformations are rare form of occult spinal dysraphism in children. Split cord malformations are characterized by septum that cleaves the spinal canal in sagittal plane within the single or duplicated thecal sac. Although their precise incidence is unknown, split cord malformations are exceedingly rare and represent %3.8-5 of all congenital spinal anomalies. Characteristic neurological, urological, orthopedic clinical manifestations are variable and asymptomatic course is possible. Earlier diagnosis and surgical intervention for split cord malformations is associated with better long-term fuctional outcome. For this reason, diagnostic imaging is indicated for children with associated cutaneous and orthopedic signs. Additional congenital anomalies usually to accompany the split cord malformations. Earlier diagnosis, meticuolus surgical therapy and interdisciplinary careful evaluation and follow-up should be made for good prognosis. [Cukurova Med J 2015; 40(2.000: 199-207

  17. Split SUSY Radiates Flavor

    CERN Document Server

    Baumgart, Matthew; Zorawski, Thomas


    Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of Mini-Split Supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and WIMP dark matter. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.

  18. Split supersymmetry radiates flavor (United States)

    Baumgart, Matthew; Stolarski, Daniel; Zorawski, Thomas


    Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of mini-split supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and dark matter as a weakly interacting massive particle. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY-breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.

  19. Geometrical Applications of Split Octonions

    Directory of Open Access Journals (Sweden)

    Merab Gogberashvili


    Full Text Available It is shown that physical signals and space-time intervals modeled on split-octonion geometry naturally exhibit properties from conventional (3 + 1-theory (e.g., number of dimensions, existence of maximal velocities, Heisenberg uncertainty, and particle generations. This paper demonstrates these properties using an explicit representation of the automorphisms on split-octonions, the noncompact form of the exceptional Lie group G2. This group generates specific rotations of (3 + 4-vector parts of split octonions with three extra time-like coordinates and in infinitesimal limit imitates standard Poincare transformations. In this picture translations are represented by noncompact Lorentz-type rotations towards the extra time-like coordinates. It is shown how the G2 algebra’s chirality yields an intrinsic left-right asymmetry of a certain 3-vector (spin, as well as a parity violating effect on light emitted by a moving quantum system. Elementary particles are connected with the special elements of the algebra which nullify octonionic intervals. Then the zero-norm conditions lead to free particle Lagrangians, which allow virtual trajectories also and exhibit the appearance of spatial horizons governing by mass parameters.

  20. Split Malcev algebras

    Indian Academy of Sciences (India)

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  1. Aspects of Split Supersymmetry

    CERN Document Server

    Arkani-Hamed, N; Giudice, Gian Francesco; Romanino, A


    We explore some fundamental differences in the phenomenology, cosmology and model building of Split Supersymmetry compared with traditional low-scale supersymmetry. We show how the mass spectrum of Split Supersymmetry naturally emerges from theories where the dominant source of supersymmetry breaking preserves an $R$ symmetry, characterize the class of theories where the unavoidable $R$-breaking by gravity can be neglected, and point out a new possibility, where supersymmetry breaking is directly communicated at tree level to the visible sector via renormalizable interactions. Next, we discuss possible low-energy signals for Split Supersymmetry. The absence of new light scalars removes all the phenomenological difficulties of low-energy supersymmetry, associated with one-loop flavor and CP violating effects. However, the electric dipole moments of leptons and quarks do arise at two loops, and are automatically at the level of present limits with no need for small phases, making them accessible to several ongo...

  2. Magnetization tunneling in high-symmetry single-molecule magnets: Limitations of the giant spin approximation (United States)

    Wilson, A.; Lawrence, J.; Yang, E.-C.; Nakano, M.; Hendrickson, D. N.; Hill, S.


    Electron paramagnetic resonance (EPR) studies of a Ni4 single-molecule magnet (SMM) yield the zero-field-splitting (ZFS) parameters D , B40 , and B44 , based on the giant spin approximation (GSA) with S=4 ; B44 is responsible for the magnetization tunneling in this SMM. Experiments on an isostructural Ni-doped Zn4 crystal establish the NiII ion ZFS parameters. The fourth-order ZFS parameters in the GSA arise from the interplay between the Heisenberg interaction Jŝ1•ŝ2 and the second-order single-ion anisotropy, giving rise to mixing of higher-lying S≠4 states into the S=4 state. Consequently, J directly influences the ZFS in the ground state, enabling its determination by EPR.

  3. Split Malcev algebras

    Indian Academy of Sciences (India)

    We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form M = U + ∑ j I j with U a subspace of the abelian Malcev subalgebra and any I j a well described ideal of satisfying [ I j , I k ] = 0 if ≠ .

  4. Splitting of Comets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Splitting of Comets. Utpal Mukhopadhyay. General Article Volume 7 Issue 1 January 2002 pp 11-22. Fulltext. Click here to view fulltext PDF. Permanent link: Keywords. Cometary ...

  5. Optimal Cross-Validation Split Ratio: Experimental Investigation

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan


    Cross-validation is a common method for assessing the generalisation ability of a model in order to tune a regularisation parameter or otherhyper-parameters of a learning process. The use of cross-validation requires to set yet an additional parameter, the split rati. While a few texts haveinvest......Cross-validation is a common method for assessing the generalisation ability of a model in order to tune a regularisation parameter or otherhyper-parameters of a learning process. The use of cross-validation requires to set yet an additional parameter, the split rati. While a few texts...

  6. Split warhead simultaneous impact

    Directory of Open Access Journals (Sweden)

    Rahul Singh Dhari


    Full Text Available A projectile system is proposed to improve efficiency and effectiveness of damage done by anti-tank weapon system on its target by designing a ballistic projectile that can split into multiple warheads and engage a target at the same time. This idea has been developed in interest of saving time consumed from the process of reloading and additional number of rounds wasted on target during an attack. The proposed system is achieved in three steps: Firstly, a mathematical model is prepared using the basic equations of motion. Second, An Ejection Mechanism of proposed warhead is explained with the help of schematics. Third, a part of numerical simulation which is done using the MATLAB software. The final result shows various ranges and times when split can be effectively achieved. With the new system, impact points are increased and hence it has a better probability of hitting a target.

  7. On split Lie triple systems

    Indian Academy of Sciences (India)

    We also introduced in [1] techniques of connection of roots in the framework of split Lie algebras. In the present paper we extend these techniques to the framework of split Lie triple systems so as to obtain a generalization of the results in [1]. We consider the wide class of split Lie triple systems (which contains the class of.

  8. Dark matter from split seesaw

    International Nuclear Information System (INIS)

    Kusenko, Alexander; Takahashi, Fuminobu; Yanagida, Tsutomu T.


    The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter-antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.

  9. Gauge mediated mini-split (United States)

    Cohen, Timothy; Craig, Nathaniel; Knapen, Simon


    We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ- b μ problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 105 to 108 GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.

  10. Gauge mediated mini-split

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Knapen, Simon [Berkeley Center for Theoretical Physics,University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group,Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)


    We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ−b{sub μ} problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 10{sup 5} to 10{sup 8} GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.

  11. Shear wave splitting in the Isparta Angle, southwestern Turkey ...

    Indian Academy of Sciences (India)

    broadband station in the Isparta Angle,southwestern Turkey.We selected 21 good quality seismic events out of nearly 357 earthquakes and calculated splitting parameters (polarization direction of fast wave, and delay time between fast and ...

  12. Evaluation of Certain Pharmaceutical Quality Attributes of Lisinopril Split Tablets

    Directory of Open Access Journals (Sweden)

    Khairi M. S. Fahelelbom


    Full Text Available Tablet splitting is an accepted practice for the administration of drugs for a variety of reasons, including dose adjustment, ease of swallowing and cost savings. The purpose of this study was to evaluate the physical properties of lisinopril tablets as a result of splitting the tablets either by hand or with a splitting device. The impact of the splitting technique of lisinopril (Zestril® tablets, 20 mg on certain physical parameters such as weight variation, friability, disintegration, dissolution and drug content were studied. Splitting the tablets either by hand or with a splitter resulted in a minute but statistically significant average weight loss of <0.25% of the tablet to the surrounding environment. The variability in the weight of the hand-split tablet halves was more pronounced (37 out of 40 tablet halves varied by more than 10% from the mean weight than when using the tablet splitter (3 out of 40 tablet halves. The dissolution and drug content of the hand-split tablets were therefore affected because of weight differences. However, the pharmacopoeia requirements for friability and disintegration time were met. Hand splitting of tablets can result in an inaccurate dose and may present clinical safety issues, especially for drugs with a narrow therapeutic window in which large fluctuations in drug concentrations are undesirable. It is recommended to use tablets with the exact desired dose, but if this is not an option, then a tablet splitter could be used.

  13. Perturbation treatment of doublet splittings in rotational spectra of molecules with two equivalent conformations separated by nonequivalent energy barriers

    NARCIS (Netherlands)

    Eijck, B.P. van

    A method is described for analyzing doublet splittings in rotational spectracaused by tunneling between two equivalent conformations, under the restriction that the tunneling motion be effectively aperiodic. The splittings can mainly be fitted with three parameters: the purely torsional doublet

  14. Solar Water Splitting Using Semiconductor Photocatalyst Powders

    KAUST Repository

    Takanabe, Kazuhiro


    Solar energy conversion is essential to address the gap between energy production and increasing demand. Large scale energy generation from solar energy can only be achieved through equally large scale collection of the solar spectrum. Overall water splitting using heterogeneous photocatalysts with a single semiconductor enables the direct generation of H from photoreactors and is one of the most economical technologies for large-scale production of solar fuels. Efficient photocatalyst materials are essential to make this process feasible for future technologies. To achieve efficient photocatalysis for overall water splitting, all of the parameters involved at different time scales should be improved because the overall efficiency is obtained by the multiplication of all these fundamental efficiencies. Accumulation of knowledge ranging from solid-state physics to electrochemistry and a multidisciplinary approach to conduct various measurements are inevitable to be able to understand photocatalysis fully and to improve its efficiency.

  15. How rivers split (United States)

    Seybold, H. F.; Yi, R.; Devauchelle, O.; Petroff, A.; Rothman, D.


    River networks have fascinated mankind for centuries. They exhibit a striking geometry with similar shapes repeating on all scales. Yet, how these networks form and create these geometries remains elusive. Recently we have shown that channels fed by subsurface flow split at a characteristic angle of 2π/5 unambiguously consistent with our field measurements in a seepage network on the Florida Panhandle (Fig.1). Our theory is based only on the simple hypothesis that the channels grow in the direction at which the ground water enters the spring and classical solutions of subsurface hydrology. Here we apply our analysis to the ramification of large drainage basins and extend our theory to include slope effects. Using high resolution stream networks from the National Hydrography Dataset (NHD), we scrutinize our hypothesis in arbitrary channel networks and investigate the branching angle dependence on Horton-Strahler order and the maturity of the streams.; High-resolution topographic map of valley networks incised by groundwater flow, located on the Florida Panhandle near Bristol, FL.

  16. Stride length asymmetry in split-belt locomotion

    NARCIS (Netherlands)

    Hoogkamer, W.; Bruijn, S.M.; Duysens, J.


    The number of studies utilizing a split-belt treadmill is rapidly increasing in recent years. This has led to some confusion regarding the definitions of reported gait parameters. The purpose of this paper is to clearly present the definitions of the gait parameters that are commonly used in

  17. Pharmaceutical counselling about different types of tablet-splitting methods based on the results of weighing tests and mechanical development of splitting devices. (United States)

    Somogyi, O; Meskó, A; Csorba, L; Szabó, P; Zelkó, R


    The division of tablets and adequate methods of splitting them are a complex problem in all sectors of health care. Although tablet-splitting is often required, this procedure can be difficult for patients. Four tablets were investigated with different external features (shape, score-line, film-coat and size). The influencing effect of these features and the splitting methods was investigated according to the precision and "weight loss" of splitting techniques. All four types of tablets were halved by four methods: by hand, with a kitchen knife, with an original manufactured splitting device and with a modified tablet splitter based on a self-developed mechanical model. The mechanical parameters (harness and friability) of the products were measured during the study. The "weight loss" and precision of splitting methods were determined and compared by statistical analysis. On the basis of the results, the external features (geometry), the mechanical parameters of tablets and the mechanical structure of splitting devices can influence the "weight loss" and precision of tablet-splitting. Accordingly, a new decision-making scheme was developed for the selection of splitting methods. In addition, the skills of patients and the specialties of therapy should be considered so that pharmaceutical counselling can be more effective regarding tablet-splitting. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Global Locator, Local Locator, and Identifier Split (GLI-Split

    Directory of Open Access Journals (Sweden)

    Michael Menth


    Full Text Available The locator/identifier split is an approach for a new addressing and routing architecture to make routing in the core of the Internet more scalable. Based on this principle, we developed the GLI-Split framework, which separates the functionality of current IP addresses into a stable identifier and two independent locators, one for routing in the Internet core and one for edge networks. This makes routing in the Internet more stable and provides more flexibility for edge networks. GLI-Split can be incrementally deployed and it is backward-compatible with the IPv6 Internet. We describe its architecture, compare it to other approaches, present its benefits, and finally present a proof-of-concept implementation of GLI-Split.

  19. Split-illumination electron holography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira


    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  20. Realistic split fermion models

    Indian Academy of Sciences (India)

    wall fermions, namely, a bulk scalar field with non-trivial VEV that couples to the fermions. In addition, the ... yields the flavor hierarchy. We consider a model with two scalar fields that couple to the fermions [5]. .... model will correctly reproduce the quark flavor parameters the following relation should hold [2]:. Γ-1Щmax ~03.

  1. ISR split-field magnet

    CERN Multimedia

    CERN PhotoLab


    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  2. Theoretical study of diaquamalonatozinc(II) single crystal for ...

    Indian Academy of Sciences (India)



    Nov 28, 2017 ... trons with non-zero spin [1,2]. Studies using electron magnetic resonance (EMR) spectroscopy or electron spin resonance (ESR) spectroscopy provide information about zero field splitting (ZFS) parameters and local site symmetry of transition metal ions doped in diamagnetic host [3,4]. Studies of electronic ...

  3. Theoretical study of diaquamalonatozinc (II) single crystal for ...

    Indian Academy of Sciences (India)

    The aim of the present paper is to employ theoretical methods to investigate the zero field splitting (ZFS) parameter and to investigate the position of the dopant in the host. These theoretical calculations have been compared with the empirical results. The superposition model (SPM)with themicroscopic spin-Hamiltonian ...

  4. Method of orthogonally splitting imaging pose measurement (United States)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong


    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  5. Stride length asymmetry in split-belt locomotion. (United States)

    Hoogkamer, Wouter; Bruijn, Sjoerd M; Duysens, Jacques


    The number of studies utilizing a split-belt treadmill is rapidly increasing in recent years. This has led to some confusion regarding the definitions of reported gait parameters. The purpose of this paper is to clearly present the definitions of the gait parameters that are commonly used in split-belt treadmill studies. We argue that the modified version of stride length for split-belt gait, which is different from the standard definition of stride length and actually is a measure of limb excursion, should be referred to as 'limb excursion' in future studies. Furthermore, the symmetry of stride length and stride time is specifically addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Tantalum nitride for photocatalytic water splitting: concept and applications

    Directory of Open Access Journals (Sweden)

    Ela Nurlaela


    Full Text Available Abstract Along with many other solar energy conversion processes, research on photocatalytic water splitting to generate hydrogen and oxygen has experienced rapid major development over the past years. Developing an efficient visible-light-responsive photocatalyst has been one of the targets of such research efforts. In this regard, nitride materials, particularly Ta3N5, have been the subject of investigation due to their promising properties. This review focuses on the fundamental parameters involved in the photocatalytic processes targeting overall water splitting using Ta3N5 as a model photocatalyst. The discussion primarily focuses on relevant parameters that are involved in photon absorption, exciton separation, carrier diffusion, carrier transport, catalytic efficiency, and mass transfer of the reactants. An overview of collaborative experimental and theoretical approaches to achieve efficient photocatalytic water splitting using Ta3N5 is discussed.

  7. Tantalum nitride for photocatalytic water splitting: concept and applications

    KAUST Repository

    Nurlaela, Ela


    Along with many other solar energy conversion processes, research on photocatalytic water splitting to generate hydrogen and oxygen has experienced rapid major development over the past years. Developing an efficient visible-light-responsive photocatalyst has been one of the targets of such research efforts. In this regard, nitride materials, particularly Ta3N5, have been the subject of investigation due to their promising properties. This review focuses on the fundamental parameters involved in the photocatalytic processes targeting overall water splitting using Ta3N5 as a model photocatalyst. The discussion primarily focuses on relevant parameters that are involved in photon absorption, exciton separation, carrier diffusion, carrier transport, catalytic efficiency, and mass transfer of the reactants. An overview of collaborative experimental and theoretical approaches to achieve efficient photocatalytic water splitting using Ta3N5 is discussed.


    Directory of Open Access Journals (Sweden)

    Arkadiusz Tofil


    Full Text Available The article presents the results of numerical analysis of splitting without waste on the basis of cross wedge rolling in double rolling mechanism. The analysed process concerns rolling the charge of V-shaped groove, and rotary bending causing the split of the material. In the calculations a method of finite elements (FEM was used. The obtained results allowed detailed analysis of the splitting process in terms of the level of deformation, strains, material breaking, flow kinematics and strength parameters.

  9. The effect of crustal anisotropy on SKS splitting analysis - synthetic models and real data observations (United States)

    Latifi, Koorosh; Kaviani, Ayoub; Rümpker, Georg; Mahmoodabadi, Meysam; Ghassemi, Mohammad R.; Sadidkhouy, Ahmad


    The contribution of crustal anisotropy to the observation of SKS splitting parameters is often assumed to be negligible. Based on synthetic models we show that the impact of crustal anisotropy on the SKS splitting parameters can be significant even in the case of moderate to weak anisotropy within the crust. In addition, real-data examples reveal that significant azimuthal variations in SKS splitting parameters can be caused by crustal anisotropy. Ps-splitting analysis of receiver functions can be used to infer the anisotropic parameters of the crust. These crustal splitting parameters may then be used to constrain the inversion of SKS apparent splitting parameters to infer the anisotropy of the mantle. The observation of SKS splitting for different azimuths is indispensable to verify the presence or absence of multiple layers of anisotropy beneath a seismic station. By combining SKS and RF observations in different azimuths at a station, we are able to uniquely decipher the anisotropic parameters of crust and upper mantle.

  10. Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization

    International Nuclear Information System (INIS)

    Park, Jungsoo; Song, Soonho; Lee, Kyo Seung


    Highlights: • Model-based control of dual-loop EGR system is performed. • EGR split index is developed to provide non-dimensional index for optimization. • EGR rates are calibrated using EGR split index at specific operating conditions. • Multi-objective Pareto optimization is performed to minimize NO X and BSFC. • Optimum split strategies are suggested with LP-rich dual-loop EGR at high load. - Abstract: A proposed dual-loop exhaust-gas recirculation (EGR) system that combines the features of high-pressure (HP) and low-pressure (LP) systems is considered a key technology for improving the combustion behavior of diesel engines. The fraction of HP and LP flows, known as the EGR split, for a given dual-loop EGR rate play an important role in determining the engine performance and emission characteristics. Therefore, identifying the proper EGR split is important for the engine optimization and calibration processes, which affect the EGR response and deNO X efficiencies. The objective of this research was to develop a dual-loop EGR split strategy using numerical analysis and one-dimensional (1D) cycle simulation. A control system was modeled by coupling the 1D cycle simulation and the control logic. An EGR split index was developed to investigate the HP/LP split effects on the engine performance and emissions. Using the model-based control system, a multi-objective Pareto (MOP) analysis was used to minimize the NO X formation and fuel consumption through optimized engine operating parameters. The MOP analysis was performed using a response surface model extracted from Latin hypercube sampling as a fractional factorial design of experiment. By using an LP rich dual-loop EGR, a high EGR rate was attained at low, medium, and high engine speeds, increasing the applicable load ranges compared to base conditions

  11. Split supersymmetry in brane models

    Indian Academy of Sciences (India)

    Type-I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with sin2 W ...

  12. VBSCan Split 2017 Workshop Summary

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Christoph Falk; et al.


    This document summarises the talks and discussions happened during the VBSCan Split17 workshop, the first general meeting of the VBSCan COST Action network. This collaboration is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.

  13. Split supersymmetry in brane models

    Indian Academy of Sciences (India)

    journal of. November 2006 physics pp. 793–802. Split supersymmetry in brane models. IGNATIOS ANTONIADIS∗. Department of Physics, CERN-Theory Division, 1211 Geneva 23, Switzerland. E-mail: Ignatios. ... that LEP data favor the unification of the three SM gauge couplings are smoking guns for the presence of new ...

  14. Water splitting by cooperative catalysis

    NARCIS (Netherlands)

    Hetterscheid, D.G.H.; van der Vlugt, J.I.; de Bruin, B.; Reek, J.N.H.


    A mononuclear Ru complex is shown to efficiently split water into H2 and O2 in consecutive steps through a heat- and light-driven process (see picture). Thermally driven H2 formation involves the aid of a non-innocent ligand scaffold, while dioxygen is generated by initial photochemically induced

  15. On split Lie triple systems

    Indian Academy of Sciences (India)

    Lie triple system; system of roots; root space; split Lie algebra; structure theory. 1. Introduction and previous definitions. Throughout this paper, Lie triple systems T are considered of arbitrary dimension and over an arbitrary field K. It is worth to mention that, unless otherwise stated, there is not any restriction on dim Tα or {k ...

  16. On split Lie triple systems

    Indian Academy of Sciences (India)

    The key tool in this job is the notion of connection of roots in the framework of split Lie triple systems. Author Affiliations. Antonio J Calderón Martín1. Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain. Dates. Manuscript received: 25 January 2008. Proceedings – Mathematical Sciences.

  17. Crystal Splitting in the Growth of Bi2S3

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing; Alivisatos, A. Paul


    Novel Bi{sub 2}S{sub 3} nanostructures with a sheaf-like morphology are obtained via reaction of bismuth acetate-oleic acid complex with elemental sulfur in 1-octadecence. We propose these structures form by the splitting crystal growth mechanism, which is known to account for the morphology some mineral crystals assume in nature. By controlling the synthetic parameters, different forms of splitting, analogous to observed in minerals, are obtained in our case of Bi{sub 2}S{sub 3}. These new and complex Bi{sub 2}S{sub 3} nanostructures are characterized by TEM, SEM, XRD and ED.

  18. A special correcting winding for the l = 2 torsatron with split-type helical coils

    International Nuclear Information System (INIS)

    Kotenko, V.G.


    A split-type special correcting winding (split-type SCW) for the l = 2 torsatron toroidal magnetic system with split-type helical coils is considered. The split-type SCW gives the possibility of controlling the position of the magnetic surface configuration in the direction perpendicular to the torus equatorial plane. Numerical simulations were carried out to investigate the influence of the split-type SCW magnetic field on centered and distant relative to the torus surface magnetic surface configuration with a plane magnetic axis, being promising for the fusion reactor. The configuration is realized in the l = 2 torsatron with split-type helical coils and with the coils of an additional toroidal magnetic field. The calculations show that the split-type SCW magnetic field influence on the initial magnetic surface configuration leads mainly to the magnetic surface configuration displacement along the straight z axis of torus rotation. The displacement of ∼0.1a, a is the minor radius of the torus, has no critical effect on the magnetic surface parameters. An idea on the split-type SCW magnetic field structure is obtained by numerical simulations of the effect of this field as a minority magnetic field imposed on the magnetic field of a well-known configuration. The split-type SCW magnetic field is directed, predominantly along the major radius of the torus within its volume. The displacement range of the closed magnetic surface configuration depends on the split-type SCW magnetic field value.

  19. Minimizing the cost of splitting in Monte Carlo radiation transport simulation

    Energy Technology Data Exchange (ETDEWEB)

    Juzaitis, R.J.


    A deterministic analysis of the computational cost associated with geometric splitting/Russian roulette in Monte Carlo radiation transport calculations is presented. Appropriate integro-differential equations are developed for the first and second moments of the Monte Carlo tally as well as time per particle history, given that splitting with Russian roulette takes place at one (or several) internal surfaces of the geometry. The equations are solved using a standard S/sub n/ (discrete ordinates) solution technique, allowing for the prediction of computer cost (formulated as the product of sample variance and time per particle history, sigma/sup 2//sub s/tau p) associated with a given set of splitting parameters. Optimum splitting surface locations and splitting ratios are determined. Benefits of such an analysis are particularly noteworthy for transport problems in which splitting is apt to be extensively employed (e.g., deep penetration calculations).

  20. Minimizing the cost of splitting in Monte Carlo radiation transport simulation

    International Nuclear Information System (INIS)

    Juzaitis, R.J.


    A deterministic analysis of the computational cost associated with geometric splitting/Russian roulette in Monte Carlo radiation transport calculations is presented. Appropriate integro-differential equations are developed for the first and second moments of the Monte Carlo tally as well as time per particle history, given that splitting with Russian roulette takes place at one (or several) internal surfaces of the geometry. The equations are solved using a standard S/sub n/ (discrete ordinates) solution technique, allowing for the prediction of computer cost (formulated as the product of sample variance and time per particle history, sigma 2 /sub s/tau p) associated with a given set of splitting parameters. Optimum splitting surface locations and splitting ratios are determined. Benefits of such an analysis are particularly noteworthy for transport problems in which splitting is apt to be extensively employed

  1. Rabi splitting in an acoustic cavity embedded plate

    International Nuclear Information System (INIS)

    Ni, Xu; Liu, Xiao-Ping; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Lu, Ming-Hui; Chen, Yan-Feng


    We design a structure to realize Rabi splitting and Rabi oscillation in acoustics. We develop rigorous analytical models to analyze the splitting effect from the aspect of phase matching, and from the aspect of mode coupling using a coupled mode model. In this model, we discover that the splitting effect is caused by the coupling of the Fabry–Perot fundamental mode with the resonant mode of an artificial acoustic ‘atom’. We then extract the coupling strength and analyze the impact of structural parameters on it. In addition, we demonstrate Rabi oscillation in the time domain. Such quantum phenomena in the classical regime may have potential applications in the design of novel ultrasonic devices.

  2. Stability of split Stirling refrigerators

    International Nuclear Information System (INIS)

    Waele, A T A M de; Liang, W


    In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the cold finger are connected by a flexible tube. The displacer in the cold head is suspended by a spring. Its motion is pneumatically driven by the pressure oscillations generated by the compressor. In this paper we give the basic dynamic equations of split Stirling refrigerators and investigate the possibility of spontaneous mechanical oscillations if a large temperature gradient develops in the cold finger, e.g. during or after cool down. These oscillations would be superimposed on the pressure oscillations of the compressor and could ruin the cooler performance.

  3. SplitRacer - a semi-automatic tool for the analysis and interpretation of teleseismic shear-wave splitting (United States)

    Reiss, Miriam Christina; Rümpker, Georg


    when deriving hypothetical one or two-layer splitting parameters.

  4. 7 CFR 51.2002 - Split shell. (United States)


    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack. ...

  5. Innovative wedge axe in making split firewood

    International Nuclear Information System (INIS)

    Mutikainen, A.


    Interteam Oy, a company located in Espoo, has developed a new method for making split firewood. The tools on which the patented System Logmatic are based are wedge axe and cylindrical splitting-carrying frame. The equipment costs about 495 FIM. The block of wood to be split is placed inside the upright carrying frame and split in a series of splitting actions using the innovative wedge axe. The finished split firewood remains in the carrying frame, which (as its name indicates) also serves as the means for carrying the firewood. This innovative wedge-axe method was compared with the conventional splitting of wood using an axe (Fiskars -handy 1400 splitting axe costing about 200 FIM) in a study conducted at TTS-Institute. There were eight test subjects involved in the study. In the case of the wedge-axe method, handling of the blocks to be split and of the finished firewood was a little quicker, but in actual splitting it was a little slower than the conventional axe method. The average productivity of splitting the wood and of the work stages related to it was about 0.4 m 3 per effective hour in both methods. The methods were also equivalent of one another in terms of the load imposed by the work when measured in terms of the heart rate. As regards work safety, the wedge-axe method was superior to the conventional method, but the continuous striking action and jolting transmitted to the arms were unpleasant (orig.)

  6. Parallel BLAST on split databases. (United States)

    Mathog, David R


    BLAST programs often run on large SMP machines where multiple threads can work simultaneously and there is enough memory to cache the databases between program runs. A group of programs is described which allows comparable performance to be achieved with a Beowulf configuration in which no node has enough memory to cache a database but the cluster as an aggregate does. To achieve this result, databases are split into equal sized pieces and stored locally on each node. Each query is run on all nodes in parallel and the resultant BLAST output files from all nodes merged to yield the final output. Source code is available from

  7. EPR, optical and superposition model study of Mn2+ doped L+ glutamic acid (United States)

    Kripal, Ram; Singh, Manju


    Electron paramagnetic resonance (EPR) study of Mn2+ doped L+ glutamic acid single crystal is done at room temperature. Four interstitial sites are observed and the spin Hamiltonian parameters are calculated with the help of large number of resonant lines for various angular positions of external magnetic field. The optical absorption study is also done at room temperature. The energy values for different orbital levels are calculated, and observed bands are assigned as transitions from 6A1g(s) ground state to various excited states. With the help of these assigned bands, Racah inter-electronic repulsion parameters B = 869 cm-1, C = 2080 cm-1 and cubic crystal field splitting parameter Dq = 730 cm-1 are calculated. Zero field splitting (ZFS) parameters D and E are calculated by the perturbation formulae and crystal field parameters obtained using superposition model. The calculated values of ZFS parameters are in good agreement with the experimental values obtained by EPR.

  8. Small-bubble transport and splitting dynamics in a symmetric bifurcation

    KAUST Repository

    Qamar, Adnan


    Simulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.

  9. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tongsong, E-mail: [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China); Department of Mathematics, Heze University, Heze, Shandong 274015 (China); Jiang, Ziwu; Zhang, Zhaozhong [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China)


    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.

  10. Higgs, Binos and Gluinos: Split Susy within Reach

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Daniele S.M.; Izaguirre, Eder; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G.; /SLAC /Stanford U., ITP


    Recent results from the LHC for the Higgs boson with mass between 142 GeV {approx}< m{sub h{sup 0}} {approx}< 147 GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 {micro}m to 10 yr range, are its imminent smoking gun signature. The 7TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m{sub {chi}{sub 1}{sup 0}} {approx_equal} 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.

  11. Testing PVLAS axions with resonant photon splitting

    CERN Document Server

    Gabrielli, E; Gabrielli, Emidio; Giovannini, Massimo


    The photon splitting gamma -> gamma gamma in a time-independent and inhomogeneous magnetized background is considered when neutral and ultralight spin-0 particles are coupled to two-photons. Depending on the inhomogeneity scale of the external field, resonant photon splitting can occur. If an optical laser crosses a magnetic field of few Tesla with typical inhomogeneity scale of the order of the meter, a potentially observable rate of photon splittings is expected for the PVLAS range of couplings and masses.

  12. Additive operator-difference schemes splitting schemes

    CERN Document Server

    Vabishchevich, Petr N


    Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy

  13. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen


    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  14. Spin Splitting in Different Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Hao Yafei


    We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. SplitRacer - a new Semi-Automatic Tool to Quantify And Interpret Teleseismic Shear-Wave Splitting (United States)

    Reiss, M. C.; Rumpker, G.


    simultaneously minimizing their transverse energy - this includes the analysis of null measurements. vi) comparison of results with theoretical splitting parameters determined for one, two, or continuously-varying anisotropic layer(s). Examples for the application of SplitRacer will be presented.

  16. Emittance compensation in split photoinjectors

    Directory of Open Access Journals (Sweden)

    Klaus Floettmann


    Full Text Available The compensation of correlated emittance contributions is of primary importance to optimize the performance of high brightness photoinjectors. While only extended numerical simulations can capture the complex beam dynamics of space-charge-dominated beams in sufficient detail to optimize a specific injector layout, simplified models are required to gain a deeper understanding of the involved dynamics, to guide the optimization procedure, and to interpret experimental results. In this paper, a slice envelope model for the emittance compensation process in a split photoinjector is presented. The emittance term is included in the analytical solution of the beam envelope in a drift, which is essential to take the emittance contribution due to a beam size mismatch into account. The appearance of two emittance minima in the drift is explained, and the matching into the booster cavity is discussed. A comparison with simulation results points out effects which are not treated in the envelope model, such as overfocusing and field nonlinearities.

  17. Minimal Doubling and Point Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M.


    Minimally-doubled chiral fermions have the unusual property of a single local field creating two fermionic species. Spreading the field over hypercubes allows construction of combinations that isolate specific modes. Combining these fields into bilinears produces meson fields of specific quantum numbers. Minimally-doubled fermion actions present the possibility of fast simulations while maintaining one exact chiral symmetry. They do, however, introduce some peculiar aspects. An explicit breaking of hyper-cubic symmetry allows additional counter-terms to appear in the renormalization. While a single field creates two different species, spreading this field over nearby sites allows isolation of specific states and the construction of physical meson operators. Finally, lattice artifacts break isospin and give two of the three pseudoscalar mesons an additional contribution to their mass. Depending on the sign of this mass splitting, one can either have a traditional Goldstone pseudoscalar meson or a parity breaking Aoki-like phase.

  18. SplitDist—Calculating Split-Distances for Sets of Trees

    DEFF Research Database (Denmark)

    Mailund, T


    We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other.......We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other....

  19. Split Questionnaire Design for Massive Surveys

    NARCIS (Netherlands)

    Adiguzel, F.; Wedel, M.


    Companies are conducting more and longer surveys than ever before. Massive questionnaires are pervasive in marketing practice. As an alternative to the heuristic methods that are currently used to split questionnaires, this study develops a methodology to design the split questionnaire in a way that

  20. Cheating More when the Spoils Are Split (United States)

    Wiltermuth, Scott S.


    Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…

  1. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.


    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  2. Split Scheduling with Uniform Setup Times

    NARCIS (Netherlands)

    Schalekamp, F.; Sitters, R.A.; van der Ster, S.L.; Stougie, L.; Verdugo, V.; van Zuylen, A.


    We study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a machine cannot process or

  3. Split scheduling with uniform setup times.

    NARCIS (Netherlands)

    F. Schalekamp; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen); V. Verdugo; A. van Zuylen


    htmlabstractWe study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a

  4. On split Lie triple systems II

    Indian Academy of Sciences (India)

    Lie triple system with a coherent 0-root space is the direct sum of the family of its minimal ideals, each one being a simple split Lie triple system, and the simplicity of T is characterized. In the present paper we extend these results to arbitrary split Lie triple systems with no restrictions on their 0-root spaces. Keywords.

  5. Particulate photocatalysts for overall water splitting (United States)

    Chen, Shanshan; Takata, Tsuyoshi; Domen, Kazunari


    The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda-Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.

  6. Split-coil-system SULTAN

    International Nuclear Information System (INIS)

    Vecsey, G.


    The high field superconductor test facility SULTAN started operation successfully in May 1992. Originally designed for testing full scale conductors for the large magnets of the next generation fusion reactors, the SULTAN facility installed at PSI (Switzerland) was designed as a common venture of three European Laboratories: ENEA (Italy), ECN (Netherlands) and PSI, and built by ENEA and PSI in the framework of the Euratom Fusion Technology Program. Presently the largest facility in the world, with its superconducting split coil system generating 11 Tesla in a 0.6 m bore, it is ready now for testing superconductor samples with currents up to 50 kA at variable cooling conditions. Similar tests can be arranged also for other applications. SULTAN is offered by the European Community as a contribution to the worldwide cooperation for the next step of fusion reactor development ITER. First measurements on conductor developed by CEA (Cadarache) are now in progress. Others like those of ENEA and CERN will follow. For 1993, a test of an Italian 12 TZ model coil for fusion application is planned. SULTAN is a worldwide unique facility marking the competitive presence of Swiss technology in the field of applied superconductivity research. Based on development and design of PSI, the high field Nb 3 Sn superconductors and coils were fabricated at the works of Kabelwerke Brugg and ABB, numerous Swiss companies contributed to the success of this international effort. Financing of the Swiss contribution of SULTAN was made available by NEFF, BEW, BBW, PSI and EURATOM. (author) figs., tabs., 20 refs

  7. 2-Photon tandem device for water splitting

    DEFF Research Database (Denmark)

    Seger, Brian; Castelli, Ivano Eligio; Vesborg, Peter Christian Kjærgaard


    Within the field Of photocatalytic water splitting there are several strategies to achieve the goal of efficient and cheap photocatalytic water splitting. This work examines one particular strategy by focusing on monolithically stacked, two-photon photoelectrochemical cells. The overall aim...... absorption, this is the more difficult side to optimize. Nevertheless, by using TiO2 as a transparent cathode protection layer in conjunction with known H-2 evolution catalysts, protection is clearly feasible for a large bandgap photocathode. This suggests that there may be promising strategies...... for photocatalytic water splitting by using a large bandgap photocathode and a low bandgap photoanode with attached protection layers....

  8. Communication: Tunnelling splitting in the phosphine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)


    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν{sub 2} bending mode starting with 4ν{sub 2}.

  9. Splitting Functions at High Transverse Momentum

    CERN Document Server

    Moutafis, Rhea Penelope; CERN. Geneva. TH Department


    Among the production channels of the Higgs boson one contribution could become significant at high transverse momentum which is the radiation of a Higgs boson from another particle. This note focuses on the calculation of splitting functions and cross sections of such processes. The calculation is first carried out on the example $e\\rightarrow e\\gamma$ to illustrate the way splitting functions are calculated. Then the splitting function of $e\\rightarrow eh$ is calculated in similar fashion. This procedure can easily be generalized to processes such as $q\\rightarrow qh$ or $g\\rightarrow gh$.

  10. Reinnervated Split-Muscle Technique for Creating Additional Myoelectric Sites in an Animal Model. (United States)

    Deslivia, Maria Florencia; Lee, Hyun-Joo; Zulkarnain, Rizki Fajar; Zhu, Bin; Adikrishna, Arnold; Jeon, In-Ho; Kim, Keehoon


    This study proposes a novel reinnervated split-muscle operation to create additional myoelectric sites as sources of command signals of myoelectric prostheses for enhanced dexterous hand-to-wrist motions. The aim of this study was to investigate the postprocedure electromyographic properties of the muscles as distinct myoelectric sites in a rat model. The reinnervated split-muscle group (n = 6) had the gastrocnemius muscle separated along its longitudinal axis and nerves transferred to each new muscle (peroneal nerve to lateral muscle head and tibial to medial one); the non-split-muscle group (n = 6) only had nerve transfers with its muscle intact. Functional testing was conducted after 10 weeks. The main parameter is the difference in mean electromyographic amplitude between the new muscles, with greater values indicating better separability. After the reinnervated split-muscle procedure, there is a significant increase of the average ratio between two muscles compared with the control group, from 0.44 (range, 0.02 to 0.86) to 0.77 (range, 0.35 to 0.98) (p = 0.011). In addition, compared with the non-split muscle group, nerve transfer in the split-muscle group is more successful in reaching its intended target muscle. A reinnervated split-muscle procedure could be beneficial for acquiring a more precise and discrete command signal in upper limb amputees, thus enabling the creation of more dexterous prosthetic arm.

  11. Application of particle splitting method for both hydrostatic and hydrodynamic cases in SPH (United States)

    Liu, W. T.; Sun, P. N.; Ming, F. R.; Zhang, A. M.


    Smoothed particle hydrodynamics (SPH) method with numerical diffusive terms shows satisfactory stability and accuracy in some violent fluid-solid interaction problems. However, in most simulations, uniform particle distributions are used and the multi-resolution, which can obviously improve the local accuracy and the overall computational efficiency, has seldom been applied. In this paper, a dynamic particle splitting method is applied and it allows for the simulation of both hydrostatic and hydrodynamic problems. The splitting algorithm is that, when a coarse (mother) particle enters the splitting region, it will be split into four daughter particles, which inherit the physical parameters of the mother particle. In the particle splitting process, conservations of mass, momentum and energy are ensured. Based on the error analysis, the splitting technique is designed to allow the optimal accuracy at the interface between the coarse and refined particles and this is particularly important in the simulation of hydrostatic cases. Finally, the scheme is validated by five basic cases, which demonstrate that the present SPH model with a particle splitting technique is of high accuracy and efficiency and is capable for the simulation of a wide range of hydrodynamic problems.

  12. Splitting Strip Detector Clusters in Dense Environments

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration


    Tracking in high density environments, particularly in high energy jets, plays an important role in many physics analyses at the LHC. In such environments, there is significant degradation of track reconstruction performance. Between runs 1 and 2, ATLAS implemented an algorithm that splits pixel clusters originating from multiple charged particles, using charge information, resulting in the recovery of much of the lost efficiency. However, no attempt was made in prior work to split merged clusters in the Semi Conductor Tracker (SCT), which does not measure charge information. In spite of the lack of charge information in SCT, a cluster-splitting algorithm has been developed in this work. It is based primarily on the difference between the observed cluster width and the expected cluster width, which is derived from track incidence angle. The performance of this algorithm is found to be competitive with the existing pixel cluster splitting based on track information.

  13. Structural basis of photosynthetic water-splitting

    International Nuclear Information System (INIS)

    Photosynthetic water-splitting takes place in photosystem II (PSII), a membrane protein complex consisting of 20 subunits with an overall molecular mass of 350 kDa. The light-induced water-splitting reaction catalyzed by PSII not only converts light energy into biologically useful chemical energy, but also provides us with oxygen indispensible for sustaining oxygenic life on the earth. We have solved the structure of PSII at a 1.9 Å resolution, from which, the detailed structure of the Mn 4 CaO 5 -cluster, the catalytic center for water-splitting, became clear. Based on the structure of PSII at the atomic resolution, possible mechanism of light-induced water-splitting was discussed

  14. Irrational beliefs, attitudes about competition, and splitting. (United States)

    Watson, P J; Morris, R J; Miller, L


    Rational-Emotive Behavior Therapy (REBT) theoretically promotes actualization of both individualistic and social-oriented potentials. In a test of this assumption, the Belief Scale and subscales from the Survey of Personal Beliefs served as measures of what REBT presumes to be pathogenic irrationalities. These measures were correlated with the Hypercompetitive Attitude Scale (HCAS), the Personal Development Competitive Attitude Scale (PDCAS), factors from the Splitting Index, and self-esteem. Results for the HCAS and Self-Splitting supported the REBT claim about individualistic self-actualization. Mostly nonsignificant and a few counterintuitive linkages were observed for irrational beliefs with the PDCAS, Family-Splitting, and Other-Splitting, and these data suggested that REBT may be less successful in capturing the "rationality" of a social-oriented self-actualization. Copyright 2001 John Wiley & Sons, Inc.

  15. SKS splitting observed at Romanian broad-band seismic network (United States)

    Ivan, Marian; Popa, Mihaela; Ghica, Daniela


    Shear-wave splitting results are presented for the broad-band stations of the Romanian seismic network. For stations BUC1 and CRAR (located in Moesian Platform), IAS (in East-European Platform), TIRR and CVD (in Central Dobrudja-Black Sea microplate), TIM and DRGR (in Dacia-Tisza plate, including Apuseni Mts.), BURAR, BZS and GZR (in, or very close to the Carpathian Arc), the fast directions ( φ) are around 135°. The mean delay values ( δt) of the slow wave are slightly greater for the stations placed in platform areas ( δt ~ 1.5 s) than for the stations situated in the (proximity) of Carpathians ( δt ~ 1.2 s). For the MLR station located in the South-Western part of Vrancea area, at the Carpathian Bend, the fast direction is 48°, similar to VOIR station (located in Southern Carpathians, 70 km West of MLR). At VRI and PLOR, located in the North-Eastern part of Vrancea, the fast axis is oriented approximately on North-South direction, with a possible dependence of the splitting parameters with back azimuth. At least for some stations, the splitting results are not consistent with vertical coherent lithospheric anisotropy.

  16. Mort Rainey's Split Personality in Secret Window


    Sandjaya, Cynthya; Limanta, Liem Satya


    Psychological issue is the main issue discussed in David Koepp's Secret Window through its main character, Mort Rainey. Rainey's psychological struggle will be the main theme in this research. This thesis examines Rainey's split personality. Furthermore, in this study, we want to analyze the process of how Mort Rainey's personality splits into two different personalities. To meet the answer of this study, we will use the theory of Dissociative Identity Disorder with a support from Sigmund Fre...

  17. A split SUSY model from SUSY GUT


    Wang, FeiDepartment of Physics and Engineering, Zhengzhou University, Zhengzhou, 450000, P.R. China; Wang, Wenyu(Institute of Theoretical Physics, College of Applied Science, Beijing University of Technology, Beijing, 100124, P.R. China); Yang, Jin(State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China)


    We propose to split the sparticle spectrum from the hierarchy between the GUT scale and the Planck scale. A split supersymmetric model, which gives non-universal gaugino masses, is built with proper high dimensional operators in the framework of SO(10) GUT. Based on a calculation of two-loop beta functions for gauge couplings (taking into account all weak scale threshold corrections), we check the gauge coupling unification and dark matter constraints (relic density and direct detections). We...

  18. Split School of High Energy Physics 2015

    CERN Document Server


    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  19. Are Ducted Mini-Splits Worth It?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jonathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maguire, Jeffrey B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Metzger, Cheryn E. [Pacific Northwest National Laboratory; Zhang, Jason [Pacific Northwest National Laboratory


    Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within the Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).

  20. Antenna Splitting Functions for Massive Particles

    Energy Technology Data Exchange (ETDEWEB)

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC


    An antenna shower is a parton shower in which the basic move is a color-coherent 2 {yields} 3 parton splitting process. In this paper, we give compact forms for the spin-dependent antenna splitting functions involving massive partons of spin 0 and spin 1/2. We hope that this formalism we have presented will be useful in describing the QCD dynamics of the top quark and other heavy particles at LHC.

  1. Kondo peak splitting and Kondo dip in single molecular magnet junctions

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Pengbin, E-mail: [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Shi, Yunlong; Sun, Zhu [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Nie, Yi-Hang [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)


    Many factors containing bias, spin–orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin–orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments. - Highlights: • We study Kondo peak splitting in single molecular magnets. • We study Kondo effect by Hubbard operator Green's function method. • We find Kondo peak splitting structures and a Kondo dip at Fermi level. • The exchange coupling and magnetic anisotropy induce fine splitting structure. • The splitting structures are explained by inter-level or intra-level transitions.

  2. Double layer anisotropy beneath the New Madrid seismic zone and adjacent areas: insights from teleseismic shear wave splitting

    Directory of Open Access Journals (Sweden)

    Moikwathai Dax Moidaki


    Full Text Available A total of 93 well-defined PKS, 54 SKKS, and 126 SKS shear-wave splitting parameters are determined at 25 broadband seismic stations in an approximately 1000 by 1000 km2 area centered at the New Madrid seismic zone (NMSZ in order to test the existence of two anisotropic layers and to map the direction and strength of mantle fabrics. The individual splitting parameters suggest a significant and systematic spatial and azimuthal variation in the splitting parameters. The azimuthal variations at most stations can be explained as the results of present SW ward asthenospheric flow and NNE trending lithospheric fabrics formed during past orogenic events. In the NMSZ, rift-parallel fast directions (potentially related to a long-rift flow and rift-orthogonal fast directions from small-scale mantle convection are not observed. In addition, reduction in splitting times as a result of vertical asthenospheric flow is not observed.

  3. 12 CFR 7.2023 - Reverse stock splits. (United States)


    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Reverse stock splits. 7.2023 Section 7.2023... Corporate Practices § 7.2023 Reverse stock splits. (a) Authority to engage in reverse stock splits. A national bank may engage in a reverse stock split if the transaction serves a legitimate corporate purpose...

  4. Fano resonance Rabi splitting of surface plasmons. (United States)

    Liu, Zhiguang; Li, Jiafang; Liu, Zhe; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan


    Rabi splitting and Fano resonance are well-known physical phenomena in conventional quantum systems as atoms and quantum dots, arising from strong interaction between two quantum states. In recent years similar features have been observed in various nanophotonic and nanoplasmonic systems. Yet, realization of strong interaction between two or more Fano resonance states has not been accomplished either in quantum or in optical systems. Here we report the observation of Rabi splitting of two strongly coupled surface plasmon Fano resonance states in a three-dimensional plasmonic nanostructure consisting of vertical asymmetric split-ring resonators. The plasmonic system stably supports triple Fano resonance states and double Rabi splittings can occur between lower and upper pairs of the Fano resonance states. The experimental discovery agrees excellently with rigorous numerical simulations, and is well explained by an analytical three-oscillator model. The discovery of Fano resonance Rabi splitting could provide a stimulating insight to explore new fundamental physics in analogous atomic systems and could be used to significantly enhance light-matter interaction for optical sensing and detecting applications.

  5. Photochemical Water-Splitting with Organomanganese Complexes. (United States)

    Kadassery, Karthika J; Dey, Suman Kr; Cannella, Anthony F; Surendhran, Roshaan; Lacy, David C


    Certain organometallic chromophores with water-derived ligands, such as the known [Mn(CO) 3 (μ 3 -OH)] 4 (1) tetramer, drew our attention as possible platforms to study water-splitting reactions. Herein, we investigate the UV irradiation of various tricarbonyl organomanganese complexes, including 1, and demonstrate that dihydrogen, CO, and hydrogen peroxide form as products in a photochemical water-splitting decomposition reaction. The organic and manganese-containing side products are also characterized. Labeling studies with 18 O-1 suggest that the source of oxygen atoms in H 2 O 2 originates from free water that interacts with 1 after photochemical dissociation of CO (1-CO) constituting the oxidative half-reaction of water splitting mediated by 1. Hydrogen production from 1 is the result of several different processes, one of which involves the protons derived from the hydroxido ligands in 1 constituting the reductive half-reaction of water splitting mediated by 1. Other processes that generate H 2 are also operative and are described. Collectively the results from the photochemical decomposition of 1 provide an opportunity to propose a mechanism, and it is discussed within the context of developing new strategies for water-splitting reactions with organomanganese complexes.

  6. Split-hand/split-foot malformation with paternal mutation in the p63 gene.

    NARCIS (Netherlands)

    Witters, I.; Bokhoven, J.H.L.M. van; Goossens, A.; Assche, F.A. van; Fryns, J.P.


    We report the prenatal diagnosis at 16 weeks' gestation of bilateral split-hand/split-foot malformation (SHSFM) with severe lobster claw deformity of hands and feet in a male fetus without associated malformations. A minor manifestation of SHSFM was present in the father with only mild bilateral

  7. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang


    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  8. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Directory of Open Access Journals (Sweden)

    Yahaya Asizehi ENESI


    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  9. Prediction of Splitting Tensile Strength of Concrete Containing Zeolite and Diatomite by ANN

    Directory of Open Access Journals (Sweden)

    E. Gülbandılar


    Full Text Available This study was designed to investigate with two different artificial neural network (ANN prediction model for the behavior of concrete containing zeolite and diatomite. For purpose of constructing this model, 7 different mixes with 63 specimens of the 28, 56 and 90 days splitting tensile strength experimental results of concrete containing zeolite, diatomite, both zeolite and diatomite used in training and testing for ANN systems was gathered from the tests. The data used in the ANN models are arranged in a format of seven input parameters that cover the age of samples, Portland cement, zeolite, diatomite, aggregate, water and hyper plasticizer and an output parameter which is splitting tensile strength of concrete. In the model, the training and testing results have shown that two different ANN systems have strong potential as a feasible tool for predicting 28, 56 and 90 days the splitting tensile strength of concrete containing zeolite and diatomite.

  10. Large Bandgap Semiconductors for Solar Water Splitting

    DEFF Research Database (Denmark)

    Malizia, Mauro

    Photoelectrochemical water splitting represents an eco-friendly technology that could enable the production of hydrogen using water as reactant and solar energy as primary energy source. The exploitation of solar energy for the production of hydrogen would help modern society to reduce the reliance...... (bismuth vanadate) was investigated in view of combining this 2.4 eV large bandgap semiconductor with a Si back-illuminated photocathode. A device obtained by mechanical stacking of BiVO4 photoanode and standard Si photocathode performs non-assisted water splitting under illumination with Solar......-to-Hydrogen efficiency lower than 0.5%. In addition, BiVO4 was synthesized on the back-side of a Si back-illuminated photocathode to produce a preliminary monolithic solar water splitting device.The Faradaic efficiency of different types of catalysts for the electrochemical production of hydrogen or oxygen was evaluated...

  11. Multiple spectral splits of supernova neutrinos. (United States)

    Dasgupta, Basudeb; Dighe, Amol; Raffelt, Georg G; Smirnov, Alexei Yu


    Collective oscillations of supernova neutrinos swap the spectra f(nu(e))(E) and f(nu[over ](e))(E) with those of another flavor in certain energy intervals bounded by sharp spectral splits. This phenomenon is far more general than previously appreciated: typically one finds one or more swaps and accompanying splits in the nu and nu[over ] channels for both inverted and normal neutrino mass hierarchies. Depending on an instability condition, swaps develop around spectral crossings (energies where f(nu(e))=f(nu(x)), f(nu[over ](e))=f(nu[over ](x)) as well as E-->infinity where all fluxes vanish), and the widths of swaps are determined by the spectra and fluxes. Washout by multiangle decoherence varies across the spectrum and splits can survive as sharp spectral features.

  12. Split Notochord Syndrome: A Rare Variant (United States)

    Dhawan, Vidhu; Kapoor, Kanchan; Singh, Balbir; Kochhar, Suman; Sehgal, Alka; Dada, Rima


    Split notochord syndrome represents an extremely rare and pleomorphic form of spinal dysraphism characterized by a persistent communication between the endoderm and the ectoderm, resulting in splitting or deviation of the notochord. It manifests as a cleft in the dorsal midline of the body through which intestinal loops are exteriorized and even myelomeningoceles or teratomas may occur at the site. A rare variant was diagnosed on autopsy of a 23+4-week-old fetus showing a similar dorsal enteric fistula and midline protruding intestinal loops in thoracolumbar region. The anteroposterior radiograph showed a complete midline cleft in the vertebral bodies from T11 to L5 region, and a split in the spinal cord was further confirmed by ultrasonography. Myelomeningocele was erroneously reported on antenatal ultrasound. Thus, awareness of this rare anomaly is necessary to thoroughly evaluate the cases of such spinal defects or suspected myelomeningoceles. PMID:28904581

  13. Fuzzy split and merge for shadow detection

    Directory of Open Access Journals (Sweden)

    Remya K. Sasi


    Full Text Available Presence of shadow in an image often causes problems in computer vision applications such as object recognition and image segmentation. This paper proposes a method to detect the shadow from a single image using fuzzy split and merge approach. Split and merge is a classical algorithm used in image segmentation. Predicate function in the classical approach is replaced by a Fuzzy predicate in the proposed approach. The method follows a top down approach of recursively splitting an image into homogeneous quadtree blocks, followed by a bottom up approach by merging adjacent unique regions. The method has been compared with previous approaches and found to be better in performance in terms of accuracy.

  14. Faster multiple emulsification with drop splitting. (United States)

    Abate, Adam R; Weitz, David A


    Microfluidic devices can form emulsions in which the drops have an intricate, controlled structure; however, a challenge is that the droplets are produced slowly, typically only a few millilitres per hour. Here, we present a simple technique to increase the production rate. Using a large drop maker, we produce large drops at a fast volumetric rate; by splitting these drops several times in a splitting array, we create drops of the desired small size. The advantage of this over forming the small drops directly using a small drop maker is that the drops can be formed at much faster rates. This can be applied to the production of single and multiple emulsions.

  15. Splitting Strategy for Simulating Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xiong You


    Full Text Available The splitting approach is developed for the numerical simulation of genetic regulatory networks with a stable steady-state structure. The numerical results of the simulation of a one-gene network, a two-gene network, and a p53-mdm2 network show that the new splitting methods constructed in this paper are remarkably more effective and more suitable for long-term computation with large steps than the traditional general-purpose Runge-Kutta methods. The new methods have no restriction on the choice of stepsize due to their infinitely large stability regions.

  16. Hyperfine splitting in lithium-like bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Lochmann, Matthias; Froemmgen, Nadja; Hammen, Michael; Will, Elisa [Universitaet Mainz (Germany); Andelkovic, Zoran; Kuehl, Thomas; Litvinov, Yuri; Winters, Danyal; Sanchez, Rodolfo [GSI Helmholtzzentrum, Darmstadt (Germany); Botermann, Benjamin; Noertershaeuser, Wilfried [Technische Universitaet Darmstadt (Germany); Bussmann, Michael [Helmholtzzentrum Dresden-Rossendorf (Germany); Dax, Andreas [CERN, Genf (Switzerland); Hannen, Volker; Joehren, Raphael; Vollbrecht, Jonas; Weinheimer, Christian [Universitaet Muenster (Germany); Geppert, Christopher [Universitaet Mainz (Germany); GSI Helmholtzzentrum, Darmstadt (Germany); Stoehlker, Thomas [GSI Helmholtzzentrum, Darmstadt (Germany); Universitaet Heidelberg (Germany); Thompson, Richard [Imperial College, London (United Kingdom); Volotka, Andrey [Technische Universitaet Dresden (Germany); Wen, Weiqiang [IMP Lanzhou (China)


    High-precision measurements of the hyperfine splitting values on Li- and H-like bismuth ions, combined with precise atomic structure calculations allow us to test QED-effects in the regime of the strongest magnetic fields that are available in the laboratory. Performing laser spectroscopy at the experimental storage ring (ESR) at GSI Darmstadt, we have now succeeded in measuring the hyperfine splitting in Li-like bismuth. Probing this transition has not been easy because of its extremely low fluorescence rate. Details about this challenging experiment will be given and the achieved experimental accuracy are presented.

  17. Node-Splitting Generalized Linear Mixed Models for Evaluation of Inconsistency in Network Meta-Analysis. (United States)

    Yu-Kang, Tu


    Network meta-analysis for multiple treatment comparisons has been a major development in evidence synthesis methodology. The validity of a network meta-analysis, however, can be threatened by inconsistency in evidence within the network. One particular issue of inconsistency is how to directly evaluate the inconsistency between direct and indirect evidence with regard to the effects difference between two treatments. A Bayesian node-splitting model was first proposed and a similar frequentist side-splitting model has been put forward recently. Yet, assigning the inconsistency parameter to one or the other of the two treatments or splitting the parameter symmetrically between the two treatments can yield different results when multi-arm trials are involved in the evaluation. We aimed to show that a side-splitting model can be viewed as a special case of design-by-treatment interaction model, and different parameterizations correspond to different design-by-treatment interactions. We demonstrated how to evaluate the side-splitting model using the arm-based generalized linear mixed model, and an example data set was used to compare results from the arm-based models with those from the contrast-based models. The three parameterizations of side-splitting make slightly different assumptions: the symmetrical method assumes that both treatments in a treatment contrast contribute to inconsistency between direct and indirect evidence, whereas the other two parameterizations assume that only one of the two treatments contributes to this inconsistency. With this understanding in mind, meta-analysts can then make a choice about how to implement the side-splitting method for their analysis. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  18. Photocatalytic water splitting: Quantitative approaches toward photocatalysis by design

    KAUST Repository

    Takanabe, Kazuhiro


    A widely used term, “photocatalysis”, generally addresses photocatalytic (energetically down-hill) and photosynthetic (energetically up-hill) reactions and refers to the use of photonic energy as a driving force for chemical transformations, i.e., electron reorganization to form/break chemical bonds. Although there are many such important reactions, this contribution focuses on the fundamental aspects of photocatalytic water splitting into hydrogen and oxygen by using light from the solar spectrum, which is one of the most investigated photosynthetic reactions. Photocatalytic water splitting using solar energy is considered to be artificial photosynthesis that produces a solar fuel because the reaction mimics nature’s photosynthesis not only in its redox reaction type but also in its thermodynamics (water splitting: 1.23 eV vs. glucose formation: 1.24 eV). To achieve efficient photocatalytic water splitting, all of the parameters, though involved at different timescales and spatial resolutions, should be optimized because the overall efficiency is obtained as the multiplication of all these fundamental efficiencies. The purpose of this review article is to provide the guidelines of a concept, “photocatalysis by design”, which is the opposite of “black box screening”; this concept refers to making quantitative descriptions of the associated physical and chemical properties to determine which events/parameters have the most impact on improving the overall photocatalytic performance, in contrast to arbitrarily ranking different photocatalyst materials. First, the properties that can be quantitatively measured or calculated are identified. Second, the quantities of these identified properties are determined by performing adequate measurements and/or calculations. Third, the obtained values of these properties are integrated into equations so that the kinetic/energetic bottlenecks of specific properties/processes can be determined, and the properties can

  19. Comparison of two split-window methods for retrieving land surface ...

    Indian Academy of Sciences (India)

    Land surface temperature (LST) is a key parameter in environment and earth science study, especially for monitoring drought. The objective of this work is a comparison of two split-window methods: Mao method and Sobrino method, for retrieving LST using MODIS (Moderate-resolution Imaging Spectroradiometer) data in ...

  20. Split-remerge method for eliminating processing window artifacts in recursive hierarchical segmentation (United States)

    Tilton, James C. (Inventor)


    A method, computer readable storage, and apparatus for implementing recursive segmentation of data with spatial characteristics into regions including splitting-remerging of pixels with contagious region designations and a user controlled parameter for providing a preference for merging adjacent regions to eliminate window artifacts.

  1. Signature Splitting in 7/2 [633]v band of 175Hf

    Directory of Open Access Journals (Sweden)

    Singh Jagjit


    Full Text Available In this paper, we present an explanation of signature splitting observed in the one quasiparticle rotational band (7/2[633]ν of 175Hf in terms of one particle plus rotor model (PRM calculations. The role of angular momentum dependence of the inertia parameter and rotational correction term appearing in Coriolis mixing calculations to explain signature effects is discussed.

  2. Discrete objects, splitting closure and connectedness | Castellini ...

    African Journals Online (AJOL)

    Notions of discrete and indiscrete classes with respect to a closure operator are introduced and studied. These notions are strongly related to splitting and cosplitting closure operators. By linking the above concepts, two Galois connections arise whose composition provides a third Galois connection that can be used as a ...

  3. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav


    A miniaturized planar antenna based on a broadside-coupled split ring resonator excited by an arc-shaped dipole is presented. The excitation dipole acts as a small tuning capacitor in series with a parallel RLC circuit represented by the SRR. The antenna resonance frequency and dimensions...

  4. Split Coil Forms for Rotary Transformers (United States)

    Mclyman, C. W. T.


    Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.

  5. Split Beta-Lactamase Complementation Assay

    Indian Academy of Sciences (India)

    IAS Admin

    Concept of split beta. -lactamase protein fragment complementation assay. (A) and (B) are vector systems involved in the assay. As an example, a vector system for bacterial host is described here. (C) Co-transformation of complementation vectors in appropriate bacterial host. (D) and (E) are types of inter- actions expected ...

  6. Molecular catalytic system for efficient water splitting

    NARCIS (Netherlands)

    Joya, Khurram Saleem


    The aim of this dissertation is to construct and explore artificial oxygen evolving complexes that are synthetically accessible, stable, functionally robust and efficient. To achieve this, a class of mono metal water splitting catalysts is introduced in this manuscript and exploitation of these

  7. Splitting up Beta’s change


    Suarez, Ronny


    In this paper we estimated IBM beta from 2000 to 2013, then using differential equation mathematical formula we split up the annual beta’s change attributed to the volatility market effect, the stock volatility effect, the correlation effect and the jointly effect of these variables.

  8. Shear-wave splitting and moonquakes (United States)

    Dimech, J. L.; Weber, R. C.; Savage, M. K.


    Shear-wave splitting is a powerful tool for measuring anisotropy in the Earth's crust and mantle, and is sensitive to geological features such as fluid filled cracks, thin alternating layers of rock with different elastic properties, and preferred mineral orientations caused by strain. Since a shear wave splitting measurement requires only a single 3-component seismic station, it has potential applications for future single-station planetary seismic missions, such as the InSight geophysical mission to Mars, as well as possible future missions to Europa and the Moon. Here we present a preliminary shear-wave splitting analysis of moonquakes detected by the Apollo Passive Seismic Experiment. Lunar seismic data suffers from several drawbacks compared to modern terrestrial data, including severe seismic scattering, low intrinsic attenuation, 10-bit data resolution, thermal spikes, and timing errors. Despite these drawbacks, we show that it is in principle possible to make a shear wave splitting measurement using the S-phase arrival of a relatively high-quality moonquake, as determined by several agreeing measurement criteria. Encouraged by this finding, we further extend our analysis to clusters of "deep moonquake" events by stacking multiple events from the same cluster together to further enhance the quality of the S-phase arrivals that the measurement is based on.

  9. Split brain: divided perception but undivided consciousness. (United States)

    Pinto, Yair; Neville, David A; Otten, Marte; Corballis, Paul M; Lamme, Victor A F; de Haan, Edward H F; Foschi, Nicoletta; Fabri, Mara


    In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email:

  10. Helioseismic Solar Cycle Changes and Splitting Coefficients

    Indian Academy of Sciences (India)


    Abstract. Using the GONG data for a period over four years, we have studied the variation of frequencies and splitting coefficients with solar cycle. Frequencies and even-order coefficients are found to change signi- ficantly with rising phase of the solar cycle. We also find temporal varia- tions in the rotation rate near the solar ...

  11. Czech, Slovak science ten years after split

    CERN Multimedia


    Ten years after the split of Czechoslovakia Czech and Slovak science are facing the same difficulties: shortage of money for research, poor salaries, obsolete equipment and brain drain, especially of the young, according to a feature in the Daily Lidove Noviny (1 page).

  12. Comparing Electrochemical and Biological Water Splitting

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Dimitrievski, Kristian; Siegbahn, P.


    On the basis of density functional theory calculations, we compare the free energies of key intermediates in the water splitting reaction over transition metal oxide surfaces to those of the Mn cluster in photo system II. In spite of the very different environments in the enzyme system...

  13. Split-phase motor running as capacitor starts motor and as capacitor run motor


    Yahaya Asizehi ENESI; Jacob TSADO; Mark NWOHU; Usman Abraham USMAN; Odu Ayo IMORU


    In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The ma...

  14. A Preconditioning Technique for First-Order Primal-Dual Splitting Method in Convex Optimization

    Directory of Open Access Journals (Sweden)

    Meng Wen


    Full Text Available We introduce a preconditioning technique for the first-order primal-dual splitting method. The primal-dual splitting method offers a very general framework for solving a large class of optimization problems arising in image processing. The key idea of the preconditioning technique is that the constant iterative parameters are updated self-adaptively in the iteration process. We also give a simple and easy way to choose the diagonal preconditioners while the convergence of the iterative algorithm is maintained. The efficiency of the proposed method is demonstrated on an image denoising problem. Numerical results show that the preconditioned iterative algorithm performs better than the original one.

  15. Non-Mendelian transmission in a human developmental disorder: split hand/split foot.


    Jarvik, G. P.; Patton, M. A.; Homfray, T.; Evans, J. P.


    The study of Mendelian disorders that do not meet some Mendelian expectations has led to an increased understanding of such previously obscure genetic phenomena as anticipation. Split hand/split foot (SHSF), a human developmental malformation, demonstrates such distinctive genetic features as reduced penetrance and variable expressivity. In this study, new pedigrees with defined ascertainment confirm the existence of non-Mendelian transmission characterized by the overtransmission of SHSF fro...

  16. Splitting, splitting and splitting again: A brief history of the development of regional government in Indonesia since independence

    Directory of Open Access Journals (Sweden)

    Anne Booth


    Full Text Available The paper reviews the changes in the structure and role of provincial and sub-provincial governments in Indonesia since independence. Particular attention is paid to the process of splitting both provinces and districts (kabupaten and kota into smaller units. The paper points out that this process has been going on since the 1950s, but has accelerated in the post-Soeharto era. The paper examines why the splitting of government units has occurred in some parts of the Outer Islands to a much greater extent than in Java, and also examines the implications of developments since 1999 for the capacity of local government units to deliver basic services such as health and education.

  17. Hydrogen production by thermal water splitting using a thermal plasma

    International Nuclear Information System (INIS)

    Boudesocque, N.; Lafon, C.; Girold, C.; Vandensteendam, C.; Baronnet, J.M.


    CEA has been working for more than 10 years in plasma technologies devoted to waste treatment: incineration, vitrification, gases and liquid treatment. Based on this experience, CEA experiments since several years an innovative route for hydrogen production by thermal water splitting, using a plasma as heat source. This new approach could be considered as an alternative to electrolysis for massive hydrogen production from water and electricity. This paper presents a brief state of the art of water thermal plasmas, showing the temperatures and quench velocity ranges technologically achievable today. Thermodynamic properties of a water plasma are presented and discussed. A kinetic computational model is presented, describing the behavior of splitted products during the quench in a plasma plume for various parameters, such as the quench rate. The model results are compared to gas analysis in the plasma plume obtained with in-situ sampling probe. The plasma composition measurements are issued from an Optical Emission Spectroscopic method (OES). The prediction of 30 % H 2 recovery with a 108 K.s -1 quench rate has been verified. A second experimentation has been performed: mass gas analysis, flowrate measurement and OES to study the 'behavior' and species in underwater electrical arc stricken between graphite electrodes. With this quench, a synthesis gas was produced with a content 55 % of hydrogen. (authors)

  18. μ-term hybrid inflation and split supersymmetry

    Directory of Open Access Journals (Sweden)

    Nobuchika Okada


    Full Text Available We consider μ-term hybrid inflation which, in its minimal format with gravity mediated supersymmetry breaking, leads to split supersymmetry. The MSSM μ-term in this framework is larger than the gravitino mass mG, and successful inflation requires mG (and hence also |μ| ≳5×107 GeV, such that the gravitino decays before the LSP neutralino freezes out. Assuming universal scalar masses of the same order as mG, this leads to split supersymmetry. The LSP wino with mass ≃ 2 TeV is a plausible dark matter candidate, the gluino may be accessible at the LHC, and the MSSM parameter tan⁡β≃1.7 in order to be compatible with the measured Higgs boson mass. The tensor-to-scalar ratio r, a canonical measure of gravity waves, can be as high as 0.001.

  19. Split quaternions and particles in (2+1)-space

    Energy Technology Data Exchange (ETDEWEB)

    Gogberashvili, Merab [Andronikashvili Institute of Physics, Tbilisi (Georgia); Javakhishvili State University, Tbilisi (Georgia)


    It is well known that quaternions represent rotations in 3D Euclidean and Minkowski spaces. However, the product by a quaternion gives rotation in two independent planes at once and to obtain single-plane rotations one has to apply half-angle quaternions twice from the left and on the right (with inverse). This 'double-cover' property is a potential problem in the geometrical application of split quaternions, since the (2+2)-signature of their norms should not be changed for each product. If split quaternions form a proper algebraic structure for microphysics, the representation of boosts in (2+1)-space leads to the interpretation of the scalar part of quaternions as the wavelengths of particles. The invariance of space-time intervals and some quantum behaviors, like noncommutativity and the fundamental spinor representation, probably also are algebraic properties. In our approach the Dirac equation represents the Cauchy-Riemann analyticity condition and two fundamental physical parameters (the speed of light and Planck's constant) emerge from the requirement of positive definiteness of the quaternionic norms. (orig.)

  20. Split mandrel versus split sleeve coldworking: Dual methods for extending the fatigue life of metal structures (United States)

    Rodman, Geoffrey A.; Creager, Matthew


    It is common practice to use split sleeve coldworking of fastener holes as a means of extending the fatigue life of metal structures. In search of lower manufacturing costs, the aerospace industry is examining the split mandrel (sleeveless) coldworking process as an alternative method of coldworking fastener holes in metal structures. The split mandrel process (SpM) significantly extends the fatigue life of metal structures through the introduction of a residual compressive stress in a manner that is very similar to the split sleeve system (SpSl). Since the split mandrel process is significantly less expensive than the split sleeve process and more adaptable to robotic automation, it will have a notable influence upon other new manufacture of metal structures which require coldworking a significant number of holes, provided the aerospace community recognizes that the resulting residual stress distributions and fatigue life improvement are the same for both processes. Considerable testing has validated the correctness of that conclusion. The findings presented in this paper represent the results of an extensive research and development program, comprising data collected from over 400 specimens fabricated from 2024-T3 and 7075-T651 aluminum alloys in varied configurations, which quantify the benefits (fatigue enhancement and cost savings) of automating a sleeveless coldworking system.

  1. Dye-Sensitized Photocatalytic Water Splitting and Sacrificial Hydrogen Generation: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Pankaj Chowdhury


    Full Text Available Today, global warming and green energy are important topics of discussion for every intellectual gathering all over the world. The only sustainable solution to these problems is the use of solar energy and storing it as hydrogen fuel. Photocatalytic and photo-electrochemical water splitting and sacrificial hydrogen generation show a promise for future energy generation from renewable water and sunlight. This article mainly reviews the current research progress on photocatalytic and photo-electrochemical systems focusing on dye-sensitized overall water splitting and sacrificial hydrogen generation. An overview of significant parameters including dyes, sacrificial agents, modified photocatalysts and co-catalysts are provided. Also, the significance of statistical analysis as an effective tool for a systematic investigation of the effects of different factors and their interactions are explained. Finally, different photocatalytic reactor configurations that are currently in use for water splitting application in laboratory and large scale are discussed.

  2. The splitted laser beam filamentation in interaction of laser and an exponential decay inhomogeneous underdense plasma

    International Nuclear Information System (INIS)

    Xia Xiongping; Yi Lin; Xu Bin; Lu Jianduo


    The splitted beam filamentation in interaction of laser and an exponential decay inhomogeneous underdense plasma is investigated. Based on Wentzel-Kramers-Brillouin (WKB) approximation and paraxial/nonparaxial ray theory, simulation results show that the steady beam width and single beam filamentation along the propagation distance in paraxial case is due to the influence of ponderomotive nonlinearity. In nonparaxial case, the influence of the off-axial of α 00 and α 02 (the departure of the beam from the Gaussian nature) and S 02 (the departure from the spherical nature) results in more complicated ponderomotive nonlinearity and changing of the channel density and refractive index, which led to the formation of two/three splitted beam filamentation and the self-distortion of beam width. In addition, influence of several parameters on two/three splitted beam filamentation is discussed.

  3. Observation of Rashba zero-field spin splitting in a strained germanium 2D hole gas

    International Nuclear Information System (INIS)

    Morrison, C.; Rhead, S. D.; Foronda, J.; Leadley, D. R.; Myronov, M.; Wiśniewski, P.


    We report the observation, through Shubnikov-de Haas oscillations in the magnetoresistance, of spin splitting caused by the Rashba spin-orbit interaction in a strained Ge quantum well epitaxially grown on a standard Si(001) substrate. The Shubnikov-de Haas oscillations display a beating pattern due to the spin split Landau levels. The spin-orbit parameter and Rashba spin-splitting energy are found to be 1.0 × 10 −28   eVm 3 and 1.4 meV, respectively. This energy is comparable to 2D electron gases in III-V semiconductors, but substantially larger than in Si, and illustrates the suitability of Ge for modulated hole spin transport devices.

  4. Photoelectrochemical water splitting: optimizing interfaces and light absorption

    NARCIS (Netherlands)

    Park, Sun-Young


    In this thesis several photoelectrochemical water splitting devices based on semiconductor materials were investigated. The aim was the design, characterization, and fabrication of solar-to-fuel devices which can absorb solar light and split water to produce hydrogen.

  5. A Regularized Algorithm for the Proximal Split Feasibility Problem

    Directory of Open Access Journals (Sweden)

    Zhangsong Yao


    Full Text Available The proximal split feasibility problem has been studied. A regularized method has been presented for solving the proximal split feasibility problem. Strong convergence theorem is given.

  6. Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide γ-phosphate derivative (United States)

    Hansen, Connie J.; Wu, Lydia; Fox, Jeffrey D.; Arezi, Bahram; Hogrefe, Holly H.


    Using compartmentalized self-replication (CSR), we evolved a version of Pyrococcus furiosus (Pfu) DNA polymerase that tolerates modification of the γ-phosphate of an incoming nucleotide. A Q484R mutation in α-helix P of the fingers domain, coupled with an unintended translational termination-reinitiation (split) near the finger tip, dramatically improve incorporation of a bulky γ-phosphate-O-linker-dabcyl substituent. Whether synthesized by coupled translation from a bicistronic (−1 frameshift) clone, or reconstituted from separately expressed and purified fragments, split Pfu mutant behaves identically to wild-type DNA polymerase with respect to chromatographic behavior, steady-state kinetic parameters (for dCTP), and PCR performance. Although naturally-occurring splits have been identified previously in the finger tip region of T4 gp43 variants, this is the first time a split (in combination with a point mutation) has been shown to broaden substrate utilization. Moreover, this latest example of a split hyperthermophilic archaeal DNA polymerase further illustrates the modular nature of the Family B DNA polymerase structure. PMID:21062827

  7. Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide gamma-phosphate derivative. (United States)

    Hansen, Connie J; Wu, Lydia; Fox, Jeffrey D; Arezi, Bahram; Hogrefe, Holly H


    Using compartmentalized self-replication (CSR), we evolved a version of Pyrococcus furiosus (Pfu) DNA polymerase that tolerates modification of the γ-phosphate of an incoming nucleotide. A Q484R mutation in α-helix P of the fingers domain, coupled with an unintended translational termination-reinitiation (split) near the finger tip, dramatically improve incorporation of a bulky γ-phosphate-O-linker-dabcyl substituent. Whether synthesized by coupled translation from a bicistronic (-1 frameshift) clone, or reconstituted from separately expressed and purified fragments, split Pfu mutant behaves identically to wild-type DNA polymerase with respect to chromatographic behavior, steady-state kinetic parameters (for dCTP), and PCR performance. Although naturally-occurring splits have been identified previously in the finger tip region of T4 gp43 variants, this is the first time a split (in combination with a point mutation) has been shown to broaden substrate utilization. Moreover, this latest example of a split hyperthermophilic archaeal DNA polymerase further illustrates the modular nature of the Family B DNA polymerase structure.

  8. Multiple Rabi Splittings under Ultrastrong Vibrational Coupling. (United States)

    George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W


    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

  9. Splitting of high power, cw proton beams

    Directory of Open Access Journals (Sweden)

    Alberto Facco


    Full Text Available A simple method for splitting a high power, continuous wave (cw proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility design study. The aim of the system is to deliver up to 4 MW of H^{-} beam to the main radioactive ion beam production target, and up to 100 kW of proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fraction of the main H^{-} beam, magnetic splitting of H^{-} and H^{0}, and stripping of H^{0} to H^{+}. The method allows slow raising and individual fine adjustment of the beam intensity in each branch.

  10. Meshed split skin graft for extensive vitiligo

    Directory of Open Access Journals (Sweden)

    Srinivas C


    Full Text Available A 30 year old female presented with generalized stable vitiligo involving large areas of the body. Since large areas were to be treated it was decided to do meshed split skin graft. A phototoxic blister over recipient site was induced by applying 8 MOP solution followed by exposure to UVA. The split skin graft was harvested from donor area by Padgett dermatome which was meshed by an ampligreffe to increase the size of the graft by 4 times. Significant pigmentation of the depigmented skin was seen after 5 months. This procedure helps to cover large recipient areas, when pigmented donor skin is limited with minimal risk of scarring. Phototoxic blister enables easy separation of epidermis thus saving time required for dermabrasion from recipient site.

  11. Timelike single-logarithm-resummed splitting functions

    International Nuclear Information System (INIS)

    Albino, S.; Bolzoni, P.; Kniehl, B.A.; Kotikov, A.V.; Joint Inst. of Nuclear Research, Moscow


    We calculate the single logarithmic contributions to the quark singlet and gluon matrix of timelike splitting functions at all orders in the modified minimal-subtraction (MS) scheme. We fix two of the degrees of freedom of this matrix from the analogous results in the massive-gluon regularization scheme by using the relation between that scheme and the MS scheme. We determine this scheme transformation from the double logarithmic contributions to the timelike splitting functions and the coefficient functions of inclusive particle production in e + e - annihilation now available in both schemes. The remaining two degrees of freedom are fixed by reasonable physical assumptions. The results agree with the fixed-order results at next-to-next-to-leading order in the literature. (orig.)

  12. Atom beams split by gentle persuasion

    International Nuclear Information System (INIS)

    Pool, R.


    Two different research teams have taken a big step toward atom interferometry. They have succeeded in splitting atomic beams by using atoms in spin states that neither absorb nor reemit laser light. By proper adjustment of experimental conditions, atoms are changed from one spin state to another, without passing through the intermediary excited state. The atoms in essence absorb momentum from the laser photons, without absorption or emission of photons. The change in momentum deflects atoms in the proper spin state

  13. On split Lie triple systems II

    Indian Academy of Sciences (India)

    In the present paper we extend these results to arbitrary split Lie triple systems with no restrictions on their 0-root spaces. Author Affiliations. Antonio J Calderón Martín1 M Forero Piulestán1. Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain. Dates. Manuscript received: 24 June 2009 ...

  14. Transonymization as Revitalization: Old Toponyms of Split

    Directory of Open Access Journals (Sweden)

    Katarina Lozić Knezović


    Full Text Available The paper deals with ancient toponyms of Split, a city in the centre of the Croatian region of Dalmatia. Along with numerous monuments of spiritual and material culture, toponyms are part of the two-thousand-year-old city’s historical heritage. Split in particular abounds with sources that provide valuable information concerning ancient toponyms. In terms of the study and preservation of toponymy, three basic sources are crucial: the living oral tradition, written records, and old charts — mostly cadastral plans. In addition to researching, recording, documenting, and publishing Split’s ancient place names through toponomastic, geographical, and town planning studies, toponymic heritage preservation is also implemented through the direct use of the names in everyday life. One of the ways of such revitalization of Split’s ancient place names is their transonymization into the category of chrematonyms, i.e. their secondary use as names of institutions, shops, restaurants, schools, sports associations and facilities, bars and coffee shops, cemeteries, and so on. The present paper provides a classification and etymological analysis of detoponymic chrematonyms of Split. The authors propose measures to raise public awareness of the historical information conveyed by the names and raise some issues for consideration regarding further study of transonymization as a means of revitalizing local toponymic tradition.

  15. 26 CFR 1.7872-15 - Split-dollar loans. (United States)


    ...) INCOME TAXES General Actuarial Valuations § 1.7872-15 Split-dollar loans. (a) General rules—(1... split-dollar loan depend upon the relationship between the parties and upon whether the loan is a demand...-dollar demand loan is any split-dollar loan that is payable in full at any time on the demand of the...

  16. 7 CFR 51.2731 - U.S. Spanish Splits. (United States)


    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Spanish Splits. 51.2731 Section 51.2731... STANDARDS) United States Standards for Grades of Shelled Spanish Type Peanuts Grades § 51.2731 U.S. Spanish Splits. “U.S. Spanish Splits” consists of shelled Spanish type peanut kernels which are split or broken...

  17. Periodic transmission peak splitting in one dimensional disordered photonic structures (United States)

    Kriegel, Ilka; Scotognella, Francesco


    In the present paper we present ways to modulate the periodic transmission peaks arising in disordered one dimensional photonic structures with hundreds of layers. Disordered structures in which the optical length nd (n is the refractive index and d the layer thickness) is the same for each layer show regular peaks in their transmission spectra. A proper variation of the optical length of the layers leads to a splitting of the transmission peaks. Notably, the variation of the occurrence of high and low refractive index layers, gives a tool to tune also the width of the peaks. These results are of highest interest for optical application, such as light filtering, where the manifold of parameters allows a precise design of the spectral transmission ranges.

  18. Analysis of a multi-module split coaxial RFQ

    International Nuclear Information System (INIS)

    Arai, Shigeaki.


    A split coaxial RFQ linac with modulated vanes is under development for acceleration of very heavy ions. As a first step, a 1/4 scaled model with flat vanes has been constructed. Easy assembling of vanes and good mechanical stability of the structure have been achieved by employing a multi-module cavity arrangement. In this paper, theoretical treatments for the estimation of rf parameters and the interpretation of resonance characteristics are described in detail and their results are compared with the experimental data. The resonant frequency predicted by using the estimated inductance and the measured capacitance agrees with the experimental value within 2 % accuracy. Dispersion characteristics and longitudinal voltage distribution at each resonance mode are qualitatively well explained by an equivalent circuit analysis. (author)

  19. Numerical investigation on splitting of ferrofluid microdroplets in T-junctions using an asymmetric magnetic field with proposed correlation (United States)

    Aboutalebi, Mohammad; Bijarchi, Mohamad Ali; Shafii, Mohammad Behshad; Kazemzadeh Hannani, Siamak


    The studies surrounding the concept of microdroplets have seen a dramatic increase in recent years. Microdroplets have applications in different fields such as chemical synthesis, biology, separation processes and micro-pumps. This study numerically investigates the effect of different parameters such as Capillary number, Length of droplets, and Magnetic Bond number on the splitting process of ferrofluid microdroplets in symmetric T-junctions using an asymmetric magnetic field. The use of said field that is applied asymmetrically to the T-junction center helps us control the splitting of ferrofluid microdroplets. During the process of numerical simulation, a magnetic field with various strengths from a dipole located at a constant distance from the center of the T-junction was applied. The main advantage of this design is its control over the splitting ratio of daughter droplets and reaching various microdroplet sizes in a T-junction by adjusting the magnetic field strength. The results showed that by increasing the strength of the magnetic field, the possibility of asymmetric splitting of microdroplets increases in a way that for high values of field strength, high splitting ratios can be reached. Also, by using the obtained results at various Magnetic Bond numbers and performing curve fitting, a correlation is derived that can be used to accurately predict the borderline between splitting and non-splitting zones of microdroplets flow in micro T-junctions.

  20. Magnetic susceptibility and ground-state zero-field splitting in high-spin mononuclear manganese(III) of inverted N-methylated porphyrin complexes: Mn(2-NCH3NCTPP)Br. (United States)

    Hung, Sheng-Wei; Yang, Fuh-An; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu


    The crystal structures of diamagnetic dichloro(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-tin(IV) methanol solvate [Sn(2-NCH 3NCTPP)Cl 2.2(0.2MeOH); 6.2(0.2MeOH)] and paramagnetic bromo(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-manganese(III) [Mn(2-NCH 3NCTPP)Br; 5] were determined. The coordination sphere around Sn (4+) in 6.2(0.2MeOH) is described as six-coordinate octahedron ( OC-6) in which the apical site is occupied by two transoid Cl (-) ligands, whereas for the Mn (3+) ion in 5, it is a five-coordinate square pyramid ( SPY-5) in which the unidentate Br (-) ligand occupies the axial site. The g value of 9.19 (or 10.4) measured from the parallel polarization (or perpendicular polarization) of X-band EPR spectra at 4 K is consistent with a high spin mononuclear manganese(III) ( S = 2) in 5. The magnitude of axial ( D) and rhombic ( E) zero-field splitting (ZFS) for the mononuclear Mn(III) in 5 were determined approximately as -2.4 cm (-1) and -0.0013 cm (-1), respectively, by paramagnetic susceptibility measurements and conventional EPR spectroscopy. Owing to weak C(45)-H(45A)...Br(1) hydrogen bonds, the mononuclear Mn(III) neutral molecules of 5 are arranged in a one-dimensional network. A weak Mn(III)...Mn(III) ferromagnetic interaction ( J = 0.56 cm (-1)) operates via a [Mn(1)-C(2)-C(1)-N(4)-C(45)-H(45A)...Br(1)-Mn(1)] superexchange pathway in complex 5.

  1. Behaviour of DFT-based approaches to the spin-orbit term of zero-field splitting tensors: a case study of metallocomplexes, MIII(acac)3(M = V, Cr, Mn, Fe and Mo). (United States)

    Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji


    Spin-orbit contributions to the zero-field splitting (ZFS) tensor (D SO tensor) of M III (acac) 3 complexes (M = V, Cr, Mn, Fe and Mo; acac = acetylacetonate anion) are evaluated by means of ab initio (a hybrid CASSCF/MRMP2) and DFT (Pederson-Khanna (PK) and natural orbital-based Pederson-Khanna (NOB-PK)) methods, focusing on the behaviour of DFT-based approaches to the D SO tensors against the valence d-electron configurations of the transition metal ions in octahedral coordination. Both the DFT-based approaches reproduce trends in the D tensors. Significantly, the differences between the theoretical and experimental D (D = D ZZ - (D XX + D YY )/2) values are smaller in NOB-PK than in PK, emphasising the usefulness of the natural orbital-based approach to the D tensor calculations of transition metal ion complexes. In the case of d 2 and d 4 electronic configurations, the D SO (NOB-PK) values are considerably underestimated in the absolute magnitude, compared with the experimental ones. The D SO tensor analysis based on the orbital region partitioning technique (ORPT) revealed that the D SO contributions attributed to excitations from the singly occupied region (SOR) to the unoccupied region (UOR) are significantly underestimated in the DFT-based approaches to all the complexes under study. In the case of d 3 and d 5 configurations, the (SOR → UOR) excitations contribute in a nearly isotropic manner, which causes fortuitous error cancellations in the DFT-based D SO values. These results indicate that more efforts to develop DFT frameworks should be directed towards the reproduction of quantitative D SO tensors of transition metal complexes with various electronic configurations and local symmetries around metal ions.

  2. Semiconductor Nanowires for Photoelectrochemical Water Splitting (United States)

    Hwang, Yun Jeong

    Photolysis of water with semiconductor materials has been investigated intensely as a clean and renewable energy resource by storing solar energy in chemical bonds such as hydrogen. One-dimensional (1D) nanostructures such as nanowires can provide several advantages for photoelectrochemical (PEC) water splitting due to their high surface areas and excellent charge transport and collection efficiency. This dissertation discusses various nanowire photoelectrodes for single or dual semiconductor systems, and their linked PEC cells for self-driven water splitting. After an introduction of solar water splitting in the first chapter, the second chapter demonstrates water oxidative activities of hydrothermally grown TiO2 nanowire arrays depending on their length and surface properties. The photocurrents with TiO2 nanowire arrays approach saturation due to their poor charge collection efficiency with longer nanowires despite increased photon absorption efficiency. Epitaxial grains of rutile atomic layer deposition (ALD) shell on TiO2 nanowire increase the photocurrent density by 1.5 times due to improved charge collection efficiency especially in the short wavelength region. Chapter three compares the photocurrent density of the planar Si and Si nanowire arrays coated by anatase ALD TiO 2 thin film as a model system of a dual bandgap system. The electroless etched Si nanowire coated by ALD TiO2 (Si EENW/TiO2) shows 2.5 times higher photocurrent density due to lower reflectance and higher surface area. Also, this chapter illustrates that n-Si/n-TiO2 heterojunction is a promising structure for the photoanode application of a dual semiconductor system, since it can enhance the photocurrent density compared to p-Si/n-TiO 2 junction with the assistance of bend banding at the interface. Chapter four demonstrates the charge separation and transport of photogenerated electrons and holes within a single asymmetric Si/TiO2 nanowire. Kelvin probe force microscopy measurements show

  3. Splitting methods for split feasibility problems with application to Dantzig selectors (United States)

    He, Hongjin; Xu, Hong-Kun


    The split feasibility problem (SFP), which refers to the task of finding a point that belongs to a given nonempty, closed and convex set, and whose image under a bounded linear operator belongs to another given nonempty, closed and convex set, has promising applicability in modeling a wide range of inverse problems. Motivated by the increasingly data-driven regularization in the areas of signal/image processing and statistical learning, in this paper, we study the regularized split feasibility problem (RSFP), which provides a unified model for treating many real-world problems. By exploiting the split nature of the RSFP, we shall gainfully employ several efficient splitting methods to solve the model under consideration. A remarkable advantage of our methods lies in their easier subproblems in the sense that the resulting subproblems have closed-form representations or can be efficiently solved up to a high precision. As an interesting application, we apply the proposed algorithms for finding Dantzig selectors, in addition to demonstrating the effectiveness of the splitting methods through some computational results on synthetic and real medical data sets.

  4. Investigation of the Maule, Chile rupture zone using seismic attenuation tomography and shear wave splitting methods (United States)

    Torpey, Megan Elizabeth

    The Maule, Chile 2010 Mw 8.8 earthquake afforded the opportunity to study the rupture zone (33°S-38°S) in detail using aftershocks recorded by the rapid-response IRIS CHAMP seismic network. We used measurements of differential S to P seismic attenuation to characterize the attenuation structure of the South American crust and upper mantle wedge. We implemented an evolving time window to determine Qs-1 values using a spectral ratio method and incorporated these measurements into a bounded linear inequality least squares inversion to solve for Qs -1 in a 3D volume. On a large-scale, we observe an east-dipping low attenuation feature, consistent with the location of the Nazca oceanic slab, and image progressively greater attenuation as we move towards the surface of our model. A dramatic feature in our model is a large, low-attenuation body in the same location where Hicks et al. (2014) resolved a high P wave velocity anomaly in their velocity tomography model. We calculated the shear wave splitting intensity of the Maule rupture zone by implementing the multichannel method of Chevrot (2000) which calculates the splitting intensity of teleseismic SK(K)S phases and splitting parameters, ϕ and deltat. The results we obtained show an overall fast direction with a strong component of trench parallel splitting and very few trench normal splits. The fast directions do not parallel the Nazca APM, but are instead dominated by splits rotated 40°-50° counter-clockwise from Nazca APM. Based on these data, we see little evidence for sub-slab entrained mantle flow and invoke the trench-parallel retrograde flow model as an explanation for our measurements. We developed an extended splitting intensity method to allow for use of the upgoing S phase from Maule aftershocks, utilizing the initial event polarization. For this local dataset, we observe three dominant fast directions oriented N20°W, N40°E, and N10°W-20°E and a subset of fast directions trending N60°-90°E which

  5. Flow Cytometric Bead Sandwich Assay Based on a Split Aptamer. (United States)

    Shen, Luyao; Bing, Tao; Liu, Xiangjun; Wang, Junyan; Wang, Linlin; Zhang, Nan; Shangguan, Dihua


    A few aptamers still bind their targets after being split into two moieties. Split aptamers have shown great potential in the development of aptameric sensors. However, only a few split aptamers have been generated because of lack of knowledge on the binding structure of their parent aptamers. Here, we report the design of a new split aptamer and a flow cytometric bead sandwich assay using a split aptamer instead of double antibodies. Through DMS footprinting and mutation assay, we figured out the target-binding moiety and the structure-stabilizing moiety of the l-selectin aptamer, Sgc-3b. By separating the duplex strand in the structure-stabilizing moiety, we obtained a split aptamer that bound l-selectin. After optimization of one part of the split sequence to eliminate the nonspecific binding of the split sequence pair, we developed a split-aptamer-based cytometric bead assay (SACBA) for the detection of soluble l-selectin. SACBA showed good sensitivity and selectivity to l-selectin and was successfully applied for the detection of spiked l-selectin in the human serum. The strategies for generating split aptamers and designing the split-aptamer-based sandwich assay are simple and efficient and show good practicability in aptamer engineering.

  6. SplitRFLab: A MATLAB GUI toolbox for receiver function analysis based on SplitLab (United States)

    Xu, Mijian; Huang, Hui; Huang, Zhouchuan; Wang, Liangshu


    We add new modules for receiver function (RF) analysis in SplitLab toolbox, which includes the manual RF analysis module, automatic RF analysis and related quality control modules, and H- k stacking module. The updated toolbox (named SplitRFLab toolbox), especially its automatic RF analysis module, could calculate the RFs quickly and efficiently, which is very useful in RF analysis with huge amount of seismic data. China is now conducting the ChinArray project that plans to deploy thousands of portable stations across Chinese mainland. Our SplitRFLab toolbox may obtain reliable RF results quickly at the first time, which provide essentially new constraint to the crustal and mantle structures.

  7. Determination of the spin orbit coupling and crystal field splitting in wurtzite InP by polarization resolved photoluminescence (United States)

    Chauvin, Nicolas; Mavel, Amaury; Jaffal, Ali; Patriarche, Gilles; Gendry, Michel


    Excitation photoluminescence spectroscopy is usually used to extract the crystal field splitting (ΔCR) and spin orbit coupling (ΔSO) parameters of wurtzite (Wz) InP nanowires (NWs). However, the equations expressing the valence band splitting are symmetric with respect to these two parameters, and a choice ΔCR > ΔSO or ΔCR silicon. The experimental results combined with a theoretical model and finite difference time domain calculations allow us to conclude that ΔCR > ΔSO in Wz InP.

  8. Injuries caused by firewood splitting machines. (United States)

    Hellstrand, P H


    The aim of this paper is to present the types of injury caused by firewood splitting machines and also to elucidate the accident mechanism. The study is based on 15 cases. The machine has a rotating spiral cone, and usually the victims' gloved fingertips were caught by the point of the cone. This led to either amputations, usually of radial fingers and/or penetrating wounds through the middle of the hand. In most cases the accidents could not be blamed on bad working techniques. The study of the mechanisms of injury points to insufficient protective devices in a machine construction which has a potentially dangerous working principle.

  9. Magnetic couplings in the chemical shift of paramagnetic NMR. (United States)

    Vaara, Juha; Rouf, Syed Awais; Mareš, Jiří


    We apply the Kurland-McGarvey (J. Magn. Reson. 1970, 2, 286) theory for the NMR shielding of paramagnetic molecules, particularly its special case limited to the ground-state multiplet characterized by zero-field splitting (ZFS) interaction of the form S·D·S. The correct formulation for this problem was recently presented by Soncini and Van den Heuvel (J. Chem. Phys. 2013, 138, 054113). With the effective electron spin quantum number S, the theory involves 2S+1 states, of which all but one are low-lying excited states, between which magnetic couplings take place by Zeeman and hyperfine interactions. We investigate these couplings as a function of temperature, focusing on both the high- and low-temperature behaviors. As has been seen in work by others, the full treatment of magnetic couplings is crucial for a realistic description of the temperature behavior of NMR shielding up to normal measurement temperatures. At high temperatures, depending on the magnitude of ZFS, the effect of magnetic couplings diminishes, and the Zeeman and hyperfine interactions become effectively averaged in the thermally occupied states of the multiplet. At still higher temperatures, the ZFS may be omitted altogether, and the shielding properties may be evaluated using a doublet-like formula, with all the 2S+1 states becoming effectively degenerate at the limit of vanishing magnetic field. We demonstrate these features using first-principles calculations of Ni(II), Co(II), Cr(II), and Cr(III) complexes, which have ZFS of different sizes and signs. A non-monotonic inverse temperature dependence of the hyperfine shift is predicted for axially symmetric integer-spin systems with a positive D parameter of ZFS. This is due to the magnetic coupling terms that are proportional to kT at low temperatures, canceling the Curie-type 1/kT prefactor of the hyperfine shielding in this case.

  10. Randomized clinical trial comparing fixed-time split dosing and split dosing of oral Picosulfate regimen for bowel preparation. (United States)

    Jun, Jae Hyuck; Han, Koon Hee; Park, Jong Kyu; Seo, Hyun Il; Kim, Young Don; Lee, Sang Jin; Jun, Baek Gyu; Hwang, Min Sik; Park, Yoon Kyoo; Kim, Myeong Jong; Cheon, Gab Jin


    To compare the efficacy of fixed-time split dose and split dose of an oral sodium picosulfate for bowel preparation. This is study was prospective, randomized controlled study performed at a single Institution (2013-058). A total of 204 subjects were assigned to receive one of two sodium picosulfate regimens ( i.e ., fixed-time split or split) prior to colonoscopy. Main outcome measurements were bowel preparation quality and subject tolerability. There was no statistical difference between the fixed-time split dose regimen group and the split dose regimen group (Ottawa score mean 2.57 ± 1.91 vs 2.80 ± 2.51, P = 0.457). Cecal intubation time and physician's satisfaction of inspection were not significantly different between the two groups ( P = 0.428, P = 0.489). On subgroup analysis, for afternoon procedures, the fixed-time split dose regimen was equally effective as compared with the split dose regimen (Ottawa score mean 2.56 ± 1.78 vs 2.59 ± 2.27, P = 0.932). There was no difference in tolerability or compliance between the two groups. Nausea was 21.2% in the fixed-time split dose group and 14.3% in the split dose group ( P = 0.136). Vomiting was 7.1% and 2.9% ( P = 0.164), abdominal discomfort 7.1% and 4.8% ( P = 0.484), dizziness 1% and 4.8% ( P = 0.113), cold sweating 1% and 0% ( P = 0.302) and palpitation 0% and 1% ( P = 0.330), respectively. Sleep disturbance was two (2%) patients in the fixed-time split dose group and zero (0%) patient in the split dose preparation ( P = 0.143) group. A fixed-time split dose regimen with sodium picosulfate is not inferior to a split dose regimen for bowel preparation and equally effective for afternoon colonoscopy.

  11. The Regularity of Functions on Dual Split Quaternions in Clifford Analysis

    Directory of Open Access Journals (Sweden)

    Ji Eun Kim


    Full Text Available This paper shows some properties of dual split quaternion numbers and expressions of power series in dual split quaternions and provides differential operators in dual split quaternions and a dual split regular function on Ω⊂ℂ2×ℂ2 that has a dual split Cauchy-Riemann system in dual split quaternions.

  12. Splitting of the weak hypercharge quantum

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.


    The ratio between the weak hypercharge quantum for particles having no coupling to the gauge bosons corresponding to the semisimple component of the gauge group and the smallest hypercharge quantum for particles that do have such couplings is exceptionally large for the standard model, considering its rank. To compare groups with respect to this property we propose a quantity χ which depends on the rank of the group and the splitting ratio of the hypercharge(s) to be found in the group. The quantity χ has maximal value for the gauge group of the standard model. This suggest that the hypercharge splitting may play an important role either in the origin of the gauge symmetry at a fundamental scale or in some kind of selection mechanism at a scale perhaps nearer to the experimental scale. Such selection mechanism might be what we have called confusion which removes groups with many (so called generalized) automorphisms. The quantity χ tends to be large for groups with few generalized automorphisms. (orig.)

  13. Strong CP, flavor, and twisted split fermions

    International Nuclear Information System (INIS)

    Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri


    We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class. (author)

  14. An Iterative Algorithm for the Split Equality and Multiple-Sets Split Equality Problem

    Directory of Open Access Journals (Sweden)

    Luoyi Shi


    Full Text Available The multiple-sets split equality problem (MSSEP requires finding a point x∈∩i=1NCi, y∈∩j=1MQj such that Ax=By, where N and M are positive integers, {C1,C2,…,CN} and {Q1,Q2,…,QM} are closed convex subsets of Hilbert spaces H1, H2, respectively, and A:H1→H3, B:H2→H3 are two bounded linear operators. When N=M=1, the MSSEP is called the split equality problem (SEP. If  B=I, then the MSSEP and SEP reduce to the well-known multiple-sets split feasibility problem (MSSFP and split feasibility problem (SFP, respectively. One of the purposes of this paper is to introduce an iterative algorithm to solve the SEP and MSSEP in the framework of infinite-dimensional Hilbert spaces under some more mild conditions for the iterative coefficient.

  15. Phenomenological implications of D3/D7 (reversed) µ-split-like ...

    Indian Academy of Sciences (India)


    Jan 5, 2016 ... Split supersymmetry; Calabi–Yau; gravitino dark matter; (N)LSP decays; electric dipole moment. PACS Nos 12.60.Jv; 11.25.Wx; 14.80.Ly; 12.10.−g. 1. Introduction. One of the greatest challenges in string phenomenology is to relate its parameters to the observables in the low-energy physics world, i.e., ...

  16. Analysis of Seismic Anisotropy Across Central Anatolia by Shear Wave Splitting (United States)

    Pamir, Dilekcan; Abgarmi, Bizhan; Arda Özacar, A.


    Analysis of Seismic Anisotropy Across Central Anatolia by Shear Wave Splitting Dilekcan Pamir, Bizhan Abgarmi, A. Arda Özacar Department of Geological Engineering, Middle East Technical University (METU), Dumlupinar Bulvari 1, 06800 Ankara, Turkey Central Anatolia holds the key to connect the theories about the ongoing tectonic escape, the African Plate subduction along Cyprus Arc and the indenter-style collision of Arabian Plate along Bitlis Suture. However, the shear wave splitting measurements which are needed to characterize seismic anisotropy are very sparse in the region. Recently, seismic data recorded by national seismic networks (KOERI, ERI-DAD) with dense coverage, provided a unique opportunity to analyze the effect of present slab geometry (slab tears, slab break-off) on mantle deformation and test different models of anisotropy forming mechanisms. In this study, the anisotropic structure beneath the Central Anatolia is investigated via splitting of SKS and SKKS phases recorded at 46 broadband seismic stations. Our measurements yielded 1171 well-constrained splitting and 433 null results. Overall, the region displays NE-SW trending fast splitting directions and delay times on the order of 1 sec. On the other hand, a large number of stations which are spatially correlated with Cyprus Slab, Neogene volcanism and major tectonic structures present significant back azimuthal variations on splitting parameters that cannot be explained by one-layered anisotropy with horizontal symmetry. Thus, we have modeled anisotropy for two-layered structures using a forward approach and identified NE-SW trending fast splitting directions with delay times close to 1 sec at the lower layer and N-S, NW-SE trending fast splitting with limited time delays (0.1 - 0.3 sec) at the upper layer. Fast directions and delay times of the lower layer are similar to one-layered anisotropy and parallel or sub-parallel to the absolute plate motions which favors asthenospheric flow model

  17. Efficacy of scaling and root planning with and without adjunct Nd:YAG laser therapy on clinical periodontal parameters and gingival crevicular fluid interleukin 1-beta and tumor necrosis factor-alpha levels among patients with periodontal disease: A prospective randomized split-mouth clinical study. (United States)

    Abduljabbar, Tariq; Vohra, Fahim; Kellesarian, Sergio Varela; Javed, Fawad


    Limited evidence exists regarding the role of scaling and root planning (SRP) with adjunct neodymium yttrium aluminum garnet (Nd:YAG) laser therapy in reducing periodontal parameters (plaque index [PI], bleeding on probing [BOP] and probing pocket depth [PPD]) and levels of proinflammatory cytokines in the gingival crevicular fluid (GCF) among patients with periodontal disease (PD). The aim was to assess the effect of SRP with and without adjunct Nd:YAG laser therapy on clinical periodontal parameters and GCF interleukin 1-beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels among patients with PD. Demographic data was collected using a questionnaire. Mandibular right and left quadrants were randomly divided into test- (SRP+Nd:YAG laser) and control-sites (SRP alone). PI, BOP and PPD were assessed and GCF IL-1β and TNF-α levels were measured at baseline and at 3- and 6-month follow-up. Level of significance was set at Pperiodontal inflammatory parameters and GCF IL-1β and TNF-α levels compared with SRP alone. Copyright © 2017. Published by Elsevier B.V.

  18. Electrocatalytic water splitting to produce fuel hydrogen (United States)

    Yuan, Hao

    Solar energy is regarded as a promising source for clean and sustainable energy. However, it is not a continuous energy source, thus certain strategies have to be developed to effectively convert and store it. Solar-driven electrocatalytic water splitting, which converts solar energy into chemical energy for storage as fuel hydrogen, can effectively mitigate the intermittence of solar radiation. Water splitting consists of two half reactions: water oxidation and hydrogen evolution. Both reactions rely on highly effective electrocatalysts. This dissertation is an account of four detailed studies on developing highly effective low-cost electrocatalysts for both reactions, and includes a preliminary attempt at system integration to build a functional photoanode for solar-driven water oxidation. For the water oxidation reaction, we have developed an electrochemical method to immobilize a cobalt-based (Co-OXO) water oxidation catalyst on a conductive surface to promote recyclability and reusability without affecting functionality. We have also developed a method to synthesize a manganese-based (MnOx) catalytic film in situ, generating a nanoscale fibrous morphology that provides steady and excellent water oxidation performance. The new method involves two series of cyclic voltammetry (CV) over different potential ranges, followed by calcination to increase crystallinity. The research has the potential to open avenues for synthesizing and optimizing other manganese-based water oxidation catalysts. For the hydrogen evolution reaction, we have developed a new electrodeposition method to synthesize Ni/Ni(OH)2 catalysts in situ on conductive surfaces. The new method involves only two cycles of CV over a single potential range. The resulting catalytic film has a morphology of packed walnut-shaped particles. It has superior catalytic activity and good stability over long periods. We have investigated the feasibility of incorporating manganese-based water oxidation catalysts

  19. Chiral extrapolation of lattice data for the hyperfine splittings of heavy mesons

    International Nuclear Information System (INIS)

    Guo, X.; Thomas, A.W.


    Full text: Hyperfine splittings between the heavy vector (D*, B*) and pseudoscalar (D, B) mesons have been calculated numerically in lattice QCD, where the pion mass (which is related to the light quark mass) is much larger than its physical value. Naive linear chiral extrapolations of the lattice data to the physical mass of the pion lead to hyperfine splittings which are smaller than experimental data. In order to extrapolate these lattice data to the physical mass of the pion more reasonably, we apply the effective chiral perturbation theory for heavy mesons, which is invariant under chiral symmetry when the light quark masses go to zero and heavy quark symmetry when the heavy quark masses go to infinity. This leads to a phenomenological functional form with three parameters to extrapolate the lattice data. It is found that the extrapolated hyperfine splittings are even smaller than those obtained using linear extrapolation. We conclude that the source of the discrepancy between lattice data for hyperfine splittings and experiment must lie in non-chiral physics

  20. Two-loop mass splittings in electroweak multiplets: Winos and minimal dark matter (United States)

    McKay, James; Scott, Pat


    The radiatively-induced splitting of masses in electroweak multiplets is relevant for both collider phenomenology and dark matter. Precision two-loop corrections of O (MeV ) to the triplet mass splitting in the wino limit of the minimal supersymmetric standard model can affect particle lifetimes by up to 40%. We improve on previous two-loop self-energy calculations for the wino model by obtaining consistent input parameters to the calculation via two-loop renormalization-group running, and including the effect of finite light quark masses. We also present the first two-loop calculation of the mass splitting in an electroweak fermionic quintuplet, corresponding to the viable form of minimal dark matter (MDM). We place significant constraints on the lifetimes of the charged and doubly-charged fermions in this model. We find that the two-loop mass splittings in the MDM quintuplet are not constant in the large-mass limit, as might naively be expected from the triplet calculation. This is due to the influence of the additional heavy fermions in loop corrections to the gauge boson propagators.

  1. Optically detecting spin-split bands in semiconductors in magnetic fields (United States)

    Pan, X.; Sun, Y.; Saha, D.; Sanders, G. D.; Santos, M. B.; Doezema, R. E.; Hayes, S.; Khodaparast, G.; Munekata, H.; Matsuda, Y. H.; Kono, J.; Stanton, C. J.


    We report on combined theoretical and experimental studies of spin-split bands in semiconductors in magnetic fields. We have studied a wide range of systems including: 1) electron and valence band splitting in dilute magnetically doped semiconductors (DMS) systems like InMnAs, 2) electron and valence band splitting in strained InSb/AlInSb heterostructures and 3) valence band splitting in GaAs. The systems have been studied with a variety of experimental techniques including: i) ultra-high magnetic field cyclotron resonance ii) magnetoabsorption and iii) optically pumped NMR (OPNMR). Calculations are based on the 8-band Pidgeon-Brown model generalized to include the effects of the quantum confinement potential as well as pseudomorphic strain at the interfaces and sp-d coupling between magnetic impurities and conduction band electrons and valence band holes. Optical properties are calculated within the golden rule approximation and compared with experiments. Detailed comparison to experiment allows one to accurately determine conduction and valence band parameters including effective masses and g-factors. Results for InMnAs show shifts in the cyclotron resonance peaks with Mn doping. For InSb, we find a sensitive dependence of the elecronic structure on the strain at the pseudomorphic interfaces. For GaAs, we show that OPNMR allows us to spin-resolve the valence bands and that structure in the OPNMR signal is dominated by the weaker light hole to conduction band Landau level transitions.

  2. The impact of payment splitting on liquidity requirements in RTGS


    Denbee, Edward; Norman, Ben


    This paper examines the impact that payment splitting could have upon the liquidity requirements and efficiency of a large-value payment system, such as the United Kingdom’s CHAPS. Using the Bank of Finland Payment and Settlement Simulator and real UK payments data we find that payment splitting could reduce the liquidity required to settle payments. The reduction in required liquidity would increase as the payment splitting threshold decreased but the relationship is non-linear. Liquidity sa...

  3. Splitting methods in communication, imaging, science, and engineering

    CERN Document Server

    Osher, Stanley; Yin, Wotao


    This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas. .

  4. Parameter Estimation

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian


    In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....

  5. A Power System Network Splitting Strategy Based on Contingency Analysis

    Directory of Open Access Journals (Sweden)

    Nur Zawani Saharuddin


    Full Text Available This paper proposes a network splitting strategy following critical line outages based on N-1 contingency analysis. Network splitting is the best option for certain critical outages when the tendency of severe cascading failures is very high. Network splitting is executed by splitting the power system network into feasible set of islands. Thus, it is essential to identify the optimal splitting solution (in terms of minimal power flow disruption that satisfies certain constraints. This paper determines the optimal splitting solution for each of the critical line outage using discrete evolutionary programming (DEP optimization technique assisted by heuristic initialization approach. Heuristic initialization provides the best initial cutsets which will guide the optimization technique to find the optimal splitting solution. Generation–load balance and transmission line overloading analysis are carried out in each island to ensure the steady state stability is achieved. Load shedding scheme is initiated if the power balance criterion is violated in any island to sustain the generation–load balance. The proposed technique is validated on the IEEE 118 bus system. Results show that the proposed approach produces an optimal splitting solution with lower power flow disruption during network splitting execution.

  6. Split-plot designs for multistage experimentation

    DEFF Research Database (Denmark)

    Kulahci, Murat; Tyssedal, John


    Most of today’s complex systems and processes involve several stages through which input or the raw material has to go before the final product is obtained. Also in many cases factors at different stages interact. Therefore, a holistic approach for experimentation that considers all stages...... on the Kronecker product representation of orthogonal designs and can be used for any number of stages, for various numbers of subplots and for different number of subplots for each stage. The procedure is demonstrated on both regular and nonregular designs and provides the maximum number of factors that can...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....

  7. A Frequency Splitting Method For CFM Imaging

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Jensen, Jørgen Arendt


    The performance of conventional CFM imaging will often be degraded due to the relatively low number of pulses (4-10) used for each velocity estimate. To circumvent this problem we propose a new method using frequency splitting (FS). The FS method uses broad band chirps as excitation pulses instead...... of narrow band pulses as in conventional CFM imaging. By appropriate filtration, the returned signals are divided into a number of narrow band signals which are approximately disjoint. After clutter filtering the velocities are found from each frequency band using a conventional autocorrelation estimator....... Finally the velocity estimates from each frequency band are averaged to obtain an improved velocity estimate. The FS method has been evaluated in simulations using the Field II program and in flow phantom experiments using the experimental ultrasound scanner RASMUS. In both simulations and experiments...

  8. Molecular concepts of water splitting. Nature's approach

    International Nuclear Information System (INIS)

    Cox, Nicholas; Lubitz, Wolfgang


    Based on studies of natural systems, much has also been learned concerning the design principles required for biomimetic catalysis of water splitting and hydrogen evolution. In summary, these include use of abundant and inexpensive metals, the effective protection of the active sites in functional environments, repair/replacement of active components in case of damage, and the optimization of reaction rates. Biomimetic chemistry aims to mimic all these features; many labs are working toward this goal by developing new approaches in the design and synthesis of such systems, encompassing not only the catalytic center, but also smart matrices and assembly via self-organization. More stable catalysts that do not require self-repair may be obtained from fully artificial (inorganic) catalytic systems that are totally different from the biological ones and only apply some basic principles learned from nature. Metals other than Mn/Ca, Fe, and Ni could be used (e.g. Co) in new ligand spheres and other matrices. For light harvesting, charge separation/stabilization, and the effective coupling of the oxidizing/reducing equivalents to the redox catalysts, different methods have been proposed - for example, covalently linked molecular donor-acceptor systems, photo-voltaic devices, semiconductor-based systems, and photoactive metal complexes. The aim of all these approaches is to develop catalytic systems that split water with sunlight into hydrogen and oxygen while displaying high efficiency and long-term stability. Such a system - either biological, biomimetic, or bioinspired - has the potential to be used on a large scale to produce 'solar fuels' (e.g. hydrogen or secondary products thereof). (orig.)

  9. Split-Doa10: a naturally split polytopic eukaryotic membrane protein generated by fission of a nuclear gene.

    Directory of Open Access Journals (Sweden)

    Elisabeth Stuerner

    Full Text Available Large polytopic membrane proteins often derive from duplication and fusion of genes for smaller proteins. The reverse process, splitting of a membrane protein by gene fission, is rare and has been studied mainly with artificially split proteins. Fragments of a split membrane protein may associate and reconstitute the function of the larger protein. Most examples of naturally split membrane proteins are from bacteria or eukaryotic organelles, and their exact history is usually poorly understood. Here, we describe a nuclear-encoded split membrane protein, split-Doa10, in the yeast Kluyveromyces lactis. In most species, Doa10 is encoded as a single polypeptide with 12-16 transmembrane helices (TMs, but split-KlDoa10 is encoded as two fragments, with the split occurring between TM2 and TM3. The two fragments assemble into an active ubiquitin-protein ligase. The K. lactis DOA10 locus has two ORFs separated by a 508-bp intervening sequence (IVS. A promoter within the IVS drives expression of the C-terminal KlDoa10 fragment. At least four additional Kluyveromyces species contain an IVS in the DOA10 locus, in contrast to even closely related genera, allowing dating of the fission event to the base of the genus. The upstream Kluyveromyces Doa10 fragment with its N-terminal RING-CH and two TMs resembles many metazoan MARCH (Membrane-Associated RING-CH and related viral RING-CH proteins, suggesting that gene splitting may have contributed to MARCH enzyme diversification. Split-Doa10 is the first unequivocal case of a split membrane protein where fission occurred in a nuclear-encoded gene. Such a split may allow divergent functions for the individual protein segments.


    NARCIS (Netherlands)



    Split-belt locomotion (i.e., walking with unequal leg speeds) requires a rapid adaptation of biomechanical parameters and therefore of leg muscle electromyographic (EMG) activity. This adaptational process during the first strides of asymmetric gait as well as learning effects induced by repetition

  11. The split cube in a cage: bulk negative-index material for infrared applications

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, C.


    We propose the split cube in a cage (SCiC) design for application in producing a bulk metamaterial. Applying realistic material data for thin silver films, we observe an immediate convergence of the effective parameters obtained with a number of layers towards the bulk properties. Results...... are obtained by two different numerical techniques: the Fourier modal method and the finite integrals method, thus ensuring their validity. The SCiC exhibits a refractive index of −0.6 for frequencies close to the telecommunication bands. The fast convergence of effective parameters allows consideration...

  12. Matrix isolation ESR spectroscopy and quantum chemical calculations on 5-methylhexa-1,2,4-triene-1,3-diyl, a highly delocalized triplet "hybrid" carbene. (United States)

    Misochko, Eugenii Ya; Akimov, Alexander V; Korchagin, Denis V; Masitov, Artem A; Shavrin, Konstantin N


    The ESR spectrum of 5-methylhexa-1,2,4-triene-1,3-diyl (1) was recorded in an argon matrix at 15 K. The derived zero-field splitting (ZFS) parameters (D = 0.5054 ± 0.0006 cm(-1) and E = 0.0045 ± 0.0002 cm(-1)) fall between those determined previously for propargylene (2) and vinylcarbene (3). DFT and ab initio (CAS and MRCI) quantum-chemical calculations of the ZFS parameters of 1, 2, and 3 were performed. These calculations indicate that multireference methods are needed to successfully predict ZFS parameters of delocalized carbenes/biradicals such as 1-3. The calculated singly occupied MOs and spin density distributions show that the spin is more delocalized in 1 than in 2 and 3, indicating that 1 is a "hybrid" of the constituent ethynyl- and vinylcarbenes, 2 and 3, respectively. The dominant contribution to the D-value in 1 and 2 is found to result from spin-spin interactions on the C atoms of the propylidene moiety, which is strongly affected by spin polarization. Accurate values for the D-parameter are also predicted for other types of delocalized triplet carbenes such as HC(5)H and HCCN.

  13. Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Knudsen, Thomas; Larsen, Ulrik; Haglind, Fredrik


    The Kalina split-cycle is a thermodynamic process for converting thermal energy into electrical power. It uses an ammonia–water mixture as a working fluid (like a conventional Kalina cycle) and has a varying ammonia concentration during the pre-heating and evaporation steps. This second feature results in an improved match between the heat source and working fluid temperature profiles, decreasing the entropy generation in the heat recovery system. The present work compares the thermodynamic performance of this power cycle with the conventional Kalina process, and investigates the impact of varying boundary conditions by conducting an exergy analysis. The design parameters of each configuration were determined by performing a multi-variable optimisation. The results indicate that the Kalina split-cycle with reheat presents an exergetic efficiency by 2.8% points higher than a reference Kalina cycle with reheat, and by 4.3% points without reheat. The cycle efficiency varies by 14% points for a variation of the exhaust gas temperature of 100 °C, and by 1% point for a cold water temperature variation of 30 °C. This analysis also pinpoints the large irreversibilities in the low-pressure turbine and condenser, and indicates a reduction of the exergy destruction by about 23% in the heat recovery system compared to the baseline cycle. - Highlights: • The thermodynamic performance of the Kalina split-cycle is assessed. • The Kalina split-cycle is compared to the Kalina cycle, with and without reheat. • An exergy analysis is performed to evaluate its thermodynamic performance. • The impact of varying boundary conditions is investigated. • The Kalina split-cycle displays high exergetic efficiency for low- and medium-temperature applications

  14. Towards Highly Efficient Bias-Free Solar Water Splitting

    NARCIS (Netherlands)

    Abdi, F.F.


    Solar water splitting has attracted significant attention due to its potential of converting solar to chemical energy. It uses semiconductor to convert sunlight into electron-hole pairs, which then split water into hydrogen and oxygen. The hydrogen can be used as a renewable fuel, or it can serve as

  15. 77 FR 8127 - Foreign Tax Credit Splitting Events (United States)


    ... Tax Credit Splitting Events AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Final and... affect taxpayers claiming foreign tax credits. The text of the temporary regulations also serves as the... that if there is a foreign tax credit splitting event with respect to a foreign income tax paid or...

  16. 77 FR 8184 - Foreign Tax Credit Splitting Events (United States)


    ... Foreign Tax Credit Splitting Events AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of... these proposed regulations. The regulations affect taxpayers claiming foreign tax credits. Special... of the Federal Register.] Sec. 1.909-6 Pre-2011 foreign tax credit splitting events. [The text of...

  17. Clonal differences in log end splitting in Eucalyptus grandis in ...

    African Journals Online (AJOL)

    This paper discusses the juvenile–mature correlation of log end splitting among Eucalyptus grandis clones from two trials and how differences in splitting relate to differences in wood density, pith-to-bark gradient and growth rate. Two approximately 20-year-old Eucalyptus grandis clonal trials at Bergvliet plantation were ...

  18. April / May 2006. 108 Harvesting split thickness skin in

    African Journals Online (AJOL)


    Background: In the third world countries like Ethiopia the majority of Hospitals have difficulties in harvesting split thickness skin ... The grafts were well taken by the recipient areas and technically there was no danger of deep bite. Conclusion: Split ... to meet the hospital needs. Thus we need to improvise and use appropriate.

  19. Pulse splitting in nonlinear media with anisotropic dispersion properties

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.; Schmidt, M.R.


    to a singularity in the transverse plane. Instead, the pulse spreads out along the direction of negative dispersion and splits up into small-scale cells, which may undergo further splitting events. The analytical results are supported by direct numerical solutions of the three dimensional cubic Schrodinger...

  20. Split-liver transplantation : An underused resource in liver transplantation

    NARCIS (Netherlands)

    Rogiers, Xavier; Sieders, Egbert


    Split-liver transplantation is an efficient tool to increase the number of liver grafts available for transplantation. More than 15 years after its introduction only the classical splitting technique has reached broad application. Consequently children are benefiting most from this possibility.

  1. Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting

    NARCIS (Netherlands)

    Valenti, M.; Jonsson, M.P.; Biskos, G.; Schmidt-Ott, A.; Smith, W.A.


    Photoelectrochemical (PEC) water splitting is a promising technology that uses light absorbing semiconductors to convert solar energy directly into a chemical fuel (i.e., hydrogen). PEC water splitting has the potential to become a key technology in achieving a sustainable society, if high solar

  2. Enhanced residual mean circulation during the evolution of split type ...

    Indian Academy of Sciences (India)


    keywords: split events, stratospheric sudden warming, residual mean circulation. 1 Introduction ... sudden warming. It is characterized by a rapid cooling of the polar cap tempera- ture (Kuroda, 2008). The competition between planetary waves and gravity waves to the residual .... any automated scheme. The split events ...

  3. Recent developments in solar H 2 generation from water splitting

    Indian Academy of Sciences (India)

    Assistance of metal nanostructures and quantum dots to semiconductors attains vital importance as they are exuberant visible light harvesters and charge carrier amplifiers. Benevolent use of quantum dots in solar water splitting and photoelectrochemical water splitting provides scope to revolutionize the quantum efficiency ...

  4. 7 CFR 51.2753 - U.S. Virginia Splits. (United States)


    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Virginia Splits. 51.2753 Section 51.2753... STANDARDS) United States Standards for Shelled Virginia Type Peanuts Grades § 51.2753 U.S. Virginia Splits. “U.S. Virginia Splits” consists of shelled Virginia type peanut kernels of similar varietal...

  5. Linear expansion of products out of thermal splitting graphite

    International Nuclear Information System (INIS)

    Tishina, E.A.; Kurnevich, G.I.


    Linear expansion of thermally split graphite in the form of foil and pressed items of different density was studied. It is ascertained that the extreme character of temperature dependence of linear expansion factor of pressed samples of thermally split graphite is determined by the formation of closed pores containing air in the course of their production. 3 refs., 2 figs

  6. Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives

    KAUST Repository

    Hisatomi, Takashi


    Abstract: Some particulate semiconductors loaded with nanoparticulate catalysts exhibit photocatalytic activity for the water-splitting reaction. The photocatalysis is distinct from the thermal catalysis because photocatalysis involves photophysical processes in particulate semiconductors. This review article presents a brief introduction to photocatalysis, followed by kinetic aspects of the photocatalytic water-splitting reaction.Graphical Abstract: [Figure not available: see fulltext.

  7. The Skyrme model predictions for the ${\\bf 27}_{J=3/2}$ mass spectrum and the ${\\bf 27}_{3/2}$-$\\bar{\\bf 10}$ mass splittings

    CERN Document Server

    Duplancic, G; Trampetic, J


    The ${\\bf 27}_{J=3/2}$-plet mass spectrum and the ${\\bf 27}_{3/2}$-$\\bar{\\bf 10}$ mass splittings are computed in the framework of the minimal SU(3)$_f$ extended Skyrme model. As functions of the Skyrme charge $e$ and the SU(3)$_f$ symmetry breaking parameters the predictions are presented in tabular form. The predicted mass splitting ${\\bf 27}_{3/2}$-$\\bar{\\bf 10}$ is the smallest among all SU(3)$_f$ baryonic multiplets.

  8. Nonideal anion displacement, band gap variation, and valence band splitting in Cu-In-Se compounds

    International Nuclear Information System (INIS)

    Reena Philip, Rachel; Pradeep, B.


    Polycrystalline thin films of ternary chalcopyrite CuInSe 2 and defect compounds CuIn 3 Se 5 and CuIn 5 Se 8 are prepared in vacuum by three-source coevaporation method. Structural and optical characterizations of the films are done using X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX), and optical absorbance spectra measurements. With variation in the composition of CuInSe 2 , a change over from p-type to n-type conductivity is observed (as noted by the hot probe method). The deformation parameters and the anion displacements are calculated from the X-ray diffraction data, and the cation-anion bond lengths are deduced. The dependence of band gap variation on nonideal anion displacement in the ternary compounds and the effect of Se-p-Cu-d repulsion on band gap are studied. The threefold optical structure observed in the fundamental absorption region of the absorption spectra is analysed to extract the valence band splitting parameters. Hopfields quasi-cubic model adapted for chalcopyrites with tetragonal deformation is used to determine the crystal field splittings and spin orbit splittings, and the linear hybridization model is used to calculate the percentage of d-orbital and p-orbital contribution to hybridization in the compounds under consideration

  9. Shield Optimization and Formulation of Regression Equations for Split-Ring Resonator

    Directory of Open Access Journals (Sweden)

    Tahir Ejaz


    Full Text Available Microwave resonators are widely used for numerous applications including communication, biomedical and chemical applications, material testing, and food grading. Split-ring resonators in both planar and nonplanar forms are a simple structure which has been in use for several decades. This type of resonator is characterized with low cost, ease of fabrication, moderate quality factor, low external noise interference, high stability, and so forth. Due to these attractive features and ease in handling, nonplanar form of structure has been utilized for material characterization in 1–5 GHz range. Resonant frequency and quality factor are two important parameters for determination of material properties utilizing perturbation theory. Shield made of conducting material is utilized to enclose split-ring resonator which enhances quality factor. This work presents a novel technique to develop shield around a predesigned nonplanar split-ring resonator to yield optimized quality factor. Based on this technique and statistical analysis regression equations have also been formulated for resonant frequency and quality factor which is a major outcome of this work. These equations quantify dependence of output parameters on various factors of shield made of different materials. Such analysis is instrumental in development of devices/designs where improved/optimum result is required.

  10. Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid–electrolyte interfaces

    KAUST Repository

    Shinagawa, Tatsuya


    Direct photon to chemical energy conversion using semiconductor-electrocatalyst-electrolyte interfaces has been extensively investigated for more than a half century. Many studies have focused on screening materials for efficient photocatalysis. Photocatalytic efficiency has been improved during this period but is not sufficient for industrial commercialization. Detailed elucidation on the photocatalytic water splitting process leads to consecutive six reaction steps with the fundamental parameters involved: The photocatalysis is initiated involving photophysics derived from various semiconductor properties (1: photon absorption, 2: exciton separation). The generated charge carriers need to be transferred to surfaces effectively utilizing the interfaces (3: carrier diffusion, 4: carrier transport). Consequently, electrocatalysis finishes the process by producing products on the surface (5: catalytic efficiency, 6: mass transfer of reactants and products). Successful photocatalytic water splitting requires the enhancement of efficiency at each stage. Most critically, a fundamental understanding of the interfacial phenomena is highly desired for establishing "photocatalysis by design" concepts, where the kinetic bottleneck within a process is identified by further improving the specific properties of photocatalytic materials as opposed to blind material screening. Theoretical modeling using the identified quantitative parameters can effectively predict the theoretically attainable photon-conversion yields. This article provides an overview of the state-of-the-art theoretical understanding of interfacial problems mainly developed in our laboratory. Photocatalytic water splitting (especially hydrogen evolution on metal surfaces) was selected as a topic, and the photophysical and electrochemical processes that occur at semiconductor-metal, semiconductor-electrolyte and metal-electrolyte interfaces are discussed.

  11. Influence of early furosemide injection (F0) on the split renal function

    International Nuclear Information System (INIS)

    Donoso, G.; Piepsz, A.; Ham, H.


    Split renal function obtained by means of Tc-99m MAG3 renography is considered nowadays as a robust, accurate and reproducible parameter provided it is calculated at a moment at which no escape of the tracer out of the kidney has occurred. The question arises whether simultaneous administration of furosemide with the tracer (F0) might accelerate the escape of the tracer resulting in an underestimation of the split renal function. From our data base, we have selected 36 clinically stable children in whom both F0 and F+20 diuretic renography were performed. In all cases F+20 preceded F0. The mean interval between the two tests was 17 months. The renography was carried out according to the usual procedure and split renal function was calculated on the basis of 1 to 2 minutes background corrected renal activity using the three classical algorithms: the integral method, the slope method and the Rutland - Patlak plot. In order to evaluate the effect on split renal function of early escape of the tracer, the patients were analysed according to the Tmax of the renogram for both the F0 and F+20 tests. Results: For the F+20, all Tmax values were more than 3 minutes. For the F0 test, T max was higher than 3 min in 53 kidneys and lower than 3 min in 19 kidneys (all unilaterally in 19 patients): 160 seconds in 10 kidneys, 140 seconds in 8 kidneys and 100 seconds in 1.On F0, for the kidneys with T max shorter than 3 min, there was a tendency of having an underestimation of the split renal function, taking as reference the split renal function observed on F+20. This observation however was only statistically significant for the slope method (mean of difference = - 5.36, s;d; 7.2, p=0.03). There was a tendency of having lower values for the Patlak-Rutland plot (mean of difference = - 2.19, s.d. 3.68, p=0.07), but for the integral method, no difference was observed (mean of difference = + 0,7, s.d. 3,4, p=0.5). In conclusion: Simultaneous administration of furosemide with the

  12. Nonlinear Fracture Mechanics and Plasticity of the Split Cylinder Test

    DEFF Research Database (Denmark)

    Olesen, John Forbes; Østergaard, Lennart; Stang, Henrik


    The split cylinder testis subjected to an analysis combining nonlinear fracture mechanics and plasticity. The fictitious crack model is applied for the analysis of splitting tensile fracture, and the Mohr-Coulomb yield criterion is adopted for modelling the compressive crushing/sliding failure. Two...... demonstrates the influence of varying geometry or constitutive properties. For a split cylinder test in load control it is shown how the ultimate load is either plasticity dominated or fracture mechanics dominated. The transition between the two modes is related to changes in geometry or constitutive...... properties. This implies that the linear elastic interpretation of the ultimate splitting force in term of the uniaxial tensile strength of the material is only valid for special situations, e.g. for very large cylinders. Furthermore, the numerical analysis suggests that the split cylinder test is not well...

  13. Optimizing TCP Performance over UMTS with Split TCP Proxy

    DEFF Research Database (Denmark)

    Hu, Liang; Dittmann, Lars


    . To cope with large delay bandwidth product, we propose a novel concept of split TCP proxy which is placed at GGSN between UNITS network and Internet. The split proxy divides the bandwidth delay product into two parts, resulting in two TCP connections with smaller bandwidth delay products which can...... be pipelined and thus operating at higher speeds. Simulation results show, the split TCP proxy can significantly improve the TCP performance in terms of RLC throughput under high bit rate DCH channel scenario (e.g.256 kbps). On the other hand, it only brings small performance improvement under low bit rate DCH...... scenario (e.g.64 kbps). Besides, the split TCP proxy brings more performance gain for downloading large files than downloading small ones. To the end, for the configuration of the split proxy, an aggressive initial TCP congestion window size (e.g. 10 MSS) at proxy is particularly useful for radio links...

  14. Photoelectrochemical solar water splitting: From basic principles to advanced devices

    Directory of Open Access Journals (Sweden)

    Bandar Y.Alfaifi


    Full Text Available Photoelectrochemical water splitting (PEC offers a promising path for sustainable generation of hydrogen fuel. However, improving solar fuel water splitting efficiency facing tremendous challenges, due to the energy loss related to fast recombination of the photogenerated charge carriers, electrode degradation, as well as limited light harvesting. This review focuses on the brief introduction of basic fundamental of PEC water splitting and the concept of various types of water splitting approaches. Numerous engineering strategies for the investgating of the higher efficiency of the PEC, including charge separation, light harvesting, and co-catalysts doping, have been discussed. Moreover, recent remarkable progress and developments for PEC water splitting with some promising materials are discussed. Recent advanced applications of PEC are also reviewed. Finally, the review concludes with a summary and future outlook of this hot field.

  15. Microscopic studies of the phase transition in ferroelastic BiVO sub 4 by using magnetic resonances of sup 5 sup 1 V and Mn sup 2 sup +

    CERN Document Server

    Yeom, T H


    The temperature dependences of the asymmetry parameter eta of the sup 5 sup 1 V nucleus and the second order zero-splitting (ZFS) parameters D and E of the Mn sup 2 sup + impurity ion in BiVO sub 4 single crystals are fitted with a function alpha(T sub c - T) supbeta. The (T sub c - T) sup 1 sup / sup 2 behavior resembles Landau's theory of the second-order phase transition in ferroelectric crystals. The temperature dependence of the electric field gradient at the V site is also found to be closely related to the lattice parameters of the crystal.

  16. Particularities of surface plasmon-exciton strong coupling with large Rabi splitting

    International Nuclear Information System (INIS)

    Symonds, C; Bonnand, C; Plenet, J C; Brehier, A; Parashkov, R; Lauret, J S; Deleporte, E; Bellessa, J


    This paper presents some of the particularities of the strong coupling regime occurring between surface plasmon (SP) modes and excitons. Two different active materials were deposited on a silver film: a cyanine dye J-aggregate, and a two-dimensional layered perovskite-type semiconductor. The dispersion relations, which are deduced from angular resolved reflectometry spectra, present an anticrossing characteristic of the strong coupling regime. The wavevector is a good parameter to determine the Rabi splitting. Due to the large interaction energies (several hundreds of milli-electron-volts), the calculations at constant angle can induce an overestimation of the Rabi splitting of more than a factor of two. Another property of polaritons based on SP is their nonradiative character. In order to observe the polaritonic emission, it is thus necessary to use particular extraction setups, such as gratings or prisms. Otherwise only the incoherent emission can be detected, very similar to the bare exciton emission

  17. ΔI = 1 Signature Splitting in Signature Partners of Odd Mass Superdeformed Nuclei

    Directory of Open Access Journals (Sweden)

    Khalaf A. M.,


    Full Text Available The spins, transition energies, rotational frequencies, kinematic and dynamic moment of inertia of rotational bands of signature partners pairs of odd–A superdeformed bands in A190 region were calculated by proposing a simple model based on collective rotational model. Simulated search program was written to determine the model parameters. The calculated results agree with experimental data for fourteen signature partner pairs in Hg/Tl/Pb/Bi/nuclei. We investigated the ∆I=1 signature splitting by extracted the difference between the average transitions I+2 ! I and I ! I-2 energies in one band and the transition I+1 ! I-1 energies in its signature partner. Most of the signature partners in this region show large amplitude staggering. The signature splitting has the effect of increasing dynamical moment of inertia J 2 for favored band and decreasing J 2 for the unfavored band.

  18. Field-Split Preconditioned Inexact Newton Algorithms

    KAUST Repository

    Liu, Lulu


    The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm is presented as a complement to additive Schwarz preconditioned inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. We consider both types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Numerical experiments show that MSPIN can be significantly more robust than Newton methods based on global linearizations, and that MSPIN can be more robust than ASPIN and maintain fast convergence even for challenging problems, such as high Reynolds number Navier--Stokes equations.

  19. Split-Field Magnet facility upgraded

    CERN Multimedia

    CERN PhotoLab


    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  20. Application of orthorhombic standardization in magnetic susceptibility studies of localized spin models with S=1, 3/2, 2, 5/2

    Energy Technology Data Exchange (ETDEWEB)

    Pełka, Robert, E-mail: [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, E. Radzikowskiego 152, 31-342 Kraków (Poland); Rudowicz, Czesław [Faculty of Chemistry, A. Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland)


    The standardization idea is nowadays tacitly accepted in EMR area, however, its usefulness in magnetism studies has not been fully recognized as yet. This idea arises due to intrinsic features of orthorhombic Hamiltonians of any physical nature, including the crystal (ligand) field (CF/LF) Hamiltonians or the zero-field splitting (ZFS) ones. Standardization limits the ratio of the orthorhombic parameter to the axial one to a fixed range between 0 and a specific value that depends on the notation used. For the ZFS parameters expressed in the conventional spin Hamiltonian (SH) notation the ratio λ=E/D can always be limited to the range (0, ±1/3) by appropriate choice of coordinate system. Implications of standardization of orthorhombic spin Hamiltonians for interpretation of experimental magnetic susceptibility data are considered. Using a numerical example, we show the existence of alternative solutions for ZFS parameters potentially obtainable from fitting experimental magnetic data and discuss their importance. For the first time algebraic applications of the standardization to the expressions for magnetic susceptibility tensor derived earlier for localized spin models with S=1, 3/2, 2, 5/2 and with rhombic anisotropy are explored. The numerical and algebraic results allow us to formulate an 'invariance principle'. These considerations facilitate interpretation of experimental magnetic data and provide an additional check of correctness of analytical magnetic susceptibility expressions.

  1. Use of DAGMan in CRAB3 to Improve the Splitting of CMS User Jobs

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, M. [Notre Dame U.; Mascheroni, M. [Fermilab; Woodard, A. [Notre Dame U.; Belforte, S. [INFN, Trieste; Bockelman, B. [Nebraska U.; Hernandez, J. M. [Madrid, CIEMAT; Vaandering, E. [Fermilab


    CRAB3 is a workload management tool used by CMS physicists to analyze data acquired by the Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider (LHC). Research in high energy physics often requires the analysis of large collections of files, referred to as datasets. The task is divided into jobs that are distributed among a large collection of worker nodes throughout the Worldwide LHC Computing Grid (WLCG). Splitting a large analysis task into optimally sized jobs is critical to efficient use of distributed computing resources. Jobs that are too big will have excessive runtimes and will not distribute the work across all of the available nodes. However, splitting the project into a large number of very small jobs is also inefficient, as each job creates additional overhead which increases load on infrastructure resources. Currently this splitting is done manually, using parameters provided by the user. However the resources needed for each job are difficult to predict because of frequent variations in the performance of the user code and the content of the input dataset. As a result, dividing a task into jobs by hand is difficult and often suboptimal. In this work we present a new feature called “automatic splitting” which removes the need for users to manually specify job splitting parameters. We discuss how HTCondor DAGMan can be used to build dynamic Directed Acyclic Graphs (DAGs) to optimize the performance of large CMS analysis jobs on the Grid. We use DAGMan to dynamically generate interconnected DAGs that estimate the processing time the user code will require to analyze each event. This is used to calculate an estimate of the total processing time per job, and a set of analysis jobs are run using this estimate as a specified time limit. Some jobs may not finish within the alloted time; they are terminated at the time limit, and the unfinished data is regrouped into smaller jobs and resubmitted.

  2. Use of DAGMan in CRAB3 to improve the splitting of CMS user jobs (United States)

    Wolf, M.; Mascheroni, M.; Woodard, A.; Belforte, S.; Bockelman, B.; Hernandez, J. M.; Vaandering, E.


    CRAB3 is a workload management tool used by CMS physicists to analyze data acquired by the Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider (LHC). Research in high energy physics often requires the analysis of large collections of files, referred to as datasets. The task is divided into jobs that are distributed among a large collection of worker nodes throughout the Worldwide LHC Computing Grid (WLCG). Splitting a large analysis task into optimally sized jobs is critical to efficient use of distributed computing resources. Jobs that are too big will have excessive runtimes and will not distribute the work across all of the available nodes. However, splitting the project into a large number of very small jobs is also inefficient, as each job creates additional overhead which increases load on infrastructure resources. Currently this splitting is done manually, using parameters provided by the user. However the resources needed for each job are difficult to predict because of frequent variations in the performance of the user code and the content of the input dataset. As a result, dividing a task into jobs by hand is difficult and often suboptimal. In this work we present a new feature called “automatic splitting” which removes the need for users to manually specify job splitting parameters. We discuss how HTCondor DAGMan can be used to build dynamic Directed Acyclic Graphs (DAGs) to optimize the performance of large CMS analysis jobs on the Grid. We use DAGMan to dynamically generate interconnected DAGs that estimate the processing time the user code will require to analyze each event. This is used to calculate an estimate of the total processing time per job, and a set of analysis jobs are run using this estimate as a specified time limit. Some jobs may not finish within the alloted time; they are terminated at the time limit, and the unfinished data is regrouped into smaller jobs and resubmitted.

  3. Variability and origin of seismic anisotropy across eastern Canada: Evidence from shear wave splitting measurements (United States)

    Darbyshire, F. A.; Bastow, I. D.; Forte, A. M.; Hobbs, T. E.; Calvel, A.; Gonzalez-Monteza, A.; Schow, B.


    Measurements of seismic anisotropy in continental regions are frequently interpreted with respect to past tectonic processes, preserved in the lithosphere as "fossil" fabrics. Models of the present-day sublithospheric flow (often using absolute plate motion as a proxy) are also used to explain the observations. Discriminating between these different sources of seismic anisotropy is particularly challenging beneath shields, whose thick (≥200 km) lithospheric roots may record a protracted history of deformation and strongly influence underlying mantle flow. Eastern Canada, where the geological record spans ˜3 Ga of Earth history, is an ideal region to address this issue. We use shear wave splitting measurements of core phases such as SKS to define upper mantle anisotropy using the orientation of the fast-polarization direction ϕ and delay time δt between fast and slow shear wave arrivals. Comparison with structural trends in surface geology and aeromagnetic data helps to determine the contribution of fossil lithospheric fabrics to the anisotropy. We also assess the influence of sublithospheric mantle flow via flow directions derived from global geodynamic models. Fast-polarization orientations are generally ENE-WSW to ESE-WNW across the region, but significant lateral variability in splitting parameters on a ≤100 km scale implies a lithospheric contribution to the results. Correlations with structural geologic and magnetic trends are not ubiquitous, however, nor are correlations with geodynamically predicted mantle flow directions. We therefore consider that the splitting parameters likely record a combination of the present-day mantle flow and older lithospheric fabrics. Consideration of both sources of anisotropy is critical in shield regions when interpreting splitting observations.

  4. New Insight of Northern Apennines (Italy): SKS Splitting Measurements Reveal a Complex Anisotropic Structure (United States)

    Salimbeni, S.; Pondrelli, S.; Margheriti, L.; Levin, V.; Park, J.; Plomerova, J.


    The multidisciplinary RETREAT project (REtreating-Trench, Extension and Accretion Tectonics) is focused on the development of a 3D self-consistent dynamic model of the syn-convergent extension in the Northern Apennines. The seismological deployment of the Project started on 2003 and closed on September 2006, using 10 instruments lent by the GFU and 25 instruments lent by PASSCAL, added to the permanent stations of the Italian National Network. Many of the stations were deployed along a NE-SW transect across the Apennine chain. We present here new results of seismic anisotropy analysis obtained from SKS core-refracted shear waves. The study of SKS splitting is applied on twenty teleseismic earthquakes; for all of them we calculate the anisotropic parameters (delay time and fast polarization direction) by minimizing the energy in the transverse component. Our analysis assesses uncertainty by testing the parameters for stability to noise. Previous studies of splitting analysis have found in the study region evidence for tectonic domains in which a coherent splitting signal can be found. The Tuscany domain (Tyrrhenian side) shows homogeneous NW-SE fast axes directions; the Po-Plain domain (Eastern side of the Apennines) shows a N-S to NE-SW directions, here strongly influenced by backazimuth. To better define the complex structure that may exist below the Northern Apennines and Po Plain we apply the cross convolution method of Menke and Levin (2003) to discriminate whether a two-layer anisotropic model fits the splitting pattern more convincingly that a simple one-layer model. Previous analysis suggested that structure beneath the Tuscany side is simpler; a single anisotropic layer with a NW-SE fast polarization direction is in agreement with all the dataset. Beneath the Po Plain the complexity of the structure is confirmed in the analysis of most stations.

  5. Control of wall band splitting in Streptococcus faecalis. (United States)

    Koch, A L; Higgins, M L


    Computer reconstructions of 659 and 1325 whole mounted, shadowed cells, randomly chosen from cultures of Streptococcus faecalis undergoing balanced growth and doubling in mass every 83 min and 30 min, respectively, were used to analyse the cell cycle. The size limits and duration of phases of the cell cycle were estimated by applying a method previously described by the authors, details of which are given here to allow others to use the method. Deeply constricted cells whose primary septal radius, Rs, was less than or equal to 0.18 micron were considered as belonging to an E-phase ending the cell cycle. The statistical parameters of these E-phase cells were used to calculate the mean and coefficient of variation of dividing cells. These latter values, in turn, predicted the moments of the total population well enough so that the method's assumptions were judged adequately satisfied. Therefore, the method was considered applicable to other phases and sub-phases of the cell cycle of these two cultures. The E-phase cells were further classified as having either 0, 1 or 2 secondary growth zones, allowing us to calculate the percentage of newborn cells without growth zones. In the slow-growing cells, 69% of the cells arose with no growth zone. On the other hand, in more rapidly growing cells 16% of the cells or less arose with no growth zone. Our calculations showed that they could exist without a growth zone for only 2 and 0.1 min, respectively. We also classified cells as possessing a 'birth site' if the volume between the two daughter bands was greater than 0, but less than 0.06 micron3. From the statistical properties of such cells with new growth zones, the mean pole time, W, was estimated. We also estimated W from the size of cells in E-phase. The major conclusion is that the pole time is only slightly greater than the mass doubling time at both growth rates. Since DNA synthesis in S. faecalis takes longer (C = 50 to 52 min) than the mass doubling time in rich

  6. Measurement of the ground-state hyperfine splitting of antihydrogen

    International Nuclear Information System (INIS)

    Juhasz, B.; Widmann, E.


    Full text: The hydrogen atom is one of the most extensively studied atomic systems, and its ground state hyperfine splitting (GS-HFS) of ν HFS = 1.42 GHz has been measured with an extremely high precision of δν HFS /ν HFS ∼ 10 -12 . Therefore, the antimatter counterpart of hydrogen, the antihydrogen atom, consisting of an antiproton and a positron, is an ideal laboratory for studying the CPT symmetry. As a test of the CPT invariance, measuring ν HFS of antihydrogen can surpass in accuracy a measurement of the 1S-2S transition frequency proposed by other groups. In fact, it has several advantages over a 1S-2S measurement. Firstly, it does not require the (neutral) antihydrogen atoms to be trapped. Secondly, the only existing consistent extension of the standard model, which is based on a microscopic theory of CPT and Lorentz violation, predicts that νHFS should be more sensitive to CPT violations. In addition, the parameters introduced by Kostelecky et al. have the dimension of energy (or frequency). Therefore, by measuring a relatively small quantity on an energy scale (like the 1.42 GHz GS-HFS splitting), a smaller relative accuracy is needed to reach the same absolute precision for a CPT test. This makes a determination of νHFS with a relative accuracy of 10 -4 competitive to the measured relative mass difference of K 0 and -- K 0 of 10 -18 , which is often quoted as the most precise CPT test so far. The ASACUSA collaboration at CERN's Antiproton Decelerator (AD) has recently submitted a proposal to measure νHFS of antihydrogen in an atomic beam apparatus similar to the ones which were used in the early days of hydrogen HFS spectroscopy. The apparatus consists of two sextupole magnets for the selection and analysis of the spin of the antihydrogen atoms, and a microwave cavity to flip the spin. This method has the advantage that antihydrogen atoms of temperatures up to 150 K, 'evaporating' from a formation region, can be used. Numerical simulations show

  7. Shear-Wave Splitting Within the Southeastern Carpathian Arc, Transylvanian Basin, Romania (United States)

    Stanciu, A. C.; Russo, R. M.; Mocanu, V. I.; Munteanu, L.


    We present 75 new measurements of shear wave splitting at 4 temporary broadband seismic stations that we deployed in the Transylvanian Basin within the Carpathian Arc, Romania. The Tisza-Dacia terranes, which form the basement of this basin, were accommodated in the space between the thick, old, rigid and cold East European Platform and the Moesian Platform during the Miocene. This movement was driven by the subduction of a part of the Tethys Ocean, which led to the formation of Carpathian orogen system. In Romania, the mountains are divided into the Eastern Carpathians, at the limit of Transylvanian Basin and the East European Platform along the Tornquist-Teisseyre Suture Zone, and the Southern Carpathians, at the limit with Moesian Platform. They connect to the West of the Carpathian Bend Zone where a very active high velocity seismic body generates intermediate depth earthquakes between 70 and 200 km beneath the Vrancea seismogenic zone. We analyzed splitting of SKS and SKKS phases recorded at epicentral distances between 87 and 150 degrees using the method of Silver and Chan (1991). We estimated splitting parameters, fast shear polarization azimuth and delay time, using both weighted averages of individual splitting measurements (Helffrich et al., 1994) and simultaneous linearization of all clearly recorded SK(K)S waves (Wolfe and Silver, 1998). For COMD, located at the contact of the Carpathian Bend Zone and Transylvanian Basin, we obtained a fast shear polarization azimuth trending NE-SW, parallel to the contact and to the strike of the Vrancea seismic body. For 10 suitable events recorded at IACB, at the contact of the Neogene Volcanic zone with the Eastern Carpathians, we did not observe any splitting; we consider the station splitting to be null. The fast shear polarization azimuth for PMAR, at the limit between Tisza-Dacia block and Southern Carpathians thrust belt, and at CHDM, within the Transylvanian Basin, is NW-SE similar to a regional splitting

  8. Electron paramagnetic resonance parameters of Mn4+ ion in h ...

    Indian Academy of Sciences (India)

    The EPR parameters ( factors ∥, ⊥ and zero-field splitting ) of Mn4+ ion in h-BaTiO3 crystal are calculated from the complete high-order perturbation formulas based on a two-mechanism model for the EPR parameters of 33 ions in trigonal symmetry. In the model, not only the widely used crystal-field mechanism, ...

  9. Inventory parameters

    CERN Document Server

    Sharma, Sanjay


    This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.

  10. Photoswitchable Rabi Splitting in Hybrid Plasmon-Waveguide Modes. (United States)

    Lin, Linhan; Wang, Mingsong; Wei, Xiaoling; Peng, Xiaolei; Xie, Chong; Zheng, Yuebing


    Rabi splitting that arises from strong plasmon-molecule coupling has attracted tremendous interests. However, it has remained elusive to integrate Rabi splitting into the hybrid plasmon-waveguide modes (HPWMs), which have advantages of both subwavelength light confinement of surface plasmons and long-range propagation of guided modes in dielectric waveguides. Herein, we explore a new type of HPWMs based on hybrid systems of Al nanodisk arrays covered by PMMA thin films that are doped with photochromic molecules and demonstrate the photoswitchable Rabi splitting with a maximum splitting energy of 572 meV in the HPWMs by controlling the photoisomerization of the molecules. Through our experimental measurements combined with finite-difference time-domain (FDTD) simulations, we reveal that the photoswitchable Rabi splitting arises from the switchable coupling between the HPWMs and molecular excitons. By harnessing the photoswitchable Rabi splitting, we develop all-optical light modulators and rewritable waveguides. The demonstration of Rabi splitting in the HPWMs will further advance scientific research and device applications of hybrid plasmon-molecule systems.

  11. First-order correct bootstrap support adjustments for splits that allow hypothesis testing when using maximum likelihood estimation. (United States)

    Susko, Edward


    The most frequent measure of phylogenetic uncertainty for splits is bootstrap support. Although large bootstrap support intuitively suggests that a split in a tree is well supported, it has not been clear how large bootstrap support needs to be to conclude that there is significant evidence that a hypothesized split is present. Indeed, recent work has shown that bootstrap support is not first-order correct and thus cannot be directly used for hypothesis testing. We present methods that adjust bootstrap support values in a maximum likelihood (ML) setting so that they have an interpretation corresponding to P values in conventional hypothesis testing; for instance, adjusted bootstrap support larger than 95% occurs only 5% of the time if the split is not present. Through examples and simulation settings, it is found that adjustments always increase the level of support. We also find that the nature of the adjustment is fairly constant across parameter settings. Finally, we consider adjustments that take into account the data-dependent nature of many hypotheses about splits: the hypothesis that they are present is being tested because they are in the tree estimated through ML. Here, in contrast, we find that bootstrap probability often needs to be adjusted downwards.

  12. Wideband metasurface filter based on complementary split-ring resonators (United States)

    Zhang, Tong; Zhang, Jiameng; Xu, Jianchun; Wang, Qingmin; Zhao, Ruochen; Liu, Hao; Dong, Guoyan; Hao, Yanan; Bi, Ke


    A wideband metasurface filter based on complementary split-ring resonators (CSRR) has been prepared. The frequency and transmission bandwidth of the metasurface filters with different split widths are discussed. After analyzing the mechanism of the metasurface, the proposed metasurface filters are fabricated. The electromagnetic properties of the metasurface are measured by a designed test system. The measured results are in good agreement with the simulated ones, which shows that the metasurface filter has a wideband property. As the split width of the CSRR increases, the frequency of the passband shifts to higher frequency regions and the transmission bandwidth decreases.

  13. A splitting algorithm for directional regularization and sparsification

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Nielsen, Mads


    We present a new split-type algorithm for the minimization of a p-harmonic energy with added data fidelity term. The half-quadratic splitting reduces the original problem to two straightforward problems, that can be minimized efficiently. The minimizers to the two sub-problems can typically...... be computed pointwise and are easily implemented on massively parallel processors. Furthermore the splitting method allows for the computation of solutions to a large number of more advanced directional regularization problems. In particular we are able to handle robust, non-convex data terms, and to define...

  14. Ridge Splitting Technique for Horizontal Augmentation and Immediate Implant Placement

    Directory of Open Access Journals (Sweden)

    Papathanasiou Ioannis


    Full Text Available Insufficient width of the alveolar ridge often prevents ideal implant placement. Guided bone regeneration, bone grafting, alveolar ridge splitting and combinations of these techniques are used for the lateral augmentation of the alveolar ridge. Ridge splitting is a minimally invasive technique indicated for alveolar ridges with adequate height, which enables immediate implant placement and eliminates morbidity and overall treatment time. The classical approach of the technique involves splitting the alveolar ridge into 2 parts with use of ostetomes and chisels. Modifications of this technique include the use of rotating instrument, screw spreaders, horizontal spreaders and ultrasonic device.

  15. Market Split based Congestion Management for Networks with Loops (United States)

    Marmiroli, Marta; Tanimoto, Masahiko; Tsukamoto, Yukitoki; Yokoyama, Ryuichi

    Market splitting is one of the methods to solve the transmission congestion problem associated with the introduction of competitive electricity market and transmission access. Based on the concept of price difference among congested areas, the market splitting approach produces a solution that strongly informs market participants of congestion path. In this paper, an algorithm to solve the market splitting problem for complex networks including loop structures is proposed. The method, based on an algebraic approach, ensures a feasible optimal solution verifiable and easily understandable by the market participants. Complex networks are transformed into simple radial ones using the delta-star approach. The method was tested on large problems to evaluate the performances.

  16. Importance of Nonperturbative QCD Parameters for Bottom Mesons

    Directory of Open Access Journals (Sweden)

    A. Upadhyay


    Full Text Available The importance of nonperturbative quantum chromodynamics (QCD parameters is discussed in context to the predicting power for bottom meson masses and isospin splitting. In the framework of heavy quark effective theory, the work presented here focuses on the different allowed values of the two nonperturbative QCD parameters used in heavy quark effective theory formula, and using the best fitted parameter, masses of the excited bottom meson states in jp=1/2+ doublet in strange and nonstrange sectors are calculated here. The calculated masses are found to be matching well with experiments and other phenomenological models. The mass splitting and hyperfine splitting have also been analyzed for both strange and nonstrange heavy mesons with respect to spin and flavor symmetries.

  17. Field Monitoring Protocol. Mini-Split Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Dane [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fang, Xia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomerlin, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, E. [Mountain Energy Partnership, Longmont, CO (United States)


    This Building America program report provides a detailed method for accurately measuring and monitoring performance of a residential mini-split heat pump, which will be used in high-performance retrofit applications.

  18. Electrochemical Water-Splitting Based on Hypochlorite Oxidation

    Czech Academy of Sciences Publication Activity Database

    Minhová Macounová, Kateřina; Simic, N.; Ahlberg, E.; Krtil, Petr


    Roč. 137, č. 23 (2015), s. 7262-7265 ISSN 0002-7863 Institutional support: RVO:61388955 Keywords : electrochemistry * hypochlorite oxidation * water-splitting Subject RIV: CG - Electrochemistry Impact factor: 13.038, year: 2015

  19. Possibilities of Intermodal Passenger Transport between Split Airport and Islands

    Directory of Open Access Journals (Sweden)

    Slavko Roguljić


    Full Text Available A substantial number of passengers landing at Split Airportduring the tourist season continue their journey to the destinationson the central Dalmatian islands. Today the transfer isdone mainly through the ferry port in Split. The insufficient capacitiesof roads from the airport to the city centre which accommodatesthe ferry port and waiting for the embarkation onthe ferries and the transport itself to the islands and the finaldestinations take much longer than the air transport itself toSplit. The paper studies the possible improvements of the existingcondition as well as the construction completion and openingto traffic of the passenger sea port next to Split Airport whichwould provide a much better solution of passenger transfer tothe islands.

  20. Effect of Repeated Food Morsel Splitting on Jaw Muscle Control

    DEFF Research Database (Denmark)

    A, Kumar; Svensson, Krister G; Baad-Hansen, Lene


    Mastication is a complex motor task often initiated by splitting of the food morsel between the anterior teeth. Training of complex motor tasks has consistently been shown to trigger neuroplastic changes in corticomotor control and optimization of muscle function. It is not known if training...... and repeated food morsel splitting lead to changes in jaw muscle function. Objective: To investigate if repeated splitting of food morsels in participants with natural dentition changes the force and jaw muscle electromyographic (EMG) activity. Methods: Twenty healthy volunteers (mean age = 26.2 ± 3.9 years......) participated in a single one-hour session divided into six series. Each series consisted of ten trials of a standardized behavioral task (total of 60 trials). The behavioral task was to hold and split a food morsel (8 mm, 180 mg placebo tablet) placed on a bite force transducer with the anterior teeth...

  1. Acoustic Split-Beam Echosounder Data (EK60) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Southeast Fisheries Science Center Mississippi Laboratories collects data using Simrad EK60 scientific split-beam acoustic echosounders during resource...

  2. The homogeneous property and flux splitting in gas dynamics (United States)

    Lerat, A.

    The homogeneous property of fluxes in gas dynamics is investigated, and its consequences concerning the flux splitting introduced by Steger and Warming (1981) are examined. It is shown that, for any hyperbolic system w sub t + f(w) sub x = 0 which satisfies the homogeneous property, the flux f(w) can be expressed in terms of the eigenvalues and eigenvectors of the matrix A(w) = df(w)/dw. This same result is also found to hold for the split fluxes f(+)(w) and f(-)(w). The problem of the validity of flux splitting is studied using these results. Three applications of flux splitting are then considered. The first application concerns uncentered schemes and particularly a precise analysis of their stability, the second is connected with a method for correcting the dispersive error of second-order accurate schemes, and the third deals with a nonreflective boundary condition.

  3. Recent Progress in Energy-Driven Water Splitting. (United States)

    Tee, Si Yin; Win, Khin Yin; Teo, Wee Siang; Koh, Leng-Duei; Liu, Shuhua; Teng, Choon Peng; Han, Ming-Yong


    Hydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost-effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic-integrated solar-driven water electrolysis.

  4. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J.; Podorson, D.; Varshney, K.


    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  5. Opportunistic splitting for scheduling using a score-based approach

    KAUST Repository

    Rashid, Faraan


    We consider the problem of scheduling a user in a multi-user wireless environment in a distributed manner. The opportunistic splitting algorithm is applied to find the best group of users without reporting the channel state information to the centralized scheduler. The users find the best among themselves while requiring just a ternary feedback from the common receiver at the end of each mini-slot. The original splitting algorithm is modified to handle users with asymmetric channel conditions. We use a score-based approach with the splitting algorithm to introduce time and throughput fairness while exploiting the multi-user diversity of the network. Analytical and simulation results are given to show that the modified score-based splitting algorithm works well as a fair scheduling scheme with good spectral efficiency and reduced feedback. © 2012 IEEE.

  6. Modeling the lowest-cost splitting of a herd of cows by optimizing a cost function (United States)

    Gajamannage, Kelum; Bollt, Erik M.; Porter, Mason A.; Dawkins, Marian S.


    Animals live in groups to defend against predation and to obtain food. However, for some animals—especially ones that spend long periods of time feeding—there are costs if a group chooses to move on before their nutritional needs are satisfied. If the conflict between feeding and keeping up with a group becomes too large, it may be advantageous for some groups of animals to split into subgroups with similar nutritional needs. We model the costs and benefits of splitting in a herd of cows using a cost function that quantifies individual variation in hunger, desire to lie down, and predation risk. We model the costs associated with hunger and lying desire as the standard deviations of individuals within a group, and we model predation risk as an inverse exponential function of the group size. We minimize the cost function over all plausible groups that can arise from a given herd and study the dynamics of group splitting. We examine how the cow dynamics and cost function depend on the parameters in the model and consider two biologically-motivated examples: (1) group switching and group fission in a herd of relatively homogeneous cows, and (2) a herd with an equal number of adult males (larger animals) and adult females (smaller animals).

  7. Upper Mantle Dynamics of Bangladesh by Splitting Analyzes of Core Refracted SKS and SKKS Waves (United States)

    Tiwari, A. K.; Bhushan, K.; Eken, T.; Singh, A.


    New shear wave splitting measurements are obtained from hitherto less studied Bengal Basin using core refracted SKS and SKKS phases. Splitting parameters, time delays (δt) and fast polarization directions (Φ) were estimated through analysis of 64 high-quality waveforms (≥ 2.5 signal to noise ratio) from 29 earthquakes with magnitude ≥5.5 recorded at eight seismic stations deployed over Bangladesh. We found no evidence of splitting which indicates azimuthal isotropy beneath the region. Null measurements can be explained by near vertical axis of anisotropy or by the presence of multiple anisotropic layers with different fast polarization directions, where combined effect results in null. We consider that the presence of partial melts within the upper mantle due to Kerguelen mantle plume activities may be the potential geodynamic cause for observed null measurements. It locally perturbed mantle convection flow beneath the region and reoriented the lattice preferred orientation of the upper mantle mineral mainly olivine as this disabled the core refracted SKS and SKKS phases to scan the anisotropic characteristics of the region, and hence null measurements are obtained.

  8. Endoscopic classification of representations of quasi-split unitary groups

    CERN Document Server

    Mok, Chung Pang


    In this paper the author establishes the endoscopic classification of tempered representations of quasi-split unitary groups over local fields, and the endoscopic classification of the discrete automorphic spectrum of quasi-split unitary groups over global number fields. The method is analogous to the work of Arthur on orthogonal and symplectic groups, based on the theory of endoscopy and the comparison of trace formulas on unitary groups and general linear groups.

  9. Spectral splitting for thermal management in photovoltaic cells (United States)

    Apostoleris, Harry; Chiou, Yu-Cheng; Chiesa, Matteo; Almansouri, Ibraheem


    Spectral splitting is widely employed as a way to divide light between different solar cells or processes to optimize energy conversion. Well-understood but less explored is the use of spectrum splitting or filtering to combat solar cell heating. This has impacts both on cell performance and on the surrounding environment. In this manuscript we explore the design of spectral filtering systems that can improve the thermal and power-conversion performance of commercial PV modules.

  10. Split Octonion electrodynamics and unified fields of dyons

    International Nuclear Information System (INIS)

    Bisht, P.S.


    Split octonion electrodynamics has been developed in terms of Zorn's vector matrix realization by reformulating electromagnetic potential, current, field tensor and other dynamical quantities. Corresponding field equation (Unified Maxwell's equations) and equation of motion have been reformulated by means of split octonion and its Zorn vector realization in unique, simpler and consistent manner. It has been shown that this theory reproduces the dyon field equations in the absence of gravito-dyons and vice versa

  11. Visualization of the sequence of a couple splitting outside shop

    DEFF Research Database (Denmark)


    Visualization of tracks of couple walking together before splitting and one goes into shop the other waits outside. The visualization represents the sequence described in figure 7 in the publication 'Taking the temperature of pedestrian movement in public spaces'......Visualization of tracks of couple walking together before splitting and one goes into shop the other waits outside. The visualization represents the sequence described in figure 7 in the publication 'Taking the temperature of pedestrian movement in public spaces'...

  12. A Modified Halpern's Iterative Scheme for Solving Split Feasibility Problems

    Directory of Open Access Journals (Sweden)

    Jitsupa Deepho


    Full Text Available The purpose of this paper is to introduce and study a modified Halpern’s iterative scheme for solving the split feasibility problem (SFP in the setting of infinite-dimensional Hilbert spaces. Under suitable conditions a strong convergence theorem is established. The main result presented in this paper improves and extends some recent results done by Xu (Iterative methods for the split feasibility problem in infinite-dimensional Hilbert space, Inverse Problem 26 (2010 105018 and some others.

  13. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting

    Directory of Open Access Journals (Sweden)

    Jeffrey C. S. Wu


    Full Text Available Hydrogen is the ideal fuel for the future because it is clean, energy efficient, and abundant in nature. While various technologies can be used to generate hydrogen, only some of them can be considered environmentally friendly. Recently, solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen, particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies, a review of photocatalytic water splitting over titania and non-titania based photocatalysts, a discussion of the types of photocatalytic water-splitting approaches, and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here, the development of highly stable visible–light-active photocatalytic materials, and the design of efficient, low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.

  14. A novel split cycle internal combustion engine with integral waste heat recovery

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert; Heikal, Morgan


    Highlights: • A novel engine thermodynamic cycle is proposed. • Theoretical analysis is applied to identify the key parameters of the thermodynamic cycle. • The key stages of the split cycle are analysed via one-dimensional modelling work. • The effecting mechanism of the split cycle efficiency is analysed. - Abstract: To achieve a step improvement in engine efficiency, a novel split cycle engine concept is proposed. The engine has separate compression and combustion cylinders and waste heat is recovered between the two. Quasi-isothermal compression of the charge air is realised in the compression cylinder while isobaric combustion of the air/fuel mixture is achieved in the combustion cylinder. Exhaust heat recovery between the compression and combustion chamber enables highly efficient recovery of waste heat within the cycle. Based on cycle analysis and a one-dimensional engine model, the fundamentals and the performance of the split thermodynamic cycle is estimated. Compared to conventional engines, the compression work can be significantly reduced through the injection of a controlled quantity of water in the compression cylinder, lowering the gas temperature during compression. Thermal energy can then be effectively recovered from the engine exhaust in a recuperator between the cooled compressor cylinder discharge air and the exhaust gas. The resulting hot high pressure air is then injected into a combustor cylinder and mixed with fuel, where near isobaric combustion leads to a low combustion temperature and reduced heat transferred from the cylinder wall. Detailed cycle simulation indicates a 32% efficiency improvement can be expected compared to the conventional diesel engines.

  15. Shear wave splitting and crustal anisotropy in the Eastern Ladakh-Karakoram zone, northwest Himalaya (United States)

    Paul, Arpita; Hazarika, Devajit; Wadhawan, Monika


    Seismic anisotropy of the crust beneath the eastern Ladakh-Karakoram zone has been studied by shear wave splitting analysis of S-waves of local earthquakes and P-to-S or Ps converted phases originated at the crust-mantle boundary. The splitting parameters (Φ and δt), derived from S-wave of local earthquakes with shallow focal depths, reveal complex nature of anisotropy with NW-SE and NE oriented Fast Polarization directions (FPD) in the upper ∼22 km of the crust. The observed anisotropy in the upper crust may be attributed to combined effects of existing tectonic features as well as regional tectonic stress. The maximum delay time of fast and slow waves in the upper crust is ∼0.3 s. The Ps splitting analysis shows more consistent FPDs compared to S-wave splitting. The FPDs are parallel or sub parallel to the Karakoram fault (KF) and other NW-SE trending tectonic features existing in the region. The strength of anisotropy estimated for the whole crust is higher (maximum delay time δt: 0.75 s) in comparison to the upper crust. This indicates that the dominant source of anisotropy in the trans-Himalayan crust is confined within the middle and lower crustal depths. The predominant NW-SE trending FPDs consistently observed in the upper crust as well as in the middle and lower crust near the KF zone support the fact that the KF is a crustal-scale fault which extends at least up to the lower crust. Dextral shearing of the KF creates shear fabric and preferential alignment of mineral grains along the strike of the fault, resulting in the observed FPDs. A Similar observation in the Indus Suture Zone (ISZ) also suggests crustal scale deformation owing to the India-Asia collision.

  16. Statistical behaviour of adaptive multilevel splitting algorithms in simple models

    International Nuclear Information System (INIS)

    Rolland, Joran; Simonnet, Eric


    Adaptive multilevel splitting algorithms have been introduced rather recently for estimating tail distributions in a fast and efficient way. In particular, they can be used for computing the so-called reactive trajectories corresponding to direct transitions from one metastable state to another. The algorithm is based on successive selection–mutation steps performed on the system in a controlled way. It has two intrinsic parameters, the number of particles/trajectories and the reaction coordinate used for discriminating good or bad trajectories. We investigate first the convergence in law of the algorithm as a function of the timestep for several simple stochastic models. Second, we consider the average duration of reactive trajectories for which no theoretical predictions exist. The most important aspect of this work concerns some systems with two degrees of freedom. They are studied in detail as a function of the reaction coordinate in the asymptotic regime where the number of trajectories goes to infinity. We show that during phase transitions, the statistics of the algorithm deviate significatively from known theoretical results when using non-optimal reaction coordinates. In this case, the variance of the algorithm is peaking at the transition and the convergence of the algorithm can be much slower than the usual expected central limit behaviour. The duration of trajectories is affected as well. Moreover, reactive trajectories do not correspond to the most probable ones. Such behaviour disappears when using the optimal reaction coordinate called committor as predicted by the theory. We finally investigate a three-state Markov chain which reproduces this phenomenon and show logarithmic convergence of the trajectory durations

  17. Zero Field Splitting of the chalcogen diatomics using relativistic correlated wave-function methods

    DEFF Research Database (Denmark)

    Rota, Jean-Baptiste; Knecht, Stefan; Fleig, Timo


    The spectrum arising from the (π*)2 configuration of the chalcogen dimers, namely the X21, a2 and b0+ states, is calculated using Wave-Function Theory (WFT) based methods. Two-component (2c) and four-component (4c) MultiReference Configuration Interaction (MRCI) and Fock-Space Coupled Cluster (FS...... by a two-parameter model; Δε, the π* spinor splitting by spin-orbit coupling (SOC) and K, the exchange integral between the π*1 and the π*-1 spinors with respectively angular momenta 1 and −1. This model holds for all systems under study with the exception of Po2....

  18. Pulse Splitting for Harmonic Beamforming in Time-Modulated Linear Arrays

    Directory of Open Access Journals (Sweden)

    Lorenzo Poli


    Full Text Available A novel strategy for harmonic beamforming in time-modulated linear arrays is proposed. The pulse splitting technique is exploited to simultaneously generate two harmonic patterns, one at the central frequency and another at a preselected harmonic of arbitrary order, while controlling the maximum level of the remaining sideband radiations. An optimization strategy based on the particle swarm optimizer is developed in order to determine the optimal parameters describing the pulse sequence used to modulate the excitation weights of the array elements. Representative numerical results are reported and discussed to point out potentialities and limitations of the proposed approach.

  19. Crystal Field Splittings of NdN

    DEFF Research Database (Denmark)

    Warming, E.; Bak, Poul Erik


    The crystal field levels of the Nd (J=9/2) ion in NdN have been determined by inelastic neutron scattering. The crystal field parameters obtained by a least-squares fit to the spectra at 80K are: B4=-0.042+or-0.002K and B6=-0.00042+or-0.00002K. This result contrasts with the point charge model used...

  20. Teleseismic SKS splitting beneath East Antarctica using broad-band stations around Soya Coast (United States)

    Usui, Y.; Kanao, M.


    We observed shear wave splitting of SKS waves from digital seismographs that are recorded at 5 stations around Soya Coast in the Lutzow-Holm Bay, East Antarctica. Their recording systems are composed of a three-component broadband seismometer (CMG-40T), a digital recording unit and a solar power battery supply. The events used were selected from 1999 to 2004 and phase arrival times were calculated using the IASPEI91 earth model (Kennet, 1995). In general, we chose the data from earthquakes with m>6.0 and a distance range 85° < Δ < 130° for the most prominent SKS waves We used the methods of Silver and Chan (1991) for the inversion of anisotropy parameters and estimated the splitting parameters φ (fast polarization direction) and δt (delay time between split waves) assuming a single layer of hexagonal symmetry with a horizontal symmetry axis. The weighted averages of all splitting parameters (φ, δt) for each station are AKR (30±4, 1.30±0.2), LNG (58±6, 1.27±0.2), SKL (67±10, 0.94±0.2), SKV (40±6, 1.28±0.3) and TOT (52±8, 1.26±0.3), where the weights are inversely proportional to the standard deviations for each solution. As compared to typical delay times of SKS waves which show 1.2s (Silver and Chan 1991; Vinnik et al., 1992), the result shows generally the same value. In previous study, Kubo and Hiramatsu (1998) estimate the splitting parameter for Syowa station (SYO), where is located near our using stations in East Antarctica, and the results are (49±3, 0.70±0.1). Although it is consistent with our results for fast polarization direction, δt for our results are large relatively to those of SYO. The difference may be due to either different incident angle or more complex anisotropic structure. We found that fast polarization direction is systematically parallel to coast line in the Lutzow-Holm Bay, East Antarctica, which is consistent with NE-SW paleo compressional stress. The absolute plate motion based on the HS2-NUVEL1 (Gripp and Gordon

  1. Bomb parameters

    International Nuclear Information System (INIS)

    Kerr, George D.; Young, Rebert W.; Cullings, Harry M.; Christry, Robert F.


    The reconstruction of neutron and gamma-ray doses at Hiroshima and Nagasaki begins with a determination of the parameters describing the explosion. The calculations of the air transported radiation fields and survivor doses from the Hiroshima and Nagasaki bombs require knowledge of a variety of parameters related to the explosions. These various parameters include the heading of the bomber when the bomb was released, the epicenters of the explosions, the bomb yields, and the tilt of the bombs at time of explosion. The epicenter of a bomb is the explosion point in air that is specified in terms of a burst height and a hypocenter (or the point on the ground directly below the epicenter of the explosion). The current reassessment refines the energy yield and burst height for the Hiroshima bomb, as well as the locations of the Hiroshima and Nagasaki hypocenters on the modern city maps used in the analysis of the activation data for neutrons and TLD data for gamma rays. (J.P.N.)

  2. Mechanistic formulation of a lineal-quadratic-linear (LQL) model: split-dose experiments and exponentially decaying sources. (United States)

    Guerrero, Mariana; Carlone, Marco


    In recent years, several models were proposed that modify the standard linear-quadratic (LQ) model to make the predicted survival curve linear at high doses. Most of these models are purely phenomenological and can only be applied in the particular case of acute doses per fraction. The authors consider a mechanistic formulation of a linear-quadratic-linear (LQL) model in the case of split-dose experiments and exponentially decaying sources. This model provides a comprehensive description of radiation response for arbitrary dose rate and fractionation with only one additional parameter. The authors use a compartmental formulation of the LQL model from the literature. They analytically solve the model's differential equations for the case of a split-dose experiment and for an exponentially decaying source. They compare the solutions of the survival fraction with the standard LQ equations and with the lethal-potentially lethal (LPL) model. In the case of the split-dose experiment, the LQL model predicts a recovery ratio as a function of dose per fraction that deviates from the square law of the standard LQ. The survival fraction as a function of time between fractions follows a similar exponential law as the LQ but adds a multiplicative factor to the LQ parameter beta. The LQL solution for the split-dose experiment is very close to the LPL prediction. For the decaying source, the differences between the LQL and the LQ solutions are negligible when the half-life of the source is much larger than the characteristic repair time, which is the clinically relevant case. The compartmental formulation of the LQL model can be used for arbitrary dose rates and provides a comprehensive description of dose response. When the survival fraction for acute doses is linear for high dose, a deviation of the square law formula of the recovery ratio for split doses is also predicted.

  3. Mechanistic formulation of a lineal-quadratic-linear (LQL) model: Split-dose experiments and exponentially decaying sources

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Mariana; Carlone, Marco [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States) and Department of Radiation Therapy, Department of Veterans Affairs Medical Center, Washington, DC 20422 (United States); Princess Margaret Hospital and Peel Regional Cancer Center, Toronto, Ontario M5G 2M9 (Canada)


    Purpose: In recent years, several models were proposed that modify the standard linear-quadratic (LQ) model to make the predicted survival curve linear at high doses. Most of these models are purely phenomenological and can only be applied in the particular case of acute doses per fraction. The authors consider a mechanistic formulation of a linear-quadratic-linear (LQL) model in the case of split-dose experiments and exponentially decaying sources. This model provides a comprehensive description of radiation response for arbitrary dose rate and fractionation with only one additional parameter. Methods: The authors use a compartmental formulation of the LQL model from the literature. They analytically solve the model's differential equations for the case of a split-dose experiment and for an exponentially decaying source. They compare the solutions of the survival fraction with the standard LQ equations and with the lethal-potentially lethal (LPL) model. Results: In the case of the split-dose experiment, the LQL model predicts a recovery ratio as a function of dose per fraction that deviates from the square law of the standard LQ. The survival fraction as a function of time between fractions follows a similar exponential law as the LQ but adds a multiplicative factor to the LQ parameter {beta}. The LQL solution for the split-dose experiment is very close to the LPL prediction. For the decaying source, the differences between the LQL and the LQ solutions are negligible when the half-life of the source is much larger than the characteristic repair time, which is the clinically relevant case. Conclusions: The compartmental formulation of the LQL model can be used for arbitrary dose rates and provides a comprehensive description of dose response. When the survival fraction for acute doses is linear for high dose, a deviation of the square law formula of the recovery ratio for split doses is also predicted.

  4. Evaluation of the Effect of Split application of Urea on Nitrogen Losses in Furrow Fertigation

    Directory of Open Access Journals (Sweden)

    farid feizolahpour


    Full Text Available Introduction: Broadcast fertilization method increases fertilizer losses while results in lower nutrient absorption by plant roots. Fertigation is an effective method to increase water and fertilizer efficiency and to reduce the losses of nitrogen. Moreover, it allows farmers to apply the nutrients in splits and few amounts in response to crop needs. In the present study, a field experiment was conducted to investigate the effects of split application of fertilizer in furrow fertigation on nitrogen losses and corn yield. Materials and Methods: Field experiments were carried out factorially in a randomized complete block design with four replicates. Experimental treatments were consisted of three fertilizer splits (two, three, and four splits and three levels of urea fertilizer (60, 80 and 100% of required urea fertilizer, which compared with the common method (broadcasting fertilizer as used by farmers in the fields. Experiments were conducted on a one hectare field in 120 meter long and open end furrows. During the crop season, Irrigation water was applied in the same way for all fertigation treatments and the third type of the WSC flumes was used to measure the amount of input and output water in irrigation events. Moreover, for determining the indexes of uniformity of water distribution in carrying out fertigation experiments, the amount of infiltration into the soil was calculated using the Kostiakov-Louis equation. The parameters of this equation were determined using the water volume balance method. Injection of Urea fertilizer was done by using 40-liter barrels were placed at the beginning of Furrows. In this study, the injection of fertilizers was applied in the last 10 to 20 minutes of irrigation time. Results and Discussions: Results showed that water distribution uniformities of low quarter and low half in all tests were very high. Such that the water low quarter distribution uniformities for all treatments were between 90.5 to 98

  5. New Splitting Criteria for Decision Trees in Stationary Data Streams. (United States)

    Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek


    The most popular tools for stream data mining are based on decision trees. In previous 15 years, all designed methods, headed by the very fast decision tree algorithm, relayed on Hoeffding's inequality and hundreds of researchers followed this scheme. Recently, we have demonstrated that although the Hoeffding decision trees are an effective tool for dealing with stream data, they are a purely heuristic procedure; for example, classical decision trees such as ID3 or CART cannot be adopted to data stream mining using Hoeffding's inequality. Therefore, there is an urgent need to develop new algorithms, which are both mathematically justified and characterized by good performance. In this paper, we address this problem by developing a family of new splitting criteria for classification in stationary data streams and investigating their probabilistic properties. The new criteria, derived using appropriate statistical tools, are based on the misclassification error and the Gini index impurity measures. The general division of splitting criteria into two types is proposed. Attributes chosen based on type-$I$ splitting criteria guarantee, with high probability, the highest expected value of split measure. Type-$II$ criteria ensure that the chosen attribute is the same, with high probability, as it would be chosen based on the whole infinite data stream. Moreover, in this paper, two hybrid splitting criteria are proposed, which are the combinations of single criteria based on the misclassification error and Gini index.

  6. Experimental study on dynamic splitting of recycled concrete using SHPB (United States)

    Lu, Yubin; Yu, Shuisheng; Cai, Yong


    To study the recycled concrete splitting tensile properties and fracture state with various recycled coarse aggregate replacement percentage (i.e. 0%, 25%, 50%, 75% and 100%), the dynamic splitting test of recycled concrete was carried out using large diameter (75 mm) split Hopkinson pressure bar (SHPB). The results show that the recycled concrete splitting tensile strength increases with the increase of loading rate, and the loading rate also affects the recycled concrete fracture state, which indicates that the recycled concrete has obvious rate sensitivity. The damage state of the recycled concrete is not only the destruction of the interface between coarse aggregate and cement mortar, but also associates with the fracture damage of aggregates. Under the same water cement ratio, when the replacement percentage of coarse aggregates is around 50%-75%, the gradation of natural and recycled coarse aggregate is optimal, and thus the splitting tensile strength is the largest. This study offers theoretical basis for the engineering applications of recycled concrete.

  7. Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips

    Directory of Open Access Journals (Sweden)

    Alessandro Moro


    Full Text Available The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.

  8. Insights into Shallow Anisotropic Structure in the Forearc Hikurangi Subduction Zone, New Zealand via Splitting of Teleseisms (United States)

    Karalliyadda, S.; Savage, M. K.


    We use a recent transect that consists of 10 broadband stations across the northeast of Wellington region to explore the anisotropic structure of the forearc of the Hikurangi subduction zone in the southern North Island (NI), New Zealand from shear-wave splitting of SKS, ScS and teleseismic S phases. These measurements are then integrated with the previous splitting measurements in northwest of the transect. Splitting parameters from teleseismic S-phases revealed an abrupt lateral variation in the anisotropic structure. The general trend of splitting agrees well with the previous studies around this area, with NE-SW trench-parallel fast direction (φ). The range of delay times ( 0.5 - 3.0 s) and slightly varying SKS φ across the southeast of NI suggest a laterally varying anisotropic structure. As inferred by splitting variations from long period (>7 s) phases across the profile, the upper-plate Wairarapa fault and basin area appear to be characterized by a distinct anisotropic structure that is possibly localized at crustal depths. The sharp change in delay time (δt) around this fault zone divides the region in to two distinct domains of eastern and western sides. The average δt on the eastern side (2.05 × 0.45 s) is ~0.6 s higher than that measured in the western side (1.44 × 0.24 s) of the Wairarapa fault. This change takes place between two stations that are separated by ~3 km. Clear frequency dependent splitting from ScS and teleseismic S-phases suggests that the anisotropic structure is either stratified or governed by more complex anisotropy. Multilayer models are unable to explain the observations adequately, suggesting a more complex structure. We think that this complex structure is governed in part by the laterally-varying crustal contribution of anisotropy and this lateral variation is likely associated with the multilayer anisotropy to form a more complex structure. We suggest that the subduction structure is dominated by the mantle flow in the

  9. Supergranular Parameters (United States)

    Udayashankar, Paniveni


    I study the complexity of supergranular cells using intensity patterns from Kodaikanal solar observatory. The chaotic and turbulent aspect of the solar supergranulation can be studied by examining the interrelationships amongst the parameters characterizing supergranular cells namely size, horizontal flow field, lifetime and physical dimensions of the cells and the fractal dimension deduced from the size data. The findings are supportive of Kolmogorov's theory of turbulence. The Data consists of visually identified supergranular cells, from which a fractal dimension 'D' for supergranulation is obtained according to the relation P α AD/2 where 'A' is the area and 'P' is the perimeter of the supergranular cells. I find a fractal dimension close to about 1.3 which is consistent with that for isobars and suggests a possible turbulent origin. The cell circularity shows a dependence on the perimeter with a peak around (1.1-1.2) x 105 m. The findings are supportive of Kolmogorov's theory of turbulence.

  10. The Differences Between Stock Splits and Stock Dividends

    DEFF Research Database (Denmark)

    Bechmann, Ken L.; Raaballe, Johannes

    It is often asserted that stock splits and stock dividends are purely cosmetic events. However, many studies have documented several stock market effects associated with stock splits and stock dividends. This paper examines the effects of these two types of events for the Danish stock market...... different. Second, the positive stock market reaction is closely related to associated changes in a firm's payout policy, but the relationship varies for the two types of events. Finally, there is only very weak evidence for a change in the liquidity of the stock. On the whole, after controlling...... for the firm's payout policy, the results suggest that a stock split is a cosmetic event and that a stock dividend on its own is considered negative news....

  11. Electron refrigeration in hybrid structures with spin-split superconductors (United States)

    Rouco, M.; Heikkilä, T. T.; Bergeret, F. S.


    Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a nonlinear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.

  12. Giant Rashba spin splitting in Bi2Se3: Tl

    KAUST Repository

    Singh, Nirpendra


    First-principles calculations are employed to demonstrate a giant Rashba spin splitting in Bi2Se3:Tl. Biaxial tensile and compressive strain is used to tune the splitting by modifying the potential gradient. The band gap is found to increase under compression and decreases under tension, whereas the dependence of the Rashba spin splitting on the strain is the opposite. Large values of αR = 1.57 eV Å at the bottom of the conduction band (electrons) and αR = 3.34 eV Å at the top of the valence band (holes) are obtained without strain. These values can be further enhanced to αR = 1.83 eV Å and αR = 3.64 eV Å, respectively, by 2% tensile strain. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Geometric inductance effects in the spectrum of split transmon qubits (United States)

    Brierley, R. T.; Blumoff, J.; Chou, K.; Schoelkopf, R. J.; Girvin, S. M.


    The low-energy spectra of transmon superconducting qubits in a cavity can be accurately calculated using the black-box quantization approach. This method involves finding the normal modes of the circuit with a linearized Josephson junction and using these as the basis in which to express the non-linear terms. A split transmon qubit consists of two Josephson junctions in a SQUID loop. This configuration allows the Josephson energy to be tuned by applying external flux. Ideally, the system otherwise behaves as a conventional transmon with a single effective Josephson junction. However, the finite geometric inductance of the SQUID loop causes deviations from the simplest ideal description of a split transmon. This alters both the linearized and non-linear behaviour of the Josephson junctions in the superconducting circuit. We study how these changes can be incorporated into the black-box quantization approach and their effects on the low-energy spectrum of the split transmon.

  14. Point splitting in a curved space-time background

    International Nuclear Information System (INIS)

    Liggatt, P.A.J.; Macfarlane, A.J.


    A prescription is given for point splitting in a curved space-time background which is a natural generalization of that familiar in quantum electrodynamics and Yang-Mills theory. It is applied (to establish its validity) to the verification of the gravitational anomaly in the divergence of a fermion axial current. Notable features of the prescription are that it defines a point-split current that can be differentiated straightforwardly, and that it involves a natural way of averaging (four-dimensionally) over the directions of point splitting. The method can extend directly from the spin-1/2 fermion case treated to other cases, e.g., to spin-3/2 Rarita-Schwinger fermions. (author)

  15. Splitting rules for spectra of two-dimensional Fibonacci quasilattices (United States)

    Yang, Xiangbo; Liu, Youyan


    In the framework of the single-electron tight-binding on-site model, after establishing the method of constructing a class of two-dimensional Fibonacci quasilattices, we have studied the rules of energy spectra splitting for these quasilattices by means of a decomposition-decimation method based on the renormalization-group technique. Under the first approximation, the analytic results show that there exist only six kinds of clusters and the electronic energy bands split as type Y and consist of nine subbands. Instead of the on-site model, the transfer model should be used for the higher hierarchy of the spectra, the electronic energy spectra split as type F. The analytic results are confirmed by numerical simulations.

  16. Split and delay photon correlation spectroscopy with a visible light

    International Nuclear Information System (INIS)

    Rasch, Marten


    The development and performance of a setup constructed with the aim for the split pulse photon correlation spectroscopy is presented in this thesis. The double pulse time structure is accomplished with help of an Acusto-Optic Modulator (AOM) crystal, which mimics the splitting and delaying of photon pulses. The setup provides double pulses and allows to control the pulse width and delay and to synchronize them into one camera exposure window. The performance of the setup was successfully verified in a proof of principle experiment with a model system of polystyrene particles following Brownian motion. The measured radius of particles obtained with from the split pulse experiment (R h =(2.567±0.097) μm) is in agreement with the particle size provided by the manufacturer (R=(2.26±0.08) μm). The achieved results show higher statistics compared to a standard Dynamic Light Scattering (DLS) measurement.

  17. Guidelines to Develop Efficient Photocatalysts for Water Splitting

    KAUST Repository

    Garcia Esparza, Angel T.


    Photocatalytic overall water splitting is the only viable solar-to-fuel conversion technology. The research discloses an investigation process wherein by dissecting the photocatalytic water splitting device, electrocatalysts, and semiconductor photocatalysts can be independently studied, developed and optimized. The assumption of perfect catalysts leads to the realization that semiconductors are the limiting factor in photocatalysis. This dissertation presents a guideline for efficient photocatalysis using semiconductor particles developed from idealized theoretical simulations. No perfect catalysts exist; then the discussion focus on the development of efficient non-noble metal electrocatalysts for hydrogen evolution from water reduction. Tungsten carbide (WC) is selective for the catalysis of hydrogen without the introduction of the reverse reaction of water formation, which is critical to achieving photocatalytic overall water splitting as demonstrated in this work. Finally, photoelectrochemistry is used to characterize thoroughly Cu-based p-type semiconductors with potential for large-scale manufacture. Artificial photosynthesis may be achieved by following the recommendations herein presented.

  18. Immediate Loaded Implants in Split-Crest Procedure. (United States)

    Crespi, Roberto; Bruschi, Giovanni B; Gastaldi, Giorgio; Capparé, Paolo; Gherlone, Enrico F


    The aim of this study was to assess survival rate of immediate loading implants placed after split-crest technique. Thirty-six patients were enrolled in the study. They underwent placement of 93 dental implants in edentulous region after split-crest ridge expansion procedure. Implants followed an immediate loading procedure. Crestal bone levels were measured at baseline, at temporary prosthesis placement, at 1 year, and at 2 years from implant placement. For dental implants, a survival rate of 98.92% was reported at 2-year follow-up, with a mean value bone loss of -1.02 ± 0.48. This study assessed immediate loading implant placement after split-crest procedure at 2-year follow-up. © 2015 Wiley Periodicals, Inc.

  19. A Matrix Splitting Method for Composite Function Minimization

    KAUST Repository

    Yuan, Ganzhao


    Composite function minimization captures a wide spectrum of applications in both computer vision and machine learning. It includes bound constrained optimization and cardinality regularized optimization as special cases. This paper proposes and analyzes a new Matrix Splitting Method (MSM) for minimizing composite functions. It can be viewed as a generalization of the classical Gauss-Seidel method and the Successive Over-Relaxation method for solving linear systems in the literature. Incorporating a new Gaussian elimination procedure, the matrix splitting method achieves state-of-the-art performance. For convex problems, we establish the global convergence, convergence rate, and iteration complexity of MSM, while for non-convex problems, we prove its global convergence. Finally, we validate the performance of our matrix splitting method on two particular applications: nonnegative matrix factorization and cardinality regularized sparse coding. Extensive experiments show that our method outperforms existing composite function minimization techniques in term of both efficiency and efficacy.

  20. Advanced split-illumination electron holography without Fresnel fringes

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Park, Hyun Soon; Matsuda, Tsuyoshi; Harada, Ken; Shindo, Daisuke


    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible

  1. A comparison between kinetic flux vector splitting and flux difference splitting methods in solution of Euler equations

    International Nuclear Information System (INIS)

    Mirzaei, M.; Shahverdi, M.


    This paper is proposed to compare the performances of deferent inviscid flux approximation methods in solution of two-dimensional Euler equations. The methods belong to two different group of flux splitting methods: flux difference splitting (FDS) methods and kinetic flux vector splitting (KFVS) method. Here Roe method and Osher method belonging to flux difference splitting (FDS) group have been employed and their performances are compared with that of kinetic flux vector splitting method (KFVS). Roe and Osher methods are based on approximate solution of Riemann problem over computational cell surfaces while the KFVS has a quit different base. In KFVS inviscid fluxes are approximated based on the kinetic theory and correlation between Boltzmann equation and Euler equations. For comparison the performances of the above mentioned methods three different problems have been solved. The first problem is flow over a 10 degree compression-expansion ramp with Mach number of 2.0, the second one is a transonic flow with Mach number of 0.85 over a 4.2% circular bump in a duct and the third is supersonic flow with Mach number of 3.0 over a circular blunt slab. (author)

  2. Splitting and non splitting are pollution models photochemical reactions in the urban areas of greater Tehran area

    International Nuclear Information System (INIS)

    Heidarinasab, A.; Dabir, B.; Sahimi, M.; Badii, Kh.


    During the past years, one of the most important problems has been air pollution in urban areas. In this regards, ozone, as one of the major products of photochemical reactions, has great importance. The term 'photochemical' is applied to a number of secondary pollutants that appear as a result of sun-related reactions, ozone being the most important one. So far various models have been suggested to predict these pollutants. In this paper, we developed the model that has been introduced by Dabir, et al. [4]. In this model more than 48 chemical species and 114 chemical reactions are involved. The result of this development, showed good to excellent agreement across the region for compounds such as O 3 , NO, NO 2 , CO, and SO 2 with regard to VOC and NMHC. The results of the simulation were compared with previous work [4] and the effects of increasing the number of components and reactions were evaluated. The results of the operator splitting method were compared with non splitting solving method. The result showed that splitting method with one-tenth time step collapsed with non splitting method (Crank-Nicolson, under-relaxation iteration method without splitting of the equation terms). Then we developed one dimensional model to 3-D and were compared with experimental data

  3. Screening current induced magnetic field in REBCO superconducting coil wound by using split wire having intermittent inner split (United States)

    Matsuda, Tetsuro; Jin, Xinzhe; Okamura, Tetsuji


    REBCO-coated conductor having a high critical current is promising for applications in next generation apparatuses such as ultra-high field NMR, high-resolution MRI, and high-precision accelerator. However, it has an important challenge for application in NMR and MRI, due to the single core in REBCO superconducting layer. The single core induces a large screening current-induced magnetic field (screening current field), and it influences the controlling of center field in NMR/MRI magnet. To reduce the screening current field, we have recently developed a split wire having multi-core structure by inner split method (electrical separation by bending stress, ESBS). In experiment, short samples with linear inner split by a large bending stress of 80 N were prepared and tested. However, to fabricate a long length wire with good quality, it is better to use a smaller bending stress. In this study, a low-bending-stress inner split method is used to fabricate superconducting tapes with longitudinal split in their superconducting layer. The fabrication and experimental assessments for the wire and coil are carried out.

  4. Tantalum-based semiconductors for solar water splitting. (United States)

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong


    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  5. Rabi-like splitting from large area plasmonic microcavity

    Directory of Open Access Journals (Sweden)

    Fatemeh Hosseini Alast


    Full Text Available Rabi-like splitting was observed from a hybrid plasmonic microcavity. The splitting comes from the coupling of cavity mode with the surface plasmon polariton mode; anti-crossing was observed alongside the modal conversional channel on the reflection light measurement. The hybrid device consists of a 10x10 mm2 ruled metal grating integrated onto the Fabry-Perot microcavity. The 10x10 mm2 ruled metal grating fabricated from laser interference and the area is sufficiently large to be used in the practical optical device. The larger area hybrid plasmonic microcavity can be employed in polariton lasers and biosensors.

  6. SiC MOSFETs based split output half bridge inverter

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Beczkowski, Szymon


    output. The double pulse test shows the devices' current during commutation process and the reduced switching losses of SiC MOSFETs compared to that of the traditional half bridge. The efficiency comparison is presented with experimental results of half bridge power inverter with split output...... and traditional half bridge inverter, from switching frequency 10 kHz to 100 kHz. The experimental results comparison shows that the half bridge with split output has an efficiency improvement of more than 0.5% at 100 kHz switching frequency....

  7. Cooper Pair Splitting by Means of Graphene Quantum Dots (United States)

    Tan, Z. B.; Cox, D.; Nieminen, T.; Lähteenmäki, P.; Golubev, D.; Lesovik, G. B.; Hakonen, P. J.


    A split Cooper pair is a natural source for entangled electrons which is a basic ingredient for quantum information in the solid state. We report an experiment on a superconductor-graphene double quantum dot (QD) system, in which we observe Cooper pair splitting (CPS) up to a CPS efficiency of ˜10 % . With bias on both QDs, we are able to detect a positive conductance correlation across the two distinctly decoupled QDs. Furthermore, with bias only on one QD, CPS and elastic cotunneling can be distinguished by tuning the energy levels of the QDs to be asymmetric or symmetric with respect to the Fermi level in the superconductor.

  8. Frobenius splitting and geometry of $G$-Schubert varieties

    DEFF Research Database (Denmark)

    He, Xuhua; Thomsen, Jesper Funch


    Let X be an equivariant embedding of a connected reductive group G over an algebraically closed field k of positive characteristic. Let B denote a Borel subgroup of G. A G-Schubert variety in X is a subvariety of the form diag(G) V , where V is a B×B -orbit closure in X. In the case where X...... admits a stable Frobenius splitting along an ample divisors. Although this indicates that G-Schubert varieties have nice singularities we present an example of a nonnormal G-Schubert variety in the wonderful compactification of a group of type G2 . Finally we also extend the Frobenius splitting results...

  9. Modulated-splitting-ratio fiber-optic temperature sensor (United States)

    Beheim, Glenn; Anthan, Donald J.; Rys, John R.; Fritsch, Klaus; Ruppe, Walter R.


    A fiber-optic temperature sensor is described that uses a small silicon beamsplitter whose splitting ratio varies as a function of temperature. A four-beam technique is used to measure the sensor's temperature-indicating splitting ratio. This referencing method provides a measurement that is largely independent of the transmission properties of the sensor's optical fiber link. A significant advantage of this sensor, relative to other fiber-optic sensors, is its high stability, which permits the fiber-optic components to be readily substituted, thereby simplifying the sensor's installation and maintenance.

  10. Split-plot Experiments with Unusual Numbers of Subplot Runs

    DEFF Research Database (Denmark)

    Kulahci, Murat


    In many experimental situations, it may not be feasible or even possible to run experiments in a completely randomized fashion as usually recommended. Under these circumstances, split-plot experiments in which certain factors are changed less frequently than the others are often used. Most...... of the literature on split-plot designs is based on 2-level factorials. For those designs, the number of subplots is a power of 2. There may however be some situations where for cost purposes or physical constraints, we may need to have unusual number of subplots such as 3, 5, 6, etc. In this article, we explore...

  11. Novel Split Chest Tube Improves Post-Surgical Thoracic Drainage (United States)

    Olivencia-Yurvati, Albert H; Cherry, Brandon H; Gurji, Hunaid A; White, Daniel W; Newton, J Tyler; Scott, Gary F; Hoxha, Besim; Gourlay, Terence; Mallet, Robert T


    Objective Conventional, separate mediastinal and pleural tubes are often inefficient at draining thoracic effusions. Description We developed a Y-shaped chest tube with split ends that divide within the thoracic cavity, permitting separate intrathoracic placement and requiring a single exit port. In this study, thoracic drainage by the split drain vs. that of separate drains was tested. Methods After sternotomy, pericardiotomy, and left pleurotomy, pigs were fitted with separate chest drains (n=10) or a split tube prototype (n=9) with internal openings positioned in the mediastinum and in the costo-diaphragmatic recess. Separate series of experiments were conducted to test drainage of D5W or 0.58 M sucrose, an aqueous solution with viscosity approximating that of plasma. One litre of fluid was infused into the thorax, and suction was applied at −20 cm H2O for 30 min. Results When D5W was infused, the split drain left a residual volume of 53 ± 99 ml (mean value ± SD) vs. 148 ± 120 for the separate drain (P=0.007), representing a drainage efficiency (i.e. drained vol/[drained + residual vol]) of 95 ± 10% vs. 86 ± 12% for the separate drains (P = 0.011). In the second series, the split drain evacuated more 0.58 M sucrose in the first minute (967 ± 129 ml) than the separate drains (680 ± 192 ml, P<0.001). By 30 min, the split drain evacuated a similar volume of sucrose vs. the conventional drain (1089 ± 72 vs. 1056 ± 78 ml; P = 0.5). Residual volume tended to be lower (25 ± 10 vs. 62 ± 72 ml; P = 0.128) and drainage efficiency tended to be higher (98 ± 1 vs. 95 ± 6%; P = 0.111) with the split drain vs. conventional separate drains. Conclusion The split chest tube drained the thoracic cavity at least as effectively as conventional separate tubes. This new device could potentially alleviate postoperative complications. PMID:25478289

  12. Stress analysis and optimization of Nd:YAG pulsed laser processing of notches for fracture splitting of a C70S6 connecting rod

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Shuqing; Gao, Yan; Zhao, Yong; Lin, Baojun [Jilin University, Changchun (China)


    The pulsed laser pre-processing of a notch as the fracture initiation source for the splitting process is the key mechanism of an advanced fracture splitting technology for C70S6 connecting rods. This study investigated the stress field of Nd:YAG pulsed laser grooving, which affects the rapid fracture initiation at the notch root and the controlled crack extension in the critical fracture splitting quality, to improve manufacturing quality. Thermal elastic-plastic incremental theory was applied to build the finite element analysis model of the stress field of pulsed laser grooving for fracture splitting based on the Rotary-Gauss body heat source. The corresponding numerical simulation of the stress field was conducted. The changes and distributions of the stress during pulsed laser grooving were examined, the influence rule of the primary technological parameters on the residual stress was analyzed, and the analysis results were validated by the corresponding cutting experiment. Results showed that the residual stress distribution was concentrated in the Heat-affected zone (HAZ) near the fracture splitting notch, which would cause micro-cracks in the HAZ. The stress state of the notch root in the fracture initiation direction was tensile stress, which was beneficial to the fracture initiation and the crack rapid extension in the subsequent fracture splitting process. However, the uneven distribution of the stress could lead to fracture splitting defects, and thus the residual stress should be lowered to a reasonable range. Decreasing the laser pulse power, increasing the processing speed, and lowering the pulse width can lower the residual stress. Along with the actual production, the reasonable main technological parameters were obtained.

  13. Identification of genomic indels and structural variations using split reads

    Directory of Open Access Journals (Sweden)

    Urban Alexander E


    Full Text Available Abstract Background Recent studies have demonstrated the genetic significance of insertions, deletions, and other more complex structural variants (SVs in the human population. With the development of the next-generation sequencing technologies, high-throughput surveys of SVs on the whole-genome level have become possible. Here we present split-read identification, calibrated (SRiC, a sequence-based method for SV detection. Results We start by mapping each read to the reference genome in standard fashion using gapped alignment. Then to identify SVs, we score each of the many initial mappings with an assessment strategy designed to take into account both sequencing and alignment errors (e.g. scoring more highly events gapped in the center of a read. All current SV calling methods have multilevel biases in their identifications due to both experimental and computational limitations (e.g. calling more deletions than insertions. A key aspect of our approach is that we calibrate all our calls against synthetic data sets generated from simulations of high-throughput sequencing (with realistic error models. This allows us to calculate sensitivity and the positive predictive value under different parameter-value scenarios and for different classes of events (e.g. long deletions vs. short insertions. We run our calculations on representative data from the 1000 Genomes Project. Coupling the observed numbers of events on chromosome 1 with the calibrations gleaned from the simulations (for different length events allows us to construct a relatively unbiased estimate for the total number of SVs in the human genome across a wide range of length scales. We estimate in particular that an individual genome contains ~670,000 indels/SVs. Conclusions Compared with the existing read-depth and read-pair approaches for SV identification, our method can pinpoint the exact breakpoints of SV events, reveal the actual sequence content of insertions, and cover the whole

  14. Physiological parameters

    International Nuclear Information System (INIS)

    Natera, E.S.


    The physiological characteristics of man depend on the intake, metabolism and excretion of stable elements from food, water, and air. The physiological behavior of natural radionuclides and radionuclides from nuclear weapons testing and from the utilization of nuclear energy is believed to follow the pattern of stable elements. Hence information on the normal physiological processes occurring in the human body plays an important role in the assessment of the radiation dose received by man. Two important physiological parameters needed for internal dose determination are the pulmonary function and the water balance. In the Coordinated Research Programme on the characterization of Asian population, five participants submitted data on these physiological characteristics - China, India, Japan, Philippines and Viet Nam. During the CRP, data on other pertinent characteristics such as physical and dietary were simultaneously being collected. Hence, the information on the physiological characteristics alone, coming from the five participants were not complete and are probably not sufficient to establish standard values for the Reference Asian Man. Nonetheless, the data collected is a valuable contribution to this research programme

  15. Observations of CEF-split intermultiplet transitions in optically opaque EuBa{sub 2}Cu{sub 3}O{sub 7} using inelastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Staub, U.; Soderholm, L.; Osborn, R. [Argonne National Lab., IL (United States); Balcar, E. [Atominstitut der Oesterriechischen Universitaeten, Vienna (Austria); Trunov, V. [St. Petersburg Nuclear Physics Institute (Russian Federation)


    Inelastic neutron scattering (INS) results on the intermultiplet transitions J=0 {yields} 1 and J=l {yields} 2 in optically opaque EuBa{sub 2}Cu{sub 3}O{sub 7} are reported. Whereas these multiplets are split by the crystalline electric field (CEF), their low J values are influenced to first order only by the 2 second-order (J=l) and additional fourth-order (J=2) CEF parameters. B{sub 0}{sup 2}, B{sub 2}{sup 2} and the spin-orbit coupling parameter were obtained by fitting the splitting of the J=1 multiplet and the energy separation between the J=0 and 1 multiplets. The J=0 to 1 splitting observed here is smaller than previously seen by optical spectroscopic studies on a variety of transparent, ionic compounds, necessitating fitting of the free-ion parameter. Additional spectroscopic information on the J=2 multiplet indicates that additional fitting of free ion parameters must be included to adequately model the observed low energy separation between the two lowest J-multiplets. Preliminary calculation on the Q-dependence of the CEF split J=0 to 1 transitions and the comparison with observations are presented.

  16. Tangled up in mood : Exploring Panará split ergativity

    NARCIS (Netherlands)

    Bardagil-Mas, Bernat


    The two primary goals of this article are to present data concerning the mood-based alignment split that can be observed in Panará pronominal clitics and to put forward a tentative formal analysis that can capture the motivations of such phenomena in the grammar. This paper aims to explore an

  17. Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Patrick J. [Fermilab; Kribs, Graham D. [Oregon U.; Martin, Adam [Notre Dame U.


    Motivated by the observation that the Higgs quartic coupling runs to zero at an intermediate scale, we propose a new framework for models of split supersymmetry, in which gauginos acquire intermediate scale Dirac masses of $\\sim 10^{8-11}$ GeV. Scalar masses arise from one-loop finite contributions as well as direct gravity-mediated contributions. Like split supersymmetry, one Higgs doublet is fine-tuned to be light. The scale at which the Dirac gauginos are introduced to make the Higgs quartic zero is the same as is necessary for gauge coupling unification. Thus, gauge coupling unification persists (nontrivially, due to adjoint multiplets), though with a somewhat higher unification scale $\\gtrsim 10^{17}$ GeV. The $\\mu$-term is naturally at the weak scale, and provides an opportunity for experimental verification. We present two manifestations of Split Dirac Supersymmetry. In the "Pure Dirac" model, the lightest Higgsino must decay through R-parity violating couplings, leading to an array of interesting signals in colliders. In the "Hypercharge Impure" model, the bino acquires a Majorana mass that is one-loop suppressed compared with the Dirac gluino and wino. This leads to weak scale Higgsino dark matter whose overall mass scale, as well as the mass splitting between the neutral components, is naturally generated from the same UV dynamics. We outline the challenges to discovering pseudo-Dirac Higgsino dark matter in collider and dark matter detection experiments.

  18. Deconstruction, G_2 Holonomy, and Doublet-Triplet Splitting


    Witten, Edward


    We describe a mechanism for using discrete symmetries to solve the doublet-triplet splitting problem of four-dimensional supersymmetric GUT's. We present two versions of the mechanism, one via ``deconstruction,'' and one in terms of M-theory compactification to four dimensions on a manifold of G_2 holonomy.

  19. Split shielding plates in electrostatic sector analyzers and Wien filters (United States)

    Yavor, Mikhail I.


    An analytical method is developed for calculation of the influence of the splitted shielding plates in inhomogeneous electrostatic sector analyzers and Wien filters on their electron optical properties. The method allows one to simplify considerably the choice of the mode of operation of the shielding plates needed to achieve a required electrostatic field distribution inside the analyzer.

  20. Split tensile strength of soilcrete blocks | Okere | Nigerian Journal of ...

    African Journals Online (AJOL)

    With the ever increasing problems associated with dredging of rivers to obtain river sand, reduced dependence on river sand should be encouraged by using alternative materials in block production. This work deals with the production of soilcrete blocks using readily available and affordable laterite. Split tensile strength of ...

  1. Signature splitting in two quasiparticle rotational bands of Ta

    Indian Academy of Sciences (India)


    Jun 20, 2016 ... ... of 182Ta are analysed within the framework of two-quasiparticle rotor model. The phase as well as magni- tude of the experimentally observed signature splitting in Kπ = 1+ band of 180Ta, which could not be explained in earlier calculations, is successfully reproduced. The conflict regarding placement of ...

  2. Split Hand and Foot Malformation | Salati | East and Central African ...

    African Journals Online (AJOL)

    East and Central African Journal of Surgery. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 16, No 2 (2011) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Split Hand and Foot Malformation. SA Salati ...

  3. Reconstruction of bilateral tibial aplasia and split hand-foot ...

    African Journals Online (AJOL)

    Background: Tibial aplasia is of heterogeneous aetiology, the majority of reports are sporadic. We describe the reconstruction procedures in two subjects - a daughter and father manifested autosomal dominant (AD) inheritance of the bilateral tibial aplasia and split hand-foot syndrome. Materials and Methods: ...

  4. Split calvarial graft and titanium mesh for reconstruction of post ...

    African Journals Online (AJOL)

    Background: The goal of cranioplasty is to achieve a lifelong, stable and structural reconstruction of the cranium covered by a healthy skin and scalp flap. We present two cases of large frontal bone defect following a accident.. Cases: We describe the utilization of autogenous local split calvarial graft and titanium mesh for ...

  5. Constructing General Orthogonal Fractional Factorial Split-Plot Designs

    NARCIS (Netherlands)

    Sartono, B.; Goos, P.; Schoen, E.


    While the orthogonal design of split-plot fractional factorial experiments has received much attention already, there are still major voids in the literature. First, designs with one or more factors acting at more than two levels have not yet been considered. Second, published work on nonregular

  6. Relations among the crack growth modes resulting from tensor splitting

    Czech Academy of Sciences Publication Activity Database

    Kafka, Vratislav


    Roč. 60, č. 4 (2015), s. 319-335 ISSN 0001-7043 Institutional support: RVO:68378297 Keywords : fracture mechanics * combination of crack-growth modes * non-local effect * tensor splitting Subject RIV: JL - Materials Fatigue, Friction Mechanics

  7. The Case of Missing Solar Neutrinos with their Split Personalities

    Indian Academy of Sciences (India)

    The Case of Missing Solar Neutrinos with their Split Personalities. ~~~'<,. ~. The Case of Missing Solar Neutrinos ... general theory of relativity and the observed precession of the perihelion of Mercury was a great triumph ..... neutrino counting rate, by nearly a factor of 3 over the. SSM prediction, constitutes the solar neutrino ...

  8. Splitting and Projection: Drawing on Psychodynamics in Educational Psychology Practice (United States)

    Pellegrini, Dario W.


    This paper reflects the author's journey into an area of psychology which is not dominant in Educational Psychology discourse, namely psychodynamic psychology. Two psychodynamic mechanisms, namely splitting and projection are explained, and then the author describes and critiques how these mechanisms have proved useful in his practice. Two case…

  9. Split-Framework in Mandibular Implant-Supported Prosthesis

    Directory of Open Access Journals (Sweden)

    Danny Omar Mendoza Marin


    Full Text Available During oral rehabilitation of an edentulous patient with an implant-supported prosthesis, mandibular flexure must be considered an important biomechanical factor when planning the metal framework design, especially if implants are installed posterior to the interforaminal region. When an edentulous mandible is restored with a fixed implant-supported prosthesis connected by a fixed full-arch framework, mandibular flexure may cause needless stress in the overall restorative system and lead to screw loosening, poor fit of prosthesis, loss of the posterior implant, and patient’s discomfort due to deformation properties of the mandible during functional movements. The use of a split-framework could decrease the stress with a precise and passive fit on the implants and restore a more natural functional condition of the mandible, helping in the longevity of the prosthesis. Therefore, the present clinical report describes the oral rehabilitation of an edentulous patient by a mandibular fixed implant-supported prosthesis with a split-framework to compensate for mandibular flexure. Clinical Significance. The present clinical report shows that the use of a split-framework reduced the risk of loss of the posterior implants or screws loosening with acceptable patient comfort over the period of a year. The split-framework might have compensated for the mandibular flexure during functional activities.

  10. Transient Splitting of Conoscopic Isogyres of a Uniaxial Nematic (United States)

    Kim, Young-Ki; Senuk, Bohdan; Tortora, Luana; Sprunt, Samuel; Lehmann, Matthias; Lavrentovich, Oleg D.


    The phase identification is often based on conoscopic observations of homeotropic cells: A uniaxial nematic produces a pattern with crossed isogyres, while the biaxial nematic shows a split of isogyres. We demonstrate that the splitting of isogyres occurs even when the material remains in the uniaxial nematic phase. In particular, in the bent core material J35, splitting of isogyres is caused by change of the temperature. The effect is transient and the isogyres return to a uniaxial (crossed) configuration after a certain time that depends on sample thickness, temperature, and rate of temperature change; the time varies from a few seconds to tens of hours. The transient splitting is caused by the temperature-induced material flow that triggers a (uniaxial) director tilt in the cell. The flows and the director tilt are demonstrated by the CARS microscopy and fluorescent confocal polarizing microscopy (FCPM). This transient effect is general and can be observed even in E7 and 5CB. The effect should be considered in textural identifications of potential biaxial nematic materials.

  11. Mass Communication and Ticket Splitting in the 1972 General Election. (United States)

    Atwood, L. Erwin; Sanders, Keith R.

    There is evidence of a growing trend toward ticket splitting, or independent voting patterns in all U.S. elections, especially in recent years. Independence of the electorate in 1972 was visible in the large Republican vote for President, during substantial voting for Democrats in Congress, and in gubernatorial elections. Analysis of mass media…

  12. Trellis plots as visual aids for analyzing split plot experiments

    DEFF Research Database (Denmark)

    Kulahci, Murat; Menon, Anil


    The analysis of split plot experiments can be challenging due to a complicated error structure resulting from restrictions on complete randomization. Similarly, standard visualization methods do not provide the insight practitioners desire to understand the data, think of explanations, generate h...

  13. A cyclic iterative method for solving multiple sets split feasibility ...

    African Journals Online (AJOL)

    (An iterative regularization method for the solution of the split feasibility problem in Banach spaces, Inverse Problems 24 (2008), 055008) and many important recent results in this direction. Mathematics Subject Classification (2010): 49J53, 65K10, 49M37, 90C25. Keywords: Bregman projection, strong convergence, metric ...

  14. Degloved foot sole successfully reconstructed with split thickness skin grafts

    NARCIS (Netherlands)

    Janssens, Loes; Holtslag, Herman R.; Schellekens, Pascal P A; Leenen, Luke P H


    Introduction The current opinion is that split thickness skin grafts are not suitable to reconstruct a degloved foot sole. The tissue is too fragile to carry full bodyweight; and therefore, stress lesions frequently occur. The treatment of choice is the reuse of the avulsed skin whenever possible,

  15. The split notochord syndrome with dorsal enteric fistula. (United States)

    Hoffman, C H; Dietrich, R B; Pais, M J; Demos, D S; Pribram, H F


    Split notochord syndrome with dorsal enteric fistula is an extremely rare congenital anomaly that may be associated with meningomyelocele or meningocele, and genitourinary anomalies. This case presented with an additional finding of bladder exstrophy, raising the possibility of a relationship between this syndrome and the OEIS complex.

  16. Recent developments in solar H 2 generation from water splitting

    Indian Academy of Sciences (India)

    Hydrogen production from water and sunlight through photocatalysis could become one of the channels, in the not-so-distant future, to meet a part of ever growing energy demands. However, accomplishing solar water splitting through semiconductor particulate photocatalysis seems to be the 'Holy Grail' problem of science.

  17. Iterative group splitting algorithm for opportunistic scheduling systems

    KAUST Repository

    Nam, Haewoon


    An efficient feedback algorithm for opportunistic scheduling systems based on iterative group splitting is proposed in this paper. Similar to the opportunistic splitting algorithm, the proposed algorithm adjusts (or lowers) the feedback threshold during a guard period if no user sends a feedback. However, when a feedback collision occurs at any point of time, the proposed algorithm no longer updates the threshold but narrows down the user search space by dividing the users into multiple groups iteratively, whereas the opportunistic splitting algorithm keeps adjusting the threshold until a single user is found. Since the threshold is only updated when no user sends a feedback, it is shown that the proposed algorithm significantly alleviates the signaling overhead for the threshold distribution to the users by the scheduler. More importantly, the proposed algorithm requires a less number of mini-slots than the opportunistic splitting algorithm to make a user selection with a given level of scheduling outage probability or provides a higher ergodic capacity given a certain number of mini-slots. © 2013 IEEE.

  18. Fundaments of transport equation splitting and the eigenvalue problem

    International Nuclear Information System (INIS)

    Stancic, V.


    In order to remove some singularities concerning the boundary conditions of one dimensional transport equation, a split form of transport equation describing the forward i.e. μ≥0, and a backward μ<0 directed neutrons is being proposed here. The eigenvalue problem has also been considered here (author)

  19. Split-mouth design in Paediatric Dentistry clinical trials. (United States)

    Pozos-Guillén, A; Chavarría-Bolaños, D; Garrocho-Rangel, A


    The aim of this article was to describe the essential concepts of the split-mouth design, its underlying assumptions, advantages, limitations, statistical considerations, and possible applications in Paediatric Dentistry clinical investigation. In Paediatric Dentistry clinical investigation, and as part of randomised controlled trials, the split-mouth design is commonly used. The design is characterised by subdividing the child's dentition into halves (right and left), where two different treatment modalities are assigned to one side randomly, in order to allow further outcome evaluation. Each participant acts as their own control by making within- patient rather than between-patient comparisons, thus diminishing inter-subject variability and increasing study accuracy and power. However, the main problem with this design comprises the potential contamination of the treatment effect from one side to the other, or the "carry-across effect"; likewise, this design is not indicated when the oral disease to be treated is not symmetrically distributed (e.g. severity) in the mouth of children. Thus, in spite of its advantages, the split-mouth design can only be applied in a limited number of strictly selected cases. In order to obtain valid and reliable data from split mouth design studies, it is necessary to evaluate the risk of carry-across effect as well as to carefully analise and select adequate inclusion criteria, sample-size calculation and method of statistical analysis.

  20. Visible-light-induced water splitting on a chip

    NARCIS (Netherlands)

    Zoontjes, M.G.C.


    In this thesis, a photoelectrochemical water splitting cell concept is discussed, based on a combination of semiconductors comprising a Z-scheme. The motivation for the development of the cell is that in the future a transition will take place from a fossil fuel-based economy, to an economy based on

  1. On split Lie algebras with symmetric root systems

    Indian Academy of Sciences (India)

    , Spain. E-mail: MS received 24 May 2007. Abstract. We develop techniques of connections of roots for split Lie algebras with symmetric root systems. We show that any of such algebras L is of the form L = U +. ∑.

  2. Reduction of Biomass Moisture by Crushing/Splitting - A Concept (United States)

    Paul E. Barnett; Donald L. Sirois; Colin Ashmore


    A biomass crusher/splitter concept is presented as a possible n&ant of tsafntainfng rights-of-way (ROW) or harvesting energy wood plantations. The conceptual system would cut, crush, and split small woody biomass leaving it in windrows for drying. A subsequent operation would bale and transport the dried material for use as an energy source. A survey of twenty...

  3. Robustness of the Rabi Splitting under Nonlocal Corrections in Plexcitonics

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Wubs, Martijn; Mortensen, N. Asger


    , the influence of nonlocality is rather limited, as in most occasions the width of the Rabi splitting remains largely unaffected and the two hybrid modes are well distinguishable. We discuss how this behavior can be understood in view of the popular coupled-harmonic-oscillator model, while we also provide...

  4. Ductless Mini-Split Heat Pump Comfort Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, K.; Sehgal, N.; Akers, C.


    Field tests were conducted in two homes in Austin, TX to evaluate the comfort performance of ductless mini-split heat pumps (DMSHPs), measuring temperature and relative humidity measurements in four rooms in each home before and after retrofitting a central HVAC system with DMSHPs.

  5. Roadmap on solar water splitting: current status and future prospects (United States)

    Chu, Sheng; Li, Wei; Yan, Yanfa; Hamann, Thomas; Shih, Ishiang; Wang, Dunwei; Mi, Zetian


    Artificial photosynthesis via solar water splitting provides a promising approach to storing solar energy in the form of hydrogen on a global scale. However, an efficient and cost-effective solar hydrogen production system that can compete with traditional methods using fossil fuels is yet to be developed. A photoelectrochemical (PEC) tandem cell consisting of a p-type photocathode and an n-type photoanode, with the photovoltage provided by the two photoelectrodes, is an attractive route to achieve highly efficient unassisted water splitting at a low cost. In this article, we provide an overview of recent developments of semiconductor materials, including metal oxides, nitrides, chalcogenides, Si, III-V compounds and organics, either as photocathodes or photoanodes for water reduction and oxidation, respectively. In addition, recent efforts in constructing a PEC tandem system for unassisted water splitting are outlined. The importance of developing a single-photon photocathode and photoanode that can deliver high photocurrent in the low bias region for efficient PEC tandem system is highlighted. Finally, we discuss the future development of photoelectrode materials, and viable solutions to realize highly efficient PEC water splitting device for practical applications.

  6. Recent developments in solar H2 generation from water splitting

    Indian Academy of Sciences (India)

    Abstract. Hydrogen production from water and sunlight through photocatalysis could become one of the channels, in the not-so-distant future, to meet a part of ever growing energy demands. However, accomplish- ing solar water splitting through semiconductor particulate photocatalysis seems to be the 'Holy Grail' prob-.

  7. The Case of Missing Solar Neutrinos with their Split Personalities

    Indian Academy of Sciences (India)

    The Case of Missing Solar Neutrinos with their Split Personalities. S M Chitre is a Senior. Professor at Tata Institute of Fundamental Research,. Mumbai. His research interests are in the areas of solar physics, physics and astrophysics of condensed objects and gravitational lenses. Keywords. Neutrino. Sun, solar structure.

  8. Modelling of Split Condenser Heat Pump: Optimization and Exergy Analysis

    DEFF Research Database (Denmark)

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix


    This paper presents a numerical study of a split condenser heat pump (SCHP). The SCHP setup differs from a traditional heat pump (THP) setup in the way that two separate water streams on the secondary side of the condenser are heated in parallel to different temperature levels, whereas only one s...

  9. On Split Lie Algebras with Symmetric Root Systems

    Indian Academy of Sciences (India)

    ... and any I j a well described ideal of , satisfying [ I j , I k ] = 0 if j ≠ k . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected.

  10. On split Lie algebras with symmetric root systems

    Indian Academy of Sciences (India)

    ideal of L, satisfying [Ij ,Ik] = 0 if j = k. Under certain conditions, the simplicity of L is characterized and it is shown that L is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected. Keywords. Infinite dimensional Lie ...

  11. On split Lie algebras with symmetric root systems

    Indian Academy of Sciences (India)

    ... family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected. Author Affiliations. Antonio J Calderón Martín1. Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain. Dates. Manuscript received: 24 May 2007 ...

  12. Performance analysis of a novel coaxial power-split hybrid powertrain using a CNG engine and supercapacitors

    International Nuclear Information System (INIS)

    Ouyang, Minggao; Zhang, Weilin; Wang, Enhua; Yang, Fuyuan; Li, Jianqiu; Li, Zhongyan; Yu, Ping; Ye, Xiao


    Highlights: • Four different types of hybrid powertrain for heavy-duty vehicles are reviewed. • A novel coaxial power-split hybrid powertrain is proposed and models are developed. • Performance characteristics are analyzed and compared to a conventional powertrain. • Fuel saving potential is evaluated and explained using energy efficiency method. - Abstract: Energy conservation is a very important task for the automotive industry. The use of hybrid electric vehicles can improve energy efficiency, thus reducing fuel consumption and carbon emissions. In this research, the performance characteristics of a novel coaxial power-split hybrid powertrain for a transit bus are presented. The power sources are a combination of a compressed natural gas (CNG) engine and supercapacitors. A mathematical model for the coaxial power-split hybrid powertrain is established. Subsequently, an analysis program is developed based on Matlab and Advisor. The parameters are specified using experimental data. Afterwards, a rule-based control strategy is designed and optimized from the viewpoint of energy efficiency. Later, the system performance is evaluated using the Chinese Transit Bus City Driving Cycle and compared to a conventional powertrain. The results indicate that the proposed coaxial power-split hybrid powertrain can fulfill the requirements of the transit bus and enhance the energy efficiency dramatically. Moreover, the average energy efficiency of the supercapacitors was found to be above 97% over the entire driving cycle. Using supercapacitors as energy storage devices for the coaxial power-split hybrid powertrain can effectively recover the kinetic energy during regenerative braking and is a good solution for transit buses that require frequent acceleration and deceleration.

  13. Multi-frequency and high-field EPR study of manganese(III) protoporphyrin IX reconstituted myoglobin with an S=2 integer electron spin. (United States)

    Horitani, Masaki; Yashiro, Haruhiko; Hagiwara, Masayuki; Hori, Hiroshi


    We investigate the electronic state of Mn(III) center with an integer electron spin S=2 in the manganese(III) protoporphyrin IX reconstituted myoglobin, Mn(III)Mb, by means of multi-frequency electron paramagnetic resonance (MFEPR) spectroscopy. Using a bimodal cavity resonator, X-band EPR signal from Mn(III) center in the Mn(III)Mb was observed near zero-field region. The temperature dependence of this signal indicates a negative axial zero-field splitting value, DEPR analysis shows that this signal is attributed to the transition between the closely spaced M(s)=+/-2 energy levels for the z-axis, corresponding to the heme normal. To determine the zero-field splitting (ZFS) parameters, EPR experiments on the Mn(III)Mb were performed at various temperatures for some frequencies between 30GHz and 130GHz and magnetic fields up to 14T. We observed several EPR spectra which are analyzed with a spin Hamiltonian for S=2, yielding highly accurate ZFS parameters; D=-3.79cm(-1) and |E|=0.08cm(-1) for an isotropic g=2.0. These ZFS parameters are compared with those in some Mn(III) complexes and Mn(III) superoxide dismutase (SOD), and effects on these parameters by the coordination and the symmetry of the ligands are discussed. To the best of our knowledge, these EPR spectra in the Mn(III)Mb are the very first MFEPR spectra at frequencies higher than Q-band in a metalloprotein with an integer spin.

  14. Use of computed tomography assessed kidney length to predict split renal GFR in living kidney donors

    International Nuclear Information System (INIS)

    Gaillard, Francois; Fournier, Catherine; Leon, Carine; Legendre, Christophe; Pavlov, Patrik; Tissier, Anne-Marie; Correas, Jean-Michel; Harache, Benoit; Hignette, Chantal; Weinmann, Pierre; Eladari, Dominique; Timsit, Marc-Olivier; Mejean, Arnaud; Friedlander, Gerard; Courbebaisse, Marie; Houillier, Pascal


    Screening of living kidney donors may require scintigraphy to split glomerular filtration rate (GFR). To determine the usefulness of computed tomography (CT) to split GFR, we compared scintigraphy-split GFR to CT-split GFR. We evaluated CT-split GFR as a screening test to detect scintigraphy-split GFR lower than 40 mL/min/1.73 m 2 /kidney. This was a monocentric retrospective study on 346 potential living donors who had GFR measurement, renal scintigraphy, and CT. We predicted GFR for each kidney by splitting GFR using the following formula: Volume-split GFR for a given kidney = measured GFR*[volume of this kidney/(volume of this kidney + volume of the opposite kidney)]. The same formula was used for length-split GFR. We compared length- and volume-split GFR to scintigraphy-split GFR at donation and with a 4-year follow-up. A better correlation was observed between length-split GFR and scintigraphy-split GFR (r = 0.92) than between volume-split GFR and scintigraphy-split GFR (r = 0.89). A length-split GFR threshold of 45 mL/min/1.73 m 2 /kidney had a sensitivity of 100 % and a specificity of 75 % to detect scintigraphy-split GFR less than 40 mL/min/1.73 m 2 /kidney. Both techniques with their respective thresholds detected living donors with similar eGFR evolution during follow-up. Length-split GFR can be used to detect patients requiring scintigraphy. (orig.)

  15. Use of computed tomography assessed kidney length to predict split renal GFR in living kidney donors

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Francois; Fournier, Catherine; Leon, Carine; Legendre, Christophe [Paris Descartes University, AP-HP, Hopital Necker-Enfants Malades, Renal Transplantation Department, Paris (France); Pavlov, Patrik [Linkoeping University, Linkoeping (Sweden); Tissier, Anne-Marie; Correas, Jean-Michel [Paris Descartes University, AP-HP, Hopital Necker-Enfants Malades, Radiology Department, Paris (France); Harache, Benoit; Hignette, Chantal; Weinmann, Pierre [Paris Descartes University, AP-HP, Hopital Europeen Georges Pompidou, Nuclear Medicine Department, Paris (France); Eladari, Dominique [Paris Descartes University, and INSERM, Unit 970, AP-HP, Hopital Europeen Georges Pompidou, Physiology Department, Paris (France); Timsit, Marc-Olivier; Mejean, Arnaud [Paris Descartes University, AP-HP, Hopital Europeen Georges Pompidou, Urology Department, Paris (France); Friedlander, Gerard; Courbebaisse, Marie [Paris Descartes University, and INSERM, Unit 1151, AP-HP, Hopital Europeen Georges Pompidou, Physiology Department, Paris (France); Houillier, Pascal [Paris Descartes University, INSERM, Unit umrs1138, and CNRS Unit erl8228, AP-HP, Hopital Europeen Georges Pompidou, Physiology Department, Paris (France)


    Screening of living kidney donors may require scintigraphy to split glomerular filtration rate (GFR). To determine the usefulness of computed tomography (CT) to split GFR, we compared scintigraphy-split GFR to CT-split GFR. We evaluated CT-split GFR as a screening test to detect scintigraphy-split GFR lower than 40 mL/min/1.73 m{sup 2}/kidney. This was a monocentric retrospective study on 346 potential living donors who had GFR measurement, renal scintigraphy, and CT. We predicted GFR for each kidney by splitting GFR using the following formula: Volume-split GFR for a given kidney = measured GFR*[volume of this kidney/(volume of this kidney + volume of the opposite kidney)]. The same formula was used for length-split GFR. We compared length- and volume-split GFR to scintigraphy-split GFR at donation and with a 4-year follow-up. A better correlation was observed between length-split GFR and scintigraphy-split GFR (r = 0.92) than between volume-split GFR and scintigraphy-split GFR (r = 0.89). A length-split GFR threshold of 45 mL/min/1.73 m{sup 2}/kidney had a sensitivity of 100 % and a specificity of 75 % to detect scintigraphy-split GFR less than 40 mL/min/1.73 m{sup 2}/kidney. Both techniques with their respective thresholds detected living donors with similar eGFR evolution during follow-up. Length-split GFR can be used to detect patients requiring scintigraphy. (orig.)

  16. Methane splitting in the K plant at Heydebreck

    Energy Technology Data Exchange (ETDEWEB)


    This report consisted of two major topics. The first was methane splitting in equipment for gas for distant transmission. The amount to be split was 3500 m/sup 3//hr methane per system. The temperature in the converter outlet was 850/sup 0/C and the methane was preheated to 650/sup 0/C. The results of this showed oxygen requirements to be 0.487 m/sup 3//m/sup 3/ of methane, steam requirements to be 0.529 kg/m/sup 3/ of methane, condensate requirements to be 0.518 kg/m/sup 3/ of methane, and cooling-water requirements to be 16 kg/m/sup 3/ of methane. The second topic was methane splitting in equipment for long-distance gas with additional indirect cooling. A summary showed the oxygen requirements to be 0.487 m/sup 3//m/sup 3/ of methane, steam requirements to be 0.107 kg/m/sup 3/ of methane, condensate requirements to be 0.526 kg/m/sup 3/ of methane, and cooling-water requirements to be 9.6 kg/m/sup 3/ of methane. The items discussed for each topic included calculations of methane converters, which included oxygen requirements and a heat balance of the converter; cooling of the split gas, which included heat content of the split gas at the catalyst converter outlet and heat exchangers; and the cooler-vaporizer system, which included a heat balance of the water circuit, determination of the amount of water in the cooler-vaporizer, and final cooling. 3 figures.

  17. Split quaternions and semi-Euclidean projective spaces

    Energy Technology Data Exchange (ETDEWEB)

    Ata, Erhan [Department of Mathematics, Dumlupinar University, 43100 Kutahya (Turkey); Department of Mathematics, Ankara University, 06100 Ankara (Turkey)], E-mail:; Yayli, Yusuf [Department of Mathematics, Dumlupinar University, 43100 Kutahya (Turkey); Department of Mathematics, Ankara University, 06100 Ankara (Turkey)


    In this study, we give one-to-one correspondence between the elements of the unit split three-sphere S(3,2) with the complex hyperbolic special unitary matrices SU(2,1). Thus, we express spherical concepts such as meridians of longitude and parallels of latitude on SU(2,1) by using the method given in Toth [Toth G. Glimpses of algebra and geometry. Springer-Verlag; 1998] for S{sup 3}. The relation among the special orthogonal group SO(R{sup 3}), the quotient group of unit quaternions S{sup 3}/{l_brace}{+-}1{r_brace} and the projective space RP{sup 3} given as SO(R{sup 3}){approx_equal}S{sup 3}/{l_brace}{+-}1{r_brace}=RP{sup 3} is known as the Euclidean projective spaces [Toth G. Glimpses of algebra and geometry. Springer-Verlag; 1998]. This relation was generalized to the semi-Euclidean projective space and then, the expression SO(3,1){approx_equal}S(3,2)/{l_brace}{+-}1{r_brace}=RP{sub 2}{sup 3} was acquired. Thus, it was found that Hopf fibriation map of S(2,1) can be used for Twistors (in not-null state) in quantum mechanics applications. In addition, the octonions and the split-octonions can be obtained from the Cayley-Dickson construction by defining a multiplication on pairs of quaternions or split quaternions. The automorphism group of the octonions is an exceptional Lie group. The split-octonions are used in the description of physical law. For example, the Dirac equation in physics (the equation of motion of a free spin 1/2 particle, like e.g. an electron or a proton) can be represented by a native split-octonion arithmetic.

  18. Prediction the effects of ZnO2 nanoparticles on splitting tensile strength and water absorption of high strength concrete

    Directory of Open Access Journals (Sweden)

    Ali Nazari


    Full Text Available In the present paper, two models based on artificial neural networks (ANN and gene expression programming (GEP for predicting splitting tensile strength and water absorption of concretes containing ZnO2 nanoparticles at different ages of curing have been developed. To build these models, training and testing using experimental results for 144 specimens produced with 16 different mixture proportions were conducted. The used data in the multilayer feed forward neural networks models and input variables of genetic programming models are arranged in a format of eight input parameters that cover the cement content (C, nanoparticle content (N, aggregate type (AG, water content (W, the amount of superplasticizer (S, the type of curing medium (CM, Age of curing (AC and number of testing try (NT. According to these input parameters, in the neural networks and genetic programming models, the splitting tensile strength and water absorption values of concretes containing ZnO2 nanoparticles were predicted. The training and testing results in these two models have shown the strong potential of the models for predicting the splitting tensile strength and water absorption values of concretes containing ZnO2 nanoparticles. Although neural networks have predicted better results, genetic programming is able to predict reasonable values with a simpler method rather than neural networks.

  19. Statistical Inference for Data Adaptive Target Parameters. (United States)

    Hubbard, Alan E; Kherad-Pajouh, Sara; van der Laan, Mark J


    Consider one observes n i.i.d. copies of a random variable with a probability distribution that is known to be an element of a particular statistical model. In order to define our statistical target we partition the sample in V equal size sub-samples, and use this partitioning to define V splits in an estimation sample (one of the V subsamples) and corresponding complementary parameter-generating sample. For each of the V parameter-generating samples, we apply an algorithm that maps the sample to a statistical target parameter. We define our sample-split data adaptive statistical target parameter as the average of these V-sample specific target parameters. We present an estimator (and corresponding central limit theorem) of this type of data adaptive target parameter. This general methodology for generating data adaptive target parameters is demonstrated with a number of practical examples that highlight new opportunities for statistical learning from data. This new framework provides a rigorous statistical methodology for both exploratory and confirmatory analysis within the same data. Given that more research is becoming "data-driven", the theory developed within this paper provides a new impetus for a greater involvement of statistical inference into problems that are being increasingly addressed by clever, yet ad hoc pattern finding methods. To suggest such potential, and to verify the predictions of the theory, extensive simulation studies, along with a data analysis based on adaptively determined intervention rules are shown and give insight into how to structure such an approach. The results show that the data adaptive target parameter approach provides a general framework and resulting methodology for data-driven science.

  20. Adaptive Splitting Integrators for Enhancing Sampling Efficiency of Modified Hamiltonian Monte Carlo Methods in Molecular Simulation. (United States)

    Akhmatskaya, Elena; Fernández-Pendás, Mario; Radivojević, Tijana; Sanz-Serna, J M


    The modified Hamiltonian Monte Carlo (MHMC) methods, i.e., importance sampling methods that use modified Hamiltonians within a Hybrid Monte Carlo (HMC) framework, often outperform in sampling efficiency standard techniques such as molecular dynamics (MD) and HMC. The performance of MHMC may be enhanced further through the rational choice of the simulation parameters and by replacing the standard Verlet integrator with more sophisticated splitting algorithms. Unfortunately, it is not easy to identify the appropriate values of the parameters that appear in those algorithms. We propose a technique, that we call MAIA (Modified Adaptive Integration Approach), which, for a given simulation system and a given time step, automatically selects the optimal integrator within a useful family of two-stage splitting formulas. Extended MAIA (or e-MAIA) is an enhanced version of MAIA, which additionally supplies a value of the method-specific parameter that, for the problem under consideration, keeps the momentum acceptance rate at a user-desired level. The MAIA and e-MAIA algorithms have been implemented, with no computational overhead during simulations, in MultiHMC-GROMACS, a modified version of the popular software package GROMACS. Tests performed on well-known molecular models demonstrate the superiority of the suggested approaches over a range of integrators (both standard and recently developed), as well as their capacity to improve the sampling efficiency of GSHMC, a noticeable method for molecular simulation in the MHMC family. GSHMC combined with e-MAIA shows a remarkably good performance when compared to MD and HMC coupled with the appropriate adaptive integrators.

  1. A structure-preserving split finite element discretization of the split 1D linear shallow-water equations (United States)

    Bauer, Werner; Behrens, Jörn


    We present a locally conservative, low-order finite element (FE) discretization of the covariant 1D linear shallow-water equations written in split form (cf. tet{[1]}). The introduction of additional differential forms (DF) that build pairs with the original ones permits a splitting of these equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star. Our novel discretization framework conserves this geometrical structure, in particular it provides for all DFs proper FE spaces such that the differential operators (here gradient and divergence) hold in strong form. The discrete topological equations simply follow by trivial projections onto piecewise constant FE spaces without need to partially integrate. The discrete Hodge-stars operators, representing the discretized metric equations, are realized by nontrivial Galerkin projections (GP). Here they follow by projections onto either a piecewise constant (GP0) or a piecewise linear (GP1) space. Our framework thus provides essentially three different schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the same discrete dispersion relation and similar second-order convergence rates as the conventional P1-P1 FE scheme that approximates both velocity and height variables by piecewise linear spaces. The split scheme that applies both GP1 and GP0 is stable and shares the dispersion relation of the conventional P1-P0 FE scheme that approximates the velocity by a piecewise linear and the height by a piecewise constant space with corresponding second- and first-order convergence rates. Exhibiting for both velocity and height fields second-order convergence rates, we might consider the split GP1-GP0 scheme though as stable versions of the conventional P1-P1 FE scheme. For the split scheme applying twice GP0, we are not aware of a corresponding conventional formulation to compare with. Though exhibiting larger

  2. Crustal Anisotropy Beneath the Western Segment of North Anatolian Fault Zone from Local Shear-Wave Splitting (United States)

    Altuncu Poyraz, S.; Teoman, U.; Kahraman, M.; Turkelli, N.; Rost, S.; Thompson, D. A.; Houseman, G.


    Shear-wave splitting from local earthquakes provides valuable knowledge on anisotropy of the upper crust. Upper-crustal anisotropy is widely interpreted as due to aligned fluid-filled cracks or pores. Differential stress is thought to close cracks aligned perpendicular to the maximum principal stress and leaves cracks open that are aligned perpendicular to the minimum horizontal compressional stress. In other cases local shear-wave splitting has been found to be aligned with regional faulting. Temporal variations in local splitting patterns might provide hints of changes in stress orientation related to earthquakes or volcanoes. North Anatolian Fault Zone (NAFZ) is a large-scale continental strike slip fault system originating at the Karlıova Junction in the east where it intersects the East Anatolian Fault (EAF) and extends west cutting across the entire Northern Turkey towards the Aegean Sea and the mainland Greece. Our primary focus is to provide constraints on the crustal anisotropy beneath the western segment of the North Anatolian Fault Zone with the use of a data set collected from a dense temporary seismic network consisting of 70 stations that was deployed in early May 2012 and operated for 18 months in the Sakarya region and the surroundings during the Faultlab experiment. For the local shear wave splitting analysis, out of 1344 events, we extracted 90 well located earthquakes with magnitudes greater than 2.0. Local shear-wave splitting makes use of earthquakes close to and nearly directly below the recording station. Incidence angles of less than 45 degrees were used to avoid the free-surface effect and resulting non-linear particle motion. Basically, two essential parameters for each station-event pair is needed for shear wave splitting calculations. One of them is fast polarization direction (ɸ) and the other is delay time (δt) between the fast and slow components of the shear wave. In this study, delay times vary between 0,02 and 0,25 seconds

  3. Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks. (United States)

    Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng


    In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement.

  4. The three-point function in split dimensional regularization in the Coulomb gauge

    CERN Document Server

    Leibbrandt, G


    We use a gauge-invariant regularization procedure, called ``split dimensional regularization'', to evaluate the quark self-energy $\\Sigma (p)$ and quark-quark-gluon vertex function $\\Lambda_\\mu (p^\\prime,p)$ in the Coulomb gauge, $\\vec{\\bigtriangledown}\\cdot\\vec{A}^a = 0$. The technique of split dimensional regularization was designed to regulate Coulomb-gauge Feynman integrals in non-Abelian theories. The technique which is based on two complex regulating parameters, $\\omega$ and $\\sigma$, is shown to generate a well-defined set of Coulomb-gauge integrals. A major component of this project deals with the evaluation of four-propagator and five-propagator Coulomb integrals, some of which are nonlocal. It is further argued that the standard one-loop BRST identity relating $\\Sigma$ and $\\Lambda_\\mu$, should by rights be replaced by a more general BRST identity which contains two additional contributions from ghost vertex diagrams. Despite the appearance of nonlocal Coulomb integrals, both $\\Sigma$ and $\\Lambda_\\...

  5. Effects of variation of hyperfine splitting(structure) in atomic physics

    International Nuclear Information System (INIS)

    Alavi, S A


    The possible variation of the fundamental constants is currently a very popular research topic. Theories unifying gravity and other interactions suggest the possibility of spatial and temporal variation of physics constants in the universe. Current interest is high because in superstring theories which have additional dimensions compactified on tiny scales any variation of the size of the extra dimensions results in changes in the 3-dimensional coupling constants. String theory also suggest the space to be noncommutative i.e., the space coordinates do not commute with each other. In this paper we study the hyperfine splitting in the framework of the noncommutative quantum mechanics(NCQM) developed in the literature. We show that the energy difference between two excited F = I + 1/2 and the ground F I - 1/2 states in a noncommutative space(NCS) is bigger than the one in commutative case, so the radiation wavelength in NCS s must be shorter than the radiation wavelength in commutative spaces. We also find an upper bound for the non-commutativity parameter. Since in the very tiny string scale or at very high energy situation the effects of non-commutativity of space may appear so the hyperfine splitting is not constant and changes as energy changes(high energy situation). The results would be of interest both for theoretical and optical spectroscopists.

  6. Consequences of Split Shift Work in Indian Traffic Police Personnel: Daytime Sleepiness, Stressors and Psychological Distress

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Soni


    Full Text Available The present study was aimed to measure the daily routine preference, daytime sleepiness, and psychological distress experiences, because of split shift system job in a sample in traffic police personnel of Raipur city, India. To measure such parameters we used the Morningness-Eveningness Questionnaire, Epworth Sleepiness Scale (ESS, Operational Police Stress Questionnaire (OPSQ, General Health Questionnaire and the Distress. To evaluate differences between age, body mass index, period of service length and drug / alcohol use for all the subjects (traffic police personnel the t-test and chi-square test were used. Total Hundred male traffic police personnel participated and out of which most of them were found to belong in the evening active category. This study also indicates increased prevalence of excessive daytime sleepiness and (EDS high level of psychological distress as measured by the GHQ-12 among few police workers. Moreover, a number of participants reported significant distress levels, when measured with distress thermometer. In nutshell, the study sample suggests adaptive coping strategies of traffic police personnel working in split shift system profession can be attributed to their evening (E-type circadian preferences.

  7. Predicting singlet-triplet energy splittings with projected Hartree-Fock methods. (United States)

    Rivero, Pablo; Jiménez-Hoyos, Carlos A; Scuseria, Gustavo E


    Hartree-Fock (HF) and density functional theory (DFT) methods are known for having problems in predicting singlet-triplet energy splittings when the system displays significant diradical character. Multireference methods are traditionally advocated to deal with the spin-contamination problem inherent in broken-symmetry mean-field methods. In the present work, spin-contamination is rigorously eliminated by means of a symmetry projection approach, carried out in a variation-after-projection fashion, recently implemented in our research group. We here explore the performance of a variety of projected Hartree-Fock (PHF) approaches (SUHF, KSUHF, SGHF, and KSGHF) in predicting singlet-triplet energy gaps in a broad set of diradical systems: small diatomic molecules, carbenes and silenes, and a few larger molecules (trimethylenemethane and benzyne isomers). For most of these systems, accurate experimental data is available in the literature. Additionally, we assess the quality of the geometrical parameters obtained in SUHF-based optimizations for some of the systems considered. Our results indicate that PHF methods yield high-quality multireference wave functions, providing a good description of the ground state potential surface as well as an accurate singlet-triplet splitting gap, all within a modest mean-field computational cost.

  8. Thickness control in electrophoretic deposition of WO3 nanofiber thin films for solar water splitting

    International Nuclear Information System (INIS)

    Fang, Yuanxing; Lee, Wei Cheat; Canciani, Giacomo E.; Draper, Thomas C.; Al-Bawi, Zainab F.; Bedi, Jasbir S.; Perry, Christopher C.; Chen, Qiao


    Graphical abstract: - Highlights: • A novel method combining electrospinning and electrophoretic deposition was established for the creation of nanostructured semiconductor thin films. • The created thin films displayed a high chemical stability with a controllable thickness. • The PEC water splitting performance of the thin films was optimized by fine-tuning the thickness of the films. • A maximum photoconversion efficiency was achieved by 18 μm nanofibrous thin films. - Abstract: Electrophoretic deposition (EPD) of ground electrospun WO 3 nanofibers was applied to create photoanodes with controlled morphology for the application of photoelectrochemical (PEC) water splitting. The correlations between deposition parameters and film thicknesses were investigated with theoretical models to precisely control the morphology of the nanostructured porous thin film. The photoconversion efficiency was further optimized as a function of film thickness. A maximum photoconversion efficiency of 0.924% from electrospun WO 3 nanofibers that EPD deposited on a substrate was achieved at a film thickness of 18 μm.

  9. Constraining Proton Lifetime in SO(10) with Stabilized Doublet-Triplet Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Babu, K.S.; /Oklahoma State U.; Pati, Jogesh C.; /SLAC; Tavartkiladze, Zurab; /Oklahoma State U. /Tbilisi, Inst. Phys.


    We present a class of realistic unified models based on supersymmetric SO(10) wherein issues related to natural doublet-triplet (DT) splitting are fully resolved. Using a minimal set of low dimensional Higgs fields which includes a single adjoint, we show that the Dimopoulos-Wilzcek mechanism for DT splitting can be made stable in the presence of all higher order operators without having pseudo-Goldstone bosons and flat directions. The {mu} term of order TeV is found to be naturally induced. A Z{sub 2}-assisted anomalous U(1){sub A} gauge symmetry plays a crucial role in achieving these results. The threshold corrections to {alpha}{sub 3}(M{sub Z}), somewhat surprisingly, are found to be controlled by only a few effective parameters. This leads to a very predictive scenario for proton decay. As a novel feature, we find an interesting correlation between the d = 6 (p {yields} e{sup +}{pi}{sup 0}) and d = 5 (p {yields} {bar {nu}}K{sup +}) decay amplitudes which allows us to derive a constrained upper limit on the inverse rate of the e{sup +}{pi}{sup 0} mode. Our results show that both modes should be observed with an improvement in the current sensitivity by about a factor of five to ten.

  10. Low complexity split digital backpropagation for digital subcarrier-multiplexing optical transmissions. (United States)

    Xiao, Zhuopeng; Zhuge, Qunbi; Fu, Songnian; Zhang, Fangyuan; Qiu, Meng; Tang, Ming; Liu, Deming; Plant, David V


    A split digital backpropagation (DBP) scheme for digital subcarrier-multiplexing (SCM) transmissions, denoted as SSDBP, is proposed and studied in both experiments and simulations. The implementation of the SSDBP is split at the transmitter and the receiver, leveraging existing chromatic dispersion (CD) compensation blocks to reduce complexity. We experimentally demonstrate that the SSDBP, with a complexity reduction up to 50% compared to the original receiver based SCM-DBP, can achieve a nonlinear compensation Q 2 gain of 0.7-dB and 0.9-dB for 1920-km and 2880-km 34.94-GBd single channel PDM-16QAM transmissions, respectively. The maximum reach can be extended by 31.6% using 2-step SSDBP with only 27.5 complex multiplications per sample. Meanwhile, using 3-step SSDBP, the reach extension can be increased to 40.8%. The benefit of implementing part of SSDBP at the transmitter is experimentally validated with 0.1-dB Q 2 improvement at 4-dBm launch power. We also numerically investigate the impact of the digital-to-analog converter (DAC) resolution and fiber parameter uncertainties on the nonlinear compensation performance of the SSDBP.

  11. Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort

    Energy Technology Data Exchange (ETDEWEB)

    Software, Anyhere; Fernandes, Luis; Lee, Eleanor; Ward, Greg


    A simulation study was conducted to evaluate lighting energy savings of split-pane electrochromic (EC) windows controlled to satisfy key visual comfort parameters. Using the Radiance lighting simulation software, interior illuminance and luminance levels were computed for a south-facing private office illuminated by a window split into two independently-controlled EC panes. The transmittance of these was optimized hourly for a workplane illuminance target while meeting visual comfort constraints, using a least-squares algorithm with linear inequality constraints. Blinds were successively deployed until visual comfort criteria were satisfied. The energy performance of electrochromics proved to be highly dependent on how blinds were controlled. With hourly blind position adjustments, electrochromics showed significantly higher (62percent and 53percent, respectively without and with overhang) lighting energy consumption than clear glass. With a control algorithm designed to better approximate realistic manual control by an occupant, electrochromics achieved significant savings (48percent and 37percent, respectively without and with overhang). In all cases, energy consumption decreased when the workplace illuminance target was increased. In addition, the fraction of time during which the occupant had an unobstructed view of the outside was significantly greater with electrochromics: 10 months out of the year versus a handful of days for the reference case.

  12. Total-variation based velocity inversion with Bregmanized operator splitting algorithm (United States)

    Zand, Toktam; Gholami, Ali


    Many problems in applied geophysics can be formulated as a linear inverse problem. The associated problems, however, are large-scale and ill-conditioned. Therefore, regularization techniques are needed to be employed for solving them and generating a stable and acceptable solution. We consider numerical methods for solving such problems in this paper. In order to tackle the ill-conditioning of the problem we use blockiness as a prior information of the subsurface parameters and formulate the problem as a constrained total variation (TV) regularization. The Bregmanized operator splitting (BOS) algorithm as a combination of the Bregman iteration and the proximal forward backward operator splitting method is developed to solve the arranged problem. Two main advantages of this new algorithm are that no matrix inversion is required and that a discrepancy stopping criterion is used to stop the iterations, which allow efficient solution of large-scale problems. The high performance of the proposed TV regularization method is demonstrated using two different experiments: 1) velocity inversion from (synthetic) seismic data which is based on Born approximation, 2) computing interval velocities from RMS velocities via Dix formula. Numerical examples are presented to verify the feasibility of the proposed method for high-resolution velocity inversion.

  13. Parallel Directionally Split Solver Based on Reformulation of Pipelined Thomas Algorithm (United States)

    Povitsky, A.


    In this research an efficient parallel algorithm for 3-D directionally split problems is developed. The proposed algorithm is based on a reformulated version of the pipelined Thomas algorithm that starts the backward step computations immediately after the completion of the forward step computations for the first portion of lines This algorithm has data available for other computational tasks while processors are idle from the Thomas algorithm. The proposed 3-D directionally split solver is based on the static scheduling of processors where local and non-local, data-dependent and data-independent computations are scheduled while processors are idle. A theoretical model of parallelization efficiency is used to define optimal parameters of the algorithm, to show an asymptotic parallelization penalty and to obtain an optimal cover of a global domain with subdomains. It is shown by computational experiments and by the theoretical model that the proposed algorithm reduces the parallelization penalty about two times over the basic algorithm for the range of the number of processors (subdomains) considered and the number of grid nodes per subdomain.

  14. An improved ultra-wideband bandpass filter design using split ring resonator with coupled microstrip line (United States)

    Umeshkumar, Dubey Suhmita; Kumar, Manish


    This paper incorporates an improved design of Ultra Wideband Bandpass filter by using split ring resonators (SRR) along with the coupled microstrip lines. The use of split ring resonators and shunt step impedance open circuit stub enhances the stability due to transmission zeroes at the ends. The designing of filter and simulation of parameters is carried out using Ansoft's HFSS 13.0 software on RT/Duroid 6002 as a substrate with dielectric constant of 2.94. The design utilizes a frequency band from 22GHz to 29GHz. This band is reserved for Automotive Radar system and sensors as per FCC specifications. The proposed design demonstrates insertion loss less than 0.6dB and return loss better than 12dB at mid frequency i.e. 24.4GHz. The reflection coefficient shows high stability of about 12.47dB at mid frequency. The fractional bandwidth of the proposed filter is about 28.7% and size of filter design is small due to thickness of 0.127mm.

  15. Seismic anisotropy beneath NW Himalaya using SKS and SKKS Splitting measurements (United States)

    Biswal, S.; Kumar, S.; Mohanty, W. K.


    Seventy six teleseismic earthquakes comprising of both SKS and SKKS were analysed for the NW Himalaya to infer the characteristics of the shear wave splitting parameters in the region. The anisotropy results obtained from the analysis shows upper mantle anisotropy in the study area with the fast axis aligned along a NNE-SSW direction and the average delay times observed at the station ranges from a minimum of 0.3s to a maximum of 1.7s for SKS and SKKS phases. These splitting results obtained for this area shows a parallel trend with motion of the India plate as estimated from NUVEL 1A model in contradiction to the orthogonal E-W trend observed for the NE Himalaya observed at the collision front. The seismic anisotropy observed in this region demarcates a shallow source of anisotropy that may be due to the strain flow in the upper mantle which may be the causative source of the anisotropy in the region.

  16. Shear-Wave Splitting and Crustal Anisotropy in the Shillong-Mikir Plateau of Northeast India (United States)

    Bora, Dipok K.; Hazarika, Devajit; Paul, Arpita; Borah, Kajaljyoti; Borgohain, Jayanta Madhab


    Seismic anisotropy of crust beneath the Shillong-Mikir Plateau and the surrounding regions of northeast India have been investigated with the help of splitting analysis of S-wave of local earthquakes. We estimate a total 83 pairs of splitting parameters ( Φ and δt) from 67 local shallow focus earthquakes (depth ≤ 32 km) recorded by the 10 broadband seismological stations operated in the study region. The results show delay times ranging from 0.02 to 0.2 s, which correspond to anisotropy up to 4%, suggesting significant strength of anisotropy in the study region. Fast polarization direction ( Φ) in the Shillong Plateau shows mostly NW-SE trend in the western part and NE-SW trend in the northern part. Φs near Kopili fault (KF) follows NW-SE trend. Φ at most of the stations in the study region is consistent with the local stress orientation, suggesting that the anisotropy is mainly caused by preferentially aligned cracks responding to the stress field. On the other hand, anisotropy observed near the KF is due to aligned macroscopic fracture related to strike-slip movement in the fault zone.

  17. Quantum field theory of material properties. Its application to models of Rashba spin splitting

    International Nuclear Information System (INIS)

    Schober, Giulio Albert Heinrich


    In this thesis, we argue that microscopic field theories - which as such are already scientifically established - have emerged as a new paradigm in materials physics. We hence seek to elaborate on such field theories which underlie modern ab initio calculations, and we apply them to the bismuth tellurohalides (BiTeX with X=I,Br,Cl) as a prototypical class of spin-based materials. For this purpose, we begin by constructing tight-binding models which approximately describe the spin-split conduction bands of BiTeI. Following this, we derive the theory of temperature Green functions systematically from their fundamental equations of motion. This in turn enables us to develop a combined functional renormalization and mean-field approach which is suitable for application to multiband models. For the Rashba model including an attractive, local interaction, this approach yields an unconventional superconducting phase with a singlet gap function and a mixed singlet-triplet order parameter. We further investigate the unusual electromagnetic response of BiTeI, which is caused by the Rashba spin splitting and which includes, in particular, an orbital paramagnetism. Finally, we conclude by summarizing the Functional Approach to electrodynamics of media as a microscopic field theory of electromagnetic material properties which sits in accordance with ab initio physics.

  18. The Formation of Laurentia: Evidence from Shear Wave Splitting and Seismic Tomography (United States)

    Liddell, M. V.; Bastow, I. D.; Rawlinson, N.; Darbyshire, F. A.; Gilligan, A.


    The northern Hudson Bay region of Canada comprises several Archean cratonic nuclei, assembled by Paleoproterozoic orogenies including the 1.8 Ga Trans-Hudson Orogen (THO) and Rinkian-Nagssugtoqidian Orogen (NO). Questions remain about how similar in scale and nature these orogens were compared to modern orogens like the Himalayas. Also in question is whether the thick Laurentian cratonic root below Hudson Bay is stratified, with a seismically-fast Archean core underlain by a lower, younger, thermal layer. We investigate these problems via shear-wave splitting and teleseismic tomography using up to 25 years of data from 65 broadband seismic stations across northern Hudson Bay. The results of the complementary studies comprise the most comprehensive study to date of mantle seismic velocity and anisotropy in northern Laurentia. Splitting parameter patterns are used to interpret multiple layers, lithospheric boundaries, dipping anisotropy, and deformation zone limits for the THO and NO. Source-side waveguide effects from Japan and the Aleutian trench are observed despite the tomographic data being exclusively relative arrival time. Mitigating steps to ensure data quality are explained and enforced. In the Hudson Strait, anisotropic fast directions (φ) generally parallel the THO, which appears in tomographic images as a strong low velocity feature relative to the neighbouring Archean cratons. Several islands in northern Hudson Bay show short length-scale changes in φ coincident with strong velocity contrasts. These are interpreted as distinct lithospheric blocks with unique deformational histories, and point to a complex, rather than simple 2-plate, collisional history for the THO. Strong evidence is presented for multiple anisotropic layers beneath Archean zones, consistent with the episodic development model of cratonic keels (e.g., Yuan & Romanowicz 2010). We show via both tomographic inversion models and SKS splitting patterns that southern Baffin Island was

  19. Conventional versus single-ladder-splitting contributions to double parton scattering production of two quarkonia, two Higgs bosons and c anti cc anti c

    Energy Technology Data Exchange (ETDEWEB)

    Gaunt, Jonathan R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Maciula, Rafal [Polish Academy of Sciences, Cracow (Poland). Inst. of Nuclear Physics; Szczurek, Antoni [Polish Academy of Sciences, Cracow (Poland). Inst. of Nuclear Physics; Rzeszow Univ. (Poland)


    The double parton distributions (dPDF), both conventional and those corresponding to parton splitting, are calculated and compared for different two-parton combinations. The conventional and splitting dPDFs have very similar shape in x{sub 1} and x{sub 2}. We make a first quantitative evaluation of the single-ladder-splitting contribution to double parton scattering (DPS) production of two S- or P-wave quarkonia, two Higgs bosons and c anti cc anti c. The ratio of the single-ladder-splitting to conventional contributions is discussed as a function of centre-of-mass energy, mass of the produced system and other kinematical variables. Using a simple model for the dependence of the conventional two-parton distribution on transverse parton separation (Gaussian and independent of x{sub i} and scales), we find that the 2v1 contribution is as big as the 2v2 contribution discussed in recent years in the literature. This means that the phenomenological analyses of σ{sub eff} including only the conventional DPS mechanism have to be revised including explicitly the single-ladder-splitting contributions discussed here. The differential distributions in rapidity and transverse momenta calculated for conventional and single-ladder-splitting DPS processes are however very similar which causes their experimental separation to be rather difficult, if not impossible. The direct consequence of the existence of the two components (conventional and splitting) is the energy and process dependence of the empirical parameter σ{sub eff}. This is illustrated in our paper for the considered processes.

  20. Investigation of the Effects of Split Sleep Schedules on Commercial Vehicle Driver Safety and Health (United States)


    The objective of this study was to evaluate the consequences for safety and health of split sleep versus consolidated sleep by comparing the effects of consolidated nighttime sleep, split sleep, and consolidated daytime sleep on total sleep time, per...

  1. Spin-valley splitting of electron beam in graphene

    Directory of Open Access Journals (Sweden)

    Yu Song


    Full Text Available We study spatial separation of the four degenerate spin-valley components of an electron beam in a EuO-induced and top-gated ferromagnetic/pristine/strained graphene structure. We show that, in a full resonant tunneling regime for all beam components, the formation of standing waves can lead sudden phase jumps ∼−π and giant lateral Goos-Hänchen shifts as large as the transverse beam width, while the interplay of the spin and valley imaginary wave vectors in the modulated regions can lead differences of resonant angles for the four spin-valley flavors, manifesting a spin-valley beam splitting effect. The splitting effect is found to be controllable by the gating and strain.

  2. Chargino pair production at linear collider and split supersymmetry

    International Nuclear Information System (INIS)

    Zhu Shouhua


    Recently Arkani-Hamed and Dimopoulos proposed a supersymmetric model [hep-th/0405159], dubbed 'Split supersymmetry' in [hep-ph/0406088], which can remove most of the unpleasant shortcomings of TeV Supersymmetry. In this model all scalars except one finely tuned Higgs boson are ultra heavy while the neutralino and chargino might remain light in order to achieve gauge coupling unification and accord with the dark matter density. In this Letter, we investigated the impact of this new model on chargino pair production at next generation linear colliders. Our numerical results show that this process can be used to probe sneutrino mass up to 10 TeV. Therefore, precise measurements of chargino pair production at the linear colliders could distinguish split supersymmetry from TeV supersymmetry

  3. Using Protection Layers for a 2-Photon Water Splitting Device

    DEFF Research Database (Denmark)

    Seger, Brian; Mei, Bastian Timo; Frydendal, Rasmus


    The 2-photon tandem device for photocatalytic water splitting has been theoretically shown to provide a higher efficiency than a single photon device(1). This increased efficiency can be achieved by having one material optimized to absorb high energy photons (large bandgap) and another material...... optimized to absorb low energy photons (small bandgap). To a large degree this approach has been hindered by corrosion issues. In this talk I will first discuss how our computational screening of 2,400 materials showed that very few materials can efficiently absorb light without corroding in water splitting...... conditions.(2) I will follow this up by discussing how protection layers bypass the corrosion issue by creating a buffer layer.(3) Finally I will show how we integrated a photocatalyst/protection layer/(co-catalyst) scheme to produce highly efficient H2 evolution photocathodes and O2 evolution photoanodes.(3...

  4. Photoelectrochemical water splitting standards, experimental methods, and protocols

    CERN Document Server

    Chen, Zhebo; Miller, Eric


    This book outlines many of the techniques involved in materials development and characterization for photoelectrochemical (PEC) - for example, proper metrics for describing material performance, how to assemble testing cells and prepare materials for assessment of their properties, and how to perform the experimental measurements needed to achieve reliable results towards better scientific understanding. For each technique, proper procedure, benefits, limitations, and data interpretation are discussed. Consolidating this information in a short, accessible, and easy to read reference guide will allow researchers to more rapidly immerse themselves into PEC research and also better compare their results against those of other researchers to better advance materials development. This book serves as a "how-to" guide for researchers engaged in or interested in engaging in the field of photoelectrochemical (PEC) water splitting. PEC water splitting is a rapidly growing field of research in which the goal is to deve...

  5. Photochemical water splitting mediated by a C1 shuttle

    KAUST Repository

    Alderman, N. P.


    The possibility of performing photochemical water splitting in a two-stage system, separately releasing the H and O components, has been probed with two separate catalysts and in combination with a formaldehyde/formate shuttling redox couple. In the first stage, formaldehyde releases hydrogen vigorously in the presence of an Na[Fe(CN)]·10HO catalyst, selectively affording the formate anion. In the second stage, the formate anion is hydro-genated back to formaldehyde by water and in the presence of a BiWO photocatalyst whilst releasing oxygen. Both stages operate at room temperature and under visible light irradiation. The two separate photocatalysts are compatible since water splitting can also be obtained in one-pot experiments with simultaneous H/O evolution.

  6. Toward visible light response: Overall water splitting using heterogeneous photocatalysts

    KAUST Repository

    Takanabe, Kazuhiro


    Extensive energy conversion of solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting by powder-form photocatalysts directly produces a mixture of H 2 and O2 (chemical energy) in a single reactor, which does not require any complicated parabolic mirrors and electronic devices. Because of its simplicity and low capital cost, it has tremendous potential to become the major technology of solar energy conversion. Development of highly efficient photocatalysts is desired. This review addresses why visible light responsive photocatalysts are essential to be developed. The state of the art for the photocatalysts for overall water splitting is briefly described. Moreover, various fundamental aspects for developing efficient photocatalysts, such as particle size of photocatalysts, cocatalysts, and reaction kinetics are discussed. Copyright © 2011 De Gruyter.

  7. Photoelectrochemical water splitting in separate oxygen and hydrogen cells (United States)

    Landman, Avigail; Dotan, Hen; Shter, Gennady E.; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S.; Rothschild, Avner


    Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.

  8. Protein subcellular localization assays using split fluorescent proteins (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM


    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  9. Image segmentation by iterative parallel region growing and splitting (United States)

    Tilton, James C.


    The spatially constrained clustering (SCC) iterative parallel region-growing technique is applied to image analysis. The SCC algorithm is implemented on the massively parallel processor at NASA Goddard. Most previous region-growing approaches have the drawback that the segmentation produced depends on the order in which portions of the image are processed. The ideal solution to this problem (merging only the single most similar pair of spatially adjacent regions in the image in each iteration) becomes impractical except for very small images, even on a massively parallel computer. The SCC algorithm overcomes these problems by performing, in parallel, the best merge within each of a set of local, possibly overlapping, subimages. A region-splitting stage is also incorporated into the algorithm, but experiments show that region splitting generally does not improve segmentation results. The SCC algorithm has been tested on various imagery data, and test results for a Landsat TM image are summarized.

  10. Isospin Mass Splittings and the $\\ms$ Corrections in the Semibosonized SU(3)-NJL-Model


    Blotz, Andree; Goeke, K.; Praszalowicz, M.


    The mass splittings of hyperons including the isospin splittings are calculated with $O(\\ms^2)$ and $O(\\ms \\dm)$ accuracy respectively within the semibosonized SU(3)-NJL model. The pattern of the isospin splittings is not spoiled by the terms of the order $O(\\ms \\dm)$, and both splittings between the different isospin multiplets and within the same multiplet are well reproduced for acceptable values of $\\ms$ and $\\dm$.

  11. Transfer Pricing Profit Split Methods : A Practical Solution?


    Quttineh, Yousef


    The purpose of this master’s thesis is to explain and analyze whether today’s existing regulations provide sufficient guidance on how to apply the Profit Split Method (PSM) in practice. Since the enterprises’ profits arising from intra-group transactions increases, the tax base for any government also becomes larger and more important. This issue will likely become even more problematic as the globalization branches out and the majority of the global trade is undertaken between associated ent...

  12. Left-right splitting for electromagnetic scattering in 3D

    CERN Document Server

    Spivack, M; Sillence, C; 10.1049/ip-smt:20040945


    The left-right splitting method and its application to electromagnetic scattering by large 3D scatterers are described. Exact numerical solutions to the governing integral equations can be prohibitively expensive for large scatterers. Under the assumption that energy is predominantly forward-scattered, the solution is expressed as a series of terms, each of which is rapidly and efficiently evaluated. In many cases only one or two terms are needed, and the formulation provides additional physical insight.

  13. Chitosan Nanoparticle Encapsulated Hemagglutinin-Split Influenza Virus Mucosal Vaccine


    Sawaengsak, Chompoonuch; Mori, Yasuko; Yamanishi, Koichi; Mitrevej, Ampol; Sinchaipanid, Nuttanan


    Subunit/split influenza vaccines are less reactogenic compared with the whole virus vaccines. However, their immunogenicity is relatively low and thus required proper adjuvant and/or delivery vehicle for immunogenicity enhancement. Influenza vaccines administered intramuscularly induce minimum, if any, mucosal immunity at the respiratory mucosa which is the prime site of the infection. In this study, chitosan (CS) nanoparticles were prepared by ionic cross-linking of the CS with sodium tripol...

  14. Point splitting regularization of classical string field theory

    International Nuclear Information System (INIS)

    Strominger, A.


    We regulate Witten's star algebra using point splitting and conformal field theory techniques. Certain products of nonassociative operators and states are defined. This involves a refinement of star that exists in cases where Witten's star is ill-defined. A simple derivation of a recently discovered associativity anomaly is given. It is shown that there is no anomaly obstructing the equivalence of Witten's string theory action and the cubic action for string fields in the open string Fock space. (orig.)

  15. Shear-wave splitting measurements – Problems and solutions

    Czech Academy of Sciences Publication Activity Database

    Vecsey, Luděk; Plomerová, Jaroslava; Babuška, Vladislav


    Roč. 462, č. 1-4 (2008), s. 178-196 ISSN 0040-1951 R&D Projects: GA AV ČR(CZ) KJB300120605; GA AV ČR IAA3012405; GA AV ČR IAA300120709 Institutional research plan: CEZ:AV0Z30120515 Keywords : seismic anisotropy * shear-wave splitting * comparison of cross- correlation * eigenvalue * transverse minimization methods Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.677, year: 2008

  16. Hanford tank wastes; salt splitting: FY92 activities

    International Nuclear Information System (INIS)

    Hickman, R.G.


    For the first time, sodium nitrate was split into the nitric acid and sodium hydroxide from which it originated. Current-voltage characteristics were determined and found to be in the range normally judged to be economically feasible. Six different membranes were exposed to 1M NaOH or 1M HN0 3 for 100 days without apparent deterioration. It is concluded that this technology holds significant promise for the processing of Hanford Tank Wastes

  17. Split-based computation of majority-rule supertrees. (United States)

    Kupczok, Anne


    Supertree methods combine overlapping input trees into a larger supertree. Here, I consider split-based supertree methods that first extract the split information of the input trees and subsequently combine this split information into a phylogeny. Well known split-based supertree methods are matrix representation with parsimony and matrix representation with compatibility. Combining input trees on the same taxon set, as in the consensus setting, is a well-studied task and it is thus desirable to generalize consensus methods to supertree methods. Here, three variants of majority-rule (MR) supertrees that generalize majority-rule consensus trees are investigated. I provide simple formulas for computing the respective score for bifurcating input- and supertrees. These score computations, together with a heuristic tree search minmizing the scores, were implemented in the python program PluMiST (Plus- and Minus SuperTrees) available from The different MR methods were tested by simulation and on real data sets. The search heuristic was successful in combining compatible input trees. When combining incompatible input trees, especially one variant, MR(-) supertrees, performed well. The presented framework allows for an efficient score computation of three majority-rule supertree variants and input trees. I combined the score computation with a heuristic search over the supertree space. The implementation was tested by simulation and on real data sets and showed promising results. Especially the MR(-) variant seems to be a reasonable score for supertree reconstruction. Generalizing these computations to multifurcating trees is an open problem, which may be tackled using this framework.

  18. Split-Plot Designs with Mirror Image Pairs as Subplots

    DEFF Research Database (Denmark)

    Tyssedal, John; Kulahci, Murat; Bisgaard, Soren


    In this article we investigate two-level split-plot designs where the sub-plots consist of only two mirror image trials. Assuming third and higher order interactions negligible, we show that these designs divide the estimated effects into two orthogonal sub-spaces, separating sub-plot main effects...... appealing with effects of major interest free from full aliasing assuming that 3rd and higher order interactions are negligible....

  19. Some Fixed Points Results of Quadratic Functions in Split Quaternions

    Directory of Open Access Journals (Sweden)

    Young Chel Kwun


    Full Text Available We attempt to find fixed points of a general quadratic polynomial in the algebra of split quaternion. In some cases, we characterize fixed points in terms of the coefficients of these polynomials and also give the cardinality of these points. As a consequence, we give some simple examples to strengthen the infinitude of these points in these cases. We also find the roots of quadratic polynomials as simple consequences.

  20. Fluorescence of molecules placed near a spherical particle: Rabi splitting

    Directory of Open Access Journals (Sweden)

    M.M. Dvoynenko


    Full Text Available Theoretical study of spontaneously emitted spectra of point-like source placed near spherical Ag particle was performed. It was shown that near-field electromagnetic interaction between a point-like emitter and spherical Ag particle leads to strong coupling between them at very small emitter-metal surface distances. It was shown that values of Rabi splitting are quantitatively close to that of emitter-flat substrate interaction.

  1. Ultrafast reduction of exchange splitting in ferromagnetic nickel

    International Nuclear Information System (INIS)

    Zhang, G P; Bai, Y H; George, Thomas F


    A decade ago Rhie et al (2003 Phys. Rev. Lett . 90 247201) reported that when ferromagnetic nickel is subject to an intense ultrashort laser pulse, its exchange splitting is reduced quickly. But to simulate such reduction remains a big challenge. The popular rigid band approximation (RBA), where both the band structure and the exchange splitting are held fixed before and after laser excitation, is unsuitable for this purpose, while the time-dependent density functional theory could be time-consuming. To overcome these difficulties, we propose a time-dependent Liouville and density functional theory (TDLDFT) that integrates the time-dependent Liouville equation into the density functional theory. As a result, the excited charge density is reiterated back into the Kohn–Sham equation, and the band structure is allowed to change dynamically. Even with the ground-state density functional, a larger demagnetization than RBA is found; after we expand Ortenzi’s spin scaling method into an excited-state (laser) density functional, we find that the exchange splitting is indeed strongly reduced, as seen in the experiment. Both the majority and minority bands are shifted toward the Fermi level, but the majority shifts a lot more. The ultrafast reduction in exchange splitting occurs concomitantly with demagnetization. While our current theory is still unable to yield the same percentage loss in the spin moment as observed in the experiment, it predicts a correct trend that agrees with the experiments. With a better functional, we believe that our results can be further improved. (paper)

  2. Interpretation and inverse analysis of the wedge splitting test

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Stang, Henrik


    to the wedge splitting test and that it is well suited for the interpretation of test results in terms of s(w). A fine agreement between the hinge and FEM-models has been found. It has also been found that the test and the hinge model form a solid basis for inverse analysis. The paper also discusses possible...... three dimensional problems in the experiment as well as the influence of specimen size....

  3. Split-Stirling-cycle displacer linear-electric drive (United States)

    Ackermann, R. A.; Bhate, S. K.; Byrne, D. V.


    The retrofit of a 1/4-W split-Stirling cooler with a linear driven on the displacer was achieved and its performance characterized. The objective of this work was to demonstrate that a small linear motor could be designed to meet the existing envelope specifications of the cooler and that an electric linear drive on the displacer could improve the cooler's reliability and performance. The paper describes the characteristics of this motor and presents cooler test results.

  4. A split accumulation gate architecture for silicon MOS quantum dots (United States)

    Rochette, Sophie; Rudolph, Martin; Roy, Anne-Marie; Curry, Matthew; Ten Eyck, Gregory; Dominguez, Jason; Manginell, Ronald; Pluym, Tammy; King Gamble, John; Lilly, Michael; Bureau-Oxton, Chloé; Carroll, Malcolm S.; Pioro-Ladrière, Michel

    We investigate tunnel barrier modulation without barrier electrodes in a split accumulation gate architecture for silicon metal-oxide-semiconductor quantum dots (QD). The layout consists of two independent accumulation gates, one gate forming a reservoir and the other the QD. The devices are fabricated with a foundry-compatible, etched, poly-silicon gate stack. We demonstrate 4 orders of magnitude of tunnel-rate control between the QD and the reservoir by modulating the reservoir gate voltage. Last electron charging energies of app. 10 meV and tuning of the ST splitting in the range 100-200 ueV are observed in two different split gate layouts and labs. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  5. Photoelectrochemical devices for solar water splitting - materials and challenges. (United States)

    Jiang, Chaoran; Moniz, Savio J A; Wang, Aiqin; Zhang, Tao; Tang, Junwang


    It is widely accepted within the community that to achieve a sustainable society with an energy mix primarily based on solar energy we need an efficient strategy to convert and store sunlight into chemical fuels. A photoelectrochemical (PEC) device would therefore play a key role in offering the possibility of carbon-neutral solar fuel production through artificial photosynthesis. The past five years have seen a surge in the development of promising semiconductor materials. In addition, low-cost earth-abundant co-catalysts are ubiquitous in their employment in water splitting cells due to the sluggish kinetics of the oxygen evolution reaction (OER). This review commences with a fundamental understanding of semiconductor properties and charge transfer processes in a PEC device. We then describe various configurations of PEC devices, including single light-absorber cells and multi light-absorber devices (PEC, PV-PEC and PV/electrolyser tandem cell). Recent progress on both photoelectrode materials (light absorbers) and electrocatalysts is summarized, and important factors which dominate photoelectrode performance, including light absorption, charge separation and transport, surface chemical reaction rate and the stability of the photoanode, are discussed. Controlling semiconductor properties is the primary concern in developing materials for solar water splitting. Accordingly, strategies to address the challenges for materials development in this area, such as the adoption of smart architectures, innovative device configuration design, co-catalyst loading, and surface protection layer deposition, are outlined throughout the text, to deliver a highly efficient and stable PEC device for water splitting.

  6. Photocatalytic and Photoelectrochemical Water Splitting by Inorganic Materials

    KAUST Repository

    Deng, Xiaohui


    Hydrogen has been identified as a potential energy carrier due to its high energy capacity and environmental harmlessness. Compared with hydrogen production from hydrocarbons such as methane and naphtha in a conventional hydrogen energy system, photocatalytic hydrogen evolution from water splitting offers a more economic approach since it utilizes the abundant solar irradiation as energy source and water as initial reactant. Powder photocatalyst, which generates electrons and holes under illumination, is the origin where the overall reaction happens. High solar energy conversion efficiency especially from visible range is commonly the target. Besides, cocatalyst for hydrogen and oxygen evolution is also playing an essential role in facilitating the charge separation and enhancing the kinetics. In this thesis, the objective is to achieve high energy conversion efficiency towards water splitting from diverse aspects. The third chapter focuses on a controllable method to fabricate metal pattern, which is candidate for hydrogen evolution cocatalyst while chapter 4 is on the combination of strontium titanium oxide (SrTiO3) with graphene oxide (GO) for a better photocatalytic performance. In the last chapter, photoelectrochemical water splitting by Ta3N5 photoanode and FeOOH as a novel oxygen evolution cocatalyst has been investigated.

  7. Fundamental metallurgical aspects of axial splitting in zircaloy cladding

    International Nuclear Information System (INIS)

    Chung, H. M.


    Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10 21 n cm -2 to 5.9 x 10 21 n cm -2 (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest cladding were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed

  8. A Beta-splitting model for evolutionary trees. (United States)

    Sainudiin, Raazesh; Véber, Amandine


    In this article, we construct a generalization of the Blum-François Beta-splitting model for evolutionary trees, which was itself inspired by Aldous' Beta-splitting model on cladograms. The novelty of our approach allows for asymmetric shares of diversification rates (or diversification 'potential') between two sister species in an evolutionarily interpretable manner, as well as the addition of extinction to the model in a natural way. We describe the incremental evolutionary construction of a tree with n leaves by splitting or freezing extant lineages through the generating, organizing and deleting processes. We then give the probability of any (binary rooted) tree under this model with no extinction, at several resolutions: ranked planar trees giving asymmetric roles to the first and second offspring species of a given species and keeping track of the order of the speciation events occurring during the creation of the tree, unranked planar trees, ranked non-planar trees and finally (unranked non-planar) trees. We also describe a continuous-time equivalent of the generating, organizing and deleting processes where tree topology and branch lengths are jointly modelled and provide code in SageMath/Python for these algorithms.

  9. Nanoscale strontium titanate photocatalysts for overall water splitting. (United States)

    Townsend, Troy K; Browning, Nigel D; Osterloh, Frank E


    SrTiO(3) (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the material, although the process is less effective at the nanoscale. To reach these conclusions, Bulk STO, 30 ± 5 nm STO, and 6.5 ± 1 nm STO were synthesized by three different methods, their crystal structures verified with XRD and their morphology observed with HRTEM before and after NiO deposition. In connection with NiO, all samples split water into stoichiometric mixtures of H(2) and O(2), but the activity is decreasing from 28 μmol H(2) g(-1) h(-1) (bulk STO), to 19.4 μmol H(2) g(-1) h(-1) (30 nm STO), and 3.0 μmol H(2) g(-1) h(-1) (6.5 nm STO). The reasons for this decrease are an increase of the water oxidation overpotential for the smaller particles and reduced light absorption due to a quantum size effect. Overall, these findings establish the first nanoscale titanate photocatalyst for overall water splitting.

  10. Investigation of the splitting of quark and gluon jets

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Bates, M J; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozovic, I; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Brown, R; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerruti, C; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Duperrin, A; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frodesen, A G; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Ghodbane, N; Glege, F; Gokieli, R; Golob, B; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Heising, S; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Konoplyannikov, A K; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Niss, P; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F


    The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays L with the {\\sc Delphi} detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation $C_A/C_F$. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution $y$, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is $2.77\\pm0.11\\pm0.10$. Due to non-perturbative effects, the data are below the expectation at small $y$. The transition from the perturbative to the non-perturbative domain appears at smaller $y$ for quark ...

  11. Noble metal-free hydrogen evolution catalysts for water splitting. (United States)

    Zou, Xiaoxin; Zhang, Yu


    Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

  12. Sonochemical water splitting in the presence of powdered metal oxides. (United States)

    Morosini, Vincent; Chave, Tony; Virot, Matthieu; Moisy, Philippe; Nikitenko, Sergey I


    Kinetics of hydrogen formation was explored as a new chemical dosimeter allowing probing the sonochemical activity of argon-saturated water in the presence of micro- and nano-sized metal oxide particles exhibiting catalytic properties (ThO2, ZrO2, and TiO2). It was shown that the conventional sonochemical dosimeter based on H2O2 formation is hardly applicable in such systems due to catalytic degradation of H2O2 at oxide surface. The study of H2 generation revealed that at low-frequency ultrasound (20 kHz) the sonochemical water splitting is greatly improved for all studied metal oxides. The highest efficiency is observed for relatively large micrometric particles of ThO2 which is assigned to ultrasonically-driven particle fragmentation accompanied by mechanochemical water molecule splitting. The nanosized metal oxides do not exhibit particle size reduction under ultrasonic treatment but nevertheless yield higher quantities of H2. The enhancement of sonochemical water splitting in this case is most probably resulting from better bubble nucleation in heterogeneous systems. At high-frequency ultrasound (362 kHz), the effect of metal oxide particles results in a combination of nucleation and ultrasound attenuation. In contrast to 20 kHz, micrometric particles slowdown the sonolysis of water at 362 kHz due to stronger attenuation of ultrasonic waves while smaller particles show a relatively weak and various directional effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The nature of photocatalytic "water splitting" on silicon nanowires. (United States)

    Liu, Dong; Li, Leilei; Gao, Yang; Wang, Chengming; Jiang, Jun; Xiong, Yujie


    Silicon should be an ideal semiconductor material if it can be proven usable for photocatalytic water splitting, given its high natural abundance. Thus it is imperative to explore the possibility of water splitting by running photocatalysis on a silicon surface and to decode the mechanism behind it. It is reported that hydrogen gas can indeed be produced from Si nanowires when illuminated in water, but the reactions are not a real water-splitting process. Instead, the production of hydrogen gas on the Si nanowires occurs through the cleavage of Si-H bonds and the formation of Si-OH bonds, resulting in the low probability of generating oxygen. On the other hand, these two types of surface dangling bonds both extract photoexcited electrons, whose competition greatly impacts on carrier lifetime and reaction efficiency. Thus surface chemistry holds the key to achieving high efficiency in such a photocatalytic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Numerical modeling of isothermal compositional grading by convex splitting methods

    KAUST Repository

    Li, Yiteng


    In this paper, an isothermal compositional grading process is simulated based on convex splitting methods with the Peng-Robinson equation of state. We first present a new form of gravity/chemical equilibrium condition by minimizing the total energy which consists of Helmholtz free energy and gravitational potential energy, and incorporating Lagrange multipliers for mass conservation. The time-independent equilibrium equations are transformed into a system of transient equations as our solution strategy. It is proved our time-marching scheme is unconditionally energy stable by the semi-implicit convex splitting method in which the convex part of Helmholtz free energy and its derivative are treated implicitly and the concave parts are treated explicitly. With relaxation factor controlling Newton iteration, our method is able to converge to a solution with satisfactory accuracy if a good initial estimate of mole compositions is provided. More importantly, it helps us automatically split the unstable single phase into two phases, determine the existence of gas-oil contact (GOC) and locate its position if GOC does exist. A number of numerical examples are presented to show the performance of our method.

  15. Beyond the Interconnections: Split Manufacturing in RF Designs

    Directory of Open Access Journals (Sweden)

    Yu Bi


    Full Text Available With the globalization of the integrated circuit (IC design flow of chip fabrication, intellectual property (IP piracy is becoming the main security threat. While most of the protection methods are dedicated for digital circuits, we are trying to protect radio-frequency (RF designs. For the first time, we applied the split manufacturing method in RF circuit protection. Three different implementation cases are introduced for security and design overhead tradeoffs, i.e., the removal of the top metal layer, the removal of the top two metal layers and the design obfuscation dedicated to RF circuits. We also developed a quantitative security evaluation method to measure the protection level of RF designs under split manufacturing. Finally, a simple Class AB power amplifier and a more sophisticated Class E power amplifier are used for the demonstration through which we prove that: (1 the removal of top metal layer or the top two metal layers can provide high-level protection for RF circuits with a lower request to domestic foundries; (2 the design obfuscation method provides the highest level of circuit protection, though at the cost of design overhead; and (3 split manufacturing may be more suitable for RF designs than for digital circuits, and it can effectively reduce IP piracy in untrusted off-shore foundries.

  16. 26 CFR 1.61-22 - Taxation of split-dollar life insurance arrangements. (United States)


    ... a split-dollar life insurance arrangement (or the estate or beneficiary of that party) that are not... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Taxation of split-dollar life insurance..., and Taxable Income § 1.61-22 Taxation of split-dollar life insurance arrangements. (a) Scope—(1) In...

  17. Influence of the large-small split effect on strategy choice in complex subtraction. (United States)

    Xiang, Yan Hui; Wu, Hao; Shang, Rui Hong; Chao, Xiaomei; Ren, Ting Ting; Zheng, Li Ling; Mo, Lei


    Two main theories have been used to explain the arithmetic split effect: decision-making process theory and strategy choice theory. Using the inequality paradigm, previous studies have confirmed that individuals tend to adopt a plausibility-checking strategy and a whole-calculation strategy to solve large and small split problems in complex addition arithmetic, respectively. This supports strategy choice theory, but it is unknown whether this theory also explains performance in solving different split problems in complex subtraction arithmetic. This study used small, intermediate and large split sizes, with each split condition being further divided into problems requiring and not requiring borrowing. The reaction times (RTs) for large and intermediate splits were significantly shorter than those for small splits, while accuracy was significantly higher for large and middle splits than for small splits, reflecting no speed-accuracy trade-off. Further, RTs and accuracy differed significantly between the borrow and no-borrow conditions only for small splits. This study indicates that strategy choice theory is suitable to explain the split effect in complex subtraction arithmetic. That is, individuals tend to choose the plausibility-checking strategy or the whole-calculation strategy according to the split size. © 2016 International Union of Psychological Science.

  18. 40 CFR 417.20 - Applicability; description of the fatty acid manufacturing by fat splitting subcategory. (United States)


    ... acid manufacturing by fat splitting subcategory. 417.20 Section 417.20 Protection of Environment... POINT SOURCE CATEGORY Fatty Acid Manufacturing by Fat Splitting Subcategory § 417.20 Applicability; description of the fatty acid manufacturing by fat splitting subcategory. The provisions of this subpart are...

  19. 17 CFR 240.16a-9 - Stock splits, stock dividends, and pro rata rights. (United States)


    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Stock splits, stock dividends... Government Securities Dealers § 240.16a-9 Stock splits, stock dividends, and pro rata rights. The following... held as a result of a stock split or stock dividend applying equally to all securities of a class...

  20. 49 CFR 236.327 - Switch, movable-point frog or split-point derail. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Switch, movable-point frog or split-point derail..., AND APPLIANCES Interlocking Rules and Instructions § 236.327 Switch, movable-point frog or split-point derail. Switch, movable-point frog, or split-point derail equipped with lock rod shall be maintained so...

  1. Effect of superconducting electrons on the energy splitting of tunneling systems

    International Nuclear Information System (INIS)

    Yu, C.C.; Granato, A.V.


    We consider the effect of superconducting electrons on the magnitude of the energy splitting of a tunneling system. A specific example is a hydrogen atom tunneling in niobium. We find that in this case the splitting is roughly 20% smaller in the normal state than in the superconducting state. This difference in the splitting should be observable in neutron scattering and ultrasonic measurements

  2. Pump induced normal mode splittings in phase conjugation in a Kerr ...

    Indian Academy of Sciences (India)

    For sufficient strengths of the pump a normal mode splitting is demonstrated in both the specular and the phase conjugated reflectivities of the probe wave. The splitting is explained in terms of a simple model under undepleted pump approximation. Keywords. Phase conjugation; nonlinear waveguide; normal mode splitting.

  3. Multi-band circular polarizer based on a twisted triple split-ring resonator

    International Nuclear Information System (INIS)

    Wu Song; Huang Xiao-Jun; Yang He-Lin; Xiao Bo-Xun; Jin Yan


    A multi-band circular polarizer using a twisted triple split-ring resonator (TSRR) is presented and studied numerically and experimentally. At four distinct resonant frequencies, the incident linearly polarized wave can be transformed into left/right-handed circularly polarized waves. Numerical simulation results show that a y-polarized wave can be converted into a right-handed circularly polarized wave at 5.738 GHz and 9.218 GHz, while a left-handed circularly polarized wave is produced at 7.292 GHz and 10.118 GHz. The experimental results are in agreement with the numerical results. The surface current distributions are investigated to illustrate the polarization transformation mechanism. Furthermore, the influences of the structure parameters of the circular polarizer on transmission spectra are discussed as well. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm

    Directory of Open Access Journals (Sweden)

    Offer Rozenstein


    Full Text Available Land surface temperature (LST is one of the most important variables measured by satellite remote sensing. Public domain data are available from the newly operational Landsat-8 Thermal Infrared Sensor (TIRS. This paper presents an adjustment of the split window algorithm (SWA for TIRS that uses atmospheric transmittance and land surface emissivity (LSE as inputs. Various alternatives for estimating these SWA inputs are reviewed, and a sensitivity analysis of the SWA to misestimating the input parameters is performed. The accuracy of the current development was assessed using simulated Modtran data. The root mean square error (RMSE of the simulated LST was calculated as 0.93 °C. This SWA development is leading to progress in the determination of LST by Landsat-8 TIRS.

  5. A Split Ring Resonator Dielectric Probe for Near-Field Dielectric Imaging. (United States)

    Isakov, Dmitry; Stevens, Chris J; Castles, Flynn; Grant, Patrick S


    A single split-ring resonator (SRR) probe for 2D surface mapping and imaging of relative dielectric permittivity for the characterisation of composite materials has been developed. The imaging principle, the analysis and the sensitivity of the SRR surface dielectric probe data is described. The surface dielectric properties of composite materials in the frequency range 1-3 GHz have been measured based on the magnetic resonance frequency of the transmission loss of the SRR dielectric probe when in contact with the surface. The SRR probe performance was analysed analytically and using full-wave simulation, and predictions showed close agreement with experiment for composite materials with spatially varying dielectric permittivity manufactured by 3D printing. The spatial and permittivity resolution of the SRR dielectric probe were controlled by the geometrical parameters of the SRR which provided flexibility to tune the SRR probe. The best accuracy of the dielectric permittivity measurements was within 5%.

  6. Convergence Analysis of the Preconditioned Group Splitting Methods in Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Norhashidah Hj. Mohd Ali


    Full Text Available The construction of a specific splitting-type preconditioner in block formulation applied to a class of group relaxation iterative methods derived from the centred and rotated (skewed finite difference approximations has been shown to improve the convergence rates of these methods. In this paper, we present some theoretical convergence analysis on this preconditioner specifically applied to the linear systems resulted from these group iterative schemes in solving an elliptic boundary value problem. We will theoretically show the relationship between the spectral radiuses of the iteration matrices of the preconditioned methods which affects the rate of convergence of these methods. We will also show that the spectral radius of the preconditioned matrices is smaller than that of their unpreconditioned counterparts if the relaxation parameter is in a certain optimum range. Numerical experiments will also be presented to confirm the agreement between the theoretical and the experimental results.

  7. Quantum-well exciton dipolar interaction: Polarization-dependence and Z-LT splitting

    International Nuclear Information System (INIS)

    Nguyen Ba An.


    We calculate the exciton dipolar interaction in a semiconductor quantum well. The explicit polarization-dependence, i.e, the dependence on both the exciton dipole moment μ-vector and its inplane wavevector k-vector is derived. The obtained results for the three modes (L, T and Z modes) of the long-range part of the dipolar interaction satisfy the polarization sum rule for any parameters. In the long wavelength limit there is a Z-LT splitting which decreases as the well width increases reflecting a crossover from strict 2D to quasi-2D. A rough crossover from quasi-2D to 3D is also described. (author). 18 refs, 4 figs

  8. Quadrupole splitting and Eu partial lattice dynamics in europium orthophosphate EuPO {sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Klobes, B., E-mail: [JARA-FIT - Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI (Germany); Arinicheva, Y., E-mail:; Neumeier, S., E-mail: [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-6) Nuclear Waste Management and Reactor Safety (Germany); Simon, R. E., E-mail:; Jafari, A., E-mail: [JARA-FIT - Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI (Germany); Bosbach, D., E-mail: [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-6) Nuclear Waste Management and Reactor Safety (Germany); Hermann, R. P., E-mail: [JARA-FIT - Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI (Germany)


    Hyperfine interactions in europium orthophosphate EuPO{sub 4} were investigated using {sup 151}Eu Mössbauer spectroscopy from 6 to 300 K. The value of the quadrupole splitting and the asymmetry parameter were refined and further substantiated by nuclear forward scattering data obtained at room temperature. The temperature dependence of the relative absorption was modeled with an Eu specific Debye temperature of 221(1) K. Eu partial lattice dynamics were probed by means of nuclear inelastic scattering and the mean force constant, the Lamb-Mössbauer factor, the internal energy, the vibrational entropy, the average phonon group velocity were calculated using the extracted density of phonon states. In general, Eu specific vibrations are characterized by rather small phonon energies and contribute strongly to the total entropy of the system. Although there is no classical Debye like behavior at low vibrational energies, the average phonon group velocity can be reasonably approximated using a linear fit.

  9. Tunable wavelength demultiplexer using modified graphene plasmonic split ring resonators for terahertz communication (United States)

    Joshi, Neetu; Pathak, Nagendra P.


    This paper presents graphene modified ring resonator based wavelength demultiplexer (WDM) for THz device applications that is, a surface plasmon polaritons (SPPs) demultiplexer consisting of two nanostrip waveguides at input as well as output coupled to each other by a split ring resonator (SRR), which is modified in shape as compared to a simple ring-shaped resonator. A systematic analysis of the transmission spectra for the graphene based SRR poses clear insight on the demultiplexing phenomenon of the proposed nanodevice. The results show resonance peaks in the transmission spectrum, having a linear relationship with the chemical potential of graphene. The influence of structural parameters have also been analyzed. The tuning capability of graphene based tunable WDM, lays its foundation in the applications of optical switches, modulators, etc.

  10. A split hand-split foot (SHFM3) gene is located at 10q24{yields}25

    Energy Technology Data Exchange (ETDEWEB)

    Gurrieri, F.; Genuardi, M.; Nanni, L.; Sangiorgi, E.; Garofalo, G. [Catholic Univ. of Rome (Italy)] [and others


    The split hand-split foot (SHSF) malformation affects the central rays of the upper and lower limbs. It presents either as an isolated defect or in association with other skeletal or non-skeletal abnormalities. An autosomal SHSF locus (SHFM1) was previously mapped to 7q22.1. We report the mapping of a second autosomal SHSF locus to 10q24{yields}25 region. Maximum lod scores of 3.73, 4.33 and 4.33 at a recombination fraction of zero were obtained for the loci D10S198, PAX2 and D10S1239, respectively. An 19 cM critical region could be defined by haplotype analysis and several genes with a potential role in limb morphogenesis are located in this region. Heterogeneity testing indicates the existence of at least one additional autosomal SHSF locus. 36 refs., 3 figs., 3 tabs.

  11. Electron magnetic resonance data on high-spin Mn(III; S=2) ions in porphyrinic and salen complexes modeled by microscopic spin Hamiltonian approach. (United States)

    Tadyszak, Krzysztof; Rudowicz, Czesław; Ohta, Hitoshi; Sakurai, Takahiro


    The spin Hamiltonian (SH) parameters experimentally determined by EMR (EPR) may be corroborated or otherwise using various theoretical modeling approaches. To this end semiempirical modeling is carried out for high-spin (S=2) manganese (III) 3d 4 ions in complex of tetraphenylporphyrinato manganese (III) chloride (MnTPPCl). This modeling utilizes the microscopic spin Hamiltonians (MSH) approach developed for the 3d 4 and 3d 6 ions with spin S=2 at orthorhombic and tetragonal symmetry sites in crystals, which exhibit an orbital singlet ground state. Calculations of the zero-field splitting (ZFS) parameters and the Zeeman electronic (Ze) factors (g || =g z , g ⊥ =g x =g y ) are carried out for wide ranges of values of the microscopic parameters using the MSH/VBA package. This enables to examine the dependence of the theoretically determined ZFS parameters b k q (in the Stevens notation) and the Zeeman factors g i on the spin-orbit (λ), spin-spin (ρ) coupling constant, and the ligand-field energy levels (Δ i ) within the 5 D multiplet. The results are presented in suitable tables and graphs. The values of λ, ρ, and Δ i best describing Mn(III) ions in MnTPPCl are determined by matching the theoretical second-rank ZFSP b 2 0 (D) parameter and the experimental one. The fourth-rank ZFS parameters (b 4 0 , b 4 4 ) and the ρ (spin-spin)-related contributions, which have been omitted in previous studies, are considered for the first time here and are found important. Semiempirical modeling results are compared with those obtained recently by the density functional theory (DFT) and/or ab initio methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides. (United States)

    Li, Jie; Li, Hao; Zhan, Guangming; Zhang, Lizhi


    Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO 2 , SrTiO 3 , (Ga 1-x Zn x )(N 1-x O x ), CdS, and g-C 3 N 4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N 2 . This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of

  13. Studies of the g factors and the superhyperfine parameters for Ni3+ ...

    Indian Academy of Sciences (India)

    resonance (EPR) technique [6–9], which deals mainly with the zero-field splittings, the g factors and the hyperfine structure constants of central metal ions. How- ever, investigation on ligand superhyperfine parameters A and B is relatively less. Generally, these parameters originate from the interaction between the spin of ...

  14. A study on crustal shear wave splitting in the western part of the Banda arc-continent collision

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, E-mail: [Graduate Research on Earthquake and Active Tectonics-ITB, Jl. Ganesha 10, Bandung 40132 (Indonesia); Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Puspiptek Serpong 15314,Indonesia (Indonesia); Hananto, Nugroho D. [Research Centre for Geotechnology -LIPI, Jl. Sangkuriang (Kompleks LIPI) Bandung 40135 (Indonesia); Puspito, Nanang T.; Yudistira, Tedi [Faculty of Mining and Petroleum Engineering ITB, Jalan Ganesha 10, Bandung 40132 (Indonesia); Anggono, Titi [Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Puspiptek Serpong 15314,Indonesia (Indonesia)


    We analyzed shear wave splitting parameters from local shallow (< 30 km) earthquakes recorded at six seismic stations in the western part of the Banda arc-continent collision. We determined fast polarization and delay time for 195 event-stations pairs calculated from good signal-to-noise ratio waveforms. We observed that there is evidence for shear wave splitting at all stations with dominant fast polarization directions oriented about NE-SW, which are parallel to the collision direction of the Australian plate. However, minor fast polarization directions are oriented around NW-SE being perpendicular to the strike of Timor through. Furthermore, the changes in fast azimuths with the earthquake-station back azimuth suggest that the crustal anisotropy in the study area is not uniform. Splitting delay times are within the range of 0.05 s to 0.8 s, with a mean value of 0.29±0.18 s. Major seismic stations exhibit a weak tendency increasing of delay times with increasing hypocentral distance suggesting the main anisotropy contribution of the shallow crust. In addition, these variations in fast azimuths and delay times indicate that the crustal anisotropy in this region might not only be caused by extensive dilatancy anisotropy (EDA), but also by heterogeneity shallow structure such as the presence of foliations in the rock fabric and the fracture zones associated with active faults.

  15. A study on crustal shear wave splitting in the western part of the Banda arc-continent collision

    International Nuclear Information System (INIS)

    Syuhada; Hananto, Nugroho D.; Puspito, Nanang T.; Yudistira, Tedi; Anggono, Titi


    We analyzed shear wave splitting parameters from local shallow (< 30 km) earthquakes recorded at six seismic stations in the western part of the Banda arc-continent collision. We determined fast polarization and delay time for 195 event-stations pairs calculated from good signal-to-noise ratio waveforms. We observed that there is evidence for shear wave splitting at all stations with dominant fast polarization directions oriented about NE-SW, which are parallel to the collision direction of the Australian plate. However, minor fast polarization directions are oriented around NW-SE being perpendicular to the strike of Timor through. Furthermore, the changes in fast azimuths with the earthquake-station back azimuth suggest that the crustal anisotropy in the study area is not uniform. Splitting delay times are within the range of 0.05 s to 0.8 s, with a mean value of 0.29±0.18 s. Major seismic stations exhibit a weak tendency increasing of delay times with increasing hypocentral distance suggesting the main anisotropy contribution of the shallow crust. In addition, these variations in fast azimuths and delay times indicate that the crustal anisotropy in this region might not only be caused by extensive dilatancy anisotropy (EDA), but also by heterogeneity shallow structure such as the presence of foliations in the rock fabric and the fracture zones associated with active faults.

  16. Yangian and SUSY symmetry of high spin parton splitting amplitudes in generalised Yang-Mills theory (United States)

    Kirschner, Roland; Savvidy, George


    We have calculated the high spin parton splitting amplitudes postulating the Yangian symmetry of the scattering amplitudes for tensor gluons. The resulting splitting amplitudes coincide with the earlier calculations, which were based on the BCFW recursion relations. The resulting formula unifies all known splitting probabilities found earlier in gauge field theories. It describes splitting probabilities for integer and half-integer spin particles. We also checked that the splitting probabilities fulfil the generalised Kounnas-Ross 𝒩 = 1 supersymmetry relations hinting to the fact that the underlying theory can be formulated in an explicit supersymmetric manner.

  17. Observation of electromagnetically induced transparency and absorption in Yttrium Iron Garnet loaded split ring resonator (United States)

    Tay, Z. J.; Soh, W. T.; Ong, C. K.


    In this paper, we propose a new method of controlling microwave transmission from Electromagnetically Induced Absorption (EIA) to Electromagnetically Induced Transparency (EIT). EIA describes the state where the system strongly absorbs microwaves, whereas EIT describes the state in which the system is transparent to microwaves. Control is achieved via coupling of the 3 GHz photon mode of a metamaterial Split Ring Resonator (SRR) to the spin wave magnon modes of a Yttrium Iron Garnet (YIG) bulk. The system is described by a 2-body interaction matrix with an additional fitting parameter τ which takes into account the fact that the microstrip feed line could excite the SRR as well as the YIG. The parameter τ reveals the effect of geometry and shielding on the coupling behaviour and gives rise to unique physics. In low τ (τ ⩽ 2) configurations, only EIT is reported. However, in high τ (τ ≈ 10) configurations, EIA is reported. Furthermore, we report that the system can be easily changed from a low τ to high τ configuration by shielding the SRR from the microstrip with a thin metal piece. Varying the τ parameter through shielding is thus proposed as a new method of controlling the microwave transmission at the coupling region.

  18. Probabilistic estimation of splitting coefficients of normal modes of the Earth, and their uncertainties, using an autoregressive technique (United States)

    Pachhai, S.; Masters, G.; Laske, G.


    Earth's normal-mode spectra are crucial to studying the long wavelength structure of the Earth. Such observations have been used extensively to estimate "splitting coefficients" which, in turn, can be used to determine the three-dimensional velocity and density structure. Most past studies apply a non-linear iterative inversion to estimate the splitting coefficients which requires that the earthquake source is known. However, it is challenging to know the source details, particularly for big events as used in normal-mode analyses. Additionally, the final solution of the non-linear inversion can depend on the choice of damping parameter and starting model. To circumvent the need to know the source, a two-step linear inversion has been developed and successfully applied to many mantle and core sensitive modes. The first step takes combinations of the data from a single event to produce spectra known as "receiver strips". The autoregressive nature of the receiver strips can then be used to estimate the structure coefficients without the need to know the source. Based on this approach, we recently employed a neighborhood algorithm to measure the splitting coefficients for an isolated inner-core sensitive mode (13S2). This approach explores the parameter space efficiently without any need of regularization and finds the structure coefficients which best fit the observed strips. Here, we implement a Bayesian approach to data collected for earthquakes from early 2000 and more recent. This approach combines the data (through likelihood) and prior information to provide rigorous parameter values and their uncertainties for both isolated and coupled modes. The likelihood function is derived from the inferred errors of the receiver strips which allows us to retrieve proper uncertainties. Finally, we apply model selection criteria that balance the trade-offs between fit (likelihood) and model complexity to investigate the degree and type of structure (elastic and anelastic

  19. Modeling vehicle operating speed on urban roads in Montreal: a panel mixed ordered probit fractional split model. (United States)

    Eluru, Naveen; Chakour, Vincent; Chamberlain, Morgan; Miranda-Moreno, Luis F


    Vehicle operating speed measured on roadways is a critical component for a host of analysis in the transportation field including transportation safety, traffic flow modeling, roadway geometric design, vehicle emissions modeling, and road user route decisions. The current research effort contributes to the literature on examining vehicle speed on urban roads methodologically and substantively. In terms of methodology, we formulate a new econometric model framework for examining speed profiles. The proposed model is an ordered response formulation of a fractional split model. The ordered nature of the speed variable allows us to propose an ordered variant of the fractional split model in the literature. The proposed formulation allows us to model the proportion of vehicles traveling in each speed interval for the entire segment of roadway. We extend the model to allow the influence of exogenous variables to vary across the population. Further, we develop a panel mixed version of the fractional split model to account for the influence of site-specific unobserved effects. The paper contributes substantively by estimating the proposed model using a unique dataset from Montreal consisting of weekly speed data (collected in hourly intervals) for about 50 local roads and 70 arterial roads. We estimate separate models for local roads and arterial roads. The model estimation exercise considers a whole host of variables including geometric design attributes, roadway attributes, traffic characteristics and environmental factors. The model results highlight the role of various street characteristics including number of lanes, presence of parking, presence of sidewalks, vertical grade, and bicycle route on vehicle speed proportions. The results also highlight the presence of site-specific unobserved effects influencing the speed distribution. The parameters from the modeling exercise are validated using a hold-out sample not considered for model estimation. The results indicate

  20. MRI delineation of the morphometric characteristics of type I split cord malformations: a retrospective analysis of 29 cases. (United States)

    Xia, Qing; Sun, Jian Min


    The purpose of this study was to elucidate the morphometric characteristics by magnetic resonance imaging (MRI) of type I split cord malformation (SCM) patients. All subjects received conventional MRI with the Achieva 3.0T system (Philips Healthcare, Andover, MA, USA), including T1WI/axial and sagittal T2WI/axial FLAIR. Transverse diameter (TD) and sagittal diameter (SD) of the split cord, TD of the convex (TDconvex) and the concave (TDconcave), cranial SD (SDcranial), and caudal SD (SDcaudal) were recorded on the sagittal image combined with the two-dimensional view. Statistical comparison was performed within and between the groups. Twenty-nine type I SCM patients were included, 24 (82.8%) of whom had scoliosis. Mean TD and SD of the split cord were 0.55±0.31 cm and 7.52±4.03 cm, respectively. No statistically significant difference was observed in TD, SD, and other parameters among the 3 groups. However, mean TD of the split cord in type I SCM patients with congenital scoliosis (0.49±0.29 cm) was significantly greater than in those without congenital scoliosis (0.18±0.44 cm) (p0.05); however, SDcranial was significantly smaller than SDcaudal in Group 2. Our study provides the first MRI characterization of the morphometric features of type I SCM, and our findings will help orthopedic surgeons in better navigating the surgical field in corrective surgery of congenital scoliosis of type I SCM patients.

  1. Reliability of using a fixed matrix in coregistration of combined PET–MRI in a split magnet design

    International Nuclear Information System (INIS)

    Sawiak, S.J.; Hawkes, R.C.; Ansorge, R.E.; Carpenter, T.A.


    We consider the effects of using a fixed linear transformation to match positron emission tomography (PET) and magnetic resonance imaging (MRI) data acquired simultaneously using a split-magnet system. Estimates of the frequency offset in MRI scans were used to calculate geometric variability in MRI reconstruction as a consequence of mis-setting this parameter in addition to repeated estimation of the transformation matrix by manual measurements. None of the measured variability approached the resolution of the PET images, so we concluded that a fixed matrix can be reliably used in such a system

  2. Shear wave splitting as a diagnostic of variable anisotropic structure of the upper mantle beneath central Fennoscandia

    Czech Academy of Sciences Publication Activity Database

    Vecsey, Luděk; Plomerová, Jaroslava; Kozlovskaya, E.; Babuška, Vladislav


    Roč. 438, č. 1-4 (2007), s. 57-77 ISSN 0040-1951 R&D Projects: GA AV ČR IAA3012405; GA AV ČR(CZ) KJB300120605 Grant - others:Academy of Finland(FI) 208068; Academy of Finland(FI) 107991 Institutional research plan: CEZ:AV0Z30120515 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje Keywords : shear wave splitting * joint inversion of body wave anisotropic parameters * 3D anisotropic model of mantle lithosphere Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.729, year: 2007

  3. Stacked Transformer for Driver Gain and Receive Signal Splitting (United States)

    Driscoll, Kevin R.


    In a high-speed signal transmission system that uses transformer coupling, there is a need to provide increased transmitted signal strength without adding active components. This invention uses additional transformers to achieve the needed gain. The prior art uses stronger drivers (which require an IC redesign and a higher power supply voltage), or the addition of another active component (which can decrease reliability, increase power consumption, reduce the beneficial effect of serializer/deserializer preemphasis or deemphasis, and/or interfere with fault containment mechanisms), or uses a different transformer winding ratio (which requires redesign of the transformer and may not be feasible with high-speed signals that require a 1:1 winding ratio). This invention achieves the required gain by connecting the secondaries of multiple transformers in series. The primaries of these transformers are currently either connected in parallel or are connected to multiple drivers. There is also a need to split a receive signal to multiple destinations with minimal signal loss. Additional transformers can achieve the split. The prior art uses impedance-matching series resistors that cause a loss of signal. Instead of causing a loss, most instantiations of this invention would actually provide gain. Multiple transformers are used instead of multiple windings on a single transformer because multiple windings on the same transformer would require a redesign of the transformer, and may not be feasible with high-speed transformers that usually require a bifilar winding with a 1:1 ratio. This invention creates the split by connecting the primaries of multiple transformers in series. The secondary of each transformer is connected to one of the intended destinations without the use of impedance-matching series resistors.

  4. [Split-thickness skin graft donor site: which dressing use?]. (United States)

    Caliot, J; Bodin, F; Chiriac, S; Correia, N; Poli-Mérol, M-L; François-Fiquet, C


    The management of split-thickness skin graft donor sites is targeted towards promoting the healing process, reducing pain. This has been an inconclusive topic. The aim of this study was to list and to discuss the French practices in term of split-thickness skin graft (STSG) donor site dressing. Multicentric national study by questionnaire (Google Drive(®)) for the attention of the plastic and/or pediatric surgeons. The type of dressing used on skin and sclap and the rhythm of dressing changes were analyzed. The study included 26 surgical centers on 40 contacted. The alginate is mainly used (Algostéril(®)) (17/26). It is left in position until healing (13/17). Five other types of dressings have been reported: paraffin gauze (3/26), lipidocolloides (1/26), Mepitel(®) (1/26), Mepilex(®) (1/26), indifferent use of gauze or alginate dressings (4/26). Twenty-two out of 26 centers make no difference in dressing choice between skin and scalp. Medical practices did not differ between adult or pediatric departments. Cost-effectiveness has become an important issue in wound management, requiring judicious use. The lack of consensus regarding split-thickness skin graft donor site dressing and our clinical practices force us to reconsider the best therapeutic option. This study coupled with the analysis of the literature highlights the difficulties of the practitioner in choosing the best dressing. The alginate seems to get the preference of our practices by its ease of use, its absence of change (reduces pain by limiting manipulations) and its moderate cost. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Silicon/Carbon Nanotube Photocathode for Splitting Water (United States)

    Amashukeli, Xenia; Manohara, Harish; Greer, Harold F.; Hall, Lee J.; Gray, Harry B.; Subbert, Bryan


    A proof-of-concept device is being developed for hydrogen gas production based on water-splitting redox reactions facilitated by cobalt tetra-aryl porphyrins (Co[TArP]) catalysts stacked on carbon nanotubes (CNTs) that are grown on n-doped silicon substrates. The operational principle of the proposed device is based on conversion of photoelectron energy from sunlight into chemical energy, which at a later point, can be turned into electrical and mechanical power. The proposed device will consist of a degenerately n-doped silicon substrate with Si posts covering the surface of a 4-in. (approximately equal to 10cm) wafer. The substrate will absorb radiation, and electrons will move radially out of Si to CNT. Si posts are designed such that the diameters are small enough to allow considerable numbers of electrons to transport across to the CNT layer. CNTs will be grown on top of Si using conformal catalyst (Fe/Ni) deposition over a thin alumina barrier layer. Both metallic and semiconducting CNT will be used in this investigation, thus allowing for additional charge generation from CNT in the IR region. Si post top surfaces will be masked from catalyst deposition so as to prevent CNT growth on the top surface. A typical unit cell will then consist of a Si post covered with CNT, providing enhanced surface area for the catalyst. The device will then be dipped into a solution of Co[TArP] to enable coating of CNT with Co(P). The Si/CNT/Co [TArP] assembly then will provide electrons for water splitting and hydrogen gas production. A potential of 1.23 V is needed to split water, and near ideal band gap is approximately 1.4 eV. The combination of doped Si/CNT/Co [TArP] will enable this redox reaction to be more efficient.

  6. Preconceptual design of a salt splitting process using ceramic membranes

    International Nuclear Information System (INIS)

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R.; Balagopal, S.; Landro, T.; Sutija, D.P.


    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate

  7. Vertebral split fractures: Technical feasibility of percutaneous vertebroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Huwart, Laurent, E-mail: [Department of Radiology, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France); Foti, Pauline, E-mail: [Department of Biostatistics, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France); Andreani, Olivier, E-mail: [Department of Radiology, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France); Hauger, Olivier, E-mail: [Department of Radiology, Hôpital Pellegrin, Centre Hospitalo-Universitaire de Bordeaux, Bordeaux (France); Cervantes, Elodie, E-mail: [Department of Radiology, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France); Brunner, Philippe, E-mail: [Department of Radiology, Hôpital Princesse Grasse de Monaco (Monaco); Boileau, Pascal, E-mail: [Department of Orthopedic Surgery, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France); Amoretti, Nicolas, E-mail: [Department of Radiology, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France)


    Objective: The treatment of vertebral split fractures remains controversial, consisting of either corset or internal fixation. The aim of this study was to evaluate the technical feasibility of CT- and fluoroscopy-guided percutaneous vertebroplasty in the treatment of vertebral split fractures. Materials and methods: Institutional review board approval and informed consent were obtained for this study. Sixty-two consecutive adult patients who had post-traumatic vertebral split fractures (A2 according to the AO classification) without neurological symptoms were prospectively treated by percutaneous vertebroplasty. All these procedures were performed by an interventional radiologist under computed tomography (CT) and fluoroscopy guidance by using only local anaesthesia. Postoperative outcome was assessed using the visual analogue scale (VAS) and Oswestry disability index (ODI) scores. Results: Vertebroplasty was performed on thoracic and lumbar vertebrae, creating a cement bridge between the displaced fragment and the rest of the vertebral body. Seven discal cement leakages (11%) were observed, without occurrence of adjacent vertebral compression fractures. The mean VAS measurements ± standard deviation (SD) significantly decreased from 7.9 ± 1.5 preoperatively to 3.3 ± 2.1 at 1 day, 2.2 ± 2.0 at 1 month, and 1.8 ± 1.4 at 6 months (P < 0.001). The mean ODI scores ± SD had also a significant improvement: 62.3 ± 17.2 preoperatively and 15.1 ± 6.0 at the 6-month follow-up (P < 0.001). Conclusion: This study suggests that type A2 vertebral fractures could be successfully treated by CT- and fluoroscopy-guided percutaneous vertebroplasty.

  8. Vertebral split fractures: Technical feasibility of percutaneous vertebroplasty

    International Nuclear Information System (INIS)

    Huwart, Laurent; Foti, Pauline; Andreani, Olivier; Hauger, Olivier; Cervantes, Elodie; Brunner, Philippe; Boileau, Pascal; Amoretti, Nicolas


    Objective: The treatment of vertebral split fractures remains controversial, consisting of either corset or internal fixation. The aim of this study was to evaluate the technical feasibility of CT- and fluoroscopy-guided percutaneous vertebroplasty in the treatment of vertebral split fractures. Materials and methods: Institutional review board approval and informed consent were obtained for this study. Sixty-two consecutive adult patients who had post-traumatic vertebral split fractures (A2 according to the AO classification) without neurological symptoms were prospectively treated by percutaneous vertebroplasty. All these procedures were performed by an interventional radiologist under computed tomography (CT) and fluoroscopy guidance by using only local anaesthesia. Postoperative outcome was assessed using the visual analogue scale (VAS) and Oswestry disability index (ODI) scores. Results: Vertebroplasty was performed on thoracic and lumbar vertebrae, creating a cement bridge between the displaced fragment and the rest of the vertebral body. Seven discal cement leakages (11%) were observed, without occurrence of adjacent vertebral compression fractures. The mean VAS measurements ± standard deviation (SD) significantly decreased from 7.9 ± 1.5 preoperatively to 3.3 ± 2.1 at 1 day, 2.2 ± 2.0 at 1 month, and 1.8 ± 1.4 at 6 months (P < 0.001). The mean ODI scores ± SD had also a significant improvement: 62.3 ± 17.2 preoperatively and 15.1 ± 6.0 at the 6-month follow-up (P < 0.001). Conclusion: This study suggests that type A2 vertebral fractures could be successfully treated by CT- and fluoroscopy-guided percutaneous vertebroplasty

  9. Survey of patients' view on functional split of consultant psychiatrists. (United States)

    Begum, Millia; Brown, Keith; Pelosi, Anthony; Crabb, Jim; McTaggart, John; Mitchell, Caroline; Julyan, Everett; Donegan, Tony; Gotz, Michael


    The functional split model of consultant psychiatrist care for inpatients has been one of the major service redesign that has occurred in the NHS in the last decade. It is unclear if this new split model offers any advantages over the previous sectorised model of working. More recent evidence has suggested that patients, carers and professionals have varied views regarding the benefits of this model. This survey of patient's views on models of consultant working is the first in Scotland and we have attempted to include a large sample size. The results suggest that after providing sufficient information on both models, the majority of patients from various Scottish health boards have opted for the traditional sectorised model of working. During a four week period consecutive patients across 4 health boards attending the General Adult consultant outpatient clinics and those who were admitted to their inpatient ward were offered a structured questionnaire regarding their views on the functional split versus traditional sectorised model. Space was provided for additional comments. The study used descriptive statistical measures for analysis of its results. Ethical approval was confirmed as not being required for this survey of local services. We had a response rate of 67%. A significant majority (76%) of service users across the four different health boards indicated a preference for the same consultant to manage their care irrespective of whether they were an inpatient or in the community (Chi-squared = 65, df = 1, p survey suggests that most patients prefer the traditional model where they see a single consultant throughout their journey of care. The views of patients should be sought as much as possible and should be taken into account when considering the best way to organize psychiatric services.

  10. Zero field spin splitting in asymmetric quantum wells

    International Nuclear Information System (INIS)

    Hao Yafei


    Spin splitting of asymmetric quantum wells is theoretically investigated in the absence of any electric field, including the contribution of interface-related Rashba spin-orbit interaction as well as linear and cubic Dresselhaus spin-orbit interaction. The effect of interface asymmetry on three types of spin-orbit interaction is discussed. The results show that interface-related Rashba and linear Dresselhaus spin-orbit interaction can be increased and cubic Dresselhaus spin-orbit interaction can be decreased by well structure design. For wide quantum wells, the cubic Dresselhaus spin-orbit interaction dominates under certain conditions, resulting in decreased spin relaxation time.

  11. Risk factors affecting somatosensory function after sagittal split osteotomy

    DEFF Research Database (Denmark)

    Thygesen, Torben Henrik; Jensen, Allan Bardow; Helleberg, M


    Purpose The aim of this study was to evaluate potential individual and intraoperative risk factors associated with bilateral sagittal split osteotomy (BSSO) and to correlate the findings with postoperative changes in somatosensory function. Patients and Methods A total of 18 men and 29 women (mean...... correlations were noted between preoperative values for somatosensory function and changes in these variables after BSSO. Patients with low sensory thresholds before BSSO experienced more impairment than those patients with higher preoperative sensory thresholds. Conclusion These findings imply...... that somatosensory function after BSSO is dependent on both intraoperative risk factors and preoperative sensation levels....

  12. Splitting method for computing coupled hydrodynamic and structural response

    International Nuclear Information System (INIS)

    Ash, J.E.


    A numerical method is developed for application to unsteady fluid dynamics problems, in particular to the mechanics following a sudden release of high energy. Solution of the initial compressible flow phase provides input to a power-series method for the incompressible fluid motions. The system is split into spatial and time domains leading to the convergent computation of a sequence of elliptic equations. Two sample problems are solved, the first involving an underwater explosion and the second the response of a nuclear reactor containment shell structure to a hypothetical core accident. The solutions are correlated with experimental data

  13. Strategies for stable water splitting via protected photoelectrodes

    DEFF Research Database (Denmark)

    Bae, Dowon; Seger, Brian; Vesborg, Peter Christian Kjærgaard


    Photoelectrochemical (PEC) solar-fuel conversion is a promising approach to provide clean and storable fuel (e.g., hydrogen and methanol) directly from sunlight, water and CO2. However, major challenges still have to be overcome before commercialization can be achieved. One of the largest barriers...... photocathodes. In addition, we review protection layer approaches and their stabilities for a wide variety of experimental photoelectrodes for water reduction. Finally, we discuss key aspects which should be addressed in continued work on realizing stable and practical PEC solar water splitting systems....

  14. Implementacion de Ipsec en una arquitectura TCP splitting


    Caubet Fernández, Juan; Muñoz Tapia, José Luis; Alins Delgado, Juan José; Mata Diaz, Jorge; Esparza Martín, Óscar


    El rendimiento de las aplicaciones que utilizan el protocolo de transporte TCP (Transmission Control Protocol) sobre enlaces vía satélite tiene una degradación significativa. Esto se debe principalmente a que el algoritmo de control de congestión estándar de TCP no es adecuado para superar las deficiencias de las redes satelitales. TCP splitting es una solución prometedora para mejorar el rendimiento general de TCP, incluso en el segmento satelital. La división de la conexión TCP se logra med...

  15. Model (1:10) of the Split-Field Magnet

    CERN Multimedia


    The photo shows Klaus Brand from the ISR BOM group with the working model of the Split-Field Magnet, while setting up the field measuring bench. The bench used Hall probes for which he had developed the electronics instrumentation (ISR-BOM Int. Note 12-01-1977). The SFM model made of mild steel with copper coils had been measured in the years 1969-1970. This new mapping campaign was related to the installation of a large calorimeter to one side of the magnet.

  16. Comparative studies on different nanofiber photocatalysts for water splitting (United States)

    Alharbi, Abdulaziz; Alarifi, Ibrahim M.; Khan, Waseem S.; Asmatulu, Ramazan


    Water splitting using photocatalyst has become a topic of recent investigation since it has the potential of producing hydrogen for clean energy from sunlight. An extensive number of solid photocatalysts have been studied for overall water splitting in recent years. In this study, two methods were employed to synthesize two different photocatalysts for water splitting. The first method describes the synthesis of nickel oxide-loaded strontium titanate (NiO-SrTiO3) particles on electrospun polyacrylonitrile (PAN) nanofibers incorporated with graphene nanoplatelets for water splitting. The electrospun PAN fibers were first oxidized at 270°C for two hours and subsequently immersed in a solution containing ethanol, titanium (IV)-isopropoxide [C12H28O4Ti] and strontium nitrate [Sr(NO3)2]. This solution was then treated with NiO nanoparticles dispersed in toluene. The surface treated PAN fibers were annealed at 600°C in air for 1 hour to transform fibers into a crystalline form for improved photocatalyst performance. In the second method, coaxial electrospinning process was used to produce core/shell strontium titanate/nickel oxide (SrTiO3-NiO) nanofibers. In coaxial method, poly (vinyl pyrrolidone) (PVP) was dissolved in deionized (DI) water, and then titanium (IV) isopropoxide [C12H28O4Ti] and strontium nitrate [Sr(NO3)2] were added into the solution to form the inner (core) layer. For outer (shell) solution, polyacrylonitrile (PAN) polymer was dissolved in dimethylformamide (DMF) at a weight ratio of 10:90 and then nickel oxide was mixed with the solution. Ultraviolet (UV) spectrophotometry and static contact angle measurement techniques were employed to characterize the structural properties of photocatalysts produced by both methods and a comparison was made between the two photocatalysts. The morphology and diameter of the nanofibers were observed by scanning electron microscopy (SEM). The structure and crystallinity of the calcined nanofibers were also observed

  17. Multiple bunch-splitting in the PS results and plans

    CERN Document Server

    Garoby, R


    The nominal longitudinal characteristics of the PS proton beam for the LHC were attained during the year 2000, using a sequence of triple- and double-splittings to divide each PS Booster (PSB) bunch into 12. This method minimizes longitudinal emittance blow-up and preserves a gap, free of particles, in the bunch train. Some of the ideas for alternative bunch trains have also been tested. The performance achieved is described and the sources of limitations are discussed together with the foreseen improvements.

  18. Modelling shear wave splitting observations from Wellington, New Zealand (United States)

    Marson-Pidgeon, Katrina; Savage, Martha K.


    Frequency-dependent anisotropy was previously observed at the permanent broad-band station SNZO, South Karori, Wellington, New Zealand. This has important implications for the interpretation of measurements in other subduction zones and hence for our understanding of mantle flow. This motivated us to make further splitting measurements using events recorded since the previous study and to develop a new modelling technique. Thus, in this study we have made 67 high-quality shear wave splitting measurements using events recorded at the SNZO station spanning a 10-yr period. This station is the only one operating in New Zealand for longer than 2 yr. Using a combination of teleseismic SKS and S phases and regional ScS phases provides good azimuthal coverage, allowing us to undertake detailed modelling. The splitting measurements indicate that in addition to the frequency dependence observed previously at this station, there are also variations with propagation and initial polarization directions. The fast polarization directions range between 2° and 103°, and the delay times range between 0.75 s and 3.05 s. These ranges are much larger than observed previously at SNZO or elsewhere in New Zealand. Because of the observed frequency dependence we measure the dominant frequency of the phase used to make the splitting measurement, and take this into account in the modelling. We fit the fast polarization directions fairly well with a two-layer anisotropic model with horizontal axes of symmetry. However, such a model does not fit the delay times or explain the frequency dependence. We have developed a new inversion method which allows for an inclined axis of symmetry in each of the two layers. However, applying this method to SNZO does not significantly improve the fit over a two-layer model with horizontal symmetry axes. We are therefore unable to explain the frequency dependence or large variation in delay time values with multiple horizontal layers of anisotropy, even

  19. Split Field magnet at the I4 ISR intersection

    CERN Multimedia


    The Split-Field Magnet (SFM) at I4 had an unconventional topology, consisting of two dipole magnets of opposite polarity. It formed the heart of the first general facility at the ISR. It had a useful magnetic field volume of 28 m3 and a field in the median plane of 1.14 T. With a gap height of 1.1 m and length of 10.5 m, the magnet weighed about 1000 t. The SFM spectrometer featured the first large-scale application of MWPCs (about 70,000 wires), which filled the main magnet, visible here in 1974, and the two large compensator magnets.

  20. Splitting of the luminescent excited state of the uranyl ion

    International Nuclear Information System (INIS)

    Flint, C.D.; Sharma, P.; Tanner, P.A.


    The luminescence spectra of some uranyl compounds has been studied. It has been proposed that the splitting of the luminescent excited state of the uranyl ion is due to a descent in symmetry experienced by the uranyl ion when it is placed in a crystal field. In recent years there has been developed a highly successful model of the electronic structure of the uranyl ion. In this paper the authors use this model to interpret the luminescence spectra of a variety of uranyl compounds

  1. Single perturbative splitting diagrams in double parton scattering (United States)

    Gaunt, Jonathan R.


    We present a detailed study of a specific class of graph that can potentially contribute to the proton-proton double parton scattering (DPS) cross section. These are the `2v1' or `single perturbative splitting' graphs, in which two `nonperturbatively generated' ladders interact with two ladders that have been generated via a perturbative 1 → 2 branching process. Using a detailed calculation, we confirm the result written down originally by Ryskin and Snigirev — namely, that the 2v1 graphs in which the two nonperturbatively generated ladders do not interact with one another do contribute to the leading order proton-proton DPS cross section, albeit with a different geometrical prefactor to the one that applies to the `2v2'/`zero perturbative splitting' graphs. We then show that 2v1 graphs in which the `nonperturbatively generated' ladders exchange partons with one another also contribute to the leading order proton-proton DPS cross section, provided that this `crosstalk' occurs at a lower scale than the 1 → 2 branching on the other side of the graph. Due to the preference in the 2v1 graphs for the x value at which the branching occurs, and crosstalk ceases, to be very much larger than the x values at the hard scale, the effect of crosstalk interactions is likely to be a decrease in the 2v1 cross section except at exceedingly small x values (≲ 10-6). At moderate x values ≃ 10-3 -10-2, the x value at the splitting is in the region ≃ 10-1 where PDFs do not change much with scale, and the effect of crosstalk interactions is likely to be small. We give an explicit formula for the contribution from the 2v1 graphs to the DPS cross section, and combine this with a suggestion that we made in a previous publication, that the `double perturbative splitting'/`1v1' graphs should be completely removed from the DPS cross section, to obtain a formula for the DPS cross section. It is pointed out that there are two potentially concerning features in this equation, that

  2. Miniaturised self-resonant split-ring resonator antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav


    A self-resonant miniaturized antenna composed of a broadside-coupled split-ring resonator (SRR) and an excitation arc-shaped monopole is presented. The size of the antenna and its resonance frequency is essentially defined by the SRR dimensions and geometry, while the input resistance...... at the resonance is governed by the arc length of the monopole. Numerical and experimental results are presented for an antenna configuration of 1/23.4 wavelength in diameter (ka~0.134). The antenna is tuned to 50 ohms without any matching network, and its efficiency is measured to be 17.5%....

  3. Holographic spectrum-splitting optical systems for solar photovoltaics (United States)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle

  4. Triviality and Split of Vector Bundles on Rationally Connected Varieties


    Pan, Xuanyu


    In this paper, we give a simple proof of a triviality criterion due to I.Biswas and J.Pedro and P.Dos Santos. We also prove a vector bundle on a homogenous space is trivial if and only if the restrictions of the vector bundle to Schubert lines are trivial. Using this result and Chern classes of vector bundles, we give a general criterion of a uniform vector bundle on a homogenous space to be splitting. As an application, we prove a uniform vector bundle on classical Grassmannians and quadrics...

  5. Study on Mechanical Features of Brazilian Splitting Fatigue Tests of Salt Rock

    Directory of Open Access Journals (Sweden)

    Weichao Wang


    Full Text Available The microtest, SEM, was carried out to study the fracture surface of salt rock after the Brazilian splitting test and splitting fatigue test were carried out with a servo-controlled test machine RMT-150B. The results indicate that the deviation of using the tablet splitting method is larger than that of using steel wire splitting method, in Brazilian splitting test of salt rock, when the conventional data processing method is adopted. There are similar deformation features in both the conventional splitting tests and uniaxial compression tests. The stress-strain curves include compaction, elasticity, yielding, and failure stage. Both the vertical deformation and horizontal deformation of splitting fatigue tests under constant average loading can be divided into three stages of “loosening-tightness-loosening.” The failure modes of splitting fatigue tests under the variational average loading are not controlled by the fracturing process curve of the conventional splitting tests. The deformation extent of fatigue tests under variational average loading is even greater than that of conventional splitting test. The tensile strength of salt rock has a relationship with crystallization conditions. Tensile strength of thick crystal salt rock is lower than the bonded strength of fine-grain crystals.

  6. General approach for engineering small-molecule-binding DNA split aptamers. (United States)

    Kent, Alexandra D; Spiropulos, Nicholas G; Heemstra, Jennifer M


    Here we report a general method for engineering three-way junction DNA aptamers into split aptamers. Split aptamers show significant potential for use as recognition elements in biosensing applications, but reliable methods for generating these sequences are currently lacking. We hypothesize that the three-way junction is a "privileged architecture" for the elaboration of aptamers into split aptamers, as it provides two potential splitting sites that are distal from the target binding pocket. We propose a general method for split aptamer engineering that involves removing one loop region, then systematically modifying the number of base pairs in the remaining stem regions in order to achieve selective assembly only in the presence of the target small molecule. We screen putative split aptamer sequence pairs using split aptamer proximity ligation (StAPL) technology developed by our laboratory, but we validate that the results obtained using StAPL translate directly to systems in which the aptamer fragments are assembling noncovalently. We introduce four new split aptamer sequences, which triples the number of small-molecule-binding DNA split aptamers reported to date, and the methods described herein provide a reliable route for the engineering of additional split aptamers, dramatically advancing the potential substrate scope of DNA assembly based biosensors.

  7. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip. (United States)

    Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Destgeer, Ghulam; Ahmed, Husnain; Ahmad, Raheel; Sung, Hyung Jin


    On-chip droplet splitting is one of the fundamental droplet-based microfluidic unit operations to control droplet volume after production and increase operational capability, flexibility, and throughput. Various droplet splitting methods have been proposed, and among them the acoustic droplet splitting method is promising because of its label-free operation without any physical or thermal damage to droplets. Previous acoustic droplet splitting methods faced several limitations: first, they employed a cross-type acoustofluidic device that precluded multichannel droplet splitting; second, they required irreversible bonding between a piezoelectric substrate and a microfluidic chip, such that the fluidic chip was not replaceable. Here, we present a parallel-type acoustofluidic device with a disposable microfluidic chip to address the limitations of previous acoustic droplet splitting devices. In the proposed device, an acoustic field is applied in the direction opposite to the flow direction to achieve multichannel droplet splitting and steering. A disposable polydimethylsiloxane microfluidic chip is employed in the developed device, thereby removing the need for permanent bonding and improving the flexibility of the droplet microfluidic device. We experimentally demonstrated on-demand acoustic droplet bi-splitting and steering with precise control over the droplet splitting ratio, and we investigated the underlying physical mechanisms of droplet splitting and steering based on Laplace pressure and ray acoustics analyses, respectively. We also demonstrated droplet tri-splitting to prove the feasibility of multichannel droplet splitting. The proposed on-demand acoustic droplet splitting device enables on-chip droplet volume control in various droplet-based microfluidic applications.

  8. Quadratic String Method for Locating Instantons in Tunneling Splitting Calculations. (United States)

    Cvitaš, Marko T


    The ring-polymer instanton (RPI) method is an efficient technique for calculating approximate tunneling splittings in high-dimensional molecular systems. In the RPI method, tunneling splitting is evaluated from the properties of the minimum action path (MAP) connecting the symmetric wells, whereby the extensive sampling of the full potential energy surface of the exact quantum-dynamics methods is avoided. Nevertheless, the search for the MAP is usually the most time-consuming step in the standard numerical procedures. Recently, nudged elastic band (NEB) and string methods, originaly developed for locating minimum energy paths (MEPs), were adapted for the purpose of MAP finding with great efficiency gains [ J. Chem. Theory Comput. 2016 , 12 , 787 ]. In this work, we develop a new quadratic string method for locating instantons. The Euclidean action is minimized by propagating the initial guess (a path connecting two wells) over the quadratic potential energy surface approximated by means of updated Hessians. This allows the algorithm to take many minimization steps between the potential/gradient calls with further reductions in the computational effort, exploiting the smoothness of potential energy surface. The approach is general, as it uses Cartesian coordinates, and widely applicable, with computational effort of finding the instanton usually lower than that of determining the MEP. It can be combined with expensive potential energy surfaces or on-the-fly electronic-structure methods to explore a wide variety of molecular systems.

  9. Microminiature linear split Stirling cryogenic cooler for portable infrared imagers (United States)

    Veprik, A.; Vilenchik, H.; Riabzev, S.; Pundak, N.


    Novel tactics employed in carrying out military and antiterrorist operations call for the development of a new generation of warfare, among which sophisticated portable infrared (IR) imagers for surveillance, reconnaissance, targeting and navigation play an important role. The superior performance of such imagers relies on novel optronic technologies and maintaining the infrared focal plane arrays at cryogenic temperatures using closed cycle refrigerators. Traditionally, rotary driven Stirling cryogenic engines are used for this purpose. As compared to their military off-theshelf linear rivals, they are lighter, more compact and normally consume less electrical power. Latest technological advances in industrial development of high-temperature (100K) infrared detectors initialized R&D activity towards developing microminiature cryogenic coolers, both of rotary and linear types. On this occasion, split linearly driven cryogenic coolers appear to be more suitable for the above applications. Their known advantages include flexibility in the system design, inherently longer life time, low vibration export and superior aural stealth. Moreover, recent progress in designing highly efficient "moving magnet" resonant linear drives and driving electronics enable further essential reduction of the cooler size, weight and power consumption. The authors report on the development and project status of a novel Ricor model K527 microminiature split Stirling linear cryogenic cooler designed especially for the portable infrared imagers.

  10. Insights Into Electrochemical and Photoelectrochemical Water-Splitting (United States)

    Vargas-Barbosa, Nella M.

    The water-splitting reaction has been known for over a century, yet its efficient execution remains to be one of the "holy grails" for current researchers. Here, molecular water is converted to oxygen and hydrogen gas via multiple proton- and electron-transfer steps. Although the product of interest is high-purity hydrogen gas fuel, the thermodynamic and kinetic requirements of the oxygen evolution reaction (OER) are the main limiting factor. The goal of this dissertation was to develop and understand model electro- and photoelectro-catalytic systems that can address the kinetic limitations of the OER, as well as guidelines for the future development of water-splitting devices. Chapter 1 introduces the kinetic theory of heterogeneous electron-transfer reactions and how it is applied to the understanding of the watersplitting reaction. The chemical properties that make iridium oxide an ideal model electrocatalyst for the OER are discussed, as well as an overview of previous work on this material. Furthermore, the fundamentals of photo-electrochemical water-splitting are presented. Here, sunlight is used as the main driving force for producing oxygen and hydrogen. It has been previously demonstrated that the synthesis of IrOx˙nH 2O colloids by alkaline hydrolysis of Ir(III) or Ir(IV) salts proceeds through iridium hydroxide intermediates. Chapter 2 is a detailed spectro-electrochemical and DFT study of such intermediates and their effect in photoelectrochemical water-splitting cells. Primarily, we have identified the monomeric nature of this hydroxide intermediates as well as their most likely chemical composition and their relative ratio between Ir(III) and Ir(IV). The results from this study address a very important, current dilemma in IrOx˙nH2O-based photoelectrochemical water-splitting cells: how does the chemistry of the catalyst and its interface with the semiconductor influence the photoresponse of the cell? The careful preparation and characterization of

  11. Comparision of Splitting Properties of Various 1x16 Splitters

    Directory of Open Access Journals (Sweden)

    Catalina Burtscher


    Full Text Available Optical Access Networks (OAN mostly use optical splitters to distribute the services from Optical Line Terminal (OLT on the provider's side to the subscribers in Optical Network Unit (ONU. Optical splitters are the key components in such access networks as for example GPON and XG-PON by ITU-T. In this paper we investigate the optical properties of 1x16 Y-branch splitter and 1x16 MMI splitters based on different widths of multimode interference section and different lengths of the output ports. These two splitters were designed, simulated and the obtained results of both were studied and compared with each other. Additionally, we show that the used standard waveguide core size (usually 6x6 µm2 to match the diameter of the single mode input/output fibers, i.e. to keep the coupling loses as low as possible supports not only propagation of the single mode but of the first mode too, leading to an asymmetric splitting ratio (increasing non-uniformity of split power over all the output waveguides. Decreasing waveguide core size, it is possible to suppress presence of the first mode and this way to reduce non-uniformity.

  12. Spin-splitting in p-type Ge devices

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, S. N., E-mail:; Newton, P. J.; Llandro, J.; Mansell, R.; Barnes, C. H. W. [Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Morrison, C.; Myronov, M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)


    Compressively strained Ge quantum well devices have a spin-splitting in applied magnetic field that is entirely consistent with a Zeeman effect in the heavy hole valence band. The spin orientation is determined by the biaxial strain in the quantum well with the relaxed SiGe buffer layers and is quantized in the growth direction perpendicular to the conducting channel. The measured spin-splitting in the resistivity ρ{sub xx} agrees with the predictions of the Zeeman Hamiltonian where the Shubnikov-deHaas effect exhibits a loss of even filling factor minima in the resistivity ρ{sub xx} with hole depletion from a gate field, increasing disorder or increasing temperature. There is no measurable Rashba spin-orbit coupling irrespective of the structural inversion asymmetry of the confining potential in low p-doped or undoped Ge quantum wells from a density of 6 × 10{sup 10} cm{sup −2} in depletion mode to 1.7 × 10{sup 11} cm{sup −2} in enhancement.

  13. Fluorescent labeling of antibody fragments using split GFP.

    Directory of Open Access Journals (Sweden)

    Fortunato Ferrara

    Full Text Available Antibody fragments are easily isolated from in vitro selection systems, such as phage and yeast display. Lacking the Fc portion of the antibody, they are usually labeled using small peptide tags recognized by antibodies. In this paper we present an efficient method to fluorescently label single chain Fvs (scFvs using the split green fluorescent protein (GFP system. A 13 amino acid tag, derived from the last beta strand of GFP (termed GFP11, is fused to the C terminus of the scFv. This tag has been engineered to be non-perturbing, and we were able to show that it exerted no effect on scFv expression or functionality when compared to a scFv without the GFP11 tag. Effective functional fluorescent labeling is demonstrated in a number of different assays, including fluorescence linked immunosorbant assays, flow cytometry and yeast display. Furthermore, we were able to show that this split GFP system can be used to determine the concentration of scFv in crude samples, as well an estimate of antibody affinity, without the need for antibody purification. We anticipate this system will be of widespread interest in antibody engineering and in vitro display systems.

  14. Compact complex surfaces with geometric structures related to split quaternions

    International Nuclear Information System (INIS)

    Davidov, Johann; Grantcharov, Gueo; Mushkarov, Oleg; Yotov, Miroslav


    We study the problem of existence of geometric structures on compact complex surfaces that are related to split quaternions. These structures, called para-hypercomplex, para-hyperhermitian and para-hyperkähler, are analogs of the hypercomplex, hyperhermitian and hyperkähler structures in the definite case. We show that a compact 4-manifold carries a para-hyperkähler structure iff it has a metric of split signature together with two parallel, null, orthogonal, pointwise linearly independent vector fields. Every compact complex surface admitting a para-hyperhermitian structure has vanishing first Chern class and we show that, unlike the definite case, many of these surfaces carry infinite-dimensional families of such structures. We provide also compact examples of complex surfaces with para-hyperhermitian structures which are not locally conformally para-hyperkähler. Finally, we discuss the problem of non-existence of para-hyperhermitian structures on Inoue surfaces of type S 0 and provide a list of compact complex surfaces which could carry para-hypercomplex structures.


    Directory of Open Access Journals (Sweden)



    Full Text Available Taking into account the urgent need to attract additional amounts to the state budget to cover the increased budget expenditures involved in the implementation of the government program, by the end of August 2017, the Government of Romania adopted an ordinance obliging the entities to apply, starting on January 1st 2018, the VAT split payment mechanism, system which no longer allows them to use the value added tax cashed affently to the delivery of goods and provision of services, which is why these amounts are to be cashed in separate accounts opened by entities in the state treasury or credit institutions. Only that, later, through the draft of Law on the approval of that ordinance, the Senate made changes to the legislative act, so that the VAT split payment would only apply to companies in insolvency or that register delays in payment of the tax. Although this measure aims at combating the tax evasion and fraud by increasing the voluntary compliance and tax collection degree, the measure can prove to be unfounded, which violates the legislative technique and, in particular, the Community provisions by being inappropriate. In this context, the main objective of this scientific approach is to identify the special situations that arise at the level of entities as a result of the application of the breakdown mechanism of value added tax and to determine the possible advantages and disadvantages.

  16. Split Attractor Flow in N=2 Minimally Coupled Supergravity

    CERN Document Server

    Ferrara, Sergio; Orazi, Emanuele


    We classify the stability region, marginal stability walls (MS) and split attractor flows for two-center extremal black holes in four-dimensional N=2 supergravity minimally coupled to n vector multiplets. It is found that two-center (continuous) charge orbits, classified by four duality invariants, either support a stability region ending on a MS wall or on an anti-marginal stability (AMS) wall, but not both. Therefore, the scalar manifold never contains both walls. Moreover, the BPS mass of the black hole composite (in its stability region) never vanishes in the scalar manifold. For these reasons, the "bound state transformation walls" phenomenon does not necessarily occur in these theories. The entropy of the flow trees also satisfies an inequality which forbids "entropy enigma" decays in these models. Finally, the non-BPS case, due to the existence of a "fake" superpotential satisfying a triangle inequality, can be treated as well, and it can be shown to exhibit a split attractor flow dynamics which, at le...

  17. Two-junction holographic spectrum-splitting microconcentrating photovoltaic system (United States)

    Wu, Yuechen; Kostuk, Raymond K.


    Spectrum-splitting is a multijunction photovoltaic technology that can effectively improve the conversion efficiency and reduce the cost of photovoltaic systems. Microscale PV design integrates a group of microconcentrating photovoltaic (CPV) systems into an array. It retains the benefits of CPV and obtains other benefits such as a compact form, improved heat rejection capacity, and more versatile PV cell interconnect configurations. We describe the design and performance of a two-junction holographic spectrum-splitting micro-CPV system that uses GaAs wide bandgap and silicon narrow bandgap PV cells. The performance of the system is simulated with a nonsequential raytracing model and compared to the performance of the highest efficiency PV cell used in the micro-CPV array. The results show that the proposed system reaches the conversion efficiency of 31.98% with a quantum concentration ratio of 14.41× on the GaAs cell and 0.75× on the silicon cell when illuminated with the direct AM1.5 spectrum. This system obtains an improvement over the best bandgap PV cell of 20.05%, and has an acceptance angle of ±6 deg allowing for tolerant tracking.

  18. Accelerated split course regimen in the treatment of brain metastases

    International Nuclear Information System (INIS)

    Franchin, G.; Minatel, E.; Roncadin, M.; Trovo, M.G.; De Paoli, A.; Bortolus, R.; Arcicasa, M.; Boz, G.; Gobitti, C.; Grigoletto, E.; Bassignano, G.


    63 patients, with brain metastases were treated with an accelerated split course regimen; irradiation was given to the whole brain in 3 daily fractions of 160 cGy each for 5 days a week. The cycle was repeated after 2 weeks to a total dose of 4800 cGy. Male-female ratio was 3:1. Median age was 58 years. The most frequent site of primary tumor was lung (41 patients), breast in 6 patients, melanoma in 3 patients, other sites in 8 patients and unknown cancer in 5 patients. Thirty-five patients had multiple brain metastases localizations. Two patients failed to complete the scheduled treatment: one because of early death and the other by refusal of therapy during treatment. Complete remission was obtained in 4 patients and partial remission in 24 patients. The median survival time was 21 weeks. The overall response rate was 42.5%. Toxicity was not considerable. The treatment results were not influenced by the site of primary tumor or by disease spreading; only the neurologic status before radiotherapy and the response to treatment influenced survival. The results obtained are similar to those reported by others; however, with the accelerated split course regimen the treatment time was reduced and a shorter period of hospitalization was required. 36 refs.; 2 figs.; 3 tabs

  19. Compact complex surfaces with geometric structures related to split quaternions

    Energy Technology Data Exchange (ETDEWEB)

    Davidov, Johann, E-mail: [Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); ' L. Karavelov' Civil Engineering Higher School, 175 Suhodolska Str., 1373 Sofia (Bulgaria); Grantcharov, Gueo, E-mail: [Department of Mathematics and Statistics, Florida International University, Miami, FL 33199 (United States); Mushkarov, Oleg, E-mail: [Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Yotov, Miroslav, E-mail: [Department of Mathematics and Statistics, Florida International University, Miami, FL 33199 (United States)


    We study the problem of existence of geometric structures on compact complex surfaces that are related to split quaternions. These structures, called para-hypercomplex, para-hyperhermitian and para-hyperkaehler, are analogs of the hypercomplex, hyperhermitian and hyperkaehler structures in the definite case. We show that a compact 4-manifold carries a para-hyperkaehler structure iff it has a metric of split signature together with two parallel, null, orthogonal, pointwise linearly independent vector fields. Every compact complex surface admitting a para-hyperhermitian structure has vanishing first Chern class and we show that, unlike the definite case, many of these surfaces carry infinite-dimensional families of such structures. We provide also compact examples of complex surfaces with para-hyperhermitian structures which are not locally conformally para-hyperkaehler. Finally, we discuss the problem of non-existence of para-hyperhermitian structures on Inoue surfaces of type S{sup 0} and provide a list of compact complex surfaces which could carry para-hypercomplex structures.

  20. Environmental stability study of holographic solar spectrum splitting materials (United States)

    Chrysler, Benjamin D.; Ayala Pelaez, Silvana; Wu, Yuechen; Vorndran, Shelby D.; Kostuk, Raymond K.


    In this study the impact of outdoor temperature variations and solar illumination exposure on spectral filter material and holographic optical elements is examined. Although holographic components have been shown to be useful for solar spectrum splitting designs, relatively little quantitative data exist to demonstrate the extent to which these materials can withstand outdoor conditions. As researchers seek to investigate practical spectrum splitting designs, the environmental stability of holographic materials should be considered as an important factor. In the experiment presented, two holographic materials, Covestro Bayfol HX photopolymer and dichromated gelatin, and 3M reflective polymer filter materials are exposed to outdoor conditions for a period of several months. The environmental effect on absorption, spectral and angular bandwidth, peak efficiency, and Bragg matching conditions for the holograms are examined. Spectral bandwidth and transmittance of the 3M reflective filter material are also monitored. Holographic gratings are recorded, measured, and mounted on glass substrates and then sealed with a glass cover plate. The test samples are then mounted on a photovoltaic panel to simulate realistic temperature conditions and placed at an outdoor test facility in Tucson, Arizona. A duplicate set of holograms and 3M filter material is stored as a control group and periodically compared over the test period.

  1. Planar holographic spectrum-splitting PV module design (United States)

    Gordon, Michael; Zhang, Deming; Vorndran, Shelby; Russo, Juan M.; Luscombe, Christine K.; Shaheen, Sean E.; Kostuk, Raymond K.


    A design is presented for a planar spectrum-splitting photovoltaic (PV) module using Holographic Optical Elements (HOEs). A repeating array of HOEs diffracts portions of the solar spectrum onto different PV materials arranged in alternating strips. Several combinations of candidate PV materials are explored, and theoretical power conversion efficiency is quantified and compared for each case. The holograms are recorded in dichromated gelatin (DCG) film, an inexpensive material which is easily encapsulated directly into the panel. If desired, the holograms can focus the light to achieve concentration. The side-by-side split spectrum layout has advantages compared to a stacked tandem cell approach: since the cells are electrically isolated, current matching constraints are eliminated. Combinations of dissimilar types of cells are also possible: including crystalline, thin film, and organic PV cells. Configurations which yield significant efficiency gain using relatively inexpensive PV materials are of particular interest. A method used to optimize HOE design to work with a different candidate cells and different package aspect ratios is developed and presented. (Aspect ratio is width of the cell strips vs. the thickness of the panel) The relationship between aspect ratio and HOE performance properties is demonstrated. These properties include diffraction efficiency, spectral selectivity, tracking alignment sensitivity, and uniformity of cell illumination.

  2. Ultrasonic splitting of oil-in-water emulsions

    DEFF Research Database (Denmark)

    Hald, Jens; König, Ralf; Benes, Ewald


    Standing resonant ultrasonic wave fields can be utilized for liquid–liquid separation of the dispersed particles and the fluid caused by the acoustic radiation pressure and the induced particle agglomeration or coagulation/coalescence process. For the splitting of oil-in-water emulsions, the avai......Standing resonant ultrasonic wave fields can be utilized for liquid–liquid separation of the dispersed particles and the fluid caused by the acoustic radiation pressure and the induced particle agglomeration or coagulation/coalescence process. For the splitting of oil-in-water emulsions......, the available piezoelectric composite transducer technology was improved and a dedicated resonator with crossed plane wave sonication geometry has been developed. The resonator chamber is entirely made of aluminium or tempax glass and the PZT piezoceramic transducer delivers an acoustic energy flow density...... of up to 24 W/cm2 into the sonication volume. The chosen resonance frequency is kept stable by automatic frequency control utilizing the maximum true power criterion. Physically and chemically well-defined low and high density pure laboratory and also industrially used cooling-lubricating oil...

  3. (Strong) rainbow connection on the splitting of 3-path (United States)

    Septyanto, F.; Sugeng, K. A.


    The rainbow connection number of a graph G, denoted rc(G), is the smallest number of colors needed to color the edges of G so that any two vertices are connected by a path whose edges all have different colors. Similarly we define the strong rainbow connection number of G, denoted by src(G), by replacing "path" with "geodesic". n this paper, we study the rc and src of a very specific construction known as splitting. For any graph H and any m ∈ ℕ, its m-splitting is a new graph denoted by Splm (G) constructed as follows. Suppose V(H) = {h1, …, hn}. Then for each hi we introduce m new vertices νi1,…,νim and we join each new vertex νij to all neighbors of the original vertex hi in H. In this paper we determine the rc and src of Splm (P3) for all m ∈ ℕ, where P3 is the 3-path, i.e. path with three vertices.

  4. The effects of split marketing on the physiology, behavior, and performance of finishing swine. (United States)

    Scroggs, L V; Kattesh, H G; Morrow, J L; Stalder, K J; Dailey, J W; Roberts, M P; Schneider, J F; Saxton, A M


    One hundred twenty 8-wk-old barrows (20.3 +/- 2.0 kg BW) were used to examine the effect of split marketing on selected behavioral, physiological and performance parameters. Pigs were assigned by weight in a randomized complete block design to one of three treatments: SM (split-marketed), six pigs/pen (1.83 m2/pig); C (control), six pigs/pen (1.83 m2/pig); or MC (modified control), three pigs/pen (3.66 m2/pig). The heaviest half of SM animals were removed 1 wk prior to marketing penmates. Control and MC animals remained in their respective groups until marketing. Animals were videotaped during the first 72 h of the study (INITIAL), 72 h prior to (PRE), and following the removal (POST) of pigs in the SM treatment to quantify maintenance behaviors and to identify socially dominant, intermediate, and submissive pigs. A blood sample was collected from each animal upon completion of INITIAL, PRE, and POST time periods to determine neutrophil:lymphocyte ratio and plasma haptoglobin, cortisol, and corticosteroid-binding globulin (CBG) levels. Animals were weighed and feed disappearance was calculated biweekly. Tenth-rib backfat and area of the longissimus muscle at marketing were ultrasonically evaluated on all animals. Regardless of treatment, animals were more (P marketing. During the POST period, both MC and SM pigs had greater (P < 0.01) ADFI with poorer (P < 0.01) feed efficiency than C pigs. The ADG was not different among animals as a result of treatment. There were no treatment differences for any of the carcass measurements. Significant differences in performance between the treatment groups could not be attributed to any physiological or behavioral measures reported here.

  5. Three-dimensional dose accumulation in pseudo-split-field IMRT and brachytherapy for locally advanced cervical cancer. (United States)

    Sun, Baozhou; Yang, Deshan; Esthappan, Jackie; Garcia-Ramirez, Jose; Price, Samantha; Mutic, Sasa; Schwarz, Julie K; Grigsby, Perry W; Tanderup, Kari


    Dose accumulation of split-field external beam radiotherapy (EBRT) and brachytherapy (BT) is challenging because of significant EBRT and BT dose gradients in the central pelvic region. We developed a method to determine biologically effective dose parameters for combined split-field intensity-modulated radiation therapy (IMRT) and image-guided BT in locally advanced cervical cancer. Thirty-three patients treated with split-field-IMRT to 45.0-51.2 Gy in 1.6-1.8 Gy per fraction to the elective pelvic lymph nodes and to 20 Gy to the central pelvis region were included in this study. Patients received six weekly fractions of high-dose rate BT to 6.5-7.3 Gy per fraction. A dose tracker software was developed to compute the equivalent dose in 2-Gy fractions (EQD2) to gross tumor volume (GTV), organs-at-risk and point A. Total dose-volume histogram parameters were computed on the 3D combined EQD2 dose based on rigid image registration. The dose accumulation uncertainty introduced by organ deformations between IMRT and BT was evaluated. According to International Commission on Radiation Unit and Measurement and GEC European Society for Therapeutic Radiology and Oncology recommendations, D98, D90, D50, and D2cm3 EQD2 dose-volume histogram parameters were computed. GTV D98 was 84.0 ± 26.5 Gy and D2cc was 99.6 ± 13.9 Gy, 67.4 ± 12.2 Gy, 75.0 ± 10.1 Gy, for bladder, rectum, and sigmoid, respectively. The uncertainties induced by organ deformation were estimated to be -1 ± 4 Gy, -3 ± 5 Gy, 2 ± 3 Gy, and -3 ± 5 Gy for bladder, rectum, sigmoid, and GTV, respectively. It is feasible to perform 3D EQD2 dose accumulation to assess high and intermediate dose regions for combined split-field IMRT and BT. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. Seismic anisotropy beneath the greater region of the central External Dinarides from observations of SKS-splitting (United States)

    Subašić, Senad; Prevolnik, Snježan; Herak, Marijan


    Measurements of SKS wave splitting beneath greater region of the central External Dinarides (Dalmatia, Croatia) were made in order to investigate seismic anisotropy in the upper mantle and the lithosphere. The area is located in the broad and complex Africa-Eurasia convergent plate boundary zone, where Adriatic microplate interacts with the External Dinarides. We used broadband recordings (more than 3500 analyzed seismograms) from 10 permanent stations situated along the Croatian coastal region. The splitting parameters - fast axis and delay time - were measured using the Silver and Chan method. Seismic anisotropy was observed on all stations. Fast axis directions are fairly uniformly oriented approximately in the NE-SW to NNE-SSW direction, thus perpendicularly to the strike of the Dinarides. Average delay times range between 0.7 and 1.0 seconds. Slight counter-clockwise rotation in average fast axis directions was observed for the stations in the northern part of the studied area, as well as a small increase in average delay times, with respect to the stations in the southern part. We also observed differences in splitting parameters for back-azimuths sampling different tectonic units (Euroasian plate and Adria), however, due to poor back-azimuthal coverage and limited dataset, more measurements have to be made to enable reliable validation of this observation. Fast axis directions coincide with the direction of the maximum tectonic pressure in the crust and with observed fast directions of P-waves in the crust, which might imply a significant crustal component of measured anisotropy, alongside the component resulting from the upper mantle structures.

  7. Development of tip-splitting and side-branching patterns in elastic fingering (United States)

    Fontana, João V.; Gadêlha, Hermes; Miranda, José A.


    Elastic fingering supplements the already interesting features of the traditional viscous fingering phenomena in Hele-Shaw cells with the consideration that the two-fluid separating boundary behaves like an elastic membrane. Sophisticated numerical simulations have shown that under maximum viscosity contrast the resulting patterned shapes can exhibit either finger tip-splitting or side-branching events. In this work, we employ a perturbative mode-coupling scheme to get important insights into the onset of these pattern formation processes. This is done at lowest nonlinear order and by considering the interplay of just three specific Fourier modes: a fundamental mode n and its harmonics 2 n and 3 n . Our approach further allows the construction of a morphology diagram for the system in a wide range of the parameter space without requiring expensive numerical simulations. The emerging interfacial patterns are conveniently described in terms of only two dimensionless controlling quantities: the rigidity fraction C and a parameter Γ that measures the relative strength between elastic and viscous effects. Visualization of the rigidity field for the various pattern-forming structures supports the idea of an elastic weakening mechanism that facilitates finger growth in regions of reduced interfacial bending rigidity.

  8. Decision Trees for Continuous Data and Conditional Mutual Information as a Criterion for Splitting Instances. (United States)

    Drakakis, Georgios; Moledina, Saadiq; Chomenidis, Charalampos; Doganis, Philip; Sarimveis, Haralambos


    Decision trees are renowned in the computational chemistry and machine learning communities for their interpretability. Their capacity and usage are somewhat limited by the fact that they normally work on categorical data. Improvements to known decision tree algorithms are usually carried out by increasing and tweaking parameters, as well as the post-processing of the class assignment. In this work we attempted to tackle both these issues. Firstly, conditional mutual information was used as the criterion for selecting the attribute on which to split instances. The algorithm performance was compared with the results of C4.5 (WEKA's J48) using default parameters and no restrictions. Two datasets were used for this purpose, DrugBank compounds for HRH1 binding prediction and Traditional Chinese Medicine formulation predicted bioactivities for therapeutic class annotation. Secondly, an automated binning method for continuous data was evaluated, namely Scott's normal reference rule, in order to allow any decision tree to easily handle continuous data. This was applied to all approved drugs in DrugBank for predicting the RDKit SLogP property, using the remaining RDKit physicochemical attributes as input.

  9. Electron paramagnetic resonance parameters and local structure for ...

    Indian Academy of Sciences (India)

    The electron paramagnetic resonance parameters, zero-field splittings (ZFSs) b 2 0 , b 4 0 , b 4 4 , b 6 0 , b 6 4 and the factors for Gd3+ on the tetragonal Y3+ site in KY3F10 are theoretically studied from the superposition model for the ZFSs and the approximation formula for the factor containing the admixture of the ...

  10. Conventional versus single-ladder-splitting contributions to double parton scattering production of two quarkonia, two Higgs bosons, and cc xAFcc xAF (United States)

    Gaunt, Jonathan R.; Maciuła, Rafał; Szczurek, Antoni


    The double parton distributions (dPDF), both conventional (i.e. double ladder) and those corresponding to 1→2 ladder splitting, are calculated and compared for different two-parton combinations. The conventional and splitting dPDFs have very similar shape in x1 and x2. We make a first quantitative evaluation of the single-ladder-splitting contribution to double parton scattering (DPS) production of two S- or P-wave quarkonia, two Higgs bosons and cc ¯cc ¯. The ratio of the single-ladder-splitting to conventional (i.e. double ladder against double ladder) contributions is discussed as a function of center-of-mass energy, mass of the produced system and other kinematical variables. Using a simple model for the dependence of the conventional two-parton distribution on transverse parton separation (Gaussian and independent of xi and scales), we find that the single-ladder-splitting (or 2v1) contribution is as big as the conventional (or 2v2) contribution discussed in recent years in the literature. In many experimental studies of DPS, one extracts the quantity 1/σeff=σDPS/(σSPS ,1σSPS,2), with σSPS ,1 and σSPS ,2 being the single scattering cross sections for the two subprocesses in the DPS process. Many past phenomenological studies of DPS have only considered the conventional contribution and have obtained values a factor of ˜2 too small for 1/σeff. Our analysis shows that it is important also to consider the ladder-splitting mechanism, and that this might resolve the discrepancy (this was also pointed out in a recent study by Blok et al.). The differential distributions in rapidity and transverse momenta calculated for conventional and single-ladder-splitting DPS processes are however very similar which causes their experimental separation to be rather difficult, if not impossible. The direct consequence of the existence of the two components (conventional and splitting) is the energy and process dependence of the empirical parameter σeff. This is

  11. Entropy Analysis of Solar Two-Step Thermochemical Cycles for Water and Carbon Dioxide Splitting

    Directory of Open Access Journals (Sweden)

    Matthias Lange


    Full Text Available The present study provides a thermodynamic analysis of solar thermochemical cycles for splitting of H2O or CO2. Such cycles, powered by concentrated solar energy, have the potential to produce fuels in a sustainable way. We extend a previous study on the thermodynamics of water splitting by also taking into account CO2 splitting and the influence of the solar absorption efficiency. Based on this purely thermodynamic approach, efficiency trends are discussed. The comprehensive and vivid representation in T-S diagrams provides researchers in this field with the required theoretical background to improve process development. Furthermore, results about the required entropy change in the used redox materials can be used as a guideline for material developers. The results show that CO2 splitting is advantageous at higher temperature levels, while water splitting is more feasible at lower temperature levels, as it benefits from a great entropy change during the splitting step.

  12. Sword-Like Trauma to the Shoulder with Open Head-Splitting Fracture of the Head

    Directory of Open Access Journals (Sweden)

    Andreas Panagopoulos


    Full Text Available Head-splitting fractures occur as a result of violent compression of the head against the glenoid; the head splits and the tuberosities may remain attached to the fragments or split and separate. Isolated humeral head-splitting fractures are rare injuries. Favorable results with osteosynthesis can be difficult to achieve because of the very proximal location of the head fracture and associated poor vascularity. We present a case of a 67-year-old man who sustained a severe, sword-like trauma to his left shoulder after a road traffic accident with associated isolated open Gustilo-Anderson IIIA humeral head-splitting fracture. Bony union was achieved with minimal internal fixation but the clinical outcome deteriorated due to accompanying axillary nerve apraxia. To our knowledge, this type of sword-like injury with associated humeral head-split fracture has not previously been reported.

  13. Using a Combination of FEM and Perturbation Method in Frequency Split Calculation of a Nearly Axisymmetric Shell with Middle Surface Shape Defect

    Directory of Open Access Journals (Sweden)

    D. S. Vakhlyarskiy


    Full Text Available This paper proposes a method to calculate the splitting of natural frequency of the shell of hemispherical resonator gyro. (HRG. The paper considers splitting that arises from the small defect of the middle surface, which makes the resonator different from the rotary shell. The presented method is a combination of the perturbation method and the finite element method. The method allows us to find the frequency splitting caused by defects in shape, arbitrary distributed in the circumferential direction. This is achieved by calculating the perturbations of multiple natural frequencies of the second and higher orders. The proposed method allows us to calculate the splitting of multiple frequencies for the shell with the meridian of arbitrary shape.A developed finite element is an annular element of the shell and has two nodes. Projections of movements are used on the axis of the global cylindrical system of coordinates, as the unknown. To approximate the movements are used polynomials of the second degree. Within the finite element the geometric characteristics are arranged in a series according to the small parameter of perturbations of the middle surface geometry.Movements on the final element are arranged in series according to the small parameter, and in a series according to circumferential angle. With computer used to implement the method, three-dimensional arrays are used to store the perturbed quantities. This allows the use of regular expressions for the mass and stiffness matrices, when building the finite element, instead of analytic dependencies for each perturbation of these matrices of the required order with desirable mathematical operations redefined in accordance with the perturbation method.As a test task, is calculated frequency splitting of non-circular cylindrical resonator with Navier boundary conditions. The discrepancy between the results and semi-analytic solution to this problem is less than 1%. For a cylindrical shell is

  14. The inverse strong non-split r-domination number of a graph ...

    African Journals Online (AJOL)

    In this paper, we define the notions of inverse strong non-split r-dominating set and inverse strong non-split r-domination number γ′snsr(G) of a graph G. We characterize graphs for which γsnsr(G) + γ′snsr(G) = n, where γsnsr(G) is the strong non-split r-domination number of G. We get many bounds on γ′snsr(G).

  15. Follow-up Designs to Resolve Confounding in Split-Plot Experiments

    DEFF Research Database (Denmark)

    Almimi, Ashraf A.; Kulahci, Murat; Montgomery, Douglas C.


    Split-plot designs are effective in industry due to time and/or cost constraints, restriction on randomization of the treatment combinations of the hard-to-change factors, and different sizes of experimental units. Some of the results of fractional factorial split-plot experiments can be ambiguous......-alias certain effects. Six rules are provided to develop foldovers for minimum aberration resolution III and resolution IV fractional factorial split-plot designs....

  16. 15 CFR 30.28 - “Split shipments” by air. (United States)


    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false âSplit shipmentsâ by air. 30.28... Transactions § 30.28 “Split shipments” by air. When a shipment by air covered by a single EEI submission is... showing the portion of the split shipment carried on that flight, a notation will be made showing the air...

  17. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy (United States)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.


    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  18. Incomplete split-plot designs based on alpha-designs: a compromise between traditional split-plot designs and randomised complete block design

    DEFF Research Database (Denmark)

    Kristensen, Kristian


    The paper shows how the α-design (also known as generalised lattice) may be used for constructing incomplete split-plot designs and describes four different methods (A, B, C and D) of construction. Intra-block efficiency factors and theoretical considerations are used to compare the methods. Based...... of data. The three types were simulated data with known covariance structure, data from uniformity trials and data from actual trials using incomplete split-plot designs for comparing cereal varieties under different growing conditions. It is concluded that the incomplete split-plot designs may be a good...

  19. A Split Staphylococcus aureus Cas9 as a Compact Genome-Editing Tool in Plants


    Kaya, Hidetaka; Ishibashi, Kazuhiro; Toki, Seiichi


    Split-protein methods?where a protein is split into two inactive fragments that must re-assemble to form an active protein?can be used to regulate the activity of a given protein and reduce the size of gene transcription units. Here, we show that a Staphylococcus aureus Cas9 (SaCas9) can be split, and that split-SaCas9 expressed from Agrobacterium can induce targeted mutagenesis in Nicotiana benthamiana. Since SaCas9 is smaller than the more commonly used Cas9 derived from Streptococcus pyoge...

  20. Modeling habitat split: landscape and life history traits determine amphibian extinction thresholds. (United States)

    Fonseca, Carlos Roberto; Coutinho, Renato M; Azevedo, Franciane; Berbert, Juliana M; Corso, Gilberto; Kraenkel, Roberto A


    Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance - the distance between the two required habitats - affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations.